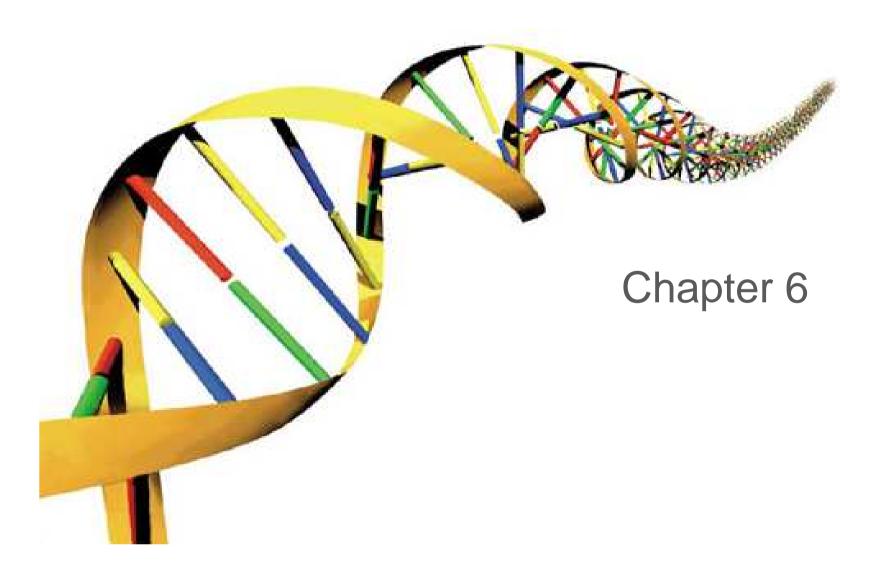
Evolutionary Computing



Chapter 6: Popular Evolutionary Algorithm Variants

Historical EA variants:

- Genetic Algorithms
- Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Genetic Algorithms: Quick Overview (1/2)

- Developed: USA in the 1960's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete function optimization
 - benchmark
 - straightforward problems binary representation
- Features:
 - not too fast
 - missing new variants (elitsm, sus)
 - often modelled by theorists

Genetic Algorithms: Quick Overview (2/2)

- Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

Genetic Algorithms: SGA technical summary tableau

Representation	Bit-strings
Recombination	1-Point crossover
Mutation	Bit flip
Parent selection	Fitness proportional – implemented by Roulette Wheel
Survivor selection	Generational

Genetic Algorithms: SGA reproduction cycle

- Select parents for the mating pool (size of mating pool = population size)
- Shuffle the mating pool
- Apply crossover for each consecutive pair with probability p_c, otherwise copy parents
- Apply mutation for each offspring (bit-flip with probability p_m independently for each bit)
- Replace the whole population with the resulting offspring

Genetic Algorithms: An example after Goldberg '89

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g., 01101 \leftrightarrow 13
 - Population size: 4
 - 1-point xover, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

X² example: Selection

String	Initial	x Value			Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	$0\ 1\ 1\ 0\ 1$	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1 \ 0 \ 0 \ 1 \ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

X² example: Crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ \ 1$	4	$0\ 1\ 1\ 0\ 0$	12	144
2	$1\ 1\ 0\ 0\ \ 0$	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ \ 0\ 0\ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	$1 \ 0 \ \ 0 \ 1 \ 1$	2	$1 \ 0 \ 0 \ 0 \ 0$	16	256
Sum					1754
Average					439
Max					729

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ 0$	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	11001	25	625
2	$1\ 1\ 0\ 1\ 1$	1 1 0 1 1	27	729
4	$1 \ 0 \ 0 \ 0 \ 0$	10100	18	324
Sum				2354
Average				588.5
Max				729

Genetic Algorithms: The simple GA

- Has been subject of many (early) studies
 - still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.,
 - Representation is too restrictive
 - Mutation & crossover operators only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model (step 5 in SGA repr. cycle) can be improved with explicit survivor selection

Evolution Strategies: Quick overview

- Developed: Germany in the 1960's
- Early names: I. Rechenberg, H.-P. Schwefel
- Typically applied to:
 - numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

Evolution Strategies: ES technical summary tableau

Representation	Real-valued vectors
Recombination	Discrete or intermediary
Mutation	Gaussian perturbation
Parent selection	Uniform random
Survivor selection	(μ,λ) or (μ+λ)

