
Evolutionary Computing

Chapter 13

/ 24

Chapter 13:
Constraint Handling

• Motivation and the trouble

• What is a constrained problem?

• Evolutionary constraint handling

• A selection of related work

• Conclusions, observations, and suggestions

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 2

/ 24

Motivation

Why bother about constraints?

• Practical relevance:
a great deal of practical problems are constrained.

• Theoretical challenge:
a great deal of untractable problems (NP-hard etc.) are constrained.

Why try with evolutionary algorithms?

• EAs show a good ratio of (implementation) effort/performance.
• EAs are acknowledged as good solvers for tough problems.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 3

/ 24

What is a constrained problem?

Consider the Travelling Salesman Problem for n cities, C = {city1, … , cityn}

If we define the search space as
• S = Cn, then we need a constraint requiring uniqueness of each city in an

element of S

• S = {permutations of C}, then we need no additional constraint.

The notion ‘constrained problem’ depends on what we take as search space

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 4

/ 24

What is constrained search?
or

What is free search?

• Even in the space S = {permutations of C} we cannot perform free search

• Free search : standard mutation and crossover preserve membership of S,
i.e., mut(x) ∈ S and cross(x,y) ∈ S

The notion ‘free search’ depends on what we take as standard mutation and
crossover.

• mut is standard mutation if for all 〈x1, … , xn〉, if
mut(〈x1, … , xn〉) = 〈 x’1, … , x’n〉, then x’i ∈ domain(i)

• cross is standard crossover if for all 〈x1, … , xn〉, 〈y1, … , yn〉, if
cross(〈x1, … , xn〉, 〈y1, … , yn〉) = 〈z1, … , zn〉, then

• zi ∈ {xi, yi} discrete case
• zi ∈ [xi, yi] continuous case

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 5

/ 24

Free search space

Free search space: S = D1 × … × Dn

• one assumption on Di: if it is continuous, it is convex
• the restriction si ∈ Di is not a constraint, it is the definition of the

domain of the i-th variable
• membership of S is coordinate-wise, hence a free search space

allows free search

A problem can be defined through

• an objective function (to be optimized)
• constraints (to be satisfied)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 6

/ 24

Types of problems

Objective Function

Constraints Yes No

Yes Constrained optimization problem Constraint satisfaction problem

No Free optimization problem No Problem

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 7

/ 24

Free Optimization Problems

Free Optimization Problem: 〈S, f, •〉
• S is a free search space
• f is a (real valued) objective function on S

Solution of an FOP: s ∈ S such that f (s) is optimal in S

FOPs are ‘easy’, in the sense that:
• it's ‘only’ optimizing, no constraints and
• EAs have a basic instinct for optimization

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 8

/ 24

FOP:
Example

Ackley function

ex
n

x
n

xf
n

i
i

n

i
i ++







−








⋅−⋅−= ∑∑

==

20)2cos(
1

exp
1

2.0exp20)(
11

2 π

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 9

/ 24

Constraint Satisfaction Problems (1/2)

Constraint Satisfaction Problem: 〈S, •, Φ〉
• S is a free search space
• Φ is a formula (Boolean function on S)
Φ is the feasibility condition
SΦ = {s ∈ S | Φ(s) = true} is the feasible search space

Solution of a CSP:
s ∈ S such that Φ(s) = true (s is feasible)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 10

/ 24

Constraint Satisfaction Problems (2/2)

Φ is typically given by a set (conjunction) of constraints
• ci = ci(xj1, … , xjni), where ni is the arity of ci

• ci ⊆ Dj1 × … × Djni is also a common notation

FACTS:
• The general CSP is NP-complete
• Every CSP is equivalent with a binary CSP, where all ni ≡ 2
• Constraint density and constraint tightness are parameters that

determine how hard an instance is

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 11

/ 24

CSP:
Example

Graph 3-coloring problem:
• G = (N, E), E ⊆ N × N , |N| = n
• S = Dn, D = {1, 2, 3}
• Φ(s) = Λe∈E ce(s), where

ce(s) = true iff e = (k, l) and sk ≠ sl

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 12

/ 24

Constrained optimization problems

Constrained Optimization Problem: 〈S, f, Φ〉
• S is a free search space
• f is a (real valued) objective function on S
• Φ is a formula (Boolean function on S)

Solution of a COP:
s ∈ SΦ such that f(s) is optimal in SΦ

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 13

/ 24

COP:
Example

Travelling salesman problem
• S = Cn, C = {city1, … , cityn}
• Φ(s) = true ⇔ ∀i, j ∈ {1, … , n} i ≠ j ⇒ si ≠ sj

