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1.0 Overview

The Verilog Hardware Description Language (HDL) describes a hardware design or part of a
design. Descriptions of designs in the Verilog HDL are Verilog models. The Verilog HDL is both a
behavioral and structural language. Models in the Verilog HDL can describe both the function of a

design and the components and connections to the components in a design.

Verilog models can be developed for different levels of abstraction. These levels of abstraction and

their corresponding model types are as follows:

algorithmic a model that implements a design algorithm in high-level language
constructs
RTL a model that describes the flow of data between registers and how a design

processes that data
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gate-level a model that describes the logic gates and the connections between logic
gates in a design

switch-level a model that describes the transistors and storage nodes in a device and the
connections between them

The basic building block of the Verilog HDL is the module. The module format facilitates top-
down and bottom-up design. A module contains a model of a design or part of a design. Modules
can incorporate other modules to establish a model hierarchy that describes how parts of a design
are incorporated in an entire design. The constructs of the Verilog HDL, such as its declarations
and statements, are enclosed in modules.

The Verilog HDL behavioral language is structured and procedural, like the C programming
language. The behavioral language constructs are for algorithmic and RTL models. The behavioral
language provides the following capabilities:

e structured procedures for sequential or concurrent execution

e explicit control of the time of procedure activation specified by both delay expressions and
by value changes called event expressions

e cxplicitly named events to trigger the enabling and disabling of actions in other procedures
e procedural constructs for conditional, if-else, case, and looping operations

e procedures called tasks that can have parameters and non-zero time duration

e procedures called functions that allow the definition of new operators

e arithmetic, logical, bit-wise, and reduction operators for expressions

The Verilog HDL structural language constructs are for gate-level and switch-level models. The
structural language provides the following capabilities:

e acomplete set of combinational primitives
e primitives for bidirectional pass and resistive devices
e the ability to model dynamic MOS models with charge sharing and charge decay

Verilog structural language models can accurately model signal contention. In the Verilog HDL,
structural modeling accuracy is enhanced by primitive delay and output strength specification.
Signal values can have different strengths and a full range of ambiguous values to reduce the
pessimism of unknown conditions.

1.1 Criteria for Selecting Material for This Manual

The following criteria were used to select material for this book:

Include all information that is needed to define a design.
Include enough information to support existing Verilog libraries.

3. Include the basic syntax for a compiler directive, a system task, and a system function so
that readers can implement new tools that process these constructs.
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4.  List and describe, in appendices, a subset of compiler directives and system tasks, functions
to support the goals in items 1 and 2.

5. Exclude simulation control and debug commands.

To conform to these requirements, the manual describes certain restrictions necessary for
compatibility with existing implementations. These implementation-specific details are labeled as
such—as in the following example:

1.2 The Contents of the Reference Manual

e Chapter 1 — Introduction

This chapter discusses the major features of the Verilog HDL. It also discusses the contents
of the reference manual.

e Chapter 2 — Lexical Conventions

This chapter describes how the language interprets and how to specify lexical tokens. A
lexical token is one or more characters. Lexical tokens include white space, comments,
numbers, character strings, identifiers, keywords, and operators. The chapter also describes
the text macro substitution facility.

e Chapter 3 — Data Types

This chapter describes the Verilog HDL data types. The Verilog HDL has two main groups
of data types: registers and nets. Registers and nets model storage devices and physical
connections. The chapter also discusses the parameter data type for constant values and
describes drive and charge strength of the values on nets.

e Chapter 4 — Expressions
This chapter describes the operators and operands that can be used in expressions.
e Chapter 5 — Assignments

This chapter compares the two main types of assignment statements in the Verilog HDL—
continuous assignments and procedural assignments. It describes the continuous assignment
statement that drives values onto nets.

e Chapter 6 — Gate and Switch Level Modeling

This chapter describes the gate and switch level primitives and their declarations and
specifications.

e Chapter 7 — User-Defined Primitives (UDPs)

This chapter describes how a primitive can be defined in the Verilog HDL and how these
primitives are included in Verilog models.

e Chapter 8 — Behavioral Modeling
This chapter describes procedural assignments and the behavioral language statements.

e Chapter 9 — Tasks and Functions
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This chapter describes tasks and functions—procedures that can be called from more than
one place in a behavioral model. It describes how tasks can be used like subroutines and how
functions can be used to define new operators.

e Chapter 10 — Disabling of Named Blocks and Tasks

This chapter describes how to disable the execution of a task and a block of statements that
has a specified name.

e Chapter 11 — Procedural Continuous Assignments

This chapter describes a type of procedural assignment called a procedural continuous
assignment.

e Chapter 12 — Hierarchical Structures

This chapter describes how model hierarchies are created in the Verilog HDL and how
parameter values declared in a module can be overridden. The chapter also discusses macro
modules—a construct that saves memory and port collapsing—a technique that improves
simulator efficiency.

e Chapter 13 — Specify Blocks

This chapter describes the Verilog HDL constructs that belong in a construct called a specify
block.

e Appendix A — Formal Syntax Definition

This appendix describes, in the Backus-Naur Format (BNF), the syntax of the Verilog
HDL.

e Appendix B — System Tasks and Functions
This appendix describes the system tasks and functions.
e Appendix C — Compiler Directives
This appendix describes the compiler directives.
e Appendix D — List of System Task and System Function Keywords
This appendix lists the predefined system tasks and functions.
e Appendix E — List of Compiler Directive Keywords
This appendix lists the compiler directives.
e Appendix F — List of Keywords
This appendix lists the Verilog HDL keywords.
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Lexical Conventions

2.0 Lexical Conventions Overview

Verilog language source text files are a stream of lexical tokens. A token consists of one or more
characters. The layout of tokens in a source file is free format—that is, spaces and newlines are not
syntactically significant. However, spaces and newlines are very important for giving a visible
structure and format to source descriptions. A good style of format, and consistency in that style,
are an essential part of program readability.

The types of lexical tokens in the language are as follows:
e operator
e white space
e comment
e number
e string
e identifier
e keyword
The rest of this chapter defines these tokens.

This manual uses a syntax formalism based on the Backus-Naur Format (BNF) to define the
Verilog language syntax. Appendix A contains the complete set of syntax definitions in this format,
plus a description of the BNF conventions used in the syntax definitions.

2.1 Operators

Operators are single, double, or triple character sequences and are used in expressions. Chapter 2
discusses the use of operators in expressions.

Unary operators appear to the left of their operand. Binary operators appear between their
operands. A ternary operator has two operator characters that separate three operands. The Verilog
language has one ternary operator—the conditional operator. See "4.1.12 Conditional Operator" for
an explanation of the conditional operator.

2.2 White Space and Comments

White space can contain the characters for blanks, tabs, newlines, and formfeeds. The Verilog
language ignores these characters except when they serve to separate other tokens. However,
blanks and tabs are significant in strings.

The Verilog language has two forms to introduce comments. A one-line comment starts with the
two characters // and ends with a newline. A block comment starts with /* and ends with */. Block
comments cannot be nested, but a one-line comment can be nested within a block comment.
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2.3 Numbers

Constant numbers can be specified in decimal, hexadecimal, octal, or binary format. The Verilog
language defines two forms to express numbers. The first form is a simple decimal number
specified as a sequence of the digits 0 to 9 which can optionally start with a plus or minus. The
second takes the following form:

<si ze><base_f or mat ><nunber >

The <size> element contains decimal digits that specify the size of the constant in terms of its exact
number of bits. For example, the <size> specification for two hexadecimal digits is 8, because one
hexadecimal digit requires four bits. The <size> specification is optional. The <base format>
contains a letter specifying the number’s base, preceded by the single quote character (*). Legal
base specifications are one of d, h, o, or b, for the bases decimal, hexadecimal, octal, and binary
respectively. (Note that these base identifiers can be upper- or lowercase.)

The <number> element contains digits that are legal for the specified <base format>. The
<number> element must physically follow the <base format>, but can be separated from it by
spaces. No spaces can separate the single quote and the base specifier character.

Alphabetic letters used to express the <base format> or the hexadecimal digits a to f can be in
upper- or lowercase.

Example 2-1 shows unsized constant numbers.

659 // is a decimal number

'h 837FF // is a hexadecimal number

'07460 /l'is an octal number

4af /lis illegal (hexadecimal format requires 'h)

Example 2- 1: Unsized constant numbers

Example 2-2 shows sized constant numbers.

4'pb1001 /l'is a 4-bit binary number
5'D3 /l'is a 5-bit decimal number
3'b01x /I is a 3-bit number with the least
/I significant bit unknown
12'hx /Il is a 12-bit unknown number
16'hz /l'is a 16-bit high impedance number

Example 2- 2: Sized constant numbers

In the Verilog language, a plus or minus preceding the size constant is a sign for the constant
number—the size constant does not take a sign. A plus or minus between the <base format> and
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the <number> is illegal syntax. In Example 2-3, the first expression is a syntax error. The second
expression legally defines an 8-bit number with a value of minus 6.
8'd-6 /I this is illegal syntax
-8'd6 /I this defines the two's complement of 6,
// held in 8 bits-equivalent to -(8'd 6)

Example 2- 3: A plus or minus between the <base format> and the <number> is illegal

Implementation specific detail: The number of bits that make up an unsized number (which is a
simple decimal number or a number without the <size>
specification) is host machine word size -for most machines this
is 32 bits.

In the Verilog language, an x expresses the unknown value in hexadecimal, octal, and binary
constants. A z expresses the high impedance value. An x sets four bits to unknown in the
hexadecimal base, three bits in the octal base, and one bit in the binary base. Similarly, a z sets
four, three, and one bit, respectively, to the high impedance value. If the most significant specified
digit of a constant number is an x or a z, then the tool automatically extends the x or z to fill the
higher order bits of the constant. This makes it easy to specify complete vectors of the unknown
and high impedance values. Example 2-4 illustrates this value extension:

reg [11:0] a;
initial
begin
a ="'h x; // yields xxx
a="h 3x; /I yields 03x
a ="'h 0x; /I yields 00x
end

Example 2- 4: Automatic extension of X values

The question mark (?) character is a Verilog HDL alternative for the z character. It sets four bits to
the high impedance value in hexadecimal numbers, three in octal, and one in binary. Use the
question mark to enhance readability in cases where the high impedance value is a don’t-care
condition. See the discussion of casez and casex in "8.4.1 Case Statement with Don’t-Cares".

The underline character is legal anywhere in a number except as the first character. Use this feature
to break up long numbers for readability purposes. Example 2-5 illustrates this feature.

27 195_000
16'b0011_0101_0001_1111
32 'h 12ab_f001

Example 2-5: Use of underline in constant numbers
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Please note: A sized negative number is not sign-extended when assigned to a register data type.

2.4 Strings

A string is a sequence of characters enclosed by double quotes and must all be contained on a
single line. Verilog treats strings used as operands in expressions and assignments as a sequence of
eight-bit ASCII values, with one eight-bit ASCII value representing one character.

Examples of strings follow:

"this is a string""print out a nessage\n""bell!\007"

2.4.1 String Variable Declaration

To declare a variable to store a string, declare a register large enough to hold the maximum number
of characters the variable will hold.

For example, to store the string “Hello world!” requires a register 8*%12, or 96 bits wide, as shown
in Example 2-6.

reg[8*12:1]stringvar;

initial
begin
stringvar="Hello world!";
end

Example 2- 6: Storage needed for strings

2.4.2 String Manipulation

Verilog permits strings to be manipulated using the standard Verilog HDL operators. Keep in mind
that the value being manipulated by an operator is a sequence of 8-bit ASCII values.

The code in Example 2-7 declares a string variable large enough to hold 14 characters and assigns
a value to it. The code then manipulates this string value using the concatenation operator.

Note that when a variable is larger than required to hold a value being assigned, Verilog pads the
contents on the left with zeros after the assignment. This is consistent with the padding that occurs
during assignment of non-string values.

module string_test;
reg [8*14:1] stringvar;
initial
begin
stringvar = "Hello world";
$display("%s is stored as %h",
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stringvar,stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h",
stringvar,stringvar);
end
endmodule

Example 2- 7: String manipulation

The following strings display as a result of executing Example 2-7:
Hello world is stored as 00000048656¢c6¢c6f 20776f 726¢c64
Hello world!'!! is stored as 48656c¢c6¢6f20776f 726c64212121

2.4.3 Special Characters in Strings

Certain characters can only be used in strings when preceded by an introductory character called an
escape character. Table 2-1 lists these characters in the right-hand column with the escape
sequence that represents the character in the left-hand column.

Escape Character Produced by

String Escape String

\n new line character

\t tab character

\\ \ character

\" " character

\ddd a character specified in 1-3 octal digits (0 <=d <=7)
%% % character

Table 2- 1: Specifying special characters in strings

2.5 Identifiers, Keywords, and System Names

An identifier is used to give an object, such as a register or a module, a name so that it can be
referenced from other places in a description. An identifier is any sequence of letters, digits, dollar
signs ($), and the underscore (_) symbol.

The first character must NOT be a digit or $; it can be a letter or an underscore.

Upper- and lowercase letters are considered to be different.

Implementation specific detail: /mplementation may set a limit on the length of identifiers.

Examples of identifiers follow:
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shiftreg_a
busa_i ndex
error_condition
nmer ge_ab

_bus3

n$657

2.5.1 Escaped Identifiers

Escaped identifiers start with the backslash character (\) and provide a means of including any of
the printable ASCII characters in an identifier (the decimal values 33 through 126, or 21 through
7E in hexadecimal). An escaped identifier ends with white space (blank, tab, newline). Neither the
leading back-slash character nor the terminating white space is considered to be part of the
identifier.

The primary application of escaped identifiers is for translators from other hardware description
languages and CAE systems, where special characters may be allowed in identifiers. Escaped
identifiers should not be used under normal circumstances.

Examples of escaped identifiers follow:

\ busa+i ndex

\ -cl ock
\***error-condi ti on***
\net1/\ net 2

\{a, b}

\ a*(b+c)

Please note: Remember to terminate escaped identifiers with white space, otherwise
characters that should follow the identifier are considered as part of it.
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2.5.2 Keywords

Keywords are predefined non-escaped identifiers that are used to define the language constructs. A
Verilog HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only and therefore must be typed in lowercase in source
files. ( Appendix F, Keywords, gives a list of all keywords defined.)

2.5.3 The $keyword Construct

The $ character introduces a language construct that enables you to develop user-defined tasks and
functions. Tools interpret the name following the $ as a system task or function. The syntax for a
system task or function is as follows:

<name_of system_task>
<name_of system_function>
::=$<SYSTEM_ IDENTIFIER> ;
[|=$<SYSTEM_IDENTIFIER> (<parameter><,<parameter>>*);

Syntax 2- 1: Syntax for system tasks and functions

Any valid identifier, including keywords already in use in contexts other than this construct—for
example, a compiler directive name—can be used as a system task name. Appendix D lists all of
the keywords used as names of system tasks and functions. Appendix B describes some of the
more useful tasks and functions. The $keyword construct is part of the Verilog Language. The
individual system tasks and functions implemented with the $keyword construct are not part of the
Verilog language.

The following are examples of system task names:

$di splay ("display a nessage");
$fini sh;

2.5.4 The "keyword Construct

The * character (the ASCII value 60, called open quote or accent grave) introduces a language
construct used by tools to implement compiler directives. The compiler behavior dictated by a
compiler directive takes effect as soon as the compiler reads the directive. The directive remains in
effect for the rest of the compilation unless a different compiler directive specifies otherwise. A
compiler directive in one description file can therefore control compilation behavior in multiple
description files. Appendix C describes some compiler directives. Appendix E lists all the
keywords used as names of compiler directives. The ‘keyword construct is part of the Verilog
Language. The individual system tasks and functions implemented with the "keyword construct are
not part of the Verilog language.

An example of a compiler directive follows:

Verilog HDL LRM Lexical Conventions e 12



“define wordsi ze 8

2.6 Text Substitutions

A text macro substitution facility has been provided so that meaningful names can be used to
represent commonly used pieces of text. For example, in the situation where a constant number is
repetitively used throughout a description, a text macro would be useful in that only one place in
the source description would need to be altered if the value of the constant needed to be changed.
Text macros can also be defined and used in the interactive mode, where they can be helpful for
predefining those interactive commands that you use often.

The syntax for text macro definitions is as follows:

<text_macro_definition>

::= "define <text_macro_name> <MACRO_TEXT>
<text_macro_name>

::= <IDENTIFIER>

Syntax 2- 2: Syntax for <text macro_definition>

<MACRO_TEXT> is any arbitrary text specified on the same line as the <text macro name>. If a
one-line comment (that is, a comment specified with the characters //) is included in the text, then
the comment does not become part of the text substituted. The text for <MACRO TEXT> can be
blank, in which case the text macro is defined to be empty and no text is substituted when the
macro is used.

The syntax for using a text macro is as follows:

<text_macro_usage>
:="<text_macro_name>

Syntax 2- 3: Syntax for <text macro usage>

Once a text macro name has been defined (that is, assigned <MACRO_ TEXT>), it can be used
anywhere in a source description or in an interactive command; that is, there are no scope
restrictions. However, to use a text macro the compiler directive symbol * (open quote, also known
as “accent grave”) must precede the text macro name.

Example 2-8 shows two definitions of macro text and a use of each of the defined macros.
‘define wordsize 8
reg [1:"wordsize] data;

“define typ_nand nand #5 // define a nand wi/typical delay
‘typ_nand g121 (g21, n10, n11);

Example 2- 8: Using macro text
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The text specified for <MACRO_TEXT> must not be split across the following lexical tokens:
e comments
e numbers
e strings
e identifiers
e keywords
e double or triple character operators

For example, the following is illegal syntax in the Verilog language because it is split across a
string:

“define first_half "start of string
$display( first_half end of string");

Note that the word define is known as a compiler directive keyword, and is not part of the normal
set of keywords. Thus, normal identifiers in a Verilog HDL source description can be the same as
compiler directive keywords (though this is not recommended). If you develop compiler directives,
be aware of the following pitfall:

e Ifyou implement the compiler directive * f 0o and implement the directive ~ def i ne, then if
you write - def i ne f oo, the meaning of * f 00 is ambiguous.

e Text macro names may not be the same as compiler directive keywords.

e Text macro names can re-use names being used as ordinary identifiers. For example,
signal name and “signal name are different. Redefinition of text macros is allowed; the latest
definition of a particular text macro read by the compiler prevails when the macro name is
encountered in the source text.
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Data Types

3.0 Data Types Overview

The set of Verilog HDL data types is designed to represent the data storage and transmission
elements found in digital hardware.

3.1 Value Set

The Verilog HDL value set consists of four basic values:
0 - represents a logic zero, or false condition
1 - represents a logic one, or true condition
X - represents an unknown logic value
z - represents a high-impedance state
The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is encountered in an expression, the
effect is usually the same as an x value. Notable exceptions are the MOS primitives, which can
pass the z value.

Almost all of the data types in the Verilog language store all four basic values. The exceptions are
the event type, which has no storage, and the trireg net data type, which retains its first state when
all of its drivers go to the high impedance value, and z. All bits of vectors can be independently set
to one of the four basic values.

The language includes strength information in addition to the basic value information for scalar net
variables. This is described in detail in Chapter 6, 6.10 Logic Strength Modeling.

3.2 Registers and Nets

There are two main groups of data types: the register data types and the net data types. These two
groups differ in the way that they are assigned and hold values. They also represent different
hardware structures.

3.2.1 Nets

The net data types represent physical connections between structural entities, such as gates. A net
does not store a value (except for the trireg net, discussed in Section 3.7.3). Instead, it must be
driven by a driver, such as a gate or a continuous assignment. See Chapter 6, "Gate and Switch
Level Modeling", and Chapter 5, "Assignments", for definitions of these constructs. If no driver is
connected to a net, its value will be high-impedance (z)—unless the net is a trireg, in which case, it
holds to the previously driven value.
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3.2.2 Registers

A register is an abstraction of a data storage element. The keyword for the register data type is reg.
A register stores a value from one assignment to the next. An assignment statement in a procedure
acts as a trigger that changes the value in the data storage element. The Verilog language has
powerful constructs that allow you to control when and if these assignment statements are
executed. These control constructs are used to describe hardware trigger conditions, such as the
rising edge of a clock, and decision-making logic, such as a multiplexer. Chapter 8, 8.1 Behavioral
Model Overview, describes these control constructs.

The default initialization value for a reg data type is the unknown value, x.

CAUTION

Registers can be assigned negative values, but, when a register is an
operand in an expression, its value is treated as an unsigned (positive)
value. For example, a minus one in a four-bit register functions as the
number 15 if the register is an expression operand. For more
information, see "4.1.2 Numeric Conventions in Expressions".

3.2.3 Declaration Syntax

The syntax for net and register declarations is as follows:

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of variables> ;
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?
<list_of assignments> ;

<reg_declaration>
::=reg <range>? <list_of register_variables> ;

<list_of_variables>
::= <name_of variable> <,<name_of variable>>*

<name_of_variable>
::= <IDENTIFIER>

<list_of_register_variables>
.:= <register_variable> <,<register_variable>>*

<register_variable>
.= <name_of_register>

<name_of_register>
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::= <IDENTIFIER>

<expandrange>
::= <range>
||= scalared <range>
||= vectored <range>

<range>
::=[ <constant_expression> : <constant_expression>]

<list_of_assignments>
.:= <assignment> <,<assignment>>*

<charge_strength>
== (<CAPACITOR_SIZE>)

<drive_strength>
;= (<STRENGTHO> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTHO0> )

Syntax 3- 1: Syntax for <net_declaration>

<NETTYPE> is one of the following keywords:

wire tri tri1 supply0
wand triand tri0 supply1
wor trior trireg

<IDENTIFIER> is the name of the net that is being declared. See Chapter 2,
"Lexical Conventions", for a discussion of identifiers.

<delay> specifies the propagation delay of the net (as explained in Chapter 6, 6.15
Gate and Net Delays), or, when associated with a <list_of assignments>, it
specifies the delay executed before the assignment (as explained in Chapter 5,
5.1.3 Delays).

<CAPACITOR_SIZE> is one of the following keywords:

small medium large

<STRENGTHO> is one of the following keywords:
supply0 strong0 pull0 weak0 highz0

<STRENGTH1> is one of the following keywords:
supplyl strong1 pulll  weak1 highz1
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Syntax 3- 2: Definitions for <net declaration> syntax

3.2.4 Declaration Examples

The following are examples of register and net declarations:

reg a; /I a scalar register
wand w; /I a scalar net of type 'wand'
reg[3:0] v; /I a 4-bit vector register made up of

/I (from most to least significant)
/1 v[3], v[2], v[1] and v[0O]

tri [15:0] busa; // a tri-state 16-bit bus

reg [1:4] b; /I a 4-bit vector register

trireg (small) storeit; /I a charge storage node
/I of strength small

Example 3- 1: Register and net declarations

If a set of nets or registers shares the same characteristics, they can be declared in the same
declaration statement. For example:

wre wl, w2; /] declares 2 wires
reg [4:0] x, vy, z; [l declares 3 5-bit registers
3.3 Vectors

A net or reg declaration without a <range> specification is one bit wide; that is, it is scalar.
Multiple bit net and reg data types are declared by specifying a <range>, and are known as vectors.
3.3.1 Specifying Vectors

The <range> specification gives addresses to the individual bits in a multi-bit net or register. The
most significant bit (msb) is the left-hand value in the <range> and the least significant bit (Isb) is
the right-hand value in the <range>.

The range is specified as follows:

[ nmeb_expr : Isb_expr ]
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Both msb_expr and Isb_expr are non-negative constant expressions. There are no restrictions on
the values of the indices. The msb and Isb expressions can be any value, and Isb_expr can be a
greater value than msb_expr, if desired.

Implementation specific detail: Implementation may set a limit on the length of a vector.

Vector nets and registers obey laws of arithmetic modulo 2 to the power n, where # is the number
of bits in the vector. Vector nets and registers are treated as unsigned quantities.

3.3.2 Vector Net Accessibility

A vector can be used as a single entity or as a group of n scalars, where n is the number of bits in
the vector. The keyword vectored allows you to specify that a vector can be modified only as an

indivisible entity. The keyword scalared explicitly allows access to bit and parts. This is also the
default case. The process of accessing bits within a vector is known as vector expansion.

Only when a net is not specified as vectored can bit selects and part selects be driven by outputs of
gates, primitives, and modules—or be on the left-hand side of continuous assignments.

The following are examples of vector net declarations:

tri1 scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that will not be expanded

Example 3- 2: Vector net declarations

3.4 Strengths

There are two types of strengths that can be specified in a net declaration. They are as follows:
e charge strength used when declaring a net of type trireg

e drive strength used when placing a continuous assignment on a net in the same
statement that declares the net

Gate declarations can also specify a drive strength. See Chapter 6, 6.10 Logic Strength Modeling
through 6.14 Strengths of Net Types, for more information on gates and for important information
on strengths.

3.4.1 Charge Strength

The <charge strength> specification can be used only with trireg nets. A trireg net is used to model
charge storage; <charge strength> specifies the relative size of the capacitance. The
<CAPACITOR_SIZE> declaration is one of the following keywords:

e small

e medium
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o large
When no size is specified in a trireg declaration, its size is medium.

The following is a syntax example of a strength declaration:

trireg (small) stl;

A trireg net can model a charge storage node whose charge decays over time. The simulation time
of a charge decay is specified in the trireg net’s delay specification (see "6.15.2 trireg Net Charge
Decay").

3.4.2 Drive Strength

The <drive_strength> specification allows a continuous assignment to be placed on a net in the
same statement that declares that net. See Chapter 5, 5.1.4 Strength, for more details.

Net strength properties are described in detail in Chapter 6, 6.10 Logic Strength Modeling through
6.14 Strengths of Net Types.

3.5 Implicit Declarations

The syntax shown in Section 3.2.3, Declaration Syntax, is used to explicitly declare variables. In
the absence of an explicit declaration of a variable, statements for gate, user-defined primitive, and
module instantiations assume an implicit variable declaration. This happens if you do the
following: in the terminal list of an instance of a gate, a user-defined primitive, or a module,
specify a variable that has not been explicitly declared previously in one of the declaration
statements of the instantiating module.

These implicitly declared variables are scalar nets of type wire.

See Appendix C, C.2 "default nettype, for a discussion of control of the type for implicitly
declared nets with the ‘default nettype compiler directive.

3.6 Net Initialization

The default initialization value for a net is the value z. Nets with drivers assume the output value of
their drivers, which defaults to x. The trireg net is an exception to these statements. The trireg
defaults to the value x, with the strength specified in the net declaration (small, medium, or large).

3.7 Net Types

There are several distinct types of nets. Each is described in the sections that follow.

3.7.1 wire and tri Nets

The wire and tri nets connect elements. The net types wire and tri are identical in their syntax and
functions; two names are provided so that the name of a net can indicate the purpose of the net in
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that model. A wire net is typically used for nets that are driven by a single gate or continuous
assignment. The tri net type might be used where multiple drivers drive a net.

Logical conflicts from multiple sources on a wire or a tri net result in unknown values unless the
net is controlled by logic strength.

Table 3-1 is a truth table for wire and tri nets. Note that it assumes equal strengths for both drivers.
Please refer to Section 6.10 for a discussion of logic strength modeling.

wire/

tri 0 1 x z
0 0 x x O
1 x 1 x 1
X X X X X
z 0 1 x z

Table 3- 1: Truth table for wire and tri nets

3.7.2 Wired Nets

Wired nets are of type wor, wand, trior, and triand, and are used to model wired logic
configurations. Wired nets resolve the conflicts that result when multiple drivers drive the same
net. The wor and trior nets create wired or configurations, such that when any of the drivers is 1,
the net is 1. The wand and triand nets create wired and configurations, such that if any driver is 0,
the net is 0.

The net types wor and trior are identical in their syntax and functionality—as are the wand and
triand. Table 3-2 gives the truth tables for wired nets. Note that it assumes equal strengths for both
drivers. Please refer to Section 6.10 for a discussion of logic strength modeling.

wand/

triand 0 1 x z
0 0O 00O
1 0 1 x 1
X 0 x x Xx
z 0 1 x z
wor/

trior 01 x z
0 01 x O
1 171 1 1
X X 1 X X
z 0 1 x z
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Table 3- 2: Truth tables for wand/triand and wor/trior nets

3.7.3 trireg Net

The trireg net stores a value and is used to model charge storage nodes. A trireg can be one of two
states:

the driven state When at least one driver of a trireg has a value of 1, 0 or x, that value
propagates into the trireg and is the trireg’s driven value.

the capacitive state ~ When all the drivers of a trireg net are at the high impedance value (z),
the trireg net retains its last driven value; the high impedance value
does not propagate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state is small, medium, or large,
depending on the size specified in the declaration of the trireg. The strength of a trireg in the driven
state is suppl y, strong, pul |, orweak depending on the strength of the driver.

Figure 3-1 shows a schematic that includes a trireg net whose size is medium, its driver, and the
simulation results.

vire a yir= b
1 T
— ! wite ¢ |
— J nmo=l mos? [
— T trirsg d
simulation time Wite a wire b wire o trireg d
0 1 1 strong 1 strong 1
10 ] 1 HiZ medium 1

Figure 3- 1: Simulation values of a trireg and its driver

Simulation of the design in Figure 3-1 reports the following results:

1. At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong
strength propagates from the AND gate through the NMOS switches connected to each
other by wire c, into trireg d.

2. Atsimulation time 10, wire a changes value to 0, disconnecting wire ¢ from the AND gate.
When wire ¢ is no longer connected to the AND gate, its value changes to HiZ. The wire
b’s value remains 1 so wire ¢ remains connected to trireg d through the NMOS2 switch.
The HiZ value does not propagate from wire c into trireg d. Instead, trireg d enters the
capacitive state, storing its last driven value of 1. It stores the 1 with a medium strength.

Capacitive networks

A capacitive network is a connection between two or more triregs. In a capacitive network whose
trireg’s are in the capacitive state, logic and strength values can propagate between triregs. Figure
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3-2 shows a capacitive network in which the logic value of some triregs change the logic value of
other triregs of equal or smaller size.

Wite a
wire b
wire C ] 1
nnost L trgnifl 11
| T T
vire d l__l —— trireg la trirsg =m
mogd  _Ltrgnifl 21
T T
triveg mel  trireg me?

Sin-.'illl_:_lfm wirea wireb wirec wired tiregla tiregsm  fireg mel  tireg mel
0 1 1 1 1 1 1 1 1
10 1 @ 1 1 1 1 1 1
20 1 o @ 1 [ 1 1 1
30 1 o 0o [ 0 1 @ 1
an [0] ] ] ] 1] 1 0 1
=0 0 0o 0 a I E] (=]

Figure 3- 2: Simulation results of a capacitive network

In Figure 3-2, trireg la’s size is large, triregs m1 and m2 are size medium, and trireg s’s size is
small. Simulation reports the following sequence of events:

1. At simulation time 0, wire a and wire b have a value of 1. The wire ¢ drives a value of 1
into triregs la and sm, wire d drives a value of | into triregs mel and me2.

2. At simulation time 10, wire b’s value changes to 0, disconnecting trireg sm and me2 from

their drivers. These triregs enter the capacitive state and store the value 1, their last driven
value.

3. At simulation time 20, wire ¢ drives a value of 0 into trireg la.
At simulation time 30, wire d drives a value of 0 into trireg mel.

5. Atsimulation time 40, wire a’s value changes to 0, disconnecting trireg la and mel from
their drivers. These triregs enter the capacitive state and store the value 0.

6. At simulation time 50, the wire b’s value changes to 1. This change of value in wire b
connects trireg sm to trireg la; these triregs have different sizes and stored different values.
This connection causes the smaller trireg to store the larger trireg’s value and trireg sm now
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stores a value of 0.This change of value in wire b also connects trireg mel to trireg me2;
these triregs have the same size and stored different values. The connection causes both
trireg mel and me?2 to change value to x.

In a capacitive network, charge strengths propagate from a larger trireg to a smaller trireg. Figure
3-3 shows a capacitive network and its simulation results.

wire b wire o
wire a |

) .
tranifl J_ tr:an_li‘EE J_
T trireg la T trireg =m

simulation . - . . .
tirme wile & wire b wire ¢ frired la trirey sm

1] strong strong 1 =trong 1

10 strong large 1 larg= 1

20 strong

30 strong large 1 larg= 1

HlrRr|lRr| R~
o|lo|lao|lol|r

1
1
0 large 1 =mall 1
1
1]

40 strong large 1 =mall 1

Figure 3- 3: Simulation results of charge sharing

In Figure 3-3, trireg la’s size is large and trireg sm’s size is small. Simulation reports the following
results:

1.  Atsimulation time 0, the value of wire a, b, and ¢ is 1 and wire a drives a strong 1 into
trireg la and sm.

2. At simulation time 10, wire b’s value changes to 0, disconnecting trireg la and sm from
wire a. The triregs la and sm enter the capacitive state. Both triregs share the large charge
of trireg la because they remain connected through tranif2.

3. At simulation time 20, wire ¢’s value changes to 0, disconnecting trireg sm from trireg la.
The trireg sm no longer shares trireg 1a’s large charge and now stores a small charge.

4. At simulation time 30, wire ¢’s value changes to 1, connecting the two triregs. These triregs
now share the same charge.

