
Evolutionary Computing

Chapter 9

Chapter 9:
Working with Evolutionary Algorithms

• Experiment design
• Algorithm design
• Test problems
• Measurements and statistics
• Some tips and summary

2 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Experimentation

• Has a goal or goals
• Involves algorithm design and implementation
• Needs problem(s) to run the algorithm(s) on
• Amounts to running the algorithm(s) on the problem(s)
• Delivers measurement data, the results
• Is concluded with evaluating the results in the light of the

given goal(s)
• Is often documented

3 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Experimentation:
Goals

• Get a good solution for a given problem
• Show that EC is applicable in a (new) problem domain
• Show that my_EA is better than benchmark_EA
• Show that EAs outperform traditional algorithms (sic!)
• Find best setup for parameters of a given algorithm
• Understand algorithm behavior (e.g. pop dynamics)
• See how an EA scales-up with problem size
• See how performance is influenced by parameters
• …

4 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example: Production Perspective

• Optimising Internet shopping
delivery route

– Different destinations each day
– Limited time to run algorithm each day
– Must always be reasonably good route in limited time

5 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example: Design Perspective

• Optimising spending on improvements to national road
network
– Total cost: billions of Euro
– Computing costs negligible
– Six months to run algorithm on hundreds computers
– Many runs possible
– Must produce very good result just once

6 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Perspectives of goals

• Design perspective:
find a very good solution at least once

• Production perspective:
find a good solution at almost every run

• Publication perspective:
must meet scientific standards (huh?)

• Application perspective:
good enough is good enough (verification!)

These perspectives have very different implications on
evaluating the results (yet often left implicit)

7 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Algorithm design

• Design a representation
• Design a way of mapping a genotype to a phenotype
• Design a way of evaluating an individual
• Design suitable mutation operator(s)
• Design suitable recombination operator(s)
• Decide how to select individuals to be parents
• Decide how to select individuals for the next generation

(how to manage the population)
• Decide how to start: initialization method
• Decide how to stop: termination criterion

8 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Test problems

• 5 DeJong functions
• 25 “hard” objective functions
• Frequently encountered or otherwise important variants

of given practical problem
• Selection from recognized benchmark problem

repository (“challenging” by being NP--- ?!)
• Problem instances made by random generator

Choice has severe implications on
– generalizability and
– scope of the results

9 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Bad example (1/2)

• I invented “tricky mutation”
• Showed that it is a good idea by:

– Running standard (?) GA and tricky GA
– On 10 objective functions from the literature
– Finding tricky GA better on 7, equal on 1, worse on 2 cases

• I wrote it down in a paper
• And it got published!
• Q: what did I learned from this experience?
• Q: is this good work?

10 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Bad example (2/2)

• What did I (my readers) did not learn:
– How relevant are these results (test functions)?
– What is the scope of claims about the superiority of the tricky

GA?
– Is there a property distinguishing the 7 good and the 2 bad

functions?
– Are my results generalizable? (Is the tricky GA applicable for

other problems? Which ones?)

11 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Getting Problem Instances (1/3)

• Testing on real data
• Advantages:

– Results could be considered as very relevant viewed from the
application domain (data supplier)

• Disadvantages
– Can be over-complicated
– Can be few available sets of real data
– May be commercial sensitive – difficult to publish and to allow

others to compare
– Results are hard to generalize

12 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Getting Problem Instances (2/3)

• Standard data sets in problem repositories, e.g.:
– OR-Library

http://www.ms.ic.ac.uk/info.html
– UCI Machine Learning Repository

www.ics.uci.edu/~mlearn/MLRepository.html

• Advantage:
– Well-chosen problems and instances (hopefully)
– Much other work on these � results comparable

• Disadvantage:
– Not real – might miss crucial aspect
– Algorithms get tuned for popular test suites

13 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Getting Problem Instances (3/3)

• Problem instance generators produce simulated data for
given parameters, e.g.:
– GA/EA Repository of Test Problem Generators

http://www.cs.uwyo.edu/~wspears/generators.html

• Advantage:
– Allow very systematic comparisons for they

• can produce many instances with the same characteristics
• enable gradual traversal of a range of characteristics (hardness)

– Can be shared allowing comparisons with other researchers

• Disadvantage
– Not real – might miss crucial aspect
– Given generator might have hidden bias

14 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Basic rules of experimentation

• EAs are stochastic �
never draw any conclusion from a single run

– perform sufficient number of independent runs
– use statistical measures (averages, standard deviations)
– use statistical tests to assess reliability of conclusions

• EA experimentation is about comparison �
always do a fair competition

– use the same amount of resources for the competitors
– try different comp. limits (to coop with turtle/hare effect)
– use the same performance measures

15 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Things to Measure

Many different ways. Examples:
• Average result in given time
• Average time for given result
• Proportion of runs within % of target
• Best result over n runs
• Amount of computing required to reach target in given

time with % confidence
• …

16 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

What time units do we use?

