
Evolutionary Computing

Chapter 5

/ 32

Chapter 5:
Fitness, Selection and Population Management

• Selection is second fundamental force for evolutionary
systems

• Components exist of:
- Population management models
- Selection operators
- Preserving diversity

2Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Scheme of an EA:
General scheme of EAs

3

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Population Management Models:
Introduction

• Two different population management models exist:
– Generational model

• each individual survives for exactly one generation
• the entire set of parents is replaced by the offspring

– Steady-state model
• one offspring is generated per generation
• one member of population replaced

• Generation Gap
– The proportion of the population replaced
– Parameter = 1.0 for GGA, = 1/pop_size for SSGA

4Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Population Management Models:
Fitness based competition

• Selection can occur in two places:
– Selection from current generation to take part in mating (parent

selection)
– Selection from parents + offspring to go into next generation

(survivor selection)

• Selection operators work on whole individual
– i.e. they are representation-independent !

• Distinction between selection
– Operators: define selection probabilities
– Algorithms: define how probabilities are implemented

5Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Parent Selection:
Fitness-Proportionate Selection

• Probability for individual i to be selected for mating in a
population size µ with FPS is

• Problems include
– One highly fit member can rapidly take over if rest of population is

much less fit: Premature Convergence
– At end of runs when fitnesses are similar, loss of selection pressure
– Highly susceptible to function transposition (example next slide)

• Scaling can fix last two problems
– Windowing:

where β is worst fitness in this (last n) generations
– Sigma Scaling:

where c is a constant, usually 2.0
6

PFPS(i) = fi f j
j=1

µ

∑

f '(i) = f (i)− β t

f '(i) = max(f (i)− (f − c•σ f), 0)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Parent Selection:
Rank-based Selection

• Attempt to remove problems of FPS by basing selection
probabilities on relative rather than absolute fitness

• Rank population according to fitness and then base
selection probabilities on rank (fittest has rank µ-1 and
worst rank 0)

• This imposes a sorting overhead on the algorithm, but
this is usually negligible compared to the fitness
evaluation time

7Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Rank-based Selection:
Linear Ranking

• Parameterised by factor s: 1 < s ≤ 2
– measures advantage of best individual

• Simple 3 member example

8

Plin−rank(i) = (2− s)

µ
+ 2i(s−1)

µ(µ −1)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Rank-based selection:
Exponential Ranking

• Linear Ranking is limited in selection pressure
• Exponential Ranking can allocate more than 2 copies to

fittest individual
• Normalise constant factor c according to population size

Sample mating pool from the selection probability
distribution (roulette wheel, stochastic universal sampling)

9

Pexp−rank(i) = 1− e−i

c

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Parent Selection:
Tournament Selection (1/2)

• All methods above rely on global population statistics
– Could be a bottleneck esp. on parallel machines, very large

population
– Relies on presence of external fitness function which might not

exist: e.g. evolving game players

• Idea for a procedure using only local fitness information:
– Pick k members at random then select the best of these
– Repeat to select more individuals

10Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Parent Selection:
Tournament Selection (2/2)

• Probability of selecting i will depend on:
– Rank of i
– Size of sample k

• higher k increases selection pressure
– Whether contestants are picked with replacement

• Picking without replacement increases selection pressure
– Whether fittest contestant always wins (deterministic) or this

happens with probability p

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Parent Selection:
Uniform

• Parents are selected by uniform random distribution
whenever an operator needs one/some

• Uniform parent selection is unbiased - every individual
has the same probability to be selected

• When working with extremely large populations, over-
selection can be used.

12

Puniform(i) = 1

µ

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Survivor Selection

• Managing the process of reducing the working memory
of the EA from a set of µ parents and λ offspring to a set
of µ individuals forming the next generation

• The parent selection mechanisms can also be used for
selecting survivors

• Survivor selection can be divided into two approaches:
– Age-Based Selection

• Fitness is not taken into account
• In SSGA can implement as “delete-random” (not

recommended) or as first-in-first-out (a.k.a. delete-oldest)
– Fitness-Based Replacement

13Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Fitness-based replacement (1/2)

• Elitism
– Always keep at least one copy of the fittest solution so far
– Widely used in both population models (GGA, SSGA)

• GENITOR: a.k.a. “delete-worst”
– From Whitley’s original Steady-State algorithm (he also used linear ranking

for parent selection)
– Rapid takeover: use with large populations or “no duplicates” policy

• Round-robin tournament
– P(t): µ parents, P’(t): µ offspring
– Pairwise competitions in round-robin format:

• Each solution x from P(t) ∪ P’(t) is evaluated against q other randomly
chosen solutions

• For each comparison, a "win" is assigned if x is better than its opponent
• The µ solutions with the greatest number of wins are retained to be

parents of the next generation
– Parameter q allows tuning selection pressure
– Typically q = 10

14Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Fitness-based replacement (2/2)

• (µ,λ)-selection
- based on the set of children only (λ > µ)
- choose best µ

• (µ+λ)-selection
- based on the set of parents and children
- choose best µ

• Often (µ,λ)-selection is preferred for:
– Better in leaving local optima
– Better in following moving optima
– Using the + strategy bad σ values can survive in 〈x,σ〉 too long if

their host x is very fit
• λ ≈ 7 • µ is a traditionally good setting (decreasing over the

last couple of years, λ ≈ 3 • µ seems more popular lately)

15Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Selection Pressure

• Takeover time τ* is a measure to quantify the selection
pressure

• The number of generations it takes until the application
of selection completely fills the population with copies of
the best individual

• Goldberg and Deb showed:

• For proportional selection in a genetic algorithm the
takeover time is λln(λ)

16

τ * = ln λ
ln(λ / µ)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Multimodality

Most interesting problems have more than one locally
optimal solution.

17Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Multimodality:
Genetic Drift

• Finite population with global mixing and selection
eventually convergence around one optimum

• Why?
• Often might want to identify several possible peaks
• Sub-optimum can be more attractive

18Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Approaches for Preserving Diversity:
Introduction (1/2)

• Explicit vs implicit
• Implicit approaches:

– Impose an equivalent of geographical separation
– Impose an equivalent of speciation

• Explicit approaches
– Make similar individuals compete for resources (fitness)
– Make similar individuals compete with each other for survival

19Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Approaches for Preserving Diversity:
Introduction (1/2)

Different spaces:
– Genotype space

• Set of representable solutions
– Phenotype space

• The end result
• Neighbourhood structure may bear little relation with

genotype space
– Algorithmic space

• Equivalent of the geographical space on which life on earth
has evolved

• Structuring the population of candidate solutions

20Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Explicit Approaches for Preserving Diversity:
Fitness Sharing (1/2)

• Restricts the number of individuals within a given niche
by “sharing” their fitness, so as to allocate individuals to
niches in proportion to the niche fitness

• need to set the size of the niche σshare in either genotype
or phenotype space

• run EA as normal but after each generation set

∑
=

= µ

1

)),((

)(
)('

j

jidsh

if
if

sh(d) =
1− d /σ d ≤ σ

0 otherwise









21Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Explicit Approaches for Preserving Diversity:
Fitness Sharing (2/2)

• Note: if we used sh(d) = 1 for d < σshare then the sum that
reduces the fitness would simply count the number of
neighbours, i.e., individuals closer than σshare

• This creates an advantage of being alone in the
neighbourhood

• Using 1 – d/ σshare instead of 1 implies that we count
distant neighbours less

22Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Explicit Approaches for Preserving Diversity:
Crowding (1/2)

• Attempts to distribute individuals evenly amongst niches
• relies on the assumption that offspring will tend to be

close to parents
• uses a distance metric in ph/genotype space
• randomly shuffle and pair parents, produce 2 offspring
• set up the parent vs. child tournaments such that the

intertournament distances are minimal

23Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Explicit Approaches for Preserving Diversity:
Crowding (2/2)

• That is, number the two p’s (parents)and the two o’s
(offspring) such that

• d(p1,o1) + d(p2,o2) < d(p1,o2) + d(p2,o1)
• and let o1 compete with p1 and o2 compete with p2

24Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Explicit Approaches for Preserving Diversity:
Crowding or Fitness sharing?

Observe the number of individuals per niche

25Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Implicit Approaches for Preserving Diversity:
Automatic Speciation

• Either only mate with genotypically / phenotypically
similar members or

• Add bits (tags) to problem representation
– that are initially randomly set
– subject to recombination and mutation
– when selecting partner for recombination, only pick members

with a good match

26Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Implicit Approaches for Preserving Diversity:
“Island” Model Parallel EAs (1/4)

Periodic migration of individual solutions between populations

EA

EA

EA EA

EA

27Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Implicit Approaches for Preserving Diversity:
“Island” Model Parallel EAs (2/4)

• Run multiple populations in parallel
• After a (usually fixed) number of generations (an

Epoch), exchange individuals with neighbours
• Repeat until ending criteria met
• Partially inspired by parallel/clustered systems

28Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Island Model:
Parameters

• How often to exchange individuals ?
– too quick and all sub-populations converge to same solution
– too slow and waste time
– most authors use range~ 25-150 generations
– can do it adaptively (stop each pop when no improvement for

(say) 25 generations)

• How many, which individuals to exchange ?
– usually ~2-5, but depends on population size.
– Copied vs moved
– Martin et al found that better to exchange randomly selected

individuals than best

• Operators can differ between the sub-populations

29Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Implicit Approaches for Preserving Diversity:
Cellular EAs (1/3)

• Impose spatial structure (usually grid) in 1 pop

Current

individual

Neighbours

30Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Implicit Approaches for Preserving Diversity:
Cellular EAs (2/3)

• Consider each individual to exist on a point on a (usually
rectangular toroid) grid

• Selection (hence recombination) and replacement
happen using concept of a neighbourhood a.k.a. deme

• Leads to different parts of grid searching different parts
of space, good solutions diffuse across grid over a
number of gens

31Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 32

Implicit Approaches for Preserving Diversity:
Cellular EAs (3/3)

• Assume rectangular grid so each individual has 8
immediate neighbours

• Equivalent of 1 generation is:
– pick individual in pop at random
– pick one of its neighbours using roulette wheel
– crossover to produce 1 child, mutate
– replace individual if fitter
– circle through population until done

32Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

