Evolutionary Computing

Chapter 8: Parameter Control

- Motivation
- Parameter setting
 - Tuning
 - Control
- Examples
- Where to apply parameter control
- How to apply parameter control

Motivation (1/2)

An EA has many strategy parameters, e.g.

- mutation operator and mutation rate
- crossover operator and crossover rate
- selection mechanism and selective pressure (e.g. tournament size)
- population size

Good parameter values facilitate good performance

Q1 How to find good parameter values ?

Motivation (2/2)

EA parameters are rigid (constant during a run) BUT an EA is a dynamic, adaptive process THUS optimal parameter values may vary during a run

Q2: How to vary parameter values?

Parameter Settings: Tuning

Parameter tuning: the traditional way of testing and comparing different values before the "real" run

Problems:

- users mistakes in settings can be sources of errors or sub-optimal performance
- parameters interact: exhaustive search is not practicable
- costs much time even with "smart" tuning
- good values may become bad during the run

Parameter Settings: Control

Parameter control: setting values on-line, during the actual run, e.g.

- predetermined time-varying schedule p = p(t)
- using feedback from the search process
- encoding parameters in chromosomes and rely on selection

Problems:

- finding optimal p is hard, finding optimal p(t) is harder
- still user-defined feedback mechanism, how to ``optimize"?
- when would natural selection work for strategy parameters?

Examples: Varying mutation step size

Task to solve:

- min $f(x_1,...,x_n)$
- $L_i \le x_i \le U_i$ for i = 1,...,n
- $g_i(x) \le 0$ for i = 1,...,q
- $h_i(x) = 0$ for i = q+1,...,m equality constraints

bounds inequality constraints equality constraints

Algorithm:

- EA with real-valued representation $(x_1, ..., x_n)$
- arithmetic averaging crossover
- Gaussian mutation: $x'_i = x_i + N(0, \sigma)$ standard deviation σ is called mutation step size

Examples: Varying mutation step size, option 1

Replace the constant σ by a function $\sigma(t)$

$$\sigma(t) = 1 - 0.9 \times \frac{t}{T}$$

 $0 \le t \le T$ is the current generation number

- Features:
 - changes in σ are independent from the search progress
 - strong user control of σ by the above formula
 - σ is fully predictable
 - a given σ acts on all individuals of the population

Examples: Varying mutation step size, option 2

Replace the constant σ by a function σ (t) updated after every n steps by the 1/5 success rule:

$$\sigma(t) = \begin{cases} \sigma(t-n)/c & \text{if } p_s > 0.2 \\ \sigma(t-n) \cdot c & \text{if } p_s < 0.2 \\ \sigma(t-n) & \text{otherwise} \end{cases}$$

- Features:
 - changes in σ are based on feedback from the search progress
 - some user control of σ by the above formula
 - σ is not predictable
 - a given σ acts on all individuals of the population

Examples:

Varying mutation step size, option 3

- Assign a personal σ to each individual
- Incorporate this σ into the chromosome: $(x_1, ..., x_n, \sigma)$
- Apply variation operators to x_i 's and σ

$$\sigma' = \sigma \times e^{N(0,\sigma)}$$
$$x_i' = x_i + N(0,\sigma')$$

- Features:
 - changes in σ are results of natural selection
 - (almost) no user control of $\boldsymbol{\sigma}$
 - σ is not predictable
 - a given σ acts on one individual

Examples: Varying mutation step size, option 4

Assign a personal σ to each variable in each individual Incorporate σ 's into the chromosomes: (x₁, ..., x_n, σ_1 , ..., σ_n) Apply variation operators to x_i's and σ_i 's

$$\sigma_i' = \sigma_i \times e^{N(0,\tau)}$$
$$x_i' = x_i + N(0,\sigma_i')$$

- Features:
 - changes in σ_i are results of natural selection
 - (almost) no user control of σ_i
 - σ_i is not predictable
 - a given σ_i acts on one gene of one individual

Examples: Varying penalties

Constraints

•
$$g_i(x) \le 0$$
 for $i = 1,...,q$

•
$$h_i(x) = 0$$
 for $i = q+1,...,m$

are handled by penalties:

inequality constraints equality constraints

where

$$penalty(x) = \sum_{j=1}^{m} \begin{cases} 1 & for \ violated \ constraint \\ 0 & for \ satisfied \ constraint \end{cases}$$

