
Evolutionary Computing

Chapter 10

/ 27

Chapter 10:
Hybridisation with Other Techniques: Memetic
Algorithms

• Why to Hybridise
• What is a Memetic Algorithm?
• Where to hybridise
• Incorporating good solutions
• Local Search and graphs

– Lamarckian vs. Baldwinian adaptation

• Diversity
• Operator choice
• Adaptive Memetic Algorithm

1Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Why Hybridise

• Might want to put in EA as part of larger system

• Might be looking to improve on existing techniques but
not re-invent wheel

• Might be looking to improve EA search for good solutions

2Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Why Hybridise
Michalewicz’s view on EAs in context

3Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

What is a Memetic Algorithm?

• The combination of Evolutionary Algorithms with Local
Search Operators that work within the EA loop has been
termed “Memetic Algorithms”

• Term also applies to EAs that use instance-specific
knowledge in operators

• Memetic Algorithms have been shown to be orders of
magnitude faster and more accurate than EAs on some
problems, and are the “state of the art” on many
problems

4Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Where to Hybridise:

5Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Incorporating good solutions:
Heuristics for Initialising Population

• Bramlette ran experiments with limited time scale and
suggested holding a n-way tournament amongst
randomly created solutions to pick initial population
(n.b. NOT the same as taking the best popsize of n.popsize

random points)

• Multi-Start Local Search is another option: pick popsize
points at random to climb from

• Constructive Heuristics often exist

6Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Incorporating good solutions:
Initialisation Issues

• Another common approach would be to initialise
population with solutions already known, or found by
another technique (beware, performance may appear to
drop at first if local optima on different landscapes do not
coincide)

• Surry & Radcliffe (1994) studied ways of “inoculating”
population with solutions gained from previous runs or
other algorithms/heuristics
– found mean performance increased as population was biased

towards known solutions,
– but best performance came from more random solutions

7Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Incorporating good solutions:
“Intelligent” Operators

• It is sometimes possible to incorporate problem or
instance specific knowledge within crossover or mutation
operators

– E.g. Merz’s DPX operator for TSP inherits common sub tours
from parents, then connects them using a nearest neighbour
heuristic

– Smith (97) evolving microprocessor instruction sequences: group
instructions (alleles) into classes so mutation is more likely to
switch gene to value having a similar effect

– Many other examples in literature

8Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Incorporating good solutions
Local Search Acting on Offspring

• Can be viewed as a sort of “lifetime learning”
• Lots of early research done using EAs to evolve the

structure of Artificial Neural Networks and then Back-
propagation to learn connection weights

• Often used to speed-up the “endgame” of an EA by
making the search in the vicinity of good solutions more
systematic than mutation alone

9Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Local Search

• Defined by combination of neighbourhood and pivot
rule

• Related to landscape metaphor
• N(x) is defined as the set of points that can be reached

from x with one application of a move operator
– e.g. bit flipping search on binary problems

10

N(d) = {a,c,h}d
h

b

c

a

g

ef

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Landscapes & Graphs

• The combination of representation and operator defines
a graph G(V,E) on the search space (useful for analysis)

• V, the set of vertices, is the set of all points that can be
represented (the potential solutions)

• E, the set of edges, is the possible transitions that can
arise from a single application of the operator

• note that the edges in E can have weights attached to them,
and that they need not be symmetrical

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Example Graphs for Binary Problems

• Example : 3 dimensional binary problem as above
– V = {a,b,c,d,e,f,g,h,}
– Search by flipping each bit in turn

• E1 = { ab, ad, ae, bc, bf, cd, cg, dh, fg, fe, gh, eh}
• symmetrical and all values equally likely
• E2 = {ac,bd,af,be,dg, ch, fh, ge, ah, de, bg, cf}
• E3 = {ag, bh, ce, df}

– Bit flipping mutation with prob p per bit implies weights for edges

12Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Graphs

• The Degree of a graph is the maximum number of
edges coming into/out of a single point, - the size of the
biggest neighbourhood
– single bit changing search: degree is l

– bit-wise mutation on binary: degree is 2l -1

– 2-opt: degree is O(N2)

• Local Search algorithms look at points in the
neighbourhood of a solution, so complexity is related to
degree of graph

13Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Pivot Rules

• Is the neighbourhood searched randomly, systematically
or exhaustively ?

• does the search stop as soon as a fitter neighbour is
found (Greedy Ascent)

• or is the whole set of neighbours examined and the best
chosen (Steepest Ascent)

• of course there is no one best answer, but some are
quicker than others to run

14Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Variations of Local Search

• Does the search happen in representation space or
solution space ?

