Evolutionary Computing

Chapter 13:Constraint Handling

- •Motivation and the trouble
- •What is a constrained problem?
- •Evolutionary constraint handling
- •A selection of related work
- •Conclusions, observations, and suggestions

Motivation

Why bother about constraints?

- • Practical relevance: a great deal of practical problems are constrained.
- • Theoretical challenge: a great deal of untractable problems (NP-hard etc.) are constrained.

Why try with evolutionary algorithms?

- •EAs show a good ratio of (implementation) effort/performance.
- •EAs are acknowledged as good solvers for tough problems.

What is a constrained problem?

Consider the Travelling Salesman Problem for n cities, $C = \{city_1, \ldots, city_n\}$

If we define the search space as

- • S = C**n**, then we need a constraint requiring uniqueness of each city in an element of S
- • $S = \{permutations of C\}$, then we need no additional constraint.

The notion 'constrained problem' depends on what we take as search space

What is constrained search? or What is free search?

- •Even in the space $S = \{permutations of C\}$ we cannot perform free search
- • **Free search**: standard mutation and crossover preserve membership of S, i.e., $\text{mut(x)} \in S$ and $\text{cross}(x, y) \in S$

The notion 'free search' depends on what we take as standard mutation and crossover.

- \bullet mut is **standard mutation** if for all $\langle x_1, \ldots, x_n \rangle$, if mut(〈x**1**, … , ^x**n**〉) = 〈 ^x' **1**, … , x'**n**〉, then x'**i** [∈] domain(i)
- • cross is **standard crossover** if for all 〈x**1**, … , ^x**n**〉, 〈y**1**, … , y**n**〉, if cross(〈x**1**, … , ^x**n**〉, 〈y**1**, … , y**n**〉) =〈z**1**, … , ^z**n**〉, then
	- ^z**i** [∈] {x**i**, y**i**} discrete case •
	- •^z**i** [∈] [x**i**, y**i**] continuous case

Free search space: $S = D_1 \times ... \times D_n$

- •one assumption on D**i**: if it is continuous, it is convex
- •the restriction $s_i \in D_i$ is not a constraint, it is the definition of the domain of the i-th variable
- membership of S is coordinate-wise, hence a free search space •allows free search

A problem can be defined through

- •an objective function (to be optimized)
- •constraints (to be satisfied)

H

FOP:**Example**

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014⁹

Constraint Satisfaction Problems (2/2)

Φ is typically given by a set (conjunction) of constraints

- ^c**ⁱ** = c**i**(x**j1**, … , x**jni**), where n**ⁱ** is the arity of c**ⁱ**
- ^c**ⁱ** [⊆]D**j1**× \sim \cdots ×^D**jni** is also a common notation

FACTS:

- •The general CSP is NP-complete
- •Every CSP is equivalent with a binary CSP, where all $n_i \equiv 2$
- • Constraint density and constraint tightness are parameters that determine how hard an instance is

CSP:Example

Graph 3-coloring problem:

- $G = (N, E), E \subseteq N \times N, |N| = n$
- $S = D^n$, $D = \{1, 2, 3\}$
- $\Phi(\mathsf{s}) = \Lambda_{\mathsf{e}\in\mathsf{E}}\,\mathrm{c}_{\mathsf{e}}(\mathsf{s})$, where $c_e(s)$ = true iff $e = (k, l)$ and $s_k \neq s_l$

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014¹²

 $12/24$

Constrained Optimization Problem: $\langle \mathsf{S},\mathsf{f},\mathsf{\Phi}\rangle$

- S is a free search space
- •f is a (real valued) objective function on S
- •Φ is a formula (Boolean function on S)

Solution of a COP:

 $\mathsf{s}\in\mathsf{S}_\mathsf{\Phi}$ $_{\mathsf{\Phi}}$ such that f(s) is optimal in S **Φ**

COP:**Example**

Travelling salesman problem

- $S = C^n$, $C = \{city_1, ..., city_n\}$
- Φ(s) = true [⇔] [∀]i, j [∈] {1, … , n} i [≠] ^j[⇒] ^s**ⁱ** [≠] ^s**^j**

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

Solving CSPs by EAs (1)

EAs need an f to optimize \rightarrow \langle S, $\bullet,$ $\Phi \rangle$ must be transformed first to a

- 1.. FOP: $\langle \mathsf{S}, \bullet, \Phi \rangle \rightarrow \langle \mathsf{S}, \mathsf{f}, \bullet \rangle$ or
- 2. \quad $\mathsf{COP:}\left\langle \mathsf{S},\bullet,\Phi\right\rangle \rightarrow\left\langle \mathsf{S},\,\mathsf{f},\,\mathsf{\Psi}\,\right\rangle$

The transformation must be (semi-)equivalent, i.e. at least:

