
Genetic Algorithms

Chapter 3

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

2

Contents of this Chapter

� Introductory example.
� Representation of individuals:

– Binary, integer, real-valued, and permutation.

� Mutation operator.
– Mutation for binary, integer, real-valued, and permutation

representations.
� Recombination Operator:

– Recombination for binary, integer, real-valued, and permutation
representations.

– Multiparent recombination.
� Models of population.
� Parent selection:

– Types of selection: fitness proportional, ranking, selection probabilities,
and tournament.

� Survivor selection
– Age-based, fitness based.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

3

GA Quick Overview

� The most widely known and used EA.
� Developed: USA in the 1970’s.
� Early names: John Holland, Kenneth A. DeJong, David

E. Goldberg.
� Typically applied to:

– Discrete optimization.

� Attributed features:
– Not too fast, actually, very slow.
– Good heuristic for combinatorial problems.

� Special Features:
– Traditionally emphasizes combining information from good

parents (crossover).
– Many variants, e.g., reproduction models, operators.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

4

Genetic Algorithms

� Holland original GA is currently known as the Simple
Genetic Algorithm (SGA).

� Features of the SGA:
– Binary representation;
– Parent selection proportional to the fitness.
– Low probability of mutation.
– Genetically inspired recombination.
– Generational scheme for selection of survivors.

� Other GAs use different:
– Representations.
– Mutations.
– Crossovers.
– Selection mechanisms.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

5

SGA Technical Summary Table

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with fixed
probability

Parent selection Fitness-Proportionate

Survivor selection All children replace parents

Speciality Emphasis on crossover

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

6

Genotype space =
{0,1}L

Phenotype space

Encoding
(representation)

Decoding
(inverse representation)

011101001

010001001

10010010

10010001

SGA Representation

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

7

SGA Evolution Cycle

1. Select parents for the mating pool:
1. Size of mating pool = population size.

2. Shuffle the mating pool.
3. For each consecutive pair apply crossover with

probability pc , otherwise copy parents.
4. For each offspring apply mutation (bit-flip with

probability pm independently for each bit).
5. Replace the whole population with the resulting

offspring.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

8

SGA Operators: 1 -point Crossover

� Choose a random point in a pair of parents.
� Split parents at this crossover point.
� Create children by exchanging tails of the string.
� pc typically in range (0.6, 0.9).

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

9

� Alter each gene independently with a probability
pm .

� pm is called the mutation rate
– Typically between 1/(population size) and 1/

(chromosome length).

SGA Operators: Mutation

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

10

� Main idea: fitter individuals have higher chance of
being selected

– Chances proportional to fitness.
– Implementation: roulette wheel technique:

� Assign to each individual a part of the roulette wheel.
� Spin the wheel n times to select n individuals.

SGA Operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B
2/6 = 33%

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

11

Example after Goldberg 1989: x 2 Example

� Simple problem: max x2 over {0,1,…,31}
� GA approach:

– Representation: binary code, e.g. 01101 ↔ 13.
– Population size: 4.
– 1-point crossover, bitwise mutation.
– Roulette wheel selection.
– Random initialisation.

� Next, execution of one generational cycle will
be shown step by step.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

12

x2 Example: Selection

Table showing the selection operation: genotype and phenotype of
the initial population, fitness, probability of becoming parent, number
of expected parents (approximated and actual).

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

13

X2 Example: Crossover

Table showing the crossover operation: The chosen parents, the
choice of the crossover point, the offspring, the phenotype, and the
fitness value.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

14

X2 Example: Mutation

Table showing the mutation operation: The offspring produced by the
crossover, the offspring following the mutation, the phenotype, and
the fitness value.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

15

The Simple GA

� It has been subject of many (early) studies:
– Still often used as benchmark for novel GAs.

� It shows many limitations, such as:
– Representation is too restrictive.
– Mutation & crossovers only applicable for bit-string &

integer representations.
– Selection mechanism sensitive for converging

populations with close fitness values.
– Generational population model (step 5 in SGA

evolution cycle) can be improved with explicit survivor
selection.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

16

Other Crossover Operators : Reasons

� Performance with 1-point Crossover depends on the
order that variables occur in the representation:

– More likely to keep together genes that are near
each other.

– Can never keep together genes from opposite ends
of string.

– This is known as Positional Bias.

– Can be exploited if we know about the structure of
our problem, but this is not usually the case.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

17

Other X Operators : n-point Crossover

� Choose n random crossover points.
� Split along those points.
� Glue parts, alternating donor parents.
� Generalisation of 1 point (still some positional bias)

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

18

Other X Operators : Uniform Crossover

� Assign 'heads' to one parent, 'tails' to the other: .
� ‘Flip a coin’ for each gene of each child. If the number is

larger than a particular probability, take the i-th gene to
the i-th child, else, choose the gene of the other parent.

