Evolutionary Computing

Chapter 3

Chapter 3:
What is an Evolutionary Algorithm?

 EC metaphor
« Scheme of an EA

e Main EA components:
— Representation / evaluation / population
— Parent selection / survivor selection
— Recombination / mutation

 Examples: eight-queens problem
« Typical EA behaviour

 EAs and global optimisation
 EC and neighbourhood search

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

1/41

Recap of EC metaphor (1/2)

« A population of individuals exists in an environment with
limited resources

 Competition for those resources causes selection of
those fitter individuals that are better adapted to the
environment

 These individuals act as seeds for the generation of new
Individuals through recombination and mutation

 The new individuals have their fithess evaluated and
compete (possibly also with parents) for survival.

e Qver time Natural selection causes a rise in the fithess
of the population

Recap of EC metaphor (2/2)

 EAs fall into the category of “generate and test”
algorithms

* They are stochastic, population-based algorithms

« Variation operators (recombination and mutation) create
the necessary diversity and thereby facilitate novelty

e Selection reduces diversity and acts as a force pushing
quality

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 3/41

Scheme of an EA:
General scheme of EAs

Parent selection

Parents
Intialization
Recombination
(crossover)
— Population
Mutation

v
Termination |
Offspring

Survivor selection

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 4/41

Scheme of an EA:
EA scheme In pseudo-code

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO
1 SELECT parents;
2 RECOMEINFE pairs of parents;
3 MUTATE the resulting offspring;
4 FEVALUATE new candidates;

5 SELECT individuals for the next generation;
0D

END

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 5/41

Scheme of an EA:
Common model of evolutionary processes

Population of individuals

Individuals have a fitness

Variation operators: crossover, mutation
Selection towards higher fithess

— “survival of the fittest” and

— “mating of the fittest”

Neo Darwinism:
Evolutionary progress towards higher life forms

Optimization according to some fitness-criterion
(optimization on a fithess landscape)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 6 /41

Scheme of an EA:
Two pillars of evolution

There are two competing but complementary procedures:

Increasing population diversity Decreasing population diversity by
by genetic operators selection
e mutation e of parents

e recombination * of survivors

Push towards novelty Push towards quality

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 7 /41

Main EA components:
Representation (1/2)

* Role: provides code for candidate solutions that can be
manipulated by variation operators
* Leads to two levels of existence

— phenotype: object in original problem context, the outside

— genotype: code to denote that object, the inside (chromosome,
“digital DNA”)

e Implies two mappings:
— Encoding : phenotype=> genotype (not necessarily one to one)
— Decoding : genotype=> phenotype (must be one to one)

 Chromosomes contain genes, which are in (usually
fixed) positions called loci (sing. locus) and have a value
(allele)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 8 /41

Main EA components:
Representation (2/2)

Example: represent integer values by their binary code

Encoding
(representation) s /

Phenotype space

Genotype space

10010

<€

10

1001

4

Decoding
(inverse representation)

In order to find the global optimum, every feasible solution must be represented in

genotype space

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

9 /41

Main EA components:
Evaluation (fitness) function

Role:

— Establishes criteria to assess a solution, the requirements to be
adapted (can be seen as “the environment”);

— Enables selection (provides basis for comparison);

— e.g., some phenotypic traits are advantageous, desirable, e.g. big
ears cool better, these traits are rewarded by more offspring that will
expectedly carry the same trait.

« A.k.a. quality function or objective function.

e Assigns a single real-valued fithess to each phenotype which
forms the basis for selection

— So the more discrimination (different values) the better.

« Typically we talk about fithess being maximised

— Some problems may be best posed as minimisation problems, but
conversion is trivial.

Main EA components:
Population (1/2)

 Role: holds the candidate solutions of a problem as a
group of individuals (genotypes).

 Formally, a population is a multiset of individuals, i.e.
repetitions are possible.

 Population is the basic unit of evolution, i.e., the
population is evolving, not the individuals themselves.

« Selection operators act on population level.
« Variation operators act on individual level.

Main EA components:
Population (2/2)

« Some sophisticated EAs also assert a spatial structure
on the population e.g., a grid:

— The structure often constraints the interaction between
iIndividuals.

o Selection operators usually take whole population into
account 1.e., reproductive probabilities are relative to
current generation:

— Reproductive probability should consider individual fithess.

« Diversity of a population refers to the number of different
fitnesses / phenotypes / genotypes present (note: not the
same thing)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 12 /41

Main EA components:
Selection mechanism (1/3)

Role:

e |dentifies individuals:
— to become parents;
— to survive.