Evolution Strategies: Example (1+1) ES

- Task: minimimise $f : \mathbb{R}^n \to \mathbb{R}$
- Algorithm: "two-membered ES" using
 - Vectors from Rⁿ directly as chromosomes
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

Evolution Strategies:

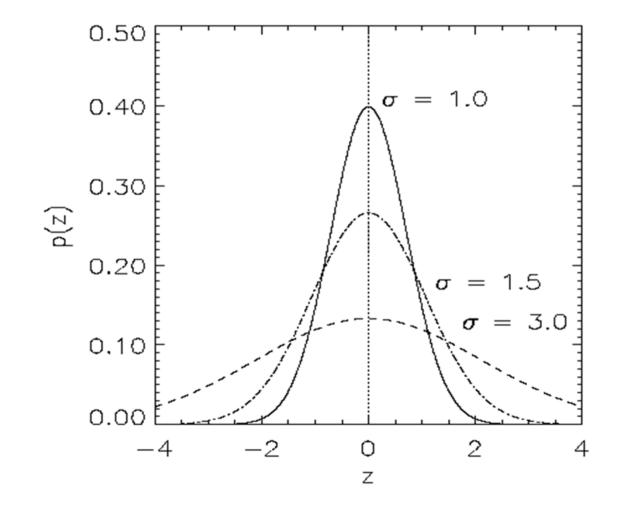
Introductory example: mutation mechanism

- z values drawn from normal distribution $N(\xi,\sigma)$
 - mean ξ is set to 0
 - variation σ is called mutation step size
- σ is varied on the fly by the "1/5 success rule":
- This rule resets σ after every k iterations by

$$-\sigma = \sigma / c$$
 if $p_s > 1/5$

- $\sigma = \sigma \cdot c$ if $p_s < 1/5$
- $-\sigma = \sigma$ if $p_s = 1/5$
- where p_s is the % of successful mutations, $0.8 \le c \le 1$

Evolution Strategies: Illustration of normal distribution

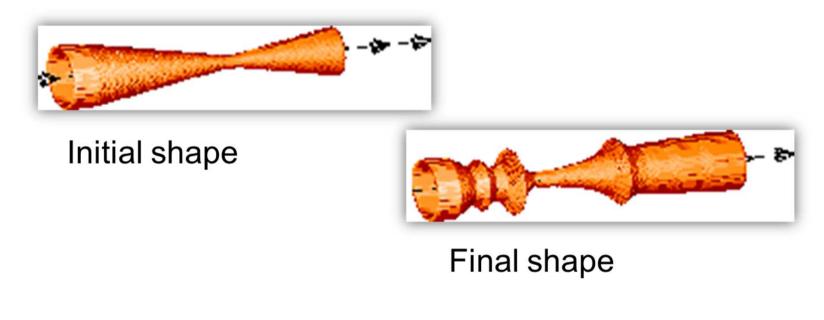


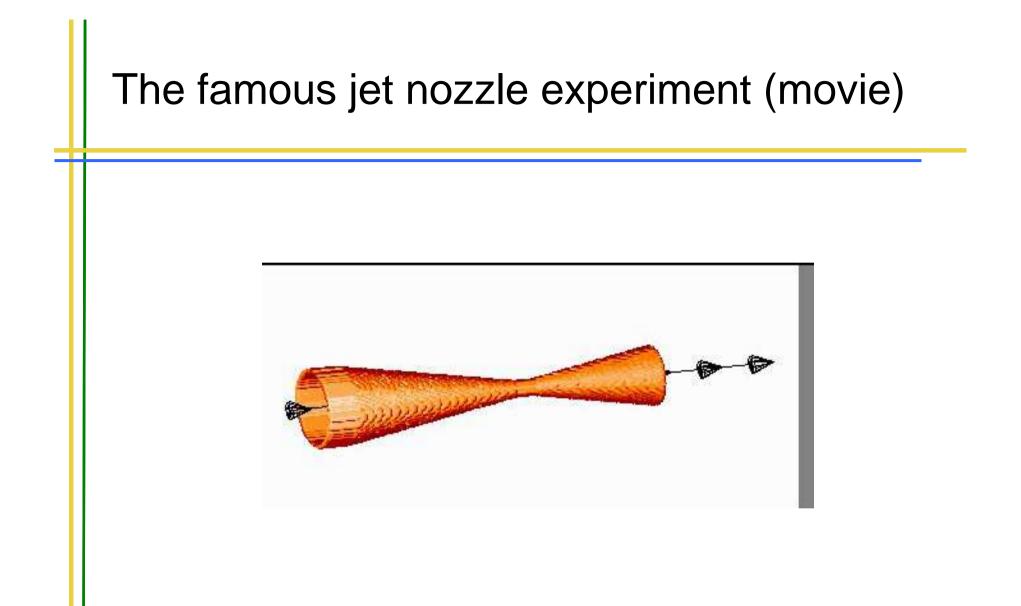
Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

