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Chapter 12:
Multiobjective Evolutionary Algorithms

• Multiobjective optimisation problems (MOP)
- Pareto optimality

• EC approaches
- Evolutionary spaces
- Preserving diversity

• Examples of MOEAs
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Multi-Objective Problems (MOPs)

• Wide range of problems can be categorised by the 
presence of a number of n possibly conflicting 
objectives:
– buying a car: speed vs. price vs. reliability
– engineering design: lightness vs. strength

• Two problems:
– finding set of good solutions
– choice of best for particular application
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An example: Buying a car

cost

speed
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Two spaces

Decision (variable) 
space

Objective space
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Comparing solutions

• Optimisation task:
Minimize both f1 and f2

• Then:
a is better than b
a is better than c
a is worse than e
a and d are incomparable

Objective space
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Dominance relation

• Solution x dominates solution y, (x y), if:
– x is better than y in at least one objective,
– x is not worse than y in all other objectives

solutions 
dominated 

by x

solutions 
dominating 

x
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Pareto optimality

• Solution x is non-dominated among a set of solutions Q 
if no solution from Q dominates x

• A set of non-dominated solutions from the entire 
feasible solution space is the Pareto-optimal set, 
its members Pareto-optimal solutions

• Pareto-optimal front: an image of the Pareto-optimal set 
in the objective space
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Illustration of the concepts

f1(x)

f2(x)
min
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Illustration of the concepts

f1(x)

f2(x)
min

minAdapted from A.E. Eiben and J.E. 
Smith, Introduction to Evolutionary 
Computing 2014

9



A practical example:
The beam design problem

d

Minimize weight and deflection of a beam (Deb, 2001):
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Formal definition
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• Minimize

• minimize

• subject to

where

(beam weight)

(beam deflection)

(maximum stress)
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Feasible solutions

Decision (variable) space Objective space
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Goal: Finding non-dominated solutions
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Goal of multiobjective optimisers

• Find a set of non-dominated solutions (approximation set)
following the criteria of:
– convergence (as close as possible to the Pareto-

optimal front),
– diversity (spread, distribution)
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Single- vs. multiobjective optimisation

Characteristic Singleobjective 
optimisation

Multiobjective 
optimisation

Number of objectives one more than one

Spaces single two: decision (variable) 
space, objective space

Comparison of
candidate solutions

x is better than y x dominates y

Result one (or several equally
good) solution(s)

Pareto-optimal set

Algorithm goals convergence convergence, diversity
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Two approaches to multiobjective
optimisation

• Preference-based:
traditional, using single objective optimisation methods

• Ideal:
possible with novel multiobjective optimisation techniques,
enabling better insight into the problem 

Adapted from A.E. Eiben and J.E. 
Smith, Introduction to Evolutionary 
Computing 2014

16



Preference-based approach

• Given a multiobjective optimisation problem,

• use higher-level information on importance of objectives

• to transform the problem into a singleobjective one,

• and then solve it with a single objective optimisation

method

• to obtain a particular trade-off solution.
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An example approach: Weighted-sum

• Modified problem:

1 1
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Hyperplanes in the 
objective space!

Adapted from A.E. Eiben and J.E. 
Smith, Introduction to Evolutionary 
Computing 2014

18



Ideal approach

• Given a multiobjective optimisation problem,

• solve it with a multiobjective optimisation method 

• to find multiple trade-off solutions,

• and then use higher-level information

• to obtain a particular trade-off solution.
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Multiobjective optimisation with 
evolutionary algorithms

• Population-based method

• Can return a set of trade-off solutions (approximation set) 
in a single run

• Allows for the ideal approach to multiobjective
optimisation
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EC approach:
Advantages

• Population-based nature of search means you can 
simultaneously search for set of points approximating 
Pareto front

• Don’t have to make guesses about which combinations 
of weights might be useful

• Makes no assumptions about shape of Pareto front - can 
be convex / discontinuous etc.

21Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014
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EC approach:
Requirements

• Way of assigning fitness, 
– usually based on dominance

• Preservation of diverse set of points
– similarities to multi-modal problems

• Remembering all the non-dominated points you have 
seen
– usually using elitism or an archive

22Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014
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EC approach: 
Fitness Assignment

• Could use aggregating approach and change weights 
during evolution
– no guarantees

• Different parts of population use different criteria
– e.g. VEGA, but no guarantee of diversity

• Dominance
– ranking or depth based
– fitness related to whole population
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EC approach:
Diversity maintenance

• Usually done by niching techniques such as:
– fitness sharing
– adding amount to fitness based on inverse distance to nearest 

neighbour (minimisation)
– (adaptively) dividing search space into boxes and counting 

occupancy

• All rely on some distance metric in genotype / phenotype 
space
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EC approach:
Remembering Good Points

• Could just use elitist algorithm 
– e.g. ( µ + λ ) replacement 

• Common to maintain an archive of non-dominated points
– some algorithms use this as second population that can be in 

recombination etc.
– others divide archive into regions too, e.g. PAES
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MOP - summary

• MO problems occur very frequently 

• EAs are very good in solving MO problems

• MOEAs are one of the most successful EC subareas 
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