5. At simulation time 40, wire ¢’s value changes again to 0, disconnecting trireg sm from
trireg la. Once again, trireg sm no longer shares trireg la’s large charge and now stores a
small charge.

Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time. The simulation time
of charge decay is specified in the trireg net’s delay specification.
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3.7.4 tri0 and tril Nets

The tri0 and tril nets model nets with resistive pulldown and resistive pullup devices on them.
When no driver drives a tri0 net, its value is 0. When no driver drives a tril net, its value is 1. The
strength of this value is pull. See Chapter 6, 6.10 Logic Strength Modeling through 6.14 Strengths
of Net Types, for a description of strength modeling.

3.7.5 supply Nets

The supply0 and supply1 nets model the power supplies in a circuit. The supplyO nets are used to
model Vss (ground) and supply1 nets are used to model Vdd or Vcc (power). These nets should
never be connected to the output of a gate or continuous assignment, because the strength they
possess will override the driver. They have supply0 or supply1 strengths.

3.8 Memories

The Verilog HDL models memories as an array of register variables. These arrays can be used to
model read-only memories (ROMs), random access memories (RAMs), and register files. Each
register in the array is known as an element or word and is addressed by a single array index. There
are no multiple dimension arrays in the Verilog Language.

Memories are declared in register declaration statements by specifying the element address range
after the declared identifier. Syntax 3-3 gives the syntax for a register declaration statement. Note
that this syntax extends the <register variable> definition given in Section 3.2.3, Declaration
Syntax.

<register_variable>
::= <name_of_register>
||= <name_of memory> [ <constant_expression> : <constant_expression> ]

<constant_expression>
::=<expression>

<name_of_memory>
::= <IDENTIFIER>

Syntax 3- 3: Syntax for <register variable>
The following example illustrates a memory declaration:
reg[7: 0] menmg[ 0: 255] ;

This example declares a memory called mema consisting of 256 eight-bit registers. The indices are
0 through 255. The expressions that specify the indices of the array must be constant expressions.
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Note that within the same declaration statement both registers and memories can be declared. This
makes it convenient to declare both a memory and some registers that will hold data to be read
from and written to the memory in the same declaration statement, as in Example 3-3.

parameter /Iparameters are run-time constants-see Section 3.11
Parameters

wordsize = 16,
memsize = 256;
/I Declare 256 words of 16-bit memory plus two registers
reg [wordsize-1:0] /I equivalent to [15:0]
mem [memsize-1:0], // equivalent to [255:0]
writereg,
readreg;

Example 3- 3: Declaring memory

Note that a memory of n 1-bit registers is different from an n-bit vector register, as in the
following:

an rehit register is ot f
the same as a memory
of 1 1-hit registers

reg [1:n] rega; --——

Treg mEmA [l:n];“'fﬁ

An n-bit register can be assigned a value in a single assignment, but a complete memory cannot;
thus the following assignment to rega is legal and the succeeding assignment that attempts to clear
all of the memory mema is illegal:

rega =0; //legal syntax
mema = 0; // illegal syntax
To assign a value to a memory element, an index must be specified. For example:
mema[1] =0; // assigns O to the first element of mema

The index can be an expression. This option allows you to reference different memory elements,
depending on the value of other registers and nets in the circuit. For example, a program counter
register could be used to index into a RAM.

3.9 Integers and Times

In addition to modeling hardware, there are other uses for variables in an HDL model. Although
you can use the reg variables for general purposes such as counting the number of times a
particular net changes value, the integer and time register data types are provided for convenience
and to make the description more self-documenting.

The syntax for declaring integer and time variables is as follows:

<time_declaration>
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::= time <list_of_register_variables> ;

<integer_declaration>
::= integer <list_of register_variables> ;

Syntax 3- 4: Syntax for time and integer declarations

The <list_of register variables> item is defined in Section 3.2.3, Declaration Syntax.

A time variable is used for storing and manipulating simulation time quantities in situations where
timing checks are required and for diagnostics and debugging purposes. This data type is typically
used in conjunction with the $time system function (see Appendix B, B.6 Simulation Time—The
$time Function). The size of a time variable is 64 bits.

An integer is a general purpose variable used for manipulating quantities that are not regarded as
hardware registers.

Implementation specific detail: An implemtation may limit the size of the integer variable, and
the time variable.

Arrays of integer and time variables are allowed. They are declared in the same manner as arrays of
reg variables, as in the following example:

i nteger a[l:64]; /1l an array of 64 integers

time change_hi story[1: 1000]; /1 an array of 1000 tines

The integer and time variables are assigned values in the same manner as reg variables. Procedural
assignments are used to trigger their value changes.

Time variables behave the same as 64 bit reg variables. They are unsigned quantities, and unsigned
arithmetic is performed on them. In contrast, integer variables are signed quantities. Arithmetic
operations performed on integer variables produce 2’s complement results.

3.10 Real Numbers

The Verilog HDL supports real number constants and variables in addition to integers and time
variables. The syntax for real numbers is the same as the syntax for register types, and is described
in Section 3.10.1. Except for the following restrictions, real number variables can be used in the
same places that integers and time variables are used.

e Not all Verilog HDL operators can be used with real number values. See Table 4-2 in
Section 4.1 Operators for lists of valid and invalid operators for real numbers.

e Ranges are not allowed on real number variable declarations.

e Real number variables default to an initial value of zero.

Verilog HDL LRM Data Types o 27



3.10.1 Declaration Syntax for Real Numbers

The syntax for declaring real number variables is as follows:

<real_declaration>
::=real<list_of variables>;

Syntax 3- 5: Syntax for real number variable declarations

The <list_of variables> item is defined in Section 3.2.3 Declaration Syntax.

3.10.2 Specifying Real Numbers

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific
notation (for example, 39e8, which indicates 39 multiplied by 10 to the 8th power). Real numbers
expressed with a decimal point must have at least one digit on each side of the decimal point.

The following are some examples of valid real numbers in the Verilog language:

1.2

0.1

2394.26331

1.2E12 (the exponent symbol can be e or E)
1.30e-2

0.1e-0

23E10

29E-2

236.123 763 _e-12 (underscores are ignored)

The following are invalid real numbers in the Verilog HDL because they do not have a digit to the
left of the decimal point:

12
.3E3
.2e-7

3.10.3 Operators and Real Numbers

The result of using logical or relational operators on real numbers is a single-bit scalar value. Not
all Verilog operators can be used with real number expressions. Table 4-2 in Section 4.1 lists the
valid operators for use with real numbers. Real number constants and real number variables are
also prohibited in the following contexts:

e cdge descriptors (posedge, negedge) applied to real number variables
e bit-select or part-select references of variables declared as real

e real number index expressions of bit-select or part-select references of vectors
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¢ real number memories (arrays of real numbers)

3.10.4 Conversion

The Verilog language converts real numbers to integers by rounding a real number to the nearest
integer, rather than by truncating it. For example, the real numbers 35.7 and 35.5 both become 36
when converted to an integer and 35.2 becomes 35. Implicit conversion takes place when you
assign a real to an integer.

See Appendix B, B.8 Functions and Tasks for Reals, for a discussion of system tasks that perform
explicit conversion.

3.11 Parameters

Verilog parameters do not belong to either the register or the net group. Parameters are not
variables, they are constants. The syntax for parameter declarations is as follows:

<parameter_declaration>
::= parameter <list_of assignments> ;

Syntax 3- 6: Syntax for <parameter declaration>

Implementation specific detail: Some implementations accept a range specification on the
parameter declaration.

The <list of assignments> is a comma-separated list of assignments, where the right-hand side of
the assignment must be a constant expression, that is, an expression containing only constant
numbers and previously defined parameters. Example 3-4 shows examples of parameter
declarations:

parameter msb = 7; /I defines msb as a constant value 7
parameter e = 25, f =9; // defines two constant numbers
parameter r=5.7; /ldeclares r as a 'real' parameter
parameter byte size = 8, byte_mask = byte_size - 1;

parameter average_delay = (r + f) / 2;

Example 3- 4: Parameter declarations

Even though they represent constants, Verilog parameters can be modified at compilation time to
have values that are different from those specified in the declaration assignment. This allows you to
customize module instances. You can modify the parameter with the defparam statement, or you
can modify the parameter in the module instance statement. Typical uses of parameters are to
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specify delays and width of variables. See Chapter 12, 12.2 Overriding Module Parameter Values,
for complete details on parameter value assignment.
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Expressions

4.0 Expressions Overview

This chapter describes the operators and operands available in the Verilog HDL, and how to use
them to form expressions.

An expression is a construct that combines operands with operators to produce a result that is a
function of the values of the operands and the semantic meaning of the operator. Alternatively, an
expression is any legal operand—for example, a net bit-select. Wherever a value is needed in a
Verilog HDL statement, an expression can be given. However, several statement constructs limit
an expression to a constant expression. A constant expression consists of constant numbers and
predefined parameter names only, but can use any of the operators defined in Table 4-1.

For their use in expressions, integer and time data types share the same traits as the data type reg.
Descriptions pertaining to register usage apply to integers and times as well.

An operand can be one of the following:
e number (including real)
e net
e register, integer, time
e net bit-select
e register bit-select
e net part-select
e register part-select
e memory element

e acall to a user-defined function or system defined function that returns any of the above

4.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C language. Table 4-1 lists
these operators.

Verilog Lanquage Operators

{} concatenation
+ - 7 arithmetic

% modulus

> >= < <= relational

! logical negation
&& logical and

I logical or
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== logical equality

I= logical inequality
=== case equality

I== case inequality

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or
A bit-wise exclusive or
A~ or ~7 bit-wise equivalence
& reduction and

~& reduction nand

| reduction or

~| reduction nor

A reduction xor
~N or M~ reduction xnor
<< left shift

>> right shift

?: conditional

Table 4- 1: Operators for Verilog language

Not all of the operators listed above are valid with real expressions. Table 4-2 is a list of the
operators that are legal when applied to real numbers.

Operators for Real Expressions

unary + unary - unary operators
+ - * arithmetic

> >= < <= relational

I && || logical

== I= logical equality
?: conditional

or logical

Table 4- 2: Legal operators for use in real expressions

The result of using logical or relational operators on real numbers is a single-bit scalar value.

Table 4-3 lists operators that are not allowed to operate on real numbers.

Disallowed Operators for Real Expressions

{} concatenate
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% modulus
=== I== case equality

~ & | bit-wise

A Ao ~N\

& ~& |~ reduction
<< >> shift

Table 4- 3: Operators not allowed for real expressions

See Section 3.10.3 Operators and Real Numbers for more information on use of real numbers.

4.1.1 Binary Operator Precedence

The precedence order of binary operators (and the ternary operator ?:) is the same as the
precedence order for the matching operators in the C language. Verilog has two equality operators
not present in C; they are discussed in Section 4.1.6 Equality Operators. Table 4-4 summarizes
the precedence rules for Verilog’s binary and ternary operators.

Operator Precedence Rules

+ - 1 ~ (unary) highest precedence
I %

+ - (binary)

<< >>

&

A A

|

&&

|

?.  (ternary operator) lowest precedence

Table 4- 4: Precedence rules for operators

Operators on the same line in Table 4-4 have the same precedence. Rows are in order of decreasing
precedence, so, for example, *, /, and % all have the same precedence, which is higher than that of
the binary + and - operators.

All operators associate left to right with the exception of the ternary operator which associates right
to left. Associativity refers to the order in which a language evaluates operators having the same
precedence. Thus, in the following example B is added to A and then C is subtracted from the
result of A+B.
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A+B- C

When operators differ in precedence, the operators with higher precedence apply first. In the
following example, B is divided by C (division has higher precedence than addition) and then the
result is added to A.

A+B/ C

Parentheses can be used to change the operator precedence.

(A+B) / C /'l not the same as A+ B/ C

4.1.2 Numeric Conventions in Expressions

Operands can be expressed as based and sized numbers—with the following restriction: The
Verilog language interprets a number of the form sss ’f nnn, when used directly in an expression,
as the unsigned number represented by the two’s complement of nnn. Example 4-1 shows two
ways to write the expression “minus 12 divided by 3.” Note that -12 and -d12 both evaluate to the
same bit pattern, but in an expression -d12 loses its identity as a signed, negative number.

integer IntA;
IntA = -12 / 3; /l The result is -4.

IntA=-d12/3; /I The result is 1431655761.

Example 4- 1: Number format in expressions

4.1.3 Arithmetic Operators

The binary arithmetic operators are the following:

+ - * /" % (the modulus operator)

Integer division truncates any fractional part. The modulus operator, for example y % z, gives the
remainder when the first operand is divided by the second, and thus is zero when z divides y
exactly. The result of a modulus operation takes the sign of the first operand. Table 4-5 gives
examples of modulus operations.

Modulus Result Comments
Expression
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10 % 3 1 10/3 yields a remainder of 1

1% 3 2 11/3 yields a remainder of 2

12% 3 0 12/3 yields no remainder

-10% 3 -1 the result takes the sign of the first operand

11 % -3 2 the result takes the sign of the first operand
-4'd12 % 3 1 -4'd12 is seen as a large, positive number that

leaves a remainder of 1 when divided by 3

Table 4-5: Examples of modulus operations

The unary arithmetic operators take precedence over the binary operators. The unary operators are
the following:

For the arithmetic operators, if any operand bit value is the unknown value x, then the entire result
value is x.

4.1.4 Arithmetic Expressions with Registers and Integers

An arithmetic operation on a register data type behaves differently than an arithmetic operation on
an integer data type. The Verilog language sees a register data type as an unsigned value and an
integer type as a signed value. As a result, when you assign a value of the form -

<size><base format><number> to a register and then use that register as an expression operand,
you are actually using a positive number that is the two’s complement of nnn. In contrast, when
you assign a value of the form -<size><base format><number> to an integer and then use that
integer as an expression operand, the expression evaluates using signed arithmetic. Example 4-2
shows various ways to divide minus twelve by three—using integer and register data types in
expressions.

integer intA; /l result is -4 because intA is an integer data type

reg [15:0] regA;

intA = -4'd12;

regA = intA/3;

regA = -4'd12;

intA = regA / 3; Il result is 21841 because regA is an register data type
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intA = -4'd12 / 3; Il result is 21841 because -4'd12 is effectively a register
data type

regA = -12 | 3; Il result is -4 because -12 is effectively an integer data type

Example 4- 2: Modulus operation with registers and integers

4.1.5 Relational Operators

Table 4-6 lists and defines the relational operators.

Relational Operators

a<b a less than b

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

Table 4- 6: The relational operators defined

These all yield the scalar value 0 if the specified relation is false, or the value 1 if it is true. If, due
to unknown bits in the operands, the relation is ambiguous, then the result is the unknown value

().
All the relational operators have the same precedence. Relational operators have lower precedence

than arithmetic operators. The following examples illustrate the implications of this precedence
rule:

a < size -1 /1l this construct is the sane as
a < (size - 1) /1l this construct, but

size - (1 < a) /1l this one is not the sane as
size - 1 < a /1l this construct

Note that when size - (1 < a) evaluates, the relational expression evaluates first and then either zero
or one is subtracted from size. When size - 1 < a evaluates, the size operand is reduced by one and
then compared with a.

4.1.6 Equality Operators

The equality operators rank just lower in precedence than the relational operators. Table 4-7 lists
and defines the equality operators.

Equality Operators
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a === b a equal to b, including x and z

a == b a not equal to b, including x and z

a == b a equal to b, result may be unknown

a = b a not equal to b, result may be unknown

Table 4- 7: The equality operators defined

All four equality operators have the same precedence. These four operators compare operands bit
for bit, with zero filling if the two operands are of unequal bit-length. As with the relational
operators, the result is 0 if false, 1 if true.

For the == and != operators, if either operand contains an x or a z, then the result is the unknown
value (x).

For the === and !== operators, the comparison is done just as it is in the procedural case statement.
Bits which are x or z are included in the comparison and must match for the result to be true. The
result of these operators is always a known value, either 1 or 0.

4.1.7 Logical Operators

The operators logical AND (&&) and logical OR (||) are logical connectives. The result of the
evaluation of a logical comparison is one (defined as true), zero (defined as false), or, if the result
is ambiguous, then the result is the unknown value (x). For example, if register alpha holds the
integer value 237 and beta holds the value zero, then the following examples perform as described:

regA = al pha && bet ga; [l regAis set to O
regB = alpha || beta; /[l regBis set to 1

The precedence of && is greater than that of ||, and both are lower than relational and equality
operators. The following expression ANDs three sub-expressions without needing any parentheses:

a < size-1 && b != ¢ & & index != |astone

However, it is recommended for readability purposes that parentheses be used to show very clearly
the precedence intended, as in the following rewrite of the above example:

(a < size-1l) && (b !'= ¢) && (index != |astone)

A third logical operator is the unary logical negation operator !. The negation operator converts a
non-zero or true operand into 0 and a zero or false operand into 1. An ambiguous truth value
remains as X. A common use of ! is in constructions like the following:

if (!'inword)
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In some cases, the preceding construct makes more sense to someone reading the code than the

equivalent construct shown below:

if (inmord == 0)

Constructions like if (!inword) read quite nicely (“if not inword”’), but more complicated ones can

be hard to understand.

Implementation Specific Detail: Evaluation of expressions connected by && or || may stop
evaluation as soon as the truth or falsehood of the result is

known

4.1.8 Bit-Wise Operators

The bit operators perform bit-wise manipulations on the operands— that is, the operator compares
a bit in one operand to its equivalent bit in the other operand to calculate one bit for the result. The

logic tables in Table 4-8 show the results for each possible calculation.

bit-wise unary negation

0o 1
1 0
X X

bit-wise binary AND operator

& O 1 X
0 0 0 0
1 0 1 X
X 0 X X

bit-wise binary inclusive Or operator

| 0 1 X
0 0 1 X
1 1 1 1
X X 1 X

bit-wise binary exclusive Or operator

Verilog HDL LRM

Expressions o 38



A 0 1 X
0 0 1 X
1 1 0 X
X X X X

bit-wise binary exclusive NOR operator

A~ 0 1 X
0 1 0 X
1 1 X
X X X X

Table 4- 8: Bit-wise operators logic tables

Care should be taken to distinguish the bit-wise operators & and | from the logical operators &&
and ||. For example, if x is 1 and y is 2, then x & y is 0, while x && y is 1. When the operands
are of unequal bit length, the shorter operand is zero-filled in the most significant bit positions.

4.1.9 Reduction Operators

The unary reduction operators perform a bit-wise operation on a single operand to produce a single
bit result. The first step of the operation applies the operator between the first bit of the operand
and the second—using the logic tables in Table 4-9. The second and subsequent steps apply the
operator between the one-bit result of the prior step and the next bit of the operand—still using the

same logic table.

reduction unary AND operator

&

1

b

o O o o

0
1
X

reduction unary inclusive Or operator

X 2 O

X X O

| 0 1 X
0 0 1 X
1 1 1 1
X X 1 X
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reduction unary exclusive Or operator

A 0 1 X

0 0 1 X
1 1 0 x
X X X X

Table 4- 9: Reduction operators logic tables

Note that the reduction unary NAND and reduction unary NOR operators operate the same as the
reduction unary AND and OR operators, respectively, but with their outputs negated. The effective
results produced by the unary reduction operators are listed in Table 4-10 and Table 4-11.

Results of Unary &, |, ~&, and ~|
Reduction Operations

Operand & | ~& ~|
no bits set 0 0 1 1
all bits set 1 1 0 0
some bits set, 0 1 1 0

but not all

Table 4- 10: AND, OR, NAND, and NOR unary reduction operations

Results of Unary » and ~*
Reduction Operators

Operand A ~A

odd number of bits set 1

even number of bits set 0 1
(or none)

Table 4- 11: Exclusive OR and exclusive NOR unary reduction operations

4.1.10 Syntax Restrictions

The Verilog language imposes two syntax restrictions intended to protect description files from a
typographical error that is particularly hard to find. The error consists of transposing a space and a
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symbol. Note that the constructs on line 1 below do not represent the same syntax as the similar
constructs on line 2.

In order to protect users from this type of error, Verilog requires the use of parentheses to separate
a reduction or or and operator from a bit-wise or or and operator. Table 4-12 shows the syntax that

requires parentheses:

Invalid Equivalent
Syntax Syntax
a&&b a & (&b)
allb a|(|b)

Table 4- 12: Syntax equivalents for syntax restriction

4.1.11 Shift Operators

The shift operators, << and >>, perform left and right shifts of their left operand by the number of
bit positions given by the right operand. Both shift operators fill the vacated bit positions with
zeroes. Example 4-3 illustrates this concept.

module shift;
reg [3:0] start, result;
initial
begin
start = 1; /] Start is set to 0001
result = (start << 2); // Result is set to 0100
end
endmodule

Example 4- 3: Use of shift operator

In this example, the register result is assigned the binary value 0100, which is 0001 shifted to the
left two positions and zero filled.

4.1.12 Conditional Operator

The conditional operator has three operands separated by two operators in the following format:
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cond_expr ? true_expr : false_expr

If cond_expr evaluates to false, then false expr is evaluated and used as the result. If the
conditional expression is true, then true_expr is evaluated and used as the result. If cond expr is
ambiguous, then both true expr and false expr are evaluated and their results are compared, bit by
bit, using Table 4-13 to calculate the final result. If the lengths of the operands are different, the
shorter operand is lengthened to match the longer and zero filled from the left (the high-order end).

ambiguous condition results for
conditional operator

?2: 0 1 X Y4
0 0 X X X
1 X 1 X X
X X X X X
z X X X X

Table 4- 13: Conditional operator results

The following example of a tri-state output bus illustrates a common use of the conditional
operator.

wre [15:0] busa = drive busa ? data : 16’ bz;

The bus called data is driven onto busa when drive_busa is 1. If drive_busa is unknown, then an
unknown value is driven onto busa. Otherwise, busa is not driven.

4.1.13 Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The
concatenation is expressed using the brace characters { and }, with commas separating the
expressions within. The next example concatenates four expressions:

{a, b[3:0], w 3 bl01}
The previous example is equivalent to the following example:
{a, b[3], b[2], b[1], b[O], w 1'bl, 1'b0, 1’ bl}

Unsized constant numbers are not allowed in concatenations. This is because the size of each
operand in the concatenation is needed to calculate the complete size of the concatenation.
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Concatenations can be expressed using a repetition multiplier as shown in the next example.

{4{w}} // This is equivalent to {w, w, w W

The next example illustrates nested concatenations.

{b, {3{a, b}}} /1 This is equivalent to
/Il {b, a, b, a, b, a, b}

The repetition multiplier must be a constant expression.

4.2 Operands

As stated before, there are several types of operands that can be specified in expressions. The
simplest type is a reference to a net or register in its complete form—that is, just the name of the
net or register is given. In this case, all of the bits making up the net or register value are used as
the operand.

If just a single bit of a vector net or register is required, then a bit-select operand is used. A part-
select operand is used to reference a group of adjacent bits in a vector net or register.

A memory element can be referenced as an operand.

A concatenation of other operands, (including nested concatenations) can be specified as an
operand.

A function call is an operand.

4.2.1 Net and Register Bit Addressing

Bit-selects extract a particular bit from a vector net or register. The bit can be addressed using an
expression. The next example specifies the single bit of acc that is addressed by the operand index.

acc[ i ndex]

The actual bit that is accessed by an address is, in part, determined by the declaration of acc. For
instance, each of the declarations of acc shown in the next example causes a particular value of
index to access a different bit:

reg [15:0] acc;

reg [1:16] acc;

If the bit select is out of the address bounds or is x, then the value returned by the reference is x.
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Several contiguous bits in a vector register or net can be addressed, and are known as part-selects.
A part-select of a vector register or net is given with the following syntax:

vect[ nms_expr:|ls_expr]

Both expressions must be constant expressions. The first expression must address a more
significant bit than the second expression. The next example and the bullet items that follow it
illustrate the principles of bit addressing. The code declares an 8-bit register called vect and
initializes it to a value of 4. The bullet items describe how the separate bits of that vector can be
addressed.

reg [7:0] vect;
vect = 4;

e if the value of addr is 2, then vect[addr] returns 1

e if the value of addr is out of bounds, then vect[addr] returns x
e ifaddrisO, 1, or 3 through 7, vect[addr] returns O

e vect[3:0] returns the bits 0100

e vect[5:1] returns the bits 00010

e vect[<expression that returns x>] returns x

e vect[<expression that returns z>] returns x

e if any bit of addr is x/z, then the value of addr is x

4.2.2 Memory Addressing

Section 3.8 discussed the declaration of memories. This section discusses memory addressing. The
next example declares a memory of 1024 8-bit words:

reg [7:0] nemnanme[0:1023];

The syntax for a memory address consists of the name of the memory and an expression for the
address—specified with the following format:

mem nane[ addr _expr]

The addr_expr can be any expression; therefore, memory indirections can be specified in a single
expression. The next example illustrates memory indirection:
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mem_nane[ mem_nane[ 3] ]

In the above example, mem_ name|[3]addresses word three of the memory called mem name. The
value at word three is the index into mem_name that is used by the memory address
mem_name[mem_name[3]]. As with bit-selects, the address bounds given in the declaration of the
memory determine the effect of the address expression. If the index is out of the address bounds or
is X, then the value of the reference is x.

There is no mechanism to express bit-selects or part-selects of memory elements directly. If this is
required, then the memory element has to be first transferred to an appropriately sized temporary
register.

4.2.3 Strings

String operands are treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one
per character.

Any Verilog HDL operator can manipulate string operands. The operator behaves as though the
entire string were a single numeric value.

Example 4-4 declares a string variable large enough to hold 14 characters and assigns a value to it.
The example then manipulates the string using the concatenation operator.

Note that when a variable is larger than required to hold the value being assigned, the contents after
the assignment are padded on the left with zeros. This is consistent with the padding that occurs
during assignment of non-string values.

module string_test;
reg [8*14:1] stringvar;
initial
begin
stringvar = "Hello world";
$display("%s is stored as %h",
stringvar, stringvar);
stringvar={stringvar, """"};
$display("%s is stored as %h",
stringvar, stringvar);
end
endmodule

Example 4- 4. Concatenation of strings
The result of running Verilog on the above description is:

Hello world is stored as 00000048656c6¢61207761726c64
Hello world!!! is stored as 48656c6c61207761726¢64212121
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4.2.4 String Operations

The common string operations copy, concatenate, and compare are supported by Verilog operators.
Copy is provided by simple assignment. Concatenation is provided by the concatenation operator.
Comparison is provided by the equality operators. Example 4-4 and Example 4-5 illustrate
assignment, concatenation, and comparison of strings.

When manipulating string values in vector variables, at least 8*n bits are required in the vector,

where n is the number of characters in the string.

4.2.5 String Value Padding and Potential Problems

When strings are assigned to variables, the values stored are padded on the left with zeros. Padding
can affect the results of comparison and concatenation operations. The comparison and
concatenation operators do not distinguish between zeros resulting from padding and the original
string characters.

Example 4-5 illustrates the potential problem.
reg [8*10:1] s1, s2;

initial
begin
s1 ="Hello";
s2 = "world!";
if ({s1,s2} == "Hello world!")
$display("strings are equal");
end

Example 4-5: Comparing string variables

The comparison in the example above fails because during the assignment the string variables get
padded as illustrated in the next example:

sl
s2

000000000048656¢c6C6f
00000020776f 726c6421

The concatenation of s1 and s2 includes the zero padding, resulting in the following value:

000000000048656c6c6f 00000020776f 7266421

Since the string “Hello world” contains no zero padding, the comparison fails, as shown below:

s1 s2 "Hello world!"
000000000048656¢c6¢6f 00000020776f726c6421 == 48656c6c6f207761726c6421
"Hello" "world!"
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The above comparison yields a result of zero, which is equivalent to false.

4.2.6 Null String Handling

The null string ("") is equivalent to the value zero (0).

4.3 Minimum, Typical, Maximum Delay Expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons. This
triple is intended to represent minimum, typical, and maximum values—in that order. The syntax is
as follows:

<mintypmax_expression>
;:= <expression>
||= <expression1> : <expression2> : <expression3>

Syntax 4- I: Syntax for <mintypmax_expression>

The three expressions follow these conventions:
e expressionl is less than or equal to expression2
e cxpression? is less than or equal to expression3

Verilog models typically specify three values for delay expressions. The three values allow a
design to be tested with minimum, typical, or maximum delay values. Different tools may interpret
the triple form of an expression in a different manner.

In the following example, one of the three specified delays will be executed before the simulation
executes the assignment; if the user does not select one, the simulator will take the default.

al ways @A
X = #(3:4:5) A

Values expressed in min:typ:max format can be used in expressions. The next example shows an
expression that defines a single triplet of delay values. The minimum value is the sum of a+d; the
typical value is b+e; the maximum value is c+f, as follows:

(aib:c) + (d:.e:f)

The next example shows some typical expressions that are used to specify min:typ:max format
values:

val - (32°d 50: 32°d 75: 32°d 100)
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The min:typ:max format can be used wherever expressions can appear, both in source text files and
in interactive commands. See also 6.15.1 min/typ/max Delays

4.4 Expression Bit Lengths

Controlling the number of bits that are used in expression evaluations is important if consistent
results are to be achieved. Some situations have a simple solution, for example, if a bit-wise AND
operation is specified on two 16-bit registers, then the result is a 16-bit value. However, in some
situations it is not obvious how many bits are used to evaluate an expression, what size the result
should be, or whether signed or unsigned arithmetic should be used.

For example, when is it necessary to perform the addition of two 16-bit registers in 17 bits to
handle a possible carry overflow? The answer depends on the context in which the addition takes
place. If the 16-bit addition is modeling a real 16-bit adder that loses or does not care about the
carry overflow, then the model must perform the addition in 16 bits. If the addition of two 16-bit
unsigned numbers can result in a significant 17th bit, then assign the answer to a 17-bit register.

4.4.1 An Example of an Expression Bit Length Problem

During the evaluation of an expression, interim results take the size of the largest operand (in the
case of an assignment, this also includes the left-hand side). You must therefore take care to
prevent loss of a significant bit during expression evaluation. This section describes an example of
the problems that can occur.

The expression (a + b >> 1) yields a 16-bit result, but cannot be assigned to a 16-bit register
without the potential loss of the high-order bit. If a and b are 16-bit registers, then the result of
(atb) is 16 bits wide—unless the result is assigned to a register wider than 16 bits. If answer is a
17-bit register, then (answer = a + b) yields a full 17-bit result. But in the expression (a + b >> 1),
the sum of (a + b) produces an interim result that is only 16 bits wide. Therefore, the assignment of
(a+b>>1)to a 16-bit register loses the carry bit before the evaluation performs the one-bit right
shift.

There are two solutions to a problem of this type. One is to assign the sum of (a+b) to a 17-bit
register before performing the shift and then shift the 17-bit answer into the 16-bits that your model
requires. An easier solution is to use the following trick:
The problem:
Evaluate the expression (a+b)>>1, assigning the result to a 16-bit register without losing the carry
bit. Variables a and b are both 16-bit registers.
The solution:
Add the integer zero to the expression. The expression evaluates as follows:

1. 0+ (atb) evaluates—the result is as wide as the widest term, which is the 32-bit zero

2. the 32-bit sum of 0 + (a+b) is shifted right one bit

This trick preserves the carry bit until the shift operation can move it back down into 16 bits.
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4.4.2 Verilog Rules for Expression Bit Lengths

In the Verilog language, the rules governing the expression bit lengths have been formulated so
that most practical situations have a natural solution.

The number of bits of an expression (known as the size of the expression) is determined by the
operands involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely determined by
the expression itself—for example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is determined by the
bit length of the expression and by the fact that it is part of another expression. For example, the bit
size of the right-hand side expression of an assignment depends on itself and the size of the left-
hand side.

Table 4-14 shows how the form of an expression determines the bit lengths of the results of the
expression. In Table 4-14, 1, j, and k represent expressions of an operand, and L(i) represents the
bit length of the operand represented by i.

Expression Bit length Comments
unsized same as
constant integer
number (usually32)
sized as given
constant
number
iop] max (L(i), L(j))
where op is:
+-"1%
& | AN NANo
+iand -i L(i)
~i L(i)
| op j 1 bit all operands are
where op is self-determined
=== |== == |= && ||
> >= < <=
op i 1 bit all operands are
where op is self-determined
& ~& I ~| AN ~A
| >> j L(i) j is self-determined
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|<<j

1 2]

{i,...J}

{i{i, ..

Tk

Lk}

max(L(j),L(k))

L(i)+..+L(j)
self-determined

*(L(G)+..+L(k))

Table 4- 14: Bit lengths resulting from expressions

| is self-determined

all operands are

all operands are
self-determined
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Assignments

5.0 Assignments Overview

The assignment is the basic mechanism for getting values into nets and registers. There are two
basic forms of the assignment:

o the continuous assignment, which assigns values to nets
e the procedural assignment, which assigns values to registers

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equal
(=) character. The right-hand side can be any expression that evaluates to a value. The left-hand
side indicates the variable that the right-hand side is to be assigned to. The left-hand side can take
one of the following forms, depending on whether the assignment is a continuous assignment or a
procedural assignment.

