Evolutionary Computing

Chapter 9: Working with Evolutionary Algorithms

- Experiment design
- Algorithm design
- Test problems
- Measurements and statistics
- Some tips and summary

Experimentation

- Has a goal or goals
- Involves algorithm design and implementation
- Needs problem(s) to run the algorithm(s) on
- Amounts to running the algorithm(s) on the problem(s)
- Delivers measurement data, the results
- Is concluded with evaluating the results in the light of the given goal(s)
- Is often documented

Experimentation: Goals

- Get a good solution for a given problem
- Show that EC is applicable in a (new) problem domain
- Show that my_EA is better than benchmark_EA
- Show that EAs outperform traditional algorithms (sic!)
- Find best setup for parameters of a given algorithm
- Understand algorithm behavior (e.g. pop dynamics)
- See how an EA scales-up with problem size
- See how performance is influenced by parameters
- •

Example: Production Perspective

- Optimising Internet shopping delivery route
 - Different destinations each day
 - Limited time to run algorithm each day
 - Must always be reasonably good route in limited time

Example: Design Perspective

- Optimising spending on improvements to national road network
 - Total cost: billions of Euro
 - Computing costs negligible
 - Six months to run algorithm on hundreds computers
 - Many runs possible
 - Must produce very good result just once

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Perspectives of goals

- **Design** perspective:
 - find a very good solution at least once
- Production perspective: find a good solution at almost every run
- Publication perspective: must meet scientific standards (huh?)
- Application perspective: good enough is good enough (verification!)

These perspectives have very different implications on evaluating the results (yet often left implicit)

Algorithm design

- Design a representation
- Design a way of mapping a genotype to a phenotype
- Design a way of evaluating an individual
- Design suitable mutation operator(s)
- Design suitable recombination operator(s)
- Decide how to select individuals to be parents
- Decide how to select individuals for the next generation (how to manage the population)
- Decide how to start: initialization method
- Decide how to stop: termination criterion

Test problems

- 5 DeJong functions
- 25 "hard" objective functions
- Frequently encountered or otherwise important variants of given practical problem
- Selection from recognized benchmark problem repository ("challenging" by being NP---?!)
- Problem instances made by random generator

Choice has severe implications on

- generalizability and
- scope of the results

Bad example (1/2)

- I invented "tricky mutation"
- Showed that it is a good idea by:
 - Running standard (?) GA and tricky GA
 - On 10 objective functions from the literature
 - Finding tricky GA better on 7, equal on 1, worse on 2 cases
- I wrote it down in a paper
- And it got published!
- Q: what did I learned from this experience?
- Q: is this good work?

Bad example (2/2)

- What did I (my readers) did not learn:
 - How relevant are these results (test functions)?
 - What is the scope of claims about the superiority of the tricky GA?
 - Is there a property distinguishing the 7 good and the 2 bad functions?
 - Are my results generalizable? (Is the tricky GA applicable for other problems? Which ones?)

Getting Problem Instances (1/3)

- Testing on real data
- Advantages:
 - Results could be considered as very relevant viewed from the application domain (data supplier)
- Disadvantages
 - Can be over-complicated
 - Can be few available sets of real data
 - May be commercial sensitive difficult to publish and to allow others to compare
 - Results are hard to generalize

Getting Problem Instances (2/3)

- Standard data sets in problem repositories, e.g.:
 - OR-Library
 - http://www.ms.ic.ac.uk/info.html
 - UCI Machine Learning Repository www.ics.uci.edu/~mlearn/MLRepository.html
- Advantage:
 - Well-chosen problems and instances (hopefully)
 - Much other work on these \rightarrow results comparable
- Disadvantage:
 - Not real might miss crucial aspect
 - Algorithms get tuned for popular test suites

Getting Problem Instances (3/3)

- Problem instance generators produce simulated data for given parameters, e.g.:
 - GA/EA Repository of Test Problem Generators

http://www.cs.uwyo.edu/~wspears/generators.html

- Advantage:
 - Allow very systematic comparisons for they
 - can produce many instances with the same characteristics
 - enable gradual traversal of a range of characteristics (hardness)
 - Can be shared allowing comparisons with other researchers
- Disadvantage
 - Not real might miss crucial aspect
 - Given generator might have hidden bias

Basic rules of experimentation

• EAs are stochastic \rightarrow

never draw any conclusion from a single run

- perform sufficient number of independent runs
- use statistical measures (averages, standard deviations)
- use statistical tests to assess reliability of conclusions

• EA experimentation is about comparison \rightarrow

- always do a fair competition
 - use the same amount of resources for the competitors
 - try different comp. limits (to coop with turtle/hare effect)
 - use the same performance measures

Things to Measure

Many different ways. Examples:

- Average result in given time
- Average time for given result
- Proportion of runs within % of target
- Best result over *n* runs
- Amount of computing required to reach target in given time with % confidence

•

What time units do we use?

