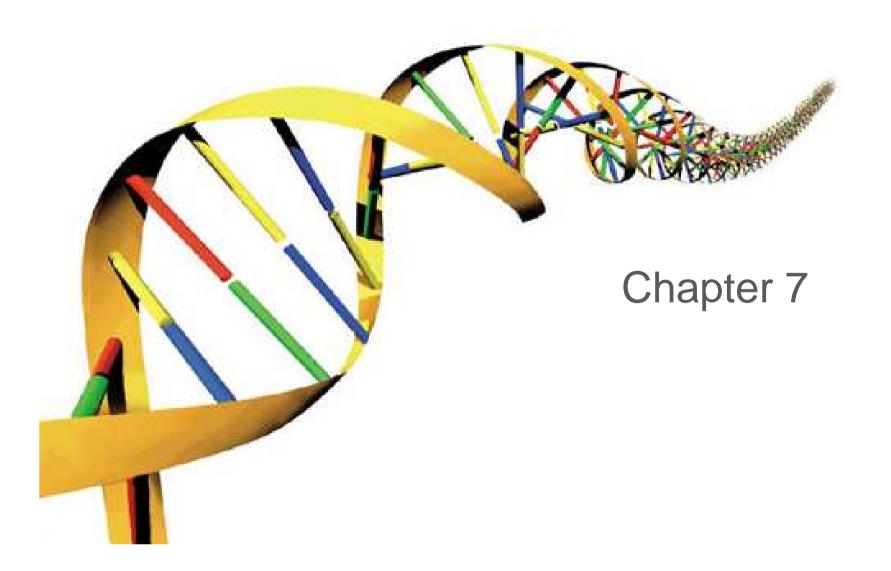
Evolutionary Computing

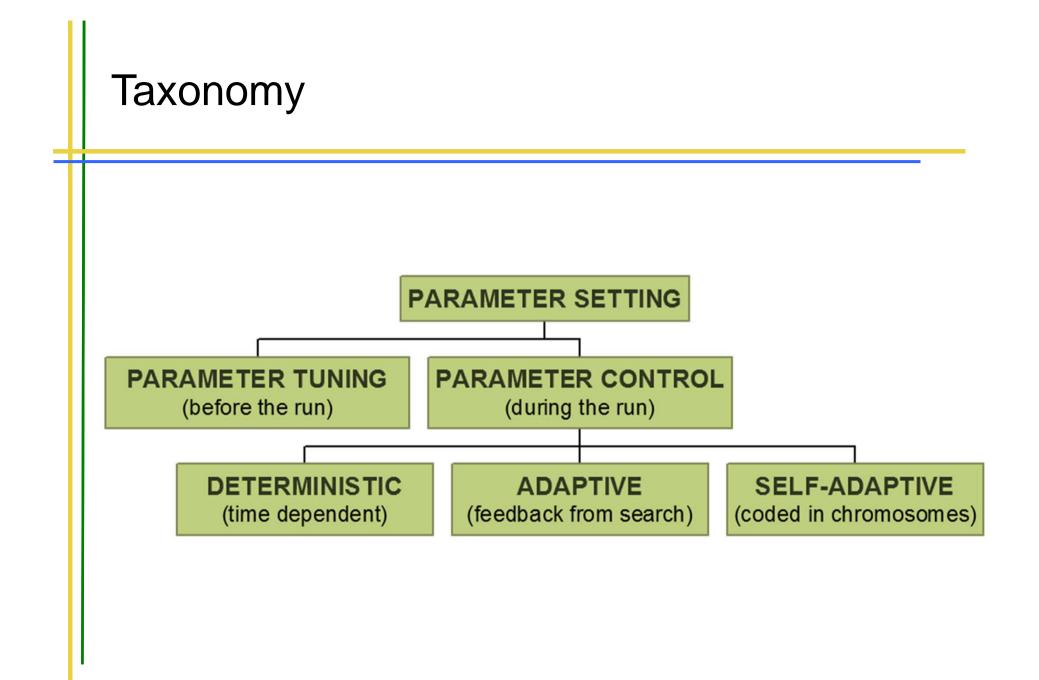


Chapter 7: Parameters and Parameter Tuning

- History
- Taxonomy
- Parameter Tuning vs Parameter Control
- EA calibration
- Parameter Tuning
 - Testing
 - Effort
 - Recommendation

Brief historical account

- 1970/80ies "GA is a robust method"
- 1970ies + ESs self-adapt mutation stepsize σ
- 1986 meta-GA for optimizing GA parameters
- 1990ies EP adopts self-adaptation of σ as 'standard'
- 1990ies some papers on changing parameters on-thefly
- 1999 Eiben-Michalewicz-Hinterding paper proposes clear taxonomy & terminology



Parameter tuning

Parameter tuning: testing and comparing different values before the "real" run

Problems:

- users mistakes in settings can be sources of errors or suboptimal performance
- costs much time
- parameters interact: exhaustive search is not practicable
- good values may become bad during the run

Parameter control

Parameter control: setting values on-line, during the actual run, e.g.

