
Evolutionary Computing

Chapter 3

/ 41

Chapter 3:
What is an Evolutionary Algorithm?

• EC metaphor
• Scheme of an EA
• Main EA components:

– Representation / evaluation / population
– Parent selection / survivor selection
– Recombination / mutation

• Examples: eight-queens problem
• Typical EA behaviour
• EAs and global optimisation
• EC and neighbourhood search

1Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Recap of EC metaphor (1/2)

• A population of individuals exists in an environment with
limited resources

• Competition for those resources causes selection of
those fitter individuals that are better adapted to the
environment

• These individuals act as seeds for the generation of new
individuals through recombination and mutation

• The new individuals have their fitness evaluated and
compete (possibly also with parents) for survival.

• Over time Natural selection causes a rise in the fitness
of the population

2Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Recap of EC metaphor (2/2)

• EAs fall into the category of “generate and test”
algorithms

• They are stochastic, population-based algorithms
• Variation operators (recombination and mutation) create

the necessary diversity and thereby facilitate novelty
• Selection reduces diversity and acts as a force pushing

quality

3Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Scheme of an EA:
General scheme of EAs

4

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Scheme of an EA:
EA scheme in pseudo-code

5Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Scheme of an EA:
Common model of evolutionary processes

• Population of individuals
• Individuals have a fitness
• Variation operators: crossover, mutation
• Selection towards higher fitness

– “survival of the fittest” and
– “mating of the fittest”

6

Neo Darwinism:
Evolutionary progress towards higher life forms

=
Optimization according to some fitness-criterion
(optimization on a fitness landscape)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Scheme of an EA:
Two pillars of evolution

There are two competing but complementary procedures:

7

Increasing population diversity
by genetic operators

� mutation
� recombination

Push towards novelty

Decreasing population diversity by
selection

� of parents
� of survivors

Push towards quality

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Representation (1/2)

• Role: provides code for candidate solutions that can be
manipulated by variation operators

• Leads to two levels of existence
– phenotype: object in original problem context, the outside
– genotype: code to denote that object, the inside (chromosome,

“digital DNA”)

• Implies two mappings:
– Encoding : phenotype=> genotype (not necessarily one to one)
– Decoding : genotype=> phenotype (must be one to one)

• Chromosomes contain genes, which are in (usually
fixed) positions called loci (sing. locus) and have a value
(allele)

8Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Representation (2/2)

In order to find the global optimum, every feasible solution must be represented in
genotype space

9

Genotype spacePhenotype space
Encoding

(representation)

Decoding
(inverse representation)

10

1001

10010

18

2

9

Example: represent integer values by their binary code

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Evaluation (fitness) function

• Role:
– Establishes criteria to assess a solution, the requirements to be

adapted (can be seen as “the environment”);
– Enables selection (provides basis for comparison);
– e.g., some phenotypic traits are advantageous, desirable, e.g. big

ears cool better, these traits are rewarded by more offspring that will
expectedly carry the same trait.

• A.k.a. quality function or objective function.
• Assigns a single real-valued fitness to each phenotype which

forms the basis for selection
– So the more discrimination (different values) the better.

• Typically we talk about fitness being maximised
– Some problems may be best posed as minimisation problems, but

conversion is trivial.

10Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Population (1/2)

• Role: holds the candidate solutions of a problem as a
group of individuals (genotypes).

• Formally, a population is a multiset of individuals, i.e.
repetitions are possible.

• Population is the basic unit of evolution, i.e., the
population is evolving, not the individuals themselves.

• Selection operators act on population level.
• Variation operators act on individual level.

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Population (2/2)

• Some sophisticated EAs also assert a spatial structure
on the population e.g., a grid:
– The structure often constraints the interaction between

individuals.

• Selection operators usually take whole population into
account i.e., reproductive probabilities are relative to
current generation:
– Reproductive probability should consider individual fitness.

• Diversity of a population refers to the number of different
fitnesses / phenotypes / genotypes present (note: not the
same thing)

12Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Selection mechanism (1/3)

Role:
• Identifies individuals:

– to become parents;
– to survive.