� Inheritance is independent of position.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

19

Crossover OR Mutation?

� Mutation: Variation operator that use only one individual to
create another one by applying some kind of randomised
change to the genotype.

� Recombination: A new individual solution is created from
information contained within two or more parent solutions.

– Crossover: Two parent recombination.
– Crossover rate (pc): Chance that a pair of parents creates a child.
– Usual procedure: selection of 2 parents; comparison of a random

number from [0,1) with pc, two offsprings are created by
recombination of parents or asexually (copy of the parents).

� Debate: which one is better / necessary / main-background.
� Answer (at least, rather wide agreement):

– It depends on the problem.
– In general, it is good to have both.
– Mutation-only-EA is possible, xover-only-EA would not work.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

20

Exploration: Discovering promising areas in the search

space, i.e. gaining information on the problem.

Exploitation: Optimising within a promising area, i.e. using

information.

There is cooperation AND competition between them

� Crossover is explorative, it makes a big jump to an area

somewhere “in between” two (parent) areas.

� Mutation is exploitative, it creates random small

diversions, thereby staying near (in the area of) the parent.

Crossover OR Mutation?

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

21

� Only crossover can combine information from two
parents.

� Only mutation can introduce new information (alleles).

� Crossover does not change the allele frequencies of
the population (thought experiment: 50% 0’s on first bit
in the population, ?% after performing n crossovers).

� To hit the optimum you often need a ‘lucky’ mutation.

Crossover OR Mutation?

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

22

Other Representations

� Gray coding of integers (still binary chromosomes):

– Gray coding is a mapping that means that small changes in the
genotype cause small changes in the phenotype (unlike binary
coding), i.e., generates “smoother” genotype-phenotype mapping.

� Encoding numerical variables directly as:

– Integers: Different genes can take integers values.

– Floating point variables: Values to be represented are generated
by continuous distributions.

� Permutation Representations:

– Suitable to decide on the order of occurrence of a sequence of
events.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

23

Integer Representations

� The integer values might be unrestricted (any integer
value is allowed) or restricted to a finite set (a number of
allowed values is defined).

� Some problems naturally involve integer variables, e.g.
image processing parameters.

� Other problems take categorical values from a fixed set
e.g. {blue, green, yellow, pink}.

� Natural relations (those generated by a considered
problem) between the possible values that an attribute
can take should be considered to design the encoding
and variation operators.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

24

Integer Representations - Operators

� N-point / uniform crossover operators work
� Extend bit-flipping mutation to make

– Random choice from the set of allowed values in each gene
position.
� Suitable for cardinal attributes in which each gene value is equally

likely to be chosen.

– Creep mutation: more likely to move to similar value.
� Suitable for ordinal attributes.
� Obtained through a distribution symmetric about the current gene

value, e.g., normal distribution.

– For ordinal problems, it is hard to know correct range for creep
mutation, so often one might use two mutation operators in
tandem (at the same time).

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

25

Real Valued Problems

� Many problems occur as real valued problems, e.g.
continuous parameter optimisation f : ℜ n � ℜ.

� Illustration: Ackley’s function (often used in EC).

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

26

Mapping Real Values on Bit Strings

• z ∈ [x,y] ⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L .

• [x,y] → {0,1}L must be invertible (one phenotype per
genotype).

• Γ: {0,1}L → [x,y] defines the representation.

� Only 2L values out of infinite are represented.
� L determines possible maximum precision of solution.
� High precision � long chromosomes (slow evolution)

],[)2(
12

),...,(
1

0
1 yxa

xy
xaa j

L

j
jLLL ∈⋅⋅

−
−+=Γ ∑

−

=
−

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

27

Floating Point Mutations : Uniform Mutation

General scheme of floating point mutations

� Uniform mutation:

.

� Analogous to bit-flipping (binary) or random resetting
(integers), i.e, usually the amount of change introduced
is small.

ll xxxx xx ′′=′→= ..., , ...,, 11

[]iiii UBLBxx ,, ∈′

[]iii UBLBx , from (uniform)randomly drawn ′

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

28

Floating Point Mutations : Nonuniform
Mutation with a Fixed Distribution

� Non-uniform mutations:
– Many methods proposed, such as time-varying range

of change.
– Most schemes are probabilistic but usually only make

a small change to value.
– The most common method is to separately generate a

random amount to a gene, taken from a Gaussian
distribution - N(0, σ), and add it to the such a gene.
� Standard deviation σ controls amount of change (2/3 of

deviations will lie in range (- σ to + σ).

