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1.0 Overview 

The Verilog Hardware Description Language (HDL) describes a hardware design or part of a 
design. Descriptions of designs in the Verilog HDL are Verilog models. The Verilog HDL is both a 
behavioral and structural language. Models in the Verilog HDL can describe both the function of a 
design and the components and connections to the components in a design.  

Verilog models can be developed for different levels of abstraction. These levels of abstraction and 
their corresponding model types are as follows: 

algorithmic a model that implements a design algorithm in high-level language 
constructs 

RTL a model that describes the flow of data between registers and how a design 
processes that data 
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gate-level a model that describes the logic gates and the connections between logic 
gates in a design 

switch-level a model that describes the transistors and storage nodes in a device and the 
connections between them 

The basic building block of the Verilog HDL is the module. The module format facilitates top-
down and bottom-up design. A module contains a model of a design or part of a design. Modules 
can incorporate other modules to establish a model hierarchy that describes how parts of a design 
are incorporated in an entire design. The constructs of the Verilog HDL, such as its declarations 
and statements, are enclosed in modules. 

The Verilog HDL behavioral language is structured and procedural, like the C programming 
language. The behavioral language constructs are for algorithmic and RTL models. The behavioral 
language provides the following capabilities: 

• structured procedures for sequential or concurrent execution 

• explicit control of the time of procedure activation specified by both delay expressions and 
by value changes called event expressions 

• explicitly named events to trigger the enabling and disabling of actions in other procedures 

• procedural constructs for conditional, if-else, case, and looping operations 

• procedures called tasks that can have parameters and non-zero time duration 

• procedures called functions that allow the definition of new operators 

• arithmetic, logical, bit-wise, and reduction operators for expressions 

The Verilog HDL structural language constructs are for gate-level and switch-level models. The 
structural language provides the following capabilities: 

• a complete set of combinational primitives 

• primitives for bidirectional pass and resistive devices 

• the ability to model dynamic MOS models with charge sharing and charge decay 

Verilog structural language models can accurately model signal contention. In the Verilog HDL, 
structural modeling accuracy is enhanced by primitive delay and output strength specification. 
Signal values can have different strengths and a full range of ambiguous values to reduce the 
pessimism of unknown conditions. 

1.1 Criteria for Selecting Material for This Manual 

The following criteria were used to select material for this book: 

1. Include all information that is needed to define a design. 
2. Include enough information to support existing Verilog libraries. 
3. Include the basic syntax for a compiler directive, a system task, and a system function so 

that readers can implement new tools that process these constructs. 
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4. List and describe, in appendices, a subset of compiler directives and system tasks, functions 
to support the goals in items 1 and 2. 

5. Exclude simulation control and debug commands. 
To conform to these requirements, the manual describes certain restrictions necessary for 
compatibility with existing implementations. These implementation-specific details are labeled as 
such—as in the following example: 

1.2 The Contents of the Reference Manual 

• Chapter 1 – Introduction 

 This chapter discusses the major features of the Verilog HDL. It also discusses the contents 
of the reference manual. 

• Chapter 2 – Lexical Conventions 

 This chapter describes how the language interprets and how to specify lexical tokens. A 
lexical token is one or more characters. Lexical tokens include white space, comments, 
numbers, character strings, identifiers, keywords, and operators. The chapter also describes 
the text macro substitution facility. 

• Chapter 3 – Data Types 

 This chapter describes the Verilog HDL data types. The Verilog HDL has two main groups 
of data types: registers and nets. Registers and nets model storage devices and physical 
connections. The chapter also discusses the parameter data type for constant values and 
describes drive and charge strength of the values on nets. 

• Chapter 4 – Expressions 

 This chapter describes the operators and operands that can be used in expressions. 

• Chapter 5 – Assignments 

 This chapter compares the two main types of assignment statements in the Verilog HDL—
continuous assignments and procedural assignments. It describes the continuous assignment 
statement that drives values onto nets. 

• Chapter 6 – Gate and Switch Level Modeling 

 This chapter describes the gate and switch level primitives and their declarations and 
specifications. 

• Chapter 7 – User-Defined Primitives (UDPs) 

 This chapter describes how a primitive can be defined in the Verilog HDL and how these 
primitives are included in Verilog models. 

• Chapter 8 – Behavioral Modeling 

 This chapter describes procedural assignments and the behavioral language statements. 

• Chapter 9 – Tasks and Functions 
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 This chapter describes tasks and functions—procedures that can be called from more than 
one place in a behavioral model. It describes how tasks can be used like subroutines and how 
functions can be used to define new operators. 

• Chapter 10 – Disabling of Named Blocks and Tasks 

 This chapter describes how to disable the execution of a task and a block of statements that 
has a specified name. 

• Chapter 11 – Procedural Continuous Assignments 

 This chapter describes a type of procedural assignment called a procedural continuous 
assignment. 

• Chapter 12 – Hierarchical Structures 

 This chapter describes how model hierarchies are created in the Verilog HDL and how 
parameter values declared in a module can be overridden. The chapter also discusses macro 
modules—a construct that saves memory and port collapsing—a technique that improves 
simulator efficiency. 

• Chapter 13 – Specify Blocks 

 This chapter describes the Verilog HDL constructs that belong in a construct called a specify 
block.  

• Appendix A – Formal Syntax Definition 

 This appendix describes, in the Backus-Naur Format (BNF), the syntax of the Verilog 
HDL. 

• Appendix B – System Tasks and Functions 

 This appendix describes the system tasks and functions. 

• Appendix C – Compiler Directives 

 This appendix describes the compiler directives. 

• Appendix D – List of System Task and System Function Keywords 

 This appendix lists the predefined system tasks and functions. 

• Appendix E – List of Compiler Directive Keywords 

 This appendix lists the compiler directives. 

• Appendix F – List of Keywords 

 This appendix lists the Verilog HDL keywords.  
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Lexical Conventions  

2.0 Lexical Conventions Overview 

Verilog language source text files are a stream of lexical tokens. A token consists of one or more 
characters. The layout of tokens in a source file is free format—that is, spaces and newlines are not 
syntactically significant. However, spaces and newlines are very important for giving a visible 
structure and format to source descriptions. A good style of format, and consistency in that style, 
are an essential part of program readability. 

The types of lexical tokens in the language are as follows: 

• operator 

• white space  

• comment  

• number  

• string  

• identifier  

• keyword  

The rest of this chapter defines these tokens. 

This manual uses a syntax formalism based on the Backus-Naur Format (BNF) to define the 
Verilog language syntax. Appendix A contains the complete set of syntax definitions in this format, 
plus a description of the BNF conventions used in the syntax definitions.  

2.1 Operators 

Operators are single, double, or triple character sequences and are used in expressions. Chapter 2 
discusses the use of operators in expressions. 

Unary operators appear to the left of their operand. Binary operators appear between their 
operands. A ternary operator has two operator characters that separate three operands. The Verilog 
language has one ternary operator—the conditional operator. See "4.1.12 Conditional Operator" for 
an explanation of the conditional operator. 

2.2 White Space and Comments 

White space can contain the characters for blanks, tabs, newlines, and formfeeds. The Verilog 
language ignores these characters except when they serve to separate other tokens. However, 
blanks and tabs are significant in strings. 

The Verilog language has two forms to introduce comments. A one-line comment starts with the 
two characters // and ends with a newline. A block comment starts with /* and ends with */. Block 
comments cannot be nested, but a one-line comment can be nested within a block comment. 

Verilog HDL  LRM Lexical Conventions  •  6 



2.3 Numbers 

Constant numbers can be specified in decimal, hexadecimal, octal, or binary format. The Verilog 
language defines two forms to express numbers. The first form is a simple decimal number 
specified as a sequence of the digits 0 to 9 which can optionally start with a plus or minus. The 
second takes the following form: 

<size><base_format><number> 

The <size> element contains decimal digits that specify the size of the constant in terms of its exact 
number of bits. For example, the <size> specification for two hexadecimal digits is 8, because one 
hexadecimal digit requires four bits. The <size> specification is optional. The <base_format> 
contains a letter specifying the number’s base, preceded by the single quote character (’). Legal 
base specifications are one of d, h, o, or b, for the bases decimal, hexadecimal, octal, and binary 
respectively. (Note that these base identifiers can be upper- or lowercase.)  

The <number> element contains digits that are legal for the specified <base_format>. The 
<number> element must physically follow the <base_format>, but can be separated from it by 
spaces. No spaces can separate the single quote and the base specifier character.  

Alphabetic letters used to express the <base_format> or the hexadecimal digits a to f can be in 
upper- or lowercase. 

Example  2-1 shows unsized constant numbers. 

659 // is a decimal number  
'h 837FF  // is a hexadecimal number  
'o7460  // is an octal number  
4af  // is illegal (hexadecimal format requires 'h) 

Example  2- 1: Unsized constant numbers 

Example  2-2 shows sized constant numbers. 

4'b1001 // is a 4-bit binary number  
5 'D 3 // is a 5-bit decimal number  
3'b01x // is a 3-bit number with the least  
 // significant bit unknown  
12'hx // is a 12-bit unknown number  
16'hz // is a 16-bit high impedance number  

Example  2- 2: Sized constant numbers 

In the Verilog language, a plus or minus preceding the size constant is a sign for the constant 
number—the size constant does not take a sign. A plus or minus between the <base_format> and 
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the <number> is illegal syntax. In Example  2-3, the first expression is a syntax error. The second 
expression legally defines an 8-bit number with a value of minus 6. 

8 'd -6 // this is illegal syntax  
-8 'd 6 // this defines the two's complement of 6,  
 // held in 8 bits-equivalent to -(8'd 6) 

Example  2- 3: A plus or minus between the <base_format> and the <number> is illegal 

 Implementation specific detail:  The number of bits that make up an unsized number (which is a 
simple decimal number or a number without the <size> 
specification) is host machine word size -for most machines this 
is 32 bits. 

In the Verilog language, an x expresses the unknown value in hexadecimal, octal, and binary 
constants. A z expresses the high impedance value.  An x sets four bits to unknown in the 
hexadecimal base, three bits in the octal base, and one bit in the binary base. Similarly, a z sets 
four, three, and one bit, respectively, to the high impedance value. If the most significant specified 
digit of a constant number is an x or a z, then the tool automatically extends the x or z to fill the 
higher order bits of the constant. This makes it easy to specify complete vectors of the unknown 
and high impedance values. Example  2-4 illustrates this value extension:  

reg [11:0] a; 
initial 
begin 
 a = 'h x; // yields xxx 
 a = 'h 3x; // yields 03x 
 a = 'h 0x; // yields 00x  
end 

Example  2- 4: Automatic extension of x values 

The question mark (?) character is a Verilog HDL alternative for the z character. It sets four bits to 
the high impedance value in hexadecimal numbers, three in octal, and one in binary. Use the 
question mark to enhance readability in cases where the high impedance value is a don’t-care 
condition. See the discussion of casez and casex in "8.4.1 Case Statement with Don’t-Cares". 

The underline character is legal anywhere in a number except as the first character. Use this feature 
to break up long numbers for readability purposes. Example  2-5 illustrates this feature. 

27_195_000  
16'b0011_0101_0001_1111  
32 'h 12ab_f001  

Example  2- 5: Use of underline in constant numbers 
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Please note: A sized negative number is not sign-extended when assigned to a register data type. 

2.4 Strings 

A string is a sequence of characters enclosed by double quotes and must all be contained on a 
single line. Verilog treats strings used as operands in expressions and assignments as a sequence of 
eight-bit ASCII values, with one eight-bit ASCII value representing one character. 

Examples of strings follow: 

"this  is  a  string""print  out  a  message\n""bell!\007" 

2.4.1 String Variable Declaration 

To declare a variable to store a string, declare a register large enough to hold the maximum number 
of characters the variable will hold. 

For example, to store the string “Hello world!” requires a register 8*12, or 96 bits wide, as shown 
in Example  2-6. 

reg[8*12:1]stringvar; 
initial 
   begin 
   stringvar="Hello world!"; 
   end 

Example  2- 6: Storage needed for strings 

2.4.2 String Manipulation 

Verilog permits strings to be manipulated using the standard Verilog HDL operators. Keep in mind 
that the value being manipulated by an operator is a sequence of 8-bit ASCII values. 

The code in Example  2-7 declares a string variable large enough to hold 14 characters and assigns 
a value to it. The code then manipulates this string value using the concatenation operator. 

Note that when a variable is larger than required to hold a value being assigned, Verilog pads the 
contents on the left with zeros after the assignment. This is consistent with the padding that occurs 
during assignment of non-string values. 

module string_test; 
reg [8*14:1] stringvar; 
 initial 
  begin 
   stringvar = "Hello world"; 
   $display("%s is stored as %h", 
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    stringvar,stringvar); 
   stringvar = {stringvar,"!!!"}; 
   $display("%s is stored as %h", 
    stringvar,stringvar); 
  end 
endmodule  

Example 2- 7: String manipulation 

The following strings display as a result of executing Example 2-7: 

Hello world is stored as 00000048656c6c6f20776f726c64 

Hello world!!! is stored as 48656c6c6f20776f726c64212121 

2.4.3 Special Characters in Strings 

Certain characters can only be used in strings when preceded by an introductory character called an 
escape character. Table  2-1 lists these characters in the right-hand column with the escape 
sequence that represents the character in the left-hand column. 

Escape Character Produced by 
String Escape String 

\n  new line character  
\t  tab character  
\\  \ character  
\"  " character 
\ddd  a character specified in 1-3 octal digits (0 <= d <= 7) 
%%  % character  

Table  2- 1: Specifying special characters in strings 

2.5 Identifiers, Keywords, and System Names 

An identifier is used to give an object, such as a register or a module, a name so that it can be 
referenced from other places in a description. An identifier is any sequence of letters, digits, dollar 
signs ($), and the underscore (_) symbol.  

The first character must NOT be a digit or $; it can be a letter or an underscore.  

Upper- and lowercase letters are considered to be different. 

Implementation specific detail:  Implementation may set a limit on the length of identifiers. 

Examples of identifiers follow: 
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shiftreg_a 

busa_index  

error_condition  

merge_ab 

_bus3 

n$657 

2.5.1 Escaped Identifiers 

Escaped identifiers start with the backslash character (\) and provide a means of including any of 
the printable ASCII characters in an identifier (the decimal values 33 through 126, or 21 through 
7E in hexadecimal). An escaped identifier ends with white space (blank, tab, newline). Neither the 
leading back-slash character nor the terminating white space is considered to be part of the 
identifier.  

The primary application of escaped identifiers is for translators from other hardware description 
languages and CAE systems, where special characters may be allowed in identifiers. Escaped 
identifiers should not be used under normal circumstances. 

Examples of escaped  identifiers follow: 

\busa+index 

\-clock 

\***error-condition*** 

\net1/\net2 

\{a,b} 

\a*(b+c) 

Please note:  Remember to terminate escaped identifiers with white space, otherwise 
characters that should follow the identifier are considered as part of it. 
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2.5.2 Keywords 

Keywords are predefined non-escaped identifiers that are used to define the language constructs. A 
Verilog HDL keyword preceded by an escape character is not interpreted as a keyword.  

All keywords are defined in lowercase only and therefore must be typed in lowercase in source 
files. ( Appendix F, Keywords, gives a list of all keywords defined.) 

2.5.3 The $keyword Construct 

The $ character introduces a language construct that enables you to develop user-defined tasks and 
functions. Tools interpret the name following the $ as a system task or function. The syntax for a 
system task or function is as follows: 

<name_of_system_task> 
<name_of_system_function> 

::=$<SYSTEM_IDENTIFIER> ; 
||=$<SYSTEM_IDENTIFIER> (<parameter><,<parameter>>*);  

Syntax 2- 1: Syntax for system tasks and functions 

Any valid identifier, including keywords already in use in contexts other than this construct—for 
example, a compiler directive name—can be used as a system task name. Appendix  D lists all of 
the keywords used as names of system tasks and functions. Appendix  B describes some of the 
more useful tasks and functions. The $keyword construct is part of the Verilog Language. The 
individual system tasks and functions implemented with the $keyword construct are not part of the 
Verilog language. 

The following are examples  of  system task  names: 

$display ("display  a  message"); 

$finish; 

2.5.4 The `keyword Construct 

The ` character (the ASCII value 60, called open quote or accent grave) introduces a language 
construct used by tools to implement compiler directives. The compiler behavior dictated by a 
compiler directive takes effect as soon as the compiler reads the directive. The directive remains in 
effect for the rest of the compilation unless a different compiler directive specifies otherwise. A 
compiler directive in one description file can therefore control compilation behavior in multiple 
description files. Appendix  C describes some compiler directives. Appendix  E lists all the 
keywords used as names of compiler directives. The `keyword construct is part of the Verilog 
Language. The individual system tasks and functions implemented with the `keyword construct are 
not part of the Verilog language. 

An example of a compiler directive follows: 
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 `define wordsize 8 

2.6 Text Substitutions 

A text macro substitution facility has been provided so that meaningful names can be used to 
represent commonly used pieces of text. For example, in the situation where a constant number is 
repetitively used throughout a description, a text macro would be useful in that only one place in 
the source description would need to be altered if the value of the constant needed to be changed. 
Text macros can also be defined and used in the interactive mode, where they can be helpful for 
predefining those interactive commands that you use often. 

The syntax for text macro definitions is as follows:  

<text_macro_definition>  
::= `define <text_macro_name> <MACRO_TEXT> 

<text_macro_name> 
::= <IDENTIFIER>   

Syntax  2- 2: Syntax for <text_macro_definition> 

<MACRO_TEXT> is any arbitrary text specified on the same line as the <text_macro_name>. If a 
one-line comment (that is, a comment specified with the characters //) is included in the text, then 
the comment does not become part of the text substituted. The text for <MACRO_TEXT> can be 
blank, in which case the text macro is defined to be empty and no text is substituted when the 
macro is used. 

The syntax for using a text macro is as follows: 

<text_macro_usage> 
::=`<text_macro_name>  

Syntax  2- 3: Syntax for <text_macro_usage> 

Once a text macro name has been defined (that is, assigned <MACRO_TEXT>), it can be used 
anywhere in a source description or in an interactive command; that is, there are no scope 
restrictions. However, to use a text macro the compiler directive symbol ` (open quote, also known 
as “accent grave”) must precede the text macro name. 

Example  2-8 shows two definitions of macro text and a use of each of the defined macros. 

`define  wordsize  8 
reg [1:`wordsize]  data; 

`define  typ_nand  nand  #5  // define a nand w/typical delay 
`typ_nand  g121  (q21, n10, n11);  

Example  2- 8: Using macro text 
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The text specified for <MACRO_TEXT> must not be split across the following lexical tokens: 

• comments 

• numbers 

• strings   

• identifiers 

• keywords 

• double  or  triple  character  operators 

For example, the following is illegal syntax in the Verilog language because it is split across a 
string: 

`define  first_half  "start  of  string 

$display(`first_half  end  of  string"); 

Note that the word define is known as a compiler directive keyword, and is not part of the normal 
set of keywords. Thus, normal identifiers in a Verilog HDL source description can be the same as 
compiler directive keywords (though this is not recommended). If you develop compiler directives, 
be aware of the following pitfall: 

• If you implement the compiler directive `foo and implement the directive `define, then if 
you write `define foo, the meaning of `foo is ambiguous. 

• Text macro names may not be the same as compiler directive keywords. 

• Text macro names can re-use names being used as ordinary identifiers. For example, 
signal_name and `signal_name are different. Redefinition of text macros is allowed; the latest 
definition of a particular text macro read by the compiler prevails when the macro name is 
encountered in the source text.  
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Data Types 

3.0 Data Types Overview 

The set of Verilog HDL data types is designed to represent the data storage and transmission 
elements found in digital hardware. 

3.1 Value Set 

The Verilog HDL value set consists of four basic values:  

0 - represents a logic zero, or false condition 

1 - represents a logic one, or true condition 

x - represents an unknown logic value 

z - represents a high-impedance state 

The values 0 and 1 are logical complements of one another. 

When the z value is present at the input of a gate, or when it is encountered in an expression, the 
effect is usually the same as an x value. Notable exceptions are the MOS primitives, which can 
pass the z value. 

Almost all of the data types in the Verilog language store all four basic values. The exceptions are 
the event type, which has no storage, and the trireg net data type, which retains its first state when 
all of its drivers go to the high impedance value, and z. All bits of vectors can be independently set 
to one of the four basic values. 

The language includes strength information in addition to the basic value information for scalar net 
variables. This is described in detail in Chapter 6, 6.10 Logic Strength Modeling. 

3.2 Registers and Nets  

There are two main groups of data types: the register data types and the net data types. These two 
groups differ in the way that they are assigned and hold values. They also represent different 
hardware structures.  

3.2.1 Nets 

The net data types represent physical connections between structural entities, such as gates. A net 
does not store a value (except for the trireg net, discussed in Section  3.7.3). Instead, it must be 
driven by a driver, such as a gate or a continuous assignment. See Chapter 6, "Gate and Switch 
Level Modeling", and Chapter 5, "Assignments", for definitions of these constructs. If no driver is 
connected to a net, its value will be high-impedance (z)—unless the net is a trireg, in which case, it 
holds to the previously driven value. 
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3.2.2 Registers 

A register is an abstraction of a data storage element. The keyword for the register data type is reg. 
A register stores a value from one assignment to the next. An assignment statement in a procedure 
acts as a trigger that changes the value in the data storage element. The Verilog language has 
powerful constructs that allow you to control when and if these assignment statements are 
executed. These control constructs are used to describe hardware trigger conditions, such as the 
rising edge of a clock, and decision-making logic, such as a multiplexer. Chapter 8, 8.1 Behavioral 
Model Overview, describes these control constructs. 

The default initialization value for a reg data type is the unknown value, x. 

CAUTION 

Registers can be assigned negative values, but, when a register is an 
operand in an expression, its value is treated as an unsigned (positive) 
value. For example, a minus one in a four-bit register functions as the 
number 15 if the register is an expression operand.  For more 
information, see "4.1.2 Numeric Conventions in Expressions".  

3.2.3 Declaration Syntax  

The syntax for net and register declarations is as follows: 

<net_declaration>  
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;  
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ; 
||= <NETTYPE> <drive_strength>?  <expandrange>? <delay>? 

<list_of_assignments> ; 

<reg_declaration>  
::= reg <range>? <list_of_register_variables> ; 

<list_of_variables>  
::= <name_of_variable> <,<name_of_variable>>* 

<name_of_variable>  
::= <IDENTIFIER> 

<list_of_register_variables>  
::= <register_variable> <,<register_variable>>* 

<register_variable>  
::= <name_of_register> 

<name_of_register>  
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::= <IDENTIFIER>  

<expandrange>  
::= <range>  
||= scalared <range>  
||= vectored <range>  

<range>  
::= [ <constant_expression> : <constant_expression>] 

<list_of_assignments>  
::= <assignment> <,<assignment>>* 

<charge_strength>  
::= ( <CAPACITOR_SIZE> ) 

<drive_strength>  
::= ( <STRENGTH0> , <STRENGTH1> )  
||= ( <STRENGTH1> , <STRENGTH0> )  

Syntax 3- 1: Syntax for <net_declaration> 

<NETTYPE> is one of the following keywords: 
wire tri tri1 supply0 
wand triand tri0 supply1 
wor trior trireg 

<IDENTIFIER> is the name of the net that is being declared. See Chapter 2, 
"Lexical Conventions", for a discussion of identifiers. 

<delay> specifies the propagation delay of the net (as explained in Chapter 6, 6.15 
Gate and Net Delays), or, when associated with a <list_of_assignments>, it 
specifies the delay executed before the assignment (as explained in Chapter 5, 
5.1.3 Delays). 

<CAPACITOR_SIZE> is one of the following keywords: 

small medium large 

<STRENGTH0> is one of the following keywords:  

supply0 strong0 pull0  weak0 highz0 

<STRENGTH1> is one of the following keywords:  

supply1 strong1 pull1 weak1 highz1  
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Syntax 3- 2: Definitions for <net_declaration> syntax 

3.2.4 Declaration Examples 

The following are examples of register and net declarations: 

reg a;  // a scalar register 
wand w;  // a scalar net of type 'wand' 
reg[3:0] v;  // a 4-bit vector register made up of 
  // (from most to least significant) 
  // v[3], v[2], v[1] and v[0] 
tri [15:0] busa;  // a tri-state 16-bit bus 
reg [1:4] b;  // a 4-bit vector register 
trireg (small) storeit; // a charge storage node 
 // of strength small 

Example 3- 1: Register and net declarations 

If a set of nets or registers shares the same characteristics, they can be declared in the same 
declaration statement. For example: 

wire w1, w2; // declares 2 wires 

reg [4:0] x, y, z; // declares 3 5-bit registers 

3.3 Vectors 

A net or reg declaration without a <range> specification is one bit wide; that is, it is scalar. 
Multiple bit net and reg data types are declared by specifying a <range>, and are known as vectors. 

3.3.1 Specifying Vectors 

The <range> specification gives addresses to the individual bits in a multi-bit net or register. The 
most significant bit (msb) is the left-hand value in the <range> and the least significant bit (lsb) is 
the right-hand value in the <range>.  

The range is specified as follows: 

[ msb_expr : lsb_expr ] 
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Both msb_expr and lsb_expr are non-negative constant expressions. There are no restrictions on 
the values of the indices. The msb and lsb expressions can be any value, and lsb_expr can be a 
greater value than msb_expr, if desired.  

Implementation specific detail:  Implementation may set a limit on the length of a vector. 

Vector nets and registers obey laws of arithmetic modulo 2 to the power n, where n is the number 
of bits in the vector. Vector nets and registers are treated as unsigned quantities. 

3.3.2 Vector Net Accessibility 

A vector can be used as a single entity or as a group of n scalars, where n is the number of bits in 
the vector. The keyword vectored allows you to specify that a vector can be modified only as an 
indivisible entity. The keyword scalared explicitly allows access to bit and parts. This is also the 
default case. The process of accessing bits within a vector is known as vector expansion. 

Only when a net is not specified as vectored can bit selects and part selects be driven by outputs of 
gates, primitives, and modules—or be on the left-hand side of continuous assignments.  

The following are examples of vector net declarations: 

tri1 scalared [63:0] bus64; //a bus that will be expanded 
tri vectored [31:0] data;  //a bus that will not be expanded 

Example 3- 2: Vector net declarations 

3.4 Strengths 

There are two types of strengths that can be specified in a net declaration. They are as follows: 

• charge strength used when declaring a net of type trireg 

• drive strength  used when placing a continuous assignment on a net in the same 
statement that declares the net 

Gate declarations can also specify a drive strength. See Chapter 6, 6.10 Logic Strength Modeling 
through 6.14 Strengths of Net Types, for more information on gates and for important information 
on strengths. 

3.4.1 Charge Strength  

The <charge_strength> specification can be used only with trireg nets. A trireg net is used to model 
charge storage; <charge_strength> specifies the relative size of the capacitance. The 
<CAPACITOR_SIZE> declaration is one of the following keywords: 

• small 

• medium 
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• large 

When no size is specified in a trireg declaration, its size is medium.  

The following is a syntax example of a strength declaration: 

trireg (small) st1 ; 

A trireg net can model a charge storage node whose charge decays over time. The simulation time 
of a charge decay is specified in the trireg net’s delay specification (see "6.15.2 trireg Net Charge 
Decay"). 

3.4.2 Drive Strength 

The <drive_strength> specification allows a continuous assignment to be placed on a net in the 
same statement that declares that net. See Chapter 5, 5.1.4 Strength, for more details. 

Net strength properties are described in detail in Chapter 6,  6.10 Logic Strength Modeling through 
6.14 Strengths of Net Types. 

3.5 Implicit Declarations 

The syntax shown in Section  3.2.3, Declaration Syntax, is used to explicitly declare variables. In 
the absence of an explicit declaration of a variable, statements for gate, user-defined primitive, and 
module instantiations assume an implicit variable declaration. This happens if you do the 
following: in the terminal list of an instance of a gate, a user-defined primitive, or a module, 
specify a variable that has not been explicitly declared previously in one of the declaration 
statements of the instantiating module. 

These implicitly declared variables are scalar nets of type wire.  

See Appendix  C, C.2 `default_nettype, for a discussion of control of the type for implicitly 
declared nets with the ‘default_nettype compiler directive.  

3.6 Net Initialization 

The default initialization value for a net is the value z. Nets with drivers assume the output value of 
their drivers, which defaults to x. The trireg net is an exception to these statements. The trireg 
defaults to the value x, with the strength specified in the net declaration (small, medium, or large).  

3.7 Net Types  

There are several distinct types of nets. Each is described in the sections that follow. 

3.7.1 wire and tri Nets 

The wire and tri nets connect elements. The net types wire and tri are identical in their syntax and 
functions; two names are provided so that the name of a net can indicate the purpose of the net in 
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that model. A wire net is typically used for nets that are driven by a single gate or continuous 
assignment. The tri net type might be used where multiple drivers drive a net. 

Logical conflicts from multiple sources on a wire or a tri net result in unknown values unless the 
net is controlled by logic strength.  

Table  3-1 is a truth table for wire and tri nets. Note that it assumes equal strengths for both drivers. 
Please refer to Section  6.10 for a discussion of logic strength modeling. 

wire/ 
tri 0 1 x z 

0 0 x x 0 
1 x 1 x 1 
x x x x x 
z 0 1 x z 

Table 3- 1: Truth table for wire and tri nets 

3.7.2 Wired Nets 

Wired nets are of type wor, wand, trior, and triand, and are used to model wired logic 
configurations. Wired nets resolve the conflicts that result when multiple drivers drive the same 
net. The wor and trior nets create wired or configurations, such that when any of the drivers is 1, 
the net is 1. The wand and triand nets create wired and configurations, such that if any driver is 0, 
the net is 0. 

The net types wor and trior are identical in their syntax and functionality—as are the wand and 
triand. Table  3-2 gives the truth tables for wired nets. Note that it assumes equal strengths for both 
drivers. Please refer to Section  6.10 for a discussion of logic strength modeling. 

wand/ 
triand 0 1 x z 

0 0 0 0 0 
1 0 1 x 1 
x 0 x x x 
z 0 1 x z 

wor/ 
trior 0 1 x z 

0 0 1 x 0 
1 1 1 1 1 
x x 1 x x 
z 0 1 x z 
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Table 3- 2: Truth tables for wand/triand and wor/trior nets 

3.7.3 trireg Net 

The trireg net stores a value and is used to model charge storage nodes. A trireg can be one of two 
states: 

the driven state When at least one driver of a trireg has a value of 1, 0 or x, that value 
propagates into the trireg and is the trireg’s driven value. 

the capacitive state When all the drivers of a trireg net are at the high impedance value (z), 
the trireg net retains its last driven value; the high impedance value 
does not propagate from the driver to the trireg.  

The strength of the value on the trireg net in the capacitive state is small, medium, or large, 
depending on the size specified in the declaration of the trireg. The strength of a trireg in the driven 
state is supply, strong, pull, or weak depending on the strength of the driver. 

Figure  3-1 shows a schematic that includes a trireg net whose size is medium, its driver, and the 
simulation results. 

 

Figure  3- 1: Simulation values of a trireg and its driver 

Simulation of the design in Figure  3-1 reports the following results: 

1. At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong 
strength propagates from the AND gate through the NMOS switches connected to each 
other by wire c, into trireg d.  

2. At simulation time 10, wire a changes value to 0, disconnecting wire c from the AND gate. 
When wire c is no longer connected to the AND gate, its value changes to HiZ. The wire 
b’s value remains 1 so wire c remains connected to trireg d through the NMOS2 switch. 
The HiZ value does not propagate from wire c into trireg d. Instead, trireg d enters the 
capacitive state, storing its last driven value of 1. It stores the 1 with a medium strength. 

Capacitive networks 

A capacitive network is a connection between two or more triregs. In a capacitive network whose 
trireg’s are in the capacitive state, logic and strength values can propagate between triregs. Figure  
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3-2 shows a capacitive network in which the logic value of some triregs change the logic value of 
other triregs of equal or smaller size. 

 

Figure  3- 2: Simulation results of a capacitive network 

In Figure  3-2, trireg la’s size is large, triregs m1 and m2 are size medium, and trireg s’s size is 
small. Simulation reports the following sequence of events: 

1. At simulation time 0, wire a and wire b have a value of 1. The wire c drives a value of 1 
into triregs la and sm, wire d drives a value of 1 into triregs me1 and me2. 

2. At simulation time 10, wire b’s value changes to 0, disconnecting trireg sm and me2 from 
their drivers. These triregs enter the capacitive state and store the value 1, their last driven 
value.  

3. At simulation time 20, wire c drives a value of 0 into trireg la.  
4. At simulation time 30, wire d drives a value of 0 into trireg me1. 
5. At simulation time 40, wire a’s value changes to 0, disconnecting trireg la and me1 from 

their drivers. These triregs enter the capacitive state and store the value 0. 
6. At simulation time 50, the wire b’s value changes to 1. This change of value in wire b 

connects trireg sm to trireg la; these triregs have different sizes and stored different values. 
This connection causes the smaller trireg to store the larger trireg’s value and trireg sm now 
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stores a value of 0.This change of value in wire b also connects trireg me1 to trireg me2; 
these triregs have the same size and stored different values. The connection causes both 
trireg me1 and me2 to change value to x. 

In a capacitive network, charge strengths propagate from a larger trireg to a smaller trireg. Figure  
3-3 shows a capacitive network and its simulation results. 

 

Figure  3- 3: Simulation results of charge sharing 

In Figure  3-3, trireg la’s size is large and trireg sm’s size is small. Simulation reports the following 
results: 

1. At simulation time 0, the value of wire a, b, and c is 1 and wire a drives a strong 1 into 
trireg la and sm. 

2. At simulation time 10, wire b’s value changes to 0, disconnecting trireg la and sm from 
wire a. The triregs la and sm enter the capacitive state. Both triregs share the large charge 
of trireg  la because they remain connected through tranif2. 

3. At simulation time 20, wire c’s value changes to 0, disconnecting trireg sm from trireg la. 
The trireg sm no longer shares trireg  la’s large charge and now stores a small charge. 

4. At simulation time 30, wire c’s value changes to 1, connecting the two triregs. These triregs 
now share the same charge. 

5. At simulation time 40, wire c’s value changes again to 0, disconnecting trireg sm from 
trireg la. Once again, trireg sm no longer shares trireg la’s large charge and now stores a 
small charge. 

Ideal capacitive state and charge decay 

A trireg net can retain its value indefinitely or its charge can decay over time. The simulation time 
of charge decay is specified in the trireg net’s delay specification. 
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3.7.4 tri0 and tri1 Nets 

The tri0 and tri1 nets model nets with resistive pulldown and resistive pullup devices on them. 
When no driver drives a tri0 net, its value is 0. When no driver drives a tri1 net, its value is 1. The 
strength of this value is pull. See Chapter 6,  6.10 Logic Strength Modeling through 6.14 Strengths 
of Net Types, for a description of strength modeling. 

3.7.5 supply Nets 

The supply0 and supply1 nets model the power supplies in a circuit. The supply0 nets are used to 
model Vss (ground) and supply1 nets are used to model Vdd or Vcc (power). These nets should 
never be connected to the output of a gate or continuous assignment, because the strength they 
possess will override the driver. They have supply0 or supply1 strengths. 

3.8 Memories  

The Verilog HDL models memories as an array of register variables. These arrays can be used to 
model read-only memories (ROMs), random access memories (RAMs), and register files. Each 
register in the array is known as an element or word and is addressed by a single array index. There 
are no multiple dimension arrays in the Verilog Language. 

Memories are declared in register declaration statements by specifying the element address range 
after the declared identifier. Syntax  3-3 gives the syntax for a register declaration statement. Note 
that this syntax extends the <register_variable> definition given in Section  3.2.3, Declaration 
Syntax. 

<register_variable>  
::= <name_of_register>  
||= <name_of_memory> [ <constant_expression> : <constant_expression> ] 

<constant_expression> 
::=<expression> 

 
<name_of_memory>  

::= <IDENTIFIER>  

Syntax  3- 3: Syntax for <register_variable> 

The following example illustrates a memory declaration: 

 reg[7:0] mema[0:255]; 

This example declares a memory called mema consisting of 256 eight-bit registers. The indices are 
0 through 255. The expressions that specify the indices of the array must be constant expressions. 

Verilog HDL  LRM Data Types  •  25 



Note that within the same declaration statement both registers and memories can be declared. This 
makes it convenient to declare both a memory and some registers that will hold data to be read 
from and written to the memory in the same declaration statement, as in Example  3-3. 

parameter //parameters are run-time constants-see Section 3.11 
Parameters 

wordsize = 16, 
memsize = 256; 
 // Declare 256 words of 16-bit memory plus two registers 
reg [wordsize-1:0] // equivalent to [15:0] 
mem [memsize-1:0], // equivalent to [255:0] 
writereg, 
readreg;  

Example 3- 3: Declaring memory 

Note that a memory of n 1-bit registers is different from an n-bit vector register, as in the 
following: 

 

An n-bit register can be assigned a value in a single assignment, but a complete memory cannot; 
thus the following assignment to rega is legal and the succeeding assignment that attempts to clear 
all of the memory mema is illegal:  

 rega = 0; // legal syntax 
 mema = 0; // illegal syntax 

To assign a value to a memory element, an index must be specified. For example: 

mema[1] = 0; // assigns 0 to the first element of mema 

The index can be an expression. This option allows you to reference different memory elements, 
depending on the value of other registers and nets in the circuit. For example, a program counter 
register could be used to index into a RAM. 

3.9 Integers and Times 

In addition to modeling hardware, there are other uses for variables in an HDL model. Although 
you can use the reg variables for general purposes such as counting the number of times a 
particular net changes value, the integer and time register data types are provided for convenience 
and to make the description more self-documenting.  

The syntax for declaring integer and time variables is as follows:  

<time_declaration>  
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::= time <list_of_register_variables> ; 

<integer_declaration>  
::= integer <list_of_register_variables> ; 

Syntax  3- 4: Syntax for time and integer declarations 

The <list_of_register_variables> item is defined in Section  3.2.3, Declaration Syntax.  

A time variable is used for storing and manipulating simulation time quantities in situations where 
timing checks are required and for diagnostics and debugging purposes. This data type is typically 
used in conjunction with the $time system function (see Appendix  B, B.6 Simulation Time—The 
$time Function). The size of a time variable is 64 bits. 

An integer is a general purpose variable used for manipulating quantities that are not regarded as 
hardware registers. 

Implementation specific detail:  An implemtation may limit the size of the integer variable, and 
the time variable. 

Arrays of integer and time variables are allowed. They are declared in the same manner as arrays of 
reg variables, as in the following example: 

integer a[1:64]; // an array of 64 integers 

time change_history[1:1000]; // an array of 1000 times 

The integer and time variables are assigned values in the same manner as reg variables. Procedural 
assignments are used to trigger their value changes. 

Time variables behave the same as 64 bit reg variables. They are unsigned quantities, and unsigned 
arithmetic is performed on them. In contrast, integer variables are signed quantities. Arithmetic 
operations performed on integer variables produce 2’s complement results.  

3.10 Real Numbers 

The Verilog HDL supports real number constants and variables in addition to integers and time 
variables. The syntax for real numbers is the same as the syntax for register types, and is described 
in Section  3.10.1. Except for the following restrictions, real number variables can be used in the 
same places that integers and time variables are used. 

• Not all Verilog HDL operators can be used with real number values. See Table  4-2 in 
Section 4.1 Operators for lists of valid and invalid operators for real numbers.  

• Ranges are not allowed on real number variable declarations.  

• Real number variables default to an initial value of zero.  
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3.10.1 Declaration Syntax for Real Numbers 

The syntax for declaring real number variables is as follows: 

<real_declaration> 
::=real<list_of_variables>; 

Syntax  3- 5: Syntax for real number variable declarations 

The <list_of_variables> item is defined in Section  3.2.3 Declaration Syntax.  

3.10.2 Specifying Real Numbers 

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific 
notation (for example, 39e8, which indicates 39 multiplied by 10 to the 8th power). Real numbers 
expressed with a decimal point must have at least one digit on each side of the decimal point. 

The following are some examples of valid real numbers in the Verilog language: 

1.2 
0.1 
2394.26331 
1.2E12 (the exponent symbol can be e or E) 
1.30e-2 
0.1e-0 
23E10 
29E-2 
236.123_763_e-12  (underscores are ignored) 

The following are invalid real numbers in the Verilog HDL because they do not have a digit to the 
left of the decimal point: 

.12 

.3E3 

.2e-7 

3.10.3 Operators and Real Numbers 

The result of using logical or relational operators on real numbers is a single-bit scalar value. Not 
all Verilog operators can be used with real number expressions. Table  4-2 in Section  4.1 lists the 
valid operators for use with real numbers. Real number constants and real number variables are 
also prohibited in the following contexts: 

• edge descriptors (posedge, negedge) applied to real number variables 

• bit-select or part-select references of variables declared as real 

• real number index expressions of bit-select or part-select references of vectors 
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• real number memories (arrays of real numbers) 

3.10.4 Conversion 

The Verilog language converts real numbers to integers by rounding a real number to the nearest 
integer, rather than by truncating it. For example, the real numbers 35.7 and 35.5 both become 36 
when converted to an integer and 35.2 becomes 35. Implicit conversion takes place when you 
assign a real to an integer.  

See Appendix B, B.8 Functions and Tasks for Reals, for a discussion of system tasks that perform 
explicit conversion. 

3.11 Parameters 

Verilog parameters do not belong to either the register or the net group. Parameters are not 
variables, they are constants. The syntax for parameter declarations is as follows: 

<parameter_declaration>  
::= parameter <list_of_assignments> ;  

Syntax  3- 6: Syntax for <parameter_declaration> 

Implementation specific detail:  Some implementations accept a range specification on the 
parameter declaration. 

The <list_of_assignments> is a comma-separated list of assignments, where the right-hand side of 
the assignment must be a constant expression, that is, an expression containing only constant 
numbers and previously defined parameters. Example  3-4 shows examples of parameter 
declarations: 

parameter msb = 7;  // defines msb as a constant value 7 

parameter e = 25, f = 9; // defines two constant numbers 

parameter  r = 5.7;  //declares r as a 'real' parameter 

parameter byte_size = 8, byte_mask = byte_size - 1; 

parameter average_delay = (r + f) / 2; 

Example  3- 4: Parameter declarations 

Even though they represent constants, Verilog parameters can be modified at compilation time to 
have values that are different from those specified in the declaration assignment. This allows you to 
customize module instances. You can modify the parameter with the defparam statement, or you 
can modify the parameter in the module instance statement. Typical uses of parameters are to 
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specify delays and width of variables. See Chapter 12, 12.2 Overriding Module Parameter Values, 
for complete details on parameter value assignment. 
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Expressions 

4.0 Expressions Overview 

This chapter describes the operators and operands available in the Verilog HDL, and how to use 
them to form expressions. 

An expression is a construct that combines operands with operators to produce a result that is a 
function of the values of the operands and the semantic meaning of the operator. Alternatively, an 
expression is any legal operand—for example, a net bit-select. Wherever a value is needed in a 
Verilog HDL statement, an expression can be given. However, several statement constructs limit 
an expression to a constant expression. A constant expression consists of constant numbers and 
predefined parameter names only, but can use any of the operators defined in Table  4-1. 

For their use in expressions, integer and time data types share the same traits as the data type reg. 
Descriptions pertaining to register usage apply to integers and times as well. 

An operand can be one of the following: 

• number (including real) 

• net 

• register, integer, time 

• net bit-select 

• register bit-select  

• net part-select 

• register part-select  

• memory element 

• a call to a user-defined function or system defined function that returns any of the above 

4.1 Operators  

The symbols for the Verilog HDL operators are similar to those in the C language. Table  4-1 lists 
these operators. 

Verilog Language Operators 

{} concatenation  
+    -   *    / arithmetic  
% modulus 
>   >=   <   <= relational 
! logical  negation 
&& logical  and 
|| logical  or 
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== logical  equality 
!= logical  inequality 
=== case  equality 
!== case  inequality 
~ bit-wise  negation 
& bit-wise  and 
| bit-wise  inclusive  or 
^ bit-wise  exclusive  or 
^~  or  ~^ bit-wise  equivalence 
& reduction  and 
~& reduction  nand 
| reduction  or 
~| reduction  nor 
^ reduction  xor 
~^  or  ^~ reduction  xnor 
<< left  shift 
>> right  shift 
?: conditional  

Table  4- 1: Operators for Verilog language 

Not all of the operators listed above are valid with real expressions. Table  4-2 is a list of the 
operators that are legal when applied to real numbers. 

Operators for Real Expressions 

unary +    unary - unary operators 
+   -    *   / arithmetic 
>   >=   <   <= relational 
!    &&  || logical 
==        != logical  equality 
?: conditional 
or logical  

Table  4- 2: Legal operators for use in real expressions 

The result of using logical or relational operators on real numbers is a single-bit scalar value. 

Table  4-3 lists operators that are not allowed to operate on real numbers. 

Disallowed Operators for Real Expressions 

{}    concatenate 
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%    modulus 
=== !==   case equality 
~ & |  bit-wise  
^ ^~ ~^  
& ~&   | ~| reduction 
<< >>   shift 

Table  4- 3: Operators not allowed for real expressions 

See Section 3.10.3 Operators and Real Numbers for more information on use of real numbers. 

4.1.1 Binary Operator Precedence 

The precedence order of binary operators (and the ternary operator ?:) is the same as the 
precedence order for the matching operators in the C language. Verilog has two equality operators 
not present in C; they are discussed in Section  4.1.6 Equality Operators.  Table  4-4 summarizes 
the precedence rules for Verilog’s binary and ternary operators.          

Operator Precedence Rules 

+   -   !  ~   (unary) highest  precedence 
*   /    %  
+   -  (binary) 
 <<    >> 
 <   <=   >    >= 
==    !=    ===    !== 
& 
^     ^~ 
| 
&& 
|| 
?: (ternary operator) lowest  precedence 

Table  4- 4: Precedence rules for operators 

Operators on the same line in Table 4-4 have the same precedence. Rows are in order of decreasing 
precedence, so, for example, *, /, and % all have the same precedence, which is higher than that of 
the binary + and - operators.  

All operators associate left to right with the exception of the ternary operator which associates right 
to left. Associativity refers to the order in which a language evaluates operators having the same 
precedence. Thus, in the following example B is added to A and then C is subtracted from the 
result of A+B.  
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A + B - C 

When operators differ in precedence, the operators with higher precedence apply first. In the 
following example, B is divided by C (division has higher precedence than addition) and then the 
result is added to A.  

A + B / C 

Parentheses can be used to change the operator precedence. 