 Induces population towards higher fitness.
o Usually probabillistic

— High quality solutions more likely to be selected than low quality;

— even worst in current population usually has non-zero probability
of being selected.

e This stochastic nature can aid escape from local optima.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 13 /41

Main EA components:
Selection mechanism (2/3)

Example: roulette wheel selection

1/6 = 17%

fitness(A) = 3
fithness(B) = 1 — A B
fitness(C) = 2

C

3/6 = 50% 2/6 = 33%

In principle, any selection mechanism can be used for both
parent selection and survivor selection.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 14 /41

Main EA components:
Selection mechanism (3/3)

e Survivor selection a.k.a. replacement.

« Most EAs use fixed population size so need a way of
going from (parents + offspring) to next generation.

e It can be deterministic (while parent selection is usually
stochastic):
— Fitness based : e.g., rank parents + offspring and take best;

— Age based: make as many offspring as parents and delete all
parents .

e Sometimes a combination of stochastic and deterministic
(elitism).

Main EA components:
Variation operators

* Role: to generate new candidate solutions.

o Usually divided into two types according to their arity
(number of inputs):
— Arity 1 : mutation operators;
— Arity >1 : recombination operators;
— Arity = 2 typically called crossover;
— Arity > 2 is formally possible, seldom used in EC.

 There has been much debate about relative importance
of recombination and mutation:
— Nowadays most EAs use both;
— Variation operators must match the given representation.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 16 /41

Main EA components:
Mutation (1/2)

* Role: causes small and random variance.
e Acts on one genotype and delivers another.

e Element of randomness is essential and differentiates it
from other unary heuristic operators.

 Importance ascribed depends on representation and
historical dialect:

— Binary GAs — background operator responsible for preserving
and introducing diversity;

— EP for FSM’s / continuous variables — only search operator;
— GP — hardly used.

« May guarantee connectedness of search space and
hence convergence proofs.

Main EA components:
Mutation (2/2)

i,\
before (1111111 7
arter 1110111 ’ '

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 18 /41

Main EA components:
Recombination (1/2)

* Role: merges information from parents into offspring.
* Choice of what information to merge is stochastic.

 Most offspring may be less fit or equally fit than the
parents.

 Hopefully, some of them can be fitter as a result of the
combination of elements of genotypes that lead to good
traits.

* Principle has been used for millennia by breeders of
plants and livestock.

Main EA components:
Recombination (2/2)

Parents

\CUt \CUt
1111011 000 0\0 0O

L {

1110000 0001111

Offspring

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 20 /41

Main EA components:
Initialisation / Termination

 Initialisation usually done at random:

— Need to ensure even spread and combinations of possible allele
values;

— Can also include existing solutions, or use problem-specific
heuristics, to “seed” the population.

« Termination condition checked every generation:
— Reaching some (known/hoped for) fitness;
— Reaching some maximum allowed number of generations;
— Reaching some minimum level of diversity;

— Reaching some specified number of generations without fithess
Improvement;

— Combinations of the alternatives above.

Main EA components:
What are the different types of EAS

e Historically different flavours of EAs have been
associated with different data types to represent
solutions:

— Binary strings : Genetic Algorithms;

— Real-valued vectors : Evolution Strategies;

— Finite state Machines: Evolutionary Programming;
— LISP trees: Genetic Programming.

 These differences are largely irrelevant, best strategy
— Choose representation to suit problem;

— Choose variation operators to suit representation.

o Selection operators only use fithess and so are
Independent of representation.

Example:
The 8-queens problem

Place 8 queens on an 8x8 chessboard in such a
way that they cannot check each other.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 23 /41

The 8-queens problem:
Representation

Phenotype:
a board configuration

Genotype:
a permutation of I Possible mapping

the numbers 1-8 [1[3[5]2]6[4]7]8]

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 24 /41

The 8-queens problem:
Fithess evaluation

Penalty of one queen: the number of queens she can
check.

 Penalty of a configuration: the sum of penalties of all
gueens.

* Note: penalty is to be minimized.

 Fitness of a configuration: inverse penalty to be
maximized.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 25 /41

The 8-queens problem:
Mutation

Small variation in one permutation, e.g.:

« swapping values of two randomly chosen positions,

1[3[5]2]6|4[7]8] — [1[3]7]2]6]4[5]8]

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 26 /41

The 8-queens problem:
Recombination

Combining two permutations into two new permutations:
 Choose random crossover point;
o Copy first parts into children;
» Create second part by inserting values from other parent:
* In the order they appear there;
e Beginning after crossover point;
« Skipping values already in child.

8/7(6|5(4|3(2]|1

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 27 /41

The 8-queens problem:
Selection

« Parent selection (tournament):
— Pick 5 parents and take best two to undergo crossover.