16 / 75

Another historical example: the jet nozzle experiment

Task: to optimize the shape of a jet nozzle Approach: random mutations to shape + selection





18 / 75

Evolution Strategies: Representation

- Chromosomes consist of three parts:
 - Object variables: x₁,...,x_n
 - Strategy parameters:
 - Mutation step sizes: $\sigma_1, \dots, \sigma_{n_{\sigma}}$
 - Rotation angles: $\alpha_1, \ldots, \alpha_{n_{\alpha}}$
- Not every component is always present
- Full size: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_k \rangle$ where k = n(n-1)/2 (no. of i,j pairs)

Evolution Strategies: Recombination

- Creates one child
- Acts per variable / position by either
 - Averaging parental values, or
 - Selecting one of the parental values
- From two or more parents by either:
 - Using two selected parents to make a child
 - Selecting two parents for each position

Evolution Strategies: Names of recombinations

Two fixed parents	Two parents selected for each i
Local intermediary	Global intermediary
Local discrete	Global discrete
	Local intermediary

21 / 75

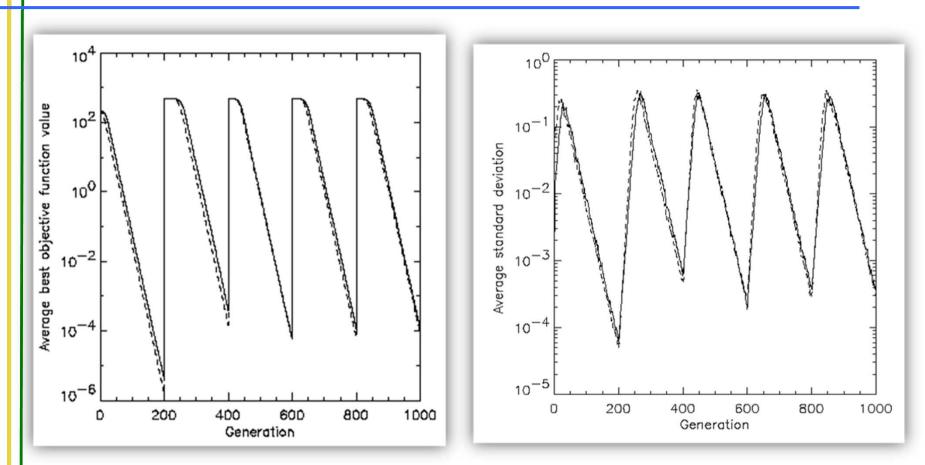
Evolution Strategies: Parent selection

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected

Evolution Strategies: Self-adaptation illustrated (1/2)

- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift !

Evolution Strategies: Self-adaptation illustrated cont'd (2/2)



Changes in the fitness values (left) and the mutation step sizes (right)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Evolution Strategies: Prerequisites for self-adaptation

- $\mu > 1$ to carry different strategies
- $\lambda > \mu$ to generate offspring surplus
- (μ,λ) -selection to get rid of misadapted σ 's
- Mixing strategy parameters by (intermediary) recombination on them

Evolution Strategies: Selection Pressure

- Takeover time *τ*^{*} is a measure to quantify the selection pressure
- The number of generations it takes until the application of selection completely fills the population with copies of the best individual
- Goldberg and Deb showed:

$$\tau^* = \frac{\ln \lambda}{\ln(\lambda/\mu)}$$

• For proportional selection in a genetic algorithm the takeover time is $\lambda ln(\lambda)$

Example application: The cherry brandy experiment (1/2)

- Task: to create a colour mix yielding a target colour (that of a well known cherry brandy)
- Ingredients: water + red, yellow, blue dye
- Representation: (w, r, y ,b) no self-adaptation!
- Values scaled to give a predefined total volume (30 ml)
- Mutation: lo / med / hi σ values used with equal chance
- Selection: (1,8) strategy

Example application: The cherry brandy experiment (2/2)