(A + B) / C // not the same as A + B / C 

4.1.2 Numeric Conventions in Expressions 

Operands can be expressed as based and sized numbers—with the following restriction: The 
Verilog language interprets a number of the form sss ’f nnn, when used directly in an expression, 
as the unsigned number represented by the two’s complement of nnn. Example  4-1 shows two 
ways to write the expression “minus 12 divided by 3.” Note that -12 and -d12 both evaluate to the 
same bit pattern, but in an expression -d12 loses its identity as a signed, negative number.  

integer   IntA; 
IntA   =   -12   /   3;      // The result is -4. 

IntA = -'d 12 / 3;          // The result is 1431655761. 

Example 4- 1: Number format in expressions 

4.1.3 Arithmetic Operators  

The binary arithmetic operators are the following: 

+   -   *   /   % (the modulus operator) 

Integer division truncates any fractional part. The modulus operator, for example y % z, gives the 
remainder when the first operand is divided by the second, and thus is zero when z divides y 
exactly. The result of a modulus operation takes the sign of the first operand. Table  4-5 gives 
examples of modulus operations. 

Modulus Result Comments 
Expression    
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10 % 3 1 10/3 yields a remainder of 1 
 
11 % 3 2 11/3 yields a remainder of 2 
 
12 % 3 0 12/3 yields no remainder 
 
-10 % 3 -1 the result takes the sign of the first operand 
 
11  %  -3 2 the result takes the sign of the first operand 
 
-4'd12  %  3 1 -4'd12 is seen as a large, positive number that 

leaves a remainder of 1 when divided by 3 

Table  4- 5: Examples of modulus operations 

The unary arithmetic operators take precedence over the binary operators. The unary operators are 
the following: 

 +   - 

For the arithmetic operators, if any operand bit value is the unknown value  x, then the entire result 
value is x.  

4.1.4 Arithmetic Expressions with Registers and Integers 

An arithmetic operation on a register data type behaves differently than an arithmetic operation on 
an integer data type. The Verilog language sees a register data type as an unsigned value and an 
integer type as a signed value. As a result, when you assign a value of the form -
<size><base_format><number> to a register and then use that register as an expression operand, 
you are actually using a positive number that is the two’s complement of nnn. In contrast, when 
you assign a value of the form -<size><base_format><number> to an integer and then use that 
integer as an expression operand, the expression evaluates using signed arithmetic. Example  4-2 
shows various ways to divide minus twelve by three—using integer and register data types in 
expressions. 

integer  intA; // result is -4 because intA is an integer data type 
reg [15:0]  regA; 
intA  =  -4'd12; 
regA  =  intA / 3; 

regA  =  -4'd12; 
intA  =  regA  /  3; // result is 21841 because regA is an register data type 
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intA  =  -4'd12  /  3; // result is 21841 because  -4'd12 is effectively a register 
data type 

regA  =  -12  /  3; // result is -4 because -12 is effectively an integer data type 

Example  4- 2: Modulus operation with registers and integers 

4.1.5 Relational Operators 

Table 4-6 lists and defines the relational operators. 

 Relational Operators 

a<b a  less  than  b 
a>b a  greater  than  b 
a<=b a  less  than  or  equal  to  b 
a>=b a  greater  than  or  equal  to  b  

Table  4- 6: The relational operators defined 

These all yield the scalar value 0 if the specified relation is false, or the value 1 if it is true. If, due 
to unknown bits in the operands, the relation is ambiguous, then the result is the unknown value 
(x). 

All the relational operators have the same precedence. Relational operators have lower precedence 
than arithmetic operators. The following examples illustrate the implications of this precedence 
rule: 

a  <  size - 1 // this construct is the same as 

a  <  (size - 1) // this construct, but . . . 

size  -  (1  <  a) // this one is not the same as  

size  -  1  <  a // this construct 

Note that when size - (1 < a) evaluates, the relational expression evaluates first and then either zero 
or one is subtracted from size. When size - 1 < a evaluates, the size operand is reduced by one and 
then compared with a. 

4.1.6 Equality Operators  

The equality operators rank just lower in precedence than the relational operators. Table 4-7 lists 
and defines the equality operators. 

Equality Operators 
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a === b a equal to b, including x and z 
a !== b a not equal to b, including x and z 
a == b a equal to b, result may be unknown 
a != b a not equal to b, result may be unknown 

Table  4- 7: The equality operators defined 

All four equality operators have the same precedence. These four operators compare operands bit 
for bit, with zero filling if the two operands are of unequal bit-length. As with the relational 
operators, the result is 0 if false, 1 if true. 

For the == and != operators, if either operand contains an x or a z, then the result is the unknown 
value (x). 

For the === and !== operators, the comparison is done just as it is in the procedural case statement. 
Bits which are x or z are included in the comparison and must match for the result to be true. The 
result of these operators is always a known value, either 1 or 0. 

4.1.7 Logical Operators  

The operators logical AND (&&) and logical OR (||) are logical connectives. The result of the 
evaluation of a logical comparison is one (defined as true), zero (defined as false), or, if the result 
is ambiguous, then the result is the unknown value (x). For example, if register alpha holds the 
integer value 237 and beta holds the value zero, then the following examples perform as described: 

regA = alpha && beta; // regA is set to 0 

regB  =  alpha || beta; // regB is set to 1 

The precedence of && is greater than that of ||, and both are lower than relational and equality 
operators. The following expression ANDs three sub-expressions without needing any parentheses: 

a  <  size-1  &&  b  !=  c  &&  index  !=  lastone 

However, it is recommended for readability purposes that parentheses be used to show very clearly 
the precedence intended, as in the following rewrite of the above example: 

(a  <  size-1)  &&  (b  !=  c)  &&  (index  !=  lastone) 

A third logical operator is the unary logical negation operator !. The negation operator converts a 
non-zero or true operand into 0 and a zero or false operand into 1. An ambiguous truth value 
remains as x. A common use of ! is in constructions like the following: 

if  (!inword) 
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In some cases, the preceding construct makes more sense to someone reading the code than the 
equivalent construct shown below: 

if  (inword  ==  0) 

Constructions like if (!inword) read quite nicely (“if not inword”), but more complicated ones can 
be hard to understand. 

Implementation Specific Detail:  Evaluation of expressions connected by && or || may stop 
evaluation as soon as the truth or falsehood of the result is 
known  

4.1.8 Bit-Wise Operators  

The bit operators perform bit-wise manipulations on the operands— that is, the operator compares 
a bit in one operand to its equivalent bit in the other operand to calculate one bit for the result. The 
logic tables in Table  4-8 show the results for each possible calculation.  

bit-wise  unary  negation 

~ 

0 1 
1 0 
x x 

bit-wise  binary  AND  operator 

& 0 1 x 

0 0 0 0 
1 0 1 x 
x 0 x x 

bit-wise binary inclusive Or operator 

| 0 1 x 

0 0 1 x 
1 1 1 1 
x x 1 x 

bit-wise  binary  exclusive  Or  operator 
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^ 0 1 x 

0 0 1 x 
1 1 0 x 
x x x x 

bit-wise  binary  exclusive  NOR  operator 

^~ 0 1 x 

0 1 0 x 
1 0 1 x 
x x x x 

Table  4- 8: Bit-wise operators logic tables 

Care should be taken to distinguish the bit-wise operators & and | from the logical operators && 
and ||. For example, if x is 1 and y is 2, then x  &  y is 0, while x  &&  y is 1. When the operands 
are of unequal bit length, the shorter operand is zero-filled in the most significant bit positions. 

4.1.9 Reduction Operators  

The unary reduction operators perform a bit-wise operation on a single operand to produce a single 
bit result. The first step of the operation applies the operator between the first bit of the operand 
and the second—using the logic tables in Table  4-9. The second and subsequent steps apply the 
operator between the one-bit result of the prior step and the next bit of the operand—still using the 
same logic table.  

reduction  unary  AND  operator 

& 0 1 x 

0 0 0 0 
1 0 1 x 
x 0 x x 

reduction  unary  inclusive  Or  operator 

| 0 1 x 

0 0 1 x 
1 1 1 1 
x x 1 x 
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reduction  unary  exclusive  Or  operator 

^ 0 1 x 

0 0 1 x 
1 1 0 x 
x x x x 

Table 4- 9: Reduction operators logic tables 

Note that the reduction unary NAND and reduction unary NOR operators operate the same as the 
reduction unary AND and OR operators, respectively, but with their outputs negated. The effective 
results produced by the unary reduction operators are listed in Table  4-10 and Table  4-11.  

Results of Unary &, |, ~&, and ~| 
 Reduction Operations 

Operand & | ~& ~| 

no bits set 0 0  1  1 
all bits set 1 1  0  0 
some bits set,  0 1  1  0 

but not all 

Table  4- 10: AND, OR, NAND, and NOR unary reduction operations 

Results of Unary ^ and ~^  
 Reduction Operators 

Operand ^ ~^ 

odd number of bits set 1  0 
even number of bits set 0  1 

(or none) 

Table  4- 11: Exclusive OR and exclusive NOR unary reduction operations 

4.1.10 Syntax Restrictions 

The Verilog language imposes two syntax restrictions intended to protect description files from a 
typographical error that is particularly hard to find. The error consists of transposing a space and a 
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symbol. Note that the constructs on line 1 below do not represent the same syntax as the similar 
constructs on line 2.  

1.   a  &  &b a  |  |b 

2.   a  &&  b a  ||  b 

In order to protect users from this type of error, Verilog requires the use of parentheses to separate 
a reduction or or and operator from a bit-wise or or and operator. Table  4-12 shows the syntax that 
requires parentheses: 

Invalid  Equivalent 
Syntax Syntax 

a & &b a & (&b) 
a | |b a | (|b) 

Table  4- 12: Syntax equivalents for syntax restriction 

4.1.11 Shift Operators 

The shift operators, << and >>, perform left and right shifts of their left operand by the number of 
bit positions given by the right operand. Both shift operators fill the vacated bit positions with 
zeroes. Example  4-3 illustrates this concept. 

module shift; 
 reg [3:0] start, result; 
 initial 
  begin 
   start = 1; // Start is set to 0001 
   result = (start << 2); // Result is set to 0100 
  end 
endmodule 

Example  4- 3: Use of shift operator 

In this example, the register result is assigned the binary value 0100, which is 0001 shifted to the 
left two positions and zero filled. 

4.1.12 Conditional Operator  

The conditional operator has three operands separated by two operators in the following format: 
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cond_expr  ?  true_expr  :  false_expr 

If cond_expr evaluates to false, then false_expr is evaluated and used as the result. If the 
conditional expression is true, then true_expr is evaluated and used as the result. If cond_expr is 
ambiguous, then both true_expr and false_expr are evaluated and their results are compared, bit by 
bit, using Table  4-13 to calculate the final result. If the lengths of the operands are different, the 
shorter operand is lengthened to match the longer and zero filled from the left (the high-order end). 

ambiguous condition results for 
conditional operator 

?: 0 1 x z 

0 0 x x x 
1 x 1 x x 
x x x x x 
z x x x x 

Table  4- 13: Conditional operator results 

The following example of a tri-state output bus illustrates a common use of the conditional 
operator. 

  wire  [15:0]  busa  =  drive_busa  ?  data  :  16’bz; 

The bus called data is driven onto busa when drive_busa is 1. If drive_busa is unknown, then an 
unknown value is driven onto busa. Otherwise, busa is not driven. 

4.1.13 Concatenations 

A concatenation is the joining together of bits resulting from two or more expressions. The 
concatenation is expressed using the brace characters { and }, with commas separating the 
expressions within. The next example concatenates four expressions: 

{a,  b[3:0],  w,  3’b101} 

The previous example is equivalent to the following example: 

{a,  b[3],  b[2],  b[1],  b[0],  w,  1’b1,  1’b0,  1’b1} 

Unsized constant numbers are not allowed in concatenations. This is because the size of each 
operand in the concatenation is needed to calculate the complete size of the concatenation. 
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Concatenations can be expressed using a repetition multiplier as shown in the next example. 

{4{w}} // This is equivalent to {w,  w,  w,  w} 

The next example illustrates nested concatenations. 

{b,  {3{a,  b}}} // This is equivalent to 

 // {b,  a,  b,  a,  b,  a,  b} 

The repetition multiplier must be a constant expression. 

4.2 Operands  

As stated before, there are several types of operands that can be specified in expressions. The 
simplest type is a reference to a net or register in its complete form—that is, just the name of the 
net or register is given. In this case, all of the bits making up the net or register value are used as 
the operand.  

If just a single bit of a vector net or register is required, then a bit-select operand is used. A part-
select operand is used to reference a group of adjacent bits in a vector net or register.  

A memory element can be referenced as an operand.  

A concatenation of other operands, (including nested concatenations) can be specified as an 
operand. 

A function call is an operand. 

4.2.1 Net and Register Bit Addressing  

Bit-selects extract a particular bit from a vector net or register. The bit can be addressed using an 
expression. The next example specifies the single bit of acc that is addressed by the operand index. 

acc[index] 

The actual bit that is accessed by an address is, in part, determined by the declaration of acc. For 
instance, each of the declarations of acc shown in the next example causes a particular value of 
index to access a different bit: 

reg  [15:0]  acc; 

reg  [1:16]  acc; 

If the bit select is out of the address bounds or is x, then the value returned by the reference is x.  
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Several contiguous bits in a vector register or net can be addressed, and are known as part-selects. 
A part-select of a vector register or net is given with the following syntax: 

vect[ms_expr:ls_expr] 

Both expressions must be constant expressions. The first expression must address a more 
significant bit than the second expression. The next example and the bullet items that follow it 
illustrate the principles of bit addressing. The code declares an 8-bit register called vect and 
initializes it to a value of 4. The bullet items describe how the separate bits of that vector can be 
addressed. 

reg  [7:0]  vect; 

vect = 4; 

• if the value of addr is 2, then vect[addr] returns 1 

• if the value of addr is out of bounds, then vect[addr] returns x 

• if addr is 0, 1, or 3 through 7, vect[addr] returns 0 

• vect[3:0] returns the bits 0100 

• vect[5:1] returns the bits 00010 

• vect[<expression that returns x>] returns x 

• vect[<expression that returns z>] returns x 

• if any bit of addr is x/z, then the value of addr is x 

4.2.2 Memory Addressing 

Section  3.8 discussed the declaration of memories. This section discusses memory addressing. The 
next example declares a memory of 1024 8-bit words: 

reg  [7:0]  mem_name[0:1023]; 

The syntax for a memory address consists of the name of the memory and an expression for the 
address—specified with the following format: 

mem_name[addr_expr] 

The addr_expr can be any expression; therefore, memory indirections can be specified in a single 
expression. The next example illustrates memory indirection: 
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mem_name[mem_name[3]] 

In the above example, mem_name[3]addresses word three of the memory called mem_name. The 
value at word three is the index into mem_name that is used by the memory address 
mem_name[mem_name[3]]. As with bit-selects, the address bounds given in the declaration of the 
memory determine the effect of the address expression. If the index is out of the address bounds or 
is x, then the value of the reference is x. 

There is no mechanism to express bit-selects or part-selects of memory elements directly. If this is 
required, then the memory element has to be first transferred to an appropriately sized temporary 
register. 

4.2.3 Strings  

String operands are treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one 
per character.  

Any Verilog HDL operator can manipulate string operands. The operator behaves as though the 
entire string were a single numeric value. 

Example  4-4 declares a string variable large enough to hold 14 characters and assigns a value to it. 
The example then manipulates the string using the concatenation operator. 

Note that when a variable is larger than required to hold the value being assigned, the contents after 
the assignment are padded on the left with zeros. This is consistent with the padding that occurs 
during assignment of non-string values. 

module  string_test; 
reg [8*14:1]  stringvar; 
initial 

begin 
 stringvar = "Hello world"; 
 $display("%s is stored as %h", 
  stringvar, stringvar); 
 stringvar={stringvar, "!!!"}; 
 $display("%s is stored as %h", 
  stringvar, stringvar); 
 end 

endmodule 

Example  4- 4: Concatenation of strings 

The result of running Verilog on the above description is: 

  Hello world is stored as  00000048656c6c6f20776f726c64 

Hello world!!!  is  stored  as  48656c6c6f20776f726c64212121 
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4.2.4 String Operations 

The common string operations copy, concatenate, and compare are supported by Verilog operators. 
Copy is provided by simple assignment. Concatenation is provided by the concatenation operator. 
Comparison is provided by the equality operators. Example  4-4 and Example  4-5 illustrate 
assignment, concatenation, and comparison of strings. 

When manipulating string values in vector variables, at least 8*n bits are required in the vector, 
where n is the number of characters in the string. 

4.2.5 String Value Padding and Potential Problems  

When strings are assigned to variables, the values stored are padded on the left with zeros. Padding 
can affect the results of comparison and concatenation operations. The comparison and 
concatenation operators do not distinguish between zeros resulting from padding and the original 
string characters. 

Example  4-5 illustrates the potential problem. 

reg [8*10:1] s1, s2; 
initial 
 begin 
  s1 = "Hello"; 
  s2 = "world!"; 
   if  ( {s1,s2} == "Hello world!") 
    $display("strings are equal"); 
 end 

Example  4- 5: Comparing string variables 

The comparison in the example above fails because during the assignment the string variables get 
padded as illustrated in the next example: 

s1  =  000000000048656c6c6f 

s2  =  00000020776f726c6421 

The concatenation of s1 and s2 includes the zero padding, resulting in the following value: 

000000000048656c6c6f00000020776f726c6421 

Since the string “Hello world” contains no zero padding, the comparison fails, as shown below: 
 s1 s2 "Hello world!" 

 000000000048656c6c6f 00000020776f726c6421 == 48656c6c6f20776f726c6421 
 "Hello" "world!" 
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The above comparison yields a result of zero, which is equivalent to false. 

4.2.6 Null String Handling  

The null string ("") is equivalent to the value zero (0). 

4.3 Minimum, Typical, Maximum Delay Expressions 

Verilog HDL delay expressions can be specified as three expressions separated by colons. This 
triple is intended to represent minimum, typical, and maximum values—in that order. The syntax is 
as follows: 

<mintypmax_expression>  
::= <expression>  
||= <expression1> : <expression2> : <expression3> 

Syntax  4- 1: Syntax for <mintypmax_expression> 

The three expressions follow these conventions: 

• expression1 is less than or equal to expression2  

• expression2 is less than or equal to expression3 

Verilog models typically specify three values for delay expressions. The three values allow a 
design to be tested with minimum, typical, or maximum delay values. Different tools may interpret 
the triple form of an expression in a different manner. 
In the following example, one of the three specified delays will be executed before the simulation 
executes the assignment; if the user does not select one, the simulator will take the default. 

always @A 

X = #(3:4:5) A; 

Values expressed in min:typ:max format can be used in expressions. The next example shows an 
expression that defines a single triplet of delay values. The minimum value is the sum of a+d; the 
typical value is b+e; the maximum value is c+f, as follows:  

(a:b:c)  +  (d:e:f)   

The next example shows some typical expressions that are used to specify min:typ:max format 
values: 

val  -  (32’d  50:  32’d  75:  32’d  100)   
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The min:typ:max format can be used wherever expressions can appear, both in source text files and 
in interactive commands.  See also 6.15.1 min/typ/max Delays 

4.4 Expression Bit Lengths  

Controlling the number of bits that are used in expression evaluations is important if consistent 
results are to be achieved. Some situations have a simple solution, for example, if a bit-wise AND 
operation is specified on two 16-bit registers, then the result is a 16-bit value. However, in some 
situations it is not obvious how many bits are used to evaluate an expression, what size the result 
should be, or whether signed or unsigned arithmetic should be used.  

For example, when is it necessary to perform the addition of two 16-bit registers in 17 bits to 
handle a possible carry overflow? The answer depends on the context in which the addition takes 
place. If the 16-bit addition is modeling a real 16-bit adder that loses or does not care about the 
carry overflow, then the model must perform the addition in 16 bits. If the addition of two 16-bit 
unsigned numbers can result in a significant 17th bit, then assign the answer to a 17-bit register.  

4.4.1 An Example of an Expression Bit Length Problem 

During the evaluation of an expression, interim results take the size of the largest operand (in the 
case of an assignment, this also includes the left-hand side). You must therefore take care to 
prevent loss of a significant bit during expression evaluation. This section describes an example of 
the problems that can occur.  

The expression (a + b >> 1) yields a 16-bit result, but cannot be assigned to a 16-bit register 
without the potential loss of the high-order bit. If a and b are 16-bit registers, then the result of 
(a+b) is 16 bits wide—unless the result is assigned to a register wider than 16 bits. If answer is a 
17-bit register, then (answer = a + b) yields a full 17-bit result. But in the expression (a + b >> 1), 
the sum of (a + b) produces an interim result that is only 16 bits wide. Therefore, the assignment of 
(a + b >> 1) to a 16-bit register loses the carry bit before the evaluation performs the one-bit right 
shift.  

There are two solutions to a problem of this type. One is to assign the sum of (a+b) to a 17-bit 
register before performing the shift and then shift the 17-bit answer into the 16-bits that your model 
requires. An easier solution is to use the following trick: 

The problem: 

Evaluate the expression (a+b)>>1, assigning the result to a 16-bit register without losing the carry 
bit. Variables a and b are both 16-bit registers. 

The solution: 

Add the integer zero to the expression. The expression evaluates as follows: 

1. 0 + (a+b) evaluates—the result is as wide as the widest term, which is the 32-bit zero 

2. the 32-bit sum of 0 + (a+b) is shifted right one bit 
This trick preserves the carry bit until the shift operation can move it back down into 16 bits. 
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4.4.2 Verilog Rules for Expression Bit Lengths 

In the Verilog language, the rules governing the expression bit lengths have been formulated so 
that most practical situations have a natural solution.  

The number of bits of an expression (known as the size of the expression) is determined by the 
operands involved in the expression and the context in which the expression is given. 

A self-determined expression is one where the bit length of the expression is solely determined by 
the expression itself—for example, an expression representing a delay value.  

A context-determined expression is one where the bit length of the expression is determined by the 
bit length of the expression and by the fact that it is part of another expression. For example, the bit 
size of the right-hand side expression of an assignment depends on itself and the size of the left-
hand side. 

Table  4-14 shows how  the form of an expression determines the bit lengths of the results of the 
expression. In Table  4-14, i, j, and k represent expressions of an operand, and L(i) represents the 
bit length of the operand represented by i. 

Expression Bit length Comments 

unsized same as 
constant integer 
number (usually32) 

sized as given 
constant 
number 

i op j max (L(i), L(j)) 
   where op is: 
   + - * / % 
   & | ^ ^~ 

+i and -i L(i) 

~i L(i) 

I  op  j 1 bit all operands are 
where  op  is  self-determined 
===  !==  ==  !=  &&  || 
>  >=  <  <= 

op  i 1 bit all  operands  are  
where  op  is  self-determined 
&  ~&  |  ~|  ^  ~^ 

I  >>  j L(i) j  is  self-determined 
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I  <<  j 

I  ?  j  :  k max(L(j),L(k)) I  is  self-determined 

{i,..,j} L(i)+..+L(j) all  operands are  
  self-determined 

{ i { j, .. , k } } i*(L(j)+..+L(k)) all  operands are 
  self-determined 

Table  4- 14: Bit lengths resulting from expressions 
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Assignments 

5.0 Assignments Overview 

The assignment is the basic mechanism for getting values into nets and registers. There are two 
basic forms of the assignment: 

• the continuous assignment, which assigns values to nets 

• the procedural assignment, which assigns values to registers 

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equal 
(=) character. The right-hand side can be any expression that evaluates to a value. The left-hand 
side indicates the variable that the right-hand side is to be assigned to. The left-hand side can take 
one of the following forms, depending on whether the assignment is a continuous assignment or a 
procedural assignment. 

Statement  type Left-hand side 

continuous net (vector or scalar) 
assignment  constant bit select of a vector net  
 constant part select of a vector net 
 concatenation of any of  the above 3 

procedural register (vector or scalar) 
assignment  bit select of a vector register  
 constant part select of a vector register  
 memory element  
 concatenation of any of the above 4  

Table  5- 1: Legal left-hand side forms in assignment statements 

5.1 Continuous Assignments  

Continuous assignments drive values onto nets, both vector and scalar. The significance of the 
word “continuous” is that the assignment occurs whenever simulation causes the value of the right-
hand side to change. Continuous assignments provide a way to model combinational logic without 
specifying an interconnection of gates. Instead, the model specifies the logical expression that 
drives the net. The expression on the right-hand side of the continuous assignment is not restricted 
in any way. It can even contain a reference to a function. Thus, the result of a case statement, if 
statement, or other procedural construct can drive a net. 

The syntax for continuous assignments is as follows: 

<net_declaration>  
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::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;  
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ; 
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>? 

 <list_of_assignments> ; 

<continuous_assign>  
::= assign <drive_strength>? <delay>? <list_of_assignments> ; 

<expandrange>  
::= <range>  
||= scalared <range>  
||= vectored <range> 

<range>  
::= [ <constant_expression> : <constant_expression> ] 

<list_of_assignments>  
::= <assignment> <,<assignment>>* 

<charge_strength> 
::= ( small )  
||= ( medium )  
||= ( large ) 

<drive_strength>  
::= ( <STRENGTH0> , <STRENGTH1> ) 
||= ( <STRENGTH1> , <STRENGTH0> ) 

Syntax  5- 1: Syntax for <net_declaration> 

5.1.1 The Net Declaration Assignment 

The first two alternatives in the <net_declaration> are discussed in Chapter  3, Data Types (see 
Section 3.2.3 Declaration Syntax). The third alternative, the net declaration assignment, allows a 
continuous assignment to be placed on a net in the same statement that declares that net. The 
following is an example of the <net_declaration> form of a continuous assignment: 

wire (strong1, pull0) mynet = enable ; 

Please note: Because a net can be declared only once, only one net declaration assignment can 
be made for a particular net. This contrasts with the continuous assignment 
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statement; one net can receive multiple assignments of the continuous assignment 
form. 

5.1.2 The Continuous Assignment Statement 

The <continuous_assign> statement places a continuous assignment on a net that has been 
previously declared, either explicitly by declaration or implicitly by using its name in the terminal 
list of a gate, user-defined primitive, or module instance. The following is an example of a 
continuous assignment to a net that has been previously declared: 

assign (strong1, pull0) mynet = enable ; 

Assignments on nets are continuous and automatic. This means that whenever an operand in the 
right-hand side expression changes value during simulation, the whole right-hand side is evaluated 
and assigned to the left-hand side.  

The following is an example of the use of a continuous assignment to model a four bit adder with 
carry. Note that the assignment could not be specified directly in the declaration of the nets because 
it requires a concatenation on the left-hand side. 

module adder (sum_out, carry_out, carry_in, ina, inb) ; 
output [3:0]sum_out; 
input [3:0]ina, inb; 
output carry_out; 
input carry_in; 
wire carry_out, carry_in; 
wire[3:0] sum_out, ina, inb; 
 assign  
     {carry_out, sum_out} = ina + inb + carry_in; 
endmodule 

Example  5- 1: Use of continuous assign statement 

The following example describes a module with one 16-bit output bus. It selects between one of 
four input busses and connects the selected bus to the output bus. 

module  select_bus  (busout,  bus0,  bus1,  bus2,  bus3,  enable,  s); 
parameter  n=16; 
parameter   Zee=16'bz; 
output  [1:n  ]busout; 
input[  1:n]  bus0,  bus1,  bus2,  bus3; 
input  enable; 

Verilog HDL  LRM Assignments  •  53 



input  1:2]  s; 
tri  [1:n]  data;  // net declaration. 
tri  [1:n]  busou  t=  enable  ?  data  :  Zee; // net declaration with 
   // continuous assignment. 
assign // assignment statement with 

data  =  (s==0)  ?  bus0  :  Zee, // 4 continuous assignments. 
data  =  (s==1)  ?  bus1  :  Zee, 
data  =  (s==2)  ?  bus2  :  Zee, 
data  =  (s==3)  ?  bus3  :  Zee; 

endmodule 

Example  5- 2: Net declaration assignment and continuous assign statement 

The following sequence of events is experienced during simulation of the description in Example  
5-2: 

1. The value of s, a bus selector input variable, is checked in the assign statement; based on 
the value of s, the net data receives the data from one of the four input busses. 

2. The setting of data triggers the continuous assignment in the net declaration for busout; if 
enable is set, the contents of data are assigned to busout; if enable is clear, the contents of 
Zee are assigned to busout. 

5.1.3 Delays  

A delay given to a continuous assignment specifies the time duration between a right-hand side 
operand value change and the assignment made to the left-hand side. If the left-hand side 
references a scalar net, then the delay is treated in the same way as for gate delays—that is, 
different delays can be given for the output rising, falling and changing to high impedance (see 
Chapter  6, 6.15 Gate and Net Delays). 

If the left-hand side references a vector net, then up to three delays can also be applied. The 
following rules determine which delay controls the assignment: 

• If the right-hand side was non-zero and becomes zero, then the falling delay is used. 

• If the right-hand side becomes z, then the turn-off delay is used. 

• For other cases, the rising delay is used. 

Note that specifying the delay in a continuous assignment that is part of the net declaration is 
different from specifying a net delay and then making a continuous assignment to the net. A delay 
value can be applied to a net in a net declaration, as in the following example: 

wire #10 wireA; 
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This syntax, called a net delay, means that any value change that is to be applied to wireA by some 
other statement is delayed for ten time units before it takes effect. When there is a continuous 
assignment in a declaration, the delay is part of the continuous assignment and is not a net delay. 
Thus, it is not added to the delay of other drivers on the net. Furthermore, if the assignment is to an 
expanded vector net (a net not specified with the keyword vectored), then the rising and falling 
delays are not applied to the individual bits if the assignment is included in the declaration. 

In situations where a right-hand side operand changes before a previous change has had time to 
propagate to the left-hand side, then the latest value change is the only one to be applied. That is, 
only one assignment occurs. This effect is known as inertial delay. 

The following example implements a vector exclusive OR. The size and delay of the operation are 
controlled by parameters, which can be changed when instances of this module are created. See 
Section  12.2 Overriding Module Parameter Values for details on overriding parameter values. 

module  modxor  (axorb,  a,  b); 
 parameter  size=8,  delay=15; 
 output  [size-1:0]  axorb; 
 input  [size-1:0]  a,  b; 
 wire  [size-1:0]  #delay  axorb  =  a  ^  b; 
endmodule 

Example  5- 3: Use of delays with assignments 

5.1.4 Strength 

The driving strength of a continuous assignment can be specified by the user. This applies only to 
assignments to scalar nets of the types listed below: 

wire wand tri trireg 

 wor triand tri0 

  trior tri1 

Continuous assignments driving strengths can be specified in either a net declaration or in a stand-
alone assignment, using the assign keyword. The strength specification, if provided, must 
immediately follow the keyword (either the keyword for the net type or the assign keyword) and 
must precede any delay specified. Whenever the continuous assignment drives the net, the strength 
of the value will simulate as specified. 

A <drive_strength> specification contains one strength value that applies when the value being 
assigned to the net is 1 and a second strength value that applies when the assigned value is 0. The 
follow- ing keywords specify the strength value for an assignment of 1: 

supply1  strong1  pull1  weak1  highz1 

The following keywords specify the strength value for an assignment of 0: 
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supply0  strong0  pull0  weak0  highz0 

The order of the two strength specifications is arbitrary. The following two rules constrain the use 
of drive strength specifications: 

• The strength specifications (highz1, highz0) and (highz0, highz1) are illegal language 
constructs. 

• When the keyword vectored is specified together with a specification of strength on a 
continuous assignment, the keyword vectored is ignored. 

5.2 Procedural Assignments 

The primary discussion of procedural assignments is in Section  8.2 Procedural Assignments and 
11.1 The assign and deassign Procedural Statements. However, a description of the basic ideas here 
will highlight the differences between continuous assignments and procedural assignments. 

As stated above, continuous assignments drive nets in a manner similar to the way gates drive nets. 
The expression on the right-hand side can be thought of as a combinatorial circuit that drives the 
net continuously. In contrast, procedural assignments put values in registers. The assignment does 
not have duration; instead, the register holds the value of the assignment until the next procedural 
assignment to that register.  

Procedural assignments occur within procedures such as always, initial, task and function (these 
procedures are described in later chapters) and can be thought of as "triggered" assignments. The 
trigger occurs when the flow of execution in the simulation reaches an assignment within a 
procedure. Reaching the assignment can be controlled by conditional statements. Event controls, 
delay controls, if statements, case statements, and looping statements can all be used to control 
whether assignments get evaluated. Chapter  8, Behavioral Modeling, gives details and examples. 
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Gate and Switch Level Modeling 

6.0 Gate and Switch Level Modeling Overview 

A logic network can be modeled using continuous assignments or switches and logic gates. 
Modeling with switches and logic gates has these advantages: 

• Gates provide a much closer one to one mapping between the actual circuit and the network 
model. 

• There is no continuous assignment equivalent to the bidirectional transfer gate. 

A limitation in the use of gates and switches is that gates can only drive scalar output nets; they 
cannot drive nets declared with the keyword vectored. 

For your convenience, below is a hypertext list of the gatetype keywords: 

The <GATETYPE> Keywords 

and buf nmos tran pullup 
nand not pmos tranif0 pulldown 
nor bufif0 cmos tranif1 
or bufif1 rnmos rtran 
xor notif0 rpmos rtranif0 
xnor notif1 rcmos rtranif1 

6.1 Gate and Switch Declaration Syntax  

A gate or switch declaration names a gate or switch type and specifies its output signal strengths 
and delays. It contains one or more gate instances. Gate instances include an optional instance 
name and a required terminal connection list. The terminal connection list specifies how the gate or 
switch connects to other components in the model. All the instances contained in a gate or switch 
declaration have the same output strengths and delays. 

Syntax  6-1 presents the gate or switch declaration syntax: 

<gate_declaration>  
::=<GATETYPE><drive_strength>?<delay>?<gate_instance> 
     <,<gate_instance>>* ; 

<GATETYPE> is one of the following keywords: 
 and  nand  or  nor xor xnor  buf  bufif0 bufif1  not  notif0 notif1 pulldown  

pullupnmos  rnmos pmos rpmos cmos rcmos   tran rtran  tranif0  
rtranif0  tranif1 rtranif1 

<drive_strength>  
::= ( <STRENGTH0> , <STRENGTH1> )  
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||= ( <STRENGTH1> , <STRENGTH0> ) 

<delay> 
 ::= # <number> 
||= # <identifier>  
||= # ( <mintypmax_expression> <,<mintypmax_expression>>? 

<,<mintypmax_expression>>?) 

<gate_instance>  
::= <name_of_gate_instance>? ( <terminal> <,<terminal>>* ) 

<name_of_gate_instance>  
::= <IDENTIFIER> 

<terminal>  
::= <IDENTIFIER>  
||= <expression>  

Syntax  6- 1: Syntax for gate instantiation 

This section describes the following parts of a gate or switch declaration: 

• the keyword that names the type of gate or switch primitive  

• the drive strength specification 

• the delay specification 

• the identifier that names each gate or switch instance in gate or switch declarations 

• the terminal connection list in primitive gate or switch instances 

The gate type specification 

A gate declaration begins with the GATETYPE keyword. The keyword specifies the gate or switch 
primitive that is used by the instances that follow in the declaration. Table  6-1 lists the keywords 
that can begin a gate or switch declaration. 

The <GATETYPE> Keywords 

and buf nmos tran pullup 
nand not pmos tranif0 pulldown 
nor bufif0 cmos tranif1 
or bufif1 rnmos rtran 
xor notif0 rpmos rtranif0 
xnor notif1 rcmos rtranif1 
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Table  6- 1: Keywords for the <GATETYPE> syntax item 

Explanations of the keywords in Table  6-1 begin in Section 6.2 and, nand, nor, or, xor, and xnor 
Gates. 

The drive strength specification 

The drive strength specifications specify the strengths of the values on the output terminals of the 
instances in the gate declaration. It is possible to specify the strength of the output signals from the 
gate primitives in Table  6-2.   

 Gate Types That Support Driving Strength 

and nor xor bufif1 
nand buf xnor notif1 
or not bufif0 pullup 
  notif0 pulldown 

Table  6- 2: Gate types that accept strength specifications 

The drive strength specification in Syntax  6-1 has two parts. A gate declaration must contain both 
parts or no parts, with the exception of pullup and pulldown sources. One of the parts specifies the 
strength of signals with a value of 1, and the other specifies the strength of signals with a value of 
0. 

The STRENGTH1 specification, which specifies the strength of an output signal with a value of 1, 
is one of the following keywords: 

supply1 strong1 pull1 weak1 highz1 

Specifying highz1 causes the gate to output a logic value of Z in place of a 1. 

The STRENGTH0 specification, which specifies the strength of an output signal with a value of 0, 
is one of the following: 

supply0 strong0 pull0 weak0 highz0 

Specifying highz0 causes the gate to output a logic value of Z in place of a 0. 

The strength specifications must follow the gate type keyword and precede any delay specification. 
The STRENGTH0 specification can precede or follow the STRENGTH1 specification. In the 
absence of a strength specification, the instances have the default strengths strong1 and strong0. 

The strength specifications (highz0, highz1) and (highz1, highz0) are invalid: 
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The following example shows a drive strength specification in a declaration of an open collector 
nor gate: 

nor(highz1,strong0)(out1,in1,in2); 

In this example, the nor gate outputs a Z in place of a 1. 

Sections 6.10 Logic Strength Modeling through 6.12 Strength Reduction by Non-Resistive Devices 
discuss logic strength modeling in more detail. 

The delay specification 

The delay specifies the propagation delay through the gates and switches in a declaration. Gates 
and switches in declarations with no delay specification have no propagation delay. A delay 
specification can contain up to three delay values, depending on its gate type. Section 6.2 and, 
nand, nor, or, xor, and xnor Gates begins discussions of each type of gate that detail the applicable 
delays. Section 6.15 Gate and Net Delays discusses delays in more detail. pullup and pulldown 
source declarations do not include delay specifications.   

The primitive instance identifier 

The IDENTIFIER in Syntax  6-1 is an optional name given to a gate or switch instance. The name 
is useful in tracing the operation of the circuit during debugging.   

Primitive instance connection list 

The <terminal>s at the end of Syntax  6-1 are the terminal list. The terminal list describes how the 
gate or switch connects to the rest of the model. The gate or switch type limits these expressions. 
The output or bidirectional terminals always come first in the terminal list, followed by the input 
terminals.  

6.2 and, nand, nor, or, xor, and xnor Gates  

Declarations of these gates begin with one of these keywords:  

and  nand  nor  or  xor  xnor  

The delay specification can be zero, one, or two delays. If there is no delay, there is no delay 
through the gate. One delay specifies the delays for all output transitions. If the specification 
contains two delays, the first delay determines the rise delay, the second delay determines the fall 
delay, and the smaller of the two delays applies to transitions to X and Z. 

These six gates have one output and one or more inputs. The first terminal in the terminal list 
connects to the gate’s output and all other terminals connect to its inputs. 

The truth tables for these gates, showing the result of two input values, appear in Table  6-3.  
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Table  6- 3: Logic tables for and, nand, or, nor, xor, and xnor gates 

Versions of these six gates having more than two inputs behave identically with cascaded 2-input 
gates in producing logic results, but the number of inputs does not alter propagation delays. 

The following example declares a two input and gate: 

and (out,in1,in2); 

The inputs are in1 and in2. The output is out. 

6.3 buf and not Gates  

Declarations of these gates begin with one of the following keywords:  

buf  not 

The delay specification can be zero, one, or two delays. If there is no delay, there is no delay 
through the gate. One delay specifies the delays for all output transitions. If the specification 
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contains two delays, the first delay determines the rise delay, the second delay determines the fall 
delay, and the smaller of the two delays applies to transitions to X. 

These two gates have one input and one or more outputs. The last terminal in the terminal list 
connects to the gate’s input, and the other terminals connect outputs.  

Truth tables for versions of these gates with one input and one output appear in Table  6-4. 

 

Table  6- 4: Logic tables for buf and not gates 

The following example declares a two output buf: 

buf (out1,out2,in); 

The input is in. The outputs are out1 and out2. 

6.4 bufif1, bufif0, notif1, and notif0 Gates  

Declarations of these gates begin with one of the following keywords: 

bufif0  bufif1  notif1  notif0  

A strength specification follows the keyword and a delay specification follows the strength 
specification. The next item is the optional identifier. A terminal list completes the declaration.  

These four gates model three-state drivers. In addition to values of 1 and 0, these gates output Z. 

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no delay 
through the gate. One delay specifies the delay of all transitions. If the specification contains two 
delays, the first delay determines the rise delay, the second delay determines the fall delay, and the 
smaller of the two delays specifies the delay of transitions to X and Z. If the specification contains 
three delays, the first delay determines the rise delay, the second delay determines the fall delay, 
the third delay determines the delay of transitions to Z, and the smallest of the three delays applies 
to transitions to X.  
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Some combinations of data input values and control input values cause these gates to output either 
of two values, without a preference for either value. These gates’ logic tables include two symbols 
representing such unknown results. The symbol L represents a result which has a value of 0 or Z. 
The symbol H represents a result which has a value of 1 or Z. Delays on transitions to H or L are the same 
as delays on transitions to X. 

These four gates have one output, one data input, and one control input. The first terminal in the terminal list 
connects to the output, the second connects to the data input, and the third connects to the control input. 

Table  6-5 presents these gates’ logic tables:  

 

 

Table  6- 5: Logic tables for bufif0, bufif1, notif0, and notif1 gates 

The following example declares a bufif1: 

bufif1 (outw, inw, controlw); 

The output is outw, the input is inw, and the control is controlw. 

6.5 MOS Switches 

Models of MOS networks consist largely of the following four primitive types: 

nmos  pmos rnmos  rpmos  
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The pmos keyword stands for PMOS transistor and the nmos keyword stands for NMOS transistor. 
PMOS and NMOS transistors have relatively low impedance between their sources and drains when they 
conduct. The rpmos keyword stands for resistive PMOS transistor and the rnmos keyword stands for 
resistive NMOS transistor. Resistive PMOS and resistive NMOS transistors have significantly higher 
impedance between their sources and drains when they conduct than PMOS and NMOS transistors have. 
The load devices in static MOS networks are examples of rpmos and rnmos gates. These four gate types are 
unidirectional channels for data similar to the bufif gates. 

Declarations of these gates begin with one of the following keywords: 

pmos  nmos  rpmos rnmos 

A delay specification follows the keyword. The next item is the optional identifier. A terminal list 
completes the declaration.  

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no delay 
through the switch. A single delay determines the delay of all output transitions. If the specification 
contains two delays, the first delay determines the rise delay, the second delay determines the fall 
delay, and the smaller of the two delays specifies the delay of transitions to Z and X. If there are 
three delays, the first delay specifies the rise delay, the second delay specifies the fall delay, the 
third delay determines the delay of transitions to Z, and the smallest of the three delays applies to 
transitions to X. Delays on transitions to H and L are the same as delays on transitions to X. 

These four switches have one output, one data input, and one control input. The first terminal in the 
terminal list connects to the output, the second terminal connects to the data input, and the third 
terminal connects to the control input.  

The nmos and pmos switches pass signals from their inputs and through their outputs with a change 
in the signals’ strengths in only one case, discussed in Section 6.12 Strength Reduction by Non-
Resistive Devices. The rnmos and rpmos gates reduce the strength of signals that propagate 
through them, as discussed in Section 6.13 Strength Reduction by Resistive Devices. 

Some combinations of data input values and control input values cause these switches to output 
either of two values, without a preference for either value. These switches’ logic tables include two 
symbols representing such unknown results. The symbol L represents a result which has a value of 
0 or Z. The symbol H represents a result which has a value of 1 or Z.  

Table  6-6 presents these switches’ logic tables: 

 

Verilog HDL  LRM Gate and Switch Level Modeling  •  64 



Table  6- 6: Logic tables for pmos, rpmos, nmos, and rnmos gates 

The following example declares a pmos switch: 

pmos (out,data,control); 

The output is out, the data input is data, and the control input is control. 

6.6 Bidirectional Pass Switches 

Declarations of these devices begin with one of the following keywords: 

tran  tranif1  tranif0 

rtran rtranif1  rtranif0 

A delay specification follows the keywords in declarations of tranif1, tranif0, rtranif1, and rtranif0; 
the tran and rtran devices do not take delays. The next item is the optional identifier. A terminal list 
completes the declaration. 

The delay specifications for tranif1, tranif0, rtranif1, and rtranif0 devices can be zero, one, or two 
delays. If there is no delay, the device has no turn-on or turn-off delay. If the specification contains 
one delay, that delay determines both turn-on and turn-off delays. If there are two delays, the first 
delay specifies the turn-on delay, and the second delay specifies the turn-off delay.  

These six devices do not delay signals propagating through them. When these devices are turned 
off they block signals, and when they are turned on they pass signals.  

The tranif1, tranif0, rtranif1, and rtranif0 devices have three items in their terminal lists. Two are 
bidirectional terminals that conduct signals to and from the devices, and the other terminal 
connects to a control input. The terminals connected to inouts precede the terminal connected to the 
control input in the terminal list. 

The tran and rtran devices have terminal lists containing two bidirectional terminals. 

The bidirectional terminals of all six of these devices connect only to scalar nets or bit selects of 
expanded vector nets. 

The tran, tranif0, and rtranif1 devices pass signals with an alteration in their strength in only one 
case, discussed in Section 6.12 Strength Reduction by Non-Resistive Devices. The rtran, rtranif0, 
and rtranif1 devices reduce the strength of signals passing through them according to rules 
discussed in Section 6.13 Strength Reduction by Resistive Devices. 

The following example declares a tranif1: 

tranif1 (inout1,inout2,control); 
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The bidirectional terminals are inout1 and inout2. The control input is control. 

6.7 cmos Gates 

Declarations of these gates begins with one of these keywords:  

cmos rcmos 

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no delay 
through the gate. A single delay specifies the delay for all transitions. If the specification contains 
two delays, the first delay determines the rise delay, the second delay determines the fall delay, and 
the smaller of the two delays is the delay of transitions to Z and X. If the specification contains 
three delays, the first delay controls rise delays, the second delay controls fall delays, the third 
delay controls transitions to Z, and the smallest of the three delays applies to transitions to X. 
Delays in transitions to H or L are the same as delays in transitions to X. 

The cmos and rcmos gates have a data input, a data output, and two control inputs. In the terminal 
list, the first terminal connects to the data output, the second connects to the data input, the third 
connects to the n-channel control input, and the last connects to the p-channel control input. 

The cmos gate passes signals with an alteration in their strength in only one case, discussed in 
subsection 6.12 Strength Reduction by Non-Resistive Devices. The rcmos gate reduces the strength 
of signals passing through it according to rules that appear in Section 6.13 Strength Reduction by 
Resistive Devices.  

