
Evolutionary Computing

Chapter 4

/ 62

Chapter 4:
Representation, Mutation, and Recombination

• Role of representation and variation operators.
• Most common representation of genomes:

– Binary;
– Integer;
– Real-Valued or Floating-Point;
– Permutation;
– Tree.

1Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Scheme of an EA:
General scheme of EAs

2

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Role of representation and variation
operators

• First stage of building an EA and most difficult one:
choose right representation for the problem

• Variation operators: mutation and crossover
• Type of variation operators needed depends on chosen

representation

• TSP problem
– What are possible representations?

3Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation

• One of the earliest representations
• Genotype consists of a string of binary digits

4Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
Mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

• Mutation can cause variable effect (use gray coding)

5Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
1-point crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails
• Pc typically in range (0.6, 0.9)

6Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
Alternative Crossover Operators

• Why do we need other crossover(s)?
• Performance with 1-point crossover depends on the

order that variables occur in the representation
– More likely to keep together genes that are near each other
– Can never keep together genes from opposite ends of string
– This is known as Positional Bias
– Can be exploited if we know about the structure of our problem,

but this is not usually the case

7Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
n-point crossover

• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents
• Generalisation of 1-point (still some positional bias)

8Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
Uniform crossover

• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make an inverse copy of the gene for the second child
• Inheritance is independent of position

9Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
Crossover OR mutation? (1/3)

• Decade long debate: which one is better / necessary /
main-background

• Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– both have another role
– mutation-only-EA is possible, xover-only-EA would not work

10Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
Crossover OR mutation? (2/3)

Exploration: Discovering promising areas in the search space,
i.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using
information

There is co-operation AND competition between them

• Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas

• Mutation is exploitative, it creates random small diversions,
thereby staying near (in the area of) the parent

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Binary Representation:
Crossover OR mutation? (3/3)

• Only crossover can combine information from two
parents

• Only mutation can introduce new information (alleles)
• Crossover does not change the allele frequencies of the

population (thought experiment: 50% 0’s on first bit in the
population, ?% after performing n crossovers)

• To hit the optimum you often need a ‘lucky’ mutation

12Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Integer Representation

• Nowadays it is generally accepted that it is better to encode
numerical variables directly (integers, floating point variables)

• Some problems naturally have integer variables, e.g. image
processing parameters

• Others take categorical values from a fixed set e.g. {blue,
green, yellow, pink}

• N-point / uniform crossover operators work
• Extend bit-flipping mutation to make

– “creep” i.e. more likely to move to similar value
• Adding a small (positive or negative) value to each gene with

probability p.
– Random resetting (esp. categorical variables)

• With probability pm a new value is chosen at random
• Same recombination as for binary representation

13Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point
Representation

• Many problems occur as real valued problems, e.g.
continuous parameter optimisation f : ℜ n � ℜ

• Illustration: Ackley’s function (often used in EC)

14

f (x) = −20 ⋅ exp −0.2
1

n
⋅ xi

2

i=1

n

∑










−exp
1

n
cos(2π xi)

i=1

n

∑








+ 20 + e

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Mapping real values on bit strings

z ∈ [x,y] ⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L

• [x,y] → {0,1}L must be invertible (one phenotype per genotype)
• Γ: {0,1}L → [x,y] defines the representation

• Only 2L values out of infinite are represented
• L determines possible maximum precision of solution
• High precision � long chromosomes (slow evolution)

15

],[)2(
12

),...,(
1

0
1 yxa

xy
xaa j

L

j
jLLL ∈⋅⋅

−
−+=Γ ∑

−

=
−

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Uniform Mutation

• General scheme of floating point mutations

• Uniform Mutation

• Analogous to bit-flipping (binary) or random resetting
(integers)