• Elapsed time?
– Depends on computer, network, etc…

• CPU Time?
– Depends on skill of programmer, implementation, etc…

• Generations?
– Difficult to compare when parameters like population size

change

• Evaluations?
– Evaluation time could depend on algorithm, e.g. direct vs.

indirect representation

17 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Measures

• Performance measures (off-line)
– Efficiency (alg. speed)

• CPU time
• No. of steps, i.e., generated points in the search space

– Effectivity (alg. quality)
• Success rate
• Solution quality at termination

• “Working” measures (on-line)
– Population distribution (genotypic)
– Fitness distribution (phenotypic)
– Improvements per time unit or per genetic operator
– …

18 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Performance measures

• No. of generated points in the search space
= no. of fitness evaluations
(don’t use no. of generations!)

• AES: average no. of evaluations to solution
• SR: success rate = % of runs finding a solution

(individual with acceptabe quality / fitness)
• MBF: mean best fitness at termination, i.e., best per run,

mean over a set of runs
• SR ≠ MBF

– Low SR, high MBF: good approximizer (more time helps?)
– High SR, low MBF: “Murphy” algorithm

19 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Fair experiments

• Basic rule: use the same computational limit for each
competitor

• Allow each EA the same no. of evaluations, but
– Beware of hidden labour, e.g. in heuristic mutation operators
– Beware of possibly fewer evaluations by smart operators

• EA vs. heuristic: allow the same no. of steps:
– Defining “step” is crucial, might imply bias!
– Scale-up comparisons eliminate this bias

20 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example: off-line performance measure
evaluation

-50
51-60

61-70
71-80

81-90
91-100

Alg A

Alg B
0

5

10

15

20

25

30

N
r.

 o
f

ru
ns

 e
nd

in
g

w
ith

 t
hi

s
fit

ne
ss

Best fitness at termination

21 / 33

Which
algorithm
is better?
Why?
When?

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example: on-line performance measure
evaluation

Populations mean (best) fitness

22 / 33

Which algorithm is better? Why? When?

Algorithm B

Algorithm A

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example: averaging on-line measures

23 / 33

Averaging can “choke” interesting information

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example: overlaying on-line measures

24 / 33

Overlay of curves can lead to very “cloudy” figures

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Statistical Comparisons and Significance

• Algorithms are stochastic, results have element of “luck”
• If a claim is made “Mutilation A is better than mutation B”,

need to show statistical significance of comparisons
• Fundamental problem: two series of samples (random

drawings) from the SAME distribution may have
DIFFERENT averages and standard deviations

• Tests can show if the differences are significant or not

25 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example

Trial Old Method New Method
1 500 657
2 600 543
3 556 654
4 573 565
5 420 654
6 590 712
7 700 456
8 472 564
9 534 675

10 512 643
Average 545.7 612.3

26 / 33

Is the new method better?

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Example (cont’d)

27 / 33

• Standard deviations supply additional info
• T-test (and alike) indicate the chance that the values came

from the same underlying distribution (difference is due to
random effects) E.g. with 7% chance in this example.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Statistical tests

• T-test assummes:
– Data taken from continuous interval or close approximation
– Normal distribution
– Similar variances for too few data points
– Similar sized groups of data points

• Other tests:
– Wilcoxon – preferred to t-test where numbers are small or

distribution is not known.
– F-test – tests if two samples have different variances.

28 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Statistical Resources

• http://fonsg3.let.uva.nl/Service/Statistics.html
• http://department.obg.cuhk.edu.hk/ResearchSupport/
• http://faculty.vassar.edu/lowry/webtext.html
• Microsoft Excel
• http://www.octave.org/

29 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Better example: problem setting

• I invented myEA for problem X
• Looked and found 3 other EAs and a traditional

benchmark heuristic for problem X in the literature
• Asked myself when and why is myEA better

30 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Better example: experiments

• Found/made problem instance generator for problem X
with 2 parameters:
– n (problem size)
– k (some problem specific indicator)

• Selected 5 values for k and 5 values for n
• Generated 100 problem instances for all combinations
• Executed all alg’s on each instance 100 times

(benchmark was also stochastic)
• Recorded AES, SR, MBF values w/ same comp. limit

(AES for benchmark?)
• Put my program code and the instances on the Web

31 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Better example: evaluation

• Arranged results “in 3D” (n,k) + performance
(with special attention to the effect of n, as for scale-up)

• Assessed statistical significance of results
• Found the niche for my_EA:

– Weak in … cases, strong in - - - cases, comparable otherwise
– Thereby I answered the “when question”

• Analyzed the specific features and the niches of each
algorithm thus answering the “why question”

• Learned a lot about problem X and its solvers
• Achieved generalizable results, or at least claims with

well-identified scope based on solid data
• Facilitated reproducing my results � further research

32 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Some tips

• Be organized
• Decide what you want & define appropriate measures
• Choose test problems carefully
• Make an experiment plan (estimate time when possible)
• Perform sufficient number of runs
• Keep all experimental data (never throw away anything)
• Use good statistics (“standard” tools from Web, MS, R)
• Present results well (figures, graphs, tables, …)
• Watch the scope of your claims
• Aim at generalizable results
• Publish code for reproducibility of results (if applicable)
• Publish data for external validation (open science)

33 / 33Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