The cmos gate is the combination of a pmos gate and an nmos gate. The rcmos gate is the 
combination of an rpmos gate and an rnmos gate. The combined gates in these configurations share 
data input and data output terminals, but they have separate control inputs. 

The equivalence of the cmos gate to the pairing of an nmos gate and a pmos gate is detailed in the 
following explanation: 

cmos (w, datain, ncontrol, pcontrol); 

is equivalent to: 

nmos (w, datain, ncontrol); 

pmos (w, datain, pcontrol); 

6.8 pullup and pulldown Sources 

Declarations of these sources begin with one of the following keywords: 

pullup pulldown 
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A strength specification follows the keyword, and an optional identifier follows the strength 
specification. A terminal list completes the declaration.  

A pullup source places a logic value of 1 on the nets listed in its terminal list. A pulldown source 
places a logic value of 0 on the nets listed in its terminal list. The signals that these sources place 
on nets have pull strength in the absence of a strength specification. There are no delay 
specifications for these sources because the signals they place on nets continue throughout 
simulation without variation.  

The following example declares two pullup instances: 

pullup (strong1)(neta),(netb); 

In this example, one gate instance drives neta and the other drives netb. 

6.9 Implicit Net Declarations  

Including a previously unused identifier in a terminal list implicitly declares a new net of the wire 
type with zero delay. 

Each implicitly declared net must connect to one or more of the following: 

• gate output 

• tranif bidirectional terminal 

• module output port 

 

Refer to Section C.2 `default_nettype for a discussion of the compiler directive 
‘default_nettype.                           

6.10 Logic Strength Modeling  

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, 
resistive MOS devices, dynamic MOS, charge sharing, and other technology dependent network 
configurations by allowing scalar net signal values to have a full range of unknown values and 
different levels of strength or combinations of levels of strength. This multiple level logic strength 
modeling resolves combinations of signals into known or unknown values to represent the behavior 
of hardware with maximum accuracy. 

A strength specification has two components: 

1. the strength of the 0 portion of the net value, designated <STRENGTH0> in Syntax  6-1 

2. the strength of the 1 portion of the net value, designated <STRENGTH1> in Syntax  6-1 
Despite this division of the strength specification, it is helpful to consider strength as a property 
occupying regions of a continuum in order to predict the results of combinations of signals. 
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Table  6-7 demonstrates the continuum of strengths in the Verilog HDL. The left column lists the 
keywords used in specifying strengths. The right column gives correlated strength levels: 

strength name strength level  

supply0  7  
strong0 6 
pull0  5  
large0  4  
weak 3  
medium0 2  
small0 1  
highz0 0 
highz1  0 
small1  1 
medium1  2 
weak1  3 
large1 4 
pull1  5 
strong1  6 
supply1 7 

Table  6- 7: Strength levels for scalar net signal values 

In the preceding table there are four driving strengths: 

supply  strong  pull  weak  

Signals with driving strengths propagate from gate outputs and continuous assignment outputs. 

In the preceding table there are three charge storage strengths: 

large  medium  small  

Signals with the charge storage strengths originate in the trireg net type. 

It is possible to think of the strengths of signals in the preceding table as locations on the scale in 
Figure  6-1. 
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Figure  6- 1: Scale of strengths 

Discussions of signal combinations later in this document will employ graphics similar to Figure  
6-1. 

If a net signal value is known, its strength levels are all in either the 0 strength part of the scale 
represented by Figure  6-1, or they are all in its 1 strength part. If a net signal value is unknown, it 
has strength levels in both the 0 strength and the 1 strength parts. A signal with a value of Z has a 
strength level only in one of the 0 subdivisions of the parts of the scale. 

6.11 Strengths and Values of Combined Signals 

In addition to a value, a signal has either a single unambiguous strength level or it has an 
ambiguous strength, consisting of more than one level. When signals combine, their strengths and 
values determine the strength and value of the resulting signal in accord with the principles in the 
four subsections that follow. 

6.11.1 Combined Signals of Unambiguous Strength 

This subsection deals with combinations of signals in which each signal has a known value and a 
single strength level. 

If two signals of unequal strength combine in a wired net configuration, the stronger signal is the 
result. This case appears in Figure  6-2. 

  

Figure  6- 2: Combining unequal strengths 

In Figure  6-2, the numbers in parentheses indicate the relative strengths of the signals. The 
combination of a pull 1 and a strong 0 results in a strong 0, which is the stronger of the two signals. 
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The combination of two signals of like value results in the same value with the greater of the two 
strengths. 

The combination of signals identical in strength and value results in the same signal. 

The combination of signals with unlike values and the same strength has three possible results. 
Two of the results occur in the presence of wired logic and the third occurs in its absence. 
Subsection 6.11.4 Wired Logic Net Types discusses wired logic. The result in the absence of wired 
logic is the subject of the first figure in the next subsection. 

6.11.2 Ambiguous Strengths: Sources and Combinations 

There are several classifications of signals possessing ambiguous strengths: 

• signals with known values and multiple strength levels 

• signals with a value of X, which have strength levels consisting of subdivisions of both the 
strength 1 and the strength 0 parts of the scale of strengths in Figure  6-1 

• signals with a value of L, which have strength levels that consist of high impedance joined 
with strength levels in the 0 strength part of the scale of strengths in Figure  6-1 

• signals with a value of H, which have strength levels that consist of high impedance joined 
with strength levels in the 1 strength part of the scale of strengths in Figure  6-1 

Many configurations can produce signals of ambiguous strength. When two signals of equal 
strength and opposite value combine, the result has a value of X and the strength levels of both 
signals and all the smaller strength levels. Figure  6-3 shows the combination of a weak signal with 
a value of 1 and a weak signal with a value of 0 yielding a signal with weak strength and a value of 
X.  

 

Figure  6- 3: Combination of signals of equal strength and opposite values 

This signal is described in Figure  6-4. 

 

Figure  6- 4: Weak X signal strength 
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An ambiguous signal strength can be a range of possible values. An example is the strength of the 
output from the tristate drivers with unknown control inputs in Figure  6-5.  

 

Figure  6- 5: Bufifs with control inputs of X 

The output of the bufif1 in Figure  6-5 is a strong H, composed of the range of values described in Figure  
6-6. 

 

Figure  6- 6: Strong H range of values 

The output of the bufif0 in Figure  6-5 is a weak L, composed of the range of values described in Figure  
6-7. 

 

Figure  6- 7: Weak L range of values 

The combination of two signals of ambiguous strength results in a signal of ambiguous strength. 
The resulting signal has a range of strength levels that includes the strength levels in its component 
signals. The combination of outputs from two tristate drivers with unknown control inputs, shown 
in Figure  6-8, is an example. 
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Figure  6- 8: Combined signals of ambiguous strength 

In Figure  6-8, the combination of signals of ambiguous strengths produces a range which includes 
the extremes of the signals and all the strengths between them, as described in Figure  6-9. 

 

Figure  6- 9: An unknown signal’s range of strengths 

The result is an X because its range includes the values of 1 and 0. The number 35, which precedes 
the X, is a concatenation of two digits. The first is the digit 3, which corresponds to the highest 
strength level for the result’s value of 0. The second digit, 5, corresponds to the highest strength 
level for the result’s value of 1.  

Switch networks can produce a ranges of strengths of the same value, such as the signals from the 
upper and lower configurations in Figure  6-10. 
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Figure  6- 10: Ambiguous strengths from switch networks 

In Figure  6-10, the upper combination of a register, a gate controlled by a register of unspecified 
value, and a pullup produces a signal with a value of 1 and a range of strengths (651) described in 
Figure  6-11. 

 

Figure  6- 11: Range of two strengths of a defined value 

In Figure  6-10 the lower combination of a pulldown, a gate controlled by a register of unspecified 
value, and an and gate produces a signal with a value of 0 and a range of strengths (530) described 
in Figure  6-12. 

 

Figure  6- 12: Range of three strengths of a defined value 

When the signals from the upper and lower configurations in Figure  6-10 combine, the result is an 
unknown with a range (56X) determined by the extremes of the two signals shown in Figure  6-13. 

 

Figure  6- 13: Unknown value with a range of strengths 

In Figure  6-10, replacing the pulldown in the lower configuration with a supply0 would change the 
range of the result to the range (StX) described in Figure  6-14. 
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Figure  6- 14: Strong X range 

The range in Figure  6-14 is strong X, because it is unknown and both of its components’ extremes 
are strong. The extreme of the output of the lower configuration is strong because the lower pmos 
reduces the strength of the supply0 signal. Section 6.12 discusses this modeling feature. 

Logic gates produce results with ambiguous strengths as well as tristate drivers. Such a case 
appears in Figure  6-15. 

 

Figure  6- 15: Ambiguous strength from gates 

In Figure  6-15, register b has an unspecified value, so its input to the upper and gate is strong X. 
The upper and gate has a strength specification including highz0. The signal from the upper and 
gate is a strong H composed of the values described in Figure  6-16. 

 

Figure  6- 16: Ambiguous strength signal from a gate 

HiZ0 is part of the result, because the strength specification for the gate in question specified that 
strength for an output with a value of 0. A strength specification other than high impedance for the 
0 value output results in a gate output of X. The output of the lower and gate is a weak 0 described 
in Figure  6-17. 
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Figure  6- 17: Weak 0 

When the signals combine, the result is the range (36X) described in Figure  6-18. 

 

Figure  6- 18: Ambiguous strength in combined gate signals 

This figure presents the combination of an ambiguous signal and an unambiguous signal. Such 
combinations are the topic of the next subsection of this document. 

6.11.3 Ambiguous Strength Signals and Unambiguous Signals 

The combination of a signal with unambiguous strength and known value with another signal of 
ambiguous strength presents several possible cases. To understand a set of rules governing this 
type of combination, it is necessary to consider the strength levels of the ambiguous strength signal 
separately from each other and relative to the unambiguous strength signal. When a signal of 
known value and unambiguous strength combines with a component of a signal of ambiguous 
strength, these are the effects: 

Rule 1: 

The strength levels of the ambiguous strength signal that are greater than the strength level of the 
unambiguous signal remain in the result. 

Rule 2: 

The strength levels of the ambiguous strength signal that are smaller than or equal to the strength 
level of the unambiguous signal disappear from the result, subject to Rule 3. 

Rule 3: 

If the operation of Rule 1 and Rule 2 results in a gap in strength levels because the signals are of 
opposite value, the signals in the gap are part of the result. 

The following figures show some applications of the rules. 
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Figure  6- 19: Elimination of strength levels 

In Figure  6-19, the strength levels in the ambiguous strength signal that are smaller than or equal 
to the strength level of the unambiguous strength signal disappear from the result, demonstrating 
Rule 2. 

 

Figure  6- 20: Result demonstrating a range and the elimination of strength levels of two 
values 
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In Figure  6-20, Rule 1, Rule 2, and Rule 3 apply. The strength levels of the ambiguous strength 
signal that are of opposite value and lesser strength than the unambiguous strength signal disappear 
from the result. The strength levels in the ambiguous strength signal that are less than the strength 
level of the unambiguous strength signal, and of the same value, disappear from the result. The 
strength level of the unambiguous strength signal and the greater extreme of the ambiguous 
strength signal define a range in the result. 

 

Figure  6- 21: Result demonstrating a range and the elimination of strength levels of one 
value 

In Figure  6-21, Rule 1 and Rule 2 apply. The strength levels in the ambiguous strength signal that 
are less than the strength level of the unambiguous strength signal disappear from the result. The 
strength level of the unambiguous strength signal and the strength level at the greater extreme of 
the ambiguous strength signal define a range in the result. 
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Figure  6- 22: A range of both values 

In Figure  6-22, Rule 1, Rule 2, and Rule 3 apply. The greater extreme of the range of strengths for 
the ambiguous strength signal is larger than the strength level of the unambiguous strength signal. 
The result is a range defined by the greatest strength in the range of the ambiguous strength signal 
and by the strength level of the unambiguous strength signal. 

6.11.4 Wired Logic Net Types 

The net types triand, wand, trior, and wor resolve conflicts when multiple drivers are at the same 
level of strength. These net types resolve signal values by treating signals as inputs of logic 
functions.  

For example, consider the combination of two signals of unambiguous strength in Figure  6-23. 
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Figure  6- 23: Wired logic with unambiguous strength signals 

The combination of the signals in Figure  6-23, using wired AND logic, produces a result with the 
same value as the result produced by an AND gate with the two signals’ values as its inputs. The 
combination of signals using wired OR logic produces a result with the same value as the result 
produced by an OR gate with the two signals’ values as its inputs. The strength of the result is the 
same as the strength of the combined signals in both cases. If the value of the upper signal changes 
so that both signals in Figure  6-23 possess a value of 1, then the results of both types of logic have 
a value of 1. 

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of 
all combinations of each of the strength levels in the first signal with each of the strength levels in 
the second signal, as shown in Figure  6-24. 

 

Figure  6- 24: Wired logic and ambiguous strengths 
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6.12 Strength Reduction by Non-Resistive Devices 

The nmos, pmos, and cmos gates pass through the strength from the data input to the output, except 
that a supply strength is reduced to a strong strength. 

The tran, tranif0, and tranif1 gates do not affect signal strength across the bidirectional terminals, 
except that a supply strength is reduced to a strong strength. 

6.13 Strength Reduction by Resistive Devices 

The rnmos, rpmos, rcmos, rtran, rtranif1, and rtranif0 devices reduce the strength of signals that 
pass through them according to Table  6-8. 

input strength reduced strength 

supply drive pull drive 
strong drive pull drive 
pull drive weak drive 
weak drive medium capacitor 
large capacitor medium capacitor 
medium capacitor small capacitor 
small capacitor small capacitor 
high impedance high impedance 

Table  6- 8: Strength reduction rules 

6.14 Strengths of Net Types 

The tri0, tri1, supply0, and supply1 net types generate signals with specific strength levels. The 
trireg declaration can specify either of two signal strength levels other than a default strength level. 

6.14.1 tri1 Net Strengths 

The tri0 net type models a net connected to a resistive pulldown device. Its signal has a value of 0 
and a pull strength in the absence of an overriding source. The tri1 net type models a net connected 
to a resistive pullup device: its signal has a value of 1 and a pull strength in the absence of an 
overriding source.tri0 and  

6.14.2 trireg Strength 

The trireg net type models charge storage nodes. The strength of the drive resulting from a trireg 
net that is in the charge storage state (that is, a driver charged the net and then went to high 
impedance) is one of these three strengths: large, medium, or small. The specific strength 
associated with a particular trireg net is specified by the user in the net declaration. The default is 
medium. The syntax of this specification is described in Section 3.4.1 Charge Strength3.4.1. 
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6.14.3 supply0 and supply1 Net Strengths 

The supply0 net type models ground connections. The supply1 net type models connections to 
power supplies. The supply0 and supply1 net types have supply driving strengths. 

6.15 Gate and Net Delays  

Gate and net delays provide a means of accurately describing delays through a circuit. The gate 
delays specify the signal propagation delay from any gate input to the gate output. Up to three 
values per output can be specified. The descriptions in this chapter of each gate type give the rules 
for which gates can take how many delays—see Section 6.2 and, nand, nor, or, xor, and xnor Gates 
through Section 6.7 cmos Gates. 

Net delays refer to the time it takes from any driver on the net changing value to the time when the 
net value is updated and propagated further. Up to three delay values per net can be specified. 

For both gates and nets, the default delay is zero when no delay specification is given. When one 
delay value is given, then this value is used for all propagation delays associated with the gate or 
net. The following is an example of a delay specification with one delay: 

and #(10) (out, in1, in2); 

The following is an example of a delay specification with two delays: 

and #(10,  12) (out, in1, in2); 

When two delays are given, the first specifies the rise delay and the second specifies the fall delay. 
The delay when the signal changes to high impedance or to unknown is the lesser of the two delay 
values. 

The following is an example of a delay specification with three delays: 

and #(10,  12,  11) (out, in1, in2); 

For  a  three  delay  specification: 

• the first delay  refers  to  the  transition  to  the  1  value  (rise delay) 

• the second delay refers to the transition to the 0 value (fall delay) 

• the third delay refers to the transition to the high impedance value 

When a value changes to the unknown (X) value, the delay is the smallest of the three delays.  

Table  6-9 summarizes the from-to propagation delay choice for the two and three delay 
specifications. 
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 delay used if there are: 
from value: to value: 2 delays 3 delays 

0    1 d1 d1 
0    x min(d1, d2) min(d1, d2, d3) 
0    z min(d1, d2) d3 
1    0 d2 d2 
1    x min(d1, d2) min(d1, d2, d3) 
1    z min(d1, d2) d3 
x    0 d2 d2 
x    1 d1 d1 
x    z min(d1, d2) d3 
z    0 d2 d2 
z    1 d1 d1 
z    x min(d1, d2) min(d1, d2, d3) 

Table  6- 9: Rules for propagation delays 

The following example specifies a simple latch module with tri-state outputs, where individual 
delays are given to the gates. The propagation delay from the primary inputs to the outputs of the 
module will be cumulative, and depends on the signal path through the network. 

module  tri_latch  (qout,  nqout,  clock  ,data,  enable); 
output  qout,  nqout; 
input  clock,  data,  enable; 
tri  qout,  nqout; 
not  #5 

(ndata,  data); 
nand  #(3,5) 

(wa,  data,  clock), 
(wb,  ndata,  clock); 

nand  #(12,15) 
(q,  nq,  wa), 
(nq,  q,  wb); 

bufif1  #(3,7,13) 
q_drive  (qout,  q,  enable), 
nq_drive  (nqout,  nq,  enable); 

endmodule 

Example  6- 1: Using delay values 
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6.15.1 min/typ/max Delays 

The syntax for delays on gate primitives (including User-Defined Primitives), nets, and continuous 
assignments allows three values each for the rising, falling, and turn-off delays. The minimum, 
typical, and maximum values for each are specified as constant expressions separated by colons. 
The following example shows min/typ/max values for rising, falling, and turn-off delays: 

module iobuf(io1, io2, dir); 
• . 

• . 

• . 

 bufif0 #(5:7:9, 8:10:12, 15:18:21) (io1, io2, dir); 
 bufif1 #(6:8:10, 5:7:9, 13:17:19) (io2, io1, dir); 

• . 

• . 

• . 

endmodule 

Example  6- 2: Syntax example for delay expressions 

Tools typically default to one set of delay values (usually the typical set) for the processing of one 
model. A tool may or may not allow the user to select one set for a processing run. 

The syntax for delay controls in procedural statements also allows minimum, typical, and 
maximum values. These are specified by expressions separated by colons. Example  6-3 illustrates 
this concept. 

parameter 
 min_hi = 97, typ_hi = 100, max_hi = 107; 
reg clk; 
always 
 begin 
  #(95:100:105) clk = 1; 
  #(min_hi:typ_hi:max_hi) clk = 0; 
 end  

Example  6- 3: Delay controls in procedural statements 

6.15.2 trireg Net Charge Decay 

Like all nets, a trireg declaration’s delay specification can contain up to three delays. The first two 
delays specify the simulation time that elapses in a transition to the 1 and 0 logic states when the 
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trireg is driven to these states by a driver. The third delay specifies the charge decay time instead of 
the time that elapses in a transition to the z logic state. The charge decay time specifies the 
simulation time that elapses between when a trireg’s drivers turn off and when its stored charge can 
no longer be determined. 

A trireg needs no turn-off delay specification because a trireg never makes a transition to the z 
logic state. When a trireg’s drivers make transitions from the 1, 0, or x logic states to off, the trireg 
retains the previous 1, 0, or x logic state that was on its drivers. The z value does not propagate 
from a trireg’s drivers to a trireg. A trireg can only hold a z logic state when z is the trireg’s initial 
logic state or when it is forced to the z state with a force statement. 

A delay specification for charge decay models a charge storage node that is not ideal, a charge 
storage node whose charge leaks out through its surrounding devices and connections. 

This section describes the charge decay process and the delay specification for charge decay. 

The charge decay process 

Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg to an unknown value (x) 
after a specified number of time units. The charge decay time is that specified number of time 
units. 

The charge decay process begins when the trireg’s drivers turn off and the trireg starts to hold 
charge. The charge decay process ends under the following two conditions: 

1. The specified number of time units elapse and the trireg makes a transition from 1 or 0 to x. 

2. The trireg’s drivers turn on and propagate a 1, 0 or x into the trireg. 

The delay specification for charge decay time 

The third delay in a trireg declaration specifies the charge decay time. A three-valued delay 
specification in a trireg declaration has the following form: 

#(d1,  d2,  d3) 

//  three  delays 

//(rising_delay,falling_delay,charge_decay_time) 

The specification in a trireg declaration of the charge decay time must be preceded by a rise and 
fall delay specification. The following example shows a specification of the charge decay time in a 
trireg declaration: 

trireg (large) #(0,0,50) cap1; 

This example declares a trireg with the identifier cap1. This trireg stores a large charge. The delay 
specifications for the rise delay is 0, the fall delay is 0, and the charge decay time specification is 
50 time units. 
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Example  6-4 presents a source description file that contains a trireg declaration with a charge 
decay time specification. Figure  6-25 assists you in reading the source description file. 

 

Figure  6- 25: This figure accompanies the example below 

  

Example  6- 4: Trireg with a charge decay 
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User-Defined Primitives (UDPs) 

7.0 UDP Overview 

This chapter describes a modeling technique whereby the user can effectively augment the set of 
predefined gate primitives by designing and specifying new primitive elements called user-defined 
primitives (UDPs). Instances of these new UDPs can then be used in exactly the same manner as 
the gate primitives to represent the circuit being modeled.  

The following two types of behavior can be represented in a user-defined primitive: 

• combinational—modeled by a combinational UDP 

• sequential—modeled by a sequential UDP 

A sequential UDP uses the value of its inputs and the current value of its output to determine the 
next value of its output. Sequential UDPs    provide an easy way to model sequential circuits such 
as flip-flops and latches. A sequential UDP can model both level-sensitive and edge-sensitive 
behavior. 

Implementation Specific Detail:  In sources compatible with some existing tools the number of 
inputs of each user-defined primitive may be limited by the 
implementation. 

Each UDP has exactly one output, which can be in one of three states: 0, 1, or x. The tri-state value 
z is not supported. In sequential UDPs, the output always has the same value as the internal state.  

Implementation Specific Detail:  The maximum number of UDPs that a user can define in a 
model may be limited by the implementation. 

7.1 Syntax  

The  formal  syntax  of  the  UDP definition  is  as  follows: 

<UDP> 
::=primitive<name_of_UDP>(<output_terminal_name>, 
<input_terminal_name> <,<input_terminal_name>>*); 
<UDP_declaration>+ 
<UDP_initial_statement>? 
<table_definition> 
endprimitive 

<name_of_UDP> 
::=<IDENTIFIER> 

<UDP_declaration> 
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::=<UDP_output_declaration> 
||=<reg_declaration> 
||=<UDP_input_declaration> 

<UDP_output_declaration> 
::= output <output_terminal _name>; 

<reg_declaration> 
reg <output_terminal_name> ; 

<UDP_input_declaration> 
::= input <input_terminal _name> 

 <,<input_terminal_name>>*); 

<UDP_initial_statement> 
::= initial <output_terminal_name> = <init_val> ; 

<init_val> 
::= 1'b0 
||= 1'b1 
||= 1'bx 
||= 1 
||= 0 

<table_definition> 
::=table 
<table_entries> 
endtable 

<table_entries> 
::=<combinational_entry>+ 
||=<sequential_entry>+ 

<combinational_entry> 
::=<level_input_list>:<OUTPUT_SYMBOL>; 

<sequential_entry> 
::=<input_list>:<state>:<next_state>; 

<input_list> 
::=<level_input_list> 
||=<edge_input_list> 

<level_input_list> 
::=<LEVEL_SYMBOL>+ 
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<edge_input_list> 
::=<LEVEL_SYMBOL>*<edge><LEVEL_SYMBOL>* 

<edge> 
::=(<LEVEL_SYMBOL><LEVEL_SYMBOL>) 
||=<EDGE_SYMBOL> 

<state> 
::=<LEVEL_SYMBOL> 

<next_state> 
::=<OUTPUT_SYMBOL> 
||=-    (This is a literal hyphen,  

see Section 7.12 Summary of Symbols for more details) 

Lexical tokens: 
<OUTPUT_SYMBOL>  is one of the following: 
0 1 x X 
<LEVEL_SYMBOL>  is  one of the following: 
0 1 x X ? b B 
<EDGE_SYMBOL>  is one of the following: 
r R f F p P n N * 

Syntax 7- 1: Syntax for user-defined primitivess 

7.2 UDP Definition  

UDP definitions are independent of modules; they are at the same level as module definitions in the 
syntax hierarchy. They can appear anywhere in the source text, either before or after they are used 
inside a module. They MAY NOT appear between the keywords module and endmodule. 

A UDP definition begins with the keyword primitive. This is followed by an identifier, which is the 
name of the UDP. This in turn is followed by a comma separated list of terminals enclosed in 
parentheses, which is followed by a semicolon.  

The UDP definition header described previously is followed by terminal declarations and a state 
table. The UDP definition is terminated by the keyword endprimitive. 

7.2.1 UDP Terminals 

UDPs have multiple input terminals and exactly one output terminal; they cannot have 
bidirectional inout terminals.  

The output terminal MUST be the first terminal in the terminal list. 

All UDP terminals are scalar. No vector terminals are allowed. 
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The output terminal of a sequential UDP requires an additional declaration as type reg. It is illegal 
to declare a reg for the output terminal of a combinational UDP. 

7.2.2 UDP Declarations 

UDPs must contain input and output terminal declarations. The output terminal declaration begins 
with the keyword output, followed by one output terminal name. The input terminal declaration 
begins with the keyword input, followed by one or more input terminal names. 

Sequential UDPs must contain a reg declaration for the output terminal. Combinational UDPs 
cannot contain a reg declaration. The initial value of the output terminal reg can be specified in an 
initial statement in a sequential UDP. 

7.2.3 Sequential UDP initial Statement 

The sequential UDP initial statement specifies the value of the output terminal when simulation 
begins. This statement begins with the keyword initial. The statement that follows must be an 
assignment statement that assigns a single bit literal value to the output terminal reg.  

7.2.4 UDP State Table 

The state table which defines the behavior of a UDP begins with the keyword table and is 
terminated with the keyword endtable.  

Each row of the table is created using a variety of characters which indicate input and output states. 
Three states—0, 1, and x—are supported. The z state is explicitly excluded from consideration in 
user-defined primitives. A number of special characters are defined to represent certain 
combinations of state possibilities. These are detailed in this chapter, in Section  7.8 Symbols to 
Enhance Readability. 

The order of the input state fields of each row of the state table is taken directly from the terminal 
list in the UDP definition header. It is NOT related to the order of the input declarations. 

Combinational UDPs have one field per input and one field for the output. The input fields are 
separated from the output field by a colon.  

Sequential UDPs have an additional field inserted between the input fields and the output field. 
This additional field represents the current state of the UDP and is considered equivalent to the 
current output value. It is delimited by colons. 

Each row defines the output for a particular combination of input states. If all inputs are specified 
as x, then the output must be specified as x. All combinations that are not explicitly specified result 
in a default output state of x. Each row of the table is terminated by a semicolon. 

Consider the following entry from a UDP state table: 

0    1  : ?  :   1  ; 
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In this entry the ? represents a don’t care condition—it is replaced by cases of the entry when the ? 
is replaced by 1, 0 and  x. This specifies that when the inputs are 0 and 1, no matter what the value 
of the current state, the output is 1; 

It is not necessary to explicitly specify every possible input combination. All combinations which 
are not explicitly specified result in a default output state of x. 

It is illegal to have the same combination of inputs, including edges, specified for different outputs. 

7.3 Combinational UDPs 

In combinational UDPs, the output state is determined solely as a function of the current input 
states. Whenever an input changes state, the UDP is evaluated and one of the state table rows is 
matched. The output state is set to the value indicated by that row. 

Consider the following example, which defines a multiplexer with two data inputs, and a control 
input. Remember, there can only be a single output. 

primitive  multiplexer  (mux,  control,  dataA,  dataB); 
output  mux; 
input  control,  dataA,  dataB; 
table 
//control dataA dataB mux 

0 1 0 : 1; 
0 1 1 : 1; 
0 1 x : 1; 
0 0 0 : 0; 
0 0 1 : 0; 
0 0 x : 0; 
1 0 1 : 1; 
1 1 1 : 1; 
1 x 1 : 1; 
1 0 0 : 0; 
1 1 0 : 0; 
1 x 0 : 0; 
x 0 0 : 0; 
x 1 1 : 1; 

endtable 
endprimitive 

Example  7- 1: Combinational form of user-defined primitive 

The first entry in the table above can be explained as follows: when control equals 0, and dataA 
equals 1, and dataB equals 0, then output mux equals 1. 
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All combinations of the inputs that are not explicitly specified will drive the output to the unknown 
value x. For example, in the table for multiplexer above (Example  7-1), the input combination 0xx 
(control=0, dataA=x, dataB=x) is not specified. If this combination occurs during simulation, the 
value of output mux will become x. 

To improve the readability and to ease writing of the table, several special symbols are provided. A 
? represents iteration of the table entry over the values 0, 1, and x—a ? generates cases of that entry 
where the ? is replaced by a 0, 1, or x. It represents a don’t-care condition on that input. Using ?, 
the description of a multiplexer given in Example  7-1 can be abbreviated as implemented in 
Example  7-2. 

primitive  multiplexer  (mux,  control,  dataA,  dataB); 
output  mux; 
input  control,  dataA,  dataB; 
table 
//control dataA dataB mux 

0 1 ? : 1 ; //?=0,1,x 
0 0 ? : 0 ; 
1 ? 1 : 1 ; 
1 ? 0 : 0 ; 
x 0 0 : 0 ; 
x 1 1 : 1 ; 

endtable 
endprimitive 

Example  7- 2: Special symbols in user-defined primitive 

7.4 Level-Sensitive Sequential UDPs  

Level-sensitive sequential behavior is represented the same way as combinational behavior, except 
that the output is declared to be of type reg, and there is an additional field in each table entry. This 
new field represents the current state of the UDP.  

The output field in a sequential UDP represents the next state. 

Consider the example of a latch in Example  7-3. 

primitive  latch  (q,  clock,  data); 
output  q;  reg  q; 
input  clock,  data; 
table 

//clock data q q+ 
0 1 : ? : 1;  
0 0 : ? : 0;  
1  ?  : ? : - ; //-=nochange 

Verilog HDL  LRM User-Defined Primitives (UDPs)  •  91 



endtable 
endprimitive 

Example  7- 3: UDP for a latch 

This description differs from a combinational UDP model in two ways. First, the output identifier q 
has an additional reg declaration to indicate that there is an internal state q. The output value of the 
UDP is always the same as the internal state. Second, a field for the current state, which is 
separated by colons from the inputs and the output, has been added. 

7.5 Edge-Sensitive UDPs  

In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine 
the output value. Edge sensitive behavior differs in that changes in the output are triggered by 
specific transitions of the inputs. This makes the state table a transition table as illustrated in 
Example  7-4. 

primitive  d_edge_ff  (q,  clock,  data); 
output  q;    reg  q; 
input  clock,  data; 
table 
//obtain  output  on  rising  edge  of  clock 

// clock data : q :  q+ 
(01) 0 : ? : 0 ; 
(01) 1 : ? : 1 ; 
(0?) 1 : 1 : 1 ; 
(0?) 0 : 0 : 0 ; 
//ignore  negative  edge  of  clock 
(?0) ? : ? : - ; 
//ignore  data  changes  on  steady  clock 
? (??) : ? : - ; 

endtable 
endprimitive 

Example  7- 4: UDP for an edge-sensitive D-type flip-flop 

Example  7-4 has terms like (01) in the input fields. These terms represent transitions of the input 
values. Specifically, (01) represents a transition from 0 to 1. The first line in the table of the above 
UDP definition can be interpreted as follows: when clock changes value from 0 to 1, and data 
equals 0, the output goes to 0 no matter what the current state. 

Please note: Each table entry can have a transition specification on, at most, one input. Entries 
such as the one shown below are illegal:  
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(01)(01)0  :  0  :  1 

As in the combinational and the level-sensitive entries, a ? implies iteration of the entry over the 
values 0, 1, and x. A dash (-) in the output column indicates no value change.  

All unspecified transitions default to the output value x. Thus, in the previous example, transition 
of clock from 0 to x with data equal to 0 and current state equal to 1 will result in the output q 
going to x. 

All transitions that should not affect the output MUST be explicitly specified. Otherwise, they will 
cause the value of the output to change to x. If the UDP is sensitive to edges of any input, the 
desired output state must be specified for all edges of all inputs. 

7.6 Sequential UDP Initialization 

The value on the output terminal of a sequential UDP can be specified with an initial statement that 
contains a procedural assignment statement. The initial statement is optional.  

Like initial statements in modules, the initial statement in UDPs begin with the keyword initial. 
The valid contents of initial statements in UDPs and the valid left and right hand sides of their 
procedural assignment statements differ from initial statements in modules. The difference between 
these two types of initial statements is described in Table  7-1. 

 

Table  7- 1: Initial statements in UDPs and modules 

Example  7-5 shows a sequential UDP that contains an initial statement that specifies that output 
terminal q has a value of 1 at the start of the simulation  

primitive srff (q,s,r); 
output q; 
input s,r; 
reg q; 
initial q = 1'b1; 
table 
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//  s  r   q   q+ 
    1  0 : ? : 1 ;  
    f  0 : 1 : - ; 
    0  r : ? : 0 ; 
    0  f : 0 : - ; 
    1  1 : ? : 0 ; 
endtable 
endprimitive 

Example  7- 5: Sequential UDP initial statement 

In Example  7-5, the output q has an initial value of 1 at the start of the simulation; a delay 
specification in the UDP instance does not delay the simulation time of the assignment of this 
initial value to the output. When simulation starts, this value is the current state in the state table.  

The following example and figure show how values are applied in a module that instantiates a 
sequential UDP with an initial statement. Example  7-6 shows the source description for the 
module and UDP.   This UDP shows an initial statement “initial   q = 1'b1;”  and UDP instances 
where “qi” is an output and “q” and “qb” are in the fanout of “qi”. 

primitive dff1 (q,clk,d); 
input clk,d; 
output q; 
reg q; 
initial 
 q = 1'b1; 
 
table 

// clk d q  q+  
 r 0 : ? : 0 ; 
 r 1 : ? : 1 ; 
 f ? : ? : - ; 
 ? * : ? : - ; 

endtable 
endprimitive 
 
module dff (q,qb,clk,d); 
input clk,d; 
output q,qb; 
 dff1   g1 (qi, clk, d); 
 buf #3 g2 (q, qi); 
 not #5 g3 (qb, qi); 
endmodule 
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Example  7- 6: Instance of a sequential UDP with an initial statement 

In Example  7-6, UDP dff1 contains an initial statement that sets the initial value of its output to 1. 
Module dff contains an instance of UDP dff1. In this instance, the UDP output is qi; the output’s 
fanout includes nets q and qb. 

Figure  7-1 shows the schematic of the module in Example  7-6 and the simulation times of the 
propagation of the initial value of the output of the UDP. 

 

Figure  7- 1: Module schematic and the simulation times of initial value propagation 

In Figure  7-1, the fanout from the UDP output qi includes nets q and qb. At simulation time 0, qi 
changes value to 1. That initial value of qi does not propagate to net q until simulation time 3, and 
does not propagate to net qb until simulation time 5. 

7.7 UDP Instances  

Instances of user-defined primitives are specified inside modules in the same manner as for gates. 
The instance name is optional, just as for gates. The terminal order is as specified in the UDP 
definition. Only two delays can be specified, because z is not supported for UDPs.  

Example  7-7 creates an instance of the D-type flip-flop d_edge_ff (defined in Example  7-4). 

module  flip; 
 reg  clock,  data; 
 parameter p1=10; 
 parameter p2 = 33; 
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 parameter p3 = 12; 
 d_edge_ff  #p3  d_inst(q,  clock,  data); 
initial 
begin 
 data = 1; 
 clock = 1; 
end 
always #p1 clock = ~clock; 
always #p2 data = ~data; 
endmodule 

Example  7- 7: UPD for a D-type flip-flop 

7.8 Symbols to Enhance Readability  

Like ?, there are several symbols that can be used in UDP definitions to make the description more 
readable. The symbols described in Table  7-2 are used in Example  7-8. 

Symbol  Interpretation Explanation 

 b   0  or  1 like  ?,  except  x  is  excluded 

r   (01) rising  edge  on  an  input 

f   (10) falling  edge  on  an  input 

 p   (01) or  rising edges, including 
   (0x) or (x1) or unknown 
   (1z) or (z1) 

 n   (10) or falling edges, including 
   (1x) or (x0) or unknown 
   (0z) or (z0) 

*   (??) all  transitions 

Table  7- 2: Symbols for readability 
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7.9 Mixing Level and Edge-Sensitive Descriptions  

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same 
description. An edge-triggered JK flip-flop with asynchronous preset and clear needs such a 
mixture. Example  7-8 illustrates this concept. 

primitive  jk_edge_ff  (q,  clock,  j,  k,  preset,  clear); 
output  q;  reg  q; 
input  clock,  j,  k,  preset,  clear; 
table 
//clock jk pc state output/next  state 

? ?? 01 : ? : 1 ; //presetlogic 
? ?? *1 : 1 : 1 ; 
? ?? 10 : ? : 0 ; //clearlogic 
? ?? 1* : 0 : 0 ; 
r 00 00 : 0 : 1 ; //normalclockingcases 
r 00 11 : ? : - ; 
r 01 11 : ? : 0 ; 
r 10 11 : ? : 1 ; 
r 11 11 : 0 : 1 ; 
r 11 11 : 1 : 0 ; 
f ?? ?? : ? : - ; 
b *? ?? : ? : - ; //jandktransition cases 
b ?* ?? : ? : - ; 

endtable 
endprimitive 

Example  7- 8: Sequential UDP for level-sensitive and edge-sensitive behavior 

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear 
combination is 01, the output has value 1. Similarly, whenever the preset and clear combination has 
value 10, the output has value 0. 

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is 
sensitive to the rising clock edge as indicated by an r in the clock field in those entries. The 
insensitivity to the falling edge of clock is indicated by a hyphen (-) in the output field (see Section  
7.12 Summary of Symbols) for the entry with an f as the value of clock. Remember that the desired 
output for this input transition must be specified to avoid unwanted x values at the output. The last 
two entries show that the transitions in j and k inputs do not change the output on a steady low or 
high clock. 

Verilog HDL  LRM User-Defined Primitives (UDPs)  •  97 



7.10 Reducing Pessimism  

Three-valued logic tends to make pessimistic estimates of the output when one or more inputs are 
unknown. User-defined primitives can be used to reduce this pessimism. The following is an 
extension of the previous latch example illustrating reduction of pessimism. 

primitive  latch(q,  clock,  data); 
output  q;  reg  q; 
input  clock,  data; 
table 

//clock data state output / next state 
0 1 : ? : 1 ; 
0 0 : ? : 0 ; 
1 ? : ? : - ; //-=no  change 
//ignore  x on clock  when  data  equals  state 
x 0 : 0 : - ; 
x 1 : 1 : - ; 

endtable 
endprimitive 

Example  7- 9: Latch UDP illustrating pessimism 

The last two entries specify what happens when the clock input has value x. If these are omitted, 
the output will go to x whenever the clock is x. This is a pessimistic model, as the latch should not 
change its output if it is already 0 and the data input is 0. Similar analysis is true for the situation 
when the data input is 1 and the current output is 1. 

Consider the jk flip-flop with preset and clear in Example  7-10. 

primitive  jk_edge_ff  (q,  clock,  j,  k,  preset,  clear); 
output  q;  reg  q; 
input  clock,  j,  k,  preset,  clear; 
table 
    // clock jk pc state output / next  state 
// preset logic 

? ?? 01 : ? : 1 ; 
? ?? *1 : 1 : 1 ; 
// clearlogic 
? ?? 10 : ? : 0 ; 
? ?? 1* : 0 : 0 ; 
// normal clocking cases 
r 00 00 : 0 : 1 ; 
r 00 11 : ? : - ; 
r 01 11 : ? : 0 ; 
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r 10 11 : ? : 1 ; 
r 11 11 : 0 : 1 ; 
r 11 11 : 1 : 0 ; 
f ?? ?? : ? : - ; 
// j and k cases 
b *? ?? : ? : - ; 
b ?* ?? : ? : - ; 
 // cases reducing pessimism 
p 00 11 : ? : - ; 
p 0? 1? : 0 : - ; 
p ?0 ?1 : 1 : - ; 
(?0) ?? ?? : ? : - ; 
(1x) 00 11 : ? : - ; 
(1x) 0? 1? : 0 : - ; 
(1x) ?0 ?1 : 1 : - ; 
x *0 ?1 : 1 : - ; 
x 0* 1? : 0 : - ; 

endtable 
endprimitive 

Example  7- 10: UDP for a JK flip-flop with preset and clear 

This example has additional entries for the positive clock (p) edges, the negative clock edges (?0 
and 1x), and with the clock value x. In all of these situations, the output is deduced to remain 
unchanged rather than going to x. Thus, this model is less pessimistic than the previous example. 

7.11 Level-Sensitive Dominance  

In the Verilog HDL, edge-sensitive cases are processed first, followed by level-sensitive cases. 
When level-sensitive and edge-sensitive cases specify different output values, the result is specified 
by the level-sensitive case. The following table shows level-sensitive and edge-sensitive entries in 
Example  7-10, their level-sensitive or edge-sensitve behavior, and a case that each includes. 

 

Table  7- 3: The level-sensitive and edge-sensitive entries in Example  7-10 
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The included cases specify opposite next state values for the same input and current state 
combination. 

The level-sensitive included case specifies that when the inputs clock, jk and pc values are 0  00 
01, and the current state is 0, the output changes to 1. 

The edge-sensitive included case specifies that when clock falls from 1 to 0, and the other inputs jk 
and pc are  00 01, and the current state is 0, the output changes to 0.  

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output 
changes to 1. 

7.12 Summary of Symbols 

The following table summarizes the meaning of all the value symbols that are valid in the table part 
of a UDP definition.  

Symbol Interpretation Notes 

 0 logic  0 
 1 logic  1 
 x unknown 
 ? iteration  of cannot  be  given  in  output  field 
  0, 1, and  x 
 b iteration  of cannot  be  given  in  output  field 
  0  and  1 
 - no  change can  only  be  given  In  the  output  
   field of  a  sequential  UDP 
 (vw) value  change v  and  w  can  be  anyone  of  0, 
  from  v  to  w 1,  x,  ?  or  b. 
 * same  as  (??) any  value  change  on  input 
 r same  as  (01) rising  edge  on  input 
 f same  as  (10) falling  edge  on  input 
 p iteration  of potential  positive  edge  on  the 
  (01),  (0x) input 
  and  (x1) 
 n iteration  of potential  Negative  edge  on  the 
  (10),  (1x)  and (x0) input 
  and  (x0) 

Table  7- 4: UDP table symbols 
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7.13 Examples  

//Description  of  an  AND-OR  gate. 
// out = (a1  &  a2  &  a3)  |  (b1  &  b2). 
primitive  and_or  (out,  a1,  a2,  a3,  b1,  b2); 

output  out; 
input  a1,  a2  ,a3,  b1,  b2; 
table 

//  a b : out ; 
111 ?? : 1 ; 
??? 11 : 1 ; 
0?? 0? : 0 ; 
0?? ?0 : 0 ; 
?0? 0? : 0 ; 
?0? ?0 : 0 ; 
??0 0? : 0 ; 
??0 ?0 : 0 ; 

endtable 
endprimitive 

Example  7- 11: UDP for a and-or gate 

//Majority  function  for  carry 
//  carryout = (a  &  b)  |  (a  &  carryin)  |  (b  &  carryin) 
primitive  carry  (carryout,  carryin,  a,  b); 
output  carryout; 
input  carryin,  a,  b; 
table 

0 00 : 0 ; 
0 01 : 0 ; 
0 10 : 0 ; 
0 11 : 1 ; 
1 00 : 0 ; 
1 01 : 1 ; 
1 10 : 1 ; 
1 11 : 1 ; 
// the  following  cases  reduce  pessimism 
0 0x : 0 ; 
0 x0 : 0 ; 
x 00 : 0 ; 
1 1x : 1 ; 
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1 x1 : 1 ; 
x 11 : 1 ; 

endtable 
endprimitive 

Example  7- 12: UDP for a majority function for carry 

//Description  of  a  2-channel  multiplexer  with  storage. 
//The  storage  is  level  sensitive. 
primitive  mux_with_storage  (out,  clk,  control,  dataA,  dataB); 
output  out; 
reg  out; 
input  clk,  control,  dataA,  dataB; 
table 
// clk control dataA dataB : current-state : next state ; 

1 0 1 ? : ? : 1 ; 
1 0 0 ? : ? : 0 ; 
1 1 ? 1 : ? : 1 ; 
1 1 ? 0 : ? : 0 ; 
1 x 0 0 : ? : 0 ; 
1 x 1 1 : ? : 1 ; 
0 ? ? ? : ? : - ; 
x 0 1 ? : 1 : - ; 
x 0 0 ? : 0 : - ; 
x 1 ? 1 : 1 : - ; 
x 1 ? 0 : 0 : - ; 

endtable 
endprimitive 

Example  7- 13: UDP for a 2-channel multiplexor with storage 
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Behavioral Modeling  

8.1 Behavioral Model Overview  

The language constructs introduced so far allow hardware to be described at a relatively detailed 
level. Modeling a circuit with logic gates and continuous assignments reflects quite closely the 
logic structure of the circuit being modeled; however, these constructs do not provide the power of 
abstraction necessary for describing complex high level aspects of a system. The procedural 
constructs described in this chapter are well suited to tackling problems such as describing a 
microprocessor or implementing complex timing checks. 

The chapter starts with a brief overview of a behavioral model to provide a context in which the 
reader can understand the many types of behavioral statements in Verilog. The behavioral 
constructs are then discussed in an order that allows us to introduce them before using them in 
examples. 

Verilog behavioral models contain procedural statements that control the simulation and 
manipulate variables of the data types previously described. These statements are contained within 
procedures. Each procedure has an activity flow associated with it. 

The activity starts at the control constructs initial and always. Each initial statement and each 
always statement starts a separate activity flow. All of the activity flows are concurrent, allowing 
the user to model the inherent concurrence of hardware. 

Example  8-1 is a complete Verilog behavioral model. 

module  behave; 
reg[1:0]  a,  b; 
initial 

begin 
a  =  'b1; 
b  =  'b0; 

end 
always 

begin 
#50  a  =  ~a; 

end 
always 

begin 
#100  b  =  ~b; 

end 
endmodule 

Example  8- 1: Simple example of behavioral modeling 
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During simulation of this model, all of the flows defined by the initial and always statements start 
together at simulation time zero. The initial statements execute once, and the always statements 
execute repetitively. 