- predetermined time-varying schedule p = p(t)
- using (heuristic) feedback from the search process
- encoding parameters in chromosomes and rely on natural selection

Problems:

- finding optimal p is hard, finding optimal p(t) is harder
- still user-defined feedback mechanism, how to "optimize"?
- when would natural selection work for algorithm parameters?

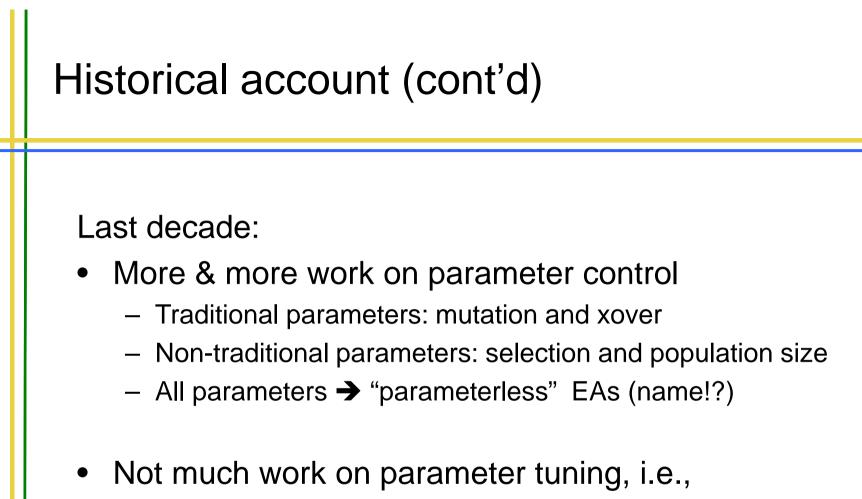
Notes on parameter control

- Parameter control offers the possibility to use appropriate values in various stages of the search
- Adaptive and self-adaptive control can "liberate" users from tuning → reduces need for EA expertise for a new application
- Assumption: control heuristic is less parameter-sensitive than the EA