Statement_type Left-hand side
continuous net (vector or scalar)
assignment constant bit select of a vector net

constant part select of a vector net
concatenation of any of the above 3

procedural register (vector or scalar)

assignment bit select of a vector register
constant part select of a vector register
memory element
concatenation of any of the above 4

Table 5- 1: Legal left-hand side forms in assignment statements

5.1 Continuous Assignments

Continuous assignments drive values onto nets, both vector and scalar. The significance of the
word “continuous” is that the assignment occurs whenever simulation causes the value of the right-
hand side to change. Continuous assignments provide a way to model combinational logic without
specifying an interconnection of gates. Instead, the model specifies the logical expression that
drives the net. The expression on the right-hand side of the continuous assignment is not restricted
in any way. It can even contain a reference to a function. Thus, the result of a case statement, if
statement, or other procedural construct can drive a net.

The syntax for continuous assignments is as follows:

<net_declaration>
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.:= <NETTYPE> <expandrange>? <delay>? <list_of variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of variables> ;
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?

<list_of assignments> ;

<continuous_assign>
::= assign <drive_strength>? <delay>? <list_of_assignments> ;

<expandrange>
::= <range>
||= scalared <range>
||= vectored <range>

<range>
;= [ <constant_expression> : <constant_expression> ]

<list_of_assignments>
;1= <assignment> <,<assignment>>*

<charge_strength>
= (small)

[|= ( medium )

lI= (large )

<drive_strength>
== (<STRENGTHO> , <STRENGTH1>)
||= (<STRENGTH1>, <STRENGTHO> )

Syntax 5- 1: Syntax for <net_declaration>

5.1.1 The Net Declaration Assignment

The first two alternatives in the <net declaration> are discussed in Chapter 3, Data Types (see
Section 3.2.3 Declaration Syntax). The third alternative, the net declaration assignment, allows a
continuous assignment to be placed on a net in the same statement that declares that net. The
following is an example of the <net declaration> form of a continuous assignment:

wire (strongl, pull0) nynet = enable ;

Please note: Because a net can be declared only once, only one net declaration assignment can
be made for a particular net. This contrasts with the continuous assignment
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statement; one net can receive multiple assignments of the continuous assignment
form.

5.1.2 The Continuous Assignment Statement

The <continuous_assign> statement places a continuous assignment on a net that has been
previously declared, either explicitly by declaration or implicitly by using its name in the terminal
list of a gate, user-defined primitive, or module instance. The following is an example of a
continuous assignment to a net that has been previously declared:

assign (strongl, pull0) nynet = enable ;

Assignments on nets are continuous and automatic. This means that whenever an operand in the
right-hand side expression changes value during simulation, the whole right-hand side is evaluated
and assigned to the left-hand side.

The following is an example of the use of a continuous assignment to model a four bit adder with
carry. Note that the assignment could not be specified directly in the declaration of the nets because
it requires a concatenation on the left-hand side.

module adder (sum_out, carry_out, carry_in, ina, inb) ;
output [3:0]sum_out;
input [3:0]ina, inb;
output carry_out;
input carry_in;
wire carry_out, carry_in;
wire[3:0] sum_out, ina, inb;

assign

{carry_out, sum_out} = ina + inb + carry_in;

endmodule

Example 5- 1: Use of continuous assign statement

The following example describes a module with one 16-bit output bus. It selects between one of
four input busses and connects the selected bus to the output bus.

module select_bus (busout, bus0, bus1, bus2, bus3, enable, s);
parameter n=16;

parameter Zee=16'bz;

output [1:n ]busout;

input[ 1:n] busO, bus1, bus2, bus3;

input enable;
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input 1:2] s;
tri [1:n] data; /I net declaration.
tri [1:n] busou t= enable ? data : Zee; // net declaration with
/I continuous assignment.

assign /[ assignment statement with
data = (s==0) ? busO : Zee, /I 4 continuous assignments.
data = (s==1) ? bus1 : Zee,

data = (s==2) ? bus2 : Zee,
data = (s==3) ? bus3 : Zee;
endmodule

Example 5- 2: Net declaration assignment and continuous assign statement

The following sequence of events is experienced during simulation of the description in Example
5-2:

1.  The value of s, a bus selector input variable, is checked in the assign statement; based on
the value of s, the net data receives the data from one of the four input busses.

2. The setting of data triggers the continuous assignment in the net declaration for busout; if
enable is set, the contents of data are assigned to busout; if enable is clear, the contents of
Zee are assigned to busout.

5.1.3 Delays

A delay given to a continuous assignment specifies the time duration between a right-hand side
operand value change and the assignment made to the left-hand side. If the left-hand side
references a scalar net, then the delay is treated in the same way as for gate delays—that is,
different delays can be given for the output rising, falling and changing to high impedance (see
Chapter 6, 6.15 Gate and Net Delays).

If the left-hand side references a vector net, then up to three delays can also be applied. The
following rules determine which delay controls the assignment:

e If the right-hand side was non-zero and becomes zero, then the falling delay is used.
e Ifthe right-hand side becomes z, then the turn-off delay is used.
e For other cases, the rising delay is used.

Note that specifying the delay in a continuous assignment that is part of the net declaration is
different from specifying a net delay and then making a continuous assignment to the net. A delay
value can be applied to a net in a net declaration, as in the following example:

wre #10 wreA;
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This syntax, called a net delay, means that any value change that is to be applied to wireA by some
other statement is delayed for ten time units before it takes effect. When there is a continuous
assignment in a declaration, the delay is part of the continuous assignment and is not a net delay.
Thus, it is not added to the delay of other drivers on the net. Furthermore, if the assignment is to an
expanded vector net (a net not specified with the keyword vectored), then the rising and falling
delays are not applied to the individual bits if the assignment is included in the declaration.

In situations where a right-hand side operand changes before a previous change has had time to
propagate to the left-hand side, then the latest value change is the only one to be applied. That is,
only one assignment occurs. This effect is known as inertial delay.

The following example implements a vector exclusive OR. The size and delay of the operation are
controlled by parameters, which can be changed when instances of this module are created. See
Section 12.2 Overriding Module Parameter Values for details on overriding parameter values.

module modxor (axorb, a, b);

parameter size=8, delay=15;

output [size-1:0] axorb;

input [size-1:0] a, b;

wire [size-1:0] #delay axorb = a * b;
endmodule

Example 5- 3: Use of delays with assignments

5.1.4 Strength

The driving strength of a continuous assignment can be specified by the user. This applies only to
assignments to scalar nets of the types listed below:

wire wand tri trireg
wor triand tri O
trior tril

Continuous assignments driving strengths can be specified in either a net declaration or in a stand-
alone assignment, using the assign keyword. The strength specification, if provided, must
immediately follow the keyword (either the keyword for the net type or the assign keyword) and
must precede any delay specified. Whenever the continuous assignment drives the net, the strength
of the value will simulate as specified.

A <drive_strength> specification contains one strength value that applies when the value being
assigned to the net is 1 and a second strength value that applies when the assigned value is 0. The
follow- ing keywords specify the strength value for an assignment of 1:

supplyl strongl pulll weakl highzl

The following keywords specify the strength value for an assignment of 0:
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supply0 strong0 pull0 weakO highzO

The order of the two strength specifications is arbitrary. The following two rules constrain the use
of drive strength specifications:

e The strength specifications (highz1, highz0) and (highz0, highzl) are illegal language
constructs.

e When the keyword vectored is specified together with a specification of strength on a
continuous assignment, the keyword vectored is ignored.

5.2 Procedural Assignments

The primary discussion of procedural assignments is in Section 8.2 Procedural Assignments and
11.1 The assign and deassign Procedural Statements. However, a description of the basic ideas here
will highlight the differences between continuous assignments and procedural assignments.

As stated above, continuous assignments drive nets in a manner similar to the way gates drive nets.
The expression on the right-hand side can be thought of as a combinatorial circuit that drives the
net continuously. In contrast, procedural assignments put values in registers. The assignment does
not have duration; instead, the register holds the value of the assignment until the next procedural
assignment to that register.

Procedural assignments occur within procedures such as always, initial, task and function (these
procedures are described in later chapters) and can be thought of as "triggered" assignments. The
trigger occurs when the flow of execution in the simulation reaches an assignment within a
procedure. Reaching the assignment can be controlled by conditional statements. Event controls,
delay controls, if statements, case statements, and looping statements can all be used to control
whether assignments get evaluated. Chapter 8, Behavioral Modeling, gives details and examples.
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Gate and Switch Level Modeling

6.0 Gate and Switch Level Modeling Overview

A logic network can be modeled using continuous assignments or switches and logic gates.
Modeling with switches and logic gates has these advantages:

e Gates provide a much closer one to one mapping between the actual circuit and the network
model.

e There is no continuous assignment equivalent to the bidirectional transfer gate.

A limitation in the use of gates and switches is that gates can only drive scalar output nets; they
cannot drive nets declared with the keyword vectored.

For your convenience, below is a hypertext list of the gatetype keywords:

The <GATETYPE> Keywords

and buf nmos tran pullup
nand not pmos tranif0 pulldown
nor bufif0 cmos tranif1

or bufif1 rnmos rtran

xor notifO rpmos rtranifO

xnor notif1 rcmos rtranif1

6.1 Gate and Switch Declaration Syntax

A gate or switch declaration names a gate or switch type and specifies its output signal strengths
and delays. It contains one or more gate instances. Gate instances include an optional instance
name and a required terminal connection list. The terminal connection list specifies how the gate or
switch connects to other components in the model. All the instances contained in a gate or switch
declaration have the same output strengths and delays.

Syntax 6-1 presents the gate or switch declaration syntax:

<gate_declaration>
:=<GATETYPE><drive_strength>?7<delay>?<gate_instance>
<,<gate_instance>>* ;

<GATETYPE> is one of the following keywords:

and nand or nor xor xnor buf bufifO bufifl1 not notifO notif1 pulldown
pullupnmos rnmos pmos rpmos cmos rcmos tran rtran tranifO
rtranifO tranif1 rtranif1

<drive_strength>
;= (<STRENGTHO0> , <STRENGTH1>)
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I|I= (<STRENGTH1> , <STRENGTHO> )

<delay>
::= # <number>
||= # <identifier>
||= # ( <mintypmax_expression> <,<mintypmax_expression>>?
<,<mintypmax_expression>>7?)

<gate_instance>
;= <name_of_gate_instance>? ( <terminal> <,<terminal>>* )

<name_of_gate_instance>
::= <IDENTIFIER>

<terminal>
::= <IDENTIFIER>
||= <expression>

Syntax 6- 1: Syntax for gate instantiation

This section describes the following parts of a gate or switch declaration:
e the keyword that names the type of gate or switch primitive
e the drive strength specification
e the delay specification
e the identifier that names each gate or switch instance in gate or switch declarations

¢ the terminal connection list in primitive gate or switch instances

The gate type specification

A gate declaration begins with the GATETYPE keyword. The keyword specifies the gate or switch
primitive that is used by the instances that follow in the declaration. Table 6-1 lists the keywords
that can begin a gate or switch declaration.

The <GATETYPE> Keywords

and buf nmMos tran pullup
nand not pmos tranifO pulldown
nor bufif0 cmos tranif1

or bufif1 rnmos rtran

Xor notif0 rpmos rtranifO

xnor notif1 rcmos rtranif1
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Table 6- 1: Keywords for the <GATETYPE> syntax item

Explanations of the keywords in Table 6-1 begin in Section 6.2 and, nand, nor, or, xor, and xnor
Gates.
The drive strength specification

The drive strength specifications specify the strengths of the values on the output terminals of the
instances in the gate declaration. It is possible to specify the strength of the output signals from the
gate primitives in Table 6-2.

Gate Types That Support Driving Strength

and nor xor bufif1
nand buf xnor notif1
or not bufifO pullup

notifO pulldown

Table 6- 2: Gate types that accept strength specifications

The drive strength specification in Syntax 6-1 has two parts. A gate declaration must contain both
parts or no parts, with the exception of pullup and pulldown sources. One of the parts specifies the
strength of signals with a value of 1, and the other specifies the strength of signals with a value of
0.

The STRENGTHI specification, which specifies the strength of an output signal with a value of 1,
is one of the following keywords:

suppl y1 strongl pul |1 weakl hi ghz1

Specifying highz1 causes the gate to output a logic value of Z in place of a 1.

The STRENGTHO specification, which specifies the strength of an output signal with a value of 0,
is one of the following:

suppl yO strong0 pullO weakO hi ghz0

Specifying highz0 causes the gate to output a logic value of Z in place of a 0.

The strength specifications must follow the gate type keyword and precede any delay specification.
The STRENGTHO specification can precede or follow the STRENGTHI1 specification. In the
absence of a strength specification, the instances have the default strengths strongl and strong0.

The strength specifications (highz0, highz1) and (highzl, highz0) are invalid:
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The following example shows a drive strength specification in a declaration of an open collector
nor gate:

nor ( hi ghz1, strong0) (out1,inl,in2);

In this example, the nor gate outputs a Z in place of a 1.

Sections 6.10 Logic Strength Modeling through 6.12 Strength Reduction by Non-Resistive Devices
discuss logic strength modeling in more detail.

The delay specification

The delay specifies the propagation delay through the gates and switches in a declaration. Gates
and switches in declarations with no delay specification have no propagation delay. A delay
specification can contain up to three delay values, depending on its gate type. Section 6.2 and,
nand, nor, or, xor, and xnor Gates begins discussions of each type of gate that detail the applicable
delays. Section 6.15 Gate and Net Delays discusses delays in more detail. pullup and pulldown
source declarations do not include delay specifications.

The primitive instance identifier
The IDENTIFIER in Syntax 6-1 is an optional name given to a gate or switch instance. The name
is useful in tracing the operation of the circuit during debugging.

Primitive instance connection list

The <terminal>s at the end of Syntax 6-1 are the terminal list. The terminal list describes how the
gate or switch connects to the rest of the model. The gate or switch type limits these expressions.
The output or bidirectional terminals always come first in the terminal list, followed by the input
terminals.

6.2 and, nand, nor, or, xor, and xnor Gates

Declarations of these gates begin with one of these keywords:

and nand nor or xor xnor

The delay specification can be zero, one, or two delays. If there is no delay, there is no delay
through the gate. One delay specifies the delays for all output transitions. If the specification
contains two delays, the first delay determines the rise delay, the second delay determines the fall
delay, and the smaller of the two delays applies to transitions to X and Z.

These six gates have one output and one or more inputs. The first terminal in the terminal list
connects to the gate’s output and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 6-3.
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and 0 1 = = nand 0 1 = =
1] oo 0o o 1] 1 1 1 1
1 01 = = 1 1 0 = =
X 0 = = == = 1l = = ==
= 0 = = == E 1l = = ==
o 0 1 = = hor 01 = =
1] 01 = = ] 1 0 = =
1 1 1 1 1 1 oo 0o o
b1 ¥ 1 ® = = E 0 ¥ =
= = 1 = = z x 0 = =
HOT 01 = = ENoOE 01 = =
1] 0 1 = = 0 1 0 = =
1 1 0 = = 1 0 1 = =
o E X HE = X E H2¥ H X
= E ¥ X X = E H2¥ H X

Table 6- 3: Logic tables for and, nand, or, nor, xor, and xnor gates

Versions of these six gates having more than two inputs behave identically with cascaded 2-input
gates in producing logic results, but the number of inputs does not alter propagation delays.

The following example declares a two input and gate:

and (out,inl,in2);

The inputs are inl and in2. The output is out.

6.3 buf and not Gates

Declarations of these gates begin with one of the following keywords:

buf not

The delay specification can be zero, one, or two delays. If there is no delay, there is no delay
through the gate. One delay specifies the delays for all output transitions. If the specification
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contains two delays, the first delay determines the rise delay, the second delay determines the fall

delay, and the smaller of the two delays applies to transitions to X.

These two gates have one input and one or more outputs. The last terminal in the terminal list

connects to the gate’s input, and the other terminals connect outputs.

Truth tables for versions of these gates with one input and one output appear in Table 6-4.

buf

inputs | outputs

[ S o |
C I S

inputs

output=

Mo = O

mom O =

Table 6- 4. Logic tables for buf and not gates

The following example declares a two output buf:

buf (outl,out2,in);

The input is in. The outputs are outl and out2.

6.4 bufifl, bufif(, notifl, and notif0 Gates

Declarations of these gates begin with one of the following keywords:

bufifO bufifl

notifl

notifO

A strength specification follows the keyword and a delay specification follows the strength
specification. The next item is the optional identifier. A terminal list completes the declaration.

These four gates model three-state drivers. In addition to values of 1 and 0, these gates output Z.

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no delay
through the gate. One delay specifies the delay of all transitions. If the specification contains two
delays, the first delay determines the rise delay, the second delay determines the fall delay, and the
smaller of the two delays specifies the delay of transitions to X and Z. If the specification contains
three delays, the first delay determines the rise delay, the second delay determines the fall delay,
the third delay determines the delay of transitions to Z, and the smallest of the three delays applies

to transitions to X.

Verilog HDL LRM

Gate and Switch Level Modeling o 62



Some combinations of data input values and control input values cause these gates to output either
of two values, without a preference for either value. These gates’ logic tables include two symbols
representing such unknown results. The symbol L represents a result which has a value of 0 or Z.
The symbol H represents a result which has a value of 1 or Z. Delays on transitions to H or L are the same
as delays on transitions to X.

These four gates have one output, one data input, and one control input. The first terminal in the terminal list
connects to the output, the second connects to the data input, and the third connects to the control input.

Table 6-5 presents these gates’ logic tables:

buf1£0 CONTROL bufif 1 CONTRCL
01 = = 01 = =
1] 0 = L 1] =z 0 L L
D D
a2 1 1 = H H A 1 =z 1 H H
T T
L ¥ ¥ T X X L E T K X X
= E T H X = T H H X
notif(l CONTEROL notifl CONTEROL
01 = = 0 1 = =
" 1] 1 =z H H " 1] z 1 H H
A 1 0=z L L A 1 = 0 L L
T T
A X ¥E £ E X A X T X E X
= E £ H X = E H HE X

Table 6-5: Logic tables for bufif0, bufifl, notif0, and notifl gates

The following example declares a bufifl:

bufifl (outw, inw, controlw);

The output is outw, the input is inw, and the control is controlw.

6.5 MOS Switches

Models of MOS networks consist largely of the following four primitive types:

nnos pnos rnNosS rpnos
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The pmos keyword stands for PMOS transistor and the nmos keyword stands for NMOS transistor.
PMOS and NMOS transistors have relatively low impedance between their sources and drains when they
conduct. The rpmos keyword stands for resistive PMOS transistor and the rnmos keyword stands for
resistive NMOS transistor. Resistive PMOS and resistive NMOS transistors have significantly higher
impedance between their sources and drains when they conduct than PMOS and NMOS transistors have.
The load devices in static MOS networks are examples of rpmos and rnmos gates. These four gate types are
unidirectional channels for data similar to the bufif gates.

Declarations of these gates begin with one of the following keywords:

pnos nnos I pnos rnnos

A delay specification follows the keyword. The next item is the optional identifier. A terminal list
completes the declaration.

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no delay
through the switch. A single delay determines the delay of all output transitions. If the specification
contains two delays, the first delay determines the rise delay, the second delay determines the fall
delay, and the smaller of the two delays specifies the delay of transitions to Z and X. If there are
three delays, the first delay specifies the rise delay, the second delay specifies the fall delay, the
third delay determines the delay of transitions to Z, and the smallest of the three delays applies to
transitions to X. Delays on transitions to H and L are the same as delays on transitions to X.

These four switches have one output, one data input, and one control input. The first terminal in the
terminal list connects to the output, the second terminal connects to the data input, and the third
terminal connects to the control input.

The nmos and pmos switches pass signals from their inputs and through their outputs with a change
in the signals’ strengths in only one case, discussed in Section 6.12 Strength Reduction by Non-
Resistive Devices. The rnmos and rpmos gates reduce the strength of signals that propagate
through them, as discussed in Section 6.13 Strength Reduction by Resistive Devices.

Some combinations of data input values and control input values cause these switches to output
either of two values, without a preference for either value. These switches’ logic tables include two
symbols representing such unknown results. The symbol L represents a result which has a value of
0 or Z. The symbol H represents a result which has a value of 1 or Z.

Table 6-6 presents these switches’ logic tables:

Emos COHTEROL omos CONTEROL
rpmos o0 1 = = EIUN OS o 1 = =
] o0 = L L o =z 0

L L

1 1 = H H n 1 z 1

T T

PO x Z xR X n *® T X X X
= Z T E T = T T T =
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Table 6- 6: Logic tables for pmos, rpmos, nmos, and rnmos gates

The following example declares a pmos switch:

pnos (out, data,control);

The output is out, the data input is data, and the control input is control.

6.6 Bidirectional Pass Switches

Declarations of these devices begin with one of the following keywords:

tran trani fl trani fO
rtran rtrani f1 rtrani fO

A delay specification follows the keywords in declarations of tranifl, tranif0, rtranifl, and rtranif0;
the tran and rtran devices do not take delays. The next item is the optional identifier. A terminal list
completes the declaration.

The delay specifications for tranifl, tranif0, rtranifl, and rtranifO devices can be zero, one, or two
delays. If there is no delay, the device has no turn-on or turn-off delay. If the specification contains
one delay, that delay determines both turn-on and turn-off delays. If there are two delays, the first
delay specifies the turn-on delay, and the second delay specifies the turn-off delay.

These six devices do not delay signals propagating through them. When these devices are turned
off they block signals, and when they are turned on they pass signals.

The tranifl, tranif0, rtranifl, and rtranifO devices have three items in their terminal lists. Two are
bidirectional terminals that conduct signals to and from the devices, and the other terminal
connects to a control input. The terminals connected to inouts precede the terminal connected to the
control input in the terminal list.

The tran and rtran devices have terminal lists containing two bidirectional terminals.

The bidirectional terminals of all six of these devices connect only to scalar nets or bit selects of
expanded vector nets.

The tran, tranif0, and rtranifl devices pass signals with an alteration in their strength in only one
case, discussed in Section 6.12 Strength Reduction by Non-Resistive Devices. The rtran, rtranif0,
and rtranif1 devices reduce the strength of signals passing through them according to rules
discussed in Section 6.13 Strength Reduction by Resistive Devices.

The following example declares a tranif1:

tranif1l (inoutl,inout?2, control);
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The bidirectional terminals are inoutl and inout2. The control input is control.

6.7 cmos Gates

Declarations of these gates begins with one of these keywords:

cnos rcnos

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no delay
through the gate. A single delay specifies the delay for all transitions. If the specification contains
two delays, the first delay determines the rise delay, the second delay determines the fall delay, and
the smaller of the two delays is the delay of transitions to Z and X. If the specification contains
three delays, the first delay controls rise delays, the second delay controls fall delays, the third
delay controls transitions to Z, and the smallest of the three delays applies to transitions to X.
Delays in transitions to H or L are the same as delays in transitions to X.

The cmos and rcmos gates have a data input, a data output, and two control inputs. In the terminal
list, the first terminal connects to the data output, the second connects to the data input, the third
connects to the n-channel control input, and the last connects to the p-channel control input.

The cmos gate passes signals with an alteration in their strength in only one case, discussed in
subsection 6.12 Strength Reduction by Non-Resistive Devices. The remos gate reduces the strength
of signals passing through it according to rules that appear in Section 6.13 Strength Reduction by
Resistive Devices.

The cmos gate is the combination of a pmos gate and an nmos gate. The rcmos gate is the
combination of an rpmos gate and an rnmos gate. The combined gates in these configurations share
data input and data output terminals, but they have separate control inputs.

The equivalence of the cmos gate to the pairing of an nmos gate and a pmos gate is detailed in the
following explanation:
cnos (w, datain, ncontrol, pcontrol);

1s equivalent to:

nmos (w, datain, ncontrol);
prmos (w, datain, pcontrol);

6.8 pullup and pulldown Sources

Declarations of these sources begin with one of the following keywords:

pul [ up pul | down
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A strength specification follows the keyword, and an optional identifier follows the strength
specification. A terminal list completes the declaration.

A pullup source places a logic value of 1 on the nets listed in its terminal list. A pulldown source
places a logic value of 0 on the nets listed in its terminal list. The signals that these sources place
on nets have pull strength in the absence of a strength specification. There are no delay
specifications for these sources because the signals they place on nets continue throughout
simulation without variation.

The following example declares two pullup instances:

pul lup (strongl)(neta), (neth);

In this example, one gate instance drives neta and the other drives netb.

6.9 Implicit Net Declarations

Including a previously unused identifier in a terminal list implicitly declares a new net of the wire
type with zero delay.

Each implicitly declared net must connect to one or more of the following:
e gate output
e tranif bidirectional term na

e nodul e out put port

Refer to Section C.2 “default nettype for a discussion of the compiler directive
‘default_nettype.

6.10 Logic Strength Modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates,
resistive MOS devices, dynamic MOS, charge sharing, and other technology dependent network
configurations by allowing scalar net signal values to have a full range of unknown values and
different levels of strength or combinations of levels of strength. This multiple level logic strength
modeling resolves combinations of signals into known or unknown values to represent the behavior
of hardware with maximum accuracy.

A strength specification has two components:
1. the strength of the 0 portion of the net value, designated <STRENGTHO> in Syntax 6-1
2.  the strength of the 1 portion of the net value, designated <STRENGTH1> in Syntax 6-1

Despite this division of the strength specification, it is helpful to consider strength as a property
occupying regions of a continuum in order to predict the results of combinations of signals.
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Table 6-7 demonstrates the continuum of strengths in the Verilog HDL. The left column lists the
keywords used in specifying strengths. The right column gives correlated strength levels:

strenqgth name strenqgth level

N

supplyO
strong0
pull0
large0
weak
mediumO0
smallO
highz0
highz1
small1
medium1
weak1
large1
pull1
strong1

supply1

~NO OB, WON 200 -~~DNWHMOIO

Table 6- 7: Strength levels for scalar net signal values

In the preceding table there are four driving strengths:

supply strong pul | weak

Signals with driving strengths propagate from gate outputs and continuous assignment outputs.

In the preceding table there are three charge storage strengths:

| ar ge medi um smal |

Signals with the charge storage strengths originate in the trireg net type.

It is possible to think of the strengths of signals in the preceding table as locations on the scale in
Figure 6-1.
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Figure 6- 1: Scale of strengths

Discussions of signal combinations later in this document will employ graphics similar to Figure
6-1.

If a net signal value is known, its strength levels are all in either the O strength part of the scale
represented by Figure 6-1, or they are all in its 1 strength part. If a net signal value is unknown, it
has strength levels in both the 0 strength and the 1 strength parts. A signal with a value of Z has a
strength level only in one of the 0 subdivisions of the parts of the scale.

6.11 Strengths and Values of Combined Signals

In addition to a value, a signal has either a single unambiguous strength level or it has an
ambiguous strength, consisting of more than one level. When signals combine, their strengths and
values determine the strength and value of the resulting signal in accord with the principles in the
four subsections that follow.

6.11.1 Combined Signals of Unambiguous Strength

This subsection deals with combinations of signals in which each signal has a known value and a
single strength level.

If two signals of unequal strength combine in a wired net configuration, the stronger signal is the
result. This case appears in Figure 6-2.

Pul {5)

St{6)
St {6)
Sul {7)

Sul (7)
Tal{d}—

Figure 6- 2: Combining unequal strengths

In Figure 6-2, the numbers in parentheses indicate the relative strengths of the signals. The
combination of a pull 1 and a strong 0 results in a strong 0, which is the stronger of the two signals.
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The combination of two signals of like value results in the same value with the greater of the two
strengths.

The combination of signals identical in strength and value results in the same signal.

The combination of signals with unlike values and the same strength has three possible results.
Two of the results occur in the presence of wired logic and the third occurs in its absence.
Subsection 6.11.4 Wired Logic Net Types discusses wired logic. The result in the absence of wired
logic is the subject of the first figure in the next subsection.

6.11.2 Ambiguous Strengths: Sources and Combinations

There are several classifications of signals possessing ambiguous strengths:
e signals with known values and multiple strength levels

e signals with a value of X, which have strength levels consisting of subdivisions of both the
strength 1 and the strength O parts of the scale of strengths in Figure 6-1

e signals with a value of L, which have strength levels that consist of high impedance joined
with strength levels in the 0 strength part of the scale of strengths in Figure 6-1

e signals with a value of H, which have strength levels that consist of high impedance joined
with strength levels in the 1 strength part of the scale of strengths in Figure 6-1

Many configurations can produce signals of ambiguous strength. When two signals of equal
strength and opposite value combine, the result has a value of X and the strength levels of both
signals and all the smaller strength levels. Figure 6-3 shows the combination of a weak signal with
a value of 1 and a weak signal with a value of 0 yielding a signal with weak strength and a value of
X.

W=l
ek

W=l

Figure 6- 3: Combination of signals of equal strength and opposite values

This signal is described in Figure 6-4.

0 strength 1 strength
fla|a(4)3(2|1|0|0|1]|2|3F|[4|6]6|F
Sl =0l Bl T01 TEQ) M0l Sl Hi-T) Hi S

Figure 6-4: Weak X signal strength
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An ambiguous signal strength can be a range of possible values. An example is the strength of the
output from the tristate drivers with unknown control inputs in Figure 6-5.

A
IJ bufifl
Sth P StH

bafifl
el L/’/

Figure 6-5: Bufifs with control inputs of X

Px

Wel

The output of the bufifl in Figure 6-5 is a strong H, composed of the range of values described in Figure
6-6.

0 strength 1 strength
Fleg|s (43 (21|00 |1)2|3F|4|5]|6|7F
Sl Sel Bl T=00 TEQ) FE0| SN HAT B o

Figure 6- 6: Strong H range of values

The output of the bufif0 in Figure 6-5 is a weak L, composed of the range of values described in Figure
6-7.

0 strength 1 strength
Fla|a(413|(2|1|J0|0|1]|2]|3|[a4|56]6|F
S0 Se0l Bl Ta00 el M0l SpllHTET) Hi S

Figure 6- 7: Weak L range of values

The combination of two signals of ambiguous strength results in a signal of ambiguous strength.
The resulting signal has a range of strength levels that includes the strength levels in its component
signals. The combination of outputs from two tristate drivers with unknown control inputs, shown

in Figure 6-8, is an example.
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Figure 6- 8: Combined signals of ambiguous strength

In Figure 6-8, the combination of signals of ambiguous strengths produces a range which includes
the extremes of the signals and all the strengths between them, as described in Figure 6-9.

0 strength 1 strength
Fle|a(d4)3 (21|00 |1]|2]|3|[4|5]|]6|7F
Sl S0l Bl T01 TE0) M0l Sl HTI B S

Figure 6-9: An unknown signal’s range of strengths

The result is an X because its range includes the values of 1 and 0. The number 35, which precedes
the X, is a concatenation of two digits. The first is the digit 3, which corresponds to the highest
strength level for the result’s value of 0. The second digit, 5, corresponds to the highest strength
level for the result’s value of 1.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the
upper and lower configurations in Figure 6-10.

Ful &

| | ks
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Full (5 =
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Figure 6- 10: Ambiguous strengths from switch networks

In Figure 6-10, the upper combination of a register, a gate controlled by a register of unspecified
value, and a pullup produces a signal with a value of 1 and a range of strengths (651) described in
Figure 6-11.

0 strength 1 strength
Fleg|a (4|3 (21|00 |0]|1)2)3F|4|5]|6|7
S0l S0l Bull Ta00 TEO) 0| S0l HAT] H S

Figure 6- 11: Range of two strengths of a defined value

In Figure 6-10 the lower combination of a pulldown, a gate controlled by a register of unspecified
value, and an and gate produces a signal with a value of 0 and a range of strengths (530) described
in Figure 6-12.

0 strength 1 strength
rle |5 (4|3 (2100|122 |4|5]|6|T7
S0l Se0l Ball Ts00 TE0) M0 S0l HAET] H S

f—

Figure 6- 12: Range of three strengths of a defined value

When the signals from the upper and lower configurations in Figure 6-10 combine, the result is an
unknown with a range (56X) determined by the extremes of the two signals shown in Figure 6-13.

0 strength 1 strength
fle |5 (43 (2(1]Jojo 1|22 |4|5]|6|T7
Sl Se0l Bl T=00 TEQ) MEQ) Sl HAET) B b=

f—

Figure 6- 13: Unknown value with a range of strengths

In Figure 6-10, replacing the pulldown in the lower configuration with a supply0 would change the
range of the result to the range (StX) described in Figure 6-14.
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Figure 6- 14: Strong X range

The range in Figure 6-14 is strong X, because it is unknown and both of its components’ extremes
are strong. The extreme of the output of the lower configuration is strong because the lower pmos
reduces the strength of the supply0 signal. Section 6.12 discusses this modeling feature.

Logic gates produce results with ambiguous strengths as well as tristate drivers. Such a case
appears in Figure 6-15.

a=1 — I StH and(ztrongl highzd) Ala,b);
A }7 and(strongl, wealkd Bic,d);
b= — -
SEX
£=0 _?
d=0 —— A Wed

Figure 6- 15: Ambiguous strength from gates

In Figure 6-15, register b has an unspecified value, so its input to the upper and gate is strong X.
The upper and gate has a strength specification including highz0. The signal from the upper and
gate is a strong H composed of the values described in Figure 6-16.

0 strength 1 strength
fl6 |5 (4|3 (21|00 |1]|2|3|4|5]|6]|F
S0l Se0l Bull Ts00 TE0) 0| S HAwT] H S

Figure 6- 16: Ambiguous strength signal from a gate

HiZO0 is part of the result, because the strength specification for the gate in question specified that
strength for an output with a value of 0. A strength specification other than high impedance for the
0 value output results in a gate output of X. The output of the lower and gate is a weak 0 described
in Figure 6-17.
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Figure 6-17: Weak 0

When the signals combine, the result is the range (36X) described in Figure 6-18.

