
Evolutionary Computing

Chapter 6

/ 75

Chapter 6:
Popular Evolutionary Algorithm Variants

Historical EA variants:
• Genetic Algorithms
• Evolution Strategies
• Evolutionary Programming
• Genetic Programming

2Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Algorithms:
Quick Overview (1/2)

• Developed: USA in the 1960’s
• Early names: J. Holland, K. DeJong, D. Goldberg
• Typically applied to:

– discrete function optimization
– benchmark
– straightforward problems binary representation

• Features:
– not too fast
– missing new variants (elitsm, sus)
– often modelled by theorists

3Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Algorithms:
Quick Overview (2/2)

• Holland’s original GA is now known as the simple genetic
algorithm (SGA)

• Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms

4Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Algorithms:
SGA technical summary tableau

Representation Bit-strings

Recombination 1-Point crossover

Mutation Bit flip

Parent selection Fitness proportional – implemented by

Roulette Wheel

Survivor selection Generational

5Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Algorithms:
SGA reproduction cycle

• Select parents for the mating pool
(size of mating pool = population size)

• Shuffle the mating pool
• Apply crossover for each consecutive pair with

probability pc, otherwise copy parents
• Apply mutation for each offspring (bit-flip with probability

pm independently for each bit)
• Replace the whole population with the resulting offspring

6Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Algorithms:
An example after Goldberg ’89

• Simple problem: max x2 over {0,1,…,31}
• GA approach:

– Representation: binary code, e.g., 01101 ↔ 13
– Population size: 4
– 1-point xover, bitwise mutation
– Roulette wheel selection
– Random initialisation

• We show one generational cycle done by hand

7Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

X2 example: Selection

8Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

X2 example: Crossover

9Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

X2 example: Mutation

10Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Algorithms:
The simple GA

• Has been subject of many (early) studies
– still often used as benchmark for novel GAs

• Shows many shortcomings, e.g.,
– Representation is too restrictive
– Mutation & crossover operators only applicable for bit-string &

integer representations
– Selection mechanism sensitive for converging populations with

close fitness values
– Generational population model (step 5 in SGA repr. cycle) can

be improved with explicit survivor selection

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Quick overview

• Developed: Germany in the 1960’s
• Early names: I. Rechenberg, H.-P. Schwefel
• Typically applied to:

– numerical optimisation

• Attributed features:
– fast
– good optimizer for real-valued optimisation
– relatively much theory

• Special:
– self-adaptation of (mutation) parameters standard

12Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
ES technical summary tableau

Representation Real-valued vectors

Recombination Discrete or intermediary

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection (µ,λ) or (µ+λ)

13Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Example (1+1) ES

• Task: minimimise f : Rn
� R

• Algorithm: “two-membered ES” using
– Vectors from Rn directly as chromosomes
– Population size 1
– Only mutation creating one child
– Greedy selection

14Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Introductory example: mutation mechanism

• z values drawn from normal distribution N(ξ,σ)
– mean ξ is set to 0
– variation σ is called mutation step size

• σ is varied on the fly by the “1/5 success rule”:
• This rule resets σ after every k iterations by

– σ = σ / c if ps > 1/5
– σ = σ • c if ps < 1/5
– σ = σ if ps = 1/5

• where ps is the % of successful mutations, 0.8 ≤ c ≤ 1

15Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Illustration of normal distribution

16Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Another historical example:
the jet nozzle experiment

17Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

The famous jet nozzle experiment (movie)

18Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Representation

• Chromosomes consist of three parts:
– Object variables: x1,…,xn

– Strategy parameters:
• Mutation step sizes: σ1,…,σnσ

• Rotation angles: α1,…, αnα

• Not every component is always present

• Full size: 〈 x1,…,xn, σ1,…,σn ,α1,…, αk 〉

where k = n(n-1)/2 (no. of i,j pairs)

19Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Recombination

• Creates one child
• Acts per variable / position by either

– Averaging parental values, or
– Selecting one of the parental values

• From two or more parents by either:
– Using two selected parents to make a child
– Selecting two parents for each position

20Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Names of recombinations

Two fixed parents
Two parents

selected for each i

zi = (xi + yi)/2
Local

intermediary

Global

intermediary

zi is xi or yi

chosen randomly
Local discrete Global discrete

21Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Parent selection

• Parents are selected by uniform random
distribution whenever an operator needs
one/some

• Thus: ES parent selection is unbiased - every
individual has the same probability to be
selected

22Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Self-adaptation illustrated (1/2)

• Given a dynamically changing fitness landscape
(optimum location shifted every 200
generations)

• Self-adaptive ES is able to
– follow the optimum and
– adjust the mutation step size after every shift !

23Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Self-adaptation illustrated cont’d (2/2)

24Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Prerequisites for self-adaptation

• µ > 1 to carry different strategies
• λ > µ to generate offspring surplus
• (µ,λ)-selection to get rid of misadapted σ‘s
• Mixing strategy parameters by (intermediary)

recombination on them

25Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolution Strategies:
Selection Pressure

• Takeover time τ* is a measure to quantify the selection
pressure

• The number of generations it takes until the application
of selection completely fills the population with copies of
the best individual

• Goldberg and Deb showed:

• For proportional selection in a genetic algorithm the
takeover time is λln(λ)

26

τ * = ln λ
ln(λ / µ)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Example application:
The cherry brandy experiment (1/2)

• Task: to create a colour mix yielding a target colour (that
of a well known cherry brandy)

• Ingredients: water + red, yellow, blue dye
• Representation: 〈 w, r, y ,b 〉 no self-adaptation!
• Values scaled to give a predefined total volume (30 ml)
• Mutation: lo / med / hi σ values used with equal chance
• Selection: (1,8) strategy

27Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Example application:
The cherry brandy experiment (2/2)

• Fitness: students effectively making the mix and
comparing it with target colour

• Termination criterion: student satisfied with
mixed colour

• Solution is found mostly within 20 generations
• Accuracy is very good

28Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Example application:
The Ackley function (Bäck et al ’93)

• The Ackley function (here used with n =30):

• Evolution strategy:
– Representation:

• -30 < xi < 30
• 30 step sizes

– (30,200) selection
– Termination : after 200000 fitness evaluations
– Results: average best solution is 7.48 • 10 –8 (very good)

29

ex
n

x
n

xf
n

i
i

n

i
i ++







−








⋅−⋅−= ∑∑

==

20)2cos(
1

exp
1

2.0exp20)(
11

2 π

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Quick overview

• Developed: USA in the 1960’s
• Early names: D. Fogel
• Typically applied to:

– traditional EP: prediction by finite state machines
– contemporary EP: (numerical) optimization

• Attributed features:
– very open framework: any representation and mutation op’s OK
– crossbred with ES (contemporary EP)
– consequently: hard to say what “standard” EP is

• Special:
– no recombination
– self-adaptation of parameters standard (contemporary EP)

30Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Technical summary tableau

Representation Real-valued vectors

Recombination None

Mutation Gaussian perturbation

Parent selection Deterministic (each parent one

offspring)

Survivor selection Probabilistic (µ+µ)

31Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Historical EP perspective

• EP aimed at achieving intelligence
• Intelligence was viewed as adaptive behaviour
• Prediction of the environment was considered a

prerequisite to adaptive behaviour
• Thus: capability to predict is key to intelligence

32Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Prediction by finite state machines

• Finite state machine (FSM):
– States S
– Inputs I
– Outputs O
– Transition function δ : S x I → S x O
– Transforms input stream into output stream

• Can be used for predictions, e.g. to predict next input
symbol in a sequence

33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
FSM example

• Consider the FSM with:
– S = {A, B, C}
– I = {0, 1}
– O = {a, b, c}
– δ given by a diagram

34Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
FSM as predictor

• Consider the following FSM
• Task: predict next input
• Quality: % of in(i+1) = outi
• Given initial state C
• Input sequence 011101
• Leads to output 110111
• Quality: 3 out of 5

35Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Evolving FSMs to predict primes (1/2)

• P(n) = 1 if n is prime, 0 otherwise
• I = N = {1,2,3,…, n, …}
• O = {0,1}
• Correct prediction: outi= P(in(i+1))
• Fitness function:

– 1 point for correct prediction of next input
– 0 point for incorrect prediction
– Penalty for “too many” states

36Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Evolving FSMs to predict primes (1/2)

• Parent selection: each FSM is mutated once
• Mutation operators (one selected randomly):

– Change an output symbol
– Change a state transition (i.e. redirect edge)
– Add a state
– Delete a state
– Change the initial state

• Survivor selection: (µ+µ)
• Results: overfitting, after 202 inputs best FSM had one state

and both outputs were 0, i.e., it always predicted “not prime”
• Main point: not perfect accuracy but proof that simulated

evolutionary process can create good solutions for intelligent
task

37Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Modern EP

• No predefined representation in general
• Thus: no predefined mutation (must match

representation)
• Often applies self-adaptation of mutation parameters

38Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Representation

• For continuous parameter optimisation
• Chromosomes consist of two parts:

