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Chapter 9:
Working with Evolutionary Algorithms

• Experiment design
• Algorithm design
• Test problems
• Measurements and statistics
• Some tips and summary
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Experimentation

• Has a goal or goals 
• Involves algorithm design and implementation 
• Needs problem(s) to run the algorithm(s) on
• Amounts to running the algorithm(s) on the problem(s)
• Delivers measurement data, the results
• Is concluded with evaluating the results in the light of the 

given goal(s)
• Is often documented
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Experimentation:
Goals

• Get a good solution for a given problem
• Show that EC is applicable in a (new) problem domain
• Show that my_EA is better than benchmark_EA
• Show that EAs outperform traditional algorithms (sic!)
• Find best setup for parameters of a given algorithm 
• Understand algorithm behavior (e.g. pop dynamics)
• See how an EA scales-up with problem size
• See how performance is influenced by parameters
• …
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Example: Production Perspective

• Optimising Internet shopping 
delivery route

– Different destinations each day
– Limited time to run algorithm each day
– Must always be reasonably good route in limited time
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Example: Design Perspective

• Optimising spending on improvements to national road 
network
– Total cost: billions of Euro
– Computing costs negligible
– Six months to run algorithm on hundreds computers
– Many runs possible
– Must produce very good result just once
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Perspectives of goals

• Design perspective:
find a very good solution at least once

• Production perspective:
find a good solution at almost every run

• Publication perspective: 
must meet scientific standards (huh?)

• Application perspective:
good enough is good enough (verification!)

These perspectives have very different implications on 
evaluating the results (yet often left implicit)
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Algorithm design

• Design a representation
• Design a way of mapping a genotype to a phenotype
• Design a way of evaluating an individual
• Design suitable mutation operator(s)
• Design suitable recombination operator(s)
• Decide how to select individuals to be parents
• Decide how to select individuals for the next generation 

(how to manage the population)
• Decide how to start: initialization method
• Decide how to stop: termination criterion

8 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



Test problems

• 5 DeJong functions
• 25 “hard” objective functions
• Frequently encountered or otherwise important variants 

of given practical problem
• Selection from recognized benchmark problem 

repository (“challenging” by being NP--- ?!) 
• Problem instances made by random generator

Choice has severe implications on
– generalizability and 
– scope of the results
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Bad example (1/2)

• I invented “tricky mutation”
• Showed that it is a good idea by:

– Running standard (?) GA and tricky GA
– On 10 objective functions from the literature
– Finding tricky GA better on 7, equal on 1, worse on 2 cases

• I wrote it down in a paper
• And it got published!
• Q: what did I learned from this experience? 
• Q: is this good work?
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Bad example (2/2)

• What did I (my readers) did not learn:
– How relevant are these results (test functions)?
– What is the scope of claims about the superiority of the tricky 

GA?
– Is there a property distinguishing the 7 good and the 2 bad 

functions?
– Are my results generalizable? (Is the tricky GA applicable for 

other problems? Which ones?)
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Getting Problem Instances (1/3)

• Testing on real data
• Advantages:

– Results could be considered as very relevant viewed from the 
application domain (data supplier)

• Disadvantages
– Can be over-complicated
– Can be few available sets of real data
– May be commercial sensitive – difficult to publish and to allow 

others to compare
– Results are hard to generalize
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Getting Problem Instances (2/3)

• Standard data sets in problem repositories, e.g.:
– OR-Library

http://www.ms.ic.ac.uk/info.html
– UCI Machine Learning Repository

www.ics.uci.edu/~mlearn/MLRepository.html

• Advantage: 
– Well-chosen problems and instances (hopefully)
– Much other work on these � results comparable

• Disadvantage:
– Not real – might miss crucial aspect
– Algorithms get tuned for popular test suites
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Getting Problem Instances (3/3)

• Problem instance generators produce simulated data for 
given parameters, e.g.:
– GA/EA Repository of Test Problem Generators

http://www.cs.uwyo.edu/~wspears/generators.html

• Advantage:
– Allow very systematic comparisons for they

• can produce many instances with the same characteristics
• enable gradual traversal of a range of characteristics (hardness)

– Can be shared allowing comparisons with other researchers

• Disadvantage
– Not real – might miss crucial aspect
– Given generator might have hidden bias
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Basic rules of experimentation

• EAs are stochastic �
never draw any conclusion from a single run 

– perform sufficient number of independent runs
– use statistical measures (averages, standard deviations) 
– use statistical tests to assess reliability of conclusions

• EA experimentation is about comparison �
always do a fair competition

– use the same amount of resources for the competitors
– try different comp. limits (to coop with turtle/hare effect)
– use the same performance measures   
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Things to Measure

Many different ways. Examples:
• Average result in given time
• Average time for given result
• Proportion of runs within % of target
• Best result over n runs
• Amount of computing required to reach target in given 

time with % confidence
• …
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What time units do we use?