0 strendth 1 strength
fle|s(aj3|(2(1]o (o |1]2)3|[4|5]6|T
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Figure 6- 18: Ambiguous strength in combined gate signals

This figure presents the combination of an ambiguous signal and an unambiguous signal. Such
combinations are the topic of the next subsection of this document.

6.11.3 Ambiguous Strength Signals and Unambiguous Signals

The combination of a signal with unambiguous strength and known value with another signal of
ambiguous strength presents several possible cases. To understand a set of rules governing this
type of combination, it is necessary to consider the strength levels of the ambiguous strength signal
separately from each other and relative to the unambiguous strength signal. When a signal of
known value and unambiguous strength combines with a component of a signal of ambiguous
strength, these are the effects:

Rule 1:

The strength levels of the ambiguous strength signal that are greater than the strength level of the
unambiguous signal remain in the result.

Rule 2:

The strength levels of the ambiguous strength signal that are smaller than or equal to the strength
level of the unambiguous signal disappear from the result, subject to Rule 3.

Rule 3:

If the operation of Rule 1 and Rule 2 results in a gap in strength levels because the signals are of
opposite value, the signals in the gap are part of the result.

The following figures show some applications of the rules.
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Cormbining the two signals above results in the follbwing signal-
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Figure 6- 19: Elimination of strength levels

In Figure 6-19, the strength levels in the ambiguous strength signal that are smaller than or equal
to the strength level of the unambiguous strength signal disappear from the result, demonstrating
Rule 2.

0 strendgth 1 strength
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Corbining the two signals abowve results in the following =anal:

0 strength 1 strength
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Figure 6- 20: Result demonstrating a range and the elimination of strength levels of two
values
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In Figure 6-20, Rule 1, Rule 2, and Rule 3 apply. The strength levels of the ambiguous strength
signal that are of opposite value and lesser strength than the unambiguous strength signal disappear
from the result. The strength levels in the ambiguous strength signal that are less than the strength
level of the unambiguous strength signal, and of the same value, disappear from the result. The
strength level of the unambiguous strength signal and the greater extreme of the ambiguous
strength signal define a range in the result.
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Corbining the two zignals abowve rezults in the following sanal:
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Figure 6- 21: Result demonstrating a range and the elimination of strength levels of one
value

In Figure 6-21, Rule 1 and Rule 2 apply. The strength levels in the ambiguous strength signal that
are less than the strength level of the unambiguous strength signal disappear from the result. The
strength level of the unambiguous strength signal and the strength level at the greater extreme of
the ambiguous strength signal define a range in the result.
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Corbining the two zignals abowve rezults in the following sanal:
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Figure 6- 22: A range of both values

In Figure 6-22, Rule 1, Rule 2, and Rule 3 apply. The greater extreme of the range of strengths for
the ambiguous strength signal is larger than the strength level of the unambiguous strength signal.
The result is a range defined by the greatest strength in the range of the ambiguous strength signal

and by the strength level of the unambiguous strength signal.

6.11.4 Wired Logic Net Types

The net types triand, wand, trior, and wor resolve conflicts when multiple drivers are at the same
level of strength. These net types resolve signal values by treating signals as inputs of logic

functions.

For example, consider the combination of two signals of unambiguous strength in Figure 6-23.
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Figure 6- 23: Wired logic with unambiguous strength signals

The combination of the signals in Figure 6-23, using wired AND logic, produces a result with the
same value as the result produced by an AND gate with the two signals’ values as its inputs. The
combination of signals using wired OR logic produces a result with the same value as the result
produced by an OR gate with the two signals’ values as its inputs. The strength of the result is the
same as the strength of the combined signals in both cases. If the value of the upper signal changes
so that both signals in Figure 6-23 possess a value of 1, then the results of both types of logic have

a value of 1.

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of
all combinations of each of the strength levels in the first signal with each of the strength levels in
the second signal, as shown in Figure 6-24.
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Figure 6- 24: Wired logic and ambiguous strengths
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6.12 Strength Reduction by Non-Resistive Devices

The nmos, pmos, and cmos gates pass through the strength from the data input to the output, except
that a supply strength is reduced to a strong strength.

The tran, tranif0, and tranif1 gates do not affect signal strength across the bidirectional terminals,
except that a supply strength is reduced to a strong strength.

6.13 Strength Reduction by Resistive Devices

The rnmos, rpmos, rcmos, rtran, rtranifl, and rtranif0 devices reduce the strength of signals that
pass through them according to Table 6-8.

input strength reduced strength
supply drive pull drive

strong drive pull drive

pull drive weak drive

weak drive medium capacitor
large capacitor medium capacitor
medium capacitor small capacitor
small capacitor small capacitor
high impedance high impedance

Table 6- 8: Strength reduction rules

6.14 Strengths of Net Types

The tri0, tril, supply0, and supplyl net types generate signals with specific strength levels. The
trireg declaration can specify either of two signal strength levels other than a default strength level.

6.14.1 tril Net Strengths

The tri0 net type models a net connected to a resistive pulldown device. Its signal has a value of 0
and a pull strength in the absence of an overriding source. The tril net type models a net connected
to a resistive pullup device: its signal has a value of 1 and a pull strength in the absence of an
overriding source.tri0 and

6.14.2 trireg Strength

The trireg net type models charge storage nodes. The strength of the drive resulting from a trireg
net that is in the charge storage state (that is, a driver charged the net and then went to high
impedance) is one of these three strengths: large, medium, or small. The specific strength
associated with a particular trireg net is specified by the user in the net declaration. The default is
medium. The syntax of this specification is described in Section 3.4.1 Charge Strength3.4.1.
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6.14.3 supply0 and supplyl Net Strengths

The supply0 net type models ground connections. The supplyl net type models connections to
power supplies. The supply0 and supply1 net types have supply driving strengths.

6.15 Gate and Net Delays

Gate and net delays provide a means of accurately describing delays through a circuit. The gate
delays specify the signal propagation delay from any gate input to the gate output. Up to three
values per output can be specified. The descriptions in this chapter of each gate type give the rules
for which gates can take how many delays—see Section 6.2 and, nand, nor, or, xor, and xnor Gates
through Section 6.7 cmos Gates.

Net delays refer to the time it takes from any driver on the net changing value to the time when the
net value is updated and propagated further. Up to three delay values per net can be specified.

For both gates and nets, the default delay is zero when no delay specification is given. When one
delay value is given, then this value is used for all propagation delays associated with the gate or
net. The following is an example of a delay specification with one delay:

and #(10) (out, inl, in2);

The following is an example of a delay specification with two delays:

and #(10, 12) (out, inl, in2);

When two delays are given, the first specifies the rise delay and the second specifies the fall delay.
The delay when the signal changes to high impedance or to unknown is the lesser of the two delay
values.

The following is an example of a delay specification with three delays:

and #(10, 12, 11) (out, inl, in2);

For a three delay specification:
o the first delay refers to the transition to the 1 value (rise delay)
e the second delay refers to the transition to the 0 value (fall delay)
e the third delay refers to the transition to the high impedance value
When a value changes to the unknown (X) value, the delay is the smallest of the three delays.

Table 6-9 summarizes the from-to propagation delay choice for the two and three delay
specifications.
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delay used if there are:

from value: to value: 2 delays 3 delays
0 1 d1 d1
0 X min(d1, d2) min(d1, d2, d3)
0 z min(d1, d2) d3
1 0 d2 d2
1 X min(d1, d2) min(d1, d2, d3)
1 z min(d1, d2) d3
X 0 d2 d2
X 1 d1 d1
X z min(d1, d2) d3
z 0 d2 d2
z 1 d1 d1
z X min(d1, d2) min(d1, d2, d3)

Table 6-9: Rules for propagation delays

The following example specifies a simple latch module with tri-state outputs, where individual
delays are given to the gates. The propagation delay from the primary inputs to the outputs of the
module will be cumulative, and depends on the signal path through the network.

module tri_latch (qout, ngout, clock ,data, enable);

output gout, nqout;
input clock, data, enable;
tri qout, nqgout;
not #5
(ndata, data);
nand #(3,5)
(wa, data, clock),
(wb, ndata, clock);
nand #(12,15)
(9, nqg, wa),
(na, g, wb);
bufif1 #(3,7,13)
g_drive (qout, g, enable),
ng_drive (nqout, nq, enable);
endmodule

Example 6- 1: Using delay values
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6.15.1 min/typ/max Delays

The syntax for delays on gate primitives (including User-Defined Primitives), nets, and continuous
assignments allows three values each for the rising, falling, and turn-off delays. The minimum,
typical, and maximum values for each are specified as constant expressions separated by colons.
The following example shows min/typ/max values for rising, falling, and turn-off delays:

module iobuf(io1, i02, dir);
[ ]

bufif0 #(5:7:9, 8:10:12, 15:18:21) (io1, i02, dir);
bufif1 #(6:8:10, 5:7:9, 13:17:19) (io2, io1, dir);

endmodule

Example 6- 2: Syntax example for delay expressions

Tools typically default to one set of delay values (usually the typical set) for the processing of one
model. A tool may or may not allow the user to select one set for a processing run.

The syntax for delay controls in procedural statements also allows minimum, typical, and
maximum values. These are specified by expressions separated by colons. Example 6-3 illustrates
this concept.

parameter
min_hi = 97, typ_hi =100, max_hi = 107;
reg clk;
always
begin
#(95:100:105) clk = 1;
#(min_hi:typ_hi:max_hi) clk = 0;
end

Example 6- 3: Delay controls in procedural statements

6.15.2 trireg Net Charge Decay

Like all nets, a trireg declaration’s delay specification can contain up to three delays. The first two
delays specify the simulation time that elapses in a transition to the 1 and 0 logic states when the
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trireg is driven to these states by a driver. The third delay specifies the charge decay time instead of
the time that elapses in a transition to the z logic state. The charge decay time specifies the
simulation time that elapses between when a trireg’s drivers turn off and when its stored charge can
no longer be determined.

A trireg needs no turn-off delay specification because a trireg never makes a transition to the z
logic state. When a trireg’s drivers make transitions from the 1, 0, or x logic states to off, the trireg
retains the previous 1, 0, or x logic state that was on its drivers. The z value does not propagate
from a trireg’s drivers to a trireg. A trireg can only hold a z logic state when z is the trireg’s initial
logic state or when it is forced to the z state with a force statement.

A delay specification for charge decay models a charge storage node that is not ideal, a charge
storage node whose charge leaks out through its surrounding devices and connections.

This section describes the charge decay process and the delay specification for charge decay.

The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg to an unknown value (x)
after a specified number of time units. The charge decay time is that specified number of time
units.

The charge decay process begins when the trireg’s drivers turn off and the trireg starts to hold
charge. The charge decay process ends under the following two conditions:

1.  The specified number of time units elapse and the trireg makes a transition from 1 or 0 to x.

2. The trireg’s drivers turn on and propagate a 1, 0 or x into the trireg.

The delay specification for charge decay time

The third delay in a trireg declaration specifies the charge decay time. A three-valued delay
specification in a trireg declaration has the following form:

#(d1, d2, d3)
/1l three delays

[/ (rising_delay,falling delay, charge _decay_ti ne)

The specification in a trireg declaration of the charge decay time must be preceded by a rise and
fall delay specification. The following example shows a specification of the charge decay time in a
trireg declaration:

trireg (large) #(0,0,50) capi;

This example declares a trireg with the identifier capl. This trireg stores a large charge. The delay
specifications for the rise delay is 0, the fall delay is 0, and the charge decay time specification is
50 time units.
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Example 6-4 presents a source description file that contains a trireg declaration with a charge
decay time specification. Figure 6-25 assists you in reading the source description file.

gate

data

nmo=1

Figure 6-25: This figure accompanies the example below

mochle capecitor;
r=g dota, gate;

triTeg deciznador
with 3 ciEmedecas e
af S Hinre oriits

triveg {large) #(0.0,50% copl.

moe rnosl (capl . data, gate)

imitial nmosEwich thetdnes

te trireg
E=gin
smord o "H0d data = M gate = S capl
gate = 1;
#10 gat=
#100 $find=h
ard

$time data,gate ool )
#30 gat=

data = 1;
0;
- od i o e
#10 gate = 0: e bt e

]
—

arnotule

Example 6- 4: Trireg with a charge decay
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User-Defined Primitives (UDPs)

7.0 UDP Overview

This chapter describes a modeling technique whereby the user can effectively augment the set of
predefined gate primitives by designing and specifying new primitive elements called user-defined
primitives (UDPs). Instances of these new UDPs can then be used in exactly the same manner as
the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a user-defined primitive:
e combinational—modeled by a combinational UDP
e sequential—modeled by a sequential UDP

A sequential UDP uses the value of its inputs and the current value of its output to determine the
next value of its output. Sequential UDPs provide an easy way to model sequential circuits such
as flip-flops and latches. A sequential UDP can model both level-sensitive and edge-sensitive
behavior.

Implementation Specific Detail: [n sources compatible with some existing tools the number of
inputs of each user-defined primitive may be limited by the
implementation.

Each UDP has exactly one output, which can be in one of three states: 0, 1, or x. The tri-state value
z 1s not supported. In sequential UDPs, the output always has the same value as the internal state.

Implementation Specific Detail: The maximum number of UDPs that a user can define in a
model may be limited by the implementation.

7.1 Syntax

The formal syntax of the UDP definition is as follows:

<UDP>
::=primitive<name_of UDP>(<output_terminal_name>,
<input_terminal_name> <,<input_terminal_name>>%);
<UDP_declaration>+
<UDP_initial_statement>?
<table definition>
endprimitive

<name_of_UDP>
::=<IDENTIFIER>

<UDP_declaration>
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::=<UDP_output_declaration>
||=<reg_declaration>
||=<UDP_input_declaration>

<UDP_output_declaration>
::= output <output_terminal _name>;

<reg_declaration>
reg <output_terminal_name> ;

<UDP_input_declaration>
::= input <input_terminal _name>
<,<input_terminal_name>>%);

<UDP _initial_statement>
::= initial <output_terminal_name> = <init_val> ;

<init_val>
=1'b0
[|= 1'b1
[|= 1'bx
|I=1
I=0

<table_definition>
..=table
<table_entries>
endtable

<table_entries>
::=<combinational_entry>+
||=<sequential_entry>+

<combinational_entry>
:==<level_input_list>:<OUTPUT_SYMBOL>;

<sequential_entry>
:=<input_list>:<state>:<next_state>;

<input_list>
i=<level_input_list>
||I=<edge_input_list>

<level_input_list>
:=<LEVEL_SYMBOL>+
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<edge_input_list>
:=<LEVEL_SYMBOL>*<edge><LEVEL_SYMBOL>*

<edge>
::=(<LEVEL_SYMBOL><LEVEL_SYMBOL>)
||=<EDGE_SYMBOL>

<state>
::=<LEVEL_SYMBOL>

<next_state>
::=<OUTPUT_SYMBOL>
[|=- (This is a literal hyphen,
see Section 7.12 Summary of Symbols for more details)

Lexical tokens:
<OUTPUT_SYMBOL> is one of the following:
01 x X
<LEVEL_SYMBOL> is one of the following:
01 x X ? b B
<EDGE_SYMBOL> is one of the following:
r R f F p P n N *

Syntax 7- 1: Syntax for user-defined primitivess

7.2 UDP Definition

UDP definitions are independent of modules; they are at the same level as module definitions in the
syntax hierarchy. They can appear anywhere in the source text, either before or after they are used
inside a module. They MAY NOT appear between the keywords module and endmodule.

A UDP definition begins with the keyword primitive. This is followed by an identifier, which is the
name of the UDP. This in turn is followed by a comma separated list of terminals enclosed in
parentheses, which is followed by a semicolon.

The UDP definition header described previously is followed by terminal declarations and a state

table. The UDP definition is terminated by the keyword endprimitive.

7.2.1 UDP Terminals

UDPs have multiple input terminals and exactly one output terminal; they cannot have
bidirectional inout terminals.

The output terminal MUST be the first terminal in the terminal list.

All UDP terminals are scalar. No vector terminals are allowed.
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The output terminal of a sequential UDP requires an additional declaration as type reg. It is illegal
to declare a reg for the output terminal of a combinational UDP.

7.2.2 UDP Declarations

UDPs must contain input and output terminal declarations. The output terminal declaration begins
with the keyword output, followed by one output terminal name. The input terminal declaration
begins with the keyword input, followed by one or more input terminal names.

Sequential UDPs must contain a reg declaration for the output terminal. Combinational UDPs
cannot contain a reg declaration. The initial value of the output terminal reg can be specified in an
initial statement in a sequential UDP.

7.2.3 Sequential UDP initial Statement

The sequential UDP initial statement specifies the value of the output terminal when simulation
begins. This statement begins with the keyword initial. The statement that follows must be an
assignment statement that assigns a single bit literal value to the output terminal reg.

7.2.4 UDP State Table

The state table which defines the behavior of a UDP begins with the keyword table and is
terminated with the keyword endtable.

Each row of the table is created using a variety of characters which indicate input and output states.
Three states—0, 1, and x—are supported. The z state is explicitly excluded from consideration in
user-defined primitives. A number of special characters are defined to represent certain
combinations of state possibilities. These are detailed in this chapter, in Section 7.8 Symbols to
Enhance Readability.

The order of the input state fields of each row of the state table is taken directly from the terminal
list in the UDP definition header. It is NOT related to the order of the input declarations.

Combinational UDPs have one field per input and one field for the output. The input fields are
separated from the output field by a colon.

Sequential UDPs have an additional field inserted between the input fields and the output field.
This additional field represents the current state of the UDP and is considered equivalent to the
current output value. It is delimited by colons.

Each row defines the output for a particular combination of input states. If all inputs are specified
as X, then the output must be specified as x. All combinations that are not explicitly specified result
in a default output state of x. Each row of the table is terminated by a semicolon.

Consider the following entry from a UDP state table:
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In this entry the ? represents a don’t care condition—it is replaced by cases of the entry when the ?
is replaced by 1, 0 and x. This specifies that when the inputs are 0 and 1, no matter what the value
of the current state, the output is 1;

It is not necessary to explicitly specify every possible input combination. All combinations which
are not explicitly specified result in a default output state of x.

It is illegal to have the same combination of inputs, including edges, specified for different outputs.

7.3 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input
states. Whenever an input changes state, the UDP is evaluated and one of the state table rows is
matched. The output state is set to the value indicated by that row.

Consider the following example, which defines a multiplexer with two data inputs, and a control
input. Remember, there can only be a single output.

primitive multiplexer (mux, control, dataA, dataB);

output mux;

input control, dataA, dataB;

table

/lcontrol dataA dataB mux
0 1 0 1;
0 1 1 1;
0 1 X 1;
0 0 0 0;
0 0 1 0;
0 0 X 0;
1 0 1 1;
1 1 1 1;
1 X 1 1;
1 0 0 0;
1 1 0 0;
1 X 0 0;
X 0 0 0;
X 1 1 1;

endtable

endprimitive

Example 7- 1: Combinational form of user-defined primitive

The first entry in the table above can be explained as follows: when control equals 0, and dataA
equals 1, and dataB equals 0, then output mux equals 1.
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All combinations of the inputs that are not explicitly specified will drive the output to the unknown
value x. For example, in the table for multiplexer above (Example 7-1), the input combination 0xx
(control=0, dataA=x, dataB=x) is not specified. If this combination occurs during simulation, the
value of output mux will become x.

To improve the readability and to ease writing of the table, several special symbols are provided. A
? represents iteration of the table entry over the values 0, 1, and x—a ? generates cases of that entry
where the ? is replaced by a 0, 1, or x. It represents a don’t-care condition on that input. Using ?,
the description of a multiplexer given in Example 7-1 can be abbreviated as implemented in
Example 7-2.

primitive multiplexer (mux, control, dataA, dataB);

output mux;

input control, dataA, dataB;

table

/[control dataA dataB mux
0 1 ? 1 ; //?=0,1,x
0 0 ? 0o ;
1 ? 1 1 ;
1 ? 0 0 ;
X 0 0 0 ;
X 1 1 1

endtable

endprimitive

Example 7- 2: Special symbols in user-defined primitive

7.4 Level-Sensitive Sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except
that the output is declared to be of type reg, and there is an additional field in each table entry. This
new field represents the current state of the UDP.

The output field in a sequential UDP represents the next state.
Consider the example of a latch in Example 7-3.

primitive latch (q, clock, data);
output q; reg q;
input clock, data;

table
/[clock data q q+
0 1 ? 1;
0 0 ? 0
1 ? 0?7 - /l-=nochange

Verilog HDL LRM User-Defined Primitives (UDPs) o 91



endtable
endprimitive

Example 7- 3: UDP for a latch

This description differs from a combinational UDP model in two ways. First, the output identifier q
has an additional reg declaration to indicate that there is an internal state q. The output value of the
UDP is always the same as the internal state. Second, a field for the current state, which is
separated by colons from the inputs and the output, has been added.

7.5 Edge-Sensitive UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine
the output value. Edge sensitive behavior differs in that changes in the output are triggered by
specific transitions of the inputs. This makes the state table a transition table as illustrated in
Example 7-4.

primitive d_edge_ff (q, clock, data);

output q; reg q;
input clock, data;

table

/lobtain output on rising edge of clock
/I clock data . q gt
(01) 0 0?2 0 ;
(01) 1 Y ;
(0?) 1 1 1 ;
(0?) 0 0 : 0 ;
/lignore negative edge of clock
(?0) ? 7 - ;
/lignore data changes on steady clock
? @ : ? = - ;

endtable

endprimitive

Example 7- 4: UDP for an edge-sensitive D-type flip-flop

Example 7-4 has terms like (01) in the input fields. These terms represent transitions of the input
values. Specifically, (01) represents a transition from 0 to 1. The first line in the table of the above
UDP definition can be interpreted as follows: when clock changes value from 0 to 1, and data
equals 0, the output goes to 0 no matter what the current state.

Please note: Each table entry can have a transition specification on, at most, one input. Entries
such as the one shown below are illegal:
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(01)(01)0 : 0 : 1

As in the combinational and the level-sensitive entries, a ? implies iteration of the entry over the
values 0, 1, and x. A dash (-) in the output column indicates no value change.

All unspecified transitions default to the output value x. Thus, in the previous example, transition
of clock from 0 to x with data equal to 0 and current state equal to 1 will result in the output q
going to x.

All transitions that should not affect the output MUST be explicitly specified. Otherwise, they will
cause the value of the output to change to x. If the UDP is sensitive to edges of any input, the
desired output state must be specified for all edges of all inputs.

7.6 Sequential UDP Initialization

The value on the output terminal of a sequential UDP can be specified with an initial statement that
contains a procedural assignment statement. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begin with the keyword initial.
The valid contents of initial statements in UDPs and the valid left and right hand sides of their
procedural assignment statements differ from initial statements in modules. The difference between
these two types of initial statements is described in Table 7-1.

iritial statementsin UDP =

initial gatements inmodules

contentz limied toone procedural
==signme nt stabe me nt

contents can be one procedural

stabe ment of any type or 2 block

gtabe ment that contsire moe than ans
procedura st=be ment

the prosedural 22signment s=tement
must =esign & vaue to & reg whoes
iderntifier matches the dentifier of an
oulp ut termina

procedurd s==ignment statements in

initizl stsbe mente can se=ign values toa
r=q whoze identifier do=s not maich the
dentifier of an ouput termina

the prosedural 22« ignment stEtemeant
must ==2ign oneof the following valuss:

procedura Sssign ment stabe ments can
=ezign values of any &ize, radi€, and

Bl BT TR 4 o walue

Table 7- 1: Initial statements in UDPs and modules

Example 7-5 shows a sequential UDP that contains an initial statement that specifies that output
terminal q has a value of 1 at the start of the simulation

primitive srff (q,s,r);
output q;

input s,r;

reg q,

initial q = 1'b1;
table
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q gt
?:1;

o 1

s
1
f
0
0 ,

r
0
0:
r:
f:
1 0;

1:
?:
0:-;
11:7?:
endtable

endprimitive

Example 7- 5: Sequential UDP initial statement

In Example 7-5, the output q has an initial value of 1 at the start of the simulation; a delay
specification in the UDP instance does not delay the simulation time of the assignment of this
initial value to the output. When simulation starts, this value is the current state in the state table.

The following example and figure show how values are applied in a module that instantiates a
sequential UDP with an initial statement. Example 7-6 shows the source description for the
module and UDP. This UDP shows an initial statement “initial q =1'b1;” and UDP instances
where “qi” is an output and “q” and “qb” are in the fanout of “qi”.

primitive dff1 (q,clk,d);
input clk,d;
output q;
reg q;
initial
q = 1b1;

table
/! clk

D —h =
* 0 = O Q
NN Y ) QO
-

endtable
endprimitive

module dff (q,qb,clk,d);
input clk,d;
output q,qb;
dfft g1 (qi, clk, d);
buf #3 g2 (q, qi);
not #5 g3 (qb, qi);
endmodule
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Example 7- 6: Instance of a sequential UDP with an initial statement

In Example 7-6, UDP dff1 contains an initial statement that sets the initial value of its output to 1.
Module dff contains an instance of UDP dff1. In this instance, the UDP output is qi; the output’s
fanout includes nets q and gb.

Figure 7-1 shows the schematic of the module in Example 7-6 and the simulation times of the
propagation of the initial value of the output of the UDP.

nodule dff

1IE dffl gl | s

0 3 5
similatim tine

Figure 7- 1: Module schematic and the simulation times of initial value propagation

In Figure 7-1, the fanout from the UDP output qi includes nets q and gb. At simulation time 0, qi
changes value to 1. That initial value of qi does not propagate to net q until simulation time 3, and
does not propagate to net gb until simulation time 5.

7.7 UDP Instances

Instances of user-defined primitives are specified inside modules in the same manner as for gates.
The instance name is optional, just as for gates. The terminal order is as specified in the UDP
definition. Only two delays can be specified, because z is not supported for UDPs.

Example 7-7 creates an instance of the D-type flip-flop d_edge ff (defined in Example 7-4).

module flip;
reg clock, data;
parameter p1=10;
parameter p2 = 33;
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parameter p3 = 12;
d_edge ff #p3 d_inst(q, clock, data);
initial
begin
data = 1;
clock = 1;
end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

Example 7- 7: UPD for a D-type flip-flop

7.8 Symbols to Enhance Readability

Like ?, there are several symbols that can be used in UDP definitions to make the description more
readable. The symbols described in Table 7-2 are used in Example 7-8.

Symbol Interpretation Explanation
b 0 or 1 like ?, except x is excluded
r (01) rising edge on an input
f (10) faling edge on an input
p (01) or rising edges, including
(Ox) or (x1) or unknown
(1z) or (z1)
n (10) or falling edges, including
(1x) or (x0) or unknown
(0z) or (z0)
* (?7?) all transitions

Table 7- 2: Symbols for readability
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7.9 Mixing Level and Edge-Sensitive Descriptions

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same
description. An edge-triggered JK flip-flop with asynchronous preset and clear needs such a

mixture. Example 7-8 illustrates this concept.

primitive jk_edge_ff (q, clock, j, k, preset, clear);

output q; reg q;

input clock, j, k, preset, clear;

table

/Iclock
?

o T T B T B B TG SR Y

b
endtable
endprimitive

jk
27
27
27
27
00
00
01
10
11
11
27
*2
o

pc
01
*1

10
1*
00
11
11
11
11
11
?7?
?7?

??

state

?

NN Y =2 O Y Y VO O Y-

output/next state

1

_ O O -

© = =~ 0O !

)
)
3
)

b

/lpresetlogic
/[clearlogic

/Inormalclockingcases

/ljandktransition cases

Example 7- 8: Sequential UDP for level-sensitive and edge-sensitive behavior

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear
combination is 01, the output has value 1. Similarly, whenever the preset and clear combination has
value 10, the output has value 0.

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is
sensitive to the rising clock edge as indicated by an r in the clock field in those entries. The
insensitivity to the falling edge of clock is indicated by a hyphen (-) in the output field (see Section
7.12 Summary of Symbols) for the entry with an f as the value of clock. Remember that the desired
output for this input transition must be specified to avoid unwanted x values at the output. The last
two entries show that the transitions in j and k inputs do not change the output on a steady low or

high clock.

Verilog HDL LRM

User-Defined Primitives (UDPs) e 97



7.10 Reducing Pessimism

Three-valued logic tends to make pessimistic estimates of the output when one or more inputs are
unknown. User-defined primitives can be used to reduce this pessimism. The following is an
extension of the previous latch example illustrating reduction of pessimism.

primitive latch(q, clock, data);

output q; reg q;
input clock, data;

table
/lclock data state output / next state

0 1?7 1
0 o : 7 0 ;
1 ? 0?7 - ; /l-=no change
/lignore x on clock when data equals state
X o : 0 : -
X 1 1 -

endtable

endprimitive

Example 7- 9: Latch UDP illustrating pessimism

The last two entries specify what happens when the clock input has value x. If these are omitted,
the output will go to x whenever the clock is x. This is a pessimistic model, as the latch should not
change its output if it is already 0 and the data input is 0. Similar analysis is true for the situation
when the data input is 1 and the current output is 1.

Consider the jk flip-flop with preset and clear in Example 7-10.

primitive jk_edge_ff (q, clock, j, k, preset, clear);
output q; reg q;
input clock, j, k, preset, clear;

table
/Il clock  jk pc state output/ next state

/Il preset logic
? ?7? 01 ? 1 ;
? ?? 1 1 1
/I clearlogic
? ?7? 10 : ?2 : 0 ;
? ?? 1 : 0 : 0 ;
/I normal clocking cases
r 00 oo : 0 : 1 ;
r 00 "M ?2 -
r 01 M1 . 2?2 : 0 ;
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r 10 11 ? 01
r 11 11 0 : 1 ;
r 11 11 1 : 0 ;
f ?? ?? ? -
/l'j and k cases

b *? ?? ? -
b 7 7 0?7 0 -
/I cases reducing pessimism

p 00 1 @ 2?2 -
p 0? 1? . 0 : - ;
p ?0 71 1 -
(?0) ?? ?? ? -
(1x) 00 11 ? -
(1x) 07? 1? o : - ;
(1x) ?0 21 1 0 -
X *0 ?1 1 @ -
X o* 17? 0 -

endtable
endprimitive

Example 7- 10: UDP for a JK flip-flop with preset and clear

This example has additional entries for the positive clock (p) edges, the negative clock edges (?0
and 1x), and with the clock value x. In all of these situations, the output is deduced to remain
unchanged rather than going to x. Thus, this model is less pessimistic than the previous example.

7.11 Level-Sensitive Dominance

In the Verilog HDL, edge-sensitive cases are processed first, followed by level-sensitive cases.
When level-sensitive and edge-sensitive cases specify different output values, the result is specified
by the level-sensitive case. The following table shows level-sensitive and edge-sensitive entries in
Example 7-10, their level-sensitive or edge-sensitve behavior, and a case that each includes.

entry included case hehaviar
FArara | I o oo o0l: 0: 1; level =zensitive
£ @ 9t = £t 00 01: 0: 0; edge-zenzitive

Table 7- 3: The level-sensitive and edge-sensitive entries in Example 7-10
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The included cases specify opposite next state values for the same input and current state
combination.

The level-sensitive included case specifies that when the inputs clock, jk and pc values are 0 00
01, and the current state is O, the output changes to 1.

The edge-sensitive included case specifies that when clock falls from 1 to O, and the other inputs jk
and pc are 00 01, and the current state is O, the output changes to 0.

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output
changes to 1.

7.12 Summary of Symbols

The following table summarizes the meaning of all the value symbols that are valid in the table part
of a UDP definition.

Symbol Interpretation Notes

0 logic 0

1 logic 1

X unknown

? iteration of cannot be given in output field
0,1, and x

b iteration of cannot be given in output field
0 and 1

- no change can only be given In the output

field of a sequential UDP

(vw)  value change v and w can be anyone of 0,
from v to w 1, x, ? or b.

* same as (?7?) any value change on input
same as (01) rising edge on input
same as (10) falling edge on input

p iteration of potential positive edge on the
(01), (0x) input
and (x1)

n iteration of potential Negative edge on the
(10), (1x) and (x0) input
and (x0)

Table 7-4: UDP table symbols
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7.13 Examples

//[Description of an AND-OR gate.
/lout=(a1 & a2 & a3) | (b1 & b2).
primitive and_or (out, a1, a2, a3, b1, b2);

output out;

input a1, a2 ,a3, b1, b2;
table

endtable

/I a
111
???
0??
0??
?0?
?0?
??0
??0

endprimitive

b

??
11
07?
?0
07?
?0
07?
?0

out ;

O OO OO0~

Example 7- 11: UDP for a and-or gate

//Maijority function for carry
/I carryout=(a & b) | (a & carryin) | (b & carryin)

primitive carry (carryout, carryin, a, b);

output carryout;

input carryin, a, b;

table

_ A A A OO0 OO0

/[ the following case

- X O O

00
01
10
11
00
01
10
11

Ox
x0
00
1x

S

reduce pessimism
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1

X
endtable
endprimitive

x1
11

Example 7- 12: UDP for a majority function for carry

//Description of a 2-channel multiplexer with storage.