« Survivor selection (replacement)

— When inserting a new child into the population, choose an
existing member to replace by:

— Sorting the whole population by decreasing fithess;
— Enumerating this list from high to low;
— Replacing the first with a fitness lower than the given child.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 28 /41

The 8-queens problem:

Summary

Representation Permutations
Recombination “Cut-and-crossfill” crossover
Recombination probability|100%

Mutation Swap

Mutation probability 80%

Parent selection

Best 2 out of random 5

Survival selection

Replace worst

Population size 100
Number of Offspring 2
Initialisation Random

Termination condition

Solution or 10.000 fitness evaluation

Note that is only one possible
set of choices of operators and parameters

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

29 /41

Typical EA behavior:
Stages

Stages in optimizing on a 1-dimensional fithess landscape

Early stage:
Population tends to be random distributed

Mid-stage:
Population tends to be arranged around/on hills

Late stage:
Population concentrated on high hills

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 30 /41

Typical EA behavior:
Working of an EA demo (1/2)

Searching a fithess landscape without “niching”

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 31/41

Typical EA behaviour:
Working of an EA demo (2/2)

Searching a fitness landscape with “niching”

0.3

0.2

0.1

IL,-'-".:.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 32 /41

Typical EA behaviour:
Typical run: progression of fithess

est value in population

=
-

time
Typical run of an EA shows so-called “anytime behavior”

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 33 /41

Typical EA behaviour:
Are long runs beneficial?

Answer:

— It depends on how much you want the last bit of progress
— May be better to do more short runs

pest value in populatior

P>

—

progress in 2nd half: Y

'L"n..
~

Sy
S

progress in 1st half: X

Y

I
fime

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 34 /41

Typical EA behaviour:
Is it worth expending effort on smart initialisation?

A

F: fitness after smart initialisation

: T: time needed to reach level F after random initialisation
i
>

Best fitness in population

Time (number of generations)

e Answer: it depends.
- Possibly good, if good solutions/methods exist.
- Care is needed, see chapter/lecture on hybridisation.

Typical EA behavior:
Evolutionary Algorithms in context

e There are many views on the use of EAs as robust
problem solving tools.

* For most problems a problem-specific tool may:

— Perform better than a generic search algorithm on most
Instances;

— Have limited utility;
— Not do well on all instances.

e Goal is to provide robust tools that provide:
— Evenly good performance;
— Over a range of problems and instances.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 36 /41

Typical EA behavior:
EAs as problem solvers: Goldberg view (1989)

o M

S

Q

@) . .
o Special, problem tailored method
o

c

O - -

2 Evolutionary algorithm

£

G) -------------------------------------

E

©

]

&)

C

©

=

HC—> TN =T T = -

s [

Scale of “all” problems

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 37 /41

Typical EA behaviour:
EAs and domain knowledge

e Trend in the 90’s:

— Addition of problem specific knowledge to Eas, such
as special variation operators, repair;

* Result: EA performance curve “deformation”:
— Better on problems of the given type;
— Worse on problems different from given type;
— Amount of added knowledge is variable.

 Recent theory suggests the search for an “all-purpose”
algorithm may be fruitless.

Typical EA behavior:
EAs as problem solvers: Michalewicz view (1996)

A
(7))
&
D
o)
s EA 2
S
g :0 —-\““(_ EA3
) :’/ %
S 7 \
c e N\
3 | |[EAL 7 N
= s N
: / N
- / \\
g j /)—\o ’\l‘ X
= /*’_,; N~ _ - ‘oo~ S~ TN _
5 |,/\/ =
o P

]

Scale of “all” problems

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 39 /41

EC and global optimisation

e Global Optimisation: search for finding best solution X" out of some
fixed set S;
o Deterministic approaches:
— Such as box decomposition (branch and bound etc);
— Guarantee to find x*;
— May have bounds on runtime, usually super-polynomial.
» Heuristic Approaches (generate and test)
— Rules for deciding which x [/S to generate next;
— No guarantees that best solutions found are globally optimal;
— No bounds on runtime.

 “ldon’t care if it works as long as it converges”
VS.
 “ldon’t care if it converges as long as it works”

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 40 /41

EC and neighbourhood search

« Many heuristics impose a neighbourhood structure on S

e Such heuristics may guarantee that best point found is
locally optimal e.g. Hill-Climbers:
— But problems often exhibit many local optima;
— Often very quick to identify good solutions.

 EAs are distinguished by:
— Use of population;
— Use of multiple, stochastic search operators;
— Especially variation operators with arity >1,
— Stochastic selection.

e Question: what is the neighbourhood in an EA?

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 41 /41

