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Chapter 7:
Parameters and Parameter Tuning

• History
• Taxonomy
• Parameter Tuning vs Parameter Control
• EA calibration
• Parameter Tuning

– Testing
– Effort
– Recommendation
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Brief historical account

• 1970/80ies   “GA is a robust method”
• 1970ies +      ESs self-adapt mutation stepsize σ
• 1986              meta-GA for optimizing GA parameters
• 1990ies         EP adopts self-adaptation of σ as ‘standard’ 
• 1990ies         some papers on changing parameters on-the-

fly 
• 1999              Eiben-Michalewicz-Hinterding paper proposes 

clear taxonomy & terminology 
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Taxonomy
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Parameter tuning

Parameter tuning: testing and comparing different 
values before the “real” run

Problems:
– users mistakes in settings can be sources of errors or sub-

optimal performance
– costs much time
– parameters interact: exhaustive search is not practicable
– good values may become bad during the run
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Parameter control

Parameter control: setting values on-line, during the 
actual run, e.g.

� predetermined time-varying schedule p = p(t)
� using (heuristic) feedback from the search process
� encoding parameters in chromosomes and rely on natural selection

Problems:
� finding optimal p is hard, finding optimal p(t) is harder
� still user-defined feedback mechanism, how to “optimize”?
� when would natural selection work for algorithm parameters?
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Notes on parameter control

• Parameter control offers the possibility to use appropriate values in 
various stages of the search

• Adaptive and self-adaptive control can “liberate” users from tuning �
reduces need for EA expertise for a new application

• Assumption: control heuristic is less parameter-sensitive than the EA

BUT
• State-of-the-art is a mess: literature is a potpourri, no generic 

knowledge, no principled approaches to developing control heuristics 
(deterministic or adaptive), no solid testing methodology

WHAT ABOUT AUTOMATED TUNING?
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Historical account (cont’d)

Last decade: 
• More & more work on parameter control 

– Traditional parameters: mutation and xover
– Non-traditional parameters: selection and population size
– All parameters � “parameterless”  EAs (name!?)

• Not much work on parameter tuning, i.e.,
– Nobody reports on tuning efforts behind their EA published
– A handful papers on tuning methods / algorithms 
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Control flow of EA calibration / design
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Information flow of EA calibration / design
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Design layer

Application layer

Algorithm layer

Algorithm quality

Solution quality
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Lower level of EA calibration / design
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Searches

Decision variables 
Problem parameters
Candidate solutions

EA

Space of solution vectors

Evaluates

Application

The whole 
field of EC 

is about this
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Upper level of EA calibration / design
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Design method

Searches Design variables, 
Algorithm parameters,
Strategy parameters

Space of parameter vectors

Evaluates

EA
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Parameter – performance landscape

� All parameters together span a (search) space
� One point – one EA instance 
� Height of point = performance of EA instance 

on a given problem
� Parameter-performance landscape or utility landscape for 

each { EA + problem instance + performance measure }
� This landscape is unlikely to be trivial, e.g., unimodal, 

separable
� If there is some structure in the utility landscape, then we 

can do better than random or exhaustive search
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Ontology - Terminology

LOWER PART UPPER PART

METHOD EA Tuner

SEARCH SPACE Solution vectors Parameter vectors

QUALITY Fitness Utility

ASSESSMENT Evaluation Test 

14

� Fitness ≈ objective function value

� Utility = ? 
� Mean Best Fitness 

� Average number of Evaluations to Solution

� Success Rate 

� Robustness, …  

� Combination  of some of these
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Off-line vs. on-line calibration / design

Design / calibration method
� Off-line � parameter tuning
� On-line � parameter control

� Advantages of tuning
� Easier
� Most immediate need of users
� Control strategies have parameters too � need tuning themselves
� Knowledge about tuning (utility landscapes) can help the design of 

good control strategies
� There are indications that good tuning works better than control
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Tuning by generate-and-test

• EA tuning is a search problem itself
• Straightforward approach: generate-and-test
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Generate parameter vectors

Test parameter vectors

Terminate
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Testing parameter vectors