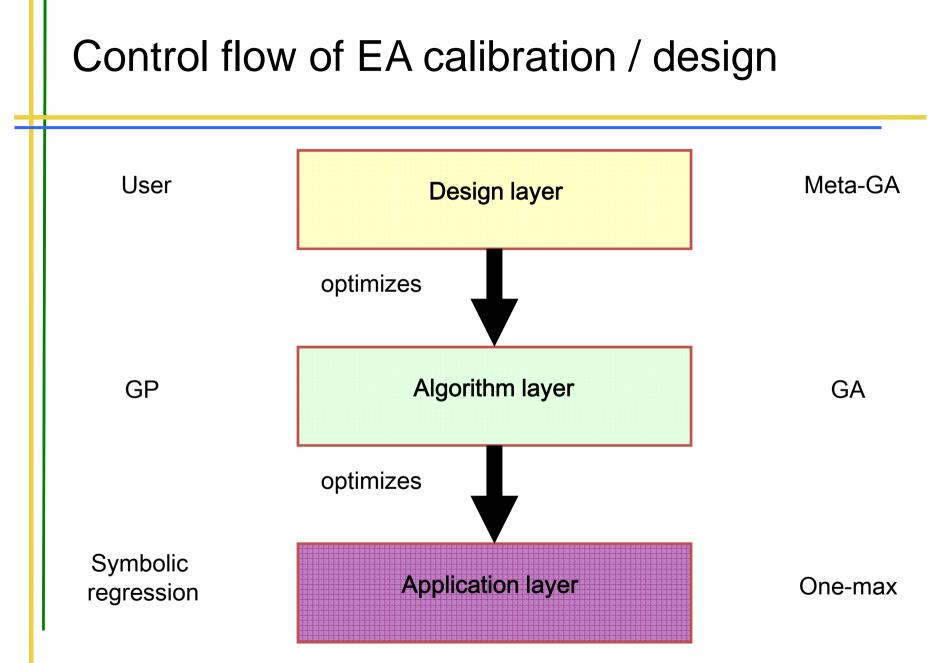
BUT

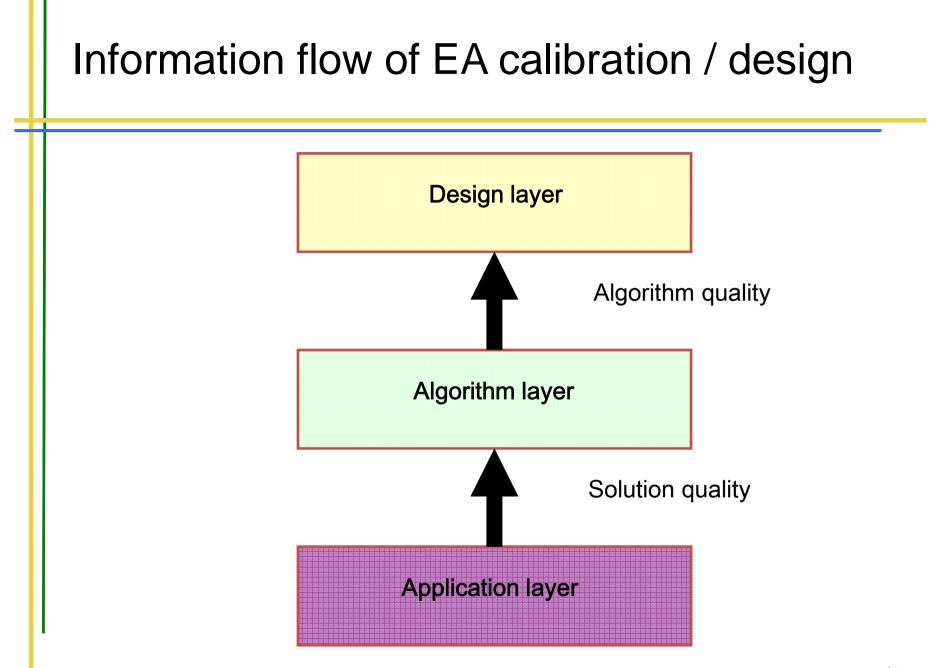
 State-of-the-art is a mess: literature is a potpourri, no generic knowledge, no principled approaches to developing control heuristics (deterministic or adaptive), no solid testing methodology

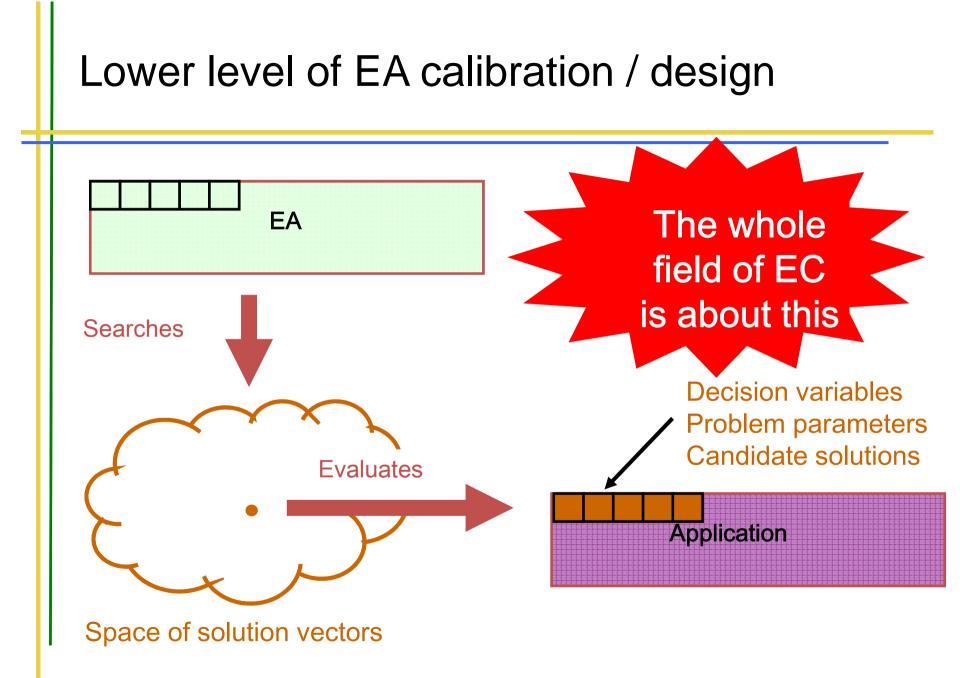
WHAT ABOUT AUTOMATED TUNING?