/[The storage is level sensitive.

primitive mux_with_storage (out, clk, control, dataA, dataB);

input clk, control, dataA, dataB,;

output out;

reg out;

table

/I clk  control
1 0
1 0
1 1
1 1
1 X
1 X
0 ?
X 0
X 0
X 1
X 1

endtable

endprimitive

Example 7- 13: UDP for a 2-channel multiplexor with storage

dataA dataB

—

NV O =00 YNy 0O

?

O =V V"V 00—~

current-state
?

O = O = V) N NN D~

next state ;
1 ,

-~ O O -~ 0
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Behavioral Modeling

8.1 Behavioral Model Overview

The language constructs introduced so far allow hardware to be described at a relatively detailed
level. Modeling a circuit with logic gates and continuous assignments reflects quite closely the
logic structure of the circuit being modeled; however, these constructs do not provide the power of
abstraction necessary for describing complex high level aspects of a system. The procedural
constructs described in this chapter are well suited to tackling problems such as describing a
microprocessor or implementing complex timing checks.

The chapter starts with a brief overview of a behavioral model to provide a context in which the
reader can understand the many types of behavioral statements in Verilog. The behavioral
constructs are then discussed in an order that allows us to introduce them before using them in
examples.

Verilog behavioral models contain procedural statements that control the simulation and
manipulate variables of the data types previously described. These statements are contained within
procedures. Each procedure has an activity flow associated with it.

The activity starts at the control constructs initial and always. Each initial statement and each
always statement starts a separate activity flow. All of the activity flows are concurrent, allowing
the user to model the inherent concurrence of hardware.

Example 8-1 is a complete Verilog behavioral model.

module behave;
reg[1:0] a, b;
initial
begin
a = 'b1;
b = 'b0;
end
always
begin
#50 a = ~a;
end
always
begin
#100 b = ~b;
end
endmodule

Example 8- 1: Simple example of behavioral modeling
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During simulation of this model, all of the flows defined by the initial and always statements start
together at simulation time zero. The initial statements execute once, and the always statements
execute repetitively.

In this model, the register variables a and b initialize to binary 1 and 0 respectively at simulation
time zero. The initial statement is then complete and does not execute again during this simulation
run. This initial statement contains a begin-end block (also called a sequential block) of statements.
In this begin-end block a is initialized first, followed by b.

The always statements also start at time zero, but the values of the variables do not change until the
times specified by the delay controls (introduced by #) have gone by. Thus, register a inverts after
50 time units, and register b inverts after 100 time units. Since the always statements repeat, this
model produces two square waves. Register a toggles with a period of 100 time units, and register
b toggles with a period of 200 time units. The two always statements proceed concurrently
throughout the entire simulation run.

8.2 Procedural Assignments

As described in Chapter 5, 5.2 Procedural Assignments, procedural assignments are for updating
reg, integer, time, and memory variables.

There is a significant difference between procedural assignments and continuous assignments:

e Continuous assignments drive net variables and are evaluated and updated whenever an input
operand changes value.

e Procedural assignments update the value of register variables under the control of the
procedural flow constructs that surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value.
However, part-selects on the right-hand side must have constant indices. The left-hand side
indicates the variable that receives the assignment from the right-hand side. The left-hand side of a
procedural assignment can take one of the following forms:

e register, integer, real, or time variable:

an assignment to the name reference of one of these data types
e Dbit-select of a register, integer, real, or time variable:

an assignment to a single bit that leaves the other bits untouched
e part-select of a register, integer, real, or time variable:

a part-select of two or more contiguous bits that leaves the rest of the bits untouched. For the
part-select form, only constant expressions are legal

e memory element:

a single word of a memory. Note that bit and part selects are illegal on memory element
references

e concatenation of any of the above:
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a concatenation of any of the previous four forms can be specified, which effectively
partitions the result of the right-hand side expression and assigns the partition parts, in order,
to the various parts of the concatenation

Please note: Assignment to a register differs from assignment to a real, time, or integer
variable when the right-hand side evaluates to fewer bits than the left-hand side.
Assignment to a register does not sign-extend.

The Verilog HDL contains two type of procedural assignment statements:
¢ blocking procedural assignment statements
e non-blocking procedural assignment statements

Blocking and non-blocking procedural assignment statements specify different procedural flow in
sequential blocks.

8.2.1 Blocking Procedural Assignments

A blocking procedural assignment statement must be executed before the execution of the
statements that follow it in a sequential block (see Section 8.7.1 Sequential Blocks). A blocking
procedural assignment statement does not prevent the execution of statements that follow it in a
parallel block (see Section 8.7.2 Parallel Blocks).

Syntax:

The syntax for a blocking procedural assignment is as follows:

<l val ue> = <timng_control > <expressi on>

Where | val ue is a data type that is valid for a procedural assignment statement, = is the
assignment operator, and timing_control is the optional intra-assignment delay. The timing_control
delay can be either a delay control (for example, #6) or an event control (for example, @(posedge
clk)). The expression is the right-hand side value the simulator assigns to the left-hand side.

The = assignment operator used by blocking procedural assignments is also used by procedural
continuous assignments and continuous assignments.

Example 8-2 shows examples of blocking procedural assignments.
rega = 0;
rega[3] = 1; /l a bit-select
rega[3:5]=7; [/l a part-select
memaladdress] = 8'hff; /[ assignment to a memory element
{carry, acc} = rega + regb; /I a concatenation

Example 8- 2: Examples of blocking procedural assignments
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8.2.2 The Non-Blocking Procedural Assignment

The non-blocking procedural assignment allows you to schedule assignments without blocking the
procedural flow. You can use the non-blocking procedural statement whenever you want to make
several register assignments within the same time step without regard to order or dependance upon
each other.

Syntax:

The syntax for a non-blocking procedural assignment is as follows:

<l val ue> <= <tim ng_control > <expressi on>

Where lvalue is a data type that is valid for a procedural assignment statement, <= is the non-
blocking assignment operator, and timing_control is the optional intra-assignment timing control.
The timing_control delay can be either a delay control (for example, #6) or an event control (for
example, @(posedge clk)). The expression is the right-hand side value the simulator assigns to the
left-hand side.

The non-blocking assignment operator is the same operator the simulator uses for the less-than-
or-equal relational operator. The simulator interprets the <= operator to be a relational operator
when you use it in an expression, and interprets the <= operator to be an assignment operator when
you use it in a non-blocking procedural assignment construct.

How the simulator evaluates non-blocking procedural assignments

When the simulator encounters a non-blocking procedural assignment, the simulator evaluates and
executes the non-blocking procedural assignment in two steps.

1. The simulator evaluates the right-hand side and schedules the assignment of the new value
to take place at a time specified by a procedural timing control.

2. Atthe end of the time step, in which the given delay has expired or the appropriate event
has taken place, the simulator executes the assignment by assigning the value to the left-
hand side.

These two steps are shown in Example 8-3.
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Example 8- 3: How the simulator evaluates non-blocking procedural assignments

At the end of the time step means that the non-blocking assignments are the last assignments
executed in a time step—with one exception. Non-blocking assignment events can create blocking
assignment events. The simulator processes these blocking assignment events after the scheduled

non-blocking events.

Unlike a regular event or delay control, the non-blocking assignment does not block the procedural
flow. The non-blocking assignment evaluates and schedules the assignment, but does not block the
execution of subsequent statements in a begin end block, as shown in Example 8-4.
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Example 8- 4: Non-blocking assignments do not block execution of sequential statements

Please note: As shown in Example 8-5, the simulator evaluates and schedules assignments for
the end of the current time step and can perform swapping operations with the
new non-blocking procedural assignments.

Ssm _blockl w
module non blackl1i{oat, b ;

Sinput

outpat outk

reg a. b

initial begin
E : E erglizies, sohedies, and
o <= ]:n execLiEs v o Sieos
b= a;}

erd

imitial begin

Smomtor (Stime, [ "a = b b= ¥b", a.b):
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erdnodul =
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Example 8- 5: The simulator performs swapping operations with the new non-blocking procedural

assignments
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When you schedule multiple non-blocking assignments to occur in the same register in a particular
time slot, the simulator cannot guarantee the order in which it processes the assignments—the final
value of the register is indeterminate. As shown in Example 8-6, the value of register a is not

known until the end of time step 4.

nodule maltiple? (ot
mtput oat;

The regisier = Sesined vake =
ederiiinae.

-k
==k et
cumer e Nt

Example 8- 6: Multiple non-blocking assignments made in a single time step

If the simulator executes two procedural blocks concurrently, and these procedural blocks contain

non-blocking assignment operators, the final value of the register is indeterminate. For example, in
Example 8-7 the value of register a is indeterminate.

module multipled{out ) ;
cutput cut;

erdncdul=
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ot e et

Example 8- 7: Processing two procedural assignments concurrently

When multiple non-blocking assignments with timing controls are made to the same register, the
assignments can be made without cancelling previous non-blocking assignments. In Example 8-8,
the simulator evaluates the value of i[0] to r1 and schedules the assignments to occur after each

time delay.
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Example 8- 8: Multiple non-blocking assignments with timing controls

8.2.3 How the Simulator Processes Blocking and Non-Blocking Procedural Assignments

For each time slot during simulation, blocking and non-blocking procedural assignments are
processed in the following way:

1.  Evaluate the right-hand side of all assignment statements in the current time slot.

2. Execute all blocking procedural assignments. At the same time, all non-blocking
procedural assignments are set aside for processing.

3. Execute all non-blocking procedural assignments that have no timing controls.

Check for procedures that have timing controls and execute if timing control is set for the
current time unit.

5.  Advance the simulation clock.

8.3 Conditional Statement

The conditional statement (or if-else statement) is used to make a decision as to whether a
statement is executed or not. Formally, the syntax is as follows:

<statement>
.:= if ( <expression> ) <statement_or_null>
||= if ( <expression> ) <statement_or_null>
else <statement_or_null>
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<statement_or_null>
.= <statement>

=
Syntax 8- 1: Syntax of if statement

The <expression> is evaluated; if it is true (that is, has a non-zero known value), the first statement
executes. Ifit is false (has a zero value or the value is x or z), the first statement does not execute.
If there is an else statement and <expression> is false, the else statement executes.

Since the numeric value of the if expression is tested for being zero, certain shortcuts are possible.
For example, the following two statements express the same logic:

i f (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from
a nested if sequence. This is resolved by always associating the else with the closest previous if that
lacks an else. In Example 8-9, the else goes with the inner if, as we have shown by indentation.

if (index > 0)
if (rega > regb)
result = rega;
else // else applies to preceding if
result = regb;

Example 8- 9: Association ofel se in nested if

If that association is not what you want, use a begi n- end block statement to force the proper
association, as shown in Example 8-10.

if(index>0)
begin
if(rega>regb)
result=rega;
end
else
result=regb;

Example 8- 10: Forcing correct association ofel se wi th if
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Begi n- end blocks left out inadvertently can change the logic behavior being expressed, as
shown in Example 8-11.

if(index>0)
for(scani=0;scani<index; scani=scani+1)
if(memory[scani]>0)

begin
$display("...");
memory[scani]=0;
end
else/"WRONG*/

$display("error-indexiszero");

Example 8- 11: Erroneous association ofel se with if

The indentation in Example 8-11 shows unequivocally what you want, but the compiler does not
get the message and associates the else with the inner if. This kind of bug can be very hard to find.

Notice that in Example 8-12, there is a semicolon after result = rega. This is because a
<statement> follows the if, and a sem col on is an essential part of the syntax of a <statement>.

if (rega>regb)
result=rega;

else
result=regb;

Example 8- 12: Use of semicolon ini f st at ement

8.3.1 if-else-if Construct

The following construction occurs so often that it is worth a brief separate discussion:

if (<expression>)
<statement>
else if (<expression>)
<statement>
else if (<expression>)
<statement>
else
<statement>

Syntax 8- 2: Syntax of i f - el se-if construct
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This sequence of if’s (known as an if-else-if construct) is the most general way of writing a multi-
way decision. The expressions are evaluated in order; if any expression is true, the statement
associated with it is executed, and this terminates the whole chain. Each statement is either a single
statement or a block of statements.

The last else part of the if-else-if construct handles the ‘none of the above’ or default case where
none of the other conditions was satisfied. Sometimes there is no explicit action for the default; in
that case, the trailing “else<statement>" can be omitted or it can be used for error checking to catch
an impossible condition.

8.3.2 Example

The module fragment of Example 8-13 uses the if-else statement to test the variable index to
decide whether one of three modify segn registers must be added to the memory address, and
which increment is to be added to the index register. The first ten lines declare the registers and
parameters.

/I Declare registers and parameters
reg[31:0] instruction, segment_area [255:0];
reg[7:0 Jindex;
reg[5:0] modify seg1,
modify_seg2,
modify_seg3;
parameter
segment1 = 0, inc_seg1=1,
segment2 = 20, inc_seg2=2,
segment3 = 64, inc_seg3=4,
data = 128;
Il Test the index variable
if (index < segment2)
begin
instruction = segment_area [index + modify_seg1];
index = index +inc_seg1;
end
else if ( index < segment3)
begin
instruction = segment_area [index + modify_seg?2];
index = index + inc_segz;
end
else if (index < data)
begin
instruction = segment_area [index + modify_seg3];
index = index + inc_seg3;
end

Verilog HDL LRM Behavioral Modeling ¢ 113



else
instruction = segment_area [index];

Example 8- 13: Use of 1 f-el se-if construct

8.4 Case Statement

The case statement is a special multi-way decision statement that tests whether an expression
matches one of a number of other expressions, and branches accordingly. The case statement is
useful for describing, for example, the decoding of a microprocessor instruction. The case
statement has the following syntax:

<statement>
::= case ( <expression> ) <case_item>+ endcase
||= casez ( <expression> ) <case_item>+ endcase
||= casex ( <expression> ) <case_item>+ endcase

<case_item>
;:= <expression> <,<expression>>* : <statement_or_null>
||= default : <statement_or_null>
||= default <statement_or_null>

Syntax 8- 3: Syntax for case st at enent

The default statement is optional. Use of multiple default statements in one case statement is illegal
syntax.

A simple example of the use of the case statement is the decoding of register rega to produce a
value for result as follows:

reg[15:0] rega;
reg [9:0] result;

case (rega)
16'd0: result = 10'b0111111111;

16'd1: result = 10'b1011111111;
16'd2: result = 10'b1101111111;
16'd3: result = 10'b1110111111;
16'd4: result = 10'b1111011111;
16'd5: result = 10'b1111101111;
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16'd6: result = 10'b1111110111;
16'd7: result = 10'b1111111011;
16'd8: result = 10'b1111111101;
16'd9: result = 10'b1111111110;
default result = 'bx;

endcase

Example 8- 14: Use of the case st at ement

The case expressions are evaluated and compared in the exact order in which they are given.
During the linear search, if one of the case item expressions matches the expression in parentheses,
then the statement associated with that case item is executed. If all comparisons fail, and the default
item is given, then the default item statement is executed. If the default statement is not given, and
all of the comparisons fail, then none of the case item statements is executed.

Apart from syntax, the case statement differs from the multi-way if-else-if construct in two
important ways:

1. The conditional expressions in the if-else-if construct are more general than comparing one
expression with several others, as in the case statement.

2. The case statement provides a definitive result when there are x and z values in an
expression.

In a case comparison, the comparison only succeeds when each bit matches exactly with respect to
the values 0, 1, x, and z. As a consequence, care is needed in specifying the expressions in the case
statement. The bit length of all the expressions must be equal so that exact bit-wise matching can
be performed. The length of all the case item expressions, as well as the controlling expression in
the parentheses, will be made equal to the length of the longest <case item> expression. The most
common mistake made here is to specify 'bx or ‘bz instead of n’bx or n’bz, where n is the bit
length of the expression in parentheses.

Implementation Specific Detail: The default length of x and z is the word size of the host
machine, usually 32 bits.

The reason for providing a case comparison that handles the x and z values is that it provides a
mechanism for detecting such values and reducing the pessimism that can be generated by their
presence. Example 8-15 illustrates the use of case to properly handle x and Z values.

case (select[1:2])
2'b00: result = 0;

2'b01: result = flaga;

2'b0x,

2'b0z: result = flaga?'bx:0;
2'b10: result = flagb;

2'bx0,

2'bz0: result = flagb ? 'bx : 0;
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default result = 'bx;
endcase

Example 8- 15: Detectingx and z values with the case statenent

In Example 8-15, if select[1] is 0 and flaga is 0, then whatever the value of select[2] result should
be 0—which is resolved by the third case.

Example 8-16 shows another way to use a case statement to detect x and z values.

case(sig)
1'bz:
$display("signal is floating");
1'bx:
$display("signal is unknown");
default:
$display("signal is %b", sig);
endcase

Example 8- 16: Another example of detecting x and z with case

8.4.1 Case Statement with Don’t-Cares

Two other types of case statements are provided to allow handling of don’t-care conditions in the
case comparisons. One of these treats high-impedance values (z) as don’t-cares, and the other treats
both high-impedance and unknown (x) values as don’t-cares.

These case statements are used in the same way as the traditional case statement, but they begin
with new keywords casez and casex respectively.

Don’t-care values (z values for casez, z and x values for casex) in any bit of either the case
expression or the case items are treated as don’t-care conditions during the comparison, and that bit
position is not considered.

Note that allowing don’t-cares in the case items means that you can dynamically control which bits
of the case expression are compared during simulation.

The syntax of literal numbers allows the use of the question mark (?) in place of z in these case
statements. This provides a convenient format for specification of don’t-care bits in case
statements.

Example 8-17 is an example of the casez statement. It demonstrates an instruction decode, where
values of the most significant bits select which task should be called. If the most significant bit of ir
is a 1, then the task instructionl is called, regardless of the values of the other bits of ir.

reg [7:0]ir;
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casez (ir)

8'b000107?7?7?: instruction3(ir);
8'b0000017?7?: instruction4(ir);
endcase

Example 8- 17: Using the casez statement

Example 8-18 is an example of the casex statement. It demonstrates an extreme case of how don’t-
care conditions can be dynamically controlled during simulation. In this case, if r = 8501100110,
then the task stat2 is called.

reg [7:0] r, mask;

mask = 8'bx0x0x0x0;
casex (r » mask)
8'b001100xx: stat1;
8'b1100xx00: stat2;
8'b00xx0011: stat3;
8'bxx001100: stat4;
endcase

Example 8- 18: Using the casex statement

8.5 Looping Statements

There are four types of looping statements. They provide a means of controlling the execution of a
statement zero, one, or more times.

1. forever continuously executes a statement.

2. repeat executes a statement a fixed number of times.

3. while executes a statement until an expression becomes false. If the expression starts out
false, the statement is not executed at all.

4. for controls execution of its associated statement(s) by a three-step process, as follows:

a. executes an assignment normally used to initialize a variable that controls the
number of loops executed
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b. evaluates an expression—if the result is zero, the for-loop exits, and if it is not zero,
the for-loop executes its associated statement(s) and then performs step ¢

c. executes an assignment normally used to modify the value of the loop-control
variable, then repeats step b

The following are the syntax rules for the looping statements:

<statement>
..=forever<statement>
||=forever
begin
<statement>+
end

<statement>
.:=repeat(<expression>)<statement>
||=repeat(<expression>)
begin
<statement>+
end

<statement>
::=while(<expression>)<statement>
||=while(<expression>)
begin
<statement>+
end

<statement>
.:=for(<assignment>;<expression>;<assignment>)
<statement>
||=for(<assignment>;<expression>;<assignment>)
begin
<statement>+
end

Syntax 8- 4: Syntax for the looping statements

The rest of this section presents examples for three of the looping statements.

8.5.1 forever Loop

The forever loop should only be used in conjunction with the timing controls or the disable
statement, therefore, this example is presented in Section 8.6.2 Event Control.
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8.5.2 repeat Loop Example

In the following example of a repeat loop, add and shift operators implement a multiplier.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;
begin :mult
reg [longsize:1] shift_opa, shift_opb;

shift opa = opa;
shift_opb = opb;
result = 0;

repeat(size)
begin
if (shift_opb[1]) result = result + shift_opa;
shift opa = shift opa <<1;
shift_opb = shift_ opb >>1
end
end

Example §- 19: Use of the repeat loop to implement a multiplier

8.5.3 while Loop Example

An example of the while loop follows. It counts up the number of logic 1 values in rega.

begin :countls
reg [7:0] tempreg;
count = O;
tempreg = rega;
while (tempreg)
begin
if (tempreg[0]) count = count + 1;
tempreg = tempreg >> 1;
end
end

Example 8- 20: Use of the while loop to count logic values
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8.5.4 for Loop Examples

The for loop construct accomplishes the same results as the following pseudo-code that is based on
the while loop:

begin
initial_assignment;
while(condition)
begin
statement
step_assignment;
end
end

Example 8- 21: Pseudo code equivalent of a for loop

The for loop implements the logic in the preceding 8 lines while using only two lines, as shown in
the pseudo code in Example 8-22.

for (initial_assignment; condition; step_assignment)
statement

Example 8- 22: Pseudo code for a for loop

Example 8-23 uses a for loop to initialize a memory.

begin :init_mem
reg [7:0] tempi;
for (tempi = 0; tempi < memsize; tempi = tempi + 1)
memory[tempi] = O0;
end

Example §- 23: Use of the for loop to initialize a memory

Here is another example of a for loop statement. It is the same multiplier that was described in
Example 8-19 using the repeat loop.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;
begin :mult
integer bindex;
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result = 0;
for (bindex = 1; bindex <= size; bindex = bindex + 1)
if (opb[bindex])
result = result + (opa << (bindex-1));
end

Example 8- 24: Use of the for loop to implement a multiplier

Note that the for loop statement can be more general than the normal arithmetic progression of an
index variable, as in Example 8-25. This is another way of counting the number of logic 1 values
in rega (see Example 8-20).

begin :countils
reg [7:0] tempreg;
count = O;
for (tempreg = rega; tempreg; tempreg = tempreg >>1)
if (tempreg[0]) count = count + 1;
end

Example 8- 25: Use of the for loop to count logic values

8.6 Procedural Timing Controls

The Verilog language provides two types of explicit timing control over when in simulation time
procedural statements are to occur. The first type is a delay control in which an expression
specifies the time duration between initially encountering the statement and when the statement
actually executes. The delay expression can be a dynamic function of the state of the circuit, but is
usually a simple number that separates statement executions in time. The delay control is an
important feature when specifying stimulus waveform descriptions. It is described in Sections
8.6.1, and 8.6.6.

The second type of timing control is the event expression, which allows statement execution to
wait for the occurrence of some simulation event occurring in a procedure executing concurrently
with this procedure. A simulation event can be a change of value on a net or register (an implicit
event), or the occurrence of an explicitly named event that is triggered from other procedures (an
explicit event). Most often, an event control is a positive or negative edge on a clock signal.
Sections 8.6.2 through 8.6.6 discuss event control.

A general principle of the Verilog language is that “where you do not see a timing control, then
simulation time does not advance.” Though we are talking here of procedural timing controls, note
that gate and net delays also advance simulation time. The procedural statements encountered so
far all execute in zero time. Simulation time can only progress by one of the following three
methods:

e adelay control, which is introduced by the number symbol (#)
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e an event control, which is introduced by the at symbol (@)
e the wait statement, which operates like a combination of the event control and the while loop

The next subsections discuss these three methods.

8.6.1 Delay Control

The execution of a procedural statement can be delay-controlled by using the following syntax:

<statement>

::= <delay_control> <statement_or_null>
<delay_control>

;.= # <NUMBER>

||= # <identifier>

||= # ( <mintypmax_expression> )

Syntax 8- 5: Syntax for delay control

The following example delays the execution of the assignment by 10 time units:

#10 rega = regb;

The next three examples provide an expression following the number sign (#). Execution of the
assignment delays by the amount of simulation time specified by the value of the expression.

#d rega = regb; /1 dis defined as a paraneter
#((d+e)/2) rega = regb; /1 delay is the average of d and e

#regr regr = regr + 1; /1 delay is the value in regr

8.6.2 Event Control

The execution of a procedural statement can be synchronized with a value change on a net or
register, or the occurrence of a declared event, by using the following event control syntax:

<statement>

::= <event_control> <statement_or_null>
<event_control>

= @ <identifier>

I= @ ( <event_expression>)

<event_expression>
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.= <expression>

||= posedge <SCALAR_EVENT_EXPRESSION>
||= negedge <SCALAR_EVENT_EXPRESSION>
||= <event_expression> <or <event_expression>>*

<SCALAR_EVENT_EXPRESSION> is an expression that resolves to a one bit
value.

Syntax 8- 6. Syntax for event control

Value changes on nets and registers can be used as events to trigger the execution of a statement.
This is known as detecting an implicit event. See item 1 in Example 8-26 for a syntax example of
a wait for an implicit event. Verilog syntax also allows you to detect change based on the direction
of the change—that is, toward the value 1 (posedge) or toward the value 0 (negedge). The behavior
of posedge and negedge for unknown expression values is as follows:

e anegedge is detected on the transition from 1 to unknown and from unknown to 0

e aposedge is detected on the transition from 0 to unknown and from unknown to 1
Items 2 and 3 in Example 8-26 show illustrations of edge controlled statements.

ltem1 @ rrega = regb; /lcontrolled by any value changes in the
register rrega

ltem2 @ (posedge clock) rega = regb; /lcontrolled by positive
edge on clock

Item 3  forever @ (negedge clock) rega =regb;  // controlled by negative
edge

Example 8- 26: Event controlled statements

8.6.3 Named Events

Verilog also provides syntax to name an event and then to trigger the occurrence of that event. A
model can then use an event expression to wait for the triggering of this explicit event. Named
events can be made to occur from a procedure. This allows control over the enabling of multiple
actions in other procedures. Named events and event control give a powerful and efficient means of
describing the communication between, and synchronization of, two or more concurrently active
processes. A basic example of this is a small waveform clock generator that synchronizes control
of a synchronous circuit by signalling the occurrence of an explicit event periodically while the
circuit waits for the event to occur.

An event name must be declared explicitly before it is used. The following is the syntax for
declaring events.

<event_declaration>
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::= event <name_of event> <,<name_of event>>*;

<name_of_event>
::= <IDENTIFIER> - the name of an explicit event

Syntax 8- 7: Syntax for event declaration

Note that an event does not hold any data. The following are the characteristics of a Verilog event:
e it can be made to occur at any particular time
e it has no time duration

e its occurrence can be recognized by using the <event control> syntax described in Section
8.6.2

The power of the explicit event is that it can represent any general happening. For example, it can
represent a positive edge of a clock signal, or it can represent a microprocessor transferring data
down a serial communications channel. A declared event is made to occur by the activation of an
event triggering statement of the following syntax:

-> <name_of _event> ;

An event controlled statement (for example, (@trig rega = regb;) causes simulation of its
containing procedure to wait until some other procedure executes the appropriate event triggering
statement (for this example, ->trig).

8.6.4 Event OR Construct

The ORing of any number of events can be expressed such that the occurrence of any one will
trigger the execution of the statement. The next two examples show the ORing of two and three
events respectively.

@trig or enable) rega = regb; /'l controlled by trig or enable

@ posedge cl ock_a or posedge clock_b or trig) rega = regb;

8.6.5 Level-Sensitive Event Control

The execution of a statement can also be delayed until a condition becomes true. This is
accomplished using the wait statement, which is a special form of event control. The nature of the
wait statement is level-sensitive, as opposed to basic event control (specified by the (@ character),
which is edge-sensitive. The wait statement checks a condition, and, if it is false, causes the
procedure to pause until that condition becomes true before continuing. The wait statement has the
following form:

wai t (condi ti on_expression) statenent

Verilog HDL LRM Behavioral Modeling o 124



Example 8-27 shows the use of the wait statement to accomplish level-sensitive event control.

begin
wait(!enable) #10 a = b;
#10 c = d;

end

Example 8- 27: Use of wait statement

If the value of enable is one when the block is entered, the wait statement delays the evaluation of
the next statement (#10 a = b;) until the value of enable changes to zero. If enable is already zero
when the begin-end block is entered, then the next statement is evaluated immediately and no delay
occurs.

8.6.6 Intra-Assignment Timing Controls

The delay and event control constructs previously described precede a statement and delay its
execution. The intra-assignment delay and event controls are contained within an assignment
statement and modify the flow of activity in a slightly different way.

Encountering an intra-assignment delay or event control delays the assignment just as a regular
delay or event control does, but the right-hand-side expression is evaluated before the delay,
instead of after the delay. This allows data swap and data shift operations to be described without
the need for temporary variables. This section describes the purpose of intra-assignment timing
controls and the repeat timing control that can be used in intra-assignment delays.

Figure 8-1 illustrates the philosophy of intra-assignment timing controls by showing the code that
could accomplish the same timing effect without using intra-assignment.

Intra-assignment timing control

with intra 2e£ignmert constroct withut intre—sssigmment
a=4# b teip = by
#5 a = tap;
ad
begin

a = Wposadge clk) b tanp = b
aﬂ@{p:aajge clle) a = tap;

Fh ki b 1IJEII“IF"]Z"
a = repset (3@ possdoe clk) L g( ﬂ

| poesdoe cllk
aﬂ@il:cvaadge clk) a = taqp:

Figure 8- 1: Equivalents to intra-assignment timing controls
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The next three examples use the fork-join behavioral construct. All statements between the
keywords fork and join execute concurrently. Section 8.7.2 Parallel Blocks describes this construct

in more detail.

The following example shows a race condition that could be prevented by using intra-assignment
timing control:

fork
#5 a = b;
#5 b = a;
join

The code in the example above samples the values of both a and b at the same simulation time,
thereby creating a race condition. The intra-assignment form of timing control used in the example

below prevents this race condition:

fork /] data swap
a = #5 b;
b = #5 a;

join

Intra-assignment timing control works because the intra-assignment delay causes the values of a
and b to be evaluated before the delay, and the assignments to be made after the delay. Some
existing tools that implement intra-assignment timing control use temporary storage in evaluating
each expression on the right-hand side.

Intra-assignment waiting for events is also effective. In the example below, the right-hand-side
expressions are evaluated when the assignment statements are encountered, but the assignments are

delayed until the rising edge of the clock signal.

fork /| data shift
a = @posedge cl k) b;
b = @posedge cl k) c;
join

The repeat event control

The repeat event control specifies an intra-assignment delay of a specified number of occurrences
of an event. This construct is convenient when events must be synchronized with counts of clock

signals.
Syntax 8-8 presents the repeat event control syntax:

<repeat_event _controlled_assignment>
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.:=<Ivalue> = <repeat_event_control><expression>;
||=<Ivalue> <= <repeat_event_control><expression>;

<repeat_event_control>
;:=repeat(<expression>)@(<identifier>)
||=repeat(<expression>)@(<event_expression>)

<event_expression>
;:=<expression>
||=posedge<SCALAR_EVENT_EXPRESSION>
||=negedge<SCALAR_EVENT_EXPRESSION>
||=<event_expression>or<event_expression>

Syntax 8- 8: Syntax of the repeat event control

The event expression must resolve to a one bit value. A scalar event expression is an expression
which resolves to a one bit value.

The following is an example of a repeat event control as the intra-assignment delay of a non-
blocking assignment:
a <= repeat(5) @ posedge clk) data;

Figure 8-2 illustrates the activities that result from this repeat event control:

+ datais evaluated

lk

data

Figure 8- 2: Repeat event control utilizing a clock edge

In this example, the value of data is evaluated when the assignment is encountered. After five
occurrences of posedge clk, a is assigned the value of data.

The following is an example of a repeat event control as the intra-assignment delay of a procedural
assignment:
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a = repeat (num @ cl k) dat a;

In this example, the value of data is evaluated when the assignment is encountered. After the
number of transitions of clk equals the value of num, a is assigned the value of data.

The following is an example of a repeat event control with expressions containing operations to
specify both the number of event occurrences and the event that is counted:

a <= repeat (at+b) @ posedge phi 1 or negedge phi 2)dat a;

In the example above, the value of data is evaluated when the assignment is encountered. After the
sum of the positive edges of phil and the negative edges of phi2 equals the sum of a and b, a is
assigned the value of data.

8.7 Block Statements

The block statements are a means of grouping two or more statements together so that they act
syntactically like a single statement. We have already introduced and used the sequential block
statement which is delimited by the keywords begin and end. Section 8.7.1 Sequential Blocks

discusses sequential blocks in more detail.

A second type of block, delimited by the keywords fork and join, is used for executing statements
in parallel. A fork-join block is known as a parallel block, and enables procedures to execute
concurrently through time. Section 8.7.2 Parallel Blocks discusses parallel blocks.

8.7.1 Sequential Blocks

A sequential block has the following characteristics:
e statements execute in sequence, one after another

e delay values for each statement are relative to the simulation time of the execution of the
previous statement

e control passes out of the block after the last statement executes

The following is the formal syntax for a sequential block:

<seq_block>
::= begin <statement>* end
||= begin : <name_of_block>
<block_declaration>*
<statement>*
end

<name_of block>
:=<IDENTIFIER>
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<block_declaration>
.:=<parameter_declaration>
||=<reg_declaration>
||=<integer_declaration>
||=<real_declaration>

Syntax 8- 9: Syntax for the sequential block

A sequential block enables the following two assignments to have a deterministic result:

begi n

areg = breg;

creg = areqg; // creg becones the value of breg
end

Here the first assignment is performed and areg is updated before control passes to the second
assignment.

