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Chapter 5



Chapter 5:
Fithess, Selection and Population Management

« Selection is second fundamental force for evolutionary
systems

 Components exist of:
- Population management models
- Selection operators
- Preserving diversity
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Population Management Models:
Introduction

« Two different population management models exist:
— Generational model
» each individual survives for exactly one generation
» the entire set of parents is replaced by the offspring
— Steady-state model
» one offspring is generated per generation
* one member of population replaced

e Generation Gap
— The proportion of the population replaced
— Parameter = 1.0 for GGA, = 1/pop_size for SSGA
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Population Management Models:
Fithess based competition

e Selection can occur in two places:

— Selection from current generation to take part in mating (parent
selection)

— Selection from parents + offspring to go into next generation
(survivor selection)

« Selection operators work on whole individual
— l.e. they are representation-independent !

 Distinction between selection
— Operators: define selection probabilities
— Algorithms: define how probabilities are implemented



Parent Selection:
Fithess-Proportionate Selection

* Probability for individual i to be selected for mating in a
population size y with FPS is

u
Pees(1) = 1, Z fj
j=1

e Problems include

— One highly fit member can rapidly take over if rest of population is
much less fit: Premature Convergence

— At end of runs when fitnesses are similar, loss of selection pressure
— Highly susceptible to function transposition (example next slide)

« Scaling can fix last two problems
— Windowing: ¢ ()= f(i)- L2
where Sis worst fitness in this (last n) generations
— Slgma Scallng: f l(l) — max(.l: (|) _(f —Co O.f )’ O)

where c is a constant, usually 2.0
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Parent Selection:
Rank-based Selection

o Attempt to remove problems of FPS by basing selection
probabilities on relative rather than absolute fithess

* Rank population according to fithess and then base
selection probabilities on rank (fittest has rank 41 and
worst rank 0)

* This imposes a sorting overhead on the algorithm, but
this is usually negligible compared to the fithess
evaluation time
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Rank-based Selection:
Linear Ranking

)= (2- s) 2i1(s—1)
U ,U(,U 1)

I|n rank (I

 Parameterised by factors: 1 <s<2
— measures advantage of best individual

o Simple 3 member example

Individual |Fitness|Rank| Picipp|PeetLr (8 = 2)|Psetr (s = 1.5)
A 1 0 0.1 0 0.167
B 4 1 0.4 0.33 0.33
C 5 2 0.5 0.67 0.5
Sum 10 1.0 1.0 1.0
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Rank-based selection:
Exponential Ranking

1-¢

I:)exp—rank (I) =

e Linear Ranking is limited in selection pressure

« Exponential Ranking can allocate more than 2 copies to
fittest individual

 Normalise constant factor ¢ according to population size

Sample mating pool from the selection probability
distribution (roulette wheel, stochastic universal sampling)



Parent Selection:
Tournament Selection (1/2)

* All methods above rely on global population statistics

— Could be a bottleneck esp. on parallel machines, very large
population

— Relies on presence of external fithess function which might not
exist: e.g. evolving game players

* |dea for a procedure using only local fithess information:
— Pick k members at random then select the best of these
— Repeat to select more individuals
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Parent Selection:
Tournament Selection (2/2)

* Probability of selecting 1 will depend on:

— Rank of |
— Size of sample k
* higher k increases selection pressure
— Whether contestants are picked with replacement
» Picking without replacement increases selection pressure

— Whether fittest contestant always wins (deterministic) or this
happens with probability p
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Parent Selection:
Uniform

. 1
I:)uniform(l) - —
U

o Parents are selected by uniform random distribution
whenever an operator needs one/some

« Uniform parent selection is unbiased - every individual
has the same probability to be selected

 When working with extremely large populations, over-
selection can be used.
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Survivor Selection

 Managing the process of reducing the working memory
of the EA from a set of y parents and A offspring to a set
of y individuals forming the next generation

e The parent selection mechanisms can also be used for
selecting survivors

e Survivor selection can be divided into two approaches:
— Age-Based Selection
» Fitness is not taken into account

* In SSGA can implement as “delete-random” (not
recommended) or as first-in-first-out (a.k.a. delete-oldest)

— Fitness-Based Replacement



Fithess-based replacement (1/2)

o Elitism
— Always keep at least one copy of the fittest solution so far
— Widely used in both population models (GGA, SSGA)

« GENITOR: a.k.a. “delete-worst”
— From Whitley’s original Steady-State algorithm (he also used linear ranking
for parent selection)
— Rapid takeover: use with large populations or “no duplicates” policy

* Round-robin tournament
— P(t): u parents, P’(t): p offspring
— Pairwise competitions in round-robin format:

« Each solution x from P(t) O P’(t) is evaluated against g other randomly
chosen solutions

» For each comparison, a "win" is assigned if x is better than its opponent

» The p solutions with the greatest number of wins are retained to be
parents of the next generation

— Parameter g allows tuning selection pressure
— Typically g = 10
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Fithess-based replacement (2/2)

(L,A)-selection

- based on the set of children only (A > )
- choose best L

(L+A)-selection

- based on the set of parents and children
- choose best L

Often (u4,A)-selection is preferred for:
— Better in leaving local optima
— Better in following moving optima

— Using the + strategy bad o values can survive in (x,0) too long if
their host x is very fit

A =7 . is a traditionally good setting (decreasing over the
last couple of years, A = 3 - L seems more popular lately)
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Selection Pressure

e Takeover time 1 is a measure to quantify the selection
pressure

 The number of generations it takes until the application
of selection completely fills the population with copies of
the best individual

 Goldberg and Deb showed:
. In A

CIn(Al )

« For proportional selection in a genetic algorithm the
takeover time is Aln(A)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 16 /32



Multimodality

Most interesting problems have more than one locally
optimal solution.