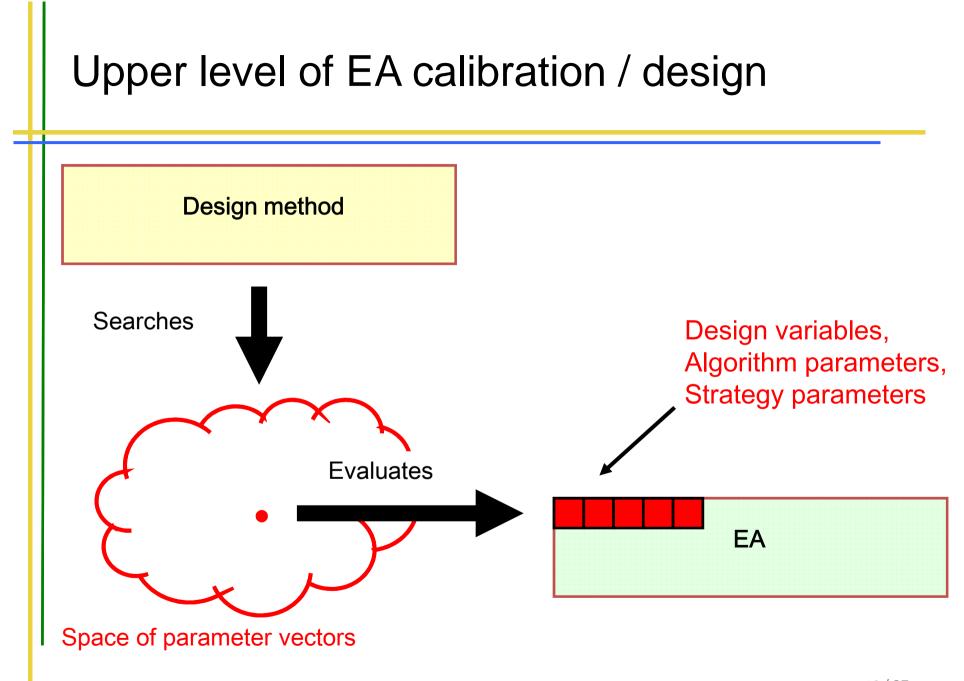


- Nobody reports on tuning efforts behind their EA published
- A handful papers on tuning methods / algorithms









Parameter – performance landscape

- All parameters together span a (search) space
- One point one EA instance
- Height of point = performance of EA instance on a given problem
- Parameter-performance landscape or utility landscape for each { EA + problem instance + performance measure }
- This landscape is unlikely to be trivial, e.g., unimodal, separable
- If there is some structure in the utility landscape, then we can do better than random or exhaustive search

Ontology - Terminology

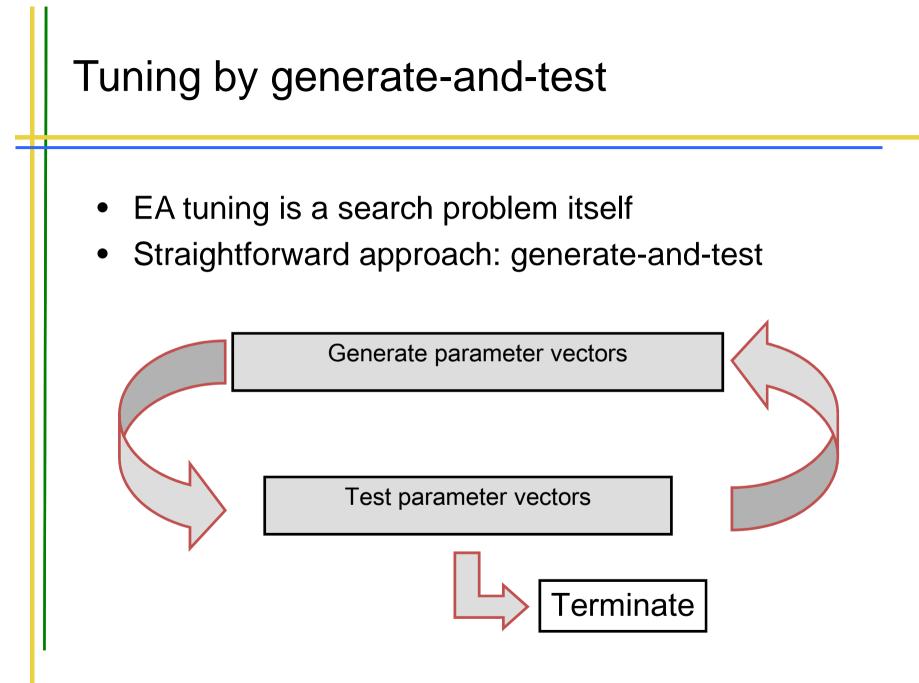
	LOWER PART	UPPER PART	
METHOD	EA	Tuner	
SEARCH SPACE	Solution vectors	Parameter vectors	
QUALITY	Fitness	Utility	
ASSESSMENT	Evaluation	Test	

- Fitness ≈ objective function value
- Utility = ?
 - <u>M</u>ean <u>B</u>est <u>F</u>itness
 - <u>Average number of Evaluations to Solution</u>
 - <u>Success</u> <u>Rate</u>
 - Robustness, ...
 - Combination of some of these