Delay control can be used in a sequential block to separate the two assignments in time.

begi n

areg = breg;

#10 creg = areg; // this gives a delay of 10 tine
end [l units between assignnments

Example 8-28 shows how the combination of the sequential block and delay control can be used to
specify a time-sequenced waveform.

parameter d = 50;  // d declared as a parameter

reg [7:0]r; // and r declared as an 8-bit register
begin /I a waveform controlled by sequential delay
#d r ='h35;
#d r="hEZ2;
#d r ='h00;
#d r="hF7;
#d -> end_wave;// trigger the event called end_wave
end

Example 8- 28: A waveform controlled by sequential delay

Example 8-29 shows three examples of sequential blocks.
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o 3

Wtrigr = 1;
#2580 » = 0; ~ a 250 delay mornostable
end
€) begin
@ po=edge cloclk) g = 0;
@ po=edoe clock) g = 1;

@tegin//awavefcmmsgmclmizajbythemtc

W= r = "hih;

- r = "hE?:;

- r = “hid;

= r = "hE?:

= —> ernd_wane;
end

Example 8- 29: Three examples of sequential blocks

8.7.2 Parallel Blocks

A parallel block has the following characteristics:
e statements execute concurrently

e delay values for each statement are relative to the simulation time when control enters the
block

e delay control is used to provide time-ordering for assignments

e control passes out of the block when the last time-ordered statement executes or a disable
statement executes

Syntax 8-10 gives the formal syntax for a parallel block.

<par_block>
.:= fork <statement>* join
||= fork : <name_of_block
<block_declaration>*
<statement>*
join

<name_of_block>
::=<IDENTIFIER>

<block_declaration>
.:=<parameter_declaration>
||=<reg_declaration>
||=<integer_declaration>
||=<real_declaration>
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||=<time_declaration>
||=<event_declaration>

Syntax 8- 10: Syntax for the parallel block

Example 8-30 codes the waveform description shown in Example 8-28 by using a parallel block
instead of a sequential block. The waveform produced on the register is exactly the same for both

implementations.

fork
#50 r = 'h35;
#100 r = 'hEZ2;
#150 r = 'h00;
#200 r = 'hF7;
#250 -> end_wave;

join

Example 8- 30: Use of the fork-join construct

8.7.3 Block Names

Note that blocks can be named by adding: name_of block after the keywords begin or fork. The

naming of blocks serves several purposes:

e [t allows local variables to be declared for the block.

e [t allows the block to be referenced in statements like the disable statement (as discussed in
Chapter 10.0 Disabling Blocks and Tasks Overview).

e In the Verilog language, all variables are static—that is, a unique location exists for all
variables and leaving or entering blocks does not affect the values stored in them.

Thus, block names give a means of uniquely identifying all variables at any simulation time.

8.7.4 Start and Finish Times

Both forms of blocks have the notion of a start and finish time. For sequential blocks, the start time
1s when the first statement is executed, and the finish time is when the last statement has finished.
For parallel blocks, the start time is the same for all the statements, and the finish time is when the
last time-ordered statement has finished executing. When blocks are embedded within each other,
the timing of when a block starts and finishes is important. Execution does not continue to the
statement following a block until the block’s finish time has been reached—that is, until the block

has completely finished executing.

Moreover, the timing controls in a fork-join block do not have to be given sequentially in time.
Example 8-31 shows the statements from Example 8-30 written in the reverse order and still

producing the same waveform.
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fork
#250 -> end_wave;

#200 r = 'hF7;

#150 r = 'h00;

#100 r = 'hEZ2;

#50 r = 'h35;
join

Example 8- 31: Timing controls in a parallel block

Sequential and parallel blocks can be embedded within each other allowing complex control
structures to be expressed easily and with a high degree of structure.

One simple example of this is when an assignment is to be made after two separate events have
occurred. This is known as the ‘joining’ of events.

begin
fork
@Aevent;
@Bevent;
join
areg=breg;
end

Example 8- 32: The joining of events

Note that the two events can occur in any order (or even at the same time) and the fork-join block
will complete and the assignment will be made. In contrast to this, if the fork-join block was a
begin-end block and the Bevent occurred before the Aevent, then the block would be deadlocked
waiting for the Bevent.

Example 8-33 shows two sequential blocks, each of which will execute when its controlling event
occurs. Because the wait statements are within a fork-join block, they execute in parallel and the
sequential blocks can therefore also execute in parallel.

fork
@enable_a
begin
#tawa=0;
#tawa=1;
#tawa=0;
end
@enable_b
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begin
#tbwb=1;
#tbwb=0;
#tbwb=1;
end
join

Example 8- 33: Enabling sequential blocks to execute in parallel

8.8 Structured Procedures

All procedures in Verilog are specified within one of the following four statements:
initial statement
e always statement
o task
e function

The initial and always statements are enabled at the beginning of simulation. The initial statement
executes only once and its activity dies when the statement has finished. In contrast, the always
statement executes repeatedly. Its activity dies only when the simulation is terminated. There is no
limit to the number of initial and always blocks that can be defined in a module.

Tasks and functions are procedures that are enabled from one or more places in other procedures.
Tasks and functions are covered in detail in Chapter 9.

8.8.1 initial Statement

The syntax for the initial statement is as follows:

<initial_statement>
s=initial<statement>

Syntax 8- 11: Syntax for <initial statement>

Example 8-34 illustrates use of the initial statement for initialization of variables at the start of
simulation.

initial
begin
areg = 0; /l'initialize a register
for (index = 0; index < size; index = index+1)
memory[index] = O; /[ initialize a memory word
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end

Example §- 34: Use of initial statement

Another typical usage of the initial statement is specification of waveform descriptions that execute
once to provide stimulus to the main part of the circuit being simulated. Example 8-35 illustrates
this usage.

initial

begin
inputs = 'b000000; /l initialize at time zero
#10 inputs = 'b011001; /I first pattern
#10 inputs = 'b011011; I/l second pattern
#10 inputs = 'b011000; /[ third pattern
#10 inputs = 'b001000; /l'last pattern

end

Example 8- 35: Another use for initial statement

8.8.2 always Statement

The always statement repeats continuously throughout the whole simulation run. Syntax 8-12
gives the syntax for the always statement.

<always_statement>
;.= always <statement>

Syntax 8- 12: Syntax for always_statement

The always statement, because of its looping nature, is only useful when used in conjunction with
some form of timing control. If an always statement provides no means for time to advance, the
always statement creates a simulation deadlock condition. The following code, for example, creates
an infinite zero-delay loop.

al ways areg = ~areg;

Providing a timing control to the above code creates a potentially useful description—as in the
following example:

al ways #hal f_period areg = ~areg;
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8.8.3 Examples

We have now introduced enough statement types for some complete and more practical examples
to be given. These examples are given as complete descriptions enclosed in modules—such that

they can be simulated and the results observed.

Example 8-36 is that of a simple traffic light sequencer described with its own clock generator.

module traffic_lights;

reg
clock,
red,
amber,
green,;
parameter
on = 1,
off = 0,
red tics = 350,

amber _tics = 30,
green_tics = 200;

// the sequence to control the lights

repeat (green_tics) @(posedge clock);

repeat (amber_tics) @(posedge clock);

always
begin
red = on;
amber = off;
green = off;
repeat (red_tics) @(posedge clock);
red = off;
green = on;
green = off;
amber = on;
end
/l waveform for the clock
always
begin
#100 clock = 0;
#100 clock = 1;
end
// simulate for 10 changes on the red light
initial
begin
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repeat (10) @ red;
$finish;
end
// display the time and changes made to the lights
always
@ (red or amber or green)
$display ("%d red=%b amber=%b green=%b",
$time, red, amber, green);
endmodule

Example 8- 36: Behavioral model of traffic light sequencer

Example 8-37 shows a use of variable delays. The module has a clock input and produces two
synchronized clock outputs. Each output clock has equal mark and space times, is out of phase
from the other by 45 degrees, and has a period half that of the input clock. Note that the clock
generation is independent of the simulation time unit, except as it affects the accuracy of the divide
operation on the input clock period.

module synch_clocks;
reg
clock,
phase1,
phaseZ;
time clock_time;
initial clock time = O;
always @ (posedge clock)
begin :phase_gen
timed; //a local declaration is possible
//because the block is named
d = ($time - clock_time) / 8;
clock _time = $time;
phase1l = 0;
#d phase2
#d phasel =
#d phase2 =
#d phase1l = 0;
#d phase2 = 1;
#d phasel = 1;
#d phase2 = 0;
end
I/ setup a clock waveform, finish time,

QOO -

3
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/l and display

always
begin
#100 clock = 0;
#100 clock = 1;
end
initial #1000 $finish; /[ end simulation at time 1000
always

@ (phase1 or phase2)
$display ($time,,
“clock = %b phase1 = %b phase2 = %b",
clock, phase1, phase2);
endmodule

Example 8- 37: Behavioral model with variable delays
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Tasks and Functions

9.0 Tasks and Functions Overview

Tasks and functions provide the ability to execute common procedures from several different
places in a description. They also provide a means of breaking up large procedures into smaller
ones to make it easier to read and debug the source descriptions. Input, output, and inout argument
values can be passed into and out of both tasks and functions. The next section discusses the
differences between tasks and functions. Subsequent sections describe how to define and invoke
tasks and functions and present examples of each.

9.1 Distinctions between Tasks and Functions

The following rules distinguish tasks from functions:

e A function must execute in one simulation time unit; a task can contain time-controlling
statements.

e A function cannot enable a task; a task can enable other tasks and functions.

e A function must have at least one input argument; a task can have zero or more arguments of
any type.
e A function returns a single value; a task does not return a value.

The purpose of a function is to respond to an input value by returning a single value. A fask can
support multiple goals and can calculate multiple result values. However, only the output or inout
arguments pass result values back from the invocation of a task. A Verilog model uses a function
as an operand in an expression; the value of that operand is the value returned by the function.

For example, you could define either a task or a function to switch bytes in a 16-bit word. The task
would return the switched word in an output argument, so the source code to enable a task called
switch_bytes could look like the following example:

switch_bytes (old _word, new word);

The task switch bytes would take the bytes in old word, reverse their order, and place the reversed
bytes in new_word. A word-switching function would return the switched word directly. Thus, the
function call for the function switch bytes might look like the following example:

new word = switch_bytes (old word);

9.2 Tasks and Task Enabling

A task is enabled from a statement that defines the argument values to be passed to the task and the
variables that will receive the results. Control is passed back to the enabling process after the task
has completed. Thus, if a task has timing controls inside it, then the time of enabling can be
different from the time at which control is returned. A task can enable other tasks, which in turn
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can enable still other tasks—with no limit on the number of tasks enabled. Regardless of how many
tasks have been enabled, control does not return until all enabled tasks have completed.

9.2.1 Defining a Task

The following is the syntax for defining tasks:

<task>
.:= task <name_of task>;
<tf_declaration>*
<statement_or_null>
endtask

<name_of task>
.= <IDENTIFIER>

<tf_declaration>
.:= <parameter_declaration>
||= <input_declaration>
||= <output_declaration>
||= <inout_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>

Syntax 9- 1: Syntax for task

Task and function declarations specify the following:
e local variables
e JO ports

e registers

e times

e integers
e real

e c¢vents

These declarations all have the same syntax as for the corresponding declarations in a module
definition.

Verilog HDL LRM Tasks and Functions ¢ 139



9.2.2 Task Enabling and Argument Passing

The statement that enables a task passes the IO arguments as a comma-separated list of expressions
enclosed in parentheses. The following is the formal syntax of the task enabling statement:

<task_enable>
;= <name_of task>;
||= <name_of task> ( <expression> <,<expression>>*);

Syntax 9- 2: Syntax of the task enabling statement

The first form of a task enabling statement applies when there are no 10 arguments declared in the
task body. In the second form, the list of <expression> items is an ordered list that must match the
order of the list of IO arguments in the task definition.

If an IO argument is an input, then the corresponding <expression> can be any expression. If the
10 argument is an output or an inout, then Verilog restricts it to an expression that is valid on the
left-hand side of a procedural assignment. The following items satisfy this requirement:

e reg, integer, real, and time variables

e memory references

e concatenations of reg, integer, real, and time variables

e concatenations of memory references

e bit-selects and part-selects of reg, integer, real, and time variables

The execution of the task enabling statement passes input values from the variables listed in the
enabling statement to the variables specified within the task. Execution of the return from the task
passes values from the task output and inout variables to the corresponding variables in the task
enabling statement. Verilog passes all arguments by value (that is, Verilog passes the value rather
than a pointer to the value).

Example 9-1 illustrates the basic structure of a task definition with five arguments.

task my_task;
input a, b;
inout c;
output d, e;
begin
<statement> // the set of statements that
/I performs the work of the task

c = foo1; /I the assignments that initialize
d = fooz; /I the results variables
e = foog;
end
endtask
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Example 9- 1: Task definition with arguments

The following statement enables the task in Example 9-1:

my_task (v, w, X, y, z);

The calling arguments (v, w, X, y, z) correspond to the 1O arguments (a, b, c, d, e) defined by the
task. At task enabling time, the input and inout arguments (a, b, and c) receive the values passed in
v, w, and Xx. A tool processing the HDL source code performs this assignment. Thus, execution of
the task enabling call effectively causes the following assignments:

a=vVv, b=w c =Xx;

As part of the processing of the task, the task definition for my task must place the computed
results values into c, d, and e. When the task completes, the processing software performs the
following assignments to return the computed values to the calling process:

X =¢;,y =d;, z = e;

9.2.3 Task Example

Example 9-2 illustrates the use of tasks by redescribing the traffic light sequencer that was
introduced in Chapter 8.

module traffic_lights;
reg clock, red, amber, green;
parameter on = 1, off = 0, red_tics = 350,
amber_tics = 30, green_tics = 200;
// initialize colors
initial
red = off;
initial
amber = off;
initial
green = off;
/I sequence to control the lights
always begin
red = on; // turn red light on
light(red, red_tics); // and wait.
green = on; // turn green light on
light(green, green_tics); // and wait.
amber = on; // turn amber light on
light(amber, amber _tics); // and wait.
end
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/I task to wait for 'tics' positive edge clocks
I/ before turning 'color’ light off
task light;
output color;
input [31:0] tics;
begin
repeat (tics)
@(posedge clock);
color = off; // turn light off
end
endtask
// waveform for the clock
always begin

#100 clock = 0;
#100 clock = 1;
end

endmodule // traffic_lights

Example 9- 2: Using tasks

9.2.4 Effect of Enabling an Already Active Task

Implementation Specific Detail: Because Verilog supports concurrent procedures, and tasks can

have non-zero time duration, you can write a model that invokes
a task when that task is already executing (a special case of
invoking a task that is already active is where a task recursively
calls itself). Some tools allow multiple copies of a task to
execute concurrently, but it does not copy or otherwise preserve
the task arguments or local variables. Some tools use the same
storage for each invocation of the task. This means that when
the simulator interrupts a task to process another instance of
the same task, it overwrites the argument values from the first
call with the values from the second call. The user must manage
what happens to the variables of a task that is invoked while it is
already active.

9.3 Functions and Function Calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this
chapter explains how to define and use functions.
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9.3.1 Defining a Function

To define functions, use the following syntax:

<function>
::= function <range_or_type>? <name_of_function> ;
<tf_declaration>+
<statement>
endfunction

<range_or_type>
;.= <range>
||= integer
||= real

<name_of_function>
::= <IDENTIFIER>

<tf _declaration>
.:= <parameter_declaration>
||= <input_declaration>
||= <output_declaration>
||= <inout_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>

Syntax 9- 3: Syntax for function

Note that the <range or type> item is optional. A function specified without <range or type>
defaults to a one-bit register for the return value. If used, <range or type> can specify that the
function’s return value is a real, an integer, or a value with a range of [n:m] bits.

Example 9-3 defines a function called getbyte, using a <range> specification.

function [7:0] getbyte;
input [15:0] address;
begin
<statements> // code to extract low-order
/I byte from addressed word
getbyte = result_expression;
end
endfunction

Verilog HDL LRM Tasks and Functions ¢ 143



Example 9- 3: A function definition using range

9.3.2 Returning a Value from a Function

The function definition implicitly declares a register, internal to the function, with the same name
as the function. This register either defaults to one bit or is the same type as the <range or type>
specified in the function declaration. The function definition initializes the function’s return value
by assigning the function result to the internal variable with the same name as the function. The
following line from Example 9-3 illustrates this concept:

getbyte = result _expression;

9.3.3 Calling a Function

A function call is an operand within an expression. The operand has the following syntax:

<function_call>
::= <name_of function> ( <expression> <,<expression>>*)

<name_of_function>
::= <identifier>

Syntax 9- 4: Syntax for function call

The following example creates a word by concatenating the results of two calls to the function
getbyte (defined in Example 9-3).

word = control ? {getbyte(nsbyte), getbyte(lsbyte)} : O;

9.3.4 Function Rules

Functions are more limited than tasks. The following four rules govern their usage:

1. A function definition cannot contain any time controlled statements—that is, any
statements introduced with#, @ or wait.

Functions cannot enable tasks.
3. A function definition must contain at least one input argument.

A function definition must include an assignment of the function result value to the internal
variable that has the same name as the function.
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9.3.5 Function Example

Example 9-4 defines a function called factorial that returns a 32-bit register. The factorial function
then calls itself recursively and prints some results.
module tryfact;
// define function
function [31:0] factorial;
input [3:0] operand;
reg [3:0] index;
begin
factorial = operand ? 1 : 0O;
for (index = 2; index <= operand; index = index + 1)
factorial = index * factorial,
end
endfunction

/[Test the function
reg [31:0] result;
reg [3:0] n;
initial
begin
result=1;
for( n=2; n<=9; n=n+1)
begin
$display("Partial result n=%d result=%d",
n,result);
result = n * factorial (n) / ((n*2)+1);
end
$display ("Final result=%d", result);
end
endmodule // tryfact

Example 9- 4: Defining and calling a function
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Disabling of Named Blocks and Tasks

10.0 Disabling Blocks and Tasks Overview

The disable statement provides the ability to terminate the activity associated with concurrently
active procedures, while maintaining the structured nature of Verilog HDL procedural descriptions.
The disable statement gives a mechanism for returning from a task before it executes all its
statements, breaking from a looping statement, or skipping statements in order to continue with
another iteration of a looping statement. It is useful for handling exception conditions such as
hardware interrupts and global resets.

The disable statement has one of the following two syntax forms:

<disable_statement>
.:= disable <name_of task> ;
||= disable <name_of block> ;

Syntax 10- 1: Syntax of <disable statement>

Either form of disable causes all current activity in the named block or task to be terminated. The
disable statement removes evaluated and scheduled non blocking procedural assignments from the
schedule of events. Execution resumes at the statement following the block or following the task
enabling statement. The termination of activity also applies to all activity enabled within the named
block or task. If task enable statements are nested—that is, one task enables another, and that one
enables yet another—then disabling a task within the chain disables all tasks downward on the
chain.

The disable statement is also used within blocks and tasks to disable the particular block or task
containing the disable statement. The following example, in which a block disables itself,
illustrates this concept:

begin :block_name

rega = regb;

disable block name;

regc = rega; // this assignment will never execute
end

Example 10- 1: A block disabling itself

The next five examples illustrate the disable statement in situations representative of features found
in other languages. shows the disable statement being used within a named block in a manner
similar to a forward gofo. The next statement executed after the disable statement is the one
following the named block.

begin :block_name
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if (@ == 0) disable block_name;

end // end of named block
/Il continue with code following named block

Example 10- 2: disable statement used as “goto”

Example 10-3 shows the disable statement being used as an early return from a task.

task proc_a;
begin

if (@ == O)disable proc_a; // return if true

end
endtask

Example 10- 3: disable statement used as return

Example 10-4 shows the disable statement being used in an equivalent way to the two statements
continue and break in the C language. The example illustrates control code that would allow a
named block to execute until a loop counter reaches n iterations or until the variable a gets set to a
value of b. The named block break contains the code that executes until a ==b, at which point the
disable break; statement terminates execution of that block. The named block continue contains the
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code that executes for each iteration of the for loop. Each time this code executes the disable
continue; statement, the continue block terminates and execution passes to the next iteration of the
for loop. For each iteration of the continue block, a set of <statements> executes if (a !=0).
Another set of <statements> executes if(a!=b).

begin :break
for (1 =0; 1 <n; 1 =1+1)
begin :continue
@ clk
if (a == 0);
/I "continue" loop
disable continue
<statements>
<statements>
@clk
if (a==">b)
// "break" from loop
disable break;
<statements>
<statements>
end
end

Example 10- 4: disable statement as “continue” and “break”

Example 10-5 shows the disable statement being used to concurrently disable a sequence of timing
controls and the task action, when the reset event occurs. The example shows a fork/join block
within which is a named sequential block (event expr) and a disable statement that waits for
occurrence of the event reset. The sequential block and the wait for reset execute in parallel. The
event_expr block waits for one occurrence of event evl and three occurrences of event trig. When
these four events have happened, plus a delay of d time units, the task action executes. When the
event reset occurs, regardless of events within the sequential block, the fork/join block
terminates—including the task action.

fork
begin :event_expr
@ ev1,
repeat (3) @ trig;
#d action (areg, breg);
end
@ reset disable event_expr;
join
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Example 10-5: disable statement in a fork/join block

Example 10-6 is a behavioral description of a retriggerable monostable. The named event retrig
restarts the monostable time period. If retrig continues to occur within 250 time units, then q will

remain at 1.

always
begin: monostable
#250 q = O;
end
always @retrig
begin
disable monostable;
q=1;
end

Example 10- 6: disable statement in retriggerable monostable

Example 10-6 is a combination lock that is implemented with the disable statement and event
controls. The events are key a, key b, and key c. The combination lock opens when simulation
detects these events in the following sequence:

1. key_b
2. key_a
3. key c
always
begin :lock
@key_b
fork
reg flag;
flag=1;
@key_a
fork
flag=0;
@key_c -> open;
@(key_a or key_b) disable lock;
join

@(key_b or key_c)
if (flag) disable lock;

join
end
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always @open
begin
disable lock;
open_it_up;
end

Example 10- 7: disable statement used with event controls
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Procedural Continuous Assignments

11.0 Procedural Continuous Assignment Overview

The procedural continuous assignments are procedural statements that allow expressions to be
driven continuously onto registers or nets. The syntax for these statements follows:

<statement>
::= assign <assignment> ;

<statement>
::= deassign <Ivalue> ;

<force_statement>
.:= force <assignment> ;

<release_statement>
.= release <lvalue> ;

Syntax 11- 1: Syntax for procedural continuous assignments

The left-hand side of the assignment in the assign statement is restricted to be a register reference
or a concatenation of registers. It cannot be a memory element (array reference) or a bit-select or a
part-select of a register.

In contrast, the left-hand side of the assignment in the f or ce statement can be a register reference
or a net reference, a bit-select or part-select of an expanded vector net. It can be a concatenation of
any of the above. Bit-selects and part-selects of vector registers or unexpanded vector nets are not
allowed, and will result in an error.

11.1 The assign and deassign Procedural Statements

The assign and deassign procedural statements allow continuous assignments to be placed onto
registers for controlled periods of time. The assign procedural assignment statement overrides
procedural assignments to a register. The deassign procedural statement ends a continuous
assignment to a register. The assign and deassign procedural statements allow, for example,
modeling of asynchronous clear/preset on a D-type edge-triggered flip-flop, where the clock is
inhibited when the clear or preset is active.

Example 11-1 shows a use of the assign and deassign procedural statements in a behavioral
description of a D-type flip-flop with preset and clear inputs.
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nodule dff{g.d. clesr, mresst , clodld)
oatput o
input d,clest, presst clodk:
reg O

alveys Miclesr or mresst)
if{lclear)

Example 11- 1: Use of assign and deassign

If either clear or preset is low, then the output q will be held continuously to the appropriate
constant value and a positive edge on the clock will not affect . When both the clear and preset are
high, then q is deassigned.

If the keyword assign is applied to a register for which there is already a procedural continuous
assignment, this new procedural continuous assignment automatically deassigns the register before
making the new procedural continuous assignment.

11.2 The force and release Procedural Statements

Another form of procedural continuous assignment is provided by the f or ce and r el ease
procedural statements. These statements have a similar effect to the assi gn- deassi gn pair, but a
force can be applied to nets as well as to registers. The left-hand side of the assignment can be a
register, a net, a constant bit select of an expanded vector net, a part select of an expanded vector
net, or a concatenation. It cannot be a memory element (array reference) or a bit-select or a part-
select of a vector register or non-expanded vector net.

A force procedural statement to a register overrides a procedural assignment or procedural
continuous assignment that takes place on the register until a release procedural statement is
executed on the register. After the release procedural statement is executed, the register does not
immediately change value (as would a net that is forced). The value specified in the f or ce
statement is maintained in the register until the next procedural assignment takes place, except in
the case where a procedural continuous assignment is active on the register.

A force procedural statement on a net overrides all drivers of the net—gate outputs, module
outputs, and continuous assignments—until a r el ease procedural statement is executed on the
net.

Releasing a register that currently has an active assi gn will re-establish the assi gn statement.
The reason for having a two-level override system for registers is that assi gn-deassi gn is meant
for actual descriptions of hardware, and the f or ce-r el ease is meant for debugging purposes.

Example 11-2 shows part of a log file from a simulation that included interactively entered f or ce
and r el ease procedural statements.
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1 nodule test
2 =g
2 a, A~ =1l =
2 b~ =1hx =
2 o A= 1T, =
2 d; «~ =1 =
3 wite
3 e A=
5 ard
E ardlie, a. b, c);
7 irdtial
S begin
e Sli=t;
10 Smodtored "d=4b.e=4b", d. e);
11 smm1gn d = a b b o
12 a=1;
13 b=10;
14 c=1;
15 #10
15 Sstop;
16 el
17 adnodule

d=0,e=0

3 S=top at simulation time 20
C4 » relesse d.
5 releese e
5 ro=0;

C7 » #10 sfinish:

=R

d=0,e=0

C7: Sfirmish at simalatimn time 30

Example 11- 2: Use of force and release

=t e —a
sttermertol ANDed

In Example 11-2, an AND gate is “patched” as an OR gate by a f or ce procedural statement that
forces its output to the value of its ORed inputs, and an assi gn procedural statement of ANDed
values is “patched” as an assi gn procedural statement of ORed values.
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Hierarchical Structures

12.0 Hierarchical Structures Overview

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be
embedded within other modules. Higher-level modules create instances of lower-level modules and
communicate with them through input, output, and bidirectional ports. These module input/output
ports can be scalar or vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards. The
system would be represented as the top-level module and would create instances of modules that
represent the boards. The board modules would, in turn, create instances of modules that represent
ICs, and the ICs could, in turn, create instances of modules that represent predefined cells such as
flip-flops, mux’s, and alu’s.

To describe a hierarchy of modules, the user provides textual definitions of the various modules.
Each module definition stands alone; the definitions are not nested. Statements within the module
definitions create instances of other modules, thus describing the hierarchy.

12.1 Modules

This section gives the formal syntax for a module definition and then gives the syntax for module
instantiation, along with an example of a module definition and a module instantiation.

A module definition is enclosed between the keywords module and endmodule, where the
<IDENTIFIER> after module gives the name of the module. The optional <list of ports> specifies
an ordered list of the module’s 10 ports. The order used can be significant when instantiating the
module (see Section 12.1.2 Module Instantiation). The identifiers in this list must be declared in
input, output, and inout statements within the module definition. The <module items> define what
constitutes a module, and include many different types of declarations and definitions; many of
them have already been introduced.

<module>
::= module <name_of module><list_of ports>? ;
<module_item>*
endmodule

<name_of_module>
:=<IDENTIFIER>

<list_of_ports>
“:=(<port><,<port>>*)

<module_item>
.:=<parameter_declaration>
||=<input_declaration>
||=<output_declaration>
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||=<inout_declaration>
||=<net_declaration>
||=<reg_declaration>
||=<time_declaration>
||=<integer_declaration>
||=<real_declaration>
||=<event_declaration>
||=<gate_instantiation>
||=<primitive_instantiation>
||=<module_instantiation>
||=<parameter_override>
||=<continuous_assign>
||= <specify_block>
||=<initial_statement>
||=<always_statement>
||=<task>

||=<function>

Syntax 12- 1: Syntax definitions for <module>

See Section 12.4 Ports for the definitions of the syntax item <port>. See Section 12.1.3 Module
Definition and Instance Example.

12.1.1 Top-Level Modules

Top-level modules are modules that are included in the source text supplied as input to a particular
simulation run, but are not instantiated, as described in Section 12.1.2 Module Instantiation.

12.1.2 Module Instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module
definitions do not nest. That is, one module definition cannot contain the text of another module
definition within its module/endmodule keyword pair. A module definition nests another module
by instantiating it. The <module instantiation> statement creates one or more named instances of a
defined module. For example, a counter module might instantiate a D flip-flop module to create
eight instances of the flip-flop.

The following is the syntax for specifying instantiations of modules:

<module_instantiation>

::= <name_of_module> <parameter_value_assignment>? <module_instance>
<,<module_instance>>*;

<name_of_module>
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::= <IDENTIFIER>

<parameter_value_assignment>
.= # ( <expression> <,<expression>>*)

<module_instance>
::= <name_of instance> ( <list_of module connections>? )

<name_of_instance>
::= <IDENTIFIER>

<list_of_module_connections>
::= <module_port_connection> <,<module_port_connection>>*
||= <named_port_connection> <,<named_port_connection>>*

<module_port_connection>
.:= <expression>
||= <NULL>

<named_port_connection>
;= .<IDENTIFIER> ( <expression> )

Syntax 12- 2: Definitions for <module instantiation>

The definition for <named port connection> includes an <IDENTIFIER> token that can be
satisfied only with a port name from the definition of the module being instantiated. See Section
12.4.4 Connecting Module Ports by Name for more details.

12.1.3 Module Definition and Instance Example

The code in Example 12-1 illustrates a circuit (the lower-level module) being driven by a simple
waveform description (the higher-level module) where the circuit module is instantiated inside the
waveform module.

// THE LOWER-LEVEL MODULE:
//module description of an and flip-flop circuit
module ffnand (q, gbar, preset, clear);

output q, gbar; /ldeclares 2 circuit output nets
input preset, clear; //declares 2 circuit input nets
nand

// declaration of two nand gates and
/l their interconnections

g1 (q, gbar, preset),

g2 (gbar ,q, clear);
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endmodule

// THE HIGHER-LEVEL MODULE:
//a wave form description for the nand flip-flop
module ffnand_wave;
wire out1, out2; /loutputsfromthecircuit
regini, in2; /Ivariablestodrivethecircuit
/I instantiate the circuit ffnand, name it "ff",
/I and specify the 10 port interconnections
ffnandff (out1, out2, in1, in2);
/I define the wave form to stimulate the circuit
parameter d=10;
initial
begin
#d in1
#d in1
#d in2
#d in2
end
endmodule

pin2 = 1;

I
- O = O

Example 12- 1: Module definition and instantiation

One or more module instances (identical copies of a module) can be specified in a single module
instantiation statement. Example 12-2 illustrates this statement.

The list of module terminals is provided only for modules defined with terminals. The parentheses,
however, are always required. When a list of module terminals is given, the first element in the list
connects to the first port, the second to the second port, and so on. See Section 12.4 Ports for a
more detailed discussion of ports and port connection lists.

A terminal can be a simple reference to a variable, an expression, or blank. An expression can be
used for supplying a value to a module input port. A blank module terminal represents the situation
where the 1O port is not to be connected (blanks are not allowed when connecting ports by name).

The code in Example 12-2 creates two instances of the flip-flop module ffnand defined above, and
connects only to the q output in one instance and only to the gbar output in the other instance.

/la wave form description for testing the nand flip-flop
/lwithout the outputs
module ffnand_wave;

reg in1, in2; //variables to drive the circuit

//make two copies of the circuit ffnand

/land connect to one output for each

ffnand
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ff1 (out1, , in1, in2),
ff2(, out2, in1, in2);
//define the waveform to stimulate the circuit
parameter d=10;
initial
begin
#d in1 =0
#d in1 1
#d in2 = 0;
#d in2 1
end
endmodule

in2 = 1;

Example 12- 2: Instantiation with unconnected ports

12.2 Overriding Module Parameter Values

When one module instantiates another module, it can alter the values of any parameters declared
within the instantiated module. There are two ways to alter parameter values: the defparam
statement, which allows assignment to parameters using their hierarchical names, and module
instance parameter value assignment, which allows values to be assigned inline during module
instantiation. The next two sections describe these two methods.

12.2.1 defparam Statement

Using the defparam statement, parameter values can be changed in any module instance throughout
the design using the hierarchical name of the parameter. The defparam statement is particularly
useful for grouping all of the parameter value override assignments together in one module. The
code in Example 12-3 illustrates the use of a defparam.

module top;
reg clk;
reg [0:4] in1;
reg [0:9] in2;
wire [0:4] o1;
wire [0:9] 02;

vdff m1 (o1, in1, clk);
vdff m2 (02, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;
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input clk;
output [0:size-1] out;
reg [0:size-1] out;
always @(posedge clk)
# delay out = in;
endmodule

module annotate;
defparam
top.m1.size = 5,
top.m1.delay = 10,
top.m2.size = 10,
top.m2.delay = 20;
endmodule

Example 12- 3: Use of defparam statement

The expressions on the right-hand side of the defparam assignments must be constant expressions
involving only numbers and references to parameters. The referenced parameters (on the right-hand
side of the defparam) must be declared in the same module as the defparam statement. The
modules top and annotate would both be considered top-level modules.