- 1. f (s) is optimal in $\textsf{S} \Rightarrow \textsf{\Phi}(\textsf{s})$.
- 2. \uppsi (s) and f (s) is optimal in $\textsf{S}\Rightarrow\textsf{\Phi}(\textsf{s})$

Constraint handling

'Constraint handling' interpreted as 'constraint transformation'

Case 1: CSP → FOP
^{All} constraints are ha All constraints are handled **indirectly**, i.e., Φ is transformed into f and later they are solved by `simply' optimizing in $\langle\mathsf{S},\mathsf{f},\bullet\rangle$

Case 2: CSP → COP
Some constraints har Some constraints handled **indirectly** (those transformed into f) Some constraints handled **directly** (those remaining constraints in ψ)

In the latter case we also have 'constraint handling' in the sense of 'treated during the evolutionary search'

Indirect constraint handling:Introduction (1/3)

Constraint handling has two meanings:

- 1. how to **transform** the constraints in Φ into f, respectively 〈f, ψ〉 **before**applying an EA
- 2. how to **enforce** the constraints in 〈S, f, Φ〉 **while** running an EA

Case 1: constraint handling only in the 1st sense (pure penalty approach)Case 2: constraint handling in both senses

In Case 2 the question'How to solve CSPs by EAs' transforms to'How to solve COPs by EAs'

Indirect constraint handling:Introduction (2/3)

Note: **always** needed

- \bullet for all constraints in Case 1
- \bullet for some constraints in Case 2

Some general options

- a. penalty for violated constraints
- b. penalty for wrongly instantiated variables
- c. estimating distance/cost to feasible solution

Indirect constraint handling:Introduction (3/3)

Notation:

- -c**i** constraints, i = {1, … , m}
- \bullet v**j** variables, j = {1, … , n}
- -C**^j** is the **set of constraints involving variable**v**j**
- $S_c = \{z \in D_{j1} \times$ is the **projection** of c, if v_{j1}, … , v_{jk} are the var's of c … \times D_{jk} | c(z) = true}
- d(s, S_c) := min{d(s, z) | z ∈ 2 S_c} is the **distance** of s ∈ S from S **c** (s is projected too)

Indirect constraint handling (3)

Formally:

\na.
$$
f(\overline{s}) = \sum_{i=1}^{m} w_i \cdot \chi(\overline{s}, c_i)
$$
, where

\n
$$
\chi(\overline{s}, c_i) = \begin{cases} 1 & \text{if } \overline{s} \text{ violates } c_i \\ 0 & \text{otherwise} \end{cases}
$$
\nb. $f(\overline{s}) = \sum_{j=1}^{n} w_j \cdot \chi(\overline{s}, C^j)$, where

\n
$$
\chi(\overline{s}, C^j) = \begin{cases} 1 & \text{if } \overline{s} \text{ violates at least one } c \in C^j \\ 0 & \text{otherwise} \end{cases}
$$
\nc. $f(\overline{s}) = \sum_{i=1}^{m} w_i \cdot d(\overline{s}, S_{c_i})$, where

\nObserve that for each m is a $\forall \overline{s} \in S^* : \mathbf{D}(\overline{s}) \leftrightarrow f(\overline{s})$.

Observe that for each option: $\forall \overline{s} \in S : \Phi(\overline{s}) \Leftrightarrow f(\overline{s}) = 0$

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

 $20/24$ ²⁰

Indirect constraint handling: Graph coloring example

a.
$$
f(\overline{s}) = \sum_{i=1}^{m} w_i \cdot \chi(\overline{s}, c_i)
$$
, counts the 'wrong' edges
\nb. $f(\overline{s}) = \sum_{j=1}^{n} w_j \cdot \chi(\overline{s}, C^j)$, counts the 'wrong' nodes
\nc. $f(\overline{s}) = \sum_{i=1}^{m} w_i \cdot d(\overline{s}, S_{c_i})$, counts the 'wrong' edges
\nif we take the number of necessary corrections
\n(recolorings) as distance.

 $21/24$

Indirect constraint handling: pro's & con's

PRO's of indirect constraint handling:

- \bullet conceptually simple, transparent
- \bullet problem independent
- \bullet reduces problem to 'simple' optimization
- \bullet allows user to tune on his/her preferences by weights
- \bullet allows EA to tune fitness function by modifying weights during the search

CON's of indirect constraint handling:

- \bullet loss of info by packing everything in a single number
- \bullet said not to work well for sparse problems

Direct constraint handling (1/2)

Options:

- \bullet eliminating infeasible candidates (very inefficient, hardly practicable)
- \bullet repairing infeasible candidates
- \bullet preserving feasibility by special operators (requires feasible initial population
- \bullet decoding, i.e. transforming the search space (allows usual representation and operators)