Off-line vs. on-line calibration / design

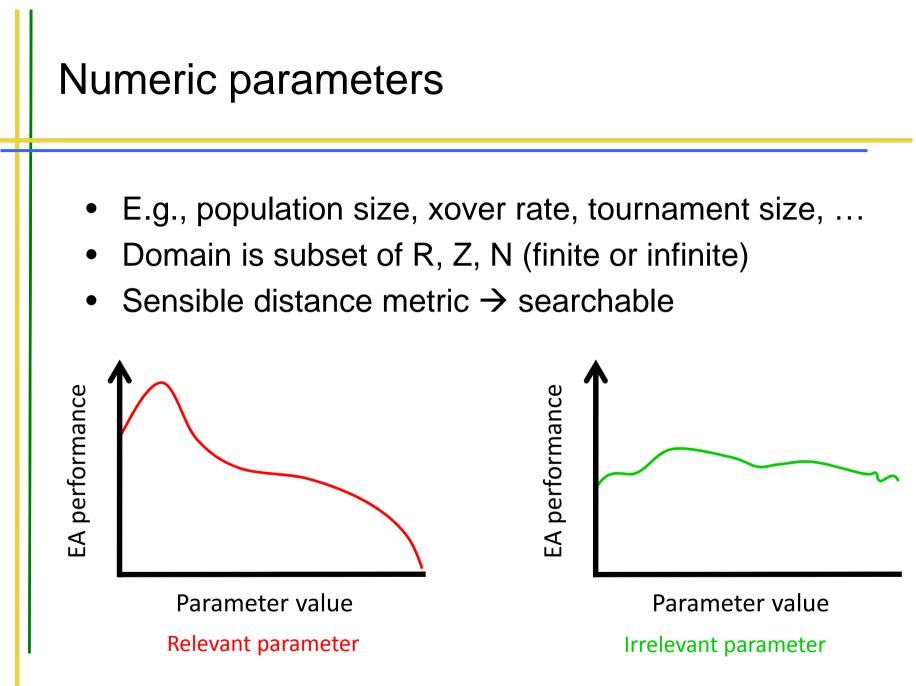
Design / calibration method

- Off-line → parameter tuning
- On-line \rightarrow parameter control
- Advantages of tuning
 - Easier
 - Most immediate need of users
 - Control strategies have parameters too \rightarrow need tuning themselves
 - Knowledge about tuning (utility landscapes) can help the design of good control strategies
 - There are indications that good tuning works better than control



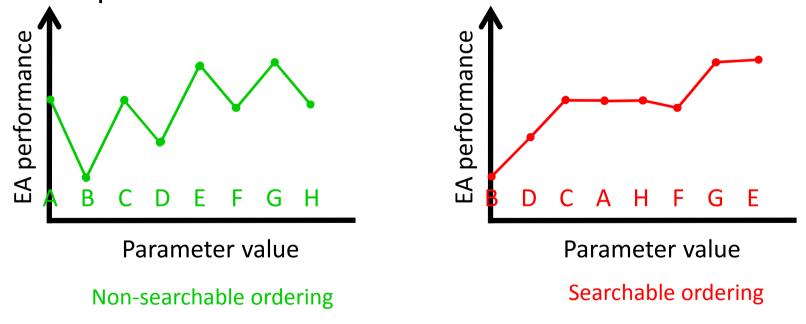
Testing parameter vectors

- Run EA with these parameters on the given problem or problems
- Record EA performance in that run e.g., by
 - Solution quality = best fitness at termination
 - Speed ≈ time used to find required solution quality
- EAs are stochastic → repetitions are needed for reliable evaluation → we get statistics, e.g.,
 - Average performance by solution quality, speed (MBF, AES, AEB)
 - Success rate = % runs ending with success
 - Robustness = variance in those averages over different problems
- Big issue: how many repetitions of the test



Symbolic parameters

- E.g., xover_operator, elitism, selection_method
- Finite domain, e.g., {1-point, uniform, averaging}, {Y, N}
- No sensible distance metric → non-searchable, must be sampled



Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Notes on parameters

- A value of a symbolic parameter can introduce a numeric parameter, e.g.,
 - Selection = tournament \rightarrow tournament size
 - Populations_type = overlapping \rightarrow generation gap
- Parameters can have a hierarchical, nested structure
- Number of EA parameters is not defined in general
- Cannot simply denote the design space / tuning search space by

$$S = Q_1 \times \ldots \otimes Q_m \times R_1 \times \ldots \times R_n$$

with Q_i / R_i as domains of the symbolic/numeric parameters

What is an EA? (1/2)