In this model, the register variables a and b initialize to binary 1 and 0 respectively at simulation 
time zero. The initial statement is then complete and does not execute again during this simulation 
run. This initial statement contains a begin-end block (also called a sequential block) of statements. 
In this begin-end block a is initialized first, followed by b. 

The always statements also start at time zero, but the values of the variables do not change until the 
times specified by the delay controls (introduced by #) have gone by. Thus, register a inverts after 
50 time units, and register b inverts after 100 time units. Since the always statements repeat, this 
model produces two square waves. Register a toggles with a period of 100 time units, and register 
b toggles with a period of 200 time units. The two always statements proceed concurrently 
throughout the entire simulation run. 

8.2 Procedural Assignments  

As described in Chapter 5, 5.2 Procedural Assignments, procedural assignments are for updating 
reg, integer, time, and memory variables. 

There is a significant difference between procedural assignments and continuous assignments:  

• Continuous assignments drive net variables and are evaluated and updated whenever an input 
operand changes value.  

• Procedural assignments update the value of register variables under the control of the 
procedural flow constructs that surround them. 

The right-hand side of a procedural assignment can be any expression that evaluates to a value. 
However, part-selects on the right-hand side must have constant indices. The left-hand side 
indicates the variable that receives the assignment from the right-hand side. The left-hand side of a 
procedural assignment can take one of the following forms: 

• register, integer, real, or time variable:  

 an assignment to the name reference of one of these data types 

• bit-select of a register, integer, real, or time variable: 

 an assignment to a single bit that leaves the other bits untouched 

• part-select of a register, integer, real, or time variable: 

 a part-select of two or more contiguous bits that leaves the rest of the bits untouched. For the 
part-select form, only constant expressions are legal 

• memory element: 

 a single word of a memory. Note that bit and part selects are illegal on memory element 
references 

• concatenation of any of the above:  
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 a concatenation of any of the previous four forms can be specified, which effectively 
partitions the result of the right-hand side expression and assigns the partition parts, in order, 
to the various parts of the concatenation 

Please note: Assignment to a register differs from assignment to a real, time, or integer 
variable when the right-hand side evaluates to fewer bits than the left-hand side. 
Assignment to a register does not sign-extend. 

The Verilog HDL contains two type of procedural assignment statements: 

• blocking procedural assignment statements 

• non-blocking procedural assignment statements 

Blocking and non-blocking procedural assignment statements specify different procedural flow in 
sequential blocks. 

8.2.1 Blocking Procedural Assignments 

A blocking procedural assignment statement must be executed before the execution of the 
statements that follow it in a sequential block (see  Section  8.7.1 Sequential Blocks). A blocking 
procedural assignment statement does not prevent the execution of statements that follow it in a 
parallel block (see  Section  8.7.2 Parallel Blocks). 

Syntax: 

The syntax for a blocking procedural assignment is as follows: 

<lvalue> = <timing_control> <expression> 

Where lvalue is a data type that is valid for a procedural assignment statement, = is the 
assignment operator, and timing_control is the optional intra-assignment delay. The timing_control 
delay can be either a delay control (for example, #6) or an event control (for example, @(posedge 
clk)). The expression is the right-hand side value the simulator assigns to the left-hand side. 

The = assignment operator used by blocking procedural assignments is also used by procedural 
continuous assignments and continuous assignments. 

Example  8-2 shows examples of blocking procedural assignments. 

rega = 0; 
rega[3] = 1; // a bit-select 
rega[3:5] = 7; // a part-select 
mema[address] = 8'hff;  // assignment to a memory element  
{carry, acc} = rega + regb;   // a concatenation  

Example  8- 2: Examples of blocking procedural assignments 
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8.2.2 The Non-Blocking Procedural Assignment 

The non-blocking procedural assignment allows you to schedule assignments without blocking the 
procedural flow. You can use the non-blocking procedural statement whenever you want to make 
several register assignments within the same time step without regard to order or dependance upon 
each other. 

Syntax: 

The syntax for a non-blocking procedural assignment is as follows: 

<lvalue> <= <timing_control> <expression> 

Where lvalue is a data type that is valid for a procedural assignment statement, <= is the non-
blocking assignment operator, and timing_control is the optional intra-assignment timing control. 
The timing_control delay can be either a delay control (for example, #6) or an event control (for 
example, @(posedge clk)). The expression is the right-hand side value the simulator assigns to the 
left-hand side. 

The  non-blocking assignment operator is the same operator the simulator uses for the less-than-
or-equal relational operator. The simulator interprets the <= operator to be a relational operator 
when you use it in an expression, and interprets the <= operator to be an assignment operator when 
you use it in a non-blocking procedural assignment construct. 

How the simulator evaluates non-blocking procedural assignments 

When the simulator encounters a non-blocking procedural assignment, the simulator evaluates and 
executes the non-blocking procedural assignment in two steps. 

1. The simulator evaluates the right-hand side and schedules the assignment of the new value 
to take place at a time specified by a procedural timing control. 

2. At the end of the time step, in which the given delay has expired or the appropriate event 
has taken place, the simulator executes the assignment by assigning the value to the left-
hand side. 

These two steps are shown in Example  8-3. 
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Example  8- 3: How the simulator evaluates non-blocking procedural assignments 

At the end of the time step means that the non-blocking assignments are the last assignments 
executed in a time step—with one exception. Non-blocking assignment events can create blocking 
assignment events. The simulator processes these blocking assignment events after the scheduled 
non-blocking events. 

Unlike a regular event or delay control, the non-blocking assignment does not block the procedural 
flow. The non-blocking assignment evaluates and schedules the assignment, but does not block the 
execution of subsequent statements in a begin end block, as shown in Example  8-4. 
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Example  8- 4: Non-blocking assignments do not block execution of sequential statements 

Please note: As shown in Example  8-5, the simulator evaluates and schedules assignments for 
the end of the current time step and can perform swapping operations with the 
new non-blocking procedural assignments. 

 

Example  8- 5: The simulator performs swapping operations with the new non-blocking procedural 
assignments 
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When you schedule multiple non-blocking assignments to occur in the same register in a particular 
time slot, the simulator cannot guarantee the order in which it processes the assignments—the final 
value of the register is indeterminate. As shown in Example  8-6, the value of register a is not 
known until the end of time step 4. 

  

Example  8- 6: Multiple non-blocking assignments made in a single time step 

If the simulator executes two procedural blocks concurrently, and these procedural blocks contain 
non-blocking assignment operators, the final value of the register is indeterminate. For example, in 
Example  8-7 the value of register a is indeterminate. 

 

Example  8- 7: Processing two procedural assignments concurrently 

When multiple non-blocking assignments with timing controls are made to the same register, the 
assignments can be made without cancelling previous non-blocking assignments. In Example  8-8, 
the simulator evaluates the value of i[0] to r1 and schedules the assignments to occur after each 
time delay. 
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Example  8- 8: Multiple non-blocking assignments with timing controls 

8.2.3 How the Simulator Processes Blocking and Non-Blocking Procedural Assignments 

For each time slot during simulation, blocking and non-blocking procedural assignments are 
processed in the following way: 

1. Evaluate the right-hand side of all assignment statements in the current time slot. 

2. Execute all blocking procedural assignments. At the same time, all non-blocking 
procedural assignments are set aside for processing. 

3. Execute all non-blocking procedural assignments that have no timing controls. 
4. Check for procedures that have timing controls and execute if timing control is set for the 

current time unit.  
5. Advance the simulation clock. 

8.3 Conditional Statement  

The conditional statement (or if-else statement) is used to make a decision as to whether a 
statement is executed or not. Formally, the syntax is as follows: 

<statement>  
::= if ( <expression> ) <statement_or_null>  
||= if ( <expression> ) <statement_or_null>  
 else  <statement_or_null> 
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<statement_or_null>  
   ::= <statement>  
   ||= ; 

Syntax  8- 1: Syntax of if statement 

The <expression> is evaluated; if it is true (that is, has a non-zero known value), the first statement 
executes. If it is false (has a zero value or the value is x or z), the first statement does not execute. 
If there is an else statement and <expression> is false, the else statement executes. 

Since the numeric value of the if expression is tested for being zero, certain shortcuts are possible. 
For example, the following two statements express the same logic: 

 if (expression) 

 if (expression != 0) 

Because the else part of an if-else is optional, there can be confusion when an else is omitted from 
a nested if sequence. This is resolved by always associating the else with the closest previous if that 
lacks an else. In Example  8-9, the else goes with the inner if, as we have shown by indentation.  

if (index > 0) 
if (rega > regb) 

result = rega; 
else // else applies to preceding if 

result = regb; 

Example  8- 9: Association of else in nested if 

If that association is not what you want, use a begin-end block statement to force the proper 
association, as shown in Example  8-10. 

if(index>0) 
begin 

if(rega>regb) 
result=rega; 

end 
else 

result=regb; 

Example  8- 10: Forcing correct association of else with if 

Verilog HDL  LRM Behavioral Modeling  •  111 



Begin-end blocks left out inadvertently can change the logic behavior being expressed, as 
shown in Example  8-11. 

if(index>0) 
 for(scani=0;scani<index; scani=scani+1) 
  if(memory[scani]>0) 
   begin 
    $display("..."); 
    memory[scani]=0; 
   end 
else/*WRONG*/ 
 $display("error-indexiszero"); 

Example  8- 11: Erroneous association of else with if 

The indentation in Example  8-11 shows unequivocally what you want, but the compiler does not 
get the message and associates the else with the inner if. This kind of bug can be very hard to find. 

Notice that in Example  8-12, there is a semicolon after result = rega. This is because a 
<statement> follows the if, and a semicolon is an essential part of the syntax of a <statement>. 

if (rega>regb) 
 result=rega; 
else 
 result=regb; 

Example  8- 12: Use of semicolon in if statement 

8.3.1 if-else-if Construct  

The following  construction occurs so often that it is worth a brief separate discussion: 

if  (<expression>) 
 <statement> 

else   if (<expression>) 
<statement> 

else   if (<expression>) 
 <statement> 

else 
 <statement> 

Syntax  8- 2: Syntax of if-else-if construct 
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This sequence of if’s (known as an if-else-if construct) is the most general way of writing a multi-
way decision. The expressions are evaluated in order; if any expression is true, the statement 
associated with it is executed, and this terminates the whole chain. Each statement is either a single 
statement or a block of statements. 

The last else part of the if-else-if construct handles the ‘none of the above’ or default case where 
none of the other conditions was satisfied. Sometimes there is no explicit action for the default; in 
that case, the trailing “else<statement>” can be omitted or it can be used for error checking to catch 
an impossible condition. 

8.3.2 Example 

The module fragment of Example  8-13 uses the if-else statement to test the variable index to 
decide whether one of three modify_segn registers must be added to the memory address, and 
which increment is to be added to the index register. The first ten lines declare the registers and 
parameters. 

// Declare registers and parameters 
reg[31:0]  instruction,  segment_area  [255:0]; 
reg[7:0  ]index; 
reg[5:0]  modify_seg1, 
 modify_seg2, 
 modify_seg3; 
parameter 
 segment1  =  0,  inc_seg1=1, 
 segment2  =  20,  inc_seg2=2, 
 segment3  =  64,  inc_seg3=4, 
 data  =  128; 
// Test the index variable 
if  (index < segment2) 

begin 
instruction  =  segment_area  [index +  modify_seg1]; 
index  =  index + inc_seg1; 

end 
else  if  (  index  <  segment3) 

begin 
instruction  =  segment_area  [index  +   modify_seg2]; 
index  =  index  +  inc_seg2; 

end 
else  if  (index  <  data) 

begin 
instruction  =  segment_area  [index  +   modify_seg3]; 
index  =  index  +  inc_seg3; 

end 
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else 
instruction  =  segment_area   [index]; 

Example  8- 13: Use of if-else-if construct 

8.4 Case Statement  

The case statement is a special multi-way decision statement that tests whether an expression 
matches one of a number of other expressions, and branches accordingly. The case statement is 
useful for describing, for example, the decoding of a microprocessor instruction. The case 
statement has the following syntax: 

<statement>  
::= case ( <expression> ) <case_item>+ endcase 
||= casez ( <expression> ) <case_item>+ endcase 
||= casex ( <expression> ) <case_item>+ endcase 

<case_item>  
::= <expression> <,<expression>>* : <statement_or_null>  
||= default : <statement_or_null>  
||= default <statement_or_null>  

Syntax  8- 3: Syntax for case statement 

The default statement is optional. Use of multiple default statements in one case statement is illegal 
syntax. 

A simple example of the use of the case statement is the decoding of register rega to produce a 
value for result as follows: 

reg[15:0]  rega; 
reg [9:0]  result; 

•  

•  

•  

case  (rega) 
16'd0:  result  =  10'b0111111111; 
16'd1:  result  =  10'b1011111111; 
16'd2:  result  =  10'b1101111111; 
16'd3:  result  =  10'b1110111111; 
16'd4:  result  =  10'b1111011111; 
16'd5:  result  =  10'b1111101111; 
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16'd6:  result  =  10'b1111110111; 
16'd7:  result  =  10'b1111111011; 
16'd8:  result  =  10'b1111111101; 
16'd9:  result  =  10'b1111111110; 
default   result  =  'bx; 

endcase 

Example  8- 14: Use of the case statement 

The case expressions are evaluated and compared in the exact order in which they are given. 
During the linear search, if one of the case item expressions matches the expression in parentheses, 
then the statement associated with that case item is executed. If all comparisons fail, and the default 
item is given, then the default item statement is executed. If the default statement is not given, and 
all of the comparisons fail, then none of the case item statements is executed. 

Apart from syntax, the case statement differs from the multi-way if-else-if construct in two 
important ways: 

1. The conditional expressions in the if-else-if construct are more general than comparing one 
expression with several others, as in the case statement. 

2. The case statement provides a definitive result when there are x and z values in an 
expression. 

In a case comparison, the comparison only succeeds when each bit matches exactly with respect to 
the values 0, 1, x, and z. As a consequence, care is needed in specifying the expressions in the case 
statement. The bit length of all the expressions must be equal so that exact bit-wise matching can 
be performed. The length of all the case item expressions, as well as the controlling expression in 
the parentheses, will be made equal to the length of the longest <case_item> expression. The most 
common mistake made here is to specify ´bx or ´bz instead of n’bx or n’bz, where n is the bit 
length of the expression in parentheses.  

Implementation Specific Detail:  The default length of x and z is the word size of the host 
machine, usually 32 bits. 

The reason for providing a case comparison that handles the x and z values is that it provides a 
mechanism for detecting such values and reducing the pessimism that can be generated by their 
presence. Example  8-15 illustrates the use of case to properly handle x and Z values. 

case  (select[1:2]) 
2'b00:  result  =  0; 
2'b01:  result  =  flaga; 
2'b0x, 
2'b0z:  result  =  flaga?'bx:0; 
2'b10:  result  =  flagb; 
2'bx0, 
2'bz0:  result  =  flagb  ?  'bx  :  0; 
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default  result  =  'bx; 
endcase 

Example  8- 15: Detecting x and z values with the case statement 

In Example  8-15, if select[1] is 0 and flaga is 0, then whatever the value of select[2] result should 
be 0—which is resolved by the third case. 

Example  8-16 shows another way to use a case statement to detect x and z values. 

 case(sig) 
 1'bz: 
  $display("signal is floating"); 
 1'bx: 
  $display("signal is unknown"); 
 default: 
  $display("signal is %b", sig); 

 endcase 

Example  8- 16: Another example of detecting x and z with case 

8.4.1 Case Statement with Don’t-Cares 

Two other types of case statements are provided to allow handling of don’t-care conditions in the 
case comparisons. One of these treats high-impedance values (z) as don’t-cares, and the other treats 
both high-impedance and unknown (x) values as don’t-cares. 

These case statements are used in the same way as the traditional case statement, but they begin 
with new keywords casez and casex respectively. 

Don’t-care values (z values for casez, z and x values for casex) in any bit of either the case 
expression or the case items are treated as don’t-care conditions during the comparison, and that bit 
position is not considered. 

Note that allowing don’t-cares in the case items means that you can dynamically control which bits 
of the case expression are compared during simulation. 

The syntax of literal numbers allows the use of the question mark (?) in place of z in these case 
statements. This provides a convenient format for specification of don’t-care bits in case 
statements. 

Example  8-17 is an example of the casez statement. It demonstrates an instruction decode, where 
values of the most significant bits select which task should be called. If the most significant bit of ir 
is a 1, then the task instruction1 is called, regardless of the values of the other bits of ir. 

reg [7:0] ir; 
•  
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•  

•  

casez (ir) 
 8'b1???????: instruction1(ir); 
 8'b01??????: instruction2(ir); 
 8'b00010???: instruction3(ir); 
 8'b000001??: instruction4(ir); 
endcase 

Example  8- 17: Using the casez statement 

Example  8-18 is an example of the casex statement. It demonstrates an extreme case of how don’t-
care conditions can be dynamically controlled during simulation. In this case, if r = 8´b01100110, 
then the task stat2 is called. 

reg [7:0] r, mask; 
•  

•  

•  

mask = 8'bx0x0x0x0; 
casex (r ^ mask) 
 8'b001100xx: stat1; 
 8'b1100xx00: stat2; 
 8'b00xx0011: stat3; 
 8'bxx001100: stat4; 
endcase 

Example  8- 18: Using the casex statement 

8.5 Looping Statements 

There are four types of looping statements. They provide a means of controlling the execution of a 
statement zero, one, or more times. 

1. forever   continuously executes a statement. 
2. repeat   executes a statement a fixed number of times. 
3. while   executes a statement until an expression becomes false. If the expression starts out 

false, the statement is not executed at all. 
4. for   controls execution of its associated statement(s) by a three-step process, as follows: 

a. executes an assignment normally used to initialize a variable that controls the 
number of loops executed 
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b. evaluates an expression—if the result is zero, the for-loop exits, and if it is not zero, 
the for-loop executes its associated statement(s) and then performs step c 

c. executes an assignment normally used to modify the value of the loop-control 
variable, then repeats step b 

The following are the  syntax rules  for  the  looping  statements: 

<statement> 
::=forever<statement> 
||=forever 

begin 
 <statement>+ 
end 

<statement> 
::=repeat(<expression>)<statement> 
||=repeat(<expression>) 

begin 
 <statement>+ 
end 

<statement> 
::=while(<expression>)<statement> 
||=while(<expression>) 

begin 
 <statement>+ 
end 

<statement> 
::=for(<assignment>;<expression>;<assignment>) 

<statement> 
||=for(<assignment>;<expression>;<assignment>) 

begin 
 <statement>+ 
end 

Syntax  8- 4: Syntax for the looping statements 

The rest of this section presents examples for three of the looping statements.  

8.5.1 forever Loop 

The forever loop should only be used in conjunction with the timing controls or the disable 
statement, therefore, this example is presented in Section  8.6.2 Event Control. 
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8.5.2 repeat Loop Example 

In the following example of a repeat loop, add and shift operators implement a multiplier. 

parameter  size  =  8,  longsize  =  16; 
reg [size:1]  opa,  opb; 
reg [longsize:1]  result; 
begin  :mult 

reg [longsize:1]  shift_opa,  shift_opb; 

shift_opa  =  opa; 
shift_opb  =  opb; 
result  =  0; 

repeat(size) 
begin 

 if  (shift_opb[1])  result  =  result  + shift_opa; 
 shift_opa  =  shift_opa  <<1; 
 shift_opb  =  shift_opb  >>1 

end 
end 

Example  8- 19: Use of the repeat loop to implement a multiplier 

8.5.3 while Loop Example 

An example of the while loop follows. It counts up the number of logic 1 values in rega. 

begin  :count1s 
reg  [7:0]  tempreg; 
count  =  0; 
tempreg  =  rega; 
while  (tempreg) 

begin 
if (tempreg[0])  count  =  count  +  1; 
tempreg  =  tempreg  >>  1; 

end 
end 

Example  8- 20: Use of the while loop to count logic values 
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8.5.4 for Loop Examples 

The for loop construct accomplishes the same results as the following pseudo-code that is based on 
the while loop: 

begin 
initial_assignment; 
while(condition) 

begin 
statement 
step_assignment; 

end 
end 

Example  8- 21: Pseudo code equivalent of a for loop 

The for loop implements the logic in the preceding 8 lines while using only two lines, as shown in 
the pseudo code in Example  8-22. 

for  (initial_assignment;  condition;  step_assignment) 
 statement 

Example  8- 22: Pseudo code for a for loop 

Example  8-23 uses a for loop to initialize a memory. 

begin  :init_mem 
reg  [7:0]  tempi; 

for  (tempi  =  0;  tempi  <  memsize;  tempi  =  tempi  +  1) 
memory[tempi]  =  0; 

end 

Example  8- 23: Use of the for loop to initialize a memory 

Here is another example of a for loop statement. It is the same multiplier that was described in 
Example  8-19 using the repeat loop. 

parameter  size  =  8,  longsize  =  16; 
reg  [size:1]  opa,  opb; 
reg  [longsize:1]  result; 
begin  :mult 

integer  bindex; 
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result  =  0; 
for  (bindex  =  1;  bindex  <=  size;  bindex  =  bindex  +  1) 

if  (opb[bindex]) 
result  =  result  +  (opa  <<  (bindex-1)); 

end 

Example  8- 24: Use of the for loop to implement a multiplier 

Note that the for loop statement can be more general than the normal arithmetic progression of an 
index variable, as in Example  8-25. This is another way of counting the number of logic 1 values 
in rega (see Example  8-20). 

begin  :count1s 
reg  [7:0]  tempreg; 
count  =  0; 
for  (tempreg  =  rega;  tempreg;  tempreg  =  tempreg  >>1) 

if  (tempreg[0])  count  =  count  +  1; 
end 

Example  8- 25: Use of the for loop to count logic values 

8.6 Procedural Timing Controls  

The Verilog language provides two types of explicit timing control over when in simulation time 
procedural statements are to occur. The first type is a delay control in which an expression 
specifies the time duration between initially encountering the statement and when the statement 
actually executes. The delay expression can be a dynamic function of the state of the circuit, but is 
usually a simple number that separates statement executions in time. The delay control is an 
important feature when specifying stimulus waveform descriptions. It is described in Sections 
8.6.1, and 8.6.6. 

The second type of timing control is the event expression, which allows statement execution to 
wait for the occurrence of some simulation event occurring in a procedure executing concurrently 
with this procedure. A simulation event can be a change of value on a net or register (an implicit 
event), or the occurrence of an explicitly named event that is triggered from other procedures (an 
explicit event). Most often, an event control is a positive or negative edge on a clock signal. 
Sections 8.6.2 through 8.6.6 discuss event control. 

A general principle of the Verilog language is that “where you do not see a timing control, then 
simulation time does not advance.” Though we are talking here of procedural timing controls, note 
that gate and net delays also advance simulation time. The procedural statements encountered so 
far all execute in zero time. Simulation time can only progress by one of the following three 
methods: 

• a delay control, which is introduced by the number symbol (#) 
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• an event control, which is introduced by the at symbol (@) 

• the wait statement, which operates like a combination of the event control and the while loop 

The next subsections discuss these three methods. 

8.6.1 Delay Control 

The execution of a procedural statement can be delay-controlled by using the following syntax: 

<statement>  
::= <delay_control> <statement_or_null> 

<delay_control>  
::= # <NUMBER>  
||= # <identifier>  
||= # ( <mintypmax_expression> ) 

Syntax  8- 5: Syntax for delay_control 

The following example delays the execution of the assignment by 10 time units: 

#10 rega = regb; 

The next three examples provide an expression following the number sign (#). Execution of the 
assignment delays by the amount of simulation time specified by the value of the expression. 

 

#d rega = regb; // d is defined as a parameter 

#((d+e)/2) rega = regb; // delay is the average of d and e 

#regr regr = regr + 1; // delay is the value in regr 

8.6.2 Event Control  

The execution of a procedural statement can be synchronized with a value change on a net or 
register, or the occurrence of a declared event, by using the following event control syntax: 

<statement>  
::= <event_control> <statement_or_null> 

<event_control> 
::= @ <identifier> 
||= @ ( <event_expression> ) 

<event_expression> 
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::= <expression> 
||= posedge <SCALAR_EVENT_EXPRESSION> 
||= negedge <SCALAR_EVENT_EXPRESSION> 
||= <event_expression> <or <event_expression>>* 

<SCALAR_EVENT_EXPRESSION> is an expression that resolves to a one bit 
value. 

Syntax  8- 6: Syntax for event_control 

Value changes on nets and registers can be used as events to trigger the execution of a statement. 
This is known as detecting an implicit event. See item 1 in Example  8-26 for a syntax example of 
a wait for an implicit event. Verilog syntax also allows you to detect change based on the direction 
of the change—that is, toward the value 1 (posedge) or toward the value 0 (negedge). The behavior 
of posedge and negedge for unknown expression values is as follows:  

• a negedge is detected on the transition from 1 to unknown and from unknown to 0 

• a posedge is detected on the transition from 0 to unknown and from unknown to 1 

Items 2 and 3 in Example  8-26 show illustrations of edge controlled statements. 

Item 1 @  rrega  =  regb; //controlled  by  any  value  changes  in  the  
register rrega 

Item 2 @  (posedge  clock)  rega  =  regb; //controlled  by  positive  
edge on clock 

Item 3 forever @  (negedge clock) rega = regb; // controlled by negative 
edge 

Example  8- 26: Event controlled statements 

8.6.3 Named Events  

Verilog also provides syntax to name an event and then to trigger the occurrence of that event. A 
model can then use an event expression to wait for the triggering of this explicit event. Named 
events can be made to occur from a procedure. This allows control over the enabling of multiple 
actions in other procedures. Named events and event control give a powerful and efficient means of 
describing the communication between, and synchronization of, two or more concurrently active 
processes. A basic example of this is a small waveform clock generator that synchronizes control 
of a synchronous circuit by signalling the occurrence of an explicit event periodically while the 
circuit waits for the event to occur. 

An event name must be declared explicitly before it is used. The following is the syntax for 
declaring events. 

<event_declaration>  
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::= event <name_of_event> <,<name_of_event>>* ; 

<name_of_event>  
::= <IDENTIFIER> - the name of an explicit event 

Syntax  8- 7: Syntax for event_declaration 

Note that an event does not hold any data. The following are the characteristics of a Verilog event: 

• it can be made to occur at any particular time  

• it has no time duration 

• its occurrence can be recognized by using the <event_control> syntax described in Section  
8.6.2 

The power of the explicit event is that it can represent any general happening. For example, it can 
represent a positive edge of a clock signal, or it can represent a microprocessor transferring data 
down a serial communications channel. A declared event is made to occur by the activation of an 
event triggering statement of the following syntax: 

-> <name_of_event> ; 

An event controlled statement (for example,  @trig rega = regb;) causes simulation of its 
containing procedure to wait until some other procedure executes the appropriate event triggering 
statement (for this example, ->trig). 

8.6.4 Event OR Construct  

The ORing of any number of events can be expressed such that the occurrence of any one will 
trigger the execution of the statement. The next two examples show the ORing of two and three 
events respectively. 

@(trig or enable) rega = regb; // controlled by trig  or enable 

@(posedge clock_a or posedge clock_b or trig) rega = regb; 

8.6.5 Level-Sensitive Event Control  

The execution of a statement can also be delayed until a condition becomes true. This is 
accomplished using the wait statement, which is a special form of event control. The nature of the 
wait statement is level-sensitive, as opposed to basic event control (specified by the @ character), 
which is edge-sensitive. The wait statement checks a condition, and, if it is false, causes the 
procedure to pause until that condition becomes true before continuing. The wait statement has the 
following form: 

wait(condition_expression) statement 
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Example  8-27 shows the use of the wait statement to accomplish level-sensitive event control. 

begin 
 wait(!enable) #10 a = b;  
 #10 c = d;  
end 

Example  8- 27: Use of wait statement 

If the value of enable is one when the block is entered, the wait statement delays the evaluation of 
the next statement (#10 a = b;) until the value of enable changes to zero. If enable is already zero 
when the begin-end block is entered, then the next statement is evaluated immediately and no delay 
occurs. 

8.6.6 Intra-Assignment Timing Controls  

The delay and event control constructs previously described precede a statement and delay its 
execution. The intra-assignment delay and event controls are contained within an assignment 
statement and modify the flow of activity in a slightly different way. 

Encountering an intra-assignment delay or event control delays the assignment just as a regular 
delay or event control does, but the right-hand-side expression is evaluated before the delay, 
instead of after the delay. This allows data swap and data shift operations to be described without 
the need for temporary variables. This section describes the purpose of intra-assignment timing 
controls and the repeat timing control that can be used in intra-assignment delays. 

Figure  8-1 illustrates the philosophy of intra-assignment timing controls by showing the code that 
could accomplish the same timing effect without using intra-assignment. 

 

Figure  8- 1: Equivalents to intra-assignment timing controls 
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The next three examples use the fork-join behavioral construct. All statements between the 
keywords fork and join execute concurrently. Section  8.7.2 Parallel Blocks describes this construct 
in more detail. 

The following example shows a race condition that could be prevented by using intra-assignment 
timing control:  

fork 

 #5 a = b; 

 #5 b = a; 

join 

The code in the example above samples the values of both a and b at the same simulation time, 
thereby creating a race condition. The intra-assignment form of timing control used in the example 
below prevents this race condition: 

fork  // data swap 

 a = #5 b; 

 b = #5 a; 

join 

Intra-assignment timing control works because the intra-assignment delay causes the values of a 
and b to be evaluated before the delay, and the assignments to be made after the delay. Some 
existing tools that implement intra-assignment timing control use temporary storage in evaluating 
each expression on the right-hand side. 

Intra-assignment waiting for events is also effective. In the example below, the right-hand-side 
expressions are evaluated when the assignment statements are encountered, but the assignments are 
delayed until the rising edge of the clock signal. 

fork  // data shift 

 a = @(posedge clk) b; 

 b = @(posedge clk) c; 

join 

The repeat event control 

The repeat event control specifies an intra-assignment delay of a specified number of occurrences 
of an event. This construct is convenient when events must be synchronized with counts of clock 
signals. 

Syntax  8-8 presents the repeat event control syntax: 

<repeat_event _controlled_assignment> 
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::=<lvalue> = <repeat_event_control><expression>; 
||=<lvalue> <= <repeat_event_control><expression>;  

<repeat_event_control> 
::=repeat(<expression>)@(<identifier>) 
||=repeat(<expression>)@(<event_expression>) 

<event_expression> 
::=<expression> 
||=posedge<SCALAR_EVENT_EXPRESSION> 
||=negedge<SCALAR_EVENT_EXPRESSION> 
||=<event_expression>or<event_expression> 

Syntax  8- 8: Syntax of the repeat event control 

The event expression must resolve to a one bit value. A scalar event expression is an expression 
which resolves to a one bit value. 

The following is an example of a repeat event control as the intra-assignment delay of a non-
blocking assignment: 

a  <=  repeat(5)  @(posedge clk)  data; 

Figure  8-2 illustrates the activities that result from this repeat event control: 

 

Figure  8- 2: Repeat event control utilizing a clock edge 

In this example, the value of data is evaluated when the assignment is encountered. After five 
occurrences of posedge clk, a is assigned the value of data. 

The following is an example of a repeat event control as the intra-assignment delay of a procedural 
assignment: 
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a = repeat(num)@(clk)data; 

In this example, the value of data is evaluated when the assignment is encountered. After the 
number of transitions of clk equals the value of num, a is assigned the value of data. 

The following is an example of a repeat event control with expressions containing operations to 
specify both the number of event occurrences and the event that is counted: 

a <= repeat(a+b)@(posedge phi1 or negedge phi2)data; 

In the example above, the value of data is evaluated when the assignment is encountered. After the 
sum of the positive edges of phi1 and the negative edges of phi2 equals the sum of a and b, a is 
assigned the value of data. 

8.7 Block Statements  

The block statements are a means of grouping two or more statements together so that they act 
syntactically like a single statement. We have already introduced and used the sequential block 
statement which is delimited by the keywords begin and end. Section  8.7.1 Sequential Blocks 
discusses sequential blocks in more detail. 

A second type of block, delimited by the keywords fork and join, is used for executing statements 
in parallel. A fork-join block is known as a parallel block, and enables procedures to execute 
concurrently through time. Section  8.7.2 Parallel Blocks discusses parallel blocks. 

8.7.1 Sequential Blocks 

A sequential block has the following characteristics: 

• statements execute in sequence, one after another 

• delay values for each statement are relative to the simulation time of the execution of the 
previous statement 

• control passes out of the block after the last statement executes 

The following is the formal syntax for a sequential block: 

<seq_block>  
::= begin <statement>* end  
||= begin : <name_of_block>  

<block_declaration>*  
<statement>* 

end 

<name_of_block> 
::=<IDENTIFIER> 
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<block_declaration> 
::=<parameter_declaration> 
||=<reg_declaration> 
||=<integer_declaration> 
||=<real_declaration> 

Syntax  8- 9: Syntax for the sequential block 

A sequential block enables the following two assignments to have a deterministic result: 

begin 

 areg = breg; 

 creg = areg; // creg becomes the value of breg 

end 

Here the first assignment is performed and areg is updated before control passes to the second 
assignment. 

Delay control can be used in a sequential block to separate the two assignments in time. 

begin 

 areg = breg; 

 #10 creg = areg; // this gives a delay of 10 time 

end // units between assignments 

Example  8-28 shows how the combination of the sequential block and delay control can be used to 
specify a time-sequenced waveform. 

parameter d = 50; // d declared as a parameter 
reg [7:0] r; // and r declared as an 8-bit register 
begin  // a waveform controlled by sequential delay 
 #d r = 'h35; 
 #d r = 'hE2; 
 #d r = 'h00; 
 #d r = 'hF7; 
 #d -> end_wave;// trigger the event called end_wave  
end  

Example  8- 28: A waveform controlled by sequential delay 

Example  8-29 shows three examples of sequential blocks. 
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Example  8- 29: Three examples of sequential blocks 

8.7.2 Parallel Blocks 

A parallel block has the following characteristics: 

• statements execute concurrently 

• delay values for each statement are relative to the simulation time when control enters the 
block 

• delay control is used to provide time-ordering for assignments 

• control passes out of the block when the last time-ordered statement executes or a disable 
statement executes 

Syntax  8-10 gives the formal syntax for a parallel block. 

<par_block>  
::= fork <statement>* join  
||= fork : <name_of_block 

 <block_declaration>*  
<statement>* 

 join  

<name_of_block> 
::=<IDENTIFIER> 

<block_declaration> 
::=<parameter_declaration> 
||=<reg_declaration> 
||=<integer_declaration> 
||=<real_declaration> 
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||=<time_declaration> 
||=<event_declaration> 

Syntax  8- 10: Syntax for the parallel block 

Example  8-30 codes the waveform description shown in Example  8-28 by using a parallel block 
instead of a sequential block. The waveform produced on the register is exactly the same for both 
implementations. 

fork 
 #50 r = 'h35; 
 #100 r = 'hE2; 
 #150 r = 'h00; 
 #200 r = 'hF7; 
 #250 -> end_wave; 
join 

Example  8- 30: Use of the fork-join construct 

8.7.3 Block Names 

Note that blocks can be named by adding: name_of_block after the keywords begin or fork. The 
naming of blocks serves several purposes: 

• It allows local variables to be declared for the block. 

• It allows the block to be referenced in statements like the disable statement (as discussed in 
Chapter 10.0 Disabling Blocks and Tasks Overview). 

• In the Verilog language, all variables are static—that is, a unique location exists for all 
variables and leaving or entering blocks does not affect the values stored in them.  

Thus, block names give a means of uniquely identifying all variables at any simulation time.  

8.7.4 Start and Finish Times 

Both forms of blocks have the notion of a start and finish time. For sequential blocks, the start time 
is when the first statement is executed, and the finish time is when the last statement has finished. 
For parallel blocks, the start time is the same for all the statements, and the finish time is when the 
last time-ordered statement has finished executing. When blocks are embedded within each other, 
the timing of when a block starts and finishes is important. Execution does not continue to the 
statement following a block until the block’s finish time has been reached—that is, until the block 
has completely finished executing. 

Moreover, the timing controls in a fork-join block do not have to be given sequentially in time. 
Example  8-31 shows the statements from Example  8-30 written in the reverse order and still 
producing the same waveform. 
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fork 
 #250 -> end_wave; 
 #200 r = 'hF7; 
 #150 r = 'h00; 
 #100 r = 'hE2; 
 #50 r = 'h35;  
join 

Example  8- 31: Timing controls in a parallel block 

Sequential and parallel blocks can be embedded within each other allowing complex control 
structures to be expressed easily and with a high degree of structure. 

One simple example of this is when an assignment is to be made after two separate events have 
occurred. This is known as the ‘joining’ of events. 

begin 
fork 

@Aevent; 
@Bevent; 

join 
areg=breg; 

end 

Example  8- 32: The joining of events 

Note that the two events can occur in any order (or even at the same time) and the fork-join block 
will complete and the assignment will be made. In contrast to this, if the fork-join block was a 
begin-end block and the Bevent occurred before the Aevent, then the block would be deadlocked 
waiting for the Bevent. 

Example  8-33 shows two sequential blocks, each of which will execute when its controlling event 
occurs. Because the wait statements are within a fork-join block, they execute in parallel and the 
sequential blocks can therefore also execute in parallel.  

fork 
@enable_a 

begin 
#tawa=0; 
#tawa=1; 
#tawa=0; 

end 
@enable_b 
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begin 
#tbwb=1; 
#tbwb=0; 
#tbwb=1; 

end 
join 

Example  8- 33: Enabling sequential blocks to execute in parallel 

8.8 Structured Procedures  

All procedures in Verilog are specified within one of the following four statements: 

initial statement 

• always statement 

• task 

• function 

The initial and always statements are enabled at the beginning of simulation. The initial statement 
executes only once and its activity dies when the statement has finished. In contrast, the always 
statement executes repeatedly. Its activity dies only when the simulation is terminated. There is no 
limit to the number of initial and always blocks that can be defined in a module. 

Tasks and functions are procedures that are enabled from one or more places in other procedures. 
Tasks and functions are covered in detail in Chapter 9. 

8.8.1 initial Statement 

The syntax for the initial statement is as follows: 

<initial_statement> 
::=initial<statement> 

Syntax  8- 11: Syntax for <initial_statement> 

Example  8-34 illustrates use of the initial statement for initialization of variables at the start of 
simulation. 

initial 
begin 

areg  =  0; // initialize  a  register 
for  (index  =  0;  index  <  size;  index  =  index+1) 

memory[index]  =  0; // initialize  a  memory  word 
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end 

Example  8- 34: Use of initial statement 

Another typical usage of the initial statement is specification of waveform descriptions that execute 
once to provide stimulus to the main part of the circuit being simulated. Example  8-35 illustrates 
this usage. 

initial 
begin 

inputs  =  'b000000; // initialize  at  time  zero 
 #10  inputs  =  'b011001; // first  pattern 
 #10  inputs  =  'b011011; // second  pattern 
 #10  inputs  =  'b011000; // third  pattern 
 #10  inputs  =  'b001000; // last  pattern 

end 

Example  8- 35: Another use for initial statement 

8.8.2 always Statement 

The always statement repeats continuously throughout the whole simulation run. Syntax  8-12 
gives the syntax for the always statement. 

<always_statement>  
      ::= always <statement> 

Syntax  8- 12: Syntax for always_statement 

The always statement, because of its looping nature, is only useful when used in conjunction with 
some form of timing control. If an always statement provides no means for time to advance, the 
always statement creates a simulation deadlock condition. The following code, for example, creates 
an infinite zero-delay loop. 

always areg = ~areg; 

Providing a timing control to the above code creates a potentially useful description—as in the 
following example: 

always #half_period areg = ~areg; 
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8.8.3 Examples 

We have now introduced enough statement types for some complete and more practical examples 
to be given. These examples are given as complete descriptions enclosed in modules—such that 
they can be simulated and the results observed. 

Example  8-36 is that of a simple traffic light sequencer described with its own clock generator. 

module  traffic_lights; 
reg 
clock, 
red, 
amber, 
green; 
parameter 

on  =  1, 
off  =  0, 
red_tics  =  350, 
amber_tics  =  30, 
green_tics  =  200; 

// the  sequence  to  control  the  lights 
always 

begin 
red  =  on; 
amber  =  off; 
green  =  off; 
repeat  (red_tics)  @(posedge  clock); 
red  =  off; 
green  =  on; 
repeat  (green_tics)  @(posedge  clock); 
green  =  off; 
amber  =  on; 
repeat  (amber_tics)  @(posedge  clock); 

end 
// waveform  for  the  clock 
always 

begin 
#100  clock  =  0; 
#100  clock  =  1; 

end 
// simulate  for  10  changes  on  the  red  light 
initial 

begin 
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repeat (10) @ red; 
$finish; 

end 
// display  the  time  and  changes  made  to  the  lights 
always 

@ ( red  or  amber  or  green ) 
$display ("%d  red=%b  amber=%b  green=%b", 
$time, red, amber, green); 

endmodule 

Example  8- 36: Behavioral model of traffic light sequencer 

Example  8-37 shows a use of variable delays. The module has a clock input and produces two 
synchronized clock outputs. Each output clock has equal mark and space times, is out of phase 
from the other by 45 degrees, and has a period half that of the input clock. Note that the clock 
generation is independent of the simulation time unit, except as it affects the accuracy of the divide 
operation on the input clock period. 

module  synch_clocks; 
reg 

clock, 
phase1, 
phase2; 

time  clock_time; 
initial  clock_time  =  0; 
always  @  (posedge  clock) 

begin  :phase_gen 
timed; //a  local  declaration  is  possible 
//because  the  block  is  named 
d  =  ($time  -  clock_time)  /  8; 
clock_time  =  $time; 
phase1  =  0; 
#d  phase2  =  1; 
#d  phase1  =  1; 
#d  phase2  =  0; 
#d  phase1  =  0; 
#d   phase2  =  1; 
#d  phase1  =  1; 
#d  phase2  =  0; 

end 
// setup  a  clock  waveform,  finish  time, 
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// and  display 
always 

begin 
#100  clock  =  0; 
#100  clock  =  1; 

end 
initial  #1000  $finish; // end  simulation  at  time  1000 
always 

@  (phase1  or  phase2) 
$display  ($time,, 
"clock = %b  phase1 = %b  phase2 = %b", 
clock,  phase1,  phase2); 

endmodule 

Example  8- 37: Behavioral model with variable delays 
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Tasks and Functions 

9.0 Tasks and Functions Overview 

Tasks and functions provide the ability to execute common procedures from several different 
places in a description. They also provide a means of breaking up large procedures into smaller 
ones to make it easier to read and debug the source descriptions. Input, output, and inout argument 
values can be passed into and out of both tasks and functions. The next section discusses the 
differences between tasks and functions. Subsequent sections describe how to define and invoke 
tasks and functions and present examples of each. 

9.1 Distinctions between Tasks and Functions 

The following rules distinguish tasks from functions: 

• A function must execute in one simulation time unit; a task can contain time-controlling 
statements. 

• A function cannot enable a task; a task can enable other tasks and functions. 

• A function must have at least one input argument; a task can have zero or more arguments of 
any type. 

• A function returns a single value; a task does not return a value.  

The purpose of a function is to respond to an input value by returning a single value. A task can 
support multiple goals and can calculate multiple result values. However, only the output or inout 
arguments pass result values back from the invocation of a task. A Verilog model uses a function 
as an operand in an expression; the value of that operand is the value returned by the function.  

For example, you could define either a task or a function to switch bytes in a 16-bit word. The task 
would return the switched word in an output argument, so the source code to enable a task called 
switch_bytes could look like the following example: 

switch_bytes (old_word, new_word); 

The task switch_bytes would take the bytes in old_word, reverse their order, and place the reversed 
bytes in new_word. A word-switching function would return the switched word directly. Thus, the 
function call for the function switch_bytes might look like the following example: 

new_word = switch_bytes (old_word); 

9.2 Tasks and Task Enabling  

A task is enabled from a statement that defines the argument values to be passed to the task and the 
variables that will receive the results. Control is passed back to the enabling process after the task 
has completed. Thus, if a task has timing controls inside it, then the time of enabling can be 
different from the time at which control is returned. A task can enable other tasks, which in turn 
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can enable still other tasks—with no limit on the number of tasks enabled. Regardless of how many 
tasks have been enabled, control does not return until all enabled tasks have completed. 

9.2.1 Defining a Task 

The following is the syntax for defining tasks: 

<task>  
::= task <name_of_task> ;  
    <tf_declaration>*  
    <statement_or_null>  
    endtask 

<name_of_task>  
::= <IDENTIFIER> 

<tf_declaration>  
::= <parameter_declaration>  
||= <input_declaration>  
||= <output_declaration>  
||= <inout_declaration>  
||= <reg_declaration>  
||= <time_declaration>  
||= <integer_declaration>  
||= <real_declaration> 
||= <event_declaration> 

Syntax  9- 1: Syntax for task 

Task and function declarations specify the following: 

• local variables 

• IO ports 

• registers 

• times 

• integers 

• real 

• events 

These declarations all have the same syntax as for the corresponding declarations in a module 
definition. 
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9.2.2 Task Enabling and Argument Passing 

The statement that enables a task passes the IO arguments as a comma-separated list of expressions 
enclosed in parentheses. The following is the formal syntax of the task enabling statement: 

<task_enable>  
::= <name_of_task> ;  
||= <name_of_task> ( <expression> <,<expression>>* ) ; 

Syntax  9- 2: Syntax of the task enabling statement 

The first form of a task enabling statement applies when there are no IO arguments declared in the 
task body. In the second form, the list of <expression> items is an ordered list that must match the 
order of the list of IO arguments in the task definition. 

If an IO argument is an input, then the corresponding <expression> can be any expression. If the 
IO argument is an output or an inout, then Verilog restricts it to an expression that is valid on the 
left-hand side of a procedural assignment. The following items satisfy this requirement: 

• reg, integer, real, and time variables 

• memory references 

• concatenations of reg, integer, real, and time variables 

• concatenations of memory references 

• bit-selects and part-selects of reg, integer, real, and time variables 

The execution of the task enabling statement passes input values from the variables listed in the 
enabling statement to the variables specified within the task. Execution of the return from the task 
passes values from the task output and inout variables to the corresponding variables in the task 
enabling statement. Verilog passes all arguments by value (that is, Verilog passes the value rather 
than a pointer to the value). 