- Fitness: students effectively making the mix and comparing it with target colour
- Termination criterion: student satisfied with mixed colour
- Solution is found mostly within 20 generations
- Accuracy is very good

Example application: The Ackley function (Bäck et al '93)

• The Ackley function (here used with n =30):

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- Evolution strategy:
 - Representation:
 - $-30 < x_i < 30$
 - 30 step sizes
 - (30,200) selection
 - Termination : after 200000 fitness evaluations
 - Results: average best solution is $7.48 \cdot 10^{-8}$ (very good)

Evolutionary Programming: Quick overview

- Developed: USA in the 1960's
- Early names: D. Fogel
- Typically applied to:
 - traditional EP: prediction by finite state machines
 - contemporary EP: (numerical) optimization
- Attributed features:
 - very open framework: any representation and mutation op's OK
 - crossbred with ES (contemporary EP)
 - consequently: hard to say what "standard" EP is
- Special:
 - no recombination
 - self-adaptation of parameters standard (contemporary EP)

Evolutionary Programming: Technical summary tableau

Representation	Real-valued vectors
Recombination	None
Mutation	Gaussian perturbation
Parent selection	Deterministic (each parent one offspring)
Survivor selection	Probabilistic (μ+μ)

Evolutionary Programming: Historical EP perspective

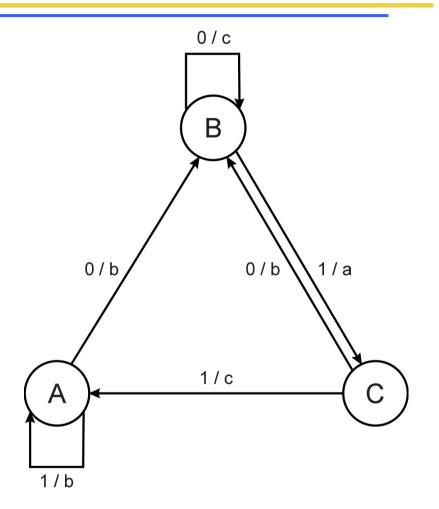
- EP aimed at achieving intelligence
- Intelligence was viewed as adaptive behaviour
- Prediction of the environment was considered a prerequisite to adaptive behaviour
- Thus: capability to predict is key to intelligence

Evolutionary Programming: Prediction by finite state machines

- Finite state machine (FSM):
 - States S
 - Inputs I
 - Outputs O
 - Transition function δ : S x I \rightarrow S x O
 - Transforms input stream into output stream
- Can be used for predictions, e.g. to predict next input symbol in a sequence

Evolutionary Programming: FSM example

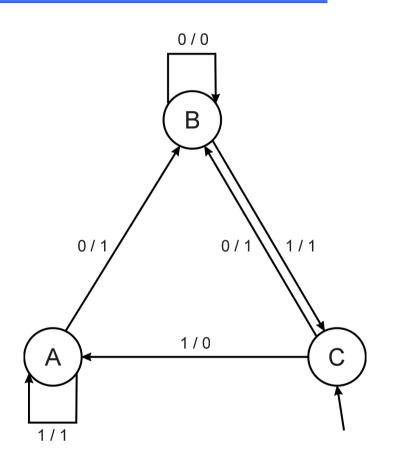
- Consider the FSM with:
 - $S = \{A, B, C\}$
 - I = {0, 1}
 - $O = \{a, b, c\}$
 - $-\delta$ given by a diagram



34/75

Evolutionary Programming: FSM as predictor

- Consider the following FSM
- Task: predict next input
- Quality: % of $in_{(i+1)} = out_i$
- Given initial state C
- Input sequence 011101
- Leads to output 110111
- Quality: 3 out of 5



35/75

Evolutionary Programming: Evolving FSMs to predict primes (1/2)

- P(n) = 1 if n is prime, 0 otherwise
- $I = N = \{1, 2, 3, ..., n, ...\}$
- $O = \{0, 1\}$
- Correct prediction: out_i= P(in(i+1))
- Fitness function:
 - 1 point for correct prediction of next input
 - 0 point for incorrect prediction
 - Penalty for "too many" states

Evolutionary Programming: Evolving FSMs to predict primes (1/2)