• Induces population towards higher fitness.
• Usually probabilistic

– High quality solutions more likely to be selected than low quality;
– even worst in current population usually has non-zero probability

of being selected.

• This stochastic nature can aid escape from local optima.

13Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Example: roulette wheel selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2
A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Main EA components:
Selection mechanism (2/3)

14

In principle, any selection mechanism can be used for both
parent selection and survivor selection.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Selection mechanism (3/3)

• Survivor selection a.k.a. replacement.
• Most EAs use fixed population size so need a way of

going from (parents + offspring) to next generation.
• It can be deterministic (while parent selection is usually

stochastic):
– Fitness based : e.g., rank parents + offspring and take best;
– Age based: make as many offspring as parents and delete all

parents .

• Sometimes a combination of stochastic and deterministic
(elitism).

15Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Variation operators

• Role: to generate new candidate solutions.
• Usually divided into two types according to their arity

(number of inputs):
– Arity 1 : mutation operators;
– Arity >1 : recombination operators;
– Arity = 2 typically called crossover;
– Arity > 2 is formally possible, seldom used in EC.

• There has been much debate about relative importance
of recombination and mutation:
– Nowadays most EAs use both;
– Variation operators must match the given representation.

16Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Mutation (1/2)

• Role: causes small and random variance.
• Acts on one genotype and delivers another.
• Element of randomness is essential and differentiates it

from other unary heuristic operators.
• Importance ascribed depends on representation and

historical dialect:
– Binary GAs – background operator responsible for preserving

and introducing diversity;
– EP for FSM’s / continuous variables – only search operator;
– GP – hardly used.

• May guarantee connectedness of search space and
hence convergence proofs.

17Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

before

1 1 1 0 1 1 1
after

1 1 1 1 1 1 1

Main EA components:
Mutation (2/2)

18Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Recombination (1/2)

• Role: merges information from parents into offspring.
• Choice of what information to merge is stochastic.
• Most offspring may be less fit or equally fit than the

parents.
• Hopefully, some of them can be fitter as a result of the

combination of elements of genotypes that lead to good
traits.

• Principle has been used for millennia by breeders of
plants and livestock.

19Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

1 1 1 1 1 1 1 0 0 0 0 0 0 0

Parents

cut cut

Offspring

Main EA components:
Recombination (2/2)

20

1 1 1 0 0 0 0 0 0 0 1 1 1 1

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
Initialisation / Termination

• Initialisation usually done at random:
– Need to ensure even spread and combinations of possible allele

values;
– Can also include existing solutions, or use problem-specific

heuristics, to “seed” the population.

• Termination condition checked every generation:
– Reaching some (known/hoped for) fitness;
– Reaching some maximum allowed number of generations;
– Reaching some minimum level of diversity;
– Reaching some specified number of generations without fitness

improvement;
– Combinations of the alternatives above.

21Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Main EA components:
What are the different types of EAs

• Historically different flavours of EAs have been
associated with different data types to represent
solutions:
– Binary strings : Genetic Algorithms;
– Real-valued vectors : Evolution Strategies;
– Finite state Machines: Evolutionary Programming;
– LISP trees: Genetic Programming.

• These differences are largely irrelevant, best strategy
– Choose representation to suit problem;
– Choose variation operators to suit representation.

• Selection operators only use fitness and so are
independent of representation.

22Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Place 8 queens on an 8x8 chessboard in such a
way that they cannot check each other.

Example:
The 8-queens problem

23Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

1 23 45 6 7 8

Genotype:
a permutation of
the numbers 1–8

Phenotype:
a board configuration

Possible mapping

The 8-queens problem:
Representation

24Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

The 8-queens problem:
Fitness evaluation

• Penalty of one queen: the number of queens she can
check.

• Penalty of a configuration: the sum of penalties of all
queens.

• Note: penalty is to be minimized.

• Fitness of a configuration: inverse penalty to be
maximized.

25Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Small variation in one permutation, e.g.:
• swapping values of two randomly chosen positions,

1 23 45 6 7 8 1 23 4 567 8

The 8-queens problem:
Mutation

26Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Combining two permutations into two new permutations:
• Choose random crossover point;
• Copy first parts into children;
• Create second part by inserting values from other parent:

• In the order they appear there;
• Beginning after crossover point;
• Skipping values already in child.