Example  9-1 illustrates the basic structure of a task definition with five arguments. 

task my_task;  
    input a, b;  
    inout c;  
    output d, e;  
 begin 
      <statement> // the set of statements that 
  // performs the work of the task 
 c = foo1; // the assignments that initialize 
 d = foo2; // the results variables 
 e = foo3; 
 end 
endtask 
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Example  9- 1: Task definition with arguments 

The following statement enables the task in Example  9-1: 

my_task (v, w, x, y, z); 

The calling arguments (v, w, x, y, z) correspond to the IO arguments (a, b, c, d, e) defined by the 
task. At task enabling time, the input and inout arguments (a, b, and c) receive the values passed in 
v, w, and x. A tool processing the HDL source code performs this assignment. Thus, execution of 
the task enabling call effectively causes the following assignments: 

a = v; b = w; c = x; 

As part of the processing of the task, the task definition for my_task must place the computed 
results values into c, d, and e. When the task completes, the processing software performs the 
following assignments to return the computed values to the calling process: 

x = c; y = d; z = e; 

9.2.3 Task Example 

Example  9-2 illustrates the use of tasks by redescribing the traffic light sequencer that was 
introduced in Chapter 8. 

module traffic_lights;  
    reg clock, red, amber, green; 
    parameter on = 1, off = 0, red_tics = 350,  
              amber_tics = 30, green_tics = 200; 
    // initialize colors  
    initial  
        red = off;  
    initial  
        amber = off;  
    initial  
        green = off; 
    // sequence to control the lights  
    always begin  
        red = on;  // turn red light on  
        light(red, red_tics); // and wait. 
        green = on; // turn green light on  
        light(green, green_tics); // and wait. 
        amber = on; // turn amber light on  
        light(amber, amber_tics); // and wait.  
    end 
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    // task to wait for 'tics' positive edge clocks  
    // before turning 'color' light off  
    task light;  
        output color;  
        input [31:0] tics;  
        begin  
            repeat (tics)  
                @(posedge clock);  
            color = off; // turn light off  
        end  
    endtask 
    // waveform for the clock  
    always begin  
        #100 clock = 0;  
        #100 clock = 1;  
    end  
endmodule // traffic_lights 

Example  9- 2: Using tasks 

9.2.4 Effect of Enabling an Already Active Task 

Implementation Specific Detail:  Because Verilog supports concurrent procedures, and tasks can 
have non-zero time duration, you can write a model that invokes 
a task when that task is already executing (a special case of 
invoking a task that is already active is where a task recursively 
calls itself). Some tools allow multiple copies of a task to 
execute concurrently, but it does not copy or otherwise preserve 
the task arguments or local variables. Some tools use the same 
storage for each invocation of the task. This means that when 
the simulator interrupts a task to process another instance of 
the same task, it overwrites the argument values from the first 
call with the values from the second call. The user must manage 
what happens to the variables of a task that is invoked while it is 
already active. 

9.3 Functions and Function Calling 

The purpose of a function is to return a value that is to be used in an expression. The rest of this 
chapter explains how to define and use functions. 
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9.3.1 Defining a Function 

To define functions, use the following syntax: 

<function>  
::= function <range_or_type>? <name_of_function> ;  
<tf_declaration>+  
<statement>   
endfunction 

<range_or_type> 
::= <range>   
||= integer 
||= real 

<name_of_function>  
::= <IDENTIFIER> 

<tf_declaration>  
::= <parameter_declaration>    
||= <input_declaration>     
||= <output_declaration>     
||= <inout_declaration>     
||= <reg_declaration>     
||= <time_declaration>     
||= <integer_declaration>     
||= <real_declaration>     
||= <event_declaration>    

Syntax  9- 3: Syntax for function 

Note that the <range_or_type> item is optional. A function specified without <range_or_type> 
defaults to a one-bit register for the return value. If used, <range_or_type> can specify that the 
function’s return value is a real, an integer, or a value with a range of [n:m] bits.  

Example  9-3 defines a function called getbyte, using a <range> specification. 

function [7:0] getbyte;  
input [15:0] address;  
 begin 
  <statements> // code to extract low-order 
   // byte from addressed word 
  getbyte = result_expression; 
 end 
endfunction 
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Example  9- 3: A function definition using range 

9.3.2 Returning a Value from a Function 

The function definition implicitly declares a register, internal to the function, with the same name 
as the function. This register either defaults to one bit or is the same type as the <range_or_type> 
specified in the function declaration. The function definition initializes the function’s return value 
by assigning the function result to the internal variable with the same name as the function. The 
following line from Example  9-3 illustrates this concept: 

getbyte = result_expression; 

9.3.3 Calling a Function 

A function call is an operand within an expression. The operand has the following syntax: 

<function_call>  
::= <name_of_function> ( <expression> <,<expression>>* ) 

<name_of_function>  
::= <identifier> 

Syntax  9- 4: Syntax for function_call 

The following example creates a word by concatenating the results of two calls to the function 
getbyte (defined in Example  9-3). 

word = control ? {getbyte(msbyte), getbyte(lsbyte)} : 0; 

9.3.4 Function Rules 

Functions are more limited than tasks. The following four rules govern their usage: 

1. A function definition cannot contain any time controlled statements—that is, any 
statements introduced with #, @, or wait. 

2. Functions cannot enable tasks. 
3. A function definition must contain at least one input argument. 
4. A function definition must include an assignment of the function result value to the internal 

variable that has the same name as the function. 
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9.3.5 Function Example 

Example  9-4 defines a function called factorial that returns a 32-bit register. The factorial function 
then calls itself recursively and prints some results. 

module  tryfact; 
 // define  function 
 function  [31:0]  factorial; 
  input  [3:0]  operand; 
  reg  [3:0]  index; 
  begin 
   factorial  =  operand  ?  1  :  0; 
   for  (index  =  2;  index  <=  operand;  index  =  index  +  1) 
    factorial  =  index  *  factorial; 
  end 
 endfunction 

 //Test  the  function 
 reg  [31:0]  result; 
 reg  [3:0]  n; 
 initial 
  begin 
   result=1; 
   for(  n=2;  n<=9;  n=n+1) 
    begin 
     $display("Partial  result  n=%d  result=%d", 
      n,result); 
     result  =  n  *  factorial  (n)  /  ((n*2)+1); 
    end 
   $display  ("Final  result=%d",  result); 
  end 
endmodule  // tryfact 

Example  9- 4: Defining and calling a function 
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Disabling of Named Blocks and Tasks 

10.0 Disabling Blocks and Tasks Overview 

The disable statement provides the ability to terminate the activity associated with concurrently 
active procedures, while maintaining the structured nature of Verilog HDL procedural descriptions. 
The disable statement gives a mechanism for returning from a task before it executes all its 
statements, breaking from a looping statement, or skipping statements in order to continue with 
another iteration of a looping statement. It is useful for handling exception conditions such as 
hardware interrupts and global resets. 

The disable statement has one of the following two syntax forms: 

<disable_statement> 
::= disable <name_of_task> ; 
||= disable <name_of_block> ; 

Syntax  10- 1: Syntax of <disable_statement> 

Either form of disable causes all current activity in the named block or task to be terminated. The 
disable statement removes evaluated and scheduled non blocking procedural assignments from the 
schedule of events. Execution resumes at the statement following the block or following the task 
enabling statement. The termination of activity also applies to all activity enabled within the named 
block or task. If task enable statements are nested—that is, one task enables another, and that one 
enables yet another—then disabling a task within the chain disables all tasks downward on the 
chain. 

The disable statement is also used within blocks and tasks to disable the particular block or task 
containing the disable statement. The following example, in which a block disables itself, 
illustrates this concept: 

begin  :block_name 
 rega  =  regb; 
 disable  block_name; 
 regc  =  rega;  //  this  assignment  will  never  execute 
end 

Example  10- 1: A block disabling itself 

The next five examples illustrate the disable statement in situations representative of features found 
in other languages.  shows the disable statement being used within a named block in a manner 
similar to a forward goto. The next statement executed after the disable statement is the one 
following the named block. 

begin  :block_name 
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• . 

• . 

• . 

 if  (a  ==  0)  disable  block_name; 
• . 

• . 

• . 

end // end of named block 
// continue with code following named block 

• . 

• . 

• . 

Example  10- 2: disable statement used as “goto” 

Example  10-3 shows the disable statement being used as an early return from a task. 

task  proc_a; 
 begin 

• . 

• . 

• . 

  if  (a  ==  0)disable  proc_a;  // return  if  true 
• . 

• . 

• . 

 end 
endtask 

Example  10- 3: disable statement used as return  

Example  10-4 shows the disable statement being used in an equivalent way to the two statements 
continue and break in the C language. The example illustrates control code that would allow a 
named block to execute until a loop counter reaches n iterations or until the variable a gets set to a 
value of b. The named block break contains the code that executes until a == b, at which point the 
disable break; statement terminates execution of that block. The named block continue contains the 
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code that executes for each iteration of the for loop. Each time this code executes the disable 
continue; statement, the continue block terminates and execution passes to the next iteration of the 
for loop. For each iteration of the continue block, a set of <statements> executes if (a != 0). 
Another set of <statements> executes if(a!=b). 

begin  :break 
 for  (I  =  0;  I  <  n;  I  =  I  +  1) 
  begin  :continue 
   @  clk 
    if  (a  ==  0); 
     //  "continue"  loop 
     disable  continue 
    <statements> 
    <statements> 
   @clk 
    if  (  a  ==  b  ) 
     // "break"  from  loop 
     disable  break; 
    <statements> 
    <statements> 
       end 
end 

Example  10- 4: disable statement as “continue” and “break” 

Example  10-5 shows the disable statement being used to concurrently disable a sequence of timing 
controls and the task action, when the reset event occurs. The example shows a fork/join block 
within which is a named sequential block (event_expr) and a disable statement that waits for 
occurrence of the event reset. The sequential block and the wait for reset execute in parallel. The 
event_expr block waits for one occurrence of event ev1 and three occurrences of event trig. When 
these four events have happened, plus a delay of d time units, the task action executes. When the 
event reset occurs, regardless of events within the sequential block, the fork/join block 
terminates—including the task action. 

fork 
 begin  :event_expr 
  @  ev1; 
  repeat  (3)  @  trig; 
  #d  action  (areg,  breg); 
 end 
 @  reset  disable  event_expr; 
join 
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Example  10- 5: disable statement in a fork/join block 

Example  10-6 is a behavioral description of a retriggerable monostable. The named event retrig 
restarts the monostable time period. If retrig continues to occur within 250 time units, then q will 
remain at 1. 

always 
  begin:  monostable 
   #250  q  =  0; 
  end 
always  @retrig 
  begin 
   disable  monostable; 
    q=1; 
  end 

Example  10- 6: disable statement in retriggerable monostable 

Example  10-6 is a combination lock that is implemented with the disable statement and event 
controls. The events are key_a, key_b, and key_c. The combination lock opens when simulation 
detects these events in the following sequence: 
1. key_b 

2. key_a 

3. key_c  

always 
  begin  :lock 
   @key_b 
   fork 
    reg  flag; 
    flag=1; 
    @key_a 
    fork 
      flag=0; 
      @key_c  ->  open; 
      @(key_a  or  key_b)  disable  lock; 
     join  
     @(key_b or key_c)  
      if (flag) disable lock;  
    join  
  end  
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always @open  
  begin  
   disable lock;  
   open_it_up;  
  end  

Example  10- 7: disable statement used with event controls 
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Procedural Continuous Assignments 

11.0 Procedural Continuous Assignment Overview 

The procedural continuous assignments are procedural statements that allow expressions to be 
driven continuously onto registers or nets. The syntax for these statements follows: 

<statement>  
::= assign <assignment> ; 

<statement>  
::= deassign <lvalue> ; 

<force_statement>  
::= force <assignment> ; 

<release_statement>  
::= release <lvalue> ; 

Syntax  11- 1: Syntax for procedural continuous assignments 

The left-hand side of the assignment in the assign statement is restricted to be a register reference 
or a concatenation of registers. It cannot be a memory element (array reference) or a bit-select or a 
part-select of a register. 

In contrast, the left-hand side of the assignment in the force statement can be a register reference 
or a net reference, a bit-select or part-select of an expanded vector net. It can be a concatenation of 
any of the above. Bit-selects and part-selects of vector registers or unexpanded vector nets are not 
allowed, and will result in an error. 

11.1 The assign and deassign Procedural Statements 

The assign and deassign procedural statements allow continuous assignments to be placed onto 
registers for controlled periods of time. The assign procedural assignment statement overrides 
procedural assignments to a register. The deassign procedural statement ends a continuous 
assignment to a register. The assign and deassign procedural statements allow, for example, 
modeling of asynchronous clear/preset on a D-type edge-triggered flip-flop, where the clock is 
inhibited when the clear or preset is active.  

Example  11-1 shows a use of the assign and deassign procedural statements in a behavioral 
description of a D-type flip-flop with preset and clear inputs. 
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Example  11- 1: Use of assign and deassign 

If either clear or preset is low, then the output q will be held continuously to the appropriate 
constant value and a positive edge on the clock will not affect q. When both the clear and preset are 
high, then q is deassigned.  

If the keyword assign is applied to a register for which there is already a procedural continuous 
assignment, this new procedural continuous assignment automatically deassigns the register before 
making the new procedural continuous assignment. 

11.2 The force and release Procedural Statements 

Another form of procedural continuous assignment is provided by the force and release 
procedural statements. These statements have a similar effect to the assign-deassign pair, but a 
force can be applied to nets as well as to registers. The left-hand side of the assignment can be a 
register, a net, a constant bit select of an expanded vector net, a part select of an expanded vector 
net, or a concatenation. It cannot be a memory element (array reference) or a bit-select or a part-
select of a vector register or non-expanded vector net. 

A force procedural statement to a register overrides a procedural assignment or procedural 
continuous assignment that takes place on the register until a release procedural statement is 
executed on the register. After the release procedural statement is executed, the register does not 
immediately change value (as would a net that is forced). The value specified in the force 
statement is maintained in the register until the next procedural assignment takes place, except in 
the case where a procedural continuous assignment is active on the register. 

A force procedural statement on a net overrides all drivers of the net—gate outputs, module 
outputs, and continuous assignments—until a release procedural statement is executed on the 
net. 

Releasing a register that currently has an active assign will re-establish the assign statement. 
The reason for having a two-level override system for registers is that assign-deassign is meant 
for actual descriptions of hardware, and the force-release is meant for debugging purposes. 

Example  11-2 shows part of a log file from a simulation that included interactively entered force 
and release procedural statements. 
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Example  11- 2: Use of force and release 

In Example  11-2, an AND gate is “patched” as an OR gate by a force procedural statement that 
forces its output to the value of its ORed inputs, and an assign procedural statement of ANDed 
values is “patched” as an assign procedural statement of ORed values. 
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Hierarchical Structures 

12.0 Hierarchical Structures Overview 

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be 
embedded within other modules. Higher-level modules create instances of lower-level modules and 
communicate with them through input, output, and bidirectional ports. These module input/output 
ports can be scalar or vector. 

As an example of a module hierarchy, consider a system consisting of printed circuit boards. The 
system would be represented as the top-level module and would create instances of modules that 
represent the boards. The board modules would, in turn, create instances of modules that represent 
ICs, and the ICs could, in turn, create instances of modules that represent predefined cells such as 
flip-flops, mux’s, and alu’s. 

To describe a hierarchy of modules, the user provides textual definitions of the various modules. 
Each module definition stands alone; the definitions are not nested. Statements within the module 
definitions create instances of other modules, thus describing the hierarchy. 

12.1 Modules 

This section gives the formal syntax for a module definition and then gives the syntax for module 
instantiation, along with an example of a module definition and a module instantiation.  

A module definition is enclosed between the keywords module and endmodule, where the 
<IDENTIFIER> after module gives the name of the module. The optional <list_of_ports> specifies 
an ordered list of the module’s IO ports. The order used can be significant when instantiating the 
module (see Section  12.1.2 Module Instantiation). The identifiers in this list must be declared in 
input, output, and inout statements within the module definition. The <module_items> define what 
constitutes a module, and include many different types of declarations and definitions; many of 
them have already been introduced.  

<module> 
::= module <name_of_module><list_of_ports>? ;  
    <module_item>*  
     endmodule 

<name_of_module> 
::=<IDENTIFIER> 

<list_of_ports> 
::=(<port><,<port>>*) 

<module_item> 
::=<parameter_declaration> 
||=<input_declaration> 
||=<output_declaration> 
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||=<inout_declaration> 
||=<net_declaration> 
||=<reg_declaration> 
||=<time_declaration> 
||=<integer_declaration> 
||=<real_declaration> 
||=<event_declaration> 
||=<gate_instantiation> 
||=<primitive_instantiation> 
||=<module_instantiation> 
||=<parameter_override> 
||=<continuous_assign> 
||= <specify_block> 
||=<initial_statement> 
||=<always_statement> 
||=<task> 
||=<function> 

Syntax  12- 1: Syntax definitions for <module> 

See Section  12.4 Ports for the definitions of the syntax item <port>. See Section  12.1.3 Module 
Definition and Instance Example. 

12.1.1 Top-Level Modules 

Top-level modules are modules that are included in the source text supplied as input to a particular 
simulation run, but are not instantiated, as described in Section  12.1.2 Module Instantiation.  

12.1.2 Module Instantiation  

Instantiation allows one module to incorporate a copy of another module into itself. Module 
definitions do not nest. That is, one module definition cannot contain the text of another module 
definition within its module/endmodule keyword pair. A module definition nests another module 
by instantiating it. The <module_instantiation> statement creates one or more named instances of a 
defined module. For example, a counter module might instantiate a D flip-flop module to create 
eight instances of the flip-flop. 

The following is the syntax for specifying instantiations of modules: 

<module_instantiation>  
::= <name_of_module> <parameter_value_assignment>? <module_instance> 

<,<module_instance>>* ; 

<name_of_module>  
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::= <IDENTIFIER> 

<parameter_value_assignment>  
::= # ( <expression> <,<expression>>* ) 

<module_instance>  
::= <name_of_instance> ( <list_of_module_connections>? ) 

<name_of_instance>  
::= <IDENTIFIER> 

<list_of_module_connections>  
::= <module_port_connection> <,<module_port_connection>>*  
||= <named_port_connection> <,<named_port_connection>>* 

<module_port_connection>  
::= <expression>  
||= <NULL> 

<named_port_connection>  
::= .<IDENTIFIER> ( <expression> ) 

Syntax  12- 2: Definitions for <module_instantiation> 

The definition for <named_port_connection> includes an <IDENTIFIER> token that can be 
satisfied only with a port name from the definition of the module being instantiated. See Section  
12.4.4 Connecting Module Ports by Name for more details. 

12.1.3 Module Definition and Instance Example 

The code in Example  12-1 illustrates a circuit (the lower-level module) being driven by a simple 
waveform description (the higher-level module) where the circuit module is instantiated inside the 
waveform module. 

// THE LOWER-LEVEL MODULE: 
//module description of an and flip-flop circuit 
module ffnand (q, qbar, preset, clear); 

output q, qbar; //declares 2 circuit output nets 
input preset, clear; //declares 2 circuit input nets 
nand 

// declaration of two nand gates and 
// their interconnections 
g1 (q, qbar, preset), 
g2 (qbar ,q, clear); 
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endmodule 

// THE HIGHER-LEVEL MODULE: 
//a wave form description for the nand flip-flop 
module ffnand_wave; 

wire out1, out2; //outputsfromthecircuit 
reg in1, in2; //variablestodrivethecircuit 
//  instantiate  the  circuit  ffnand,  name  it  "ff", 
//  and  specify  the  IO  port  interconnections 
ffnandff  (out1,  out2,  in1,  in2); 
//  define  the  wave  form  to  stimulate  the  circuit 
parameter  d=10; 
initial 

begin 
#d  in1  =  0;  in2  =  1; 
#d  in1  =  1; 
#d  in2  =  0; 
#d  in2  =  1; 

end 
endmodule 

Example  12- 1: Module definition and instantiation 

One or more module instances (identical copies of a module) can be specified in a single module 
instantiation statement. Example  12-2 illustrates this statement. 

The list of module terminals is provided only for modules defined with terminals. The parentheses, 
however, are always required. When a list of module terminals is given, the first element in the list 
connects to the first port, the second to the second port, and so on. See Section  12.4 Ports for a 
more detailed discussion of ports and port connection lists.  

A terminal can be a simple reference to a variable, an expression, or blank. An expression can be 
used for supplying a value to a module input port. A blank module terminal represents the situation 
where the IO port is not to be connected (blanks are not allowed when connecting ports by name).  

The code in Example  12-2 creates two instances of the flip-flop module ffnand defined above, and 
connects only to the q output in one instance and only to the qbar output in the other instance. 

//a   wave  form  description  for  testing  the  nand  flip-flop 
//without  the  outputs 
module  ffnand_wave; 
 reg  in1,  in2;  //variables  to  drive  the  circuit 
 //make  two  copies  of  the  circuit  ffnand 
 //and  connect to one output for each 
 ffnand 
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  ff1  (out1,  ,  in1,  in2), 
  ff2(,  out2,  in1,  in2); 
 //define  the  waveform  to  stimulate  the  circuit 
 parameter  d=10; 
 initial 
  begin 
   #d  in1  =  0;  in2  =  1; 
   #d  in1  =  1; 
   #d  in2  =  0; 
   #d  in2  =  1; 
  end 
endmodule 

Example  12- 2: Instantiation with unconnected ports 

12.2 Overriding Module Parameter Values  

When one module instantiates another module, it can alter the values of any parameters declared 
within the instantiated module. There are two ways to alter parameter values: the defparam 
statement, which allows assignment to parameters using their hierarchical names, and module 
instance parameter value assignment, which allows values to be assigned inline during module 
instantiation. The next two sections describe these two methods. 

12.2.1 defparam Statement 

Using the defparam statement, parameter values can be changed in any module instance throughout 
the design using the hierarchical name of the parameter. The defparam statement is particularly 
useful for grouping all of the parameter value override assignments together in one module. The 
code in Example  12-3 illustrates the use of a defparam. 

module top; 
  reg clk; 
 reg [0:4] in1; 
 reg [0:9] in2; 
 wire [0:4] o1; 
 wire [0:9] o2; 

 vdff m1 (o1, in1, clk); 
 vdff m2 (o2, in2, clk); 
endmodule 

module vdff (out, in, clk); 
 parameter size = 1, delay = 1; 
 input [0:size-1] in; 
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 input clk; 
 output [0:size-1] out; 
 reg [0:size-1] out; 
 always @(posedge clk) 
  # delay out = in; 
endmodule 

module annotate; 
 defparam 
  top.m1.size = 5, 
  top.m1.delay = 10, 
  top.m2.size = 10, 
  top.m2.delay = 20; 
endmodule 

Example  12- 3: Use of defparam statement 

The expressions on the right-hand side of the defparam assignments must be constant expressions 
involving only numbers and references to parameters. The referenced parameters (on the right-hand 
side of the defparam) must be declared in the same module as the defparam statement. The 
modules top and annotate would both be considered top-level modules. 

12.2.2 Module Instance Parameter Value Assignment 

An alternative method for assigning values to parameters within module instances is similar in 
appearance to the assignment of delay values to gate instances. It uses the syntax # (<expression> 
<,<expression>>*) to supply values for particular instances of a module to any parameters that 
have been specified in the definition of that module. 

Consider Example  12-4, where the parameters within module instance mod_a are changed during 
instantiation. The name of the module being instantiated is vdff. The construct #(10,15) assigns 
values to parameters used in the mod_a instance of vdff. 

module  m; 
 reg clk; 
 wire  [1:10  ]out_a,  in_a; 
 wire  [1:5]  out_b,  in_b; 
 // create an instance and set parameters 
 vdff   #(10,  15) 
  mod_a  (out_a,  in_a,  clk); 
 // create an instance leaving default values 
 vdff 
  mod_b(out_b,  in_b,  clk); 
endmodule 
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module vdff (out,  in,  clk); 
 parameter  size = 1,  delay = 1; 
 input [0:size-1] in; 
 input clk; 
 output [0:size-1] out; 
 reg [0:size-1] out; 
 always @(posedge clk) 
  # delay out = in; 
endmodule 

Example  12- 4: Setting parameters during instantiation 

The order of the assignments in module instance parameter value assignment follows the order of 
declaration of the parameters within the module. In the example above, size is assigned the value 
10 and delay is assigned the value 15 for the instance of module vdff called mod_a. 

It is not necessary to assign values to all of the parameters within a module when using this 
method. However, it is not possible to skip over a parameter. This means that if you want to assign 
values to a subset of the parameters declared within a module, then the declarations of the 
parameters that make up this subset must precede the declarations of the parameters to which you 
do not want to assign values. An alternative is to assign values to all of the parameters, but use the 
default value (the same value assigned in the declaration of the parameter within the module 
definition) for those parameters that you do not want to affect.  

12.2.3 Parameter Dependence 

A parameter (for example, memory_size) can be defined with an expression containing another 
parameter (for example, word_size). Since memory_size depends on the value of word_size, a 
modification of word_size changes the value of memory_size. For example, in the following 
parameter declaration, an update of word_size, whether by defparam or in an instantiation 
statement for the module that defined these parameters, automatically updates memory_size. 

parameter 
    word_size = 32, 
    memory_size = word_size * 4096; 

12.3 Macro Modules 

The Verilog language includes a construct called a macro module. A macro module serves the 
same functions as a standard module, but because it conforms to certain limitations, it can simulate 
much faster in some implementations.  

 
When the simulator compiles an instance of a macro module, it merges the macro module 
definition with the definition of the module that contains the macro instance. It creates no name 
scope and makes no port connections. Instead, it places the macro definition at the same 
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hierarchical level as the containing module. This process is called macro module expansion. A 
compiled macro module instance is said to be expanded. 

12.3.1 Specifying Macro Modules 

 

Macro modules are specified by using the keyword macromodule in place of the keyword module 
in the module definition. Example  12-5 defines a macro module called NAND2. 

macromodule NAND2 (q, a, b); 
output q; 
input a,  b; 
 nand (q,a,b); 
endmodule 

Example  12- 5: Defining a macro  module 

12.3.2 Instances of Macro Modules 

Instances of macro modules are specified in exactly the same way as instances of normal modules. 

12.4 Ports 

Ports provide a means of interconnecting a hardware description consisting of modules, primitives, 
and macro modules. For example, module A can instantiate module B, using port connections 
appropriate to module A. These port names can differ from the names of the internal nets and 
registers specified in the definition of module B, but the connection is still made.  

12.4.1 Port Definition 

The syntax for a port is given below (this is the completion of the syntax presented in Section  12.1 
Modules).  

<port> 
: :=<port_expression>? 
||=.<name_of_port>( <port_expression>? ) 

<port_expression> 
::=<port_reference> 
||={ <port_reference> <,<port_reference>>* } 

<port_reference> 
::= <name_of_variable> 
||= <name_of_variable> [ <constant_expression> ] 
||= <name_of_variable> [ <constant_expression> : <constant_expression> ] 
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<name_of_port> 
::= <IDENTIFIER> 

Syntax  12- 3: Definitions for <port> 

The <port_expression> syntax item in the <port> definition can be one of the following: 

• a simple identifier 

• a bit-select of a vector declared within the module 

• a part-select of a vector declared within the module 

• a concatenation of any of the above 

Note that the <port_expression> is optional because ports can be defined that do not connect to 
anything internal to the module. 

Note also that the two types of module port connections cannot be mixed; connections to the ports 
of a particular module instance must be all by position or all by name.  

12.4.2 Port Declarations 

Each port listed in the module definition’s <list_of_ports> must be declared in the body of the 
module as an input, output, or bidirectional inout. This is in addition to any other declaration for a 
particular port— for example, a net, reg, or wire. The syntax for port declarations is as follows: 

<input_declaration>  
::=input<range>?<list_of_variables>; 

 <output_declaration> 
::=output<range>?<list_of_variables>; 

 <inout_declaration> 
::=inout<range>?<list_of_variables>; 

Syntax  12- 4: Definitions for <port_declarations> 

12.4.3 Connecting Module Ports by Ordered List 

One method of making the connection between the ports listed in a module instantiation and the 
ports defined by the instantiated module is the ordered list—that is, the ports listed for the module 
instance are in the same order as the ports listed in the module definition. 

Example  12-6 illustrates a top-level module (topmod) that instantiates a second module (modB). 
Module modB has ports that are connected by an ordered list. The connections made are as 
follows: 
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• Port wa in the modB definition connects to the bit-select v[0] in the topmod 
module. 

• Port wb connects to v[3]. 

• Port c connects to w. 

• Port d connects to v[4].  

In the modB definition, ports wa and wb are declared as inouts while ports c 
and d are declared as input. 

module topmod; 
wire [4:0] v; 
wire a,  b,  c,  w; 

• . 

• . 

• . 

     modB b1 (v[0], v[3], w, v[4]); 
• . 

• . 

• . 

endmodule 
module modB  (wa, wb, c, d); 
inout wa, wb; 
input c, d; 
     tranif1 g1(wa, wb, cinvert); 
     not #(2, 6) (cinvert,  int); 
     and #(6, 5) g2 (int,  c,  d); 
endmodule 

Example  12- 6: Port connections using ordered list 

During simulation of the b1 instance of modb, the and gate activates first to produce a value on int. 
This value triggers the not gate to produce output on cinvert, which then activates the tranif1 gate 
g1. 

12.4.4 Connecting Module Ports by Name 

The second way to connect module ports consists of explicitly linking the two names for each side 
of the connection—the name used in the module definition, followed by the name used in the 
instantiating module. This compound name is then placed in the list of module connections. The 
following is the syntax for connection by name: 
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.<name_of_port>(<port_expression>?) 

The <name_of_port> is the name specified in the module definition. The <name_of_port> cannot 
be a bit select, part select, or a concatenation of ports. 

The <port_expression> is the name used by the instantiating module and can be one of the 
following: 

• a simple identifier 

• a bit-select of a vector declared within the module 

• a part-select of a vector declared within the module 

• a concatenation of any of the above 

The <port_expression> is optional so that the instantiating module can document the existence of 
the port without connecting it to anything. The parentheses are not optional.  

In the following example, the instantiating module connects its signals topA and topB to the ports 
In1 and Out defined by the module ALPHA. At least one port provided by ALPHA is unused; it is 
named In2. There could be other unused ports not mentioned in the instantiation. 

ALPHA instance1 (.Out(topB),.In1(topA),.In2()); 

Example  12-7 defines the modules modB and topmod and then topmod instantiates modB using 
ports connected by name. 

module  topmod; 
wire [4:0]  v; 
wire a,  b,  c,  w; 
  modB  b1  (.wb(v[3]),  .wa(v[0]),  .d(v[4]),  .c(w)); 
endmodule 

module modB  (wa, wb, c, d); 
inout wa, wb; 
input c, d; 
     tranif1 g1(wa, wb, cinvert); 
     not #(6, 2) (cinvert, int); 
     and #(5, 6) g2(int, c, d) 
endmodule 

Example  12- 7: Connecting ports by name 

Note that because these connections are made by name, the order in which they appear is 
irrelevant.  
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12.4.5 Real Numbers in Port Connections 

The real data type cannot be directly connected to a port, but rather must be connected indirectly, 
as shown in Example  12-8. The system functions $realtobits and $bitstoreal are used for 
passing the bit patterns across module ports. (See Appendix  B, B.8 Functions and Tasks for Reals, 
for a description of these system tasks.) 

module  driver  (net_r);  
 output net_r;  
 real r;  
 wire [64:1]  net_r  =  $realtobits(r);  
endmodule 
module receiver (net_r);  
 input  net_r;  
 wire [64:1]  net_r;  
 real r;  
 initial assign r  = $bitstoreal(net_r);  
endmodule  

Example  12- 8: Connecting reals to a port 

12.4.6 Port Collapsing  

A port of a module can be viewed as providing a link or connection between two items (nets, 
registers, expressions, and so on)—one internal to the module instance and one external to the 
module instance. Wherever it is possible, the some tools collapse port connections during 
processing—that is, the two items become one entity. Both names continue to exist for reference 
purposes, but, internally, the simulator eliminates one of the items. This corresponds to the physical 
case where a net described at two levels of a Verilog HDL hierarchy is actually just one wire. 

Examination of the port connection rules described below will show that the item receiving the 
value of the port (the inside item for inputs, the outside item for outputs) must be a net. The item 
which provides the value can be any expression, but port collapsing is only possible if both items 
are nets. Expressions such as (a+b) as the outside item in a module port connection preclude 
collapsing of that port. 

12.4.7 Port Connection Rules  

The following rules govern the way module ports are declared and the way they are interconnected: 

Rule 1: 

An input or inout port must be declared as a net type. 

Rule 2: 
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Each port connection is a continuous “assignment” of source to sink, where one connected item is a 
signal source and the other is a signal sink. Only nets are permitted to be the sinks in an 
assignment. 

Both scalar and vector nets are permitted. The output and input ports of a module are by definition 
connected to signal source items internal to the module. The following external items cannot be 
connected to the output or input ports of modules: 

• registers 

• expressions other than: 

• a scalar net  

• a vector net 

• a constant bit select of a vector net 

• a part select of a vector net 

• a concatenation of the expressions listed above 

In port collapsing, the two items that are connected through a module port—one being external to 
the module, the other being internal to the module—are merged into a single item. Not every port 
can be collapsed. The following rule defines when port collapsing occurs: 

Rule 3: 

A module port is collapsed only if:  

• the port connects two nets, and 

• the connected nets are either both scalars or have the same vector size. 

Vector nets are split into scalar bits in order to increase the amount of port collapsing that occurs in 
a circuit. Splitting causes a vector net to be internally represented as a collection of scalars, thus 
allowing Rule 3 to be applied. This occurs whenever the items on both sides of the port are nets, 
and at least one of them is a bit select or part select of a vector net or the net is specified with the 
keyword scalared. 

Given Rule 3, it is clear that only ports that connect nets can be collapsed. But what happens if the 
nets on either side of the port are of different net types—for example, one is a triand and the other 
is a tri? When different net types are connected through a module port and the port can be 
collapsed, the resulting net type is determined based on Rule 4. In Rule 4, the term “dominating net 
type” is used in the following sense: A net type A “dominates” a net type B if, with identical signal 
sources on the two net types, either (a) the state on B is the same as that on A or (b) the state on B 
is not completely known but does not conflict with the state on A (for example, X does not conflict 
with 1 or 0; H does not conflict with Z or 1; and so on). 

Rule 4: 

When the two nets connected by a collapsed port are of different net type, the resulting single net is 
assigned one of the following: 
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• the dominating net type if one of the two nets is “dominating”, or else  

• the net type external to the module. 

When a dominating net type does not exist, the external net type is used. 

 

Table  12-1 shows the net type dictated by Rule 4 as a result of collapsing a module port that 
connects two nets. 

The simulated net takes the net type specified in the table plus the delay specified for that net. If the 
simulated net selected is a trireg, any strength value specified for the trireg applies to the simulated 
net.  

 
Table  12- 1: Net types resulting from port collapsing 

12.5 Hierarchical Names  

Every identifier in a Verilog description has a unique hierarchical path name. The hierarchy of 
modules and the definition of items such as tasks and named blocks within the modules define 
these names. The hierarchy of names can be viewed as a tree structure, where each module 
instance, task, function, or named begin-end or fork-join block defines a new hierarchical level, or 
scope, in a particular branch of the tree. 

At the top of the name hierarchy are the names of modules of which no instances have been 
created. It is the root of the hierarchy. Inside any module, each module instance, task definition, 
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function definition, and named begin-end or fork-join block defines a new branch of the hierarchy. 
Named blocks within named blocks and within tasks and functions also create new branches. 

Each node in the hierarchical name tree is a separate scope with respect to identifiers. A particular 
identifier can be declared at most once in any scope. See Section 12.6 Scope Rules, for a discussion 
of scope rules. 

Any named Verilog object can be referenced uniquely in its full form by concatenating the names 
of the modules, tasks, functions, or blocks that contain it. Use the period character to separate each 
of the names in the hierarchy. The complete path name to any object starts at a top-level module. 
This path name can be used from any level in the description. The first node name in this path 
name can also be the top of a hierarchy that starts at the level where the path is being used. 

The code in Example  12-9 defines a hierarchy of module instances and named blocks. Figure  12-1 
illustrates the hierarchy implicit in this Verilog code. Figure  12-2 is a list of the hierarchical forms 
of the names of all the objects defined in the code. 

module  mod  (  in  ); 
input  in; 
always  @  (  posedge  in  ) 

begin  :keep 
reg  hold; 
hold  =  in; 
end 

endmodule 

module  cct  (stim1,  stim2); 
input  stim1,  stim2; 
// instantiate  mod 
modamod  (stim1),  bmod  (stim2); 

endmodule 

module  wave; 
reg  stim1,   stim2; 
// instantiate cct 
ccta  (stim1,  stim2); 
initial 

begin  :wave1 
#100 
fork  :innerwave 

reg  hold; 
join 
#150 
begin 

stim1=0; 
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end 
end 

endmodule 

Example  12- 9: A hierarchy of module instances and named blocks 

 
Figure  12- 1: Hierarchy in a model 

The following list gives the hierarchical path names for all the objects in the preceding description 
(Example  12-9):  

wave wave.a.bmod 
wave.stim1 wave.a.bmod.in 
wave.stim2 wave.a.bmod.keep 
wave.a wave.a.bmod.keep.hold 
wave.a.stim1 wave.wave1 
wave.a.stim2 wave.wave1.innerwave 
wave.a.amod wave.wave1.innerwave.hold 
wave.a.amod.in 
wave.a.amod.keep 
wave.a.amod.keep.hold 

Figure  12- 2: Hierarchical path names in a model 

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. 
If the unique hierarchical path name of an item is known, its value can be sampled or changed from 
anywhere within the description. 

Example  12-10 shows how a pair of named blocks can refer to items declared within each other. 
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begin 
 fork  :mod_1 
 reg  x; 
 mod_2.x  =  1; 

• . 

• . 

• . 

 join 
 fork  :mod_2 
  reg  x; 
  mod_1.x  =  0; 

• . 

• . 

• . 

 join 
end 

Example  12- 10: Using hierarchical names across blocks 

12.5.1 Upwards Name Referencing 

The name of a module is sufficient to identify the module and its location in the hierarchy. A 
lower-level module can reference items in a module above it in the hierarchy if the name of the 
higher-level module is known. The syntax for an upward reference is as follows: 
<name_of_module>.<name_of_item> 

There can be no spaces within the reference. Example  12-11 demonstrates upward referencing. In 
this example, there are four modules, mod_a, mod_b, mod_c, and mod_d. Each module contains an 
integer x. The highest-level modules in this segment of a model hierarchy are mod_a and mod_d. 
There are two copies of module mod_b.x because both mod_a and mod_d both instantiate 
mod_b.x. There are four copies of mod_c.x because each of the two copies of mod_b.x instantiates 
mod_c.x twice. 

module mod_a; 
integer x; 
 mod_b inst_b1(); 
endmodule 
module mod_b; 
integer x; 
 mod_c inst_c1(), inst_c2(); 
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 initial #10 inst_c1.x = 2; //downward path - 
   //references 2 copies of x: 
   //mod_a.inst_b1.inst_c1.x 
   //mod_d.inst_b1.inst_c1.x 

endmodule 

module mod_c; 
integer x; 
initial begin 
 x = 1; //local name references 
  //4 copies of x: 
  //mod_a.inst_b1.inst_c1.x 
  //mod_a.inst_b1.inst_c2.x 
  //mod_d.inst_b1.inst_c1.x 
  //mod_d.inst_b1.inst_c2.x 
 mod_b.x = 1; //upward path references 2 
  //copies of x: 
   //mod_a.inst_b1..x 
   //mod_a.inst_b1.inst_c2.x 
 end 

endmodule 

module mod_d; 
integer x; 
mod_b inst_b1(); 
initial begin 
 mod_a.x = 1; // full path name references each 
  // copy of x 
 mod_a.inst_b1.x = 2; 
 mod_a.inst_b1.inst_c1.x = 3; 
 mod_a.inst_b1.inst_c2.x = 4; 
 mod_d.x = 5; 
  mod_d.inst_b1.x = 6; 
  mod_d.inst_b1.inst_c1.x = 7; 
  mod_d.inst_b1.inst_c2.x = 8; 
      end 

endmodule 

Example  12- 11: Upwards name referencing 
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12.6 Scope Rules 

The following four elements define a new scope in Verilog:  

• modules 

• tasks 

• functions 

• named blocks  

An identifier can be used to declare only one item within a scope. This rule means, for example, 
that it is illegal to declare two variables that have the same name, or to name a task the same as a 
variable within the same module, or to give a gate the same instance name as the name of the net 
connected to its output. 

If an identifier is referenced directly (without a hierarchical path) within a task, function, or named 
block, it must be declared either locally within the task, function, or named block, or within a 
module, task or named block that is higher in the same branch of the name tree that contains the 
task, function, or named block. If it is declared locally, then the local item is used; if not, then 
Verilog will search upward until it finds an item by that name or until it finds a module boundary. 
Searching crosses named block, task, and function boundaries, but not module boundaries. This 
fact means that tasks and functions can use and modify the variables within the containing module 
by name, without going through their ports. 

 
In Figure  12-3, each rectangle represents a local scope. The scope available to upward searching 
extends outward to all containing rectangles—with the boundary of the module A as the outer 
limit. Thus block G can directly reference identifiers in F, E, and A; it cannot directly reference 
identifiers in H, B, C, and D. 

 
Figure  12- 3: Scopes available to upward name referencing 
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Because of the upward searching, path names that are not strictly downward can be used, and will 
work. However, these should be avoided as they are confusing. 

Figure  12-4 shows an incompletely defined downward reference that compiles correctly.  

task  t; 
reg  r; 
 begin  :b 
  // redundant assignments to reg r 
  t.b.r  =  0; //fully defined downward 
   // reference  
  t.r  =  0; //poorly defined but 
   // found by upward search 
 end 
endtask 

Figure  12- 4: Incompletely defined downward reference 
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Specify Blocks 

13.0 Specify Blocks Overview 

It is often necessary to assign delays to paths across a module—apart from any gate-level or other 
distributed delays specified inside that module. The delays assigned to paths across a module can 
apply in all conditions, or they can apply only under specified conditions. Section 13.2 Module 
Path Delays begins the discussion of delays that apply in all conditions. The type of delay that 
applies only under specified conditions is the state dependent path delay. Section 13.2.6 State 
Dependent Path Delays (SDPDs) discusses state dependent path delays. 

A block statement called the specify block is the vehicle for adding timing specifications to paths 
across a module. Bounded by the keywords specify and endspecify, each specify block must appear 
inside the module it modifies. 

It is inside the specify block that you do the following modeling tasks: 

• Describe various paths across the module. 

• Assign delays to those paths. 

• Perform timing checks to ensure that events occurring at the module inputs satisfy the timing 
constraints of the device described in the module. 

In the Verilog HDL, paths across a module are called module paths. To describe module paths, you 
must pair a module input with a module output. The module input can be unidirectional (an input) 
or bidirectional (an inout) and is referred to as the path source. Similarly, the module output can be 
unidirectional (an output) or bidirectional (an inout) and is referred to as the path destination. 

Syntax  13-1 demonstrates the specify block syntax. 

<specify_block>  
::= specify  
 <specify_item>*  
 endspecify 

<specify_item>  
::= <specparam_declaration>  
||= <path_declaration> 
||= <level_sensitive_path_declaration>  
||= <edge_sensitive_path_declaration>  
||= <sdpd> 

Syntax  13- 1: Syntax of specify block 

 Example  13-1 demonstrates a specify block. 

specify 
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 specparam tRise_clk_q=150, tFall_clk_q=200; 
 specparam tSetup=70; 

 (clk=>q)=(tRise_clk_q, tFall_clk_q); 

 $setup(d, posedge clk, tSetup); 

endspecify 

Example  13- 1: Example of a specify block 

In Example  13-1, the first two lines following the keyword specify declare specify parameters, 
which are discussed in Section 13.1 Declaring Parameters in Specify Blocks. 

The line following the declarations of specify parameters describes a module path and assigns 
delays to that module path. The specify parameters employed determine the delay assigned to the 
module path. Section 13.2.3 Assigning Delays to Module Paths discusses assigning delays to 
module paths. The line preceding the keyword endspecify institutes one of the system timing 
checks, discussion of which are discussed further in Section 13.3. 

13.1 Declaring Parameters in Specify Blocks 

The keyword specparam declares parameters within specify blocks—called specify parameters or 
specparams, to distinguish them from module parameters. Unlike specify parameters, module 
parameters are declared outside the specify block with the keyword parameter.  

Syntax  13-2 demonstrates the syntax for declaring specify parameters. 

<specparam_declaration>  
::= specparam <list_of_param_assignments> ; 

<list_of_param_assignments> 
::=<param_assignment><,<param_assignment>>* 

<param_assignment> 
::=<<identifier> = <constant_expression>> 

Syntax  13- 2: Syntax of the specparam declaration 

Example  13-2 demonstrates specparam declarations. 

specify 
 specparam  tRise_clk_q  =  150,   tFall_clk_q  =  200; 
 specparam  tRise_control=40,   tFall_control  =  50; 
endspecify 

Example  13- 2: Example of specparam declarations 
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In Example  13-2, the lines between the keywords specify and endspecify each declare two specify 
parameters. 

It is important not to confuse specparams (specify parameters) with parameters (module parameters). 
They are not interchangeable. Table  13-1 summarizes the differences between the two types of 
parameter declarations. 

 

Table  13- 1: Differences between specparams and parameters 

13.2 Module Path Delays 

13.2.0 Module Path Delay Overview 

The Verilog HDL can describe two types of delays: 

• module path delays, which describe the time it takes an event at a module path source (input 
or inout) to propagate to a module path destination (output or inout) 

• distributed delays, which specify the time it takes events to propagate through gates and nets 
inside the module. 

Figure  13-1 illustrates module path delays. Note that more than one source (A, B, C, and D) may 
have a module path to the same destination (Q). 
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Figure  13- 1: Module path delays 

Figure  13-2 illustrates distributed delays. 

   

Figure  13- 2: Distributed delays 

Here, the delay on the module path from input D to output Q = 22, while the sum of the distributed 
delays = 0 + 1 = 1. Therefore, an event on Q caused by an event on D will occur 22 time units after 
the event on D. 

Consider the example in Figure  13-3. 
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Figure  13- 3: Mixing module path delays and distributed delays 

In Figure  13-3, the delay on the module path from D to Q = 22, but the distributed delays along 
that module path now add up to 10 + 20 = 30. Therefore, an event on Q caused by an event on D 
will occur 30 time units after the event on D. 

This section focuses on module path delays. (See Section 6.15 Gate and Net Delays, for more 
information on distributed delays.) 