12.2.2 Module Instance Parameter Value Assignment

An alternative method for assigning values to parameters within module instances is similar in
appearance to the assignment of delay values to gate instances. It uses the syntax # (<expression>
<,<expression>>*) to supply values for particular instances of a module to any parameters that
have been specified in the definition of that module.

Consider Example 12-4, where the parameters within module instance mod _a are changed during
instantiation. The name of the module being instantiated is vdff. The construct #(10,15) assigns
values to parameters used in the mod _a instance of vdff.

module m;
reg clk;
wire [1:10 Jout_a, in_a;
wire [1:5] out_b, in_b;
/Il create an instance and set parameters
vdff #(10, 15)
mod_a (out_a, in_a, clk);
/I create an instance leaving default values
vdff
mod_b(out_b, in_b, clk);
endmodule
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module vdff (out, in, clk);

parameter size =1, delay = 1;

input [O:size-1] in;

input clk;

output [0:size-1] out;

reg [0:size-1] out;

always @(posedge clk)

# delay out = in;

endmodule

Example 12- 4: Setting parameters during instantiation

The order of the assignments in module instance parameter value assignment follows the order of
declaration of the parameters within the module. In the example above, size is assigned the value
10 and delay is assigned the value 15 for the instance of module vdff called mod _a.

It is not necessary to assign values to all of the parameters within a module when using this
method. However, it is not possible to skip over a parameter. This means that if you want to assign
values to a subset of the parameters declared within a module, then the declarations of the
parameters that make up this subset must precede the declarations of the parameters to which you
do not want to assign values. An alternative is to assign values to all of the parameters, but use the
default value (the same value assigned in the declaration of the parameter within the module
definition) for those parameters that you do not want to affect.

12.2.3 Parameter Dependence

A parameter (for example, memory_size) can be defined with an expression containing another
parameter (for example, word size). Since memory_size depends on the value of word_size, a
modification of word_size changes the value of memory_size. For example, in the following
parameter declaration, an update of word_size, whether by defparam or in an instantiation
statement for the module that defined these parameters, automatically updates memory_size.

parameter
word_size = 32,
memory_size = word_size * 4096;

12.3 Macro Modules

The Verilog language includes a construct called a macro module. A macro module serves the
same functions as a standard module, but because it conforms to certain limitations, it can simulate
much faster in some implementations.

When the simulator compiles an instance of a macro module, it merges the macro module
definition with the definition of the module that contains the macro instance. It creates no name
scope and makes no port connections. Instead, it places the macro definition at the same
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hierarchical level as the containing module. This process is called macro module expansion. A
compiled macro module instance is said to be expanded.

12.3.1 Specifying Macro Modules

Macro modules are specified by using the keyword macromodule in place of the keyword module
in the module definition. Example 12-5 defines a macro module called NANDZ2.

macromodule NAND2 (q, a, b);
output q;
input a, b;
nand (q,a,b);
endmodule

Example 12-5: Defining a macro module

12.3.2 Instances of Macro Modules

Instances of macro modules are specified in exactly the same way as instances of normal modules.

12.4 Ports

Ports provide a means of interconnecting a hardware description consisting of modules, primitives,
and macro modules. For example, module A can instantiate module B, using port connections
appropriate to module A. These port names can differ from the names of the internal nets and
registers specified in the definition of module B, but the connection is still made.

12.4.1 Port Definition

The syntax for a port is given below (this is the completion of the syntax presented in Section 12.1
Modules).

<port>
: :=<port_expression>?
||=.<name_of port>( <port_expression>? )

<port_expression>
::=<port_reference>
||={ <port_reference> <,<port_reference>>* }

<port_reference>
::= <name_of variable>
||= <name_of variable> [ <constant_expression> ]
||= <name_of variable> [ <constant_expression> : <constant_expression> ]
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<name_of_port>
::= <IDENTIFIER>

Syntax 12- 3: Definitions for <port>

The <port_expression> syntax item in the <port> definition can be one of the following:
e asimple identifier
e abit-select of a vector declared within the module
e a part-select of a vector declared within the module
e a concatenation of any of the above

Note that the <port_expression> is optional because ports can be defined that do not connect to
anything internal to the module.

Note also that the two types of module port connections cannot be mixed; connections to the ports
of a particular module instance must be all by position or all by name.

12.4.2 Port Declarations

Each port listed in the module definition’s <list of ports> must be declared in the body of the
module as an input, output, or bidirectional inout. This is in addition to any other declaration for a
particular port— for example, a net, reg, or wire. The syntax for port declarations is as follows:

<input_declaration>
:=input<range>7?<list_of variables>;

<output_declaration>
::=output<range>?<list_of variables>;

<inout_declaration>
::=inout<range>7?<list_of variables>;

Syntax 12- 4. Definitions for <port_declarations>

12.4.3 Connecting Module Ports by Ordered List

One method of making the connection between the ports listed in a module instantiation and the
ports defined by the instantiated module is the ordered list—that is, the ports listed for the module
instance are in the same order as the ports listed in the module definition.

Example 12-6 illustrates a top-level module (topmod) that instantiates a second module (modB).
Module modB has ports that are connected by an ordered list. The connections made are as
follows:
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e Port wa in the modB definition connects to the bit-select v[0] i n t he t opnod
nmodul e.

e Port wb connects to v[3].
e Port c connects to w.
e Port d connects to v[4].

In the modB definition, ports wa and wb are declared as inouts while ports c
and d are declared as input.

module topmod;

wire [4:0] v;

wire a, b, c, w;

modB b1 (v[0], v[3], w, v[4]);

endmodule
module modB (wa, wb, c, d);
inout wa, wb;
input c, d;
tranif1 g1(wa, wb, cinvert);
not #(2, 6) (cinvert, int);
and #(6, 5) g2 (int, c, d);
endmodule

Example 12- 6: Port connections using ordered list

During simulation of the b1 instance of modb, the and gate activates first to produce a value on int.
This value triggers the not gate to produce output on cinvert, which then activates the tranif1 gate
gl.

12.4.4 Connecting Module Ports by Name

The second way to connect module ports consists of explicitly linking the two names for each side
of the connection—the name used in the module definition, followed by the name used in the
instantiating module. This compound name is then placed in the list of module connections. The
following is the syntax for connection by name:

Verilog HDL LRM Hierarchical Structures ¢ 163



<name_of port>(<port_expression>?)

The <name of port> is the name specified in the module definition. The <name of port> cannot
be a bit select, part select, or a concatenation of ports.

The <port_expression> is the name used by the instantiating module and can be one of the
following:

e asimple identifier

e abit-select of a vector declared within the module
e a part-select of a vector declared within the module
e a concatenation of any of the above

The <port_expression> is optional so that the instantiating module can document the existence of
the port without connecting it to anything. The parentheses are not optional.

In the following example, the instantiating module connects its signals topA and topB to the ports
In1 and Out defined by the module ALPHA. At least one port provided by ALPHA is unused; it is
named In2. There could be other unused ports not mentioned in the instantiation.

ALPHA instancel (.Qut(topB),.Inl(topA),.In2());

Example 12-7 defines the modules modB and topmod and then topmod instantiates modB using
ports connected by name.

module topmod;

wire [4:0] v;

wire a, b, ¢, w;

modB b1 (.wb(v[3]), .wa(v[0]), .d(v[4]), .c(w));
endmodule

module modB (wa, wb, c, d);
inout wa, wb;
input c, d;
tranif1 g1(wa, wb, cinvert);
not #(6, 2) (cinvert, int);
and #(5, 6) g2(int, c, d)
endmodule

Example 12-7: Connecting ports by name

Note that because these connections are made by name, the order in which they appear is
irrelevant.

Verilog HDL LRM Hierarchical Structures ¢ 164



12.4.5 Real Numbers in Port Connections

The real data type cannot be directly connected to a port, but rather must be connected indirectly,
as shown in Example 12-8. The system functions $realtobits and $bi t st or eal are used for
passing the bit patterns across module ports. (See Appendix B, B.8 Functions and Tasks for Reals,
for a description of these system tasks.)

module driver (net r);

output net_r;

real r;

wire [64:1] net_r = $realtobits(r);
endmodule
module receiver (net_r);

input net_r;

wire [64:1] net_r;

real r;

initial assign r = $bitstoreal(net_r);
endmodule

Example 12- 8: Connecting reals to a port

12.4.6 Port Collapsing

A port of a module can be viewed as providing a link or connection between two items (nets,
registers, expressions, and so on)—one internal to the module instance and one external to the
module instance. Wherever it is possible, the some tools collapse port connections during
processing—that is, the two items become one entity. Both names continue to exist for reference
purposes, but, internally, the simulator eliminates one of the items. This corresponds to the physical
case where a net described at two levels of a Verilog HDL hierarchy is actually just one wire.

Examination of the port connection rules described below will show that the item receiving the
value of the port (the inside item for inputs, the outside item for outputs) must be a net. The item
which provides the value can be any expression, but port collapsing is only possible if both items
are nets. Expressions such as ( a+b) as the outside item in a module port connection preclude
collapsing of that port.

12.4.7 Port Connection Rules

The following rules govern the way module ports are declared and the way they are interconnected:

Rule 1:

An input or inout port must be declared as a net type.

Rule 2:
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Each port connection is a continuous “assignment” of source to sink, where one connected item is a
signal source and the other is a signal sink. Only nets are permitted to be the sinks in an
assignment.

Both scalar and vector nets are permitted. The output and input ports of a module are by definition
connected to signal source items internal to the module. The following external items cannot be
connected to the output or input ports of modules:

e registers
e cxpressions other than:
e ascalar net
e avector net
e a constant bit select of a vector net
e apart select of a vector net
e a concatenation of the expressions listed above

In port collapsing, the two items that are connected through a module port—one being external to
the module, the other being internal to the module—are merged into a single item. Not every port
can be collapsed. The following rule defines when port collapsing occurs:

Rule 3:

A module port is collapsed only if:
e the port connects two nets, and
e the connected nets are either both scalars or have the same vector size.

Vector nets are split into scalar bits in order to increase the amount of port collapsing that occurs in
a circuit. Splitting causes a vector net to be internally represented as a collection of scalars, thus
allowing Rule 3 to be applied. This occurs whenever the items on both sides of the port are nets,
and at least one of them is a bit select or part select of a vector net or the net is specified with the
keyword scalared.

Given Rule 3, it is clear that only ports that connect nets can be collapsed. But what happens if the
nets on either side of the port are of different net types—for example, one is a triand and the other
is a tri? When different net types are connected through a module port and the port can be
collapsed, the resulting net type is determined based on Rule 4. In Rule 4, the term “dominating net
type” is used in the following sense: A net type A “dominates” a net type B if, with identical signal
sources on the two net types, either (a) the state on B is the same as that on A or (b) the state on B
is not completely known but does not conflict with the state on A (for example, X does not conflict
with 1 or 0; H does not conflict with Z or 1; and so on).

Rule 4:

When the two nets connected by a collapsed port are of different net type, the resulting single net is
assigned one of the following:
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e the dominating net type if one of the two nets is “dominating”, or else

e the net type external to the module.

When a dominating net type does not exist, the external net type is used.

Table 12-1 shows the net type dictated by Rule 4 as a result of collapsing a module port that

connects two nets.

The simulated net takes the net type specified in the table plus the delay specified for that net. If the
simulated net selected is a trireg, any strength value specified for the trireg applies to the simulated

net.

sudernal het
Wi re wand Wnor
At &triand  Etrior  trireg W0 tril supplv0 supply
E‘rtrﬁ et ext ext ed  exd exd e ext
gand it ed et et et et et et
oK .
fbernar | 2 trior irt ext ext exdt exd exd ext ext
et
trireg irt ext ext ext e ex ex ext
tric irt ext ext int exd ext ext ext
tril irt ext ext int exd  ex e ext
supplyd int int irt int int int et ext
aupply int int int int int int et ext
Key ext the external net iz used for merging

Table 12- 1: Net types resulting from port collapsing

12.5 Hierarchical Names

int

the internal net is used for merging

Every identifier in a Verilog description has a unique hierarchical path name. The hierarchy of
modules and the definition of items such as tasks and named blocks within the modules define
these names. The hierarchy of names can be viewed as a tree structure, where each module
instance, task, function, or named begin-end or fork-join block defines a new hierarchical level, or
scope, in a particular branch of the tree.

At the top of the name hierarchy are the names of modules of which no instances have been
created. It is the root of the hierarchy. Inside any module, each module instance, task definition,
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function definition, and named begin-end or fork-join block defines a new branch of the hierarchy.
Named blocks within named blocks and within tasks and functions also create new branches.

Each node in the hierarchical name tree is a separate scope with respect to identifiers. A particular
identifier can be declared at most once in any scope. See Section 12.6 Scope Rules, for a discussion
of scope rules.

Any named Verilog object can be referenced uniquely in its full form by concatenating the names
of the modules, tasks, functions, or blocks that contain it. Use the period character to separate each
of the names in the hierarchy. The complete path name to any object starts at a top-level module.
This path name can be used from any level in the description. The first node name in this path
name can also be the top of a hierarchy that starts at the level where the path is being used.

The code in Example 12-9 defines a hierarchy of module instances and named blocks. Figure 12-1
illustrates the hierarchy implicit in this Verilog code. Figure 12-2 is a list of the hierarchical forms
of the names of all the objects defined in the code.

module mod ( in );
input in;
always @ ( posedge in )
begin :keep
reg hold;
hold = in;
end
endmodule

module cct (stim1, stim2);

input stim1, stim2;

/[ instantiate mod

modamod (stim1), bmod (stim2);
endmodule

module wave;
reg stim1, stim2;
/l instantiate cct
ccta (stim1, stim2);
initial
begin :wave1
#100
fork :innerwave
reg hold;
join
#150
begin
stim1=0;
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end
end
endmodule

Example 12-9: A hierarchy of module instances and named blocks

Figure 12- 1: Hierarchy in a model

The following list gives the hierarchical path names for all the objects in the preceding description
(Example 12-9):

wave wave.a.bmod

wave.stim1 wave.a.bmod.in

wave.stim2 wave.a.bmod.keep

wave.a wave.a.bmod.keep.hold
wave.a.stim1 wave.wave1

wave.a.stim2 wave.wavel.innerwave
wave.a.amod wave.wave1l.innerwave.hold

wave.a.amod.in
wave.a.amod.keep
wave.a.amod.keep.hold

Figure 12- 2: Hierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy.
If the unique hierarchical path name of an item is known, its value can be sampled or changed from
anywhere within the description.

Example 12-10 shows how a pair of named blocks can refer to items declared within each other.
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begin
fork :mod_1
reg Xx;
mod _2.x = 1;

[ ]
[ ]
[
join
fork :mod_2
reg Xx;
mod_1.x = 0;

.
.
.
join
end

Example 12- 10: Using hierarchical names across blocks

12.5.1 Upwards Name Referencing

The name of a module is sufficient to identify the module and its location in the hierarchy. A
lower-level module can reference items in a module above it in the hierarchy if the name of the
higher-level module is known. The syntax for an upward reference is as follows:

<nane_of nodul e>. <nane_of itene

There can be no spaces within the reference. Example 12-11 demonstrates upward referencing. In
this example, there are four modules, mod_a, mod b, mod c, and mod_d. Each module contains an
integer x. The highest-level modules in this segment of a model hierarchy are mod a and mod_d.
There are two copies of module mod_b.x because both mod a and mod_d both instantiate
mod_b.x. There are four copies of mod c.x because each of the two copies of mod_b.x instantiates
mod_c.x twice.

module mod_a;
integer X;
mod_b inst_b1();
endmodule
module mod_b;
integer Xx;
mod_c inst_c1(), inst_c2();
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initial #10 inst_c1.x = 2; //[downward path -
/Ireferences 2 copies of x:
//mod_a.inst_b1.inst_c1.x
//mod_d.inst_b1.inst_c1.x
endmodule

module mod_c;
integer Xx;
initial begin
x=1; /llocal name references
/14 copies of x:
//mod_a.inst_b1.inst_c1.x
/Imod_a.inst_b1.inst_c2.x
//mod_d.inst_b1.inst_c1.x
/Imod_d.inst_b1.inst_c2.x
mod_b.x = 1; /lupward path references 2
/[copies of x:
/Imod_a.inst_b1..x
//mod_a.inst_b1.inst_c2.x
end
endmodule

module mod_d;

integer x;
mod_b inst_b1();
initial begin
mod_a.x = 1; /[ full path name references each

/I copy of x

mod_a.inst_b1.x = 2;
mod_a.inst_b1.inst_c1.x = 3;
mod_a.inst_b1.inst_c2.x = 4;
mod_d.x = 5;
mod_d.inst_b1.x = 6;
mod_d.inst_b1.inst_ c1.x=7;
mod_d.inst_b1.inst_c2.x = 8;
end

endmodule

Example 12- 11: Upwards name referencing
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12.6 Scope Rules

The following four elements define a new scope in Verilog:
e modules
e tasks
e functions
e named blocks

An identifier can be used to declare only one item within a scope. This rule means, for example,
that it is illegal to declare two variables that have the same name, or to name a task the same as a
variable within the same module, or to give a gate the same instance name as the name of the net
connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a task, function, or named
block, it must be declared either locally within the task, function, or named block, or within a
module, task or named block that is higher in the same branch of the name tree that contains the
task, function, or named block. If it is declared locally, then the local item is used; if not, then
Verilog will search upward until it finds an item by that name or until it finds a module boundary.
Searching crosses named block, task, and function boundaries, but not module boundaries. This
fact means that tasks and functions can use and modify the variables within the containing module
by name, without going through their ports.

In Figure 12-3, each rectangle represents a local scope. The scope available to upward searching
extends outward to all containing rectangles—with the boundary of the module A as the outer
limit. Thus block G can directly reference identifiers in F, E, and A; it cannot directly reference
identifiers in H, B, C, and D.

module A
*,
task E :}H
| [plock B
hlock F <
o *
task £+ . hlock G
) [,
151 block H
func D

Figure 12- 3: Scopes available to upward name referencing
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Because of the upward searching, path names that are not strictly downward can be used, and will
work. However, these should be avoided as they are confusing.

Figure 12-4 shows an incompletely defined downward reference that compiles correctly.

task t;
reg r;
begin :b
/I redundant assignments to reg r
t.b.r = 0; //fully defined downward
I reference
tr = 0; /Ipoorly defined but
// found by upward search
end
endtask

Figure 12-4: Incompletely defined downward reference
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Specify Blocks

13.0 Specify Blocks Overview

It is often necessary to assign delays to paths across a module—apart from any gate-level or other
distributed delays specified inside that module. The delays assigned to paths across a module can
apply in all conditions, or they can apply only under specified conditions. Section 13.2 Module
Path Delays begins the discussion of delays that apply in all conditions. The type of delay that
applies only under specified conditions is the state dependent path delay. Section 13.2.6 State
Dependent Path Delays (SDPDs) discusses state dependent path delays.

A block statement called the specify block is the vehicle for adding timing specifications to paths
across a module. Bounded by the keywords specify and endspecify, each specify block must appear
inside the module it modifies.

It is inside the specify block that you do the following modeling tasks:
e Describe various paths across the module.
e Assign delays to those paths.

e Perform timing checks to ensure that events occurring at the module inputs satisfy the timing
constraints of the device described in the module.

In the Verilog HDL, paths across a module are called module paths. To describe module paths, you
must pair a module input with a module output. The module input can be unidirectional (an input)
or bidirectional (an inout) and is referred to as the path source. Similarly, the module output can be
unidirectional (an output) or bidirectional (an inout) and is referred to as the path destination.

Syntax 13-1 demonstrates the specify block syntax.

<specify_block>
::= specify
<specify_item>*
endspecify

<specify_item>
.:= <specparam_declaration>
||= <path_declaration>
||= <level_sensitive_path_declaration>
||= <edge_sensitive_path_declaration>
||= <sdpd>

Syntax 13- 1: Syntax of specify block

Example 13-1 demonstrates a specify block.

specify
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specparam tRise_clk _q=150, tFall_clk_q=200;
specparam tSetup=70;

(clk=>q)=(tRise_clk_q, tFall_clk_q);
$setup(d, posedge clk, tSetup);
endspecify

Example 13- 1: Example of a specify block

In Example 13-1, the first two lines following the keyword specify declare specify parameters,
which are discussed in Section 13.1 Declaring Parameters in Specify Blocks.

The line following the declarations of specify parameters describes a module path and assigns
delays to that module path. The specify parameters employed determine the delay assigned to the
module path. Section 13.2.3 Assigning Delays to Module Paths discusses assigning delays to
module paths. The line preceding the keyword endspecify institutes one of the system timing
checks, discussion of which are discussed further in Section 13.3.

13.1 Declaring Parameters in Specify Blocks

The keyword specparam declares parameters within specify blocks—called specify parameters or
specparams, to distinguish them from module parameters. Unlike specify parameters, module
parameters are declared outside the specify block with the keyword parameter.

Syntax 13-2 demonstrates the syntax for declaring specify parameters.
<specparam_declaration>
::= specparam <list_of _param_assignments> ;

<list_of_param_assignments>
:=<param_assignment><,<param_assignment>>*

<param_assignment>
.:=<<identifier> = <constant_expression>>

Syntax 13- 2: Syntax of the specparam declaration

Example 13-2 demonstrates specparam declarations.

specify
specparam tRise clk g = 150, tFall clk g = 200;
specparam tRise_control=40, tFall_control = 50;
endspecify

Example 13- 2: Example of specparam declarations

Verilog HDL LRM Specify Blocks e 175



In Example 13-2, the lines between the keywords specify and endspecify each declare two specify
parameters.

It is important not to confuse specparams (specify parameters) with parameters (module parameters).
They are not interchangeable. Table 13-1 summarizes the differences between the two types of

parameter declarations.

SPECPARANS PARAVFTERS
(Gpecify parameta Module parametef
use keyword specparam use keyword parameter
must be declared jinside must be declared outside
specify blocks specify blocks
may only be used jnside may nqt bhe used inside
specify blocks specify blocks
cannot use defpararmnto use defparamto override
override values values

Table 13- I: Differences between specparams and parameters

13.2 Module Path Delays

13.2.0 Module Path Delay Overview

The Verilog HDL can describe two types of delays:

e module path delays, which describe the time it takes an event at a module path source (input
or inout) to propagate to a module path destination (output or inout)

o distributed delays, which specify the time it takes events to propagate through gates and nets
inside the module.

Figure 13-1 illustrates module path delays. Note that more than one source (4, B, C, and D) may
have a module path to the same destination (Q).
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Figure 13- 1: Module path delays

Figure 13-2 illustrates distributed delays.

A
B
=
c
o = distributed delay

Figure 13- 2: Distributed delays

Here, the delay on the module path from input D to output Q = 22, while the sum of the distributed

delays = 0 + 1 = 1. Therefore, an event on Q caused by an event on D will occur 22 time units after
the event on D.

Consider the example in Figure 13-3.

(2o} =

/EI\ = maodule path delay

. = disfributad dalay
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Figure 13- 3: Mixing module path delays and distributed delays

In Figure 13-3, the delay on the module path from D to Q = 22, but the distributed delays along
that module path now add up to 10 + 20 = 30. Therefore, an event on Q caused by an event on D
will occur 30 time units after the event on D.

This section focuses on module path delays. (See Section 6.15 Gate and Net Delays, for more
information on distributed delays.)

You must follow the two steps below to set up module path delays in specify blocks:
1. describe the paths
2. assign delays to those paths

Syntax 13-3 demonstrates the syntax of the module path declaration.

<path_declaration>
::= (<path_description>) = (<path_delay value>);

<path_description>
::= ( <specify_input_terminal_descriptor> =>
<specify output_terminal_descriptor>)
||= ( <list_of path_inputs> *> <list_of path_outputs>)

<path_delay_value>
;.= <path_delay_expression>
||= ( <path_delay_expression>, <path_delay expression>)
||= ( <path_delay_expression>, <path_delay_expression>,

<path_delay_expression>)
||= ( <path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression> )

Syntax 13- 3: Syntax of the module path declaration

Example 13-3 demonstrates module path declarations.

specify

(clk => q) = (tRise_clk_q, tFall_clk_q);

(clr, pre *> q) = (tRise_control, tFall_control);
endspecify

Example 13- 3: Example of module path declarations
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Example 13-3 contains two module path declarations. For more specific information on describing
module paths, refer to Section 13.2.1 Describing Module Paths and Section 13.2.2 Declaring
Multiple Module Paths in a Single Statement; to learn how to assign delays to module path
descriptions, refer to Section 13.2.2 Declaring Multiple Module Paths in a Single Statement and
Section 13.2.4 Specifying Transition Delays on Module Paths.

13.2.1 Describing Module Paths

A module path is defined inside a specify block as a connection between a source signal and a
destination signal.

Module paths may connect any combination of vectors and scalars. However, there are two
restrictions:

1.  The module path source must be a net that is declared as a module input or inout.

2. The module path destination must be a net that is declared as a module output or inout and is
driven only by a gate-level primitive.

Figure 13-4 demonstrates these restrictions:

signals that do med follow the miles for module paths:;
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rivone gy ane oodod

Figure 13- 4: Signals that do not follow the rules for module paths

Implementation Specific Detail: Some implementations may place restrictions on the module
path source and destination declarations.

Syntax 13-4 demonstrates the syntax of the module path description.

<path_description>
::= ( <specify_input_terminal_descriptor> =>
<specify_output_terminal_descriptor>)
||= ( <list_of path_inputs> *> <list_of path_outputs>)

<specify_input_terminal_descriptor>
::= <input_identifier>
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||= <input_identifier> [ <constant_expression> ]
||= <input_identifier> [ <constant_expression> : <constant_expression> ]

<specify_output_terminal_descriptor>
.:= <output_identifier>
||= <output_identifier> [ <constant_expression> ]
||= <output_identifier> [ <constant_expression> : <constant_expression> ]

<input_identifier>
.:= the <IDENTIFIER> of a module input or inout terminal
<output_identifier>
::= the <IDENTIFIER>of a module input or inout terminal

Syntax 13- 4: Syntax for the module path description

Example 13-4 demonstrates module path descriptions.
(in1*>q)
(s=>q)

Example 13- 4: Module path descriptions

Example 13-4 demonstrates two ways to describe module paths:
1. source *> destination

2. source => destination

The symbols *> and => each represent a different kind of connection between the module path
source and the module path destination.

The operator *> establishes a full connection between source and destination. In a full connection,
each bit in the source connects to every bit in the destination. The module path source need not
have the same number of bits as the module path destination.

The operator => sets up a parallel connection between source and destination. In a parallel
connection, each bit in the source connects to its one corresponding bit in the destination. You can
create parallel module paths only between sources and destinations that contain the same number
of bits.

Table 13-2 illustrates how a parallel connection differs from a full connection between two 4-bit
vectors.
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Paraliel module path Fullf module path

Input bita Cutput bita Input bits Cutput bita

0 0

1T e 1
2 s D
o JE . 3

|N=numherufhits=4 |

Hurmber of paths = N = E Humber of paths= N*N= |16
Use to define path Use to define path
Bit-to-Bit connections Bit-to-Vector connections

Table 13- 2: The difference between parallel and full connections between vectors of equal size

The full connection will handle most types of module paths, since it does not restrict the size or
number of source signals and destination signals. Here are the situations in which you must use *>
to set up full connections:

e to describe a module path between a vector and a scalar
e to describe a module path between vectors of different sizes

e to describe a module path with multiple sources or multiple destinations in a single statement
(see Section 13.2.2 Declaring Multiple Module Paths in a Single Statement, for more details)

In Example 13-4 the module path from s to q uses *> because it connects a scalar source—the 1-
bit select line—to a vector destination—the 8-bit output bus.

Parallel connections are more restrictive than full connections. They only connect one source to
one destination, where each signal contains the same number of bits. Therefore, the one special
case in which you must use => to set up a parallel connection is to describe a module path between
two vectors of the same size. Since scalars are one bit wide, you may use either *> or => to set up
bit-to-bit connections between two scalars.

Note that in Example 13-4 the module paths from both input lines Inl and In2 to q use => because
they set up parallel connections between two 8-bit busses.

Figure 13-5 summarizes the guidelines for using *> and =>.

Use *> for full connections:
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e between one vector and one scalar

e between two vectors of the same size or different sizes

e Dbetween multiple sources or multiple destinations in a single statement
Use => for parallel connections:

e between two scalars

e Dbetween two vectors of the same size

Figure 13- 5: Guidelines for describing module paths

Figure 13-6 summarizes the rules to follow when describing module paths.
Rules for describing module paths:
Rule 1:  Paths must be described inside specify blocks.

Rule 2: A path source must be a module input net or module inout net that is either
scalar or vector.

Rule 3: A path destination must be an output net or inout net that is either scalar or
vector and is driven only by a gate-level primitive that is not a bidirectional
transfer gate.

Rule 4:  Path destinations may have only one driver inside the module.

Rule 5:  Follow the guidelines in Figure 13-5 for using *> and => .

Figure 13- 6: Rules for describing module paths

As rule 4 states, module path output nets may not have multiple drivers within the module. Refer to
Section 13.2.7 Driving Wired Logic for a discussion of how to work around this limitation.

13.2.2 Declaring Multiple Module Paths in a Single Statement

You can define multiple module paths in a single statement by using the symbol *> to connect a
list of sources separated by commas to a list of destinations separated by commas. Here is an
example:

(a, b, ¢ *> g1, g2) = 10;

This statement is equivalent to the following six individual module path assignments in Example
13-5:

(@*>qg1)=10;

(b*>q1)=10;
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(c*™>q1)=10;

(@*>q2)=10;
(b *>q2)=10;
(c*>qg2)=10;

Example 13- 5: Module path equivalents of single statement

When describing multiple module paths in one statement, the lists of sources and destinations may
contain a mix of scalars and vectors of any size. However, all sources must be net inputs or inouts,
and all destinations must be net outputs or inouts that follow the restrictions given in Section
13.2.1 Describing Module Paths.

As the use of *> implies, the connection in a multiple module path declaration is always a full
connection.

13.2.3 Assigning Delays to Module Paths

You can specify the delays that occur at the module outputs where paths terminate by assigning
delay values to the module path descriptions.

In module path delay assignments, a module path description appears on the left-hand side, and one
or more delay values appear on the right-hand side.

Delay values can be constant expressions that contain literals or specparams.

Syntax 13-5 demonstrates the syntax of the module path delay assignment.

<path_declaration>
::= <path_description> = <path_delay_value>;

<path_delay_value>
.:= <path_delay_expression>
||= ( <path_delay_expression>, <path_delay expression>)

||= ( <path_delay_expression>, <path_delay_expression>,
<path_delay_expression> )
||= ( <path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression> )

<path_delay_expression>
::= <constant_mintypmax_expression>

Syntax 13- 5: Syntax for specifying module path delays
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Example 13-6 demonstrates module path delay assignments.
specify

specparam tRise clk q=45:150:270, tFall_clk _g=60:200:350;
specparam tRise_Control=35:40:45, tFall_control=40:50:65;

(clk=>q)=(tRise_clk_q,tFall_clk_q);
(clr,pre*>q)=(tRise_control,tFall_control);

Example 13- 6: Example of module path delay assignments

In Example 13-6, the specify parameters declared following the specparam keyword specify
module path delays. The module path assignments assign those module path delays to the module
paths.

13.2.4 Specifying Transition Delays on Module Paths

You can assign delay values independently for each of the six output transitions between 0, 1, and
Z. As Syntax 13-5 illustrates, delays must be specified as a list of one, two, three, or six
<path_delay expressions> separated by commas.

Each <path delay expression> can be a single value—representing the typical delay—or a colon-
separated list of three values—representing a minimum, typical, and maximum delay, in that order.

The next four figures (Figure 13-7 through Figure 13-10) summarize the general syntax for each
type of transition delay assignment statement.