• Elapsed time? 
– Depends on computer, network, etc…

• CPU Time?
– Depends on skill of programmer, implementation, etc…

• Generations?
– Difficult to compare when parameters like population size 

change

• Evaluations?
– Evaluation time could depend on algorithm, e.g. direct vs. 

indirect representation
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Measures

• Performance measures (off-line)
– Efficiency (alg. speed)

• CPU time
• No. of steps, i.e., generated points in the search space

– Effectivity (alg. quality)
• Success rate
• Solution quality at termination

• “Working” measures (on-line)
– Population distribution (genotypic)
– Fitness distribution (phenotypic)
– Improvements per time unit or per genetic operator
– …
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Performance measures

• No. of generated points in the search space 
= no. of fitness evaluations 
(don’t use no. of generations!)

• AES: average no. of evaluations to solution
• SR: success rate = % of runs finding a solution 

(individual with acceptabe quality / fitness)
• MBF: mean best fitness at termination, i.e., best per run, 

mean over a set of runs
• SR ≠ MBF

– Low SR, high MBF: good approximizer (more time helps?)
– High SR, low MBF: “Murphy” algorithm
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Fair experiments

• Basic rule: use the same computational limit for each 
competitor

• Allow each EA the same no. of evaluations, but 
– Beware of hidden labour, e.g. in heuristic mutation operators
– Beware of possibly fewer evaluations by smart operators

• EA vs. heuristic: allow the same no. of steps:
– Defining “step” is crucial, might imply bias!
– Scale-up comparisons eliminate this bias
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Example: off-line performance measure 
evaluation 
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Which 
algorithm 
is better? 
Why? 
When?
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Example: on-line performance measure 
evaluation

Populations mean (best) fitness
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Which algorithm is better? Why? When?

Algorithm B

Algorithm A
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Example: averaging on-line measures 
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Averaging can “choke” interesting information
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Example: overlaying on-line measures
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Overlay of curves can lead to very “cloudy” figures
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Statistical Comparisons and Significance

• Algorithms are stochastic, results have element of “luck”
• If a claim is made “Mutilation A is better than mutation B”, 

need to show statistical significance of comparisons
• Fundamental problem: two series of samples (random 

drawings) from the SAME distribution may have 
DIFFERENT averages and standard deviations

• Tests can show if the differences are significant or not
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Example

Trial Old Method New Method
1 500 657
2 600 543
3 556 654
4 573 565
5 420 654
6 590 712
7 700 456
8 472 564
9 534 675

10 512 643
Average 545.7 612.3
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Is the new method better?
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Example (cont’d)
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• Standard deviations supply additional info
• T-test (and alike) indicate the chance that the values came 

from the same underlying distribution (difference is due to 
random effects) E.g. with 7% chance in this example.
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Statistical tests

• T-test assummes:
– Data taken from continuous interval or close approximation
– Normal distribution
– Similar variances for too few data points
– Similar sized groups of data points

• Other tests: 
– Wilcoxon – preferred to t-test where numbers are small or 

distribution is not known.
– F-test – tests if two samples have different variances.
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Statistical Resources

• http://fonsg3.let.uva.nl/Service/Statistics.html
• http://department.obg.cuhk.edu.hk/ResearchSupport/
• http://faculty.vassar.edu/lowry/webtext.html
• Microsoft Excel
• http://www.octave.org/
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Better example: problem setting

• I invented myEA for problem X
• Looked and found 3 other EAs and a traditional 

benchmark heuristic for problem X in the literature
• Asked myself when and why is myEA better
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Better example: experiments

• Found/made problem instance generator for problem X 
with 2 parameters:
– n (problem size)
– k (some problem specific indicator)  

• Selected 5 values for k and 5 values for n
• Generated 100 problem instances for all combinations
• Executed all alg’s on each instance 100 times 

(benchmark was also stochastic)
• Recorded AES, SR, MBF values w/ same comp. limit

(AES for benchmark?)
• Put my program code and the instances on the Web
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Better example: evaluation

• Arranged results “in 3D” (n,k) + performance 
(with special attention to the effect of n, as for scale-up)

• Assessed statistical significance of results 
• Found the niche for my_EA: 

– Weak in … cases, strong in - - - cases, comparable otherwise
– Thereby I answered the “when question”

• Analyzed the specific features and the niches of each 
algorithm thus answering the “why question”

• Learned a lot about problem X and its solvers
• Achieved generalizable results, or at least claims with 

well-identified scope based on solid data
• Facilitated reproducing my results � further research
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Some tips

• Be organized
• Decide what you want & define appropriate measures
• Choose test problems carefully
• Make an experiment plan (estimate time when possible)
• Perform sufficient number of runs
• Keep all experimental data (never throw away anything)
• Use good statistics (“standard” tools from Web, MS, R)
• Present results well (figures, graphs, tables, …)
• Watch the scope of your claims
• Aim at generalizable results
• Publish code for reproducibility of results (if applicable)
• Publish data for external validation (open science)
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