16

ll xxxx xx ′′=′→= ..., , ...,, 11

[]iiii UBLBxx ,, ∈′

[]iii UBLBx , from (uniform)randomly drawn ′

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Nonuniform Mutation

• Non-uniform mutations:
– Many methods proposed, such as time-varying range of change

etc.
– Most schemes are probabilistic but usually only make a small

change to value
– Most common method is to add random deviate to each variable

separately, taken from N(0, σ) Gaussian distribution and then
curtail to range

x’i = xi + N(0,σ)
– Standard deviation σ, mutation step size, controls amount of

change (2/3 of drawings will lie in range (- σ to + σ))

17Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Self-Adaptive Mutation (1/2)

• Step-sizes are included in the genome and undergo
variation and selection themselves: 〈 x1,…,xn, σ 〉

• Mutation step size is not set by user but coevolves with
solution

• Different mutation strategies may be appropriate in
different stages of the evolutionary search process.

18Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Self-Adaptive Mutation (2/2)

• Mutate σ first
• Net mutation effect: 〈 x, σ 〉 � 〈 x’, σ’ 〉
• Order is important:

– first σ � σ’ (see later how)
– then x � x’ = x + N(0,σ’)

• Rationale: new 〈 x’ ,σ’ 〉 is evaluated twice
– Primary: x’ is good if f(x’) is good
– Secondary: σ’ is good if the x’ it created is good

• Reversing mutation order this would not work

19Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Uncorrelated mutation with one σ (1/2)

• Chromosomes: 〈 x1,…,xn, σ 〉
– σ’ = σ • exp(τ • N(0,1))
– x’i = xi + σ’ • Ni(0,1)

• Typically the “learning rate” τ ∝ 1/ n½

• And we have a boundary rule σ’ < ε0 ⇒ σ’ = ε0

20Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Uncorrelated mutation with one σ (2/2)

Circle: mutants having the same chance to be created

21

Mutants with equal likelihood

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Uncorrelated mutation with n σ’s (1/2)

• Chromosomes: 〈 x1,…,xn, σ1,…, σn 〉
– σ’i = σi • exp(τ’ • N(0,1) + τ • Ni (0,1))
– x’i = xi + σ’i • Ni (0,1)

• Two learning rate parameters:
– τ’ overall learning rate
– τ coordinate wise learning rate

• τ’ ∝ 1/(2 n)½ and τ ∝ 1/(2 n½) ½

• Boundary rule: σi’ < ε0 ⇒ σi’ = ε0

22Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Uncorrelated mutation with n σ’s (2/2)

Mutants with equal likelihood

Ellipse: mutants having the same chance to be created

23Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Correlated mutations (1/3)

• Chromosomes: 〈 x1,…,xn, σ1,…, σn ,α1,…, αk 〉

where k = n • (n-1)/2
• Covariance matrix C is defined as:

– cii = σi
2

– cij = 0 if i and j are not correlated

– cij = ½ • (σi
2 - σj

2) • tan(2 αij) if i and j are correlated

• Note the numbering / indices of the α‘s

24Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Correlated mutations (2/3)

The mutation mechanism is then:
• σ’i = σi • exp(τ’ • N(0,1) + τ • Ni (0,1))
• α’j = αj + β • N (0,1)
• x ’ = x + N(0,C’)

– x stands for the vector 〈 x1,…,xn 〉
– C’ is the covariance matrix C after mutation of the α values

• τ ∝ 1/(2 n)½ and τ ∝ 1/(2 n½) ½ and β ≈ 5°
• σi’ < ε0 ⇒ σi’ = ε0 and
• | α’j | > π ⇒ α’j = α’j - 2 π sign(α’j)

• NB Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) is probably the best EA for numerical optimisation, cf.
CEC-2005 competition

25Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Correlated mutations (3/3)

Mutants with equal likelihood

Ellipse: mutants having the same chance to be created

26Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Crossover operators

• Discrete:
– each allele value in offspring z comes from one of its parents

(x,y) with equal probability: zi = xi or yi

– Could use n-point or uniform

• Intermediate
– exploits idea of creating children “between” parents (hence a.k.a.