Examples: Varying penalties, option 1

Replace the constant W by a function W(t)

 $W(t) = (\mathbf{C} \times t)^{\alpha}$

 $0 \le t \le T$ is the current generation number

- Features:
 - changes in W independent from the search progress
 - strong user control of W by the above formula
 - W is fully predictable
 - a given W acts on all individuals of the population

Examples: Varying penalties, option 2

Replace the constant W by W(t) updated in each generation $W(t+1) = \begin{cases} \beta \times W(t) & \text{if last } k \text{ champions all feasible} \\ \gamma \times W(t) & \text{if last } k \text{ champions all infeasible} \\ W(t) & \text{otherwise} \end{cases}$

 $\beta < 1, \gamma > 1, \beta \times \gamma \neq 1$ champion: best of its generation

• Features:

- changes in W are based on feedback from the search progress
- some user control of W by the above formula
- W is not predictable
- a given W acts on all individuals of the population

```
Examples:
Varying penalties, option 3
```

```
Assign a personal W to each individual
Incorporate this W into the chromosome: (x_1, ..., x_n, W)
Apply variation operators to x_i's and W
```

```
Alert:
```

```
eval((x, W)) = f(x) + W \times penalty(x)
while for mutation step sizes we had
eval((x, \sigma)) = f(x)
this option is thus sensitive "cheating" \Rightarrow makes no sense
```

Examples: Lessons learned (1/2)

Various forms of parameter control can be distinguished by:

primary features:

- what component of the EA is changed
- how the change is made
- secondary features:
 - evidence/data backing up changes
 - level/scope of change

Examples: Lessons learned (2/2)

Various forms of parameter control can be distinguished by:

	σ(t) = 1- 0.9*t/T	σ' = σ/c, if r > ¹ ⁄ ₅	(x ₁ ,, x _n , σ)	$(x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n)$	$W(t) = (C^*t)^{\alpha}$	W'=β*W, if b _i ∈F	(x ₁ ,, x _n , W)
What	Step size	Step size	Step size	Step size	Penalty weight	Penalty weight	Penalty weight
How	Determini stic	Adaptive	Self- adaptive	Self- adaptive	Determini stic	Adaptive	Self- adaptive
Evidence	Time	Successful mutations rate	(Fitness)	(Fitness)	Time	Constraint satisfactio n history	(Fitness)
Scope	Population	Population	Individual	Gene	Population	Population	Individual

Where to apply parameter control

Practically any EA component can be parameterized and thus controlled on-the-fly:

- representation
- evaluation function
- variation operators
- selection operator (parent or mating selection)
- replacement operator (survival or environmental selection)
- population (size, topology)

solutions; encoded onto chromosomes they undergo variation and selection

How to apply parameter control Global taxonomy

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Evidence: Informing the change (1/2)

The parameter changes may be based on:

- time or nr. of evaluations (deterministic control)
- population statistics (adaptive control)
 - progress made
 - population diversity
 - gene distribution, etc.
- relative fitness of individuals creeated with given values (adaptive or self-adaptive control)

Evidence: Informing the change (2/2)

- Absolute evidence: predefined event triggers change, e.g. increase p_m by 10% if population diversity falls under threshold x
- Direction and magnitude of change is fixed
- Relative evidence: compare values through solutions created with them, e.g. increase p_m if top quality offspring came by high mutation rates
- Direction and magnitude of change is not fixed

Evidence: Refined taxonomy

• Combinations of types and evidences

- Possible: +
- Impossible: -

	Deterministic	Adaptive	Self-adaptive
Absolute	+	+	-
Relative	-	+	+

Scope/level

The parameter may take effect on different levels:

- environment (fitness function)
- population
- individual
- sub-individual

Note: given component (parameter) determines possibilities

Thus: scope/level is a derived or secondary feature in the classification scheme

Evaluation/Summary

- Parameter control offers the possibility to use appropriate values in various stages of the search
- Adaptive and self-adaptive parameter control
 - offer users "liberation" from parameter tuning
 - delegate parameter setting task to the evolutionary process
 - the latter implies a double task for an EA: problem solving + selfcalibrating (overhead)