8 7 6 42 531

1 3 5 24 678

8 7 6 45 123

1 3 5 62 874

The 8-queens problem:
Recombination

27Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

The 8-queens problem:
Selection

• Parent selection (tournament):
– Pick 5 parents and take best two to undergo crossover.

• Survivor selection (replacement)
– When inserting a new child into the population, choose an

existing member to replace by:
– Sorting the whole population by decreasing fitness;
– Enumerating this list from high to low;
– Replacing the first with a fitness lower than the given child.

28Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

The 8-queens problem:
Summary

29

Note that is only one possible
set of choices of operators and parameters

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behavior:
Stages

Stages in optimizing on a 1-dimensional fitness landscape

30

Early stage:
Population tends to be random distributed

Mid-stage:
Population tends to be arranged around/on hills

Late stage:
Population concentrated on high hills

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behavior:
Working of an EA demo (1/2)

Searching a fitness landscape without “niching”

31Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behaviour:
Working of an EA demo (2/2)

32

Searching a fitness landscape with “niching”

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behaviour:
Typical run: progression of fitness

33

Typical run of an EA shows so-called “anytime behavior”

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behaviour:
Are long runs beneficial?

• Answer:
– It depends on how much you want the last bit of progress
– May be better to do more short runs

34Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

T: time needed to reach level F after random initialisation

T
Time (number of generations)

B
es

t f
itn

es
s

in
 p

op
ul

at
io

n

F: fitness after smart initialisation
F

• Answer: it depends.
- Possibly good, if good solutions/methods exist.
- Care is needed, see chapter/lecture on hybridisation.

Typical EA behaviour:
Is it worth expending effort on smart initialisation?

35Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behavior:
Evolutionary Algorithms in context

• There are many views on the use of EAs as robust
problem solving tools.

• For most problems a problem-specific tool may:
– Perform better than a generic search algorithm on most

instances;
– Have limited utility;
– Not do well on all instances.

• Goal is to provide robust tools that provide:
– Evenly good performance;
– Over a range of problems and instances.

36Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Scale of “all” problems

P
er

fo
rm

an
ce

 o
f m

et
ho

ds
 o

n
pr

ob
le

m
s

Random search

Special, problem tailored method

Evolutionary algorithm

Typical EA behavior:
EAs as problem solvers: Goldberg view (1989)

37Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Typical EA behaviour:
EAs and domain knowledge

• Trend in the 90’s:
– Addition of problem specific knowledge to Eas, such

as special variation operators, repair;

• Result: EA performance curve “deformation”:
– Better on problems of the given type;
– Worse on problems different from given type;
– Amount of added knowledge is variable.

• Recent theory suggests the search for an “all-purpose”
algorithm may be fruitless.

38Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

Scale of “all” problems

PP
er

fo
rm

an
ce

 o
f m

et
ho

ds
 o

n
pr

ob
le

m
s

EA 1

EA 4

EA 3
EA 2

Typical EA behavior:
EAs as problem solvers: Michalewicz view (1996)

39Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

EC and global optimisation

• Global Optimisation: search for finding best solution x* out of some
fixed set S;

• Deterministic approaches:
– Such as box decomposition (branch and bound etc);
– Guarantee to find x* ;
– May have bounds on runtime, usually super-polynomial.

• Heuristic Approaches (generate and test)
– Rules for deciding which x ∈ S to generate next;
– No guarantees that best solutions found are globally optimal;
– No bounds on runtime.

• “I don’t care if it works as long as it converges”
vs.

• “I don’t care if it converges as long as it works”

40Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 41

EC and neighbourhood search

• Many heuristics impose a neighbourhood structure on S
• Such heuristics may guarantee that best point found is

locally optimal e.g. Hill-Climbers:
– But problems often exhibit many local optima;
– Often very quick to identify good solutions.

• EAs are distinguished by:
– Use of population;
– Use of multiple, stochastic search operators;
– Especially variation operators with arity >1;
– Stochastic selection.

• Question: what is the neighbourhood in an EA?

41Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