You must follow the two steps below to set up module path delays in specify blocks: 

1. describe the paths 

2. assign delays to those paths 
 

Syntax  13-3 demonstrates the syntax of the module path declaration. 

<path_declaration>  
::= (<path_description>) = (<path_delay_value>);  

<path_description> 
::= ( <specify_input_terminal_descriptor> => 

<specify_output_terminal_descriptor> )  
||= ( <list_of_path_inputs> *> <list_of_path_outputs> ) 

<path_delay_value>  
::= <path_delay_expression>  
||= ( <path_delay_expression>, <path_delay_expression> )  
||= ( <path_delay_expression>, <path_delay_expression>,  

<path_delay_expression> )  
||= ( <path_delay_expression>, <path_delay_expression>,  
<path_delay_expression>, <path_delay_expression>,  
<path_delay_expression>, <path_delay_expression> ) 

Syntax  13- 3: Syntax of the module path declaration 

Example  13-3 demonstrates module path declarations. 

specify 
 (clk   =>  q)  =  (tRise_clk_q,   tFall_clk_q); 
 (clr,  pre  *>  q)  =  (tRise_control,   tFall_control); 
endspecify 

Example  13- 3: Example of module path declarations 

Verilog HDL  LRM Specify Blocks  •  178 



Example  13-3 contains two module path declarations. For more specific information on describing 
module paths, refer to Section  13.2.1 Describing Module Paths and Section  13.2.2 Declaring 
Multiple Module Paths in a Single Statement; to learn how to assign delays to module path 
descriptions, refer to Section  13.2.2 Declaring Multiple Module Paths in a Single Statement and 
Section  13.2.4 Specifying Transition Delays on Module Paths. 

13.2.1 Describing Module Paths 

A module path is defined inside a specify block as a connection between a source signal and a 
destination signal.  

Module paths may connect any combination of vectors and scalars. However, there are two 
restrictions: 

1. The module path source must be a net that is declared as a module input or inout. 

2. The module path destination must be a net that is declared as a module output or inout and is 
driven only by a gate-level primitive.  

Figure  13-4 demonstrates these restrictions: 

 

Figure  13- 4: Signals that do not follow the rules for module paths 

Implementation Specific Detail:    Some implementations may place restrictions on the module 
path source and destination declarations. 

Syntax  13-4 demonstrates the syntax of the module path description. 

<path_description> 
::= ( <specify_input_terminal_descriptor> => 

<specify_output_terminal_descriptor> )  
||= ( <list_of_path_inputs> *> <list_of_path_outputs> ) 

<specify_input_terminal_descriptor>  
::= <input_identifier>  
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||= <input_identifier> [ <constant_expression> ]  
||= <input_identifier> [ <constant_expression> : <constant_expression> ] 

<specify_output_terminal_descriptor>  
::= <output_identifier>  
||= <output_identifier> [ <constant_expression> ]  
||= <output_identifier> [ <constant_expression> : <constant_expression> ] 

<input_identifier> 
::= the <IDENTIFIER> of a module input or inout terminal 
<output_identifier> 
::= the <IDENTIFIER>of a module input or inout terminal 

Syntax  13- 4: Syntax for the module path description 

Example  13-4 demonstrates module path descriptions. 

(in1*>q) 
(s=>q)  

Example  13- 4: Module path descriptions 

Example  13-4 demonstrates two ways to describe module paths: 

1.  source *> destination 

2.  source => destination  
The symbols *> and => each represent a different kind of connection between the module path 
source and the module path destination. 

The operator *> establishes a full connection between source and destination. In a full connection, 
each bit in the source connects to every bit in the destination. The module path source need not 
have the same number of bits as the module path destination. 

The operator => sets up a parallel connection between source and destination. In a parallel 
connection, each bit in the source connects to its one corresponding bit in the destination. You can 
create parallel module paths only between sources and destinations that contain the same number 
of bits. 

Table  13-2 illustrates how a parallel connection differs from a full connection between two 4-bit 
vectors. 
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Table  13- 2: The difference between parallel and full connections between vectors of equal size 

The full connection will handle most types of module paths, since it does not restrict the size or 
number of source signals and destination signals. Here are the situations in which you must use *> 
to set up full connections: 

• to describe a module path between a vector and a scalar 

• to describe a module path between vectors of different sizes 

• to describe a module path with multiple sources or multiple destinations in a single statement 
(see Section  13.2.2 Declaring Multiple Module Paths in a Single Statement, for more details) 

In Example  13-4 the module path from s to q uses *> because it connects a scalar source—the 1-
bit select line—to a vector destination—the 8-bit output bus. 

Parallel connections are more restrictive than full connections. They only connect one source to 
one destination, where each signal contains the same number of bits. Therefore, the one special 
case in which you must use => to set up a parallel connection is to describe a module path between 
two vectors of the same size. Since scalars are one bit wide, you may use either *> or => to set up 
bit-to-bit connections between two scalars. 

Note that in Example  13-4 the module paths from both input lines In1 and In2 to q use => because 
they set up parallel connections between two 8-bit busses. 

Figure  13-5 summarizes the guidelines for using *> and =>. 

 
Use  *>  for full connections: 
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• between one vector and one scalar 

• between two vectors of the same size or different sizes 

• between multiple sources or multiple destinations in a single statement 

Use  =>  for parallel connections: 

• between two scalars 

• between two vectors of the same size 

Figure  13- 5: Guidelines for describing module paths 

Figure  13-6 summarizes the rules to follow when describing module paths. 

Rules for describing module paths: 

Rule 1: Paths must be described inside specify blocks. 

Rule 2: A path source must be a module input net or module inout net that is either 
scalar or vector. 

Rule 3: A path destination must be an output net or inout net that is either scalar or 
vector and is driven only by a gate-level primitive that is not a bidirectional 
transfer gate. 

Rule 4: Path destinations may have only one driver inside the module. 

Rule 5: Follow the guidelines in Figure 13-5 for using  *>  and  =>  . 

Figure  13- 6: Rules for describing module paths 

As rule 4 states, module path output nets may not have multiple drivers within the module. Refer to 
Section  13.2.7 Driving Wired Logic for a discussion of how to work around this limitation. 

13.2.2 Declaring Multiple Module Paths in a Single Statement 

You can define multiple module paths in a single statement by using the symbol *> to connect a 
list of sources separated by commas to a list of destinations separated by commas. Here is an 
example: 

(a, b, c *> q1, q2) = 10; 

This statement is equivalent to the following six individual module path assignments in Example  
13-5: 

(a *> q1) = 10 ; 
(b *> q1) = 10 ; 
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(c *> q1) = 10 ; 
(a *> q2) = 10 ; 
(b *> q2) = 10 ; 
(c *> q2) = 10 ; 

Example  13- 5: Module path equivalents of single statement 

When describing multiple module paths in one statement, the lists of sources and destinations may 
contain a mix of scalars and vectors of any size. However, all sources must be net inputs or inouts, 
and all destinations must be net outputs or inouts that follow the restrictions given in Section  
13.2.1 Describing Module Paths. 

As the use of *> implies, the connection in a multiple module path declaration is always a full 
connection. 

                       

13.2.3 Assigning Delays to Module Paths 

You can specify the delays that occur at the module outputs where paths terminate by assigning 
delay values to the module path descriptions. 

In module path delay assignments, a module path description appears on the left-hand side, and one 
or more delay values appear on the right-hand side. 

Delay values can be constant expressions that contain literals or specparams.  

Syntax  13-5 demonstrates the syntax of the module path delay assignment. 

<path_declaration>  
::= <path_description> = <path_delay_value>;  

<path_delay_value>  
::= <path_delay_expression>  
||= ( <path_delay_expression>, <path_delay_expression> )  
||= ( <path_delay_expression>, <path_delay_expression>, 

<path_delay_expression> )  
||= ( <path_delay_expression>, <path_delay_expression>, 

<path_delay_expression>, <path_delay_expression>,  
<path_delay_expression>, <path_delay_expression> ) 

<path_delay_expression>  
::= <constant_mintypmax_expression> 

Syntax  13- 5: Syntax for specifying module path delays 
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Example  13-6 demonstrates module path delay assignments. 

specify 

 specparam tRise_clk_q=45:150:270, tFall_clk_q=60:200:350; 
 specparam tRise_Control=35:40:45, tFall_control=40:50:65; 

 (clk=>q)=(tRise_clk_q,tFall_clk_q); 
 (clr,pre*>q)=(tRise_control,tFall_control); 

Example  13- 6: Example of module path delay assignments 

In Example  13-6, the specify parameters declared following the specparam keyword specify 
module path delays. The module path assignments assign those module path delays to the module 
paths. 

13.2.4 Specifying Transition Delays on Module Paths 

You can assign delay values independently for each of the six output transitions between 0, 1, and 
Z. As Syntax  13-5 illustrates, delays must be specified as a list of one, two, three, or six 
<path_delay_expressions> separated by commas. 

Each <path_delay_expression> can be a single value—representing the typical delay—or a colon-
separated list of three values—representing a minimum, typical, and maximum delay, in that order. 

The next four figures (Figure  13-7 through Figure  13-10) summarize the general syntax for each 
type of transition delay assignment statement. 

 
Figure  13- 7: How to assign one delay value for all transitions 
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Figure  13- 8: How to assign different delays for rising and falling transitions  

 
Figure  13- 9: How to assign different delays for rising, falling, and z transitions 
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Figure  13- 10: How to assign six different transition delays 

The order in which you specify delays for all six transitions in a single statement is based on the 
diagram in Figure  13-11.  

 
Figure  13- 11: Left-to-right order of the six transitions 

Any transition delay associated with a module path can be triggered at run time by the appropriate 
state change at the module path destination net. For instance, the usage example shown in 
Example  13-6 assigns one set of minimum:typical:maximum delays for the rising transitions and 
another set of minimum:typical:maximum delays for the falling transitions. 

Please note: Sources may only specify one delay or three. The format delay1:delay2 is illegal in 
a module path delay assignment.  

13.2.5 Handling X Transitions 

Verilog has specific rules for handling module path delays for x transitions, based on other delays 
assigned to the module path.  

The following two x transitions are considered: 

1. transition from a known state to x:    s  ->  x 

2. transition from x to a known state:   x  ->  s 

Verilog HDL  LRM Specify Blocks  •  186 



The calculation of delay values for x transitions is based on the following two pessimistic rules: 

1. Transitions from a known state to x should occur as quickly as possible—that is, they 
receive the shortest possible delay. 

2. Transitions from x to a known state should take as long as possible—that is, they receive 
the longest possible delay. 

Table  13-3 presents the general algorithm for calculating delay values for x transitions, along with 
specific examples. 

 
Table  13- 3: The algorithm for calculating delays for x transitions 

13.2.6 State Dependent Path Delays (SDPDs) 

An SDPD makes it possible to assign a delay to a module path that affects signal propagation 
through the path only if specified conditions are true. SDPDs assist primarily in modeling small to 
medium-scale modules because SDPDs function best in modules without distributed delays. 

Syntax 
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An SDPD includes the following items: 

• a conditional expression that enables assignment if true 

• a module path description 

• a delay expression that applies to the module path 

Syntax  13-6 presents the syntax for the SDPD. 

<sdpd> 
::=if(<sdpd_conditional 

_expression>)(<path_description>)=(<path_delay_value>) 

<sdpd_conditional_expression> 
::=(<expression><BINARY_OPERATOR><expression>) 
||=(<UNARY_OPERATOR><expression>) 

<path_description>  
::= (<specify_input_terminal_descriptor> => 

specify_output_terminal_descriptor>)  
||= (<list_of_path_inputs> *> <list_of_path_outputs>) 

<path_delay_value>  
::=<path_delay_expression> 
||=(<path_delay_expression>,<path_delay_expression>) 
||=(<path_delay_expression>,<path_delay_expression>, 

<path_delay_expression>) 
||=(<path_delay_expression>,<path_delay_expression>, 

<path_delay_expression>,<path_delay_expression>, 
<path_delay_expression>,<path_delay_expression>) 

Syntax  13- 6: Syntax of the SDPD 

The SDPD conditional expression 

The operands in the SDPD conditional expression must be one of the following: 

• scalar or vector module input or inout ports in their entirety or in bit-select or part-select form 

• compile time constants 

The following is a list of the valid operators in SDPD expressions: 

 ~   bit-wise negation 

 &   bit-wise AND 

 |   bit-wise OR 

 ^   bit-wise XOR 
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 ~^   bit-wise XNOR 

 

 &   reduction AND 

 ~&   reduction NAND 

 |   reduction OR 

 ^   reduction XOR 

 ~^   reduction XNOR 

 ~|   reduction NOR 

 

 ==   logical equality 

 !=   logical inequality 

 &&   logical AND 

 ||   logical OR 

 !   logical NOT 

 

 {}   concatenation 

 {{}}   duplicate concatenation 

 

 ?:   conditional 

 

An SDPD conditional expression must evaluate to one bit. The Verilog HDL treats the results X 
and Z as TRUE to facilitate signal propagation. The SDPD conditional expression may have any 
number of operands and operators. 

Examples 

Consider the use of an SDPD in describing an XOR in Example  13-7. 

module sdpdexample (a,  b,  out); 
input a,b: 
output out; 
xor (out,  a,  b); 

  specify 
 specparam  noninvrise =  1,  noninvfall = 2 
 specparam  invertrise  =  3,  invertfall = 4; 
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 if(a) (b=>out) = (invertrise,  invertfall); 
 if(~a) (b=>out) = (noninvrise,  noninvfall); 
 if(b) (a=>out)  =  (invertrise,invertfall); 
 if(~b) (a=>out)  =  (noninvrise,noninvfall); 

 endspecify 
endmodule 

Example  13- 7: SDPD XOR example 

In Example  13-7, SDPDs allow you to describe a pair of output rise and fall delay times when the 
XOR inverts a changing input. When the XOR buffers a changing input, SDPDs allow you to 
describe another pair of output rise and fall delay times. 

Example  13-8 models a partial ALU. SDPDs specify different sets of path delays for different 
ALU operations. 

`timescale 1ns  /  100ps 
module ALU(o1,  I1,  I2,  opcode); 
input [7:0] I1,  i2; 
input [2:1] opcode; 
output [7:0]  o1; 

 //functional description omitted 

  specify 
   // add operation 
    if (opcode == 2'b00) 
     (i1,i2 *> o1) = (25.0,25.0); 

   // pass-through i1 operation 
    if (opcode == 2'b01) 
     (i1 => o1) = (5.6,8.0); 

   // pass-through i2 operation 
    if (opcode == 2'b10) 
     (i2 => o1) = (5.6,8.0); 

   // delays on opcode changes 
    (opcode => o1) = (6.1,6.5); 
  endspecify 
endmodule 

Example  13- 8: ALU operations with different path delays 
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In this example, the first three path declarations declare paths extending from operand inputs to the 
o1 output. The delays on these paths are assigned to operations on the basis of the operation 
specified by the inputs on opcode. The last path declaration declares a path from the opcode input 
to the o1 output. 

Multiple path delays 

When the same output terminates multiple paths, some combinations of module path declarations 
that include that output can cause unexpected modeling results. If more than one SDPD can apply 
to a path, you must write the SDPDs so that only one applies to the path at a time. An 
unconditional path delay is like an SDPD whose conditional expression always is enabled, so it is 
not appropriate to specify an SDPD and an unconditional path delay for the same path. Even if you 
follow these guidelines, there is a situation in which models may not replicate hardware behavior, 
shown in Figure  13-12. 

 

Figure  13- 12: Internal logic disabling a possible output change 

In Figure  13-12, the output change occurs at 40 in response to the change on input B. An output 
change at 20 in response to the change on input A may model the hardware under study more 
correctly. This choice occurs because the times of output changes are scheduled when an edge 
initially propagates to a module output. The transition on input A occurs later than the transition on 
input B, and does not cause a change in the value of the signal propagating from the internal logic. 
Consequently, the transition on input A does not initiate any scheduling of an output event. 

Distributed delays and SDPDs 
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For realistic modeling, larger modules tend  to necessitate gate and net delays, and behavioral 
models require procedural delays. These delays can have an undesirable impact on the choice of 
path delays, which you can avoid by following this rule: 

Larger cells and modules that require distributed delays and SDPDs should meet this test: the 
inputs should not change before an edge generated by the most recent input change has propagated 
to the outputs.  

This rule exists because a choice among path delays occurs when an edge initially arrives at an 
output, and distributed delays retard the initial arrival of the edge at an output. If the input state is a 
component of an SDPD conditional expression that specifies a delay for the path that the edge 
follows, a change in the input state before the choice of a delay can result in the choice of an 
inappropriate delay. The situation described in this case can also lead to output values that do not 
accurately model hardware. 

When you apply the following pairs of delays to a path, the larger of the two delays schedules the 
appearance of an output change: 

• a distributed delay and an unconditional delay 

• a distributed delay and an SDPD 

13.2.7 Driving Wired Logic 

Module path output nets may not have more than one driver within the module. Therefore, wired 
logic is not allowed at module path outputs. Figure  13-13 and Figure  13-14 illustrate two 
violations of this rule. 

  
Figure  13- 13: Illegal module paths: Two module path outputs with multiple output drivers 

In Figure  13-13, any module path to Q or R is illegal. 

  
Figure  13- 14: Illegal module paths: One module path output with multiple output drivers 
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In Figure  13-14, any module path to S is illegal. 

Assuming signal S in Figure  13-14 is a wired AND, you can circumvent this limitation by 
replacing wired logic with gated logic to create a single driver to the output. Figure  13-15 shows 
how adding a third AND gate—the shaded one—solves the problem for the module in Figure  13-
14. 

  
Figure  13- 15: Legal module paths: One output driver 

Note, however, that although multiple output drivers are prohibited inside the module, they are 
allowed outside the module, as in Figure  13-16. 

 
Figure  13- 16: Legal module paths: Multiple output drivers outside the module 

Here, all module paths to R and all paths to Q are legal. 

13.2.8 Module Path Polarity 

The polarity of a module path determines how a signal transition at its source propagates to its 
destination when there are no logic simulation events. Polarity has no effect on the scheduling of 
simulation events; a timing analysis tool can use polarity when performing path tracing.  

 
Module paths can exhibit any of three polarities: 

1. unknown 

2. positive 
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3. negative 

Unknown polarity 

By default, module paths have unknown polarity—that is, a transition at the path source propagates 
to the destination in an unpredictable way, as follows: 

• A rise at the source causes either a rise or a fall at the destination. 

• A fall at the source causes either a rise or a fall at the destination. 

Whether a rise or a fall propagates to the destination depends on the states of the module’s other 
inputs and internal logic. 

By contrast, in module paths with known polarity—either positive or negative—the signal 
transition at the source directly determines the signal transition at the destination.  

Positive polarity 

For module paths with positive polarity, any transition at the source causes the same transition at 
the destination, as follows: 

• A rise at the source always causes a rise at the destination. 

• A fall at the source always causes a fall at the destination. 

Negative polarity 

Conversely, in module paths with negative polarity, any transition at the source causes the opposite 
transition at the destination, as follows: 

• A rise at the source always causes a fall at the destination. 

• A fall at the source always causes a rise at the destination.  

To set up module paths with positive polarity, add the prefix + to the connection operators *> and 
=>; for negative polarity, add the prefix -; for unknown polarity, add no prefix. The following 
examples show each type of path polarity: 

 

Example  13- 9: The three path polarity types 
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The first and second lines in Example  13-9 demonstrate positive polarity. The second and third 
lines demonstrate negative polarity. The last two lines demonstrate unknown polarity. 

In addition, you can assign the same polarity to multiple module paths in a single statement, as 
follows: 

 

Example  13- 10: Assigning one polarity to many paths in one statement 

In Example  13-10, the first line assigns positive polarity to six different paths. The second line 
assigns negative polarity to six different paths. 

13.2.9 Qualified Paths 

A construct called a qualified path lets you set up conditions for dynamically controlling how state 
changes propagate through module paths.  

A brief discussion of qualified paths is presented here.  

There are two kinds of qualified paths: 

• level-sensitive 

• edge-sensitive 

Level-sensitive paths 

Level-sensitive paths depend on the state of one or more conditioning signals. Whenever the 
specified conditions are satisfied, changes will flow through the path; otherwise, the path is 
effectively broken. Level sensitive paths are also enabled when the specified conditions evaluate to 
unknown (x). Syntax  13-7 shows the syntax of the level-sensitive path declaration. 

<level_sensitive_path_declaration> 
::=if (<conditional_port_expression>)(<specify_terminal_descriptor> 

<polarity_operator>?=><specify_terminal_descriptor>)= 
(<path_delay_value>); 

||= if (<conditional_port_expression>) (<list_of_path_inputs> 
<polarity_operator>?  *> <list_of_path_outputs>) = 
<path_delay_value>; 

<conditional_port_expression> 
::=<port_reference 
||=<UNARY_OPERATOR><port_reference> 
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||=<port_reference><BINARY_OPERATOR><port_reference> 

Syntax  13- 7: Syntax of the level-sensitive path declaration 
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Note that you can use *> for full connections or => for parallel connections. In addition, you can 
specify polarity and declare more than one level-sensitive path in a single statement. 

Signals in the expression in Syntax  13-7 must be ports of the module that contains the path, but 
can be any combination of the following constructs: scalar or vector input and inout ports, or bit-
selects and part-selects of those ports. 

Example  13-11 demonstrates two level-sensitive path declarations without polarity operators that 
have the same meaning. 

 if  (clock  ==  1)  (in  =>  out)  =  (3:4:5); 

 if  (clock)  (in  =>  out)  =  (3:4:5); 

Example  13- 11: Level-sensitive path declarations without polarity operators 

The delay from in to out in this example will have the minimum, typical, or maximum value as 
selected if clock has a value of 1. 

Example  13-12 demonstrates two level-sensitive path declarations with polarity operators which 
have the same meaning: 

 if  (clock==0)  (in+=>out)  =  10; 

 if  (!clock)  (in+=>out)  =  10; 

Example  13- 12: Level-sensitive path declarations with polarity operators 

In Example  13-12, a rise at in causes a rise at out, and a fall at in causes a fall at out. The delay 
from in to out is 10 if the value of clock is 0. 

The following example declares multiple level-sensitive paths: 

if(!clock)(in1,in2*>out1,out2)=20; 

In this example, if the value of clock is 0, four paths have a delay of 20. 

Implementation Specific Detail:   Some tools many not allow the assignment of different delays. 

Edge-sensitive paths 

The other type of qualified path is edge-sensitive. In edge-sensitive paths, the path source is an 
edge-triggered conditioning signal. Changes flow through an edge-sensitive path when the 
specified edge occurs at the conditioning signal. 

Syntax  13-8 shows the syntax of the edge sensitive path declaration.  

<edge_sensitive_path_declaration> 

Verilog HDL  LRM Specify Blocks  •  197 



::=<if (<expression>)>? (<edge_identifier>? <specify_terminal_descriptor>=> 
(<specify_terminal_descriptor> <polarity_operator> ?: 
<data_source_expression>))=<path_delay_value> 

||=<if (<expression>)>? (<edge_identifier>? <specify_terminal_descriptor> *> 
(<list_of_path_outputs> <polarity_operator> ?:  
<data_source_expression>))=<path_delay_value> 

<edge_identifier> 
::= posedge 
||= negedge 

<data_source_expression> 
Any expression, including constants and lists. Its width must be one bit or 
equal to the destination's width. If the destination is a list, the data source 
must be as wide as the sum of the bits of the members. 

Syntax  13- 8: Syntax of the edge-sensitive path declaration 

 The edge-sensitive path’s edge—given in Syntax  13-8 as the <specify_terminal_descriptor> to the 
left of the connection operator—can be any scalar input or inout port, or bit-select of that port.  

Since the edge must be one bit wide, you can specify edge-sensitive paths with full connections 
(*>) or parallel connections (=>), according to the rules for connection operators described in 
Section 13.2.1 Describing Module Paths. There are two ways to specify the path destination—the 
signal or signals to the left of the colon (:)—depending on the connection operator used: 

• For parallel connections (=>), the destination can be any scalar output or inout port, or one of 
its bit-selects.  

• For full connections (*>), the destination can be a list of one or more of the following 
signals: vector or scalar output and inout ports, and bit-selects or part-selects of those ports. 

Signals in the edge-sensitive path condition given in Syntax  13-8 as the <expression> following 
the literal “if”—can be any scalar signals or bit-selects.  

The following example demonstrates an edge-sensitive path declaration with a positive polarity 
operator: 

( posedge clock => ( out +: in ) ) = (10, 8); 

In this example, at the positive edge of clock, a module path extends from clock to out using the 
rise delay (10) if in is 1 and the fall delay (8) if in is 0. 

The following example demonstrates an edge-sensitive path declaration with no polarity operator: 

( clock => ( out : in ) ) = (10, 8);  
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In this example, at any change in clock, a module path extends from clock to out using the worst 
case delay, which is the rise delay (10), because no polarity is specified. 

The following example demonstrates an edge-sensitive path declaration with a negative polarity 
operator: 

( negedge clock[0] => ( out -: in ) ) = (10, 8); 

In this example, at the negative edge of clock[0], a module path extends from clock[0] to out using 
the rise delay (10) if in is 0 and the fall delay (8) if in is 1. 

The following example demonstrates an edge-sensitive path declaration with a binary operation 
conditioning the delays: 

( posedge clock*> ( ( out[0:3], out[4:7] ) +: in1 && in2 )) = (10, 
8); 

In this example, at the positive edge of clock, a module path extends from clock to out[0:3], and 
from clock to out[4:7] using the rise delay (10) if (in1 && in2) is 1, and the fall delay (8) if (in1 
&& in2) is 0. 

The following example demonstrates an edge-sensitive path declaration preceded by a conditional 
expression: 

if ( !reset ) 

 (posedge clock => ( out +: in ) ) = (10, 8); 

In this example, if the positive edge of clock occurs when reset is low, a module path extends from 
clock to out using the rise delay (10) if in is 1, and the fall delay (8) if in is 0. 

Note that conditions in edge-sensitive paths are optional and need not be ports. The preceding 
usage example shows a condition defined with one scalar signal. In Example  13-13, a condition 
combines two scalars. 

if ( !reset && !clear ) 
 (posedge clock => ( out +: in ) ) = (10, 8) ; 

Example  13- 13: Edge-sensitive path with three conditions 

You can assign different delays to the same edge-sensitive path as long as the following criteria are 
met: 

• The edge, condition, or both make each declaration unique. 

• A signal is always referenced in the same way. 
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In Example  13-14, the following four edge-sensitive path declarations are legal because each one 
has a unique edge or condition, all edges and data sources are specified as scalar inputs, and all 
destinations are specified as bit selects of a vector output. 

specify 
(posedge clk => (q[0]:data))= (10, 5); 

(negedge clk => (q[0]:data)) = (20, 12); 

if (reset) 
 (posedge clk => (q[0]:data)) = (15, 8); 

if (!reset && cntrl) 
 (posedge clk => (q[0]:data)) = (6, 2); 

endspecify 

Example  13- 14: Four edge-sensitive path declarations 

To a timing analysis tool, the four declarations in Example  13-14 define a different set of delays 
for each of the four states affecting the path from clk to q[0]. However, a simulator does not care 
about the various states and instead uses the largest delays specified—in this case, a rise delay of 
20 and a fall delay of 12. 

The two declarations in Example  13-15 are not legal because even though they have different 
conditions, the destinations are not specified in the same way: the first destination is a part-select, 
the second is a bit-select. 

 

Example  13- 15: Example of conflicting destination specifications 
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Formal Syntax Definition 

A.0 Syntax Overview 

The following items summarize the format of the formal syntax descriptions: 

1. White space may be used to separate lexical tokens. 

2. Angle brackets surround each description item and are not literal symbols—that is, they do not 
appear in a source example of a syntax item. 

3.     <name> in lower case is a syntax construct item defined by other syntax construct items or 
by lexical token items (see next item). 

4.     <NAME> in upper case is a lexical token item. Its definition is a terminal node in the 
description hierarchy—that is, its definition does not contain any syntax construct items. 

5.     <name>? is an optional item. 

6.     <name>* is zero, one or more items. 

7.     <name>+ is one or more items. 

8.     <name> <,<name>>* is a comma-separated list of items with at least one item in the list. 

9.     if [condition] is a condition placed on one of several definitions 

10.    <name> ::= gives a syntax definition to an item. 

11.    ||= introduces an alternative syntax definition. 

12.    name is a literal (a keyword). For example, the definition <event_declaration> ::= event 
<name_of_event> stipulates that the keyword “event” precedes the name of an event in an 
event declaration. 

13.    ( . . . ) places parenthesis symbols in a definition.  These parentheses are literals required by 
the syntax being defined. Other literal symbols can also appear in a definition (for example, . 
and :). 

Please note: In Verilog syntax, a period (.) may not be preceded or followed by a space. 

A.1 Source Text 

<source_text>  
::= <description>* 

<description>  
::= <module>  
||= <primitive> 

<module>  
::= module <name_of_module> <list_of_ports>? ;  

<module_item>*  
endmodule  
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||= macromodule <name_of_module> <list_of_ports>? ;  
<module_item>*  
endmodule 

<name_of_module>  
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 

<list_of_ports>  
::= ( <port> <,<port>>* ) 

<port>  
::= <port_expression>?  
||= . <name_of_port> ( <port_expression>? ) 

<port_expression>  
::= <port_reference>  
||= { <port_reference> <,<port_reference>>* } 

<port_reference>  
::= <name_of_variable>  
||= <name_of_variable> [ <constant_expression> ]  
||= <name_of_variable> [ <constant_expression> : <constant_expression> ] 

<name_of_port>  
::= <IDENTIFIER> 

<name_of_variable>  
::= <IDENTIFIER> 

<module_item>  
::= <parameter_declaration>  Defined in Section 3.11 Parameters. 
||= <input_declaration>  Defined in Section 12.4.2 Port Declarations. 
||= <output_declaration>   Defined in Section 12.4.2 Port Declarations. 
||= <inout_declaration>   Defined in Section 12.4.2 Port Declarations. 
||= <net_declaration>   Defined in Section 3.2.3 Declaration Syntax. 
||= <reg_declaration>   Defined in Section 3.2.3 Declaration Syntax. 
||= <time_declaration>   Defined in Section 3.9 Integers and Times. 
||= <integer_declaration>   Defined in Section 3.9 Integers and Times. 
||= <real_declaration>   Defined in Section 3.10.1 Declaration Syntax for Real Numbers. 
||= <event_declaration>   Defined in Section 8.6.2 Event Control. 
||= <gate_declaration> Defined in Section 6.1 Gate and Switch Declaration Syntax. 
||= <UDP_instantiation> Defined in Section 7.1 Syntax.  
||= <module_instantiation>  Defined in Section 12.1.2 Module Instantiation. 
||= <parameter_override>   Defined in Section 12.2 Overriding Module Parameter Values. 
||= <continuous_assign>  Defined in Section 5.1 Continuous Assignments. 
||= <specify_block>  Defined in Chapter 13, Specify Blocks. 
||= <initial_statement>  Defined in Section 8.8.1 initial Statement. 
||= <always_statement>   Defined in Section 8.8.2 always Statement. 
||= <task>  
||= <function> 
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<UDP>  
::= primitive <name_of_UDP> ( <name_of_variable> <,<name_of_variable>>* ) ;  

<UDP_declaration>+ 
<UDP_initial_statement>?  
<table_definition>  
endprimitive 

<name_of_UDP>  
::= <IDENTIFIER> 

<UDP_declaration>  
::= <output_declaration>  Defined in Section 7.1 Syntax. 
||= <reg_declaration>  Defined in Section 7.1 Syntax. 
||= <input_declaration> Defined in Section 7.1 Syntax. 

<UDP_initial_statement> 
::= initial <output_terminal_name> = <init_val> ; 

<init_val> 
  ::= 1’b0 
  ||= 1’b1 
  ||= 1’bx 
  ||= 1 
  ||= 0 

<table_definition>  
::= table <table_entries> endtable 

<table_entries>  
::= <combinational_entry>+  
||= <sequential_entry>+ 

<combinational_entry>  
::= <level_input_list> : <OUTPUT_SYMBOL> ; 

<sequential_entry>  
::= <input_list> : <state> : <next_state> ; 

<input_list>  
::= <level_input_list>  
||= <edge_input_list> 

<level_input_list>  
::= <LEVEL_SYMBOL>+ 

<edge_input_list>  
::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>* 

<edge>  
::= ( <LEVEL_SYMBOL> <LEVEL_SYMBOL> )  
||= <EDGE_SYMBOL> 

<state>  
::= <LEVEL_SYMBOL> 

<next_state>  
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::= <OUTPUT_SYMBOL>  
||= -  (This is a literal hyphen, see Chapter 7, User-Defined Primitives (UDPs), for details). 

<OUTPUT_SYMBOL> is one of the following characters:  
0   1   x   X 

<LEVEL_SYMBOL> is one of the following characters:  
0   1   x   X   ?   b   B 

<EDGE_SYMBOL> is one of the following characters:  
r   R   f   F   p   P   n   N   * 

<task>  
::= task <name_of_task> ; <tf_declaration>*<statement_or_null> endtask 

<name_of_task>  
::= <IDENTIFIER> 

<function>  
::= function <range_or_type>? <name_of_function> ;  

<tf_declaration>+  
<statement>  
endfunction 

<range_or_type> 
::= <range>  Defined in Section 9.3.1 Defining a Function. 
||= integer 
||= real 

<name_of_function>  
::= <IDENTIFIER> 

<tf_declaration>  
::= <parameter_declaration>  Defined in Section 3.11 Parameters. 
||= <input_declaration>  Defined in Section 12.4.2 Port Declarations.  
||= <output_declaration>   Defined in Section 12.4.2 Port Declarations. 
||= <inout_declaration>   Defined in Section 12.4.2 Port Declarations. 
||= <reg_declaration>   Defined in Section 3.2.3 Declaration Syntax. 
||= <time_declaration>   Defined in Section 3.9 Integers and Times. 
||= <integer_declaration>   Defined in Section 3.9 Integers and Times. 
||= <real_declaration>   Defined in Section 3.10.1 Declaration Syntax for Real Numbers. 
||= <event_declaration>  Defined in Section 8.6.2 Event Control. 
 

A.2 Declarations 

<parameter_declaration>  
::= parameter <list_of_param_assignments> ; 

<list_of_param_assignments> 
::=<param_assignment><,<param_assignment>* 

<param_assignment> 
::=<<identifier> = <constant_expression>> 
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<input_declaration>  
::= input <range>? <list_of_variables> ; 

<output_declaration>  
::= output <range>? <list_of_variables> ; 

<inout_declaration>  
::= inout <range>? <list_of_variables> ; 

<net_declaration>  
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ; 
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ; 

<NETTYPE> is one of the following keywords: 
 wire  tri  tri1  supply0  wand  triand  tri0  supply1  wor  trior  trireg 

<expandrange>  
::= <range>  
||= scalared <range>  
||= vectored <range> 

<delay> 
::=  Defined in Section 8.6.1 Delay Control. 

<reg_declaration>  
::= reg <range>? <list_of_register_variables> ; 

<time_declaration>  
::= time <list_of_register_variables> ; 

<integer_declaration>  
::= integer <list_of_register_variables> ; 

<real_declaration>  
::= real <list_of_variables> ; 

<event_declaration>  
::= event <name_of_event> <,<name_of_event>>* ; 

<continuous_assign>  
::= assign <drive_strength>? <delay>? <list_of_assignments> ; 
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?  

<list_of_assignments> ; 
<parameter_override>  

::= defparam <list_of_param_assignments> ; 
<list_of_variables>  

::= <name_of_variable> <,<name_of_variable>>* 
<name_of_variable>  

::= <IDENTIFIER> 
<list_of_register_variables>  

::= <register_variable> <,<register_variable>>* 
<register_variable>  

::= <name_of_register>  
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||= <name_of_memory> [ <constant_expression> : <constant_expression> ] 
<constant_expression> 

::= Defined in Chapter 4,Expressions. 
<name_of_register>  
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<name_of_memory>  
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<name_of_event>  
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 

<charge_strength>  
::= ( small )  
||= ( medium )  
||= ( large ) 

<drive_strength>  
::= ( <STRENGTH0> , <STRENGTH1> )  
||= ( <STRENGTH1> , <STRENGTH0> ) 

<STRENGTH0> is one of the following keywords:  
supply0  strong0  pull0  weak0  highz0 

<STRENGTH1> is one of the following keywords:  
supply1  strong1  pull1  weak1  highz1 

<range>  
::= [ <constant_expression> : <constant_expression> ] 

<list_of_assignments>  
::= <assignment> <,<assignment>>* 

<expression> 
::= Defined in Chapter 4, Expressions. 

<assignment> 
::= Defined in Chapter 8, 8.2 Procedural Assignments. 
 

A.3 Primitive instances 

<gate_declaration>  
::= <GATETYPE> <drive_strength>? <delay>? <gate_instance>  

<,<gate_instance>>* ; 
<GATETYPE> is one of the following keywords: 

and  nand  or  nor xor  xnor buf  bufif0 bufif1  not  notif0 notif1  pulldown  pullup 
nmos  rnmos pmos rpmos cmos rcmos   tran rtran  tranif0  rtranif0  tranif1 rtranif1 

<drive_strength> 
::= (<STRENGTH0>,<STRENGTH1>) 
||=(<STRENGTH1>,<STRENGTH0>) 

<delay> 
::=   # <number> 
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||= # <identifier> 
||= # (<mintypmax_expression> <,<mintypmax_expression>>? 

<,<mintypmax_expression>>?) 
 <gate_instance>  

::= <name_of_gate_instance>? ( <terminal> <,<terminal>>* ) 
<name_of_gate_instance>  

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<UDP_instantiation>  

::= <name_of_UDP> <drive_strength>? <delay>? <UDP_instance>  

<,<UDP_instance>>* ; 
<name_of_UDP>  

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<UDP_instance>  

::= <name_of_UDP_instance>? ( <terminal> <,<terminal>>* ) 
<name_of_UDP_instance>  

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<terminal>  

::= <expression>  
||= <IDENTIFIER> 

A.4 Module Instantiations 

<module_instantiation>  
::= <name_of_module> <parameter_value_assignment>?  

<module_instance> <,<module_instance>>* ; 
<name_of_module>  

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<parameter_value_assignment>  

::= # ( <expression> <,<expression>>* ) 
<module_instance>  

::= <name_of_instance> ( <list_of_module_connections>? ) 
<name_of_instance>  

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names. 
<list_of_module_connections>  

::= <module_port_connection> <,<module_port_connection>>*  
||= <named_port_connection> <,<named_port_connection>>* 

<module_port_connection>  
::= <expression> Defined in Chapter 4, Expressions. 
||= <NULL> 

<NULL> 
::= nothing—this form covers the case of an empty item in a list—for example: 
      (a, b, , d) 
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<named_port_connection>  
::= .< IDENTIFIER> ( <expression> ) 

<expression> 
::= Defined in Chapter 4, Expressions. 
 

A.5 Behavioral Statements 

<initial_statement>  
::= initial <statement> 

<always_statement>  
::= always <statement> 

<statement_or_null>  
::= <statement>  
||= ; 

<statement>  
::=<blocking assignment> ;  
||= <non-blocking assignment> ;  
||= if ( <expression> ) <statement_or_null>  
||= if ( <expression> ) <statement_or_null>  

else <statement_or_null> 
||= case ( <expression> ) <case_item>+ endcase  
||= casez ( <expression> ) <case_item>+ endcase  
||= casex ( <expression> ) <case_item>+ endcase  
||= forever <statement>  
||= repeat ( <expression> ) <statement>  
||= while ( <expression> ) <statement>  
||= for ( <assignment> ; <expression> ; <assignment> )  

<statement>  
||= <delay_control> <statement_or_null>  Defined in Section 8.6.1 Delay Control. 
||= <event_control> <statement_or_null>  Defined in Section 8.6.2 Event Control. 
||= wait ( <expression> ) <statement_or_null>  
||= -> <name_of_event> ;  
||= <seq_block>  
||= <par_block>  
||= <task_enable>  
||= <system_task_enable>  
||= disable <name_of_task> ;  
||= disable <name_of_block> ;  
||= force <assignment> ;  
||= release <lvalue> ;  

 
<assignment>  
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::= <lvalue> = <expression> 
<blocking assignment>  

::= <lvalue> = <expression> 
||= <lvalue> = <delay_control> <expression> ;  
||= <lvalue> = <event_control> <expression> ;  

<non-blocking assignment>  
::= <lvalue> <= <expression> 
||= <lvalue> <= <delay_control> <expression> ;  
||= <lvalue> <= <event_control> <expression> ;  
 

<lvalue> 
::=  Defined in Section 8.2 Procedural Assignments. 

<expression> 
::= Defined in Chapter 4, Expressions. 

<case_item>  
::= <expression> <,<expression>>* : <statement_or_null>  
||= default : <statement_or_null>  
||= default <statement_or_null> 

<seq_block>  
::= begin <statement>* end  
||= begin : <name_of_block> <block_declaration>* <statement>* end 

<par_block>  
::= fork <statement>* join  
||= fork : <name_of_block> <block_declaration>* <statement>* join 

<name_of_block>  
::= <IDENTIFIER> 

<block_declaration>  
::= <parameter_declaration>  Defined in Section 3.11 Parameters. 
||= <reg_declaration>  Defined in Section 3.2.3 Declaration Syntax.  
||= <integer_declaration>  Defined in Section 3.9 Integers and Times.  
||= <real_declaration>  Defined in Section 3.10 Real Numbers.  
||= <time_declaration>  Defined in Section 3.9 Integers and Times.  
||= <event_declaration>  Defined in Section 8.6.2 Event Control. 

<task_enable>  
::= <name_of_task> ;  Defined in Section 9.2.1 Defining a Task. 
||= <name_of_task> ( <expression> <,<expression>>* ) ; 

<system_task_enable>  
::= <name_of_system_task> ;  
||= <name_of_system_task> ( <expression> <,<expression>>* ) ; 

<name_of_system_task>  
::= $<SYSTEM_IDENTIFIER> 

Please note: The $ may not be followed by a space. 
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<SYSTEM_IDENTIFIER> 
::= An <IDENTIFIER> assigned to an existing system task or function. 
 

A.6 Specify Section 

<specify_block>  
::= specify <specify_item>* endspecify 

<specify_item>  
::= <specparam_declaration>  
||= <path_declaration> 
||= <level_sensitive_path_declaration>  
||= <edge_sensitive_path_declaration>  
||= <system_timing_check> 
||= <sdpd> 

<specparam_declaration>  
::= specparam <list_of_param_assignments> ; 

<list_of_param_assignments> 
::=<param_assignment><,<param_assignment>>* 

<param_assignment> 
::=<<identifier>=<constant_expression>> 

<path_declaration>  
::= <path_description> = <path_delay_value> ; 

<path_description>  
::= ( <specify_input_terminal_descriptor> => <specify_output_terminal_descriptor> )  
||= ( <list_of_path_inputs> *> <list_of_path_outputs> ) 

<list_of_path_inputs>  
::= <specify_input_terminal_descriptor> <,<specify_input_terminal_descriptor>>* 

<list_of_path_outputs>  
::=  <specify_output_terminal_descriptor> <,<specify_output_terminal_descriptor>>* 

<specify_input_terminal_descriptor>  
::= <input_identifier>  
||= <input_identifier> [ <constant_expression> ]  
||= <input_identifier> [ <constant_expression> : <constant_expression> ] 

<specify_output_terminal_descriptor>  
::= <output_identifier>  
||= <output_identifier> [ <constant_expression> ]  
||= <output_identifier> [ <constant_expression> : <constant_expression> ] 

<input_identifier> 
::= the <IDENTIFIER> of a module input or inout terminal 

<output_identifier> 
::= the <IDENTIFIER> of a module output or inout terminal.  See Section 13.2.1 Describing Module Paths 

for rules that govern <output_identifier>. 
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<path_delay_value>  
::= <path_delay_expression>  
||= ( <path_delay_expression>, <path_delay_expression> )  
||= ( <path_delay_expression>, <path_delay_expression>,  

<path_delay_expression> )  
||= ( <path_delay_expression>, <path_delay_expression>,  

<path_delay_expression>, <path_delay_expression>,  
<path_delay_expression>, <path_delay_expression> ) 

<path_delay_expression>  
::= <constant_mintypmax_expression> 

<system_timing_check>  
::= $setup( <timing_check_event>, <timing_check_event>, <timing_check_limit>  

<,<notify_register>>? ) ;  
||= $hold( <timing_check_event>, <timing_check_event>, <timing_check_limit>  

<,<notify_register>>? ) ;  
||= $period( <controlled_timing_check_event>, <timing_check_limit>  

<,<notify_register>>? ) ;  
||= $width( <controlled_timing_check_event>, <timing_check_limit>  

<,<constant_expression>,<notify_register>>? ) ;  
||= $skew( <timing_check_event>, <timing_check_event>, <timing_check_limit>  

<,<notify_register>>? ) ;  
||= $recovery( <controlled_timing_check_event>, <timing_check_event>,  

<timing_check_limit> <,<notify_register>>? ) ;  
||= $setuphold( <timing_check_event>, <timing_check_event>,  

<timing_check_limit>, <timing_check_limit> <,<notify_register>>? ) ; 
<timing_check_event>  

::= <timing_check_event_control>? <specify_terminal_descriptor>   

 <&&& <timing_check_condition>>? 
<specify_terminal_descriptor> 

::= <specify_input_terminal_descriptor> 
||=<specify_output_terminal_descriptor> 

<controlled_timing_check_event>  
::= <timing_check_event_control> <specify_terminal_descriptor> 

 <&&&  <timing_check_condition>>? 
<timing_check_event_control>  

::= posedge  
||= negedge  

            ||= <edge_control_specifier> 
<edge_control_specifier> 

::= edge  [ <edge_descriptor><,<edge_descriptor>>*] 
<edge_descriptor> 
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 ::= 01 
 || 10 
 || 0x 
 || x1 
 || 1x 
 || x0 
<timing_check_condition>  

::= <SCALAR_EXPRESSION>  
||= ~<SCALAR_EXPRESSION>  
||= <SCALAR_EXPRESSION> == <scalar_constant>  
||= <SCALAR_EXPRESSION> === <scalar_constant>  
||= <SCALAR_EXPRESSION> != <scalar_constant>  
||= <SCALAR_EXPRESSION> !== <scalar_constant> 

<SCALAR_EXPRESSION> is a one bit net or a bit select of an expanded vector net. 
::= <timing_check_limit> 

::= <expression> 
<scalar_constant>  

::= 1’b0  
||= 1’b1 
||= 1’B0 
||= 1’B1 

<notify_register>  
::= <identifier> 

<level_sensitive_path_declaration> 
::= if (<conditional_port_expression>)  

    (<specify_terminal_descriptor> <polarity_operator>?=> 
      <specify_terminal_descriptor>) = <path_delay_value>; 

||= if (<conditional_port_expression>) 
    (<list_of_path_inputs> <polarity_operator>? *> 
      <list_of_path_outputs>) = <path_delay_value>; 

Please note: The following two symbols are literal symbols, not syntax 
description conventions: 

*> => 
<conditional_port_expression> 

::= <port_reference> 
||= <UNARY_OPERATOR><port_reference> 
||= <port_reference><BINARY_OPERATOR><port_reference> 

<polarity_operator> 
::= + 
||= - 

<edge_sensitive_path_declaration> 
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::=<if (<expression>)>? (<edge_identifier>? 
<specify_terminal_descriptor>=> 
(<specify_terminal_descriptor> <polarity_operator> ?: <data_source_expression>)) = <path_delay_value>; 

||=<if (<expression>)>? (<edge_identifier>? 
<specify_terminal_descriptor> *> 
(<list_of_path_outputs> <polarity_operator> ?:  
<data_source_expression>)) =<path_delay_value>; 

<data_source_expression> 
Any expression, including constants and lists. Its width must be one bit or equal to the  destination’s width. If 
the destination is a list, the data source must be as wide as the sum of  the bits of the members.   