� Run EA with these parameters on the given problem or 
problems

� Record EA performance in that run e.g., by 
� Solution quality = best fitness at termination 
� Speed ≈ time used to find required solution quality 

� EAs are stochastic � repetitions are needed for reliable 
evaluation � we get statistics, e.g.,
� Average performance by solution quality, speed (MBF, AES, AEB)
� Success rate = % runs ending with success
� Robustness = variance in those averages over different problems

� Big issue: how many repetitions of the test
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Numeric parameters

• E.g., population size, xover rate, tournament size, … 
• Domain is subset of R, Z, N (finite or infinite)
• Sensible distance metric � searchable
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Symbolic parameters

• E.g., xover_operator,  elitism,  selection_method
• Finite domain, e.g., {1-point, uniform, averaging}, {Y, N}
• No sensible distance metric � non-searchable, must be 

sampled
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Notes on parameters

• A value of a symbolic parameter can introduce a numeric
parameter, e.g., 

– Selection = tournament � tournament size
– Populations_type = overlapping � generation gap

• Parameters can have a hierarchical, nested structure
• Number of EA parameters is not defined in general
• Cannot simply denote the design space / tuning search 

space by
S = Q1 x … Qm x R1 x … x Rn

with Qi / Rj as domains of the symbolic/numeric parameters 
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What is an EA? (1/2)

ALG-1 ALG-2 ALG-3 ALG-4

SYMBOLIC PARAMETERS

Representation Bit-string Bit-string Real-valued Real-valued

Overlapping pops N Y Y Y

Survivor selection ̶ Tournament Replace worst Replace worst

Parent selection Roulette wheel Uniform determ Tournament Tournament 

Mutation Bit-flip Bit-flip N(0,σ) N(0,σ)

Recombination Uniform xover Uniform xover Discrete recomb Discrete recomb

NUMERIC PARAMETERS

Generation gap ̶ 0.5 0.9 0.9

Population size 100 500 100 300

Tournament size ̶ 2 3 30

Mutation rate 0.01 0.1 ̶ ̶

Mutation stepsize ̶ ̶ 0.01 0.05

Crossover rate 0.8 0.7 1 0.8
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What is an EA? (2/2)

Make a principal distinction between EAs and EA instances and place 
the border between them by:

� Option 1
� There is only one EA, the generic EA scheme
� Previous table contains 1 EA and 4 EA-instances

� Option 2
� An EA = particular configuration of the symbolic parameters
� Previous table contains 3 EAs, with 2 instances for one of them

� Option 3
� An EA = particular configuration of parameters
� Notions of EA and EA-instance coincide
� Previous table contains 4 EAs / 4 EA-instances
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Generate-and-test under the hood

23

Generate 
initial 

parameter 
vectors

Generate p.v.’s

Test p.v.’s

Select p.v.’s

Terminate

→ Non-iterative
→ Multi-stage
→ Iterative
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Tuning effort

• Total amount of computational work is determined by 
– A = number of vectors tested
– B = number of tests per vector
– C = number of fitness evaluations per test 

• Tuning methods can be positioned by their rationale: 
– To optimize A  (iterative search)
– To optimize B  (multi-stage search)
– To optimize A and B  (combination)
– To optimize C  (non-existent)
– …
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Optimize A = optimally use A

Applicable only to numeric parameters
Number of tested vectors not fixed, A is the maximum (stop cond.)
Population-based search:

– Initialize with N << A vectors and
– Iterate: generating, testing, selecting p.v.’s

� Meta-EA (Greffenstette ‘86)
� Generate: usual crossover and mutation of p.v.’s

� SPO (Bartz-Beielstein et al. ‘05)
� Generate: uniform random sampling!!! of p.v.’s

� REVAC (Nannen & Eiben ’06)
� Generate: usual crossover and distribution-based mutation of p.v.’s
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REVAC illustration

Time or 

fitness level
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Optimize B = reduce B