arithmetic recombination)

– zi = α xi + (1 - α) yi where α : 0 ≤ α ≤ 1.
– The parameter α can be:

• constant: uniform arithmetical crossover
• variable (e.g. depend on the age of the population)
• picked at random every time

27Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Single arithmetic crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

• Pick a single gene (k) at random,
• child1 is:

• Reverse for other child. e.g. with α = 0.5

28

nkkk xxyxx ..., ,)1(, ..., ,1 ⋅−+⋅ αα

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Simple arithmetic crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

• Pick a random gene (k) after this point mix values
• child1 is:

• reverse for other child. e.g. with α = 0.5

29

n
x

k
x

k
y

k
xx ⋅−+⋅+⋅−++⋅)1(

n
y ..., ,

1
)1(

1
 , ..., ,

1
αααα

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Whole arithmetic crossover

• Most commonly used
• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

• Child1 is:

• reverse for other child. e.g. with α = 0.5

30

yaxa ⋅−+⋅)1(

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Blend Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

• Assume xi < yi

• di = yi – xi

• Random sample zi= [xi – αdi, xi + αdi]
• Original authors had best results with α = 0.5

31Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Overview different possible offspring

• Single arithmetic:
• {s1, s2, s3, s4}
• Simple arithmetic / whole arithmetic:
• inner box (w = alpha 0.5)
• Blend crossover:
• outer box

32Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Multi-parent recombination

• Recall that we are not constricted by the practicalities of
nature

• Noting that mutation uses n = 1 parent, and “traditional”
crossover n = 2, the extension to n > 2 is natural to
examine

• Been around since 1960s, still rare but studies indicate
useful

32Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Multi-parent recombination, type 1

• Idea: segment and recombine parents
• Example: diagonal crossover for n parents:

– Choose n-1 crossover points (same in each parent)
– Compose n children from the segments of the parents in along a

“diagonal”, wrapping around

• This operator generalises 1-point crossover

34Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Real-Valued or Floating-Point Representation:
Multi-parent recombination, type 2

• Idea: arithmetical combination of (real valued) alleles
• Example: arithmetic crossover for n parents:

– i-th allele in child is the average of the parents’ i-th alleles

• Creates center of mass as child
• Odd in genetic algorithms, long known and used in

evolution strategies

35Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations

• Ordering/sequencing problems form a special type
• Task is (or can be solved by) arranging some objects in

a certain order
– Example: production scheduling: important thing is which

elements are scheduled before others (order)
– Example: Travelling Salesman Problem (TSP) : important thing

is which elements occur next to each other (adjacency)

• These problems are generally expressed as a
permutation:
– if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once

36Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representation:
TSP example

• Problem:
• Given n cities
• Find a complete tour with

minimal length
• Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one

permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

• Search space is BIG:
for 30 cities there are 30! ≈ 1032

possible tours

37Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Mutation

• Normal mutation operators lead to inadmissible solutions
– e.g. bit-wise mutation: let gene i have value j
– changing to some other value k would mean that k occurred

twice and j no longer occurred

• Therefore must change at least two values
• Mutation parameter now reflects the probability that

some operator is applied once to the whole string, rather
than individually in each position

38Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Swap mutation

• Pick two alleles at random and swap their positions

39Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Insert Mutation

• Pick two allele values at random
• Move the second to follow the first, shifting the rest

along to accommodate
• Note that this preserves most of the order and the

adjacency information

40Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Scramble mutation

• Pick a subset of genes at random
• Randomly rearrange the alleles in those positions

41Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Inversion mutation

• Pick two alleles at random and then invert the substring
between them.