– Object variables: x1,…,xn

– Mutation step sizes: σ1,…,σn

• Full size: 〈 x1,…,xn, σ1,…,σn 〉

39Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Mutation

• Chromosomes: 〈 x1,…,xn, σ1,…,σn 〉

• σi’ = σi • (1 + α • N(0,1))
• xi’ = xi + σi’ • Ni(0,1)
• α ≈ 0.2
• boundary rule: σ’ < ε0 ⇒ σ’ = ε0

• Other variants proposed & tried:
– Using variance instead of standard deviation
– Mutate σ-last
– Other distributions, e.g, Cauchy instead of Gaussian

40Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Recombination

• None
• Rationale: one point in the search space stands for a

species, not for an individual and there can be no
crossover between species

• Much historical debate “mutation vs. crossover”

41Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Parent selection

• Each individual creates one child by mutation
• Thus:

– Deterministic
– Not biased by fitness

42Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Evolving checkers players (Fogel’02) (1/2)

• Neural nets for evaluating future values of moves are
evolved

• NNs have fixed structure with 5046 weights, these are
evolved + one weight for “kings”

• Representation:
– vector of 5046 real numbers for object variables (weights)
– vector of 5046 real numbers for σ‘s

• Mutation:
– Gaussian, lognormal scheme with σ-first
– Plus special mechanism for the kings’ weight

• Population size 15

43Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Evolutionary Programming:
Evolving checkers players (Fogel’02) (2/2)

• Tournament size q = 5
• Programs (with NN inside) play against other programs,

no human trainer or hard-wired intelligence
• After 840 generation (6 months!) best strategy was

tested against humans via Internet
• Program earned “expert class” ranking outperforming

99.61% of all rated players

44Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Quick overview

• Developed: USA in the 1990’s
• Early names: J. Koza
• Typically applied to:

– machine learning tasks (prediction, classification…)

• Attributed features:
– competes with neural nets and alike
– needs huge populations (thousands)
– slow

• Special:
– non-linear chromosomes: trees, graphs
– mutation possible but not necessary

45Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Technical summary tableau

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement

46Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Example credit scoring (1/3)

• Bank wants to distinguish good from bad loan applicants
• Model needed that matches historical data

47

ID No of

children

Salary Marital status OK?

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorced 1

…

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Example credit scoring (2/3)

• A possible model:
• IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
• In general:
• IF formula THEN good ELSE bad
• Only unknown is the right formula, hence
• Our search space (phenotypes) is the set of formulas
• Natural fitness of a formula: percentage of well classified

cases of the model it stands for

48Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Example credit scoring (3/3)

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
can be represented by the following tree

49

AND

S2NOC 80000

>=

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Offspring creation scheme

Compare
• GA scheme using crossover AND mutation sequentially

(be it probabilistically)
• GP scheme using crossover OR mutation (chosen

probabilistically)

50Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
GA vs GP

51Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Selection

• Parent selection typically fitness proportionate
• Over-selection in very large populations

– rank population by fitness and divide it into two groups:
– group 1: best x% of population, group 2 other (100-x)%
– 80% of selection operations chooses from group 1, 20% from

group 2
– for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
– motivation: to increase efficiency, %’s come from rule of thumb

• Survivor selection:
– Typical: generational scheme (thus none)
– Recently steady-state is becoming popular for its elitism

52Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Initialisation

• Maximum initial depth of trees Dmax is set
• Full method (each branch has depth = Dmax):

– nodes at depth d < Dmax randomly chosen from function
set F

– nodes at depth d = Dmax randomly chosen from terminal
set T

• Grow method (each branch has depth ≤ Dmax):
– nodes at depth d < Dmax randomly chosen from F ∪ T
– nodes at depth d = Dmax randomly chosen from T

• Common GP initialisation: ramped half-and-half,
where grow & full method each deliver half of initial
population

53Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Bloat

• Bloat = “survival of the fattest”, i.e., the tree sizes in the
population are increasing over time

• Ongoing research and debate about the reasons
• Needs countermeasures, e.g.

– Prohibiting variation operators that would deliver “too big”
children

– Parsimony pressure: penalty for being oversized

54Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 75

Genetic Programming:
Example symbolic regression

• Given some points in R2, (x1, y1), … , (xn, yn)
• Find function f(x) s.t. ∀i = 1, …, n : f(xi) = yi

• Possible GP solution:
– Representation by F = {+, -, /, sin, cos}, T = R ∪ {x}
– Fitness is the error
– All operators standard
– pop.size = 1000, ramped half-half initialisation
– Termination: n “hits” or 50000 fitness evaluations

reached (where “hit” is if | f(xi) – yi | < 0.0001)

55

2

1

))(()(i

n

i
i yxfferr −=∑

=

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