- Elapsed time?
 - Depends on computer, network, etc...
- CPU Time?
 - Depends on skill of programmer, implementation, etc...
- Generations?
 - Difficult to compare when parameters like population size change
- Evaluations?
 - Evaluation time could depend on algorithm, e.g. direct vs. indirect representation

Measures

• Performance measures (off-line)

- Efficiency (alg. speed)
 - CPU time
 - No. of steps, i.e., generated points in the search space
- Effectivity (alg. quality)
 - Success rate
 - Solution quality at termination
- "Working" measures (on-line)
 - Population distribution (genotypic)
 - Fitness distribution (phenotypic)
 - Improvements per time unit or per genetic operator

Performance measures

- No. of generated points in the search space
 = no. of fitness evaluations
 (don't use no. of generations!)
- AES: average no. of evaluations to solution
- SR: success rate = % of runs finding a solution (individual with acceptabe quality / fitness)
- MBF: mean best fitness at termination, i.e., best per run, mean over a set of runs
- SR ≠ MBF
 - Low SR, high MBF: good approximizer (more time helps?)
 - High SR, low MBF: "Murphy" algorithm

Fair experiments

- Basic rule: use the same computational limit for each competitor
- Allow each EA the same no. of evaluations, but
 - Beware of hidden labour, e.g. in heuristic mutation operators
 - Beware of possibly fewer evaluations by smart operators
- EA vs. heuristic: allow the same no. of steps:
 - Defining "step" is crucial, might imply bias!
 - Scale-up comparisons eliminate this bias

Example: off-line performance measure evaluation

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 21 / 33

Example: on-line performance measure evaluation

Which algorithm is better? Why? When?

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Averaging can "choke" interesting information

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 23 / 33

Overlay of curves can lead to very "cloudy" figures

Statistical Comparisons and Significance

- Algorithms are stochastic, results have element of "luck"
- If a claim is made "Mutilation A is better than mutation B", need to show statistical significance of comparisons
- Fundamental problem: two series of samples (random drawings) from the SAME distribution may have DIFFERENT averages and standard deviations
- Tests can show if the differences are significant or not

Trial	Old Method	New Method
1	500	657
2	600	543
3	556	654
4	573	565
5	420	654
6	590	712
7	700	456
8	472	564
9	534	675
10	512	643
Average	545.7	612.3

Is the new method better?

Example (cont'd)

Trial	Old Method	New Method
1	500	657
2	600	543
3	556	654
4	573	565
5	420	654
6	590	712
7	700	456
8	472	564
9	534	675
10	512	643
Average	545.7	612.3
SD	73.5962635	73.5473317
T-test	0.07080798	

- Standard deviations supply additional info
- T-test (and alike) indicate the chance that the values came from the same underlying distribution (difference is due to random effects) E.g. with 7% chance in this example.

Statistical tests

• T-test assummes:

- Data taken from continuous interval or close approximation
- Normal distribution
- Similar variances for too few data points
- Similar sized groups of data points
- Other tests:
 - Wilcoxon preferred to t-test where numbers are small or distribution is not known.
 - F-test tests if two samples have different variances.

Statistical Resources

- http://fonsg3.let.uva.nl/Service/Statistics.html
- http://department.obg.cuhk.edu.hk/ResearchSupport/
- http://faculty.vassar.edu/lowry/webtext.html
- Microsoft Excel
- http://www.octave.org/

Better example: problem setting

- I invented myEA for problem X
- Looked and found 3 other EAs and a traditional benchmark heuristic for problem X in the literature
- Asked myself when and why is myEA better

Better example: experiments

- Found/made problem instance generator for problem X with 2 parameters:
 - *n* (problem size)
 - k (some problem specific indicator)
- Selected 5 values for *k* and 5 values for *n*
- Generated 100 problem instances for all combinations
- Executed all alg's on each instance 100 times (benchmark was also stochastic)
- Recorded AES, SR, MBF values w/ same comp. limit (AES for benchmark?)
- Put my program code and the instances on the Web

Better example: evaluation

- Arranged results "in 3D" (n,k) + performance (with special attention to the effect of n, as for scale-up)
- Assessed statistical significance of results
- Found the niche for my_EA:
 - Weak in ... cases, strong in - cases, comparable otherwise
 - Thereby I answered the "when question"
- Analyzed the specific features and the niches of each algorithm thus answering the "why question"
- Learned a lot about problem X and its solvers
- Achieved generalizable results, or at least claims with well-identified scope based on solid data
- Facilitated reproducing my results \rightarrow further research

Some tips

Be organized

- Decide what you want & define appropriate measures
- Choose test problems carefully
- Make an experiment plan (estimate time when possible)
- Perform sufficient number of runs
- Keep all experimental data (never throw away anything)
- Use good statistics ("standard" tools from Web, MS, R)
- Present results well (figures, graphs, tables, ...)
- Watch the scope of your claims
- Aim at generalizable results
- Publish code for reproducibility of results (if applicable)
- Publish data for external validation (open science)