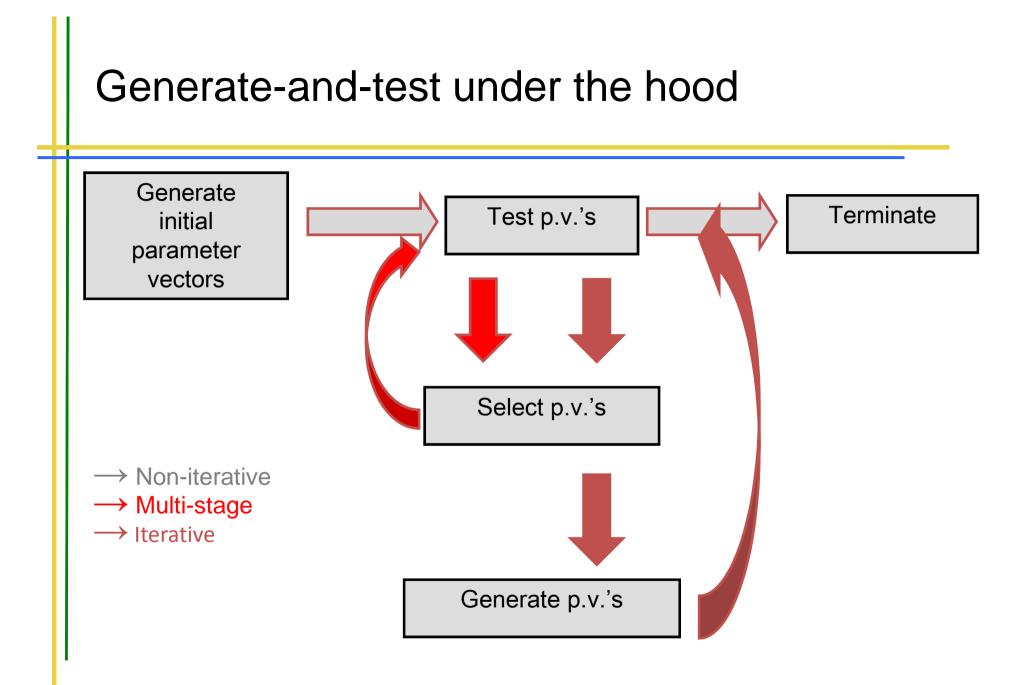
	ALG-1	ALG-2	ALG-3	ALG-4	
SYMBOLIC PARAMETERS					
Representation	Bit-string	Bit-string	Real-valued	Real-valued	
Overlapping pops	Ν	Y	Y	Y	
Survivor selection	-	Tournament	Replace worst	Replace worst	
Parent selection	Roulette wheel	Uniform determ	Tournament	Tournament	
Mutation	Bit-flip	Bit-flip	Ν(0,σ)	Ν(0,σ)	
Recombination	Uniform xover	Uniform xover	Discrete recomb	Discrete recomb	
NUMERIC PARAMETERS					
Generation gap	-	0.5	0.9	0.9	
Population size	100	500	100	300	
Tournament size	-	2	3	30	
Mutation rate	0.01	0.1	-	_	
Mutation stepsize	_	-	0.01	0.05	
Crossover rate	0.8	0.7	1	0.8	

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 21/37

What is an EA? (2/2)

Make a principal distinction between EAs and EA instances and place the border between them by:

- Option 1
 - There is only one EA, the generic EA scheme
 - Previous table contains 1 EA and 4 EA-instances
- Option 2
 - An EA = particular configuration of the symbolic parameters
 - Previous table contains 3 EAs, with 2 instances for one of them
- Option 3
 - An EA = particular configuration of parameters
 - Notions of EA and EA-instance coincide
 - Previous table contains 4 EAs / 4 EA-instances



Tuning effort

- Total amount of computational work is determined by
 - A = number of vectors tested
 - B = number of tests per vector
 - C = number of fitness evaluations per test
- Tuning methods can be positioned by their rationale:
 - To optimize A (iterative search)
 - To optimize B (multi-stage search)
 - To optimize A and B (combination)
 - To optimize C (non-existent)

- ...