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

29

Recombination Operators for Real Valued GAs

� Discrete:
– Each allele value in offspring z comes from one of its

parents (x,y) with equal probability: zi = xi or yi.
– Could use n-point or uniform.

� Intermediate
– Exploits idea of creating children “between” parents

(hence, called arithmetic recombination).
– zi = α xi + (1 - α) yi where 0 ≤ α ≤ 1.

– The parameter α can be:
• Constant: uniform arithmetical crossover.
• Variable (e.g. depend on the age of the population).
• Picked at random every time.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

30

Single Arithmetic Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉.
• Pick a single gene (k) at random.
• Child1 is:

• Child2 is the same exchanging x and y. For instance,
with α = 0.5.

nkkk xxyxx ..., ,)1(, ..., ,1 ⋅−+⋅ αα

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

31

Simple Arithmetic Crossover

• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉.
• Pick random gene (k) after this point mix values.
• child1 is:

• reverse for other child. e.g. with α = 0.5.
n

x
k

x
k

y
k

xx ⋅−+⋅+⋅−++⋅)1(
n

y ..., ,
1

)1(
1

 , ..., ,
1

αααα

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

32

• Most commonly used.
• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉.
• child1 is:

• reverse for other child. e.g. with α = 0.5.

Whole Arithmetic Crossover

yaxa ⋅−+⋅)1(

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

33

Permutation Representations

� Ordering/sequencing problems form a special type in
which the task is (or can be solved by) arranging some
objects in a certain order.
– Example 1: Sort algorithm in which the central issue is to

determine what elements occur before others (order).
– Example 2: Travelling Salesman Problem (TSP) in which the

main issue is to establish which elements occur next to each
other (adjacency). The initial point is not important.

� The former representations allow multiple occurrence of
numbers generating invalid solutions.

� These problems are generally expressed as a
permutation:
– If there are n variables then the representation is as a list of n

integers, each of which occurs exactly once.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

34

Permutation Representation: TSP Example

� Problem:
• Given n cities
• Find a complete tour with

minimal length
� Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one

permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

� Search space is BIG:
for 30 cities there are 30! ≈ 1032

possible tours

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

35

Mutation Operators for Permutations

� Normal mutation operators lead to unviable
solutions, for instance:
– As in bit-wise mutation, let gene i have value j.
– Changing to some other value k would mean that k

could occur twice and, thus, j no longer occurred.
– To satisfy the main constraint, the chromosome

must change at least two values.

� Mutation parameter now reflects the probability
that some operator is applied once to the
whole string, rather than individually in each
position.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

36

Swap Mutation for Permutations

� Pick two alleles at random and swap their
positions.
– Preserves most of the adjacency information, in the

example only 4 links are broken.
– Disrupts the order, i.e., chances significantly the

position of each allele.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

37

Insert Mutation for Permutations

� Pick two allele values at random.
� Move the second to follow the first, and shift

right the remaining alleles.
– Preserves most of the order and the adjacency

information.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

38

Scramble Mutation for Permutations

� Choose a subset of genes at random and randomly
rearrange the alleles in those positions.

– Loses most of the adjacency information within the subset.
– Disrupts the order, i.e., chances significantly the position of

each allele, within the subset.

(note subset does not have to be contiguous)

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

39

Inversion Mutation for Permutations

� Pick two alleles at random and then invert the
substring between them.
– Preserves most adjacency information, in the

example, only two links are broken.
– Disruptive of order information.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

40

� “Normal” crossover operators will often lead to inadmissible
solutions, repeating gene values.

� Many specialised operators have been devised which focus on
combining order or adjacency information from the two
parents.

� Aims to transmit as much as possible information contained in
the pairs, in particular, the common genes.

� Recombination operators: For adjacency problems: Partially
Mapped Crossover and Edge Crossover; For order problems:
Order Crossover and Cycle Crossover.