- Parent selection: each FSM is mutated once
- Mutation operators (one selected randomly):
 - Change an output symbol
 - Change a state transition (i.e. redirect edge)
 - Add a state
 - Delete a state
 - Change the initial state
- Survivor selection: (μ+μ)
- Results: overfitting, after 202 inputs best FSM had one state and both outputs were 0, i.e., it always predicted "not prime"
- Main point: not perfect accuracy but proof that simulated evolutionary process can create good solutions for intelligent task

Evolutionary Programming: Modern EP

- No predefined representation in general
- Thus: no predefined mutation (must match representation)
- Often applies self-adaptation of mutation parameters

Evolutionary Programming: Representation

- For continuous parameter optimisation
- Chromosomes consist of two parts:
 - Object variables: x₁,...,x_n
 - Mutation step sizes: $\sigma_1, \dots, \sigma_n$

• Full size:
$$\langle x_1, \dots, x_n, \sigma_1, \dots, \sigma_n \rangle$$

Evolutionary Programming: Mutation

- Chromosomes: $\langle x_1, \dots, x_n, \sigma_1, \dots, \sigma_n \rangle$
- $\sigma_i' = \sigma_i \bullet (1 + \alpha \bullet N(0, 1))$
- $x_i' = x_i + \sigma_i' \cdot N_i(0,1)$
- $\alpha \approx 0.2$
- boundary rule: $\sigma' < \epsilon_0 \Rightarrow \sigma' = \epsilon_0$
- Other variants proposed & tried:
 - Using variance instead of standard deviation
 - Mutate σ-last
 - Other distributions, e.g, Cauchy instead of Gaussian

Evolutionary Programming: Recombination

- None
- Rationale: one point in the search space stands for a species, not for an individual and there can be no crossover between species
- Much historical debate "mutation vs. crossover"

Evolutionary Programming: Parent selection

- Each individual creates one child by mutation
- Thus:
 - Deterministic
 - Not biased by fitness

Evolutionary Programming: Evolving checkers players (Fogel'02) (1/2)

- Neural nets for evaluating future values of moves are evolved
- NNs have fixed structure with 5046 weights, these are evolved + one weight for "kings"
- Representation:
 - vector of 5046 real numbers for object variables (weights)
 - vector of 5046 real numbers for σ 's
- Mutation:
 - Gaussian, lognormal scheme with σ -first
 - Plus special mechanism for the kings' weight
- Population size 15

Evolutionary Programming: Evolving checkers players (Fogel'02) (2/2)

- Tournament size q = 5
- Programs (with NN inside) play against other programs, no human trainer or hard-wired intelligence
- After 840 generation (6 months!) best strategy was tested against humans via Internet
- Program earned "expert class" ranking outperforming 99.61% of all rated players

Genetic Programming: Quick overview

- Developed: USA in the 1990's
- Early names: J. Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary

Genetic Programming: Technical summary tableau

Representation	Tree structures	
Recombination	Exchange of subtrees	
Mutation	Random change in trees	
Parent selection	Fitness proportional	
Survivor selection	Generational replacement	

Genetic Programming: Example credit scoring (1/3)

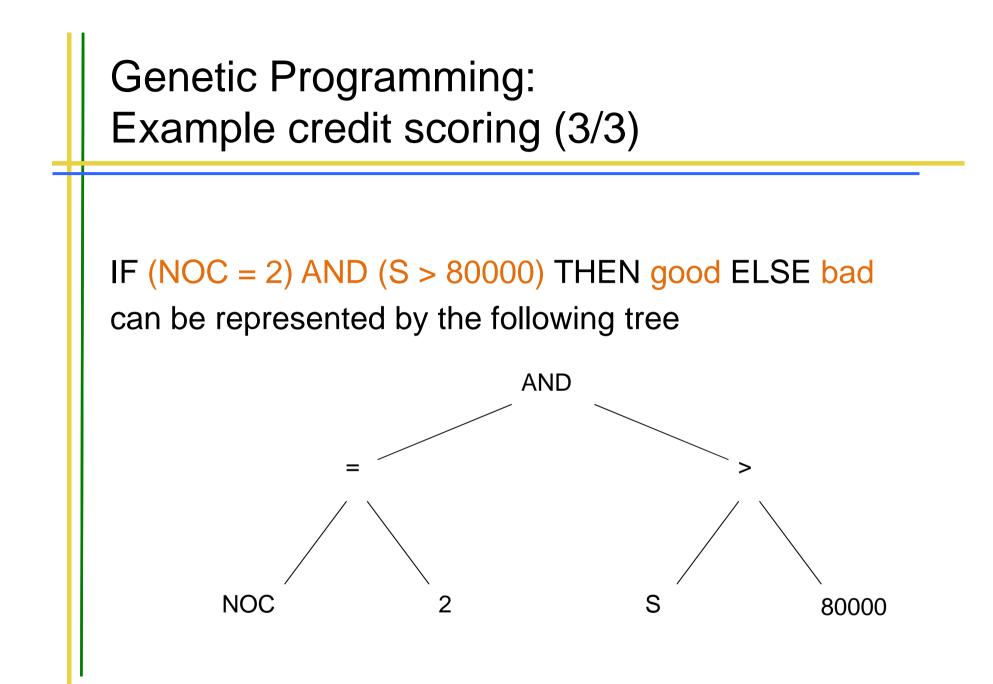
- Bank wants to distinguish good from bad loan applicants
- Model needed that matches historical data