<edge_identifier> 
::= posedge 
||= negedge  

<sdpd> 
::=if(<sdpd_conditional_expression>)<path_description>= 
<path_delay_value>; 

<sdpd_conditional_expresssion> 
::=<expression><BINARY_OPERATOR><expression> 
||=<UNARY_OPERATOR><expression> 

A.7 Expressions 

<lvalue>  
::= <identifier>  Defined in Section 2.5 Identifiers, Keywords, and System Names. 
||= <identifier> [ <expression> ]  
||= <identifier> [ <constant_expression> : <constant_expression> ]  
||= <concatenation> 

<constant_expression>  
::=<expression> 

<mintypmax_expression>  
::= <expression>  
||= <expression> : <expression> : <expression> 

<expression>  
::= <primary>  
||= <UNARY_OPERATOR> <primary>  
||= <expression> <BINARY_OPERATOR> <expression>  
||= <expression> <QUESTION_MARK> <expression> : <expression>  
||= <STRING> 

<UNARY_OPERATOR> is one of the following tokens:  
+  -  !  ~  &  ~&  |  ^|  ^  ~^ 

<BINARY_OPERATOR> is one of the following tokens:  
+  -  *  /  %  ==  !=  ===  !==  &&  ||  <  <=  >  >=  &  |  ^  ^~  >>  << 

<QUESTION_MARK> is ? (a literal question mark). 
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<STRING> is text enclosed in "" and contained on one line. 
<primary>  

::= <number>  
||= <identifier>  Defined in Section 2.5 Identifiers, Keywords, and System Names. 
||= <identifier> [ <expression> ]  
||= <identifier> [ <constant_expression> : <constant_expression> ]  
||= <concatenation>  
||= <multiple_concatenation>  
||= <function_call>  
||= ( <mintypmax_expression> ) 

<number>  
::= <DECIMAL_NUMBER>  
||= <UNSIGNED_NUMBER>? <BASE> <UNSIGNED_NUMBER> 
||= <DECIMAL_NUMBER>.<UNSIGNED_NUMBER> 
||= <DECIMAL_NUMBER><.<UNSIGNED_NUMBER>>?E<DECIMAL_NUMBER> 
||= <DECIMAL_NUMBER><.<UNSIGNED_NUMBER>>?e<DECIMAL_NUMBER> 

Please note: embedded spaces are illegal in Verilog numbers, but embedded 
underscore characters can be used for spacing in any type of 
number. 

<DECIMAL_NUMBER> 
::= A number containing a set of any of the following characters, optionally preceded by + or - 

        0123456789_ 
<UNSIGNED_NUMBER> 

::= A number containing a set of any of the following characters: 
        0123456789_ 

<NUMBER>  
Numbers can be specified in decimal, hexadecimal, octal or binary, and may optionally start with a + or -.  
The <BASE> token controls what number digits are legal.  <BASE> must be one of d, h, o, or b, for the 
bases decimal, hexadecimal, octal, and binary respectively. A number can contain any set of the following 
characters that is consistent with <BASE>: 

        0123456789abcdefABCDEFxXzZ? 
<BASE> is one of the following tokens:  

        ’b   ’B   ’o   ’O   ’d   ’D   ’h   ’H 
<concatenation>  

::= { <expression> <,<expression>>* } 
<multiple_concatenation>  

::= { <expression> { <expression> <,<expression>>* } } 
<function_call>  

::= <name_of_function> ( <expression> <,<expression>>* )  
||= <name_of_system_function> ( <expression> <,<expression>>* )  
||= <name_of_system_function> 

<name_of_function>  
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::= <identifier> 
<name_of_system_function>  

::= $<SYSTEM_IDENTIFIER> 
Please note: The $ may not be followed by a space. 

<SYSTEM_IDENTIFIER> 
::= An <IDENTIFIER> assigned to an existing system task or function 
 

A.8 General  

<identifier> 
::= <IDENTIFIER><.<IDENTIFIER>>*    

Please note: The period may not be preceded or followedby a space. 

<IDENTIFIER>  
An identifier is any sequence of letters, digits, dollar signs ($), and  underscore (_) symbol, except that the first 
must be a letter or the underscore; the first character may not be a digit or $. Upper and lower case letters are 
considered to be different. Identifiers may be up to 1024 characters long. Some Verilog-based tools do not 
recognize  identifier characters beyond the 1024th as a significant part of the identifier. Escaped identifiers start 
with the backslash character (\) and may include any printable ASCII character. An escaped identifier ends with 
white space. The leading backslash character is not considered to be part of the identifier. 

<delay>  
::= # <number>  Defined in Section 2.3 Numbers2.3 Numbers. 
||= # <identifier>  
||= # ( <mintypmax_expression> <,<mintypmax_expression>>?<,<mintypmax_expression>>?) 

<mintypmax_expression> 
::= Defined in Section 6.15.1 min/typ/max Delays. 

<delay_control>  
::= # <number>  Defined in Section 2.3 Numbers. 
||= # <identifier>  
||= # ( <mintypmax_expression> ) Defined in Section 6.14.1 tri1 Net Strengths. 

<event_control>  
::= @ <identifier>  
||= @ ( <event_expression> ) 

<event_expression>  
::= <expression>  Defined in Chapter 4, Expressions. 
||= posedge <SCALAR_EVENT_EXPRESSION>  
||= negedge <SCALAR_EVENT_EXPRESSION>  
||= <event_expression> or <event_expression>*   

<SCALAR_EVENT_EXPRESSION> is an expression that resolves to a one bit value. 
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System Tasks and Functions 

B.0 System Tasks Overview 

This section describes system tasks and functions that are tool implementation specific. 

Below is a list of the tasks and functions described. For the function marked with an asterisk, the 
host machine native arithmetic is used. 

 $bitstoreal  $rtoi  

 $display $setup 

 $finish $skew 

 $hold $setuphold 

 $itor  $strobe 

 $period $time 

 $printtimescale $timeformat 

 $realtime $width 

 $realtobits  $write 

 $recovery 

These utility tasks and functions provide some broadly useful capabilities. The following sections 
describe the behavior of these tasks and functions—without giving the complete implementation 
details. 

B.1 The Display and Write Tasks  

Syntax:  
$display(P1, P2, ... , Pn);   

$write(P1, P2, ... , Pn); 

These are the main system task routines for displaying information. The two tasks are identical 
except that $display automatically adds a newline character to the end of its output, whereas the 
$write task does not. Thus, if you want to print several messages on a single line, you should use 
the $write task.   

The $display and $write tasks display their parameters in the same order they appear in the 
parameter list. Each parameter can be a quoted string, an expression that returns a value, or a null 
parameter. 

The contents of string parameters are output literally except when certain escape sequences are 
inserted to display special characters or specify the display format for a subsequent expression. 

Escape sequences are inserted into a string in three ways:  
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• The special character \ indicates that the character to follow is a literal or non-printable 
character (see Table  B-1).  

• The special character % indicates that the next character should be interpreted as a format 
specification that establishes the display format for a subsequent expression parameter 
(Table  B-2). For each % character that appears in a string, a corresponding expression 
parameter must be supplied after the string. 

• The special character string %% indicates the display of the percent sign character % (see 
Table  B-1).  

Any null parameter produces a single space character in the display. (A null parameter is 
characterized by two adjacent commas in the parameter list.) 

The $display task, when invoked without parameters, simply prints a newline character. A $write 
task supplied without parameters prints nothing at all. 

Note that because $write does not produce a newline character after outputting its text, most 
operating systems simply buffer the text rather than flush it directly to the output. For these 
operating systems, you should use the $display task instead of the $write task, or else include an 
explicit newline character (\n) in the $write task in order to ‘see’ the text in the output immediately. 

B.1.1 Escape Sequences for Special Characters 

The following escape sequences, when included in a string parameter, cause special characters to 
be displayed: 

\n is the newline character 
\t is the tab character 
\\ is the \ character 
\" is the " character 
\o is a character specified in 1-3 octal digits 
%% is the percent character 

 
Table  B- 1:   Escape sequences for printing special characters 

Example  B-1 shows these escape sequences in a string parameter and their results. 

module disp; 
initial 
begin 
   $display("\\\t%%\n\"\123"); 
end 
endmodule 
 
Highest level modules: 
disp 
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\ %  
"S 

Example  B- 1: Using escape sequences 

B.1.2 Format Specifications  

Table  B-2 shows the escape sequences used for format specifications. Each escape sequence, when 
included in a string parameter, specifies the display format for a subsequent expression. For each % 
character (except %m) that appears in a string, a corresponding expression must follow the string in 
the parameter list. The value of the expression replaces the format specification when the string is 
displayed. 

Any expression parameter that has no corresponding format specification is displayed using the 
default decimal format.  

%h or %H display in hexadecimal format 
%d or %D display in decimal format 
%o or %O display in octal format 
%b or %B display in binary format 
%c or %C display in ASCII character format 
%v or %V display net signal strength 
%m or %M display hierarchical name 
%s or %S display as a string 
%t or %T display in current time format 

Table  B- 2:   Escape sequences for format specifications 

Example  B-2 shows how escape sequences are used to provide format specifications. 

module disp; 
reg [31:0] rval; 
pulldown (pd); 
initial 
begin 
   rval = 101; 
   $display("rval = %h hex %d decimal",rval,rval); 
   $display("rval = %o octal %b binary",rval,rval); 
   $display("rval has %c ascii character value",rval); 
   $display("pd strength value is %v",pd); 
   $display("current scope is %m"); 
   $display("%s is ascii value for 101",101); 
   $display("simulation time is %t", $time); 
end 
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endmodule 
Highest level modules: 
disp 

rval = 00000065 hex        101 decimal 
rval = 00000000145 octal 00000000000000000000000001100101 binary 
rval has e ascii character value 
pd strength value is StX 
current scope is disp 
   e is ascii value for 101 
simulation time is                    0 

Example  B- 2: Format specifications 

The format specifications in Table  B-3 are used with real numbers and have the full formatting 
capabilities available in the C language. For example, the format specification %10.3g specifies a 
minimum field width of 10 with 3 fractional digits.  

%e or %E display `real' in an exponential format 
%f or %F display `real' in a decimal format 
%g or %G display `real' in exponential or decimal format, whichever format 

results in the shorter printed output 

Table  B- 3:   Format specifications for real numbers 

The net signal strength, hierarchical name, and string format specifications are described in 
sections B.1.5 Strength Format through B.1.7 String Format. 
The %t format specification works with the $timeformat system task to specify a uniform time unit, 
time precision, and format for reporting timing information from various modules that use different 
time units and precisions. The $timeformat task and %t format specification are described in 
Section B.4 Timescale System Functions Timescale System Functions. 

B.1.3 Size of Displayed Data 

For expression parameters, the values written to the output file (or terminal) are usually sized 
automatically. Verilog reserves just enough characters to hold the largest possible value that can be 
returned by the expression, given the expression’s bit length and specified display format. 

For instance, the result of a 12-bit expression would be allocated three characters when displayed 
in hexadecimal format and four characters when displayed in decimal format, since the 
expression’s largest possible value is FFF (hexadecimal) and 4095 (decimal). 

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other 
radices, leading zeros are always displayed. 

You can override the automatic sizing of displayed data by inserting a zero between the % 
character and the letter that indicates the radix, as shown below: 

Verilog HDL  LRM System Tasks and Functions  •  219 



 $display("d=%0h a=%0h", data, addr);  

In response, Verilog allocates the exact number of characters required to display the current 
expression result, instead of the expression’s largest possible value. 
Consider the following Verilog description and results: 

 
Example  B- 3: Displayed value sizes 

In this example, the result of a 12-bit expression is displayed. The first call to $display uses the 
standard format specifier syntax and produces results requiring four and three columns for the 
decimal and hexadecimal radices, respectively. The second $display call uses the %0 form of the 
format specifier syntax and produces results requiring two columns and one column, respectively. 

B.1.4 Unknown and High Impedance Values 

When the result of an expression contains an unknown or high impedance value, the following 
rules apply to displaying that value. 

In decimal (%d) format: 

• If all bits are at the unknown value, a single lowercase ‘x’ character is displayed.  

• If all bits are at the high impedance value, a single lowercase ‘z’ character is displayed.  

• If some, but not all, bits are at the unknown value, the uppercase ‘X’ character is displayed.  

• If some, but not all, bits are at the high impedance value, the uppercase ‘Z’ character is 
displayed. 
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• Decimal numerals always appear right-justified in a fixed-width field. (The fixed -width 
format is used so that the output produced is consistent with the $monitor task output, which 
requires a fixed-columnar format.) 

In hexadecimal (%h) and octal (%o) formats: 

• Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is 
represented as a single octal digit.  

• If all bits in a group are at the unknown value, a lowercase ‘x’ is displayed for that digit. 

• If all bits in a group are at a high impedance state, a lowercase ‘z’ is printed for that digit.  

• If some, but not all, bits in a group are unknown, an uppercase ‘X’ is displayed for that digit. 

• If some, but not all, bits in a group are at a high impedance state, then an uppercase ‘Z’ is 
displayed for that digit. 

In binary (%b) format, each bit is printed separately using the characters 0, 1, x, and z. 

Some of these rules are illustrated in Example  B-4 below: 

STATEMENT RESULT 

    $display("%d", 1'bx);  x 
    $display("%h", 14'bx01010);  xxXa 
    $display("%h %o", 12'b001xxx101x01, 
 12'b001xxx101x01);  XXX 1x5X 

Example  B- 4: Displaying unknown values 

B.1.5 Strength Format 

The %v format specification is used to display the strength of scalar nets. For each %v 
specification that appears in a string, a corresponding scalar reference must follow the string in the 
parameter list. The parameter must be an explicit scalar reference; that is, it can not be an 
expression, or a bit-select. 

The strength of a scalar net is reported in a three-character format. The first two characters indicate 
the strength. The third character indicates the scalar’s current logic value and may be any one of 
the following: 

0 for a logic 0 value 
1 for a logic 1 value 
X for an unknown value 
Z for a high impedance value 
L for a logic 0 or high impedance value 
H for a logic 1 or high impedance value 

Table  B- 4:   Logic value component of strength format 
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The first two characters—the strength characters—are either a two-letter mnemonic or a pair of 
decimal digits. Usually, a mnemonic is used to indicate strength information; however, in less 
typical cases, a pair of decimal digits may be used to indicate a range of strength levels. Table  B-5 
shows the mnemonics used to represent the various strength levels. 

Mnemonic Strength Name Strength Level 

      Su Supply drive 7 
      St Strong drive 6 
      Pu Pull drive 5 
      La Large capacitor 4 
      We Weak drive 3 
      Me Medium capacitor 2 
      Sm Small capacitor 1 
      Hi High impedance 0 

Table  B- 5:   Mnemonics for strength levels 

Note that there are four driving strengths, and three charge storage strengths. The driving strengths 
are associated with gate outputs and continuous assignment outputs. The charge storage strengths 
are associated with the trireg type net. (See Chapter 6, 6.11 Strengths and Values of Combined 
Signals, for more details on strength modeling.) 

For the logic values 0 and 1, a mnemonic is used when there is no range of strengths in the signal. 
Otherwise, the logic value is preceded by two decimal digits, which indicate the maximum and 
minimum strength levels. 

For the unknown value, a mnemonic is used when both the 0 and 1 strength components are at the 
same strength level. Otherwise, the unknown value X is preceded by two decimal digits, which 
indicate the 0 and 1 strength levels respectively. 

The high impedance strength can not have a known logic value; the only logic value allowed for 
this level is Z. 

For the values L and H, a mnemonic is always used to indicate the strength level. 

Consider the following call to $monitor: 

 $monitor($time,,"group=%b signals=%v %v %v",        
{sig1,sig2,sig3}, sig1, sig2, sig3); 

Example  B-5 shows the output that might result from such a call, while Table  B-6 explains the 
various strength formats that appear in the output. 

        0 group=111 signals=St1 Pu1 St1 
       15 group=011 signals=Pu0 Pu1 St1 
       30 group=0xz signals=520 PuH HiZ 
       31 group=0xx signals=Pu0 65X StX 
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       45 group=000 signals=Me0 St0 St0 

Example  B- 5: Displayed strength 

St1 means a strong driving 1 value 
Pu0 means a pull driving 0 value 
HiZ means the high impedance state 
Me0 means a 0 charge storage of medium capacitor strength 
StX means a strong driving unknown value 
PuH means a pull driving 1 or high impedance 
65X means an unknown value with a strong driving 0 component and a pull 

driving 1 component 
520 means an 0 value with a range of possible strength from pull driving to 

medium capacitor 

Table  B- 6:   Explanation of strength formats in Example  B-5 

B.1.6 Hierarchical Name Format  

The %m format specifier does not accept a parameter. Instead, it causes Verilog to print the 
hierarchical name of the module, task, function, or named block that invokes the system task 
containing the format specifier. This is very useful when there are many instances of the module 
that calls the system task. One obvious application is timing check messages in a flip-flop or latch 
module; the %m format specifier will pinpoint the module instance responsible for generating the 
timing check message. 

B.1.7 String Format 

The %s format specifier is used to print ASCII codes as characters. For each %s specification that 
appears in a string, a corresponding parameter must follow the string in the parameter list. The 
associated parameter is interpreted as a sequence of 8-bit hexadecimal ASCII codes, with each 8 
bits representing a single character. If the parameter is a variable, its value should be right-justified 
so that the right-most bit of the value is the least-significant bit of the last character in the string. 
No termination character or value is required at the end of a string, and leading zeros are never 
printed. 

B.2 Strobed Monitoring  

Syntax:  

$strobe(P1, P2, ..., Pn);  

The system task $strobe provides the ability to display simulation data at a selected time, but at the 
end of the current simulation time, when all the simulation events that have occurred for that 
simulation time, just before simulation time is advanced. The parameters for this task are specified 
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in exactly the same manner as for the $display system task—including the use of escape sequences 
for special characters and format specifications (see Section  B.1 The Display and Write Tasks). 

 

The following example shows how the $strobe system task is used: 

forever @(negedge clock) 
 $strobe ("At time %d, data is %h",$time,data); 

In this example, $strobe will write the time and data information to the standard output and the log 
file at each negative edge of the clock. The action will occur just before simulation time is 
advanced, after all other events at that time have occurred, so that the data written is sure to be the 
correct data for that simulation time. 

The strobe tasks produce output when they are executed and there is no on/off control necessary. 

B.3 Continuous Monitoring  

Syntax:  

$monitor(P1, P2, ..., Pn); 
 $monitor; 
 $monitoron; 
 $monitoroff; 

The $monitor task provides the ability to monitor and display the values of any variables or 
expressions specified as parameters to the task. The parameters for this task are specified in exactly 
the same manner as for the $display system task—including the use of escape sequences for special 
characters and format specifications (see Section  B.1 The Display and Write Tasks). 

When you invoke a $monitor task with one or more parameters, the simulator sets up a mechanism 
whereby each time a variable or an expression in the parameter list changes value–with the 
exception of the $time, $stime or $realtime system functions–the entire parameter list is displayed 
at the end of the time step as if reported by the $display task. If two or more parameters change 
value at the same time, however, only one display is produced that shows the new values. 

Note that only one $monitor display list can be active at any one time; however, you can issue a 
new $monitor task with a new display list any number of times during simulation. 

The $monitoron and $monitoroff tasks control a monitor flag that enables and disables the 
monitoring, so that you can easily control when monitoring should occur. Use $monitoroff to turn 
off the flag and disable monitoring. Use $monitoron to turn on the flag so that monitoring is 
enabled and the most recent call to $monitor can resume its display. A call to $monitoron always 
produces a display immediately after it is invoked, regardless of whether a value change has taken 
place; this is used to establish the initial values at the beginning of a monitoring session. By 
default, the monitor flag is turned on at the beginning of simulation. 
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For $monitor tasks issued interactively, there is an alternative method for controlling when 
monitoring should occur. The method involves using the disable command to turn off a $monitor 
command and then re-executing the command to turn monitoring back on. Example  B-6 illustrates 
this technique. 

C3> $monitor($time,,"rxd=%btxd=%b",rxd,txd);  
C4> #100 $stop;.  
 0 rxd=1 txd=1  
 20 rxd=0 txd=1  
 60 rxd=0 txd=0  
 80 rxd=0 txd=1  
C4: $stop at simulation time 100  
C5>  -3 

Example  B- 6: Using $monitor interactively 

In this example, monitoring is allowed to occur for the first 100 time units of the simulation before 
the disable command is issued at C5. The disable command is issued by identifying the command 
number of the interactive command you wish to disable and typing a minus sign before it. Here, by 
typing -3, we disable command 3, which invokes the $monitor task. Later in the simulation, by 
typing a 3 at the interactive command prompt, we can re-execute command 3 to resume 
monitoring. 

B.4 Timescale System Functions 

The following are timescale system functions: 

• $time 

• $realtime 

The $time and $realtime system functions allow you to access the current simulation time. 

B.4.1 The $time System Function 

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the 
module that invoked it.  

Here is an example: 

`timescale 10 ns / 1 ns 
module test; 
 reg set; 
 parameter p = 1.55; 
 initial 
  begin 
   $monitor($time,,"set=",set); 
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   #p set = 0; 
   #p set = 1; 
  end 
endmodule 
// The output from this example is as follows: 
// 0 set=x 
// 2 set=0 
// 3 set=1 

Example  B- 7: $time system function 

In this example, the tool assigns to reg set the value 0 at simulation time 16 nanoseconds, and the 
value 1 at simulation time 32 nanoseconds. Note that these times do not match the times reported 
by $time. The time values returned by the $time system function are determined by the following 
steps: 

1. The tool scales the simulation times 16 and 32 nanoseconds to 1.6 and 3.2 because the time 
unit for the module is 10 nanoseconds, so time values reported by this module are multiples 
of 10 nanoseconds. 

2. The tool rounds 1.6 to 2, and 3.2 to 3 because the $time system function returns an integer. 
The time precision does not cause the tool to round these values. 

B.4.2 The $realtime System Function 

The $realtime system function returns a real number time that, like $time, is scaled to the time unit 
of the module that invoked it. 

For example: 

`timescale 10 ns / 1 ns 
module test; 
  reg set; 
  parameter p = 1.55; 
  initial 
   begin 
    $monitor($realtime,,"set=",set); 
    #p set = 0; 
    #p set = 1; 
   end 
endmodule 
// The output from this example is as follows: 
// 0 set=x 
// 1.6 set=0 
// 3.2 set=1 

Example  B- 8: $realtime system function 
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In this example, the event times in the register set are multiples of 10 nanoseconds because 10 
nanoseconds is the time unit of the module. They are real numbers because $realtime returns a real 
number. 

B.4.3 The %t Format Specification 

The %t format specification works with the $timeformat system task to specify a uniform time unit, 
time precision and format that the tool uses to report timing information from various modules that 
have different time units and precisions.   

Like other format specifications, %t can be used with the $display, $monitor, $write, $strobe, 
$fdisplay, $fmonitor, $fwrite, and $fstrobe system tasks to display information. 

B.5 Timescale System Tasks 

The following system tasks display and set timescale information:  

• $printtimescale 

• $timeformat 

B.5.1 The $printtimescale System Task 

The $printtimescale system task displays the time unit and precision for a particular module. 

Syntax: 

$printtimescale <hierarchical_name>; 

This system task can be specified with or without an argument. 

• When no argument is specified, $printtimescale displays the time unit and precision of the 
module that is the current scope (as set by $scope). 

• When an argument is specified, $printtimescale displays the time unit and precision of the 
module passed to it. 

The timescale information appears in the following format: 

Time scale of (module_name) is unit / precision 

The following example B-9 shows the use of this system task: 

`timescale 1 ms / 1 us 
module a_dat; 
 initial 
  $printtimescale(b_dat.c1); 
endmodule 
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`timescale 10 fs /1 fs 
module b_dat; 
 c_dat c1 (); 
endmodule 
 
`timescale 1 ns / 1 ns 
module c_dat; 

• . 

• . 

• . 

endmodule 
Example  B- 9: $printtimescale system task 

In this example, module a_dat invokes the $printtimescale system task to display timescale 
information about another module c_dat, which is instantiated in module b_dat. 

The information about c_dat is displayed in the following format: 

Time scale of (b_dat.c1) is  1ns /  1ns 

B.5.2 The $timeformat System Task 

The $timeformat system task performs the following two functions: 

1. It specifies how the %t format specification reports time information for the $write, 
$display, $strobe, $monitor, $fwrite, $fdisplay, $fstrobe, and $fmonitor system tasks. 

2. It specifies the time unit for delays entered interactively. 

Syntax: 

$timeformat (<units_number>, <precision_number>, 
<suffix_string>, <minimum_field_width>); 

The units_number argument must be an integer in the range from 0 to 15. This argument 
represents the time unit as follows: 

Unit Number Time Unit Unit Number Time Unit 
  0 1 s -8 10 ns 
 -1 100 ms -9 1 ns 
 -2 10 ms -10 100 ps 
 -3 1 ms -11 10 ps 
 -4 100 us -12 1 ps 
 -5 10 us -13 100 fs 
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 -6 1 us -14 10 fs 
 -7 100 ns -15 1 fs 
 

Table  B- 7: $timeformat units_number arguments 

The $timeformat system task performs the following two operations: 

1. It sets the time unit for all later entered delays entered interactively.  

2. It sets the time unit, precision number, suffix string, and minimum field width for all %t 
formats specified in all modules that follow in the source description until another 
$timeformat system task is invoked. 

The default $timeformat system task arguments are as follows: 

 
Table  B- 8: $timeformat system tasks arguments 

The following example shows the use of %t with the $timeformat system task to specify a uniform 
time unit, time precision, and format for timing information. 

`timescale 1 ms / 1 ns 
module cntrl; 
 initial 
  $timeformat(-9, 5, " ns", 10); 
endmodule 

`timescale 1 fs / 1 fs 
module a1_dat; 
 reg in1; 
 integer file; 
 buf #10000000 (o1,in1); 
 initial 
  begin  
   file = $fopen("a1.dat"); 
   #00000000 $fmonitor(file,"%m: %t in1=%d 
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    o1=%h", 
   $realtime,in1,o1); 
   #10000000 in1 = 0; 
   #10000000 in1 = 1; 
  end 
endmodule 

`timescale 1 ps / 1 ps 
module a2_dat; 
 reg in2; 
 integer file2; 
 buf #10000 (o2,in2); 
 initial 
  begin 
   file2=$fopen("a2.dat"); 
   #00000 $fmonitor(file2,"%m: %t in2=%d 
    o2=%h", 
   $realtime,in2,o2); 
   #10000 in2 = 0; 
   #10000 in2 = 1; 
  end 
endmodule 

Example  B- 10: %t used with $timeformat      

The contents of file a1.dat is as follows: 

a1_dat: 0.00000 ns in1= x o1=x 

a1_dat: 10.00000 ns in1= 0 o1=x 

a1_dat: 20.00000 ns in1= 1 o1=0 

a1_dat: 30.00000 ns in1= 1 o1=1 

 

The contents of file a2.dat are as follows: 

a2_dat: 0.00000 ns in2=x o2=x 

a2_dat: 10.00000 ns in2=0 o2=x 

a2_dat: 20.00000 ns in2=1 o2=0 

a2_dat: 30.00000 ns in2=1 o2=1 

In this example, the times of events written to the files by the $fmonitor system task in modules 
a1_dat and a2_dat are reported as multiples of 1 nanosecond—even though the time units for these 
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modules are 1 femtosecond and 1 picosecond respectively—because the first argument of the 
$timeformat system task is -9 and the %t format specification is included in the arguments to 
$fmonitor. This time information is reported after the module names with five fractional digits, 
followed by an “ns” character string in a space wide enough for 10 ASCII characters. 

B.6 Simulation Time—The $time Function 

Syntax: 
$time 
$stime 

$realtime 

The $time and $realtime system functions return the current simulation time. The function $time 
returns a 64 bit value, scaled to the time unit of the module that invoked it. If the time value is a 
fraction of an integer, $time returns zero. The function $realtime returns a real number that is 
scaled to the time unit of the module that invoked it. 

B.7 Finish System Task 

Syntax:  
$finish; 

$finish (n); 

The $finish system task simply makes the simulator exit and pass control back to the host operating 
system. If a parameter expression is supplied to this task, then its value determines the diagnostic 
messages that are printed before the prompt is issued. If no parameter is supplied, then a value of 1 
is taken as the default. 

Parameter Value Diagnostic Message 

 0 prints nothing 

 1 prints simulation time and location 

 2 prints simulation time, location, and statistics  
  about the memory and CPU time used in simulation 

Table  B- 9: Diagnostic messages for $stop and $finish 

B.8 Functions and Tasks for Reals 

The following functions handle “real” values: 

$rtoi converts real values to integers by truncating the real value (for example, 123.45 
becomes 123) 

$itor converts integers to real values (for example, 123 becomes 123.0) 

$realtobits passes bit patterns across module ports; converts from a real number to the 64-bit 
representation (vector) of that real number 
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$bitstoreal is the reverse of $realtobits; converts from the bit pattern to a real number 

Example  B-11 shows how the $realtobits and $bitstoreal functions are used in port connections. 

module driver (net_r);  
     output net_r;  
     real r;  
     wire [64:1] net_r = $realtobits(r); endmodule 

module receiver (net_r);  
     input net_r;  
     wire [64:1] net_r;  
     real r;  
     initial assign r =$bitstoreal(net_r); endmodule 

Example  B- 11: Using $realtobits and $bitstoreal 

B.9 Timing Checks 

You may invoke timing checks in specify blocks to verify the timing performance of your design 
by making sure critical events occur within given time limits.  

Timing checks perform the following steps: 

1. Determine the elapsed time between two events. 

2. Compare the elapsed time to a specified limit.  
3. If the elapsed time does not fall within the specified time window, report a timing violation.  

Here is a sample timing check message from SILOS III: 

"pdmf2.vo", 10164: Timing violation at 2548 in top.pdmf2_inst.MUX_SEL_SYNC1 

 $setup(D:2545, (posedge CLK)&&&legal:2548, "3 < 13"); 

The $setup system task is in file pdmf2.vo at line 10164.  The setup violation occurred at 
time=2548 in instance top.pdmf2_inst.MUX_SEL_SYNC1.  The "D" net changed at time=2545, 
and the expression (posedge CLK)&&&legal changed at time=2548.  This delta of 3 is less than 
the specified setup time of 13. 

Here is a list of system tasks available for performing timing checks: 

$setup( data_event, reference_event, limit , notifier ); 
$hold( reference_event, data_event, limit , notifier ); 
$width( reference_event, limit , threshold, notifier ); 
$period(reference_event,  limit , notifier ); 
$skew( reference_event, data_event, limit , notifier ); 
$recovery( reference_event, data_event, limit , notifier ); 
$setuphold( reference_event, data_event, setup_limit, hold_limit, notifier; 
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Please Note:   These tasks may only be invoked inside specify blocks. 

As you can see, $width and $period do not require a data_event argument. For these tasks, the tool 
derives the data_event from the reference_event. 

 
Table  B- 10: System timing check arguments 

B.9.1 The $setup Timing Check 

The $setup system task has the following format: 

$setup( data_event, reference_event, limit, notifier ); 

 Table  B-11 defines the $setup system task arguments. 
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Table  B- 11: $setup arguments 

The $setup timing check reports a timing violation in the following case:  

(time of reference_event)-(time of data_event) < limit 

If the reference_event and data_event occur simultaneously, $setup performs the timing check 
before it records the new data_event value, therefore no violation occurs. 

B.9.2 The $hold Timing Check 

The $hold system task has the following format: 

$hold(reference_event,data_event,limit,notifier); 

 Table  B-12 defines the $hold system task arguments. 

 
Table  B- 12: Arguments of $hold 

$hold reports a violation in the following case: 

(time of data_event) - (time of reference_event) < limit 

$hold always records the new reference_event time before it performs the timing check. Therefore, 
if simultaneous events occur, there will be a violation. 

B.9.3 The $width Timing Check 

The $width system task has the following format: 

$width(reference_event,limit,threshold,notifier); 
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 Table  B-13 defines the $width system task arguments. 

 
Table  B- 13: Arguments of $width 

The $width timing check monitors the width of signal pulses by timing the duration of signal levels 
from one clock edge to the opposite clock edge. Since you do not pass a data_event to $width, the 
tool derives it from the reference_event, as follows: 

data_event = reference_event signal with opposite edge 

Because of the way the tools derive the data_event for $width, you must pass an edge triggered 
event as the reference_event. A compilation error will occur if the reference_event is not an edge 
specification. 

The $width timing check reports a violation in the following case: 

(time of data_event) - (time of reference_event) < limit 

In other words, the pulse width must be greater than or equal to limit in order to avoid a timing 
violation. 

Note that the data_event and the reference_event will never occur simultaneously because they are 
triggered by opposite transitions. 

It is important to note that the tools do not accept null arguments for $width. Therefore, if you pass 
a notifier to $width, you must also supply the threshold argument. It is permissible, however, to 
drop both the threshold and notifier arguments when invoking $width. Example  B-12 
demonstrates some examples of legal and illegal calls: 
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Example  B- 12: Legal and illegal $width calls 

B.9.4 The $period Timing Check 

The $period system task has the following format: 

$period(reference_event,limit,notifier); 

 Table  B-14 defines the $period system task arguments. 

 
Table  B- 14: Arguments of $period 

Since you do not pass a data_event to $period, the tool derives it from the reference_event, as 
follows: 

data_event = reference_event signal with the same edge 

Because of the way the tool derives the data_event for $period, you must pass an edge triggered 
event as the reference_event. A compilation error will occur if the reference_event is not an edge 
specification. 

The $period timing check reports a violation in the following case: 

(time of data_event) - (time of reference_event) < limit 

B.9.5 The $skew Timing Check 

The $skew system task has the following format: 

$skew(reference_event,data_event,limit,notifier); 

 Table  B-15 defines the $skew system task arguments. 
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Table  B- 15: Arguments of $skew 

The $skew timing check reports a violation in the following case: 

(time of data event) - (time of reference event) > limit 

The $skew timing check always records the new time of reference_event before it performs the 
timing check. If the data_event and the reference_event occur at the same time, $skew does not 
report a timing violation.  

B.9.6 The $recovery Timing Check 

The $recovery system task has the following format: 

$recovery(reference_event,data_event,limit,notifier); 

Table  B-16 defines the $recovery system task arguments. 

 
Table  B- 16: Arguments of $recovery 

You must specify an edge for the reference_event you pass to $recovery since it needs either rising 
or falling edges, but not both. Omitting the edge specification is the same as specifying all edges—
an illegal reference_event argument for $recovery. 

The $recovery timing check reports a timing violation in the following case:  

(time of data_event) - (time of reference_event) < limit 
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If the data_event and reference_event occur simultaneously, $recovery performs the timing check 
before it records the new reference_event time and, therefore, no violation occurs. 

B.9.7 The $setuphold Timing Check 

The $setuphold system task has the following format: 

$setuphold(reference_event,data_event,setup_limit, 

hold_limit,notifier); 

 Table  B-17 defines the $setuphold system task arguments. 

 
Table  B- 17: Arguments of $setuphold 

The $setuphold timing check is a shorthand way to combine the functionality of $setup and $hold 
into one system task call. Therefore, the following invocation of $setuphold: 

$setuphold( posedge clk, data, tSU, tHLD ); 

is equivalent in functionality to the following: 

$setup( data, posedge clk, tSU ); 

$hold( posedge clk, data, tHLD ); 
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B.9.8 Edge-Control Specifiers 

You may use edge-control specifiers to control events in timing checks based on specific edge 
transitions between 0, 1, and x. 

Edge-control specifiers contain the keyword edge followed by a square bracketed list of from one 
to six pairs of edge transitions between 0, 1 and x, as follows: 

01     transition from 0 to 1 

0x     transition from 0 to x 

10     transition from 1 to 0 

1x     transition from 1 to x 

x0     transition from x to 0 

x1     transition from x to 1 

Edge transitions involving z are treated the same way as edge transitions involving x. 

 Syntax  B-1 demonstrates the edge-control specifier syntax. 

<edge_control_specifier> 
 ::= edge  [ <edge_descriptor><,<edge_descriptor>>*] 

<edge_descriptor> 
::= 01 
|| 10 
|| 0x 
|| x1 
|| 1x 
|| x0 

Syntax  B- 1: Syntax of edge-control specifier 

You can use the posedge and negedge constructs as a shorthand for certain edge control specifiers. 
For example, the construct: 

posedge clr 

is equivalent to the following: 

edge[01, 0x, x1] clr 

Similarly, the construct: 
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negedge clr 

is the same as the following: 

edge[10, x0, 1x] clr 

However, edge-control specifiers offer the flexibility to declare edge transitions other than posedge 
and negedge (see examples in Section B.9.9 Notifiers: User-Defined Responses to Timing 
Violations).  

B.9.9 Notifiers: User-Defined Responses to Timing Violations 

Timing check notifiers let you detect timing check violations behaviorally, and, therefore, take an 
action as soon as they occur. For example, you may print an informative error message describing 
the violation, or you may propagate an x value at the output of the device that reported the 
violation. 

The notifier is a register—declared in the module where timing checks will occur—that you pass as 
the last argument to a system timing check. Whenever a timing violation occurs, the system task 
toggles the value of the notifier.  

It is important to remember that the notifier is an optional argument to all system timing checks 
and can be omitted from the system task call without adversely affecting its operation.  

Table  B-18 shows how the notifier values are toggled when timing violations occur. 

 
Table  B- 18: Notifier toggle values 

Example  B-13 demonstrates some simple examples of timing checks with notifier arguments. 

$setup( data, posedge clk, 10, notify_reg ) ; 
$width( posedge clk, 16, notify_reg ) ; 

Example  B- 13: Timing checks with notifier arguments 

Now consider a more complex example of how to use notifiers in a behavioral model. The example 
that follows uses a notifier to set the D flip-flop output to x when a timing violation occurs in an 
edge- sensitive user-defined primitive (UDP). 
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 primitive posdff_udp (q, clock, data, preset, clear, 
notifier); 

        output q; reg q; 
        input clock, data, preset, clear, notifier;  
        table            
        //clock data  p c notifier state  q  
        //------------------------------------- 
 r    0    1 1    ?    :  ?  : 0 ; 
 r    1    1 1    ?    :  ?  : 1 ; 

 p    1    ? 1    ?    :  1  : 1 ; 
 p    0    1 ?    ?    :  0  : 0 ; 

 n    ?    ? ?    ?    :  ?  : - ; 
 ?    *    ? ?    ?    :  ?  : - ; 

 ?    ?    0 1    ?    :  ?  : 1 ; 
 ?    ?    * 1    ?    :  1  : 1 ; 

 ?    ?    1 0    ?    :  ?  : 0 ; 
 ?    ?    1 *    ?    :  0  : 0 ; 
 ?    ?    ? ?    *    :  ?  : x ; // At any  
 //notifier 

event 
 //output to 

x 
 endtable 
endprimitive 

    module dff(q, qbar, clock, data, preset, clear); 
        output q, qbar; 
        input clock, data, preset, clear; 

        reg notifier; 

        and (enable,  preset,clear); 

        not (qbar, ffout); 
        buf (q, ffout); 

    posdff_udp (ffout, clock, data, preset, clear, notifier); 

    specify 
            // Define timing check specparam values 
            specparam tSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5; 

            // Define module path delay rise and fall specparam  
           //     min:typ:max values 
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            specparam tPLHc = 4:6:9 , tPHLc = 5:8:11; 
            specparam tPLHpc = 3:5:6 , tPHLpc = 4:7:9; 

            // Specify module path delays 
            (clock *> q,qbar) = (tPLHc, tPHLc); 
            (preset,clear *> q,qbar) = (tPLHpc, tPHLpc); 

            // Setup time : data to clock, only when preset and  
     //clear are 1 
            $setup(data, posedge clock &&& enable,  tSU, notifier); 

             // Hold time : clock to data, only when preset and clear are 1 
            $hold(posedge clock, data &&& enable, tHD, notifier); 

// Clock period check 
 $period(posedge clock, tPW, notifier); 

               // Pulse width : preset, clear 
            $width(negedge preset, tWPC, 0, notifier); 
            $width(negedge clear, tWPC, 0, notifier); 

           // Recovery time: clear or preset to clock 
            $recovery(posedge preset, posedge clock, tREC, notifier); 
$recovery(posedge clear, posedge clock, tREC, notifier); 
endspecify 

endmodule 

Example  B- 14: Notifier setting a register in response to a timing violation 

It is important to remember that this model applies to edge-sensitive UDPs only; for level-sensitive 
models, you must generate an additional UDP for x propagation.  

B.9.10 Enabling Timing Checks with Conditioned Events 

A construct called a conditioned event ties the occurrence of timing checks to the value of a 
conditioning signal. 

Syntax  B-2 demonstrates the conditioned event syntax. 

<controlled_timing_check_event> 
::= <timing_check_event_control> <specify_terminal_descriptor> < &&& 

<timing_check_condition>>? 

<timing_check_condition> 
::= <scalar_expression> 
||= ~<scalar_expression> 
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||= <scalar_expression>==<scalar_constant> 
||= <scalar_expression>===<scalar_constant> 
||= <scalar_expression>!=<scalar_constant> 
||= <scalar_expression>!==<scalar_constant> 

Syntax  B- 2: Syntax of conditioned event 

To illustrate the difference between conditioned and unconditioned timing check events, consider 
the following unconditioned version of the first line in Example  B-15: 

$setup( data, posedge clk, 10 ); 

Here, a setup check will occur every time there is a positive edge on signal clk. 

To trigger the setup check on the positive clk edge only when signal clr is high, rewrite the 
command as it appears in Example  B-15’s first line. 

$setup( data, posedge clk &&& clr, 10 ) ; 

setup( data, posedge clk &&& (~clr), 10 ) ; 
$setup( data, posedge clk &&& (clr===0), 10 ); 

Example  B- 15: Example of conditioned event 

The second and third lines of Example  B-15 show two ways to trigger the same timing check on 
the positive clk edge only when clr is low. 

The comparisons used in the condition may be deterministic—as in ===, !==, ~, or no operation, or 
non-deterministic—as in == or !=. 

In the second example above, note that the comparison uses === and is therefore deterministic. 
When comparisons are deterministic, an x value on the conditioning signal will not enable the 
timing check. 

For non-deterministic comparisons, an x on the conditioning signal will enable the timing check. 

There are two constraints to bear in mind when using conditioned events: 

1. The conditioning signal must be a scalar net; the conditioning signal cannot be a vector or 
expression. 

2. Because conditioning signals cannot be expressions, you may use only one conditioning 
signal per event. 

If you need more than one conditioning signal for conditioning timing checks, you can combine the 
appropriate logic in a separate signal outside the specify block, and then use that single signal as 
the conditioning signal. 

For example, to perform the previous sample setup check on the positive clk edge only when clr 
and set are high, add the following statement outside the specify block: 
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 and( clr_and_set, clr, set ); 

Then, add the condition to the timing check using the signal clr_and_set as follows: 

 $setup( data, posedge clk &&& clr_and_set, 10 ); 
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Compiler Directives 

C.0 Compiler Overview 

This section describes implementation-specific compiler directives requiring standardization. 

All Verilog compiler directives are preceded by the (` ) character. This character is called accent 
grave. It is different from the character (’), which is the single quote character. The scope of 
compiler directives extends from the point where it is processed, across all files processed, to the 
point where another compiler directive supersedes it or the processing completes. See the section 
on C.4 `resetall for a discussion of the impact this has on libraries. 

This appendix describes the following compiler directives: 

• `define 

• `default_nettype 

• `unconnected_drive 

• `nounconnected_drive 

• `resetall 

• `timescale 

C.1 `define  

The directive `define creates macros for text substitution (see also E.7.2 Defining Variable Names 
to Control Conditional Compilation). It can be used both inside and outside module definitions. 
After a text macro is defined, it can be used in the source description by using the (`) character, 
followed by the macro name. The compiler will substitute the text of the macro for the string 
‘macro_name. 

A text macro substitution facility allows meaningful names to represent commonly used pieces of 
text.  

The syntax for text macro definitions is as follows:  

<text_macro_definition> ::=`define <text_macro_name> <MACRO_TEXT> 

<text_macro_name> ::= <IDENTIFIER>  

<MACRO_TEXT> is any arbitrary text up to the end of the line. Items <text_macro_name> and 
<MACRO_TEXT> must be specified on the same line. If a line comment (that is, a comment using 
the characters //) is included in the text, then the comment does not become part of the text 
substituted. The text for <MACRO_TEXT> may be blank, in which case the text macro is defined 
to be empty and no text is substituted when the macro is used. 

The syntax for using a text macro is as follows: 
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<text_macro_usage>::=  `<text_macro_name> 

Examples: 

`define  wordsize  8 

reg  [1:`wordsize]  data; 

 

`define  typ_nand  nand  #5  //define  a nand  w/typical  delay 

`typ_nand  g121  (q21,  n10,  n11); 

The text comprising <MACRO_TEXT> must not be split across the following lexical tokens: 

• comments 

• numbers 

• strings   

• identifiers 

• keywords 

• double  or  triple  character  operators 

For example, the following two lines are illegal specifications: 

`define  first_half  "start  of  string 

$display(`first_half  end  of  string"); 

If you develop compiler directives, be aware of the following: 

• If you implement the compiler directive `foo—and if you implement the directive `define as 
some tools do—then if you write `define foo, the meaning of `foo is ambiguous. 

• In source written for some tools, text macro names may not be the same as compiler directive 
keywords. 