• Preserves most adjacency information (only breaks two
links) but disruptive of order information

42Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Crossover operators

• “Normal” crossover operators will often lead to
inadmissible solutions

• Many specialised operators have been devised which
focus on combining order or adjacency information from
the two parents

43

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Order 1 crossover (1/2)

• Idea is to preserve relative order that elements occur
• Informal procedure:

– 1. Choose an arbitrary part from the first parent
– 2. Copy this part to the first child
– 3. Copy the numbers that are not in the first part, to the first child:

• starting right from cut point of the copied part,
• using the order of the second parent
• and wrapping around at the end

– 4. Analogous for the second child, with parent roles reversed

44Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Order 1 crossover (2/2)

• Copy randomly selected set from first parent

• Copy rest from second parent in order 1,9,3,8,2

45Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Partially Mapped Crossover (PMX) (1/2)

Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1
2. Starting from the first crossover point look for elements in that segment of P2

that have not been copied
3. For each of these i look in the offspring to see what element j has been copied

in its place from P1
4. Place i into the position occupied j in P2, since we know that we will not be

putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the offspring k, put i in

the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest of the

offspring can be filled from P2.

Second child is created analogously

46Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Partially Mapped Crossover (PMX) (2/2)

47Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Cycle crossover (1/2)

Basic idea:
Each allele comes from one parent together with its position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1.
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions
they have in the first parent.

3. Take next cycle from second parent

48Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Cycle crossover (2/2)

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

49Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Edge Recombination (1/3)

• Works by constructing a table listing which edges are
present in the two parents, if an edge is common to both,
mark with a +

• e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

50Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Edge Recombination (2/3)

Informal procedure: once edge table is constructed
1. Pick an initial element, entry, at random and put it in the offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

– If there is a common edge, pick that to be next element
– Otherwise pick the entry in the list which itself has the shortest list
– Ties are split at random

5. In the case of reaching an empty list:
– a new element is chosen at random

51Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Permutation Representations:
Edge Recombination (3/3)

52Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation (1/6)

• Trees are a universal form, e.g. consider

• Arithmetic formula:

• Logical formula:

• Program:

53









+

−++⋅
15

)3(2
y

xπ

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

i =1;

while (i < 20)

{

i = i +1

}

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation (2/6)

54









+

−++⋅
15

)3(2
y

xπ

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation (3/6)

55

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧
y)))

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation (4/6)

56

i =1;

while (i < 20)

{

i = i +1

}

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation (5/6)

• In GA, ES, EP chromosomes are linear structures (bit
strings, integer string, real-valued vectors, permutations)

• Tree shaped chromosomes are non-linear structures
• In GA, ES, EP the size of the chromosomes is fixed
• Trees in GP may vary in depth and width

57Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation (6/6)

• Symbolic expressions can be defined by
– Terminal set T
– Function set F (with the arities of function symbols)

• Adopting the following general recursive definition:
– Every t ∈ T is a correct expression
– f(e1, …, en) is a correct expression if f ∈ F, arity(f)=n and e1, …,

en are correct expressions
– There are no other forms of correct expressions

• In general, expressions in GP are not typed (closure
property: any f ∈ F can take any g ∈ F as argument)

58Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation:
Mutation (1/2)

• Most common mutation: replace randomly chosen
subtree by randomly generated tree

59Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation:
Mutation (2/2)

• Mutation has two parameters:
– Probability pm to choose mutation
– Probability to chose an internal point as the root of the subtree to

be replaced

• Remarkably pm is advised to be 0 (Koza’92) or very
small, like 0.05 (Banzhaf et al. ’98)

• The size of the child can exceed the size of the parent

60Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Tree Representation:
Recombination (1/2)

• Most common recombination: exchange two randomly
chosen subtrees among the parents

• Recombination has two parameters:
– Probability pc to choose recombination
– Probability to chose an internal point within each parent as

crossover point

• The size of offspring can exceed that of the parents

61Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 62

Child 2

Parent 1 Parent 2

Child 1

Tree Representation:
Recombination (2/2)

62Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