Crossover Operators for Permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

41

Order 1 Crossover

� Idea is to preserve relative order that elements occur
� Informal procedure:

1. Choose an arbitrary part from the first parent
2. Copy this part to the first child
3. Copy the numbers that are not in the first part, to

the first child:
� starting right from cut point of the copied part,
� using the order of the second parent
� and wrapping around at the end

4. Analogous for the second child, with parent roles
reversed

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

42

Order 1 Crossover Example

� Copy randomly selected set from first parent

� Copy rest from second parent in order 1,9,3,8,2

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

43

Informal procedure for parents P1 and P2:
1. Choose random segment and copy it from P1
2. Starting from the first crossover point look for elements in that

segment of P2 that have not been copied
3. For each of these i look in the offspring to see what element j has

been copied in its place from P1
4. Place i into the position occupied j in P2, since we know that we will

not be putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the

offspring k, put i in the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest

of the offspring can be filled from P2.
Second child is created analogously

Partially Mapped Crossover (PMX)

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

44

PMX Example

� Step 1

� Step 2

� Step 3

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

45

Cycle Crossover

Basic idea :
Each allele comes from one parent together with its position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1.
(d) Add this allele to the cycle.
(e) Repeat step (b) through (d) until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the
positions they have in the first parent.

3. Take next cycle from second parent

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

46

Cycle Crossover Example

� Step 1: identify cycles

� Step 2: copy alternate cycles into offspring

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

47

Edge Recombination

� Works by constructing a table listing which
edges are present in the two parents, if an
edge is common to both, mark with a +

� e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

48

Edge Recombination 2

Informal procedure once edge table is constructed

1. Pick an initial element at random and put it in the offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

– If there is a common edge, pick that to be next element
– Otherwise pick the entry in the list which itself has the shortest list
– Ties are split at random

5. In the case of reaching an empty list:
– Examine the other end of the offspring is for extension
– Otherwise a new element is chosen at random

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

49

Edge Recombination example

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

50

Multiparent Recombination

� Recall that we are not constricted by the practicalities of
nature.

� Noting that mutation uses 1 parent, and “traditional”
crossover 2, the extension to a>2 is natural to examine.

� Been around since 1960s, still rare but studies indicate
useful.

� Three main types:
– Based on allele frequencies, e.g., p-sexual voting generalising

uniform crossover.
– Based on segmentation and recombination of the parents, e.g.,

diagonal crossover generalising n-point crossover.
– Based on numerical operations on real-valued alleles, e.g.,

center of mass crossover, generalising arithmetic recombination
operators.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

51

Population Models

� SGA uses a Generational Genetic Algorithm (GGA):
– Each individual survives for exactly one generation.
– The entire set of parents is replaced by the offspring.

� At the other end of the scale are Steady-State Genetic
Algorithms (SSGAs):

– One offspring is generated per generation.
– One member of the population is replaced.

� Generation Gap
– Definition: The percentage of the population that is replaced.
– 1.0 for GGA, 1/pop_size for SSGA.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

52

Population Models - Fitness Based Competition

� Selection often can occur in two cases:
– Selection from current generation to take part in mating

(parent selection).
– Selection from parents + offspring to compose the next

generation (survivor selection).

� Selection operators work on the whole individual:
– Such operators are representation-independent.

� Distinction between selection:
– Operators: define selection probabilities.
– Algorithms: define how probabilities are implemented.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

53

Population Models - Implementation Example: SGA

� Expected number of copies of an individual i:

(= pop.size, fitness of i, = total fitness in pop.)

� Roulette wheel algorithm:
– Given a probability distribution, spin a 1-armed wheel n times to

make n selections.
– No guarantees on actual value of ni .

� Baker’s SUS algorithm:
– n evenly spaced arms on wheel and spin once.
– Guarantees floor(E(ni)) ≤ ni ≤ ceil(E(ni)).

∑
=

=
µ

µ
1

)(
j

jii ffnE

µ if ∑
=

µ

1j
jf

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

54

� Limitations of the strategy:
– One highly fit member can rapidly take over the process if the rest

of population is much less fit: premature convergence.
– At end of runs when fitnesses are very similar, lose selection

pressure, i.e., there are little differences between fitnesses of
individuals, hence, the selection probabilities are about the same.

– Highly susceptible to function transposition, e.g. addition of fixed
values to fitnesses disrupts the functions.

� Scaling can fix last two problems:
– Windowing: f’(i) = f(i) - β t

� where β is worst fitness in this (last n) generations.

– Sigma Scaling: f’(i) = max(f(i) – (〈 f 〉 - c • σf), 0.0)
� where c is a constant, usually 2.0.

Fitness -Proportional Selection (FPS)

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

55

Function Transposition for FPS

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

56

Rank – Based Selection

� Attempt to remove problems of FPS by basing
selection probabilities on relative rather than
absolute fitness.

� Rank population according to fitness and then
base selection probabilities on rank where fittest
has rank µ (population size) and worst rank 1.

� This imposes a sorting overhead on the
algorithm, but this is usually negligible compared
to the fitness evaluation time.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

57

Linear Ranking

� Parameterised by factor s: 1.0 < s ≤ 2.0
– Determines the advantage of the best individual.
– In GGA, this is the number of children allotted to it.