• f(s) = ∑
=

++ =
n

i
nii ssssdist

1
111 : where),,(

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 14

/ 24

Solving CSPs by EAs (1)

EAs need an f to optimize � 〈S, •, Φ〉 must be transformed first to a

1. FOP: 〈S, •, Φ〉 → 〈S, f, •〉 or
2. COP: 〈S, •, Φ〉 → 〈S, f, Ψ 〉

The transformation must be (semi-)equivalent, i.e. at least:
1. f (s) is optimal in S ⇒ Φ(s)
2. ψ (s) and f (s) is optimal in S ⇒ Φ(s)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 15

/ 24

Constraint handling

‘Constraint handling’ interpreted as ‘constraint transformation’

Case 1: CSP � FOP
All constraints are handled indirectly , i.e., Φ is transformed into f and
later they are solved by `simply‘ optimizing in 〈S, f, •〉

Case 2: CSP � COP
Some constraints handled indirectly (those transformed into f)
Some constraints handled directly (those remaining constraints in ψ)

In the latter case we also have ‘constraint handling’ in the sense of
‘treated during the evolutionary search’

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 16

/ 24

Indirect constraint handling:
Introduction (1/3)

Constraint handling has two meanings:

1. how to transform the constraints in Φ into f, respectively 〈f, ψ〉 before
applying an EA

2. how to enforce the constraints in 〈S, f, Φ〉 while running an EA

Case 1: constraint handling only in the 1st sense (pure penalty approach)
Case 2: constraint handling in both senses

In Case 2 the question
‘How to solve CSPs by EAs’

transforms to
‘How to solve COPs by EAs’

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 17

/ 24

Indirect constraint handling:
Introduction (2/3)

Note: always needed
� for all constraints in Case 1
� for some constraints in Case 2

Some general options
a. penalty for violated constraints
b. penalty for wrongly instantiated variables
c. estimating distance/cost to feasible solution

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 18

/ 24

Indirect constraint handling:
Introduction (3/3)

Notation:
� ci constraints, i = {1, … , m}
� vj variables, j = {1, … , n}
� Cj is the set of constraints involving variable vj

� Sc = {z ∈ Dj1 × … × Djk | c(z) = true}
is the projection of c, if vj1, … , vjk are the var's of c

� d(s, Sc) := min{d(s, z) | z ∈ 2 Sc}
is the distance of s ∈ S from Sc (s is projected too)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 19

/ 24

Indirect constraint handling (3)

Formally:

 where,)(c.

otherwise 0

 oneleast at violates if 1

 where,)(b.

otherwise 0

 violates if 1

 where,)(a.

m

1i

n

1j

m

1i

∑

∑

∑

=

=

=

⋅=



 ∈

=

⋅=





=

⋅=

),Ssd(wsf

Ccs
),Csχ(

),Csχ(wsf

cs
),csχ(

),csχ(wsf

ici

j
j

j
j

i
i

ii

Observe that for each option: 0)()(: =⇔Φ∈∀ sfsSs

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 20

/ 24

Indirect constraint handling:
Graph coloring example

distance. as gs)(recolorin

 scorrectionnecessary ofnumber the take weif

edges wrong'' thecounts ,)(c.

nodes wrong'' thecounts ,)(b.

edges wrong'' thecounts ,)(a.

m

1i

n

1j

m

1i

∑

∑

∑

=

=

=

⋅=

⋅=

⋅=

),Ssd(wsf

),Csχ(wsf

),csχ(wsf

ici

j
j

ii

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 21

/ 24

Indirect constraint handling:
pro’s & con’s

PRO’s of indirect constraint handling:
� conceptually simple, transparent
� problem independent
� reduces problem to ‘simple’ optimization
� allows user to tune on his/her preferences by weights
� allows EA to tune fitness function by modifying weights during the

search

CON’s of indirect constraint handling:
� loss of info by packing everything in a single number
� said not to work well for sparse problems

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 22

/ 24

Direct constraint handling (1/2)

Options:
� eliminating infeasible candidates (very inefficient, hardly practicable)
� repairing infeasible candidates
� preserving feasibility by special operators

(requires feasible initial population
� decoding, i.e. transforming the search space

(allows usual representation and operators)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 23

/ 24

Direct constraint handling (2/2)

PRO's of direct constraint handling:
� it works well (except eliminating)

CON's of direct constraint handling:
� problem specific
� no guidelines

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 24

