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Chapter 13:
Constraint Handling

• Motivation and the trouble 

• What is a constrained problem? 

• Evolutionary constraint handling 

• A selection of related work 

• Conclusions, observations, and suggestions
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Motivation

Why bother about constraints?

• Practical relevance: 
a great deal of practical problems are constrained.

• Theoretical challenge: 
a great deal of untractable problems (NP-hard etc.) are constrained.

Why try with evolutionary algorithms?

• EAs show a good ratio of (implementation) effort/performance.
• EAs are acknowledged as good solvers for tough problems.
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What is a constrained problem?

Consider the Travelling Salesman Problem for n cities, C = {city1, … , cityn} 

If we define the search space as
• S = Cn, then we need a constraint requiring uniqueness of each city in an 

element of S

• S = {permutations of C}, then we need no additional constraint.

The notion ‘constrained problem’ depends on what we take as search space
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What is constrained search? 
or 

What is free search?

• Even in the space S = {permutations of C} we cannot perform free search

• Free search : standard mutation and crossover preserve membership of S, 
i.e., mut(x) ∈ S and cross(x,y) ∈ S

The notion ‘free search’ depends on what we take as standard mutation and 
crossover.

• mut is standard mutation if for all 〈x1, … , xn〉, if 
mut(〈x1, … , xn〉) = 〈 x’1, … , x’n〉, then x’i ∈ domain(i)

• cross is standard crossover if for all 〈x1, … , xn〉, 〈y1, … , yn〉, if 
cross(〈x1, … , xn〉, 〈y1, … , yn〉) = 〈z1, … , zn〉, then

• zi ∈ {xi, yi} discrete case 
• zi ∈ [xi, yi] continuous case

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 5
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Free search space

Free search space: S = D1 × … × Dn

• one assumption on Di: if it is continuous, it is convex 
• the restriction si ∈ Di is not a constraint, it is the definition of the 

domain of the i-th variable
• membership of S is coordinate-wise, hence a free search space 

allows free search

A problem can be defined through

• an objective function (to be optimized)
• constraints (to be satisfied)
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Types of problems

Objective Function

Constraints Yes No

Yes Constrained optimization problem Constraint satisfaction problem

No Free optimization problem No Problem
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Free Optimization Problems

Free Optimization Problem: 〈S, f, •〉
• S is a free search space 
• f is a (real valued) objective function on S

Solution of an FOP: s ∈ S such that f (s) is optimal in S

FOPs are ‘easy’, in the sense that:
• it's ‘only’ optimizing, no constraints and 
• EAs have a basic instinct for optimization

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 8
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FOP:
Example
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Constraint Satisfaction Problems (1/2)

Constraint Satisfaction Problem: 〈S, •, Φ〉
• S is a free search space 
• Φ is a formula (Boolean function on S)
Φ is the feasibility condition
SΦ = {s ∈ S | Φ(s) = true} is the feasible search space

Solution of a CSP: 
s ∈ S such that Φ(s) = true (s is feasible)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 10



/ 24

Constraint Satisfaction Problems (2/2)

Φ is typically given by a set (conjunction) of constraints 
• ci = ci(xj1, … , xjni ), where ni is the arity of ci

• ci ⊆ Dj1 × … × Djni is also a common notation

FACTS: 
• The general CSP is NP-complete 
• Every CSP is equivalent with a binary CSP, where all ni ≡ 2
• Constraint density and constraint tightness are parameters that 

determine how hard an instance is 
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CSP:
Example 

Graph 3-coloring problem:
• G = (N, E), E ⊆ N × N , |N| = n 
• S = Dn, D = {1, 2, 3} 
• Φ(s) = Λe∈E ce(s), where 

ce(s) = true iff e = (k, l) and sk ≠ sl
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Constrained optimization problems

Constrained Optimization Problem: 〈S, f, Φ〉
• S is a free search space 
• f is a (real valued) objective function on S 
• Φ is a formula (Boolean function on S) 

Solution of a COP: 
s ∈ SΦ such that f(s) is optimal in SΦ
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COP:
Example

Travelling salesman problem
• S = Cn, C = {city1, … , cityn} 
• Φ(s) = true ⇔ ∀i, j ∈ {1, … , n} i ≠ j ⇒ si ≠ sj

• f(s) = ∑
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Solving CSPs by EAs (1)

EAs need an f to optimize � 〈S, •, Φ〉 must be transformed first to a

1. FOP: 〈S, •, Φ〉 → 〈S, f, •〉 or
2. COP: 〈S, •, Φ〉 → 〈S, f, Ψ 〉

The transformation must be (semi-)equivalent, i.e. at least:
1. f (s) is optimal in S ⇒ Φ(s) 
2. ψ (s) and f (s) is optimal in S ⇒ Φ(s)
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Constraint handling 

‘Constraint handling’ interpreted as ‘constraint transformation’

Case 1: CSP � FOP
All constraints are handled indirectly , i.e., Φ is transformed into f and 
later they are solved by `simply‘ optimizing in 〈S, f, •〉

Case 2: CSP � COP
Some constraints handled indirectly (those transformed into f)
Some constraints handled directly (those remaining constraints in ψ)

In the latter case we also have ‘constraint handling’ in the sense of 
‘treated during the evolutionary search’
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Indirect constraint handling:
Introduction (1/3)

Constraint handling has two meanings:

1. how to transform the constraints in Φ into f, respectively 〈f, ψ〉 before
applying an EA

2. how to enforce the constraints in 〈S, f, Φ〉 while running an EA

Case 1: constraint handling only in the 1st sense (pure penalty approach)
Case 2: constraint handling in both senses

In Case 2 the question
‘How to solve CSPs by EAs’  

transforms to
‘How to solve COPs by EAs’

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 17
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Indirect constraint handling:
Introduction (2/3)

Note: always needed 
� for all constraints in Case 1
� for some constraints in Case 2

Some general options
a. penalty for violated constraints 
b. penalty for wrongly instantiated variables 
c. estimating distance/cost to feasible solution

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 18
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Indirect constraint handling:
Introduction (3/3)

Notation:
� ci constraints, i = {1, … , m}
� vj variables, j = {1, … , n} 
� Cj is the set of constraints involving variable vj

� Sc = {z ∈ Dj1 × … × Djk | c(z) = true} 
is the projection of c, if vj1, … , vjk are the var's of c 

� d(s, Sc) := min{d(s, z) | z ∈ 2 Sc} 
is the distance of s ∈ S from Sc (s is projected too)
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Indirect constraint handling (3)

Formally:
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Indirect constraint handling: 
Graph coloring example
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Indirect constraint handling: 
pro’s & con’s

PRO’s of indirect constraint handling:
� conceptually simple, transparent 
� problem independent 
� reduces problem to ‘simple’ optimization 
� allows user to tune on his/her preferences by weights 
� allows EA to tune fitness function by modifying weights during the 

search

CON’s of indirect constraint handling:
� loss of info by packing everything in a single number 
� said not to work well for sparse problems

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 22
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Direct constraint handling (1/2)

Options:
� eliminating infeasible candidates (very inefficient, hardly practicable)
� repairing infeasible candidates
� preserving feasibility by special operators

(requires feasible initial population
� decoding, i.e. transforming the search space

(allows usual representation and operators)
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Direct constraint handling (2/2)

PRO's of direct constraint handling:
� it works well (except eliminating)

CON's of direct constraint handling:
� problem specific 
� no guidelines
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