A

N

fitness
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Multimodality:
Genetic Drift

 Finite population with global mixing and selection
eventually convergence around one optimum

o« Why?
o Often might want to identify several possible peaks
« Sub-optimum can be more attractive
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Approaches for Preserving Diversity:
Introduction (1/2)

o Explicit vs implicit
* Implicit approaches:

— Impose an equivalent of geographical separation
— Impose an equivalent of speciation

o EXxplicit approaches
— Make similar individuals compete for resources (fitness)
— Make similar individuals compete with each other for survival
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Approaches for Preserving Diversity:
Introduction (1/2)

Different spaces:
— Genotype space
» Set of representable solutions
— Phenotype space
* The end result

* Neighbourhood structure may bear little relation with
genotype space

— Algorithmic space

» Equivalent of the geographical space on which life on earth
has evolved

 Structuring the population of candidate solutions
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Explicit Approaches for Preserving Diversity:
Fithess Sharing (1/2)

» Restricts the number of individuals within a given niche
by “sharing” their fitness, so as to allocate individuals to
niches in proportion to the niche fithess

e need to set the size of the niche o, In either genotype
or phenotype space

* run EA as normal but after each generation set

£(i) = r{) 1-d/o d<o
Y@, j)) Y=

0 otherwise
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Explicit Approaches for Preserving Diversity:
Fithess Sharing (2/2)

* Note: if we used sh(d) = 1 for d < 0, then the sum that
reduces the fithess would simply count the number of
neighbours, i.e., individuals closer than oy,

* This creates an advantage of being alone in the
neighbourhood

e Using 1 -d/ oy, instead of 1 implies that we count
distant neighbours less



Explicit Approaches for Preserving Diversity:
Crowding (1/2)

o Attempts to distribute individuals evenly amongst niches

* relies on the assumption that offspring will tend to be
close to parents

e uses a distance metric in ph/genotype space
« randomly shuffle and pair parents, produce 2 offspring

e set up the parent vs. child tournaments such that the
Intertournament distances are minimal
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Explicit Approaches for Preserving Diversity:
Crowding (2/2)

e Thatis, number the two p’s (parents )and the two 0’s
(offspring) such that

* d(py,0,) +d(p,,0,) < d(py,0,) + d(py,0,)
e and let o, compete with p, and o, compete with p,
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Explicit Approaches for Preserving Diversity:
Crowding or Fithess sharing?
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Observe the number of individuals per niche
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Implicit Approaches for Preserving Diversity:
Automatic Speciation

« Either only mate with genotypically / phenotypically
similar members or

* Add bits (tags) to problem representation
— that are initially randomly set

— subject to recombination and mutation

— when selecting partner for recombination, only pick members
with a good match
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Implicit Approaches for Preserving Diversity:
“Island” Model Parallel EAs (1/4)

et

>

Periodic migration of individual solutions between populations
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Implicit Approaches for Preserving Diversity:
“Island” Model Parallel EAs (2/4)

 Run multiple populations in parallel

« After a (usually fixed) number of generations (an
Epoch), exchange individuals with neighbours

* Repeat until ending criteria met
o Partially inspired by parallel/clustered systems



Island Model:
Parameters

 How often to exchange individuals ?
— too quick and all sub-populations converge to same solution
— too slow and waste time
— most authors use range~ 25-150 generations
— can do it adaptively (stop each pop when no improvement for
(say) 25 generations)
 How many, which individuals to exchange ?
— usually ~2-5, but depends on population size.
— Copied vs moved
— Martin et al found that better to exchange randomly selected
iIndividuals than best

» QOperators can differ between the sub-populations



Implicit Approaches for Preserving Diversity:

Cellular EAs (1/3)

* Impose spatial structure (usually grid) in 1 pop

Current

® individual

Neighbours
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Implicit Approaches for Preserving Diversity:
Cellular EAs (2/3)

e Consider each individual to exist on a point on a (usually
rectangular toroid) grid

« Selection (hence recombination) and replacement
happen using concept of a neighbourhood a.k.a. deme

« Leads to different parts of grid searching different parts
of space, good solutions diffuse across grid over a
number of gens



Implicit Approaches for Preserving Diversity:
Cellular EAs (3/3)

e Assume rectangular grid so each individual has 8
Immediate neighbours

e Equivalent of 1 generation is:
— pick individual in pop at random
— pick one of its neighbours using roulette wheel
— crossover to produce 1 child, mutate
— replace individual if fitter
— circle through population until done
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