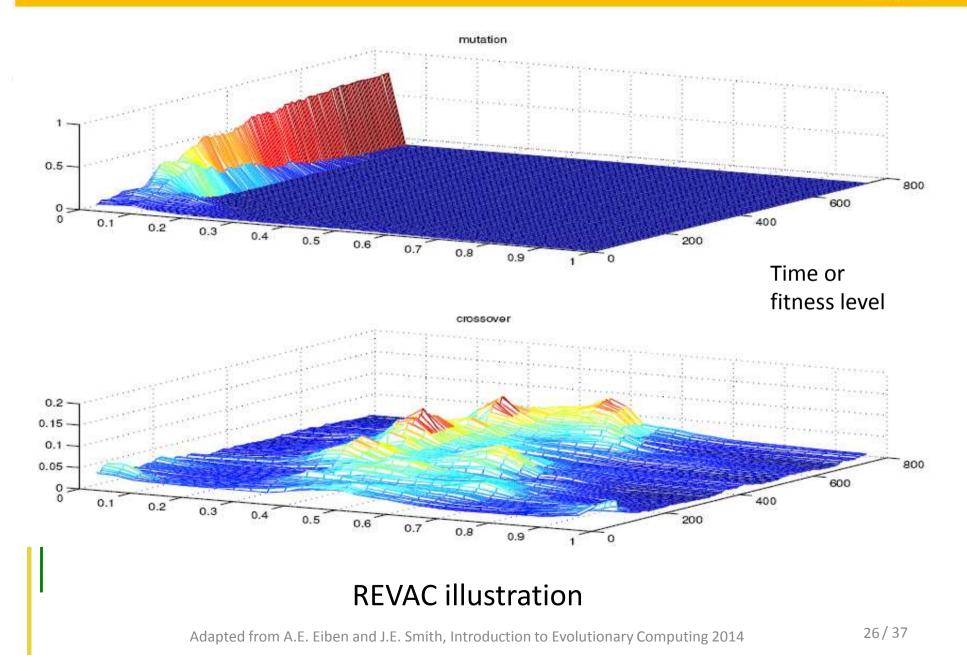
Optimize A = optimally use A

Applicable only to numeric parameters

Number of tested vectors not fixed, A is the maximum (stop cond.) Population-based search:

- Initialize with N << A vectors and</p>
- Iterate: generating, testing, selecting p.v.'s
- Meta-EA (Greffenstette '86)
 - Generate: usual crossover and mutation of p.v.'s
- SPO (Bartz-Beielstein et al. '05)
 - Generate: <u>uniform random sampling</u>!!! of p.v.'s
- REVAC (Nannen & Eiben '06)
 - Generate: <u>usual crossover and distribution-based mutation of p.v.'s</u>

EVOLUTION OF DISTRIBUTIONS FOR SCHAFFER'S f_6



Optimize B = reduce B

Applicable to symbolic and numeric parameters Number of tested vectors (A) fixed at initialization Set of tested vectors can be created by

- regular method \rightarrow grid search
- random method \rightarrow random sampling
- exhaustive method → enumeration

Complete testing (single stage) vs. selective testing (multi-stage)

- Complete testing: nr. of tests per vector = B (thus, not optimizing)
- Selective testing: nr. of tests per vector varies, $\leq B$
- Idea:
 - Execute tests in a breadth-first fashion (stages), all vectors X < B times
 - Stop testing vectors with statistically significant poorer utility
- Well-known methods
 - ANOVA (Scheffer '89)
 - Racing (Maron & Moore '97)

Optimize A & B

Existing work:

Meta-EA with racing (Yuan & Gallagher '04)

New trick: sharpening (Smit & Eiben 2009)

 Idea: test vectors X < B times and increase X over time during the run of a population-based tuner

Newest method:

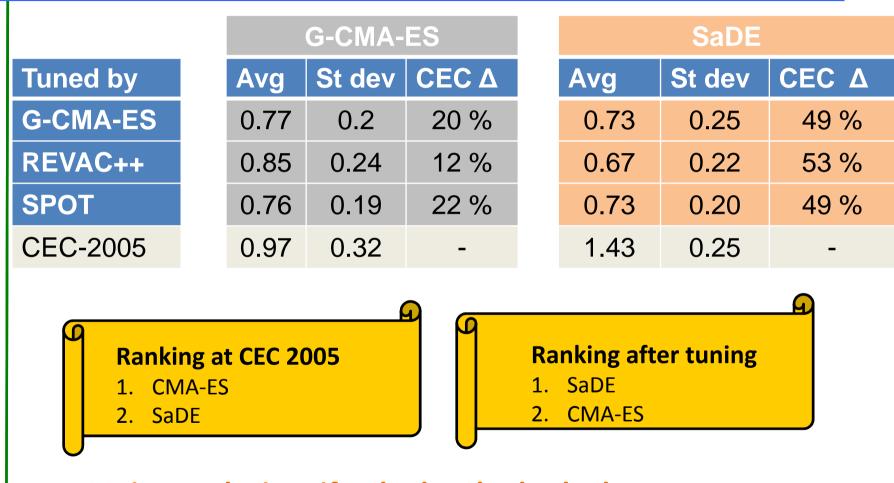
• REVAC with racing & sharpening = REVAC++

Which tuning method?

