Evolutionary Computing

Chapter 12: Multiobjective Evolutionary Algorithms

- Multiobjective optimisation problems (MOP)
 - Pareto optimality
- EC approaches
 - Evolutionary spaces
 - Preserving diversity
- Examples of MOEAs

Multi-Objective Problems (MOPs)

- Wide range of problems can be categorised by the presence of a number of *n* possibly conflicting objectives:
 - buying a car: speed vs. price vs. reliability
 - engineering design: lightness vs. strength
- Two problems:
 - finding set of good solutions
 - choice of best for particular application

An example: Buying a car

Two spaces

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 4

Comparing solutions

 Optimisation task: Minimize both f₁ and f₂

Then: a is better than b a is better than c a is worse than e a and d are incomparable

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Dominance relation

- Solution x dominates solution y, $(x \leq y)$, if:
 - x is better than y in at least one objective,
 - x is not worse than y in all other objectives

Pareto optimality

- Solution x is non-dominated among a set of solutions Q if no solution from Q dominates x
- A set of non-dominated solutions from the entire feasible solution space is the Pareto-optimal set, its members Pareto-optimal solutions
- Pareto-optimal front: an image of the Pareto-optimal set in the objective space

Illustration of the concepts

Illustration of the concepts

9

A practical example: The beam design problem

Minimize weight and deflection of a beam (Deb, 2001):

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Formal definition

Feasible solutions

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

12

Goal: Finding non-dominated solutions

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

13

Goal of multiobjective optimisers

- Find a set of non-dominated solutions (approximation set) following the criteria of:
 - convergence (as close as possible to the Paretooptimal front),
 - diversity (spread, distribution)

Single-vs. multiobjective optimisation

Characteristic	Singleobjective optimisation	Multiobjective optimisation
Number of objectives	one	more than one
Spaces	single	two: decision (variable) space, objective space
Comparison of candidate solutions	x is better than y	x dominates y
Result	one (or several equally good) solution(s)	Pareto-optimal set
Algorithm goals	convergence	convergence, diversity

Two approaches to multiobjective optimisation

• Preference-based:

traditional, using single objective optimisation methods

• Ideal:

possible with novel multiobjective optimisation techniques, enabling better insight into the problem

Preference-based approach

- Given a multiobjective optimisation problem,
- use higher-level information on importance of objectives
- to transform the problem into a singleobjective one,
- and then solve it with a single objective optimisation

method

• to obtain a particular trade-off solution.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

An example approach: Weighted-sum

• Modified problem:

$$F(\mathbf{X}) = \sum_{m=1}^{M} w_m f_m(\mathbf{X}), \quad w_m \in [0,1], \quad \sum_{m=1}^{M} w_m = 1$$

18

Ideal approach

- Given a multiobjective optimisation problem,
- solve it with a multiobjective optimisation method
- to find multiple trade-off solutions,
- and then use higher-level information
- to obtain a particular trade-off solution.

Multiobjective optimisation with evolutionary algorithms

- Population-based method
- Can return a set of trade-off solutions (approximation set) in a single run
- Allows for the ideal approach to multiobjective optimisation

EC approach: Advantages

- Population-based nature of search means you can simultaneously search for set of points approximating Pareto front
- Don't have to make guesses about which combinations of weights might be useful
- Makes no assumptions about shape of Pareto front can be convex / discontinuous etc.

21/26

EC approach: Requirements

- Way of assigning fitness,
 - usually based on dominance
- Preservation of diverse set of points
 - similarities to multi-modal problems
- Remembering all the non-dominated points you have seen
 - usually using elitism or an archive

EC approach: Fitness Assignment

- Could use aggregating approach and change weights during evolution
 - no guarantees
- Different parts of population use different criteria
 e.g. VEGA, but no guarantee of diversity
- Dominance
 - ranking or depth based
 - fitness related to whole population

EC approach: Diversity maintenance

- Usually done by niching techniques such as:
 - fitness sharing
 - adding amount to fitness based on inverse distance to nearest neighbour (minimisation)
 - (adaptively) dividing search space into boxes and counting occupancy
- All rely on some distance metric in genotype / phenotype space

EC approach: Remembering Good Points

- Could just use elitist algorithm
 - e.g. (μ + λ) replacement
- Common to maintain an archive of non-dominated points
 - some algorithms use this as second population that can be in recombination etc.
 - others divide archive into regions too, e.g. PAES

References

• http://pt.slideshare.net/paskorn/rnsgaii-presentation

27 / 26