� Simple 3 member example:

() ()()
()1

1122
)(

−
−−+−=− µµµ

sis
iP ranklin

3

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

58

Exponential Ranking

� Linear Ranking is limited to selection pressure.
� Exponential Ranking can allocate more than 2

copies to fittest individual.
� Normalisation factor c: calculated according to

the population size, i.e., the sum of the
probabilities must be equal to one.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

59

Tournament Selection

� All methods above rely on global population
statistics, then
– Might yield bottlenecks especially on parallel machines.
– Relies on the presence of “global” fitness function

which might not exist: e.g. evolving game players.

� Informal Procedure:
– Pick k members at random then select the best of

these.
– Repeat to select more individuals.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

60

Tournament Selection

� Probability of selecting i will depend on:
– Rank of I: does not need to sort the whole population.
– Size of sample k.

� higher k increases selection pressure.

– Whether contestants are picked with replacement:
� Picking without replacement increases selection pressure.

– Whether fittest contestant always wins (deterministic)
or this happens with probability p.

� For k = 2, time for fittest individual to take over

population is the same as linear ranking with s = 2 • p.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

61

Survivor Selection

� Most of methods used for parent selection are also
useful.

� This selection can be divided in two approaches:
– Age-Based Selection:

� Each individual exists in the population for the same number of GA
interactions.

� Examples:
– SGA in which each individual exists for one generation.
– SSGA can implement as “delete-random” (not recommended) or as first-

in-first-out (a.k.a. delete-oldest) .

– Fitness-Based Selection
� Select individuals from the set composed by parents and offspring.
� Possible methods: Fitness proportional, rank-based, tournament,

replace worst, and elitism.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

62

Two Special Cases

� Elitism:
– At least one copy of the current fittest member is kept in a

population.
– Often used in conjunction with age-based and stochastic fitness-

based replacement schemes.
– Widely used in both population models (GGA, SSGA).

� GENITOR: a.k.a. “delete-worst”
– The worst member of the population is replaced.
– Improves quickly the mean population fitness and may converge

prematurely.
– From Whitley’s original Steady-State algorithm (he also used

linear ranking for parent selection).
– Rapid takeover: use with large populations or “no duplicates”

policy.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

63

Example Application of Order Based GAs:
Job Shop Scheduling Problem - JSSP

� Precedence constrained job shop scheduling problem:
– J is a set of jobs.
– O is a set of operations.
– M is a set of machines.
– Able ⊆ O × M defines which machines can perform particular

operations .
– Pre ⊆ O × O defines which operation should precede another one.
– Dur : ⊆ O × M → IR defines the duration of o ∈ O on m ∈ M.

� Scheduling an operation is understood as assignment of a starting
time to it and a schedule is a collection of these assignments
containing each operations at most once.

� The goal is now to find a schedule that is:
– Complete: All jobs are scheduled.
– Correct: All constraints defined by Able and Pre are satisfied.
– Optimal: The total duration of the schedule is minimal.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

64

Precedence Constrained GA

� Representation: individuals are permutations of operations.
� Permutations are decoded to schedules by a decoding procedure:

– Take the first (next) operation from the individual.
– Look up its machine (here we assume there is only one).
– Assign the earliest possible starting time on this machine, subject to:

� Machine occupation.
� Precedence relations holding for this operation in the schedule so far.

� Fitness of a permutation is the duration of the corresponding
schedule (to be minimized).

� Variation operators: Any suitable mutation and crossover.
� Parent selection: Roulette wheel applied on inverse fitness.
� Survivor selection: Generational GA model.
� Random initialisation and maximum number of fitness evaluations.

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

65

JSSP Example: Operator Comparison

Adapted from A.E. Eiben and J.E. Smith,
Evolutionary Computing

Genetic Algorithms

66

Some GAs Interesting Sites

� http://www-2.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html
� http://cs.gmu.edu/research/gag/
� http://www-illigal.ge.uiuc.edu/index.php3
� http://www.arch.columbia.edu/DDL/cad/A4513/S2001/r7/
� http://www.aic.nrl.navy.mil/galist/
� http://www.aaai.org/AITopics/html/genalg.html
� http://www-2.cs.cmu.edu/afs/cs/project/ai-

repository/ai/areas/genetic/ga/0.html
� http://psychology.about.com/od/companies/
� http://www.nutechsolutions.com/
� http://www.autonomoussolutions.com/
� http://www.palisade.com/
� http://www.optisyn.com/