ID	No of children	Salary	Marital status	OK?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1

47 / 75

Genetic Programming: Example credit scoring (2/3)

- A possible model:
- IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
- In general:
- IF formula THEN good ELSE bad
- Only unknown is the right formula, hence
- Our search space (phenotypes) is the set of formulas
- Natural fitness of a formula: percentage of well classified cases of the model it stands for



Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

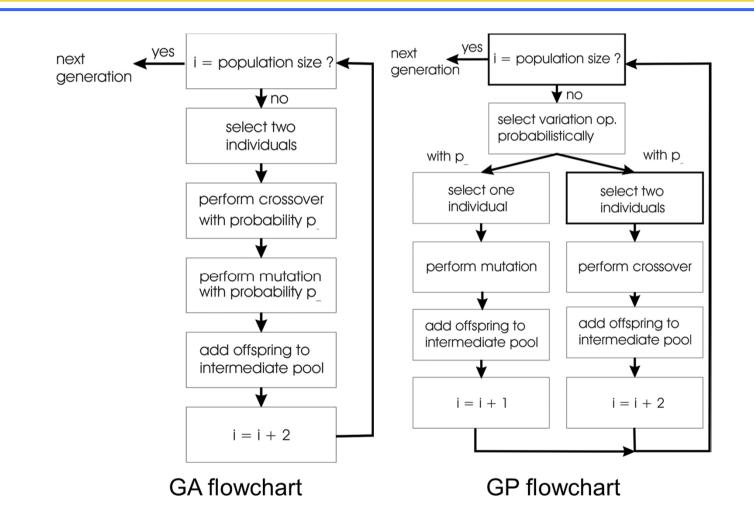
49 / 75

Genetic Programming: Offspring creation scheme

Compare

- GA scheme using crossover AND mutation sequentially (be it probabilistically)
- GP scheme using crossover OR mutation (chosen probabilistically)

Genetic Programming: GA vs GP



Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Genetic Programming: Selection

- Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 - group 1: best x% of population, group 2 other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - motivation: to increase efficiency, %'s come from rule of thumb
- Survivor selection:
 - Typical: generational scheme (thus none)
 - Recently steady-state is becoming popular for its elitism

Genetic Programming: Initialisation

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 - nodes at depth d < D_{max} randomly chosen from function set F
 - nodes at depth $d = D_{max}$ randomly chosen from terminal set T
- Grow method (each branch has depth $\leq D_{max}$):
 - nodes at depth d < $\rm D_{max}$ randomly chosen from F \cup T
 - nodes at depth $d = D_{max}$ randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

Genetic Programming: Bloat

- Bloat = "survival of the fattest", i.e., the tree sizes in the population are increasing over time
- Ongoing research and debate about the reasons
- Needs countermeasures, e.g.
 - Prohibiting variation operators that would deliver "too big" children
 - Parsimony pressure: penalty for being oversized

Genetic Programming: Example symbolic regression

- Given some points in \mathbb{R}^2 , $(x_1, y_1), ..., (x_n, y_n)$
- Find function f(x) s.t. $\forall i = 1, ..., n : f(x_i) = y_i$
- Possible GP solution:
 - Representation by F = {+, -, /, sin, cos}, T = $\mathbf{R} \cup \{x\}$
 - Fitness is the error $err(f) = \sum (f(x_i) y_i)^2$
 - All operators standard
 - pop.size = 1000, ramped half-half initialisation
 - Termination: n "hits" or 50000 fitness evaluations reached (where "hit" is if $|f(x_i) y_i| < 0.0001$)