• How many iterations of the local search are done ?
• Is local search applied to the whole population?

– or just the best ?
– or just the worst ?

15Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Two Models of Lifetime Adaptation

• Lamarckian
• traits acquired by an individual during its lifetime

can be transmitted to its offspring
• e.g. replace individual with fitter neighbour

• Baldwinian
• traits acquired by individual cannot be transmitted

to its offspring
• e.g. individual receives fitness (but not genotype)

of fitter neighbour

16Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
The Baldwin effect

• LOTS of work has been done on this
– the central dogma of genetics is that traits acquired during an

organisms lifetime cannot be written back into its gametes
– e.g. Hinton & Nowlan ‘87, ECJ special issue etc

• In MAs we are not constrained by biological realities so
can do Lamarckism

17Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Induced landscapes

18

“Raw”

Fitness

Lamarckian

points

Baldwin

landscape

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Local Search and graphs:
Information Use in Local Search

• Most Memetic Algorithms use an operator acting on a
single point, and only use that information

• However this is an arbitrary restriction
• Jones (1995), Merz & Friesleben (1996) suggest the use of a

crossover hillclimber which uses information from two points
in the search space

• Krasnogor & Smith (2000) - see later - use information from
whole of current population to govern acceptance of inferior
moves

• Could use Tabu search with a common list

19Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Diversity

• Maintenance of diversity within the population can be a
problem, and some successful algorithms explicitly use
mechanisms to preserve diversity:

• Merz’s DPX crossover explicitly generates
individuals at same distance to each parent as
they are apart

• Krasnogor’s Adaptive Boltzmann Operator uses a
Simulated-Annealing like acceptance criteria
where “temperature” is inversely proportional to
population diversity

20Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Diversity:
Boltzman MAs: acceptance criteria (1/2)

• Assuming a maximisation problem,
Let ∆f = fitness of neighbour – current fitness

21

<∆

>∆
=

−
∆

0

01
)(

max fe

f
P

avgff

fkneighbouraccepting

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Diversity:
Boltzman MAs: acceptance criteria (2/2)

• Induced dynamic is such that:
– Population is diverse => spread of fitness is large, therefore

temperature is low, so only accept improving moves =>
Exploitation

– Population is converged => temperature is high, more likely to
accept worse moves => Exploration

• Krasnogor showed this improved final fitness and
preserved diversity longer on a range of TSP and Protein
Structure Prediction (PSP) problems

22Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Choice of Operators

• There are theoretical advantages to using a local search
with a move operator that is DIFFERENT to the move
operators used by mutation and crossover cf. Krasnogor
(2002)

• Can be helpful since local optimum on one landscape
might be point on a slope on another

• Easy implementation is to use a range of local search
operators, with mechanism for choosing which to use.
(Similar to Variable Neighbourhood Search)

• This could be learned & adapted on-line (e.g. Krasnogor
& Smith 2001)

23Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Hybrid Algorithms Summary

• It is common practice to hybridise EA’s when using them
in a real world context.

• This may involve the use of operators from other
algorithms which have already been used on the
problem (e.g. 2-opt for TSP), or the incorporation of
domain-specific knowledge (e.g. PSP operators)

• Memetic algorithms have been shown to be orders of
magnitude faster and more accurate than GAs on some
problems, and are the “state of the art” on many
problems

24Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Adaptive Memetic Algorithm

• Most important in MA incorporating local search or
heuristic improvement is choice of improving move
operator

• Careful consideration
– Using domain-specific information
– Use of multiple local search operators in tandem
– Adding a gene indicating which local search operator to use

(inherited from parents, subject to mutation)

25Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Adaptive Memetic Algorithm
MA generations

• Meuth et al. defined different MA generations:

– First: “Global search paired with local search”

– Second: “Global search with multiple local optimizers. Memetic
information (choice of optimizer) passed to offspring (Lamarckian
evolution)”

– Third: “Global search with multiple local optmizers. Memetic
information (choice of local optimizer) passes to offspring
(Lamarckian evolution). A mapping between evolutionary
trajectory and choice of local optimizer is learned”

26Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

/ 27

Warning: Memetic Overkill

• Craenen and Eiben (CEC 2005) solve CSPs with hybrid
EAs, i.e., memetic algorithms

• 3 out of best 4 MAs become better after “switching off
evolution”:
– No selection (uniform random choices)
– No population (pop size = 1)

• Irony: heuristics were added to EAs to improve them,
removing the “E” gives the best result

27Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