Differences between tuning algorithms

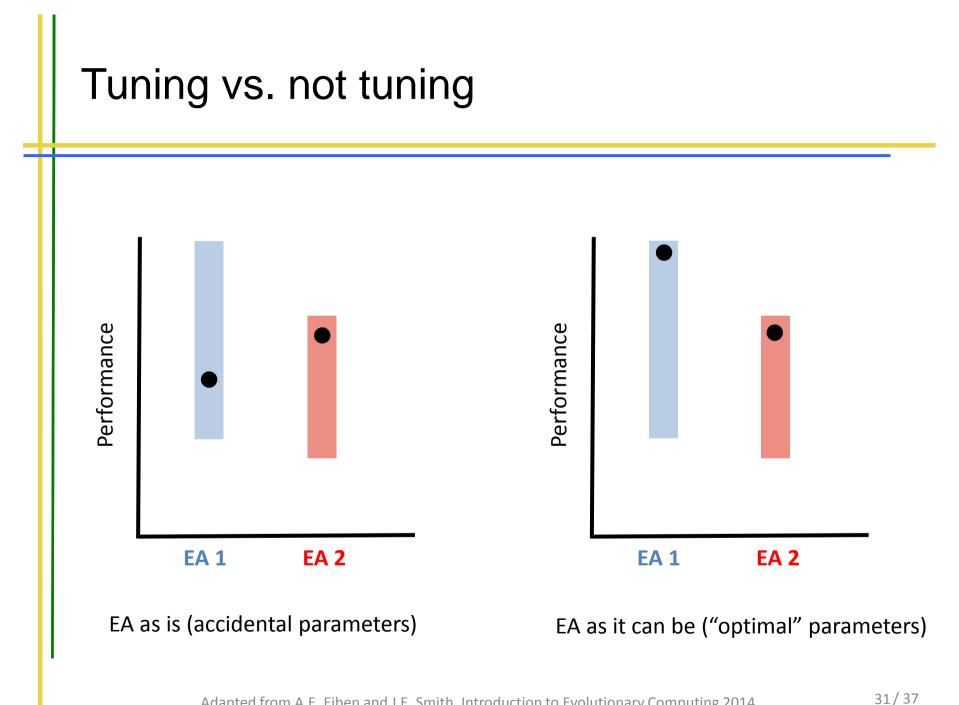
- Maximum utility reached
- Computational costs
- Number of their own parameters overhead costs
- Insights offered about EA parameters (probability distribution, interactions, relevance, explicit model...)
- Similarities between tuning algorithms
 - Nobody is using them
 - Can find good parameter vectors
- Solid comparison is missing ongoing

Tuning "world champion" EAs



Main conclusion: if only they had asked us

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



Recommendations

- DO TUNE your evolutionary algorithm
- Think of the magic constants
- Decide: speed or solution quality?
- Decide: specialist of generalist EA?
- Measure and report tuning effort
- Try our toolbox: http://sourceforge.net/projects/mobat

Example study 'Best parameters'

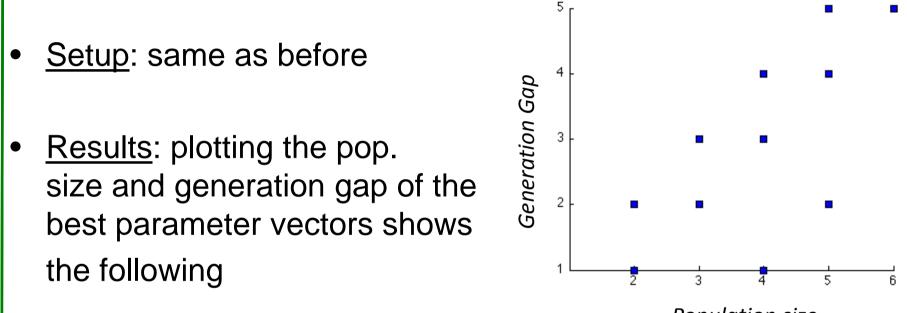
• <u>Setup</u>:

- Problem: Sphere Function
- EA: defined by Tournament Parent Selection, Random Uniform Survivor Selection, Uniform Crossover, BitFlip Mutation
- Tuner: REVAC spending X units of tuning effort, tuning for speed
- A = 1000, B = 30, C = 10000
- <u>Results</u>: the best EA had the following parameter values
 - Population Size: 6
 - Tournament Size: 4
 - ...
- <u>Conclusions</u>: for this problem we need a high (parent) selection pressure. This is probably because the problem is unimodal.

Example study 'Good parameters'

- <u>Setup</u>: same as before
- <u>Results</u>: The 25 best parameters vectors have their values within the following ranges
 - Mutation Rate: [0.01, 0.011]
 - Crossover Rate: [0.2, 1.0]
 - (..)
- <u>Conclusions</u>: for this problem the mutation rate is much more relevant than the crossover rate.

Example study 'interactions'



Population size

35/37

 <u>Conclusions</u>: for this problem the best results are obtained when (almost) the complete population is replaced every generation.

The (near) future of automated tuning

- Hybrid methods for A & B
- Well-funded EA performance measures, multi-objective formulation → multi-objective tuner algorithms
- (Statistical) models of the utility landscape → more knowledge about parameters
- Open source toolboxes
- Distributed execution
- Good testbeds
- Adoption by the EC community
- Rollout to other heuristic methods with parameters

Culture change?

- Fast and good tuning can lead to new attitude
- Past & present: robust EAs preferred
- Future: problem-specific EAs preferred
- Old question: what is better the GA or the ES?
- New question: what symbolic configuration is best?
- ... given a maximum effort for tuning
- New attitude / practice:
 - tuning efforts are measured and reported
 - EAs with their practical best settings are compared, instead of unmotivated "magical"settings