• Text macro names can be the same as ordinary identifiers. For example, signal_name and 
`signal_name are different. All text macro names are put into one symbol table. Redefinition 
of text macros is allowed; the newest definition of a particular text macro will prevail when 
the macro name is used in the source text.  

C.2 `default_nettype 

The directive `default_nettype controls the net type created for implicit net declarations. It can be 
used only outside of module definitions. It affects all modules that follow the directive, even across 
source file boundaries. Multiple `default_nettype directives are allowed. The latest one encountered 
controls the type of nets that will be implicitly declared. The following is the syntax of the 
directive: 

`default_nettype <type_of_net> 
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The following are the keywords for the net types that can be specified as arguments for the 
directive: 

wire      tri         tri0 

wand      triand      tri1 

wor       trior       trireg 

When no `default_nettype directive is present, implicit nets are of type wire. 

See the chapters on 3.5 Implicit Declarations and 6.9 Implicit Net Declarations for a discussion of 
implicit net declarations. 

C.3 `unconnected_drive and `nounconnected_drive  

The directive `unconnected_drive causes all unconnected input ports between it and 
`nounconnected_drive to be pulled up or down instead of floating to the high impedance value z. 
`unconnected_drive takes one of two arguments—pull1 or pull0. When pull1 is specified, all 
unconnected input ports are automatically pulled up. When pull0 is specified, unconnected ports 
are pulled down. These directives must be specified outside modules only. 

C.4 `resetall 

This compiler directive resets all compiler directives to the default values that are active when it is 
encountered during compilation. This is useful for ensuring that only those directives that are 
desired in compiling a particular source file are active. 

The recommended usage is to place `resetall at the beginning of each source text file, followed 
immediately by the directives desired in the file. This directive is particularly important in library 
files and library directory files. ` 

C.5 `timescale 

This directive specifies the time unit and time precision of the modules that follow it. The time unit 
is the unit of measurement for time values such as the simulation time and delay values. The time 
precision specifies how the tool rounds time values. The rounded values the tool uses are accurate 
to within the unit of time specified as the time precision. 

Timescales let you use modules that were developed with different time units together in the same 
design. The tool can, for example, simulate a design that contains both a module whose delays are 
specified in nanoseconds and a module whose delays are specified in picoseconds. 

To use modules with different time units in the same design, you need the following timescale 
constructs: 

• the `timescale compiler directive to specify the unit of measurement for time and precision of 
time in the modules in your design 

• the $printtimescale system task to display the time unit and precision of a module 
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•  the $time and $realtime system functions, the $timeformat system task, and the %t format 
specification to specify how the tool reports time information  

The `timescale compiler directive specifies the unit of measurement for time and delay values and 
the degree of accuracy for delays in all modules that follow this directive until the tool reads 
another `timescale compiler directive. 

Syntax: 

`timescale <time_unit> / <time_precision> 

The time_unit argument specifies the unit of measurement for times and delays. 

The time_precision argument specifies how the tool rounds delay values before using them in 
simulation. The values the tool uses will be accurate to within the unit of time that is specified here. 
The smallest time_precision argument of all the `timescale compiler directives in the design 
determines the time unit of the simulation.  

The time_precision argument must be at least as precise as the time_unit argument; it cannot 
specify a longer unit of time than time_unit. 

The integers in these arguments specify an order of magnitude for the size of the value; the valid 
integers are 1, 10, and 100. The character strings represent units of measurement; the valid 
character strings are   s, ms, us, ns, ps, and fs.  

The units of measurement specified by these character strings are as follows: 

 

Table  2- 19: Arguments of time_precision 

The following example shows how this directive is used: 

`timescale 1ns / 1ps 
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Here, all time values in the modules that follow the directive are multiples of 1 nanosecond 
because the time_unit argument is “1 ns”. Delays are rounded to real numbers with three decimal 
places—or, precise to within one thousandth of a nanosecond—because the time_precision 
argument is “1 ps,” or one thousandth of a nanosecond. 

Consider the following example: 

`timescale 10 us / 100 ns 

The time values in the modules that follow this directive are multiples of 10 microseconds because 
the time_unit argument is “10 us”. Delays are rounded to within one tenth of a microsecond 
because the time_precision argument is “100 ns,” or one tenth of a microsecond. 

The following example shows a `timescale directive in the context of an actual source description: 

`timescale 10 ns / 1 ns  
module test; 
reg set; 
parameter d = 1.55; 
 initial 
  begin 
   #d set = 0; 
   #d set = 1; 
  end 
endmodule 

Example  2- 16: Example of the ‘timescale directive 

The `timescale 10 ns / 1 ns compiler directive specifies that the time unit for module test is 10 
nanoseconds. As a result, the time values in the module are multiples of 10 nanoseconds, rounded 
to the nearest 1 nanosecond and, therefore, the value stored in parameter d is scaled to a delay of 
16 nanoseconds. This means that the tool assigns the value 0 to reg set at simulation time 16 
nanoseconds (1.6 x 10 ns), and assigns the value 1 at simulation time 32 nanoseconds. 

Parameter d retains its value no matter what timescale is in effect. 

These simulation times are determined as follows: 

1. The value of parameter d is rounded from 1.55 to 1.6 according to the time precision. 

2. The time unit of the module is 10 nanoseconds, and the precision is 1 nanoseconds, so the 
tool scales the delay of parameter d from 1.6 to 16. 

3. The tool schedules the assignment of 0 to reg set at simulation time 16 nanoseconds (the 
tool adds 16 nanoseconds to the current simulation time of 0) and the assignment of 1 at 
simulation time 32 nanoseconds (the tool adds 16 nanoseconds to the current simulation 
time of 16 nanoseconds). The tool does not round time values when it schedules these 
assignments. 
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List of System Task and System Function Keywords 

D.0 System Tasks Overview 

The following is a list of some of the keywords currently used by tools for names of system tasks 
and system functions, with a brief description of each keyword. See Appendix B, System Tasks 
and Functions, for descriptions of some frequently used tasks and functions. 

 $bitstoreal 

 $countdrivers 

 $display  

 $fclose  

 $fdisplay  

 $fmonitor  

 $fopen  

 $fstrobe  

 $fwrite  

 $finish 

 $getpattern 

 $history 

 $incsave  

 $input  

 $itor 

 $key 

 $list 

 $log 

 $monitor 

 $monitoroff 

 $monitoron 

 $nokey 

 $nolog 

 $printtimescale 

 $readmemb  
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 $readmemh  

 $realtime  

 $realtobits 

 $reset 

 $reset_count 

 $reset_value 

 $restart  

 $rtoi 

 $save  

 $scale 

 $scope 

 $showscopes 

 $showvariables 

 $showvars 

 $sreadmemb  

 $sreadmemh 

 $stime  

 $stop 

 $strobe 

 $time  

 $timeformat 

 $write 

D.1 $bitstoreal 

See Appendix B, B.8 Functions and Tasks for Reals, for details. 

D.2 $countdrivers 

Syntax: 

$countdrivers(net,  net_is_forced,  number_of_01x_drivers, 
number_of_0_drivers,  number_of_1_drivers, number_of_x_drivers); 
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The $countdrivers system function is provided to count the number of drivers on a specified net so 
that bus contention can be identified. 

The $countdrivers system function is provided to count the number of drivers on a specified net so 
that bus contention can be identified. 

This system function returns a 0 if there is no more than one driver on the net and returns a 1 
otherwise (indicating contention). The specified “net” must be a scalar or a bit-select of an 
expanded vector net. The number of parameters to the system function may vary according to how 
much information is desired.  

If you supply additional parameters to the $countdrivers function, each parameter returns the 
information described in Table  D-1. 

Parameter Return Value 

net_is_forced returns a "1" if the net is forced and a "0" if the net 
is not forced 

number_of_01x_drivers returns an integer representing the number of 
drivers that are in a 0, 1, or x state; this represents 
the total number of drivers on the net that are not 
forced 

number_of_0_drivers returns an integer representing the number of 
drivers on the net that are in the "0" state 

number_of_1_drivers returns an integer representing the number of 
drivers on the net that are in the "1" state 

number_of_x_drivers returns an integer representing the number of 
drivers on the net that are in the "x" state 

Table  D- 1:  Parameter return value for $countdrivers function 
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D.3 $display 

See Appendix B, B.1 The Display and Write Tasks, for details. 

D.4 Value Change Dump File Tasks 

Seven system tasks are provided to create and format the value change dump file. 

Syntax: 

$dumpfile(<filename>); 

$dumpvars(<levels> <,<module|var>>* ); 

$dumpoff; 

$dumpon; 

$dumpall; 

$dumplimit(<filesize>); 

$dumpflush; 

The $dumpfile system task specifies the name of the value change dump file.  

The $dumpvars system task specifies the variables whose changing values a tool records in the 
value change dump file. The $dumpvars when invoked with no arguments dumps all variables in 
the design. 

The $dumpoff system task stops a tool from recording value changes in the value change dump 
file. 

The $dumpon system task allows a tool to resume recording value changes in the value change 
dump file. 

The $dumpall system task creates a checkpoint that shows the current value of all variables being 
recorded in the value change dump file. 

The $dumplimit system task sets the size of the value change dump file. 

The $dumpflush system task empties the dump file buffer and ensures that all the data in that 
buffer is stored in the value change dump file. 

D.5 File Output 

Each of the four formatted display tasks—$display, $write, $monitor, and $strobe—has a 
counterpart that writes to specific files as opposed to the log file and standard output. These 
counterpart tasks—$fdisplay, $fwrite, $fmonitor, and $fstrobe—accept the same type of 
parameters as the tasks they are based upon, with one exception: The first parameter must be a 
multichannel descriptor that indicates where to direct the file output. A multichannel descriptor is 
either a variable or the result of an expression that takes the form of a 32-bit unsigned integer 
value. This value determines which open files the task will write to. 
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Syntax:  

$fdisplay(<multi_channel_descriptor>, P1, P2, ... , Pn); 

$fwrite(<multi_channel_descriptor>, P1, P2, ... , Pn);  

$fstrobe(<multi_channel_descriptor>, P1, P2, ..., Pn);  

$fmonitor(<multi_channel_descriptor>, P1, P2, ..., Pn); 

$fopen("<name_of_file>") 

$fclose(<multichannel_descriptor>); 

The function $fopen opens the file specified as a parameter and returns a 32-bit unsigned 
multichannel descriptor that is uniquely associated with the file. It returns 0 if the file could not be 
opened for writing. 

The multichannel descriptor should be thought of as a set of 32 flags, where each flag represents a 
single output channel. The least significant bit (bit 0) of a multichannel descriptor always refers to 
the standard output—that is, the log file and the screen (unless it has been redirected to a file). The 
standard output is also called channel 0. The other bits refer to channels that have been opened by 
the $fopen system function. 

The first call to $fopen opens channel 1 and returns a multichannel descriptor value of 2—that is, 
bit 1 of the descriptor is set. A second call to $fopen opens channel 2 and returns a value of 4—that 
is, only bit 2 of the descriptor is set. Subsequent calls to $fopen open channels 3, 4, 5, and so on 
and returns values of 8, 16, 32, and so on, up to a maximum of 31 channels. Thus, a channel 
number corresponds to an individual bit in a multichannel descriptor. 

The advantage of multichannel descriptors is that they allow a single system task to write the same 
information to multiple outputs simultaneously. This is accomplished by setting more than one bit 
in the multichannel descriptor, and can be done by combining the values returned by $fopen in a 
bit-wise OR operation. Another advantage of multichannel descriptors is that it is easy to set up 
descriptions where the channels that receive diagnostic information can be dynamically altered 
during simulation, and even controlled in interactive commands. 

Note that the number of simultaneous output channels that may be active at any one time is 
dependent on the operating system and is not determined by the tool. 

The $fclose system task closes the channels specified in the multichannel descriptor, and does not 
allow any further output to the closed channels. The $fopen task will reuse channels that have been 
closed. 

Example  D-1 shows how to set up multichannel descriptors. In this example, three different 
channels are opened using the $fopen function. The three multichannel descriptors that are returned 
by the function are then combined in a bit-wise OR operation and assigned to the integer variable 
messages. The messages variable can then be used as the first parameter in a file output task to 
direct output to all three channels at once. To create a descriptor that directs output to the standard 
output as well, the messages variable is bit-wise ORed with the constant 1, which effectively 
enables channel 0.  

 integer 
  messages, 
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  broadcast, 
  cpu_chann, 
  alu_chann, 
  mem_chann; 
 initial 
  begin 
   cpu_chann = $fopen("cpu.dat"); if(cpu_chann == 0) $finish; 
   alu_chann = $fopen("alu.dat"); if(alu_chann == 0) $finish; 
   mem_chann = $fopen("mem.dat"); if(mem_chann == 0) $finish; 
   messages = cpu_chann | alu_chann | mem_chann; 
   broadcast = 1 | messages;      // includes standard output 
  end 

Example  D- 1: Setting up multichannel descriptors 

The following file output tasks show how the channels opened in Example  D-1 might be used: 

$fdisplay( broadcast, "system reset at time %d", $time ); 

$fdisplay( messages, "Error occurred on address bus at time %d, address = %h", 
$time, address ); 

forever @(posedge clock)  
    $fdisplay( alu_chann, "acc= %h f=%h a=%h b=%h",acc, f, a, b ); 

Example  D- 2: Using multichannel descriptors 

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $monitor, 
except that they write to files using the multichannel descriptor for control. Unlike $monitor, any 
number of $fmonitor tasks can be set up to be simultaneously active. 

Thus, if you need to have more than one monitor task report to the standard output, then use a 
$fmonitor with a multichannel descriptor of 1. 

D.6 $finish 

See Appendix B, B.7 Finish System Task, for details. 

D.7 $getpattern 

Syntax: 

$getpattern (<mem_element>); 
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The system function $getpattern provides for fast processing of stimulus patterns that must be 
propagated to a large number of scalar inputs. The function reads stimulus patterns that have been 
loaded into a memory using the $readmemb or $readmemh system tasks. 

Use of this function is limited however: It may only be used in a continuous assignment statement 
where the left-hand side is a concatenation of scalar nets, and the parameter to the system function 
is a memory element reference. 

Example  D-3 shows how stimuli stored in a file can be read into a Verilog memory using 
$readmemb and applied to the circuit one pattern at a time using $getpattern.  

The memory in_mem is initialized with the stimulus patterns by the $readmemb task. The integer 
variable index selects which pattern is being applied to the circuit. The for loop increments the 
integer variable index periodically to sequence the patterns. 

module top; 
        parameter in_width=10, 
                  patterns=200,  
                  step=20; 
        reg [1:in_width] in_mem[1:patterns]; 
        integer index; 

        // declare scalar inputs 
        wire i1,i2,i3,i4,i5,i6,i7,i8,i9,i10; 

        // assign patterns to circuit scalar inputs (a new pattern  
        // is applied to the circuit each time index changes value) 
        assign {i1,i2,i3,i4,i5,i6,i7,i8,i9,i10} 
                = $getpattern(in_mem[index]); 

        initial 
            begin 
// read stimulus patterns into memory 
$readmemb("patt.mem", in_mem); 

// step through patterns (note that each assignment 
// to index will drive a new pattern onto the circuit 
// inputs from the $getpattern system task specified 
// above 
for(index = 1; index <= patterns; index = index + 1) 
                    #step; 
            end 

// instantiate the circuit module 
mod1cct(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10, 
i1,i2,i3,i4,i5,i6,i7,i8,i9,i10); 
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endmodule 

Example  D- 3: Using $getpattern 

D.8  $history 

The $history system task prints out a list of all interactive commands that have been entered to a 
tool. 

D.9  $incsave 

See section D.23 Saving and Restarting in this Appendix for details. 

D.10  $input 

Syntax:  

$input("<filename>"); 

The $input system task allows command input text to come from a named file instead of from the 
terminal. At the end of the command file the input is automatically switched back to the terminal. 

D.11 $itor 

See Appendix B, B.8 Functions and Tasks for Reals, for more details. 

 

D.12  $key and $nokey 

Syntax: 

$key(“<filename>”);$key;$nokey; 

A key file is created by a tool whenever interactive mode is entered for the first time. The key file 
contains all of the text that has been typed in from the standard input. The file also contains 
information about asynchronous interrupts.   

The $nokey and $key system tasks are used to disable and re-enable output to the key file. An 
optional file name parameter for $key causes the old key file to be closed, a new file to be created, 
and output to be directed to the new file. 
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D.13 $list 

Syntax: 

$list;$list (<name>); 

When invoked without a parameter, $list produces a listing of the module, task, function, or named 
block that is defined as the current scope setting. If an optional parameter is supplied, it must refer 
to a specific module, task, function or named block, in which case the specified object will be 
listed. 

D.14  $log and $nolog 

Syntax: 

$log(“<filename>”);$log;$nolog; 

Tools may create a log file that contains a copy of all the text that is printed to the standard output. 
The log file may also contain, at the beginning of the file, the host command that was used to run 
the tool. 

The $nolog and $log system tasks are used to disable and re-enable output to the log file. The 
$nolog task disables output to the log file, while the $log task re-enables the output. An optional 
file name parameter for $log causes the old file to be closed, a new log file to be created, and 
output to be directed to the new log file. 

D.15 $monitor, $monitoron, $monitoroff 

See Appendix B,  B.3 Continuous Monitoring, for details. 

D.16 $printtimescale 

See Appendix B,  B.5.1 The $printtimescale System Task, for details. 

D.17 $readmemb and $readmemh 

Syntax:  

$readmemb("<filename>",  <memname>); 

$readmemb("<filename>",  <memname>,  <start_addr>); 

$readmemb("<filename>",  <memname>,  <start_addr>, <finish_addr>); 

$readmemh("<filename>",  <memname>);$readmemh("<filename>",  
<memname>,  <start_addr>); 
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$readmemh("<filename>",  <memname>,  <start_addr>, <finish_addr>); 

Two system tasks—$readmemb and $readmemh—read and load data from a specified text file into 
a specified memory. Either task may be executed at any time during simulation. The text file to be 
read must contain only the following: 

• white space (spaces, new lines, tabs, and form-feeds) 

• comments (both types of comment are allowed) 

• binary or hexadecimal numbers 

The numbers must have neither the length nor the base format specified. For $readmemb, each 
number must be binary. For $readmemh, the numbers must be hexadecimal. The unknown value (x 
or X), the high impedance value (z or Z), and the underscore (_) can be used in specifying a 
number as in a Verilog source description. White space and/or comments must be used to separate 
the numbers. 

In the following discussion, the term “address” refers to an index into the array that models the 
memory. 

As the file is read, each number encountered is assigned to a successive word element of the 
memory. Addressing is controlled both by specifying start and/or finish addresses in the system 
task invocation, and by specifying addresses in the data file. 

When addresses appear in the data file, the format is an “at” character (@) followed by a 
hexadecimal number as follows: 

    @hh...h 

Both upper and lower case digits are allowed in the number. No white space is allowed between the 
@ and the number. You may use as many address specifications as you need within the data file. 
When the system task encounters an address specification, it loads subsequent data starting at that 
memory address. 

If no addressing information is specified within the system task, and no address specifications 
appear within the data file, then the default start address is the left-hand address given in the 
declaration of the memory, and consecutive words are loaded until either the memory is full or the 
data file is completely read. If the start address is specified in the task without the finish address, 
then loading starts at the specified start address and continues towards the right-hand address given 
in the declaration of the memory. 

If both start and finish addresses are specified as parameters to the task, then loading begins at the 
start address and continues toward the finish address, regardless of how the addresses are specified 
in the memory declaration. 

When addressing information is specified both in the system task and in the data file, the addresses 
in the data file must be within the address range specified by the system task parameters, otherwise 
an error message is issued and the load operation is terminated. 
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A warning message is issued if the number of data words in the file differs from the number of 
words in the range implied by the start and finish addresses. 

For example, consider the following declaration of memory mem: 

reg[7:0] mem[1:256]; 

Given this declaration, each of the following statements will load data into mem in a different 
manner: 

initial $readmemh("mem.data", mem);initial $readmemh("mem.data", 
mem, 16);initial $readmemh("mem.data", mem, 128, 1); 

The first statement will load up the memory at simulation time 0 starting at the memory address 1. 
The second statement will begin loading at address 16 and continue on towards address 256. For 
the third and final statement, loading will begin at address 128 and continue down towards address 
1.  

In the third case, when loading is complete, a final check is performed to ensure that exactly 128 
numbers are contained in the file. If the check fails, a tool issues a warning message. 

D.18 $realtime 

See $time in Appendix B.4.2 The $realtime System Function for details. 

D.19 $realtobits 

See Appendix B,  B.8 Functions and Tasks for Reals, for details. 

D.20 $reset, $reset_count and $reset_value 

The $reset system task enables a tool to be reset to its “Time 0” state so that processing (e.g., 
simulation) can begin again. 

The $reset_count system function keeps track of the number of times the tool is reset. The 
$reset_value system function returns the value specified by the reset_value parameter argument to 
the $reset system task. The $reset_value system function is used to communicate information from 
before a reset of a tool to the time 0 state to after the reset. 

The following are some of the simulation methods that you can employ with this system task and 
these system functions: 

• determine the force statements your design needs to operate correctly, reset the simulation 
time to 0, enter these force statements, and start to simulate again 

• reset the simulation time to 0 and apply new stimuli 
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• determine that debug system tasks, such as $monitor and $strobe, are keeping track of the 
correct nets or registers, reset the simulation time to 0, and begin simulation again 

The $reset system task tells a tool (for example a simulator) to return the processing of your design 
to its logical state at time 0. When a tool executes the $reset system task, it takes the following 
actions to stop the process (e.g., simulation): 

• disables all concurrent activity, initiated in either initial and always procedural blocks in the 
source description or through interactive mode (disables, for example, all force and assign 
statements, the current $monitor system task, and any other active task) 

• cancels all scheduled simulation events 

After a simulation tool executes the $reset system task, the simulation is in the following state: 

• The simulation time is 0. 

• All registers and nets contain their initial values. 

• The tool begins to execute the first procedural statements in all initial and always blocks. 

Syntax: 
$reset; 

$reset(<stop_value>); 

$reset(<stop_value>,<reset_value>); 

$reset(<stop_value>,<reset_value>,<diagnostics_value>); 

The stop_value argument 

The stop_value argument indicates whether interactive mode or processing is entered immediately 
after resetting of the tool. A value of 0 or no argument causes interactive mode to be entered after 
resetting the tool. A non-zero value passed to $reset causes the tool to begin 
processing immediately. 

The reset_value argument 

The reset_value is an integer that you specify whose value is returned by the $reset_value system 
function after you reset the tool. You cannot declare an integer that keeps its value after a reset. All 
declared integers return to their initial value after reset, but entering an integer as this argument 
allows you to access what its value was before the reset with the $reset_value system function. 
This argument provides you with a means of communicating information from before the reset of a 
tool to after the reset of the tool. 

The diagnostic_value argument 

The diagnostic_value is the third argument. It specifies the kind of diagnostic messages a tool 
displays before it resets the time to 0. Increasing integer values result in increased information. A 
value of zero results in no diagnostic message. 
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D.21 $restart 

See section D.23 Saving and Restarting for details. 

D.22 $rtoi 

See Appendix B,  B.8 Functions and Tasks for Reals, for details. 

D.23 Saving and Restarting 

Three system tasks, $save, $restart, and $incsave, work in conjunction with one another to save the 
complete state of a tool into a permanent file such that the tool state can be reloaded at a later time 
and the tool can continue processing where it left off. 

Syntax:  

$save("<name_of_file>");  

$restart("<name_of_file>");  

$incsave("<incremental_filename>"); 

These system tasks work in conjunction with one another to save the complete state of a tool into a 
permanent file such that the tool state can be reloaded at a later time and the tool can continue 
processing where it left off.They are often used during long runs of a tool to save checkpoint 
versions of the internal state at regular intervals. They are also useful to perform quick “try and 
see” experiments without having to repeat the entire processing each time.  

All three system tasks take a file name as a parameter. The file name must be supplied as a string 
enclosed in quotation marks. 

The $save system task saves the complete state into the host operating system file specified as a 
parameter. 

The $incsave system task saves only what has changed since the last invocation of $save. It is not 
possible to do an incremental save on any file other than the one produced by the last $save. 

The $restart system task restores a previously saved state from a specified file. The state 
description to be restarted does not have to be related in any way to the description being replaced. 

It should be noted that interactive commands are also saved by the $save task; thus, when you use 
$restart to restore a tool’s state, you also replace the current set of commands with the saved set of 
commands. 

D.23.1 Incremental Save and Restart  

Restarting from an incremental save is similar to restarting from a full save, except that the name of 
the incremental save file is specified in the restart command. The full save file that the incremental 
save file was based upon must still be present, as it is required for a successful restart. If the full 
save file has been changed in any way since the incremental save was performed, errors will result. 
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The incremental restart is useful for going back in time. If a full save is performed near the 
beginning of processing, and an incremental save is done at regular intervals, then going back in 
time is as simple as restarting from the appropriate file. 

The module shown in Example  D-4 saves the incremental state of the simulation every 10,000 
time units. The files are recycled as time advances.  

    module checkpoint; 
        initial 
            #500 $save("save.dat"); 
        always 
            begin 
            #100000 $incsave("inc1.dat"); 
            #100000 $incsave("inc2.dat"); 
            #100000 $incsave("inc3.dat"); 
            #100000 $incsave("inc4.dat"); 
            end 
     endmodule 

Example  D- 4: Using incremental save 

D.24 $scale 

Syntax: 

$scale(<hierarchical_name>); 

The $scale function allows the user to take a time value from a module with one time unit to be 
used in a module with a different time unit. The time value is converted from the time unit of one 
module to the time unit of the module that invokes $scale. 

D.25 $scope 

Syntax:  

$scope("<name>"); 

The $scope system task allows a particular level of hierarchy to be specified as the interactive 
scope for identifying objects. This task accepts a single parameter argument that must be the 
complete hierarchical name of a module, task, function, or named block. The initial setting of the 
interactive scope is the first top-level module. 
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D.26 $showscopes 

Syntax: 

$showscopes;$showscopes(n); 

The $showscopes system task produces a complete list of modules, tasks, functions, and named 
blocks that are defined at the current scope level. An optional integer parameter can be given to 
$showscopes. A nonzero parameter causes all the modules, tasks, functions and named blocks in or 
below the current hierarchical scope to be listed. No parameter or a zero results in only objects at 
the current scope level to be listed. 

D.27 $showvars 

Syntax: 

$showvars;$showvars(<list_of_variables>); 

The $showvars system task produces status information for register and net variables, both scalar 
and vector. When invoked without parameters, $showvars displays the status of all variables in the 
current scope. When invoked with a <list_of_variables>, $showvars shows only the status of the 
specified variables. If the <list_of_variables> includes a bit-select or part-select of a register or net 
then the status information for all the bits of that register or net are displayed. 

The system task $showvariables displays information similar to that of $showvars, but allows more 
control over the information displayed. 

D.28 $sreadmemb and $sreadmemh 

Syntax: 

$sreadmemb(<mem_name>,<start_addr>,<finish_addr>, 
<string1>,<string2>,,,); 

$sreadmemh(<mem_name>,<start_addr>,<finish_addr>,      
   <string1>,<string2>,,,); 

Where: 

<mem_name> name of the memory structure 

<start_addr>  memory start address 

<finish_addr> memory end address  
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<stringN> the string value containing the actual data to be placed into memory, beginning 
at <start_addr> 

The system tasks $sreadmemb and $sreadmemh load data into memory from a Verilog source 
character string.  

The $sreadmemh and $sreadmemb system tasks take memory data values and addresses as string 
arguments. These strings take the same format as the strings that appear in the input files passed as 
arguments to $readmemb and $readmemh. 

D.29 $stime 

See $time in Appendix B.4.1 The $time System Function for details. 

D.30 $stop 

Syntax: 

$stop; 

$stop(n); 

The $stop system task puts the tool (for example a simulator) into halt mode, issues an interactive 
command prompt, and passes control to the user. This task takes an optional expression parameter 
(0, 1, or 2) that determines what type of diagnostic message is printed. The amount of diagnostic 
messages output increases with the value of the optional parameter passed to $stop. 

D.31 $strobe 

See Appendix B,  B.2 Strobed Monitoring, for details. 

D.32 $time, $stime and $realtime 

See $time in Appendix B.4.1 The $time System Function, B.4.2 The $realtime System Function, 
and B.6 Simulation Time—The $time Function for details. 

D.33 $timeformat 

See Appendix B, B.5.2 The $timeformat System Task for details. 

D.34 $write 

See Appendix B,  B.1 The Display and Write Tasks, for details. 
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List of Compiler Directive Keywords 

E.0 Compilier Directive Overview 

The following list gives all the keywords currently used by the Verilog family of products for 
names of compiler directives. See Appendix C, Compiler Directives, for descriptions of some 
frequently used compiler directives. 

• `accelerate 

• `autoexpand_vectornets 

• `celldefine  

• `default_nettype 

• `define 

• `else 

• `endcelldefine 

• `endif 

• `endprotect 

• `endprotected 

• `expand_vectornets 

• `ifdef 

• `include 

• `noaccelerate 

• `noexpand_vectornets 

• `noremove_gatenames 

• `noremove_netnames 

• `nounconnected_drive 

• `protect 

• `protected 

• `remove_gatenames 

• `remove_netnames 

• `resetall 

• `timescale 
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• `unconnected_drive 

E.1 `accelerate and `noaccelerate 

The directive `accelerate results in an acceleration algorithm being applied to modules following 
the directive. There is also a `noaccelerate directive that causes those modules which follow to use 
a normal algorithm.   

These directives can only be specified outside the module definitions. Any number of these 
directives may appear in the source description. 

E.2 `autoexpand_vectornets 

This directive lets the compiler expand vectors as needed to form proper connections between 
elements of the description.  

This directive may only appear outside a module boundary. 

E.3 `celldefine and `endcelldefine 

The directives `celldefine and `endcelldefine tag modules as cell modules. Cells are used by certain 
PLI routines for applications such as delay calculations. It is advisable to pair each `celldefine with 
an `endcelldefine. More than one of these pairs may appear in a single source description.   

These directives may appear anywhere in the source description but it is recommended that the 
directives are specified outside the module definition. 

E.4 `default_nettype 

See Appendix C, C.2 `default_nettype, for details. 

E.5 `define 

See Appendix C, C.1 `define, for details. 

E.6 `expand_vectornets 

This directive causes all vector nets to be expanded into a group of scalar nets, except those with 
the keyword vectored in their declarations.   

This directive may only appear outside a module boundary. 

E.7 `ifdef, `else, `endif 

These conditional compilation compiler directives are used to optionally include lines of a Verilog 
HDL source description during compilation. The `ifdef compiler directive checks for the definition 
of a variable name. If the variable name is defined then the lines following the `ifdef directive are 
included. If the variable name is not defined and an `else directive exists then this source is 
compiled.       
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Note:  SILOS III has a reserved keyword “silos” that is always true.  This enables you to enclose 
Silos specific code and commands with a `ifdef  …  `else  …   `endif compiler directive so they can 
be run in SILOS III but not other simulators or synthesis tools. 

These directives may appear anywhere in the source description. 

Situations where the `ifdef, `else, and `endif compiler directives may be useful include: 

• selecting different representations of a module such as behavioral, structural, or switch level 

• choosing different timing or structural information 

• selecting different stimulus for a given run of a tool 

Syntax: 

The `ifdef, `else, and `endif compiler directives have the following syntax: 

`ifdef <text_macro_name> 

<first_group_of_lines> 

`else 

<second_group_of_lines> 

`endif 

The text_macro_name is a Verilog HDL identifier. The first_group_of_lines and 
second_group_of_lines are any parts of a Verilog HDL source description. The `else compiler 
directive and second_group_of_lines are optional.  

The `ifdef, `else, and `endif compiler directives work in the following manner: 

• When an `ifdef is encountered, the text_macro_name is tested to see if it is defined as a text 
macro name using `define within the Verilog HDL source description. 

• If the text_macro_name is defined, the first_group_of_lines is compiled as part of the 
description. If there is an `else compiler directive, the second_group_of_lines is ignored. 

• If the text_macro_name has not been defined, the first_group_of_lines is ignored. If there is 
an `else compiler directive the second_group_of_lines is compiled. 

Example  E-1 shows the `ifdef, `else, and `endif compiler directives in a module. 

module and_op (a, b, c); 

 output a; 

 input b, c; 

 `ifdef behavioral 

  wire a = b & c; 

 `else 
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  and (a,b,c); 

 `endif 

endmodule 

Example  E- 1: An example of the conditional compilation specification 

Syntax checking 

Any group of lines that the compiler ignores still must follow the Verilog HDL lexical conventions 
for white space, comments, numbers, strings, identifiers, keywords, and operators. 

E.7.1 Nesting the `ifdef, `else, and `endif Compiler Directives 

You can nest the `ifdef, `else, and `endif compiler directives as shown in Example  E-2. 

module test(out); 
output out; 
`define wow 
`define nest_one 
`define second_nest 
`define nest_two 
 `ifdef wow 
  initial $display("wow is defined"); 
  `ifdef nest_one 
  initial $display("nest_one is defined"); 
   `ifdef nest_two 
    initial $display("nest_two is defined"); 
   `else 
    initial $display("nest_two is not defined"); 
   `endif 
  `else 
   initial $display("nest_one is not defined"); 
  `endif 
 `else 
  initial $display("wow is not defined"); 
  `ifdef second_nest 
   initial $display("nest_two is defined"); 
  `else 
   initial $display("nest_two is not defined"); 
  `endif 
 `endif 
endmodule 
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Example  E- 2: Nested `ifdef, `else, and `endif compiler directives 

E.7.2 Defining Variable Names to Control Conditional Compilation 

The `ifdef variables are defined using the compiler directive (`define) to define a text macro. 

The `define compiler directive 

The `define compiler directive allows you to create macros for text substitution (see also C.1 
`define). Text macros may be placed both inside and outside module definitions. When a tool 
encounters the `ifdef compiler directive, it checks to see if its variable name matches a text macro 
name in a `define compiler directive. The syntax for this usage of the `define compiler directive is 
as follows: 

`define <text_macro_name> [<macro_contents>] 

E.8 `include 

The file inclusion (`include) compiler directive is used to insert the entire contents of a source file 
in another file during compilation. The result is as though the contents of the included source file 
appear in place of the `include command. The `include compiler directive can be used to include 
global or commonly used definitions and tasks without encapsulating repeated code within module 
boundaries.  

Advantages of using the `include compiler directive include the following: 

• providing an integral part of configuration management 

• improving the organization of Verilog HDL source descriptions 

• facilitating the maintenance of Verilog HDL source descriptions 

Syntax: 

The syntax for the `include compiler directive is as follows: 

`include "<filename>" 

The compiler directive `include can be specified anywhere within the Verilog HDL description. 
The <filename> is the name of the file to be included in the source file. The <filename> can be a 
full or relative path name, as in the following example: 

`include "parts/count.v" 
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Only white space or a comment may appear on the same line as the `include compiler directive. 
Examples of legal comments for the `include compiler directive are as follows: 

`include "fileB"`include "fileB" // including fileB 

Nested `include Compiler Directives 
An `include file can contain other `include compiler directives. Recursive `include directives are 
considered an error. 

E.9 `noexpand_vectornets 

This directive causes no expansion to take place except where explicitly specified by the keyword 
scalared in a vector net declaration. 

This directive may only appear outside a module boundary. 

E.10 `protect and `endprotect 

These directives are used to mark regions in a source description that will be processed by a tool 
into an intermediate form. This allows proprietary Verilog source descriptions to be protected from 
being accessed or modified. 

These directives may appear anywhere in the source description. 

E.11 `protected and `endprotected 

The directive `protected and `endprotected bound a region once it has been compiled into a 
protected form.  

A tool is passed a file containing a Verilog source description with the directives `protect and 
`endprotect. After processing, a new source file is created that differs from the original file in two 
ways: 

• the directive `protect and `endprotect become `protected and `endprotected respectively. 

• the regions marked for protection in the original source description become unreadable. 

E.12 `remove_gatenames and `noremove_gatenames 

The directive `remove_gatenames causes any gate instance names that have been specified in 
modules affected by this directive to be eliminated from the second and all subsequent instances of 
each module. This directive cannot be used if it is necessary to refer to gates by hierarchical name. 
The directive `noremove_gatenames stops the elimination of gate names. 

These directives must be specified outside the module definition. All the modules between 
`remove_gatenames and `noremove_gatenames are affected. 
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E.13 `remove_netnames and `noremove_netnames 

The directive `remove_netnames causes any net names that have been specified in modules 
affected by this directive to be eliminated from the second and all subsequent instances of each 
module. This directive cannot be used if it is necessary to refer to nets by hierarchical name. The 
directive `noremove_netnames stops the elimination of names.  

These directives must be specified outside of modules. All modules between `remove_netnames 
and `noremove_netnames are affected. 

E.14 `resetall 

See Appendix C, C.4 `resetall, for details. 

E.15 `timescale 

See Appendix C, C.5 `timescale, for details. 

E.16 `unconnected_drive and `nounconnected_drive 

The directive `unconnected_drive causes unconnected input ports to be automatically pulled up (if 
pull1 is specified) or down (if pull0 is specified) instead of floating to the high impedance value z. 
Inputs are pulled up or down in all modules between the directives `unconnected_drive and 
`nounconnected_drive. 

This directive may only appear outside a module boundary. 
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List of Keywords 

Keywords 

Keywords are pre-defined non-escaped identifiers which define the language constructs. An 
escaped identifier is never treated as a keyword. All keywords are defined in lower-case unless the 
upper-case option is used when compiling. 

always 

and 

assign (see also assign) 

begin 

buf 

bufif0 

bufif1 

case 

casex 

casez 

cmos 

deassign 

default 

defparam 

disable 

edge 

else 

end 

endcase 

endmodule 

endfunction 

endprimitive 

endspecify 

endtable 

endtask 

event 

for 

force 

forever 

fork 

function 

highz0 

highz1 
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if 

initial 

inout 

input 

integer 

join 

large 

macromodule 

medium 

module 

nand 

negedge 

nmos 

nor 

not 

notif0 

notif1 

or 

output 

parameter 

pmos 

posedge 

primitive 

pull0 

pull1 

pullup 

pulldown 

rcmos 

reg 

release 

repeat 

rnmos 

rpmos 

rtran 

rtranif0 

rtranif1 

scalared 

small 

specify 

specparam 
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strength 

strong0 

strong1 

supply0 

supply1 

table 

task 

time 

tran 

tranif0 

tranif1 

tri 

tri0 

tri1 

triand 

trior 

trireg 

vectored 

wait 

wand 

weak0 

weak1 

while 

wire 

wor 

xnor 

xor 
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Index 

i 
- 

in state table 93 

! 
! 

compared to ‘==0’ 38 
logical negation operator 38 

" 
"" 

null string 47 

$ 
$bitstoreal 166, 234 
$countdrivers 255 

syntax 255 
$display 225 

compared to $monitor 226 
compared to $write 218 
escape sequences 219 
size of displayed data 222 
syntax 218 

$dumpall 256 
$dumpfile 256 
$dumpflush 256 
$dumplimit 256 
$dumpoff 256 
$dumpon 256 
$dumpvars 256 
$fclose 258 

syntax 257 
$fdisplay 258 

syntax 257 
$finish 233 

syntax 233 
$fmonitor 258 

syntax 257 
$fopen 258 

syntax 257 
$fstrobe 258 

syntax 257 
$fwrite 258 

syntax 257 
$getpattern 259 
$hold 236 
$incsave 

syntax 265 

$input 
syntax 260 

$itor 234 
$keepcommands 260 
$list 

syntax 261 
$monitor 226 

and fixed width format 223 
compared to $display 226 
syntax 226 
turn off 227 

$monitoroff 226 
syntax 226 

$monitoron 226 
syntax 226 

$period 238 
$printtimescale 230 
$readmemb 262 

syntax 262 
$readmemh 262 

syntax 262 
$realtime 228 

$timeformat 230 
$realtobits 166, 234 
$recovery 239 
$restart 

syntax 265 
$rtoi 234 
$save 

syntax 265, 267 
$setup 236 
$setuphold 240 
$skew 239 
$stime 

syntax 233 
$strobe 226 

compared to $display 226 
syntax 226 

$time 27, 228, 233 
$timeformat 230 
syntax 233 

$timeformat 233 
$width 238 
$write 225 

compared to $display 218 
escape sequences 219 
size of displayed data 222 
syntax 218 

% 
% 

in format specifications 219, 222 
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& 
&& 

logical AND operator 37 

, 
,, 

in null expressions 219 

: 
:concatenation operator 43 
:for escape sequences in strings 219 

? 
? 

equivalent to z in literal number values 8, 118 
in state table 91, 93 

@ 
@ 

for addressing memory 262 

` 
` 

in compiler directives 247 
`accelerate compiler directive 271 
`autoexpand_vectornets compiler directive 271 
`celldefine compiler directive 271 
`default_nettype 248 

syntax 249 
`define 247 

and text macro substitutions 14 
`else compiler directive 271 
`endcelldefine compiler directive 271 
`endif compiler directive 271 
`expand_vectornets compiler directive 271 
`ifdef compiler directive 271 
`include compiler directive 274 
`noaccelerate compiler directive 271 
`noexpand_vectornets compiler directive 275 
`nounconnected_drive 249 
`protect compiler directive 275 
`remove_gatenames compiler directive 275 
`remove_netnames compiler directive 276 
`resetall 249 
`timescale 249 
`unconnected_drive 249 
`unconnected_drive compiler directive 276 

| 
|| 

logical OR operator 37 

< 
<< 

left shift operator 41 

= 
= 

in assignment statement 51 

> 
>> 

right shift operator 41 

0 
0 

for minimizing bit lengths of expressions 222 
logic zero 15 

01 transition 93 

1 
1 

logic one 15 

A 
acceleration 

and module path destinations 181 
always 

and activity flow 104, 105 
as structured procedure 134 
syntax 136 

ambiguous strength 79 
arguments 

for system timing checks 235 
arithmetic operators 35 

% 34 
* 34 
/ 34 
+ 34 
and unknown logic values 35 

arrays 
element 25 
index 25 
no multiple dimension 25 
of integers 27 
of time variables 27 
word 25 

assign keyword 51, 153 
assignment 56 

continuous 51, 105 
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left hand side 51 
of delays to module paths 189 
procedural 107 
procedural versus continuous 105 
right hand side 51 

B 
b 

binary number format 7 
base format 

binary 7 
decimal 7 
hexadecimal 7 
octal 7 

begin-end block statement 112, 130 
behavioral modeling 138 
bidirectional pass gate 65 
binary display format 7 

and high impedance state 223 
and unknown logic value 223 

binary operators 33 
precedence 33 

binary operators: 43 
bit-select 

of vector net or register 44 
out of bounds 44, 45 
references of real numbers 29 

bit-wise operators 39 
compared to logical operators 39 

blank module terminal 158 
block statement 134 

definition 129 
fork-join 129 
naming of 133 
parallel 129 
sequential 129, 131 
start and finish times 134 
timing for embedded blocks 133 

blocking procedural assignment 106 
processing assignments 111 
syntax 106 

bufif gate 63 

C 
capacitive networks 24 
case statement 

compared to if-else-if statement 116 
syntax 115 

casex 117 
casez 117 
cells 155 
charge storage 

strength 20 
charge storage strength 68 

checkpoints 265 
cmos 66 
cmos gate 66 
collapsing ports 169 

chart of resulting net types 168 
rules 168 
that connect nets of different types 168 

combinational UDPs 86 
compared to level-sensitive sequential 92 
input and output fields in state table 89 

combined signal strengths 79 
combined signal values 79 
comments 6 
compare 

string operation 46 
compiler directives 247 
concatenation 

and repetition multiplier 43 
and unsized numbers 43 
of names 169 
of operands 43 
operator 43 
string operation 46 

concurrency 
of activity flow 104 

condition 
deterministic 246 
non-deterministic 246 

conditional operator 42 
and ambiguous results 42 
modeling tri-state output busses 42 
syntax 42 

conditional statement 
syntax 111 

conditioned event 246 
constraints 246 
versus unconditioned event 245 

conflicts 21 
connecting ports 

by name 166 
by position with ordered list 164 
rules 168 

connection 
difference between full and parallel 184 
full 184 
parallel 184 

constant expression 31 
continuous assignment 51 

and $getpattern 259 
and connecting ports 167 
and driving strength 68, 224 
and net variables 105 
and supply nets 25 
and wire nets 21 
driving strength of 55 
explicit declaration 53 
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implicit declaration 53 
syntax 51 
versus procedural assignment 56 

continuous monitoring 226 
copy 

string operation 46 
counting number of drivers 255 

D 
d 

decimal number format 7 
data types 30 
deassign keyword 153 
decimal display format 7 

and high impedance state 222 
and unknown logic value 222 
compatibility with $monitor 223 

decimal notation 28 
declaring 

events 125 
multiple module paths in a single statement 185 
parameters in specify blocks 178 

default 
in case statement 115 
in if-else-if statements 114 

defparam 30, 160 
delay 

calculating for high impedance (z) transitions 81 
calculating for unknown logic value (x) transitions 81 
control 122, 123 
distributed 180 
fall 81 
falling 83 
gate 83 
inertial 55 
module path 202 
propagation 60, 81 
rise 81, 83 
specify one value 81 
specify three values 81 
specify two values 81 
syntax for delay control 123 
turn-off 83 

delay specification 60 
describing module paths 184 
diagnostic messages 

from $stop and $finish 233 
disable 

and turning off monitoring tasks 227 
named blocks 151 
syntax 147 
tasks 151 
use of 147 

displaying information 225 
distributed delays and SDPDs 194 

dominating net 168 
don’t-care bits 

in case statements 118 
don’t-care condition 

in state table 91 
drive strength specification 59 
driving strength 68 

compared to charge storage strength 224 
keywords 55 

E 
edge control specifiers 242 
edge descriptors 29 
edge transitions 241 
edge-sensitive paths 202 

syntax 200 
edge-sensitive UDPs 93 

compared to level-sensitive UDPs 92 
element 

of array 25 
embedding modules 155, 156 
enable 126 
enabling tasks 141, 143 
endmodule keyword 155 
endprimitive keyword 88 
endtable keyword 89 
equality operators 37 

and ambiguous results 37 
and operands of different sizes 37 
precedence 37 

escape sequences 218, 219 
escaped identifiers 11 
event 

control 123, 124 
declaration syntax 125 
explicit 123 
expression 123 
implicit 123 
level sensitive control 126 
named 125 
OR construct 126 
syntax of triggering statement 125 

event control 
repeat 129 

examples 
"joining" events 133 
$monitor 224 
$strobe 226 
$width timing check 238 
‘timescale compiler directive 251 
begin-end block 130 
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