Applicable to symbolic and numeric parameters
Number of tested vectors (A) fixed at initialization
Set of tested vectors can be created by 
� regular method � grid search
� random method � random sampling
� exhaustive method � enumeration
Complete testing (single stage) vs. selective testing (multi-stage)

� Complete testing: nr. of tests per vector = B (thus, not optimizing)
� Selective testing: nr. of tests per vector varies, ≤ B 
� Idea: 

� Execute tests in a breadth-first fashion (stages ), all vectors X < B times
� Stop testing vectors with statistically significant poorer utility

� Well-known methods
� ANOVA (Scheffer ‘89)
� Racing (Maron & Moore ’97)
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Optimize A & B

Existing work:
� Meta-EA with racing (Yuan & Gallagher ‘04)

New trick: sharpening (Smit & Eiben 2009) 
� Idea: test vectors X < B times and increase X over time 

during the run of a population-based tuner 

Newest method:
� REVAC with racing & sharpening = REVAC++
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Which tuning method?

� Differences between tuning algorithms
� Maximum utility reached
� Computational costs
� Number of their own parameters – overhead costs
� Insights offered about EA parameters (probability distribution, 

interactions, relevance, explicit model…) 

� Similarities between tuning algorithms
� Nobody is using them
� Can find good parameter vectors

� Solid comparison is missing – ongoing
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Tuning “world champion” EAs

30

G-CMA-ES SaDE

Tuned by Avg St dev CEC ∆ Avg St dev CEC ∆

G-CMA-ES 0.77 0.2 20 % 0.73 0.25 49 %

REVAC++ 0.85 0.24 12 % 0.67 0.22 53 %

SPOT 0.76 0.19 22 % 0.73 0.20 49 %

CEC-2005 0.97 0.32 - 1.43 0.25 -

Main conclusion: if only they had asked us ….

Ranking at CEC 2005 

1. CMA-ES

2. SaDE

Ranking after tuning

1. SaDE

2. CMA-ES
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Tuning vs. not tuning
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Recommendations

• DO TUNE your evolutionary algorithm
• Think of the magic constants
• Decide: speed or solution quality?
• Decide: specialist of generalist EA?
• Measure and report tuning effort
• Try our toolbox: http://sourceforge.net/projects/mobat
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Example study ‘Best parameters’

• Setup:
– Problem: Sphere Function
– EA: defined by Tournament Parent Selection, Random Uniform 

Survivor Selection, Uniform Crossover, BitFlip Mutation
– Tuner: REVAC spending X units of tuning effort, tuning for speed
– A = 1000, B = 30, C = 10000

• Results: the best EA had the following parameter values   
• Population Size:   6
• Tournament Size: 4
• ...

• Conclusions: for this problem we need a high (parent) 
selection pressure. This is probably because the problem is 
unimodal.
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Example study ‘Good parameters’

• Setup: same as before

• Results: The 25 best parameters vectors have their values 
within the following ranges

• Mutation Rate: [0.01, 0.011]
• Crossover Rate: [0.2, 1.0]
• (..)

• Conclusions: for this problem the mutation rate is much 
more relevant than the crossover rate. 
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Example study ‘interactions’

• Setup: same as before

• Results: plotting the pop. 
size and generation gap of the 
best parameter vectors shows 
the following

• Conclusions: for this problem the best results are obtained 
when (almost) the complete population is replaced every 
generation. 
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The (near) future of automated tuning 

� Hybrid methods for A & B
� Well-funded EA performance measures, multi-objective 

formulation � multi-objective tuner algorithms
� (Statistical) models of the utility landscape � more 

knowledge about parameters 
� Open source toolboxes
� Distributed execution
� Good testbeds
� Adoption by the EC community
� Rollout to other heuristic methods with parameters
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Culture change?

• Fast and good tuning can lead to new attitude
• Past & present: robust EAs preferred 
• Future: problem-specific EAs preferred 
• Old question: what is better the GA or the ES?
• New question: what symbolic configuration is best? 
• … given a maximum effort for tuning
• New attitude / practice: 

– tuning efforts are measured and reported
– EAs with their practical best settings are compared, instead of 

unmotivated “magical”settings
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