MODULE PATH w#————————— ONE DELAY VALUE

G ENMERAL BYNTA K

module path = =path_delay_expression=

all fran s tion =:
—_— .1

—=>0
—=*z
—= 1
—=> z
—= 0

N =N O=0

SPECIFIC EXAMPLES

[C == @] =20,
(G == @)= 101430,

Figure 13- 7: How to assign one delay value for all transitions
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MODULE PATH W TW) DELAY YALUES
GENERAL §VHTaY

_  =path_ =path_
module path = ( delay_expression= .je|ay_expressinnb)

r=ing transitions: fdling tran stionsa:
0—=1 1 —=0
0o—=z 1 —=z
z —= 1 z—=10
8 PECIFIC EXAMPLES

specpaamtPLH = 12 tPHL = 25
[G == G =[tFLH, tPHL ];

specpaamtPLH = 121622 tPHL = 162225
[C == G =[tFLH, tPHL ];

Figure 13- 8: How to assign different delays for rising and falling transitions

MODULE PATH -4 THREE DELAY VYALUES

GENERAL BVHTAR

_ f *path_ <path_ path_
module path = ( delay exprescion, delay expression:, del3y expression

! ! |

ri=ng frans tion = falling franzition=: z transitions:
o —=9 1 —=10 0—=z
z —=1 z —>0 1 —=z
5PECIFIC X4 MPLES

apacparam tPLH = 12, tFHL = 22, tFz= 24
[C == )= [tPLH, tFHL, tFz];

apacparam tPLH = 121420 tFHL = 162240, tPz = Z2:20:3;
[G == ] = [tPLH, tFHL, tFz];

Figure 13- 9: How to assign different delays for rising, falling, and z transitions
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MODULE PATH % S5IX DELAY VALUES

GENERAL BYWNTAK

— <path <path <path <path <path
=h By By By _ By _e By e By
F eXpesfiON=-,  eAprerzion=,  eNpmREZON>-,  eXpRIFON=,  eipressle-, e XpREE b=

2NN SUNEE SUNNE SUNNE SIS

lo —a1| [t —o]| o —z|[z—1][1 —2|[z—0]

FPECIFIC EXAMPLES
spacparam tH =12, HO= 16 t0z= 13 tzl = 10, t1z= 14, ta0 =24 ;
[C =)= 1H, t10, 0z t=z1, t12 t20];

specparam X = 124424 H10= 161220, t0z = 131620,
spacparam tzl = 1042016 H 2= 142225 ta0= 151924 ;

[ == )= 101, 10 0z t=1, tz t20];

Figure 13- 10: How to assign six different transition delays

The order in which you specify delays for all six transitions in a single statement is based on the
diagram in Figure 13-11.

o= 4=0 0=z z=1 1=z z=1

Figure 13- 11: Left-to-right order of the six transitions

Any transition delay associated with a module path can be triggered at run time by the appropriate
state change at the module path destination net. For instance, the usage example shown in
Example 13-6 assigns one set of minimum:typical:maximum delays for the rising transitions and
another set of minimum:typical:maximum delays for the falling transitions.

Please note:  Sources may only specify one delay or three. The format delayl:delay? is illegal in
a module path delay assignment.

13.2.5 Handling X Transitions

Verilog has specific rules for handling module path delays for x transitions, based on other delays
assigned to the module path.

The following two x transitions are considered:
1. transition from a known state tox: s -> x

2.  transition from x to a known state: x -> s
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The calculation of delay values for x transitions is based on the following two pessimistic rules:

1.  Transitions from a known state to x should occur as quickly as possible—that is, they
receive the shortest possible delay.

2.  Transitions from x to a known state should take as long as possible—that is, they receive
the longest possible delay.

Table 13-3 presents the general algorithm for calculating delay values for x transitions, along with
specific examples.

X TRANSITION: | DELAY VALUE:

general algorithm:

[ J—— mlnlmum{ § —= ofher HI'IIZI'.'.'I'IIIQI'IBII]

¥ —= § ma:lmum{ ofner wnown signall  — o g ]
specific transitions:

0 —= % minimum [ 0 —s=zeE) 0 —:-1n'a'aj.r]
{4 — ¥ mlnlmum[ 1 —= zoEE}, 1 —:-Dn'a'a].r]
7 —= X mlnlmum[ z —= 1oy, 2z —an‘a‘a}r]
¥ — 0 ms:lmum{ 2z —= 0 By 1 —:-IIID'&'E'J-‘]
wo— 1 ma:lmum{ z —=1defsy, 0O —:-1n'a'aj.r]
¥ —= 7 mallmum[ 1 —=zcely, 0 —&ztﬁb}-’]

usage: (C=+-Q) = {5 12 17, 10, 6, 22);

0 —= ¥ mmun | 17, 5 =5
4 — ¥ mimun | & 12 )=¢
7 —» % minmum {10, 22 ) =10
% — 0 maemun | 22,12 )=
¥ — 1 maemun { 10,5 ) =10
¥ — 7 masmum {6 17 ) =17

Table 13- 3: The algorithm for calculating delays for x transitions

13.2.6 State Dependent Path Delays (SDPDs)

An SDPD makes it possible to assign a delay to a module path that affects signal propagation
through the path only if specified conditions are true. SDPDs assist primarily in modeling small to
medium-scale modules because SDPDs function best in modules without distributed delays.

Syntax
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An SDPD includes the following items:

e a conditional expression that enables assignment if true

e amodule path description

e adelay expression that applies to the module path
Syntax 13-6 presents the syntax for the SDPD.
<sdpd>
::=if(<sdpd_conditional
_expression>)(<path_description>)=(<path_delay_value>)
<sdpd_conditional_expression>

::=(<expression><BINARY_OPERATOR><expression>)
||=(<UNARY_OPERATOR><expression>)

<path_description>
::= (<specify_input_terminal_descriptor> =>
specify_output_terminal_descriptor>)
||= (<list_of path_inputs> *> <list_of path_outputs>)
<path_delay_value>
::=<path_delay_expression>
||=(<path_delay_expression>,<path_delay_ expression>)

||=(<path_delay_expression>,<path_delay_ expression>,
<path_delay_expression>)

||=(<path_delay_expression>,<path_delay_expression>,
<path_delay_expression>,<path_delay_expression>,
<path_delay_expression>,<path_delay expression>)

Syntax 13- 6: Syntax of the SDPD

The SDPD conditional expression

The operands in the SDPD conditional expression must be one of the following:

e scalar or vector module input or inout ports in their entirety or in bit-select or part-select form

e compile time constants
The following is a list of the valid operators in SDPD expressions:
~ bit-wise negation
& bit-wise AND
| bit-wise OR
A bit-wise XOR
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~N bit-wise XNOR

& reduction AND
~&  reduction NAND
| reduction OR

A reduction XOR
~" reduction XNOR
~ reduction NOR

== logical equality
I= logical inequality
&&  logical AND

| logical OR

! logical NOT

{} concatenation

{{}} duplicate concatenation

?: conditional

An SDPD conditional expression must evaluate to one bit. The Verilog HDL treats the results X
and Z as TRUE to facilitate signal propagation. The SDPD conditional expression may have any
number of operands and operators.

Examples
Consider the use of an SDPD in describing an XOR in Example 13-7.

module sdpdexample (a, b, out);
input a,b:

output out;

xor (out, a, b);

specify
specparam noninvrise = 1, noninvfall = 2
specparam invertrise = 3, invertfall = 4;
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if(a) (b=>out) = (invertrise, invertfall);
if(~a) (b=>out) = (noninvrise, noninvfall);
if(b) (a=>out) = (invertrise,invertfall);
if(~b) (a=>out) = (noninvrise,noninvfall);
endspecify

endmodule

Example 13- 7: SDPD XOR example

In Example 13-7, SDPDs allow you to describe a pair of output rise and fall delay times when the
XOR inverts a changing input. When the XOR buffers a changing input, SDPDs allow you to
describe another pair of output rise and fall delay times.

Example 13-8 models a partial ALU. SDPDs specify different sets of path delays for different
ALU operations.

‘timescale 1ns / 100ps

module ALU(o1, 1, 12, opcode);
input [7:0]1 1, i2;

input [2:1] opcode;

output [7:0] o1,

/[functional description omitted

specify
/[ add operation
if (opcode == 2'b00)
(i1,i2 *> 01) = (25.0,25.0);

/I pass-through i1 operation
if (opcode == 2'b01)
(i1 =>01)=(5.6,8.0);

/I pass-through i2 operation
if (opcode == 2'b10)
(i2 =>01) = (5.6,8.0);

// delays on opcode changes
(opcode => 01) = (6.1,6.5);
endspecify
endmodule

Example 13- 8: ALU operations with different path delays
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In this example, the first three path declarations declare paths extending from operand inputs to the
ol output. The delays on these paths are assigned to operations on the basis of the operation
specified by the inputs on opcode. The last path declaration declares a path from the opcode input
to the ol output.

Multiple path delays

When the same output terminates multiple paths, some combinations of module path declarations
that include that output can cause unexpected modeling results. If more than one SDPD can apply
to a path, you must write the SDPDs so that only one applies to the path at a time. An
unconditional path delay is like an SDPD whose conditional expression always is enabled, so it is
not appropriate to specify an SDPD and an unconditional path delay for the same path. Even if you
follow these guidelines, there is a situation in which models may not replicate hardware behavior,
shown in Figure 13-12.

A module has one output port designated aut and two input ports
designated A and B. The module contains zero delay logic.

Input & has a delay of 3 to the output.
Input B has a delay of 30 tothe output.

out

ﬁz\
N

out

0 5 10 15 20 25 30 35 40 45 30 35 GO B3

Figure 13- 12: Internal logic disabling a possible output change

In Figure 13-12, the output change occurs at 40 in response to the change on input B. An output
change at 20 in response to the change on input A may model the hardware under study more
correctly. This choice occurs because the times of output changes are scheduled when an edge
initially propagates to a module output. The transition on input A occurs later than the transition on
input B, and does not cause a change in the value of the signal propagating from the internal logic.
Consequently, the transition on input A does not initiate any scheduling of an output event.

Distributed delays and SDPDs
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For realistic modeling, larger modules tend to necessitate gate and net delays, and behavioral
models require procedural delays. These delays can have an undesirable impact on the choice of
path delays, which you can avoid by following this rule:

Larger cells and modules that require distributed delays and SDPDs should meet this test: the
inputs should not change before an edge generated by the most recent input change has propagated
to the outputs.

This rule exists because a choice among path delays occurs when an edge initially arrives at an
output, and distributed delays retard the initial arrival of the edge at an output. If the input state is a
component of an SDPD conditional expression that specifies a delay for the path that the edge
follows, a change in the input state before the choice of a delay can result in the choice of an
inappropriate delay. The situation described in this case can also lead to output values that do not
accurately model hardware.

When you apply the following pairs of delays to a path, the larger of the two delays schedules the
appearance of an output change:

e adistributed delay and an unconditional delay

e adistributed delay and an SDPD

13.2.7 Driving Wired Logic

Module path output nets may not have more than one driver within the module. Therefore, wired
logic is not allowed at module path outputs. Figure 13-13 and Figure 13-14 illustrate two
violations of this rule.

A<
e ™ d |
L/

Figure 13- 13: Illegal module paths: Two module path outputs with multiple output drivers

In Figure 13-13, any module path to Q or R is illegal.

m(m

5™
|/

Figure 13- 14: Illegal module paths: One module path output with multiple output drivers
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In Figure 13-14, any module path to S is illegal.

Assuming signal § in Figure 13-14 is a wired AND, you can circumvent this limitation by
replacing wired logic with gated logic to create a single driver to the output. Figure 13-15 shows
how adding a third AND gate—the shaded one—solves the problem for the module in Figure 13-
14.

=D

Figure 13- 15: Legal module paths: One output driver

Note, however, that although multiple output drivers are prohibited inside the module, they are
allowed outside the module, as in Figure 13-16.

LA |
1=
)
Leaml
o
IE |
IE_|
2}
Lemm
H |

Figure 13- 16: Legal module paths: Multiple output drivers outside the module

Here, all module paths to R and all paths to Q are legal.

13.2.8 Module Path Polarity

The polarity of a module path determines how a signal transition at its source propagates to its
destination when there are no logic simulation events. Polarity has no effect on the scheduling of
simulation events; a timing analysis tool can use polarity when performing path tracing.

Module paths can exhibit any of three polarities:
1.  unknown

2. positive
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3.  negative

Unknown polarity

By default, module paths have unknown polarity—that is, a transition at the path source propagates
to the destination in an unpredictable way, as follows:

e A rise at the source causes either a rise or a fall at the destination.
e A fall at the source causes either a rise or a fall at the destination.

Whether a rise or a fall propagates to the destination depends on the states of the module’s other
inputs and internal logic.

By contrast, in module paths with known polarity—either positive or negative—the signal
transition at the source directly determines the signal transition at the destination.

Positive polarity

For module paths with positive polarity, any transition at the source causes the same transition at
the destination, as follows:

e A rise at the source always causes a rise at the destination.

e A fall at the source always causes a fall at the destination.

Negative polarity

Conversely, in module paths with negative polarity, any transition at the source causes the opposite
transition at the destination, as follows:

e A rise at the source always causes a fall at the destination.
e A fall at the source always causes a rise at the destination.

To set up module paths with positive polarity, add the prefix + to the connection operators *> and
=>; for negative polarity, add the prefix -; for unknown polarity, add no prefix. The following
examples show each type of path polarity:

Ml +=> gy =Intog:
(=+>rql==tog:

(Ml =>q)=Intog:
(= *rgl==tog: -}‘

(Il =>rq) =Intog:
(=*:>q) ==tog:

Example 13- 9: The three path polarity types
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The first and second lines in Example 13-9 demonstrate positive polarity. The second and third
lines demonstrate negative polarity. The last two lines demonstrate unknown polarity.

In addition, you can assign the same polarity to multiple module paths in a single statement, as
follows:

(. b, o+ aql. g2) = 10 ; }‘H

i, b, o —=*>ql, g2) =10 ; }‘_

Example 13- 10: Assigning one polarity to many paths in one statement

In Example 13-10, the first line assigns positive polarity to six different paths. The second line
assigns negative polarity to six different paths.

13.2.9 Qualified Paths

A construct called a qualified path lets you set up conditions for dynamically controlling how state
changes propagate through module paths.

A brief discussion of qualified paths is presented here.
There are two kinds of qualified paths:
e level-sensitive

e cdge-sensitive

Level-sensitive paths

Level-sensitive paths depend on the state of one or more conditioning signals. Whenever the
specified conditions are satisfied, changes will flow through the path; otherwise, the path is
effectively broken. Level sensitive paths are also enabled when the specified conditions evaluate to
unknown (x). Syntax 13-7 shows the syntax of the level-sensitive path declaration.

<level_sensitive_path_declaration>
::=if (<conditional_port_expression>)(<specify terminal_descriptor>
<polarity_operator>?=><specify_terminal_descriptor>)=
(<path_delay_value>);

||= if (<conditional_port_expression>) (<list_of_path_inputs>
<polarity_operator>? *> <list_of path_outputs>) =
<path_delay_value>;

<conditional_port_expression>
.:=<port_reference
||=<UNARY_OPERATOR><port_reference>
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||=<port_reference><BINARY_OPERATOR><port_reference>

Syntax 13- 7: Syntax of the level-sensitive path declaration
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Note that you can use *> for full connections or => for parallel connections. In addition, you can
specify polarity and declare more than one level-sensitive path in a single statement.

Signals in the expression in Syntax 13-7 must be ports of the module that contains the path, but
can be any combination of the following constructs: scalar or vector input and inout ports, or bit-
selects and part-selects of those ports.

Example 13-11 demonstrates two level-sensitive path declarations without polarity operators that
have the same meaning.

if (clock == 1) (in => out) = (3:4:5);
if (clock) (in => out) = (3:4:5);

Example 13- 11: Level-sensitive path declarations without polarity operators

The delay from in to out in this example will have the minimum, typical, or maximum value as
selected if clock has a value of 1.

Example 13-12 demonstrates two level-sensitive path declarations with polarity operators which
have the same meaning:

if (clock==0) (in+=>out) = 10;
if (!clock) (int=>out) = 10;

Example 13- 12: Level-sensitive path declarations with polarity operators

In Example 13-12, arise at in causes a rise at out, and a fall at in causes a fall at out. The delay
from in to out is 10 if the value of clock is 0.

The following example declares multiple level-sensitive paths:

i f(!'clock)(inl,in2*>outl, out2)=20;

In this example, if the value of clock is 0, four paths have a delay of 20.

Implementation Specific Detail: Some tools many not allow the assignment of different delays.

Edge-sensitive paths

The other type of qualified path is edge-sensitive. In edge-sensitive paths, the path source is an
edge-triggered conditioning signal. Changes flow through an edge-sensitive path when the
specified edge occurs at the conditioning signal.

Syntax 13-8 shows the syntax of the edge sensitive path declaration.

<edge_sensitive_path_declaration>
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.:=<if (<expression>)>? (<edge_identifier>? <specify_terminal_descriptor>=>
(<specify_terminal_descriptor> <polarity operator> ?:
<data_source_expression>))=<path_delay_value>

||=<if (<expression>)>? (<edge_identifier>? <specify_terminal_descriptor> *>
(<list_of path_outputs> <polarity _operator> ?:
<data_source_expression>))=<path_delay_value>

<edge_identifier>

;.= posedge
||= negedge

<data_source_expression>

Any expression, including constants and lists. Its width must be one bit or
equal to the destination's width. If the destination is a list, the data source
must be as wide as the sum of the bits of the members.

Syntax 13- 8: Syntax of the edge-sensitive path declaration

The edge-sensitive path’s edge—given in Syntax 13-8 as the <specify terminal descriptor> to the
left of the connection operator—can be any scalar input or inout port, or bit-select of that port.

Since the edge must be one bit wide, you can specify edge-sensitive paths with full connections
(*>) or parallel connections (=>), according to the rules for connection operators described in
Section 13.2.1 Describing Module Paths. There are two ways to specify the path destination—the
signal or signals to the left of the colon (:)—depending on the connection operator used:

e For parallel connections (=>), the destination can be any scalar output or inout port, or one of
its bit-selects.

e For full connections (*>), the destination can be a list of one or more of the following
signals: vector or scalar output and inout ports, and bit-selects or part-selects of those ports.

Signals in the edge-sensitive path condition given in Syntax 13-8 as the <expression> following
the literal “if”—can be any scalar signals or bit-selects.

The following example demonstrates an edge-sensitive path declaration with a positive polarity
operator:

( posedge clock => ( out + in ) ) = (10, 8);
In this example, at the positive edge of clock, a module path extends from clock to out using the

rise delay (10) if in is 1 and the fall delay (8) if in is 0.

The following example demonstrates an edge-sensitive path declaration with no polarity operator:

( clock => ( out : in) ) = (10, 8);
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In this example, at any change in clock, a module path extends from clock to out using the worst
case delay, which is the rise delay ( 10) , because no polarity is specified.

The following example demonstrates an edge-sensitive path declaration with a negative polarity
operator:

( negedge clock[0O] => ( out -: in ) ) = (10, 8);

In this example, at the negative edge of clock[0], a module path extends from clock[0] to out using
the rise delay (10) if in is 0 and the fall delay ( 8) ifinis I.

The following example demonstrates an edge-sensitive path declaration with a binary operation
conditioning the delays:

( posedge clock*> ( ( out[0:3], out[4:7] ) +: inl & in2 )) = (10,
8);

In this example, at the positive edge of clock, a module path extends from clock to out[0:3], and
from clock to out[4:7] using the rise delay (10) if (inl && in2) is 1, and the fall delay (8) if (inl
&& in2) is 0.

The following example demonstrates an edge-sensitive path declaration preceded by a conditional
expression:

if ( 'reset )
(posedge clock => ( out +: in) ) = (10, 8);

In this example, if the positive edge of clock occurs when reset is low, a module path extends from
clock to out using the rise delay (10) if in is 1, and the fall delay (8) if in is 0.

Note that conditions in edge-sensitive paths are optional and need not be ports. The preceding
usage example shows a condition defined with one scalar signal. In Example 13-13, a condition
combines two scalars.

if (Ireset && Iclear )
(posedge clock => (out +:in)) = (10, 8);

Example 13- 13: Edge-sensitive path with three conditions

You can assign different delays to the same edge-sensitive path as long as the following criteria are
met:

e The edge, condition, or both make each declaration unique.

e A signal is always referenced in the same way.
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In Example 13-14, the following four edge-sensitive path declarations are legal because each one
has a unique edge or condition, all edges and data sources are specified as scalar inputs, and all
destinations are specified as bit selects of a vector output.

specify
(posedge clk => (q[0]:data))= (10, 5);
(negedge clk => (q[0]:data)) = (20, 12);

if (reset)
(posedge clk => (q[0]:data)) = (15, 8);

if (Ireset && cntrl)
(posedge clk => (g[0]:data)) = (6, 2);

endspecify

Example 13- 14: Four edge-sensitive path declarations

To a timing analysis tool, the four declarations in Example 13-14 define a different set of delays
for each of the four states affecting the path from clk to q[0]. However, a simulator does not care
about the various states and instead uses the largest delays specified—in this case, a rise delay of
20 and a fall delay of 12.

The two declarations in Example 13-15 are not legal because even though they have different
conditions, the destinations are not specified in the same way: the first destination is a part-select,
the second is a bit-select.

specity
if (re==t)
(poesdge cll =» (g[3:0]:data)) = (10.5);
if (lresst)
(poesdoe clle =» (g[0]:data))
aderecify

Example 13- 15: Example of conflicting destination specifications
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Formal Syntax Definition

A.0 Syntax Overview

The following items summarize the format of the formal syntax descriptions:
1. White space may be used to separate lexical tokens.

2. Angle brackets surround each description item and are not literal symbols—that is, they do not
appear in a source example of a syntax item.

3. <name> in lower case is a syntax construct item defined by other syntax construct items or
by lexical token items (see next item).

4. <NAME> in upper case is a lexical token item. Its definition is a terminal node in the
description hierarchy—that is, its definition does not contain any syntax construct items.

<name>? is an optional item.
<name>* is zero, one or more items.
<name>+ is one or more items.

<name> <,<name>>* is a comma-separated list of items with at least one item in the list.

A S AN

if [condition] is a condition placed on one of several definitions
10. <name> ::= gives a syntax definition to an item.
11. ||=introduces an alternative syntax definition.

12. name is a literal (a keyword). For example, the definition <event declaration> ::= event
<name_of event> stipulates that the keyword “event” precedes the name of an event in an
event declaration.

13.  (...) places parenthesis symbols in a definition. These parentheses are literals required by

the syntax being defined. Other literal symbols can also appear in a definition (for example, .
and :).

Please note: In Verilog syntax, a period (.) may not be preceded or followed by a space.

A.1 Source Text

<source_text>
::= <description>*
<description>
::= <module>
|[= <primitive>
<module>
::= module <name_of module> <list_of ports>? ;
<module_item>*

endmodule
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||= macromodule <name of module> <list of ports>? ;

<module item>*

endmodule

<name_of module>

::= <IDENTIFIER>

<list_of ports>

= (<port> <,<port>>*)

::= <port_expression>?

Defined in Section 2.5 Identifiers, Keywords, and System Names.

|=. <name of port> ( <port_expression>? )

<port_expression>

::= <port_reference>

|[= { <port_reference> <,<port_reference>>* }

<port_reference>

::=<name_of variable>

|=<name of variable> [ <constant expression> ]

|=<name of variable> [ <constant expression> : <constant_expression> ]

<name_of port>

::= <IDENTIFIER>

<name_of variable>

::= <IDENTIFIER>

<module_item>

::= <parameter_declaration>
||= <input_declaration>

|= <output declaration>
||= <inout_declaration>

||= <net_declaration>

|= <reg_declaration>

||= <time_declaration>

|[= <integer declaration>
|= <real declaration>

|= <event_declaration>

|= <gate declaration>
|=<UDP_instantiation>
|= <module instantiation>
|[= <parameter override>
||= <continuous_assign>
||= <specify_block>

||= <initial statement>

||= <always_statement>

||= <task>

||= <function>

Defined in Section 3.11 Parameters.

Defined in Section 12.4.2 Port Declarations.

Defined in Section 12.4.2 Port Declarations.

Defined in Section 12.4.2 Port Declarations.

Defined in Section 3.2.3 Declaration Syntax.

Defined in Section 3.2.3 Declaration Syntax.

Defined in Section 3.9 Integers and Times.

Defined in Section 3.9 Integers and Times.

Defined in Section 3.10.1 Declaration Syntax for Real Numbers.
Defined in Section 8.6.2 Event Control.

Defined in Section 6.1 Gate and Switch Declaration Syntax.
Defined in Section 7.1 Syntax.

Defined in Section 12.1.2 Module Instantiation.

Defined in Section 12.2 Overriding Module Parameter Values.
Defined in Section 5.1 Continuous Assignments.

Defined in Chapter 13, Specify Blocks.

Defined in Section 8.8.1 initial Statement.

Defined in Section 8.8.2 always Statement.
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<UDP>

::= primitive <name of UDP> ( <name of variable> <,<name of variable>>*);

<UDP_declaration>+
<UDP initial statement>?
<table definition>
endprimitive
<name_of UDP>
::= <IDENTIFIER>
<UDP_declaration>
::= <output_declaration>
|= <reg_declaration>
||= <input_declaration>

<UDP _initial_statement>

::= initial <output_terminal name> =

<init_val>
:=1"b0
|I=1"bl
|I= 1"bx
=1
=0
<table_definition>
::= table <table entries> endtable
<table_entries>
::= <combinational entry>+
|[= <sequential entry>+

<combinational_entry>

Defined in Section 7.1 Syntax.
Defined in Section 7.1 Syntax.
Defined in Section 7.1 Syntax.

<init_val>;

::=<level_input_list>: <OUTPUT _SYMBOL>;

<sequential_entry>

= <input _list> : <state> : <next state> ;

<input_list>

:=<level input_list>

||= <edge input_list>
<level_input_list>

::==<LEVEL SYMBOL>+
<edge_input_list>

::=<LEVEL SYMBOL>* <edge> <LEVEL SYMBOL>*

<edge>

= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)

|=<EDGE_SYMBOL>
<state>
::=<LEVEL SYMBOL>

<next_state>
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::==<OUTPUT_SYMBOL>
|=- (This is a literal hyphen, see Chapter 7, User-Defined Primitives (UDPs), for details).
<OUTPUT_SYMBOL-> is one of the following characters:
01 x X
<LEVEL_SYMBOL> is one of the following characters:
01 x X ?b B
<EDGE_SYMBOL> is one of the following characters:
rRfFpPnN*
<task>
::=task <name_of task>; <tf declaration>*<statement or null> endtask
<name_of task>
::= <IDENTIFIER>
<function>
::= function <range or type>? <name of function> ;
<tf declaration>+
<statement>
endfunction
<range_or_type>
::= <range> Defined in Section 9.3.1 Defining a Function.
||= integer
||= real
<name_of function>
::= <IDENTIFIER>

<tf_declaration>

::= <parameter_declaration> Defined in Section 3.11 Parameters.

||= <input_declaration> Defined in Section 12.4.2 Port Declarations.

||= <output declaration> Defined in Section 12.4.2 Port Declarations.

||= <inout_declaration> Defined in Section 12.4.2 Port Declarations.

|= <reg_declaration> Defined in Section 3.2.3 Declaration Syntax.

||= <time_declaration> Defined in Section 3.9 Integers and Times.

||= <integer declaration> Defined in Section 3.9 Integers and Times.

||= <real declaration> Defined in Section 3.10.1 Declaration Syntax for Real Numbers.
||= <event_declaration> Defined in Section 8.6.2 Event Control.

A.2 Declarations

<parameter_declaration>
::= parameter <list of param_assignments> ;
<list_of param_assignments>
::==<param_assignment><,<param_assignment>*
<param_assignment>

::=<<identifier> = <constant_expression>>
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<input_declaration>

::= input <range>? <list of variables> ;
<output_declaration>

::= output <range>? <list_of variables> ;
<inout_declaration>

::= inout <range>? <list of variables> ;

<net_declaration>

::= <NETTYPE> <expandrange>? <delay>? <list of variables> ;

||= trireg <charge strength>? <expandrange>? <delay>? <list of variables> ;

<NETTYPE> is one of the following keywords:

wire tri tril supply0 wand triand tri0 supplyl wor trior trireg

<expandrange>
;= <range>
|[= scalared <range>
||= vectored <range>

<delay>

n= Defined in Section 8.6.1 Delay Control.

<reg_declaration>

::=reg <range>? <list_of register variables> ;
<time_declaration>

::= time <list_of register variables> ;
<integer_declaration>

::= integer <list_of register variables> ;
<real_declaration>

::=real <list_of variables> ;
<event_declaration>

::=event <name_of event><,<name of event>>* ;
<continuous_assign>

::=assign <drive_strength>? <delay>? <list_of assignments> ;

|=<NETTYPE> <drive_strength>? <expandrange>? <delay>?

<list of assignments> ;

<parameter_override>

::= defparam <list of param_assignments> ;
<list_of variables>

::=<name of variable> <,<name of variable>>*
<name_of_variable>

::= <|DENTIFIER>
<list_of register_variables>

::= <register variable> <,<register variable>>*
<register_variable>

::=<name_of register>
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||= <name of memory> [ <constant expression> : <constant expression> ]
<constant_expression>
= Defined in Chapter 4,Expressions.
<name_of register>
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<name_of memory>
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<name_of event>
::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<charge_strength>
= (small )
|= ( medium )
[[= (large )
<drive_strength>
= ( <STRENGTHO> , <STRENGTH1>)
|= (<STRENGTHI1>, <STRENGTHO0> )
<STRENGTHO> is one of the following keywords:
supplyO strong0 pull0 weak0 highz0
<STRENGTH1> is one of the following keywords:
supplyl strongl pulll weakl highzl
<range>
::=[ <constant_expression> : <constant expression> ]
<list_of assignments>
::= <assignment> <,<assignment>>*
<expression>
= Defined in Chapter 4, Expressions.
<assignment>

n= Defined in Chapter 8, 8.2 Procedural Assignments.

A.3 Primitive instances

<gate_declaration>
== <GATETYPE> <drive_strength>? <delay>? <gate instance>
<,<gate_ instance>>* ;
<GATETYPE> is one of the following keywords:
and nand or nor xor xnor buf bufif0 bufifl not notifO notifl pulldown pullup
nMmMoS rnmos pmos rpmos cmos rcmos  tran rtran tranif0 rtranif0 tranifl rtranifl
<drive_strength>
= (<STRENGTHO>,<STRENGTH1>)
|=(<STRENGTH1>,<STRENGTHO0>)
<delay>

= # <number>

Verilog HDL. LRM Formal Syntax Definition ¢ 206



||= # <identifier>
||=# (<mintypmax_expression> <,<mintypmax_expression>>?
<,<mintypmax_expression>>7?)

<gate instance>

::=<name of gate instance>? ( <terminal> <,<terminal>>* )
<name_of gate_instance>

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<UDP_instantiation>

::=<name_ of UDP> <drive strength>? <delay>? <UDP _instance>

<,<UDP_instance>>* ;

<name_of UDP>

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<UDP_instance>

::=<name_of UDP_instance>? ( <terminal> <,<terminal>>* )
<name_of UDP_instance>

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<terminal>

::= <expression>

|= <IDENTIFIER>

A.4 Module Instantiations

<module_instantiation>

::=<name_of module> <parameter value assignment>?

<module_instance> <,<module instance>>* ;

<name_of module>

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<parameter_value_assignment>

= # ( <expression> <,<expression>>* )
<module_instance>

::=<name of instance> ( <list_of module connections>? )
<name_of_instance>

::= <IDENTIFIER> Defined in Section 2.5 Identifiers, Keywords, and System Names.
<list_of module_connections>

::=<module port connection> <,<module port connection>>*

|=<named port_connection> <,<named_port _connection>>*

<module_port_connection>

::= <expression> Defined in Chapter 4, Expressions.
|=<NULL>
<NULL>
::= nothing—this form covers the case of an empty item in a list—for example:
(a,b,,d)
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<named_port_connection>
::= < IDENTIFIER> ( <expression>)
<expression>

= Defined in Chapter 4, Expressions.

A.5 Behavioral Statements

<initial_statement>
::= initial <statement>
<always_statement>
::= always <statement>
<statement_or_null>
::= <statement>
=5
<statement>
::=<blocking assignment> ;
||= <non-blocking assignment> ;
||= if ( <expression> ) <statement _or null>
||= if ( <expression> ) <statement or null>
else <statement_or null>
|[= case ( <expression> ) <case item>+ endcase
|[= casez ( <expression> ) <case_item>+ endcase
||= casex ( <expression>) <case item>+ endcase
||= forever <statement>
||= repeat ( <expression> ) <statement>
|[= while ( <expression> ) <statement>

||= for ( <assignment> ; <expression> ; <assignment> )

<statement>
|= <delay_control> <statement _or null> Defined in Section 8.6.1 Delay Control.
||= <event control> <statement or null> Defined in Section 8.6.2 Event Control.

||= wait ( <expression> ) <statement _or null>
|=-> <name of event>;

||= <seq_block>

|= <par_block>

|= <task enable>

||= <system_task enable>

||= disable <name of task> ;

||= disable <name of block> ;

||= force <assignment> ;

||= release <lvalue> ;

<assignment>
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::= <lvalue> = <expression>
<blocking assignment>

::= <lvalue> = <expression>

|[= <lvalue> = <delay_control> <expression> ;

||= <lvalue> = <event_control> <expression> ;
<non-blocking assignment>

::= <lvalue> <= <expression>

||= <lvalue> <= <delay_control> <expression> ;

||= <lvalue> <= <event_control> <expression> ;

<lvalue>

= Defined in Section 8.2 Procedural Assignments.
<expression>

n= Defined in Chapter 4, Expressions.
<case_item>

;:= <expression> <,<expression>>* : <statement or null>

|[= default : <statement or null>

|[= default <statement or null>
<seq_block>

::= begin <statement>* end

|= begin : <name of block> <block declaration>* <statement>* end
<par_block>

::= fork <statement>* join

||= fork : <name of block> <block declaration>* <statement>* join
<name_of block>

::= <IDENTIFIER>

<block_declaration>

::= <parameter_declaration> Defined in Section 3.11 Parameters.

|= <reg_declaration> Defined in Section 3.2.3 Declaration Syntax.

||= <integer declaration> Defined in Section 3.9 Integers and Times.

||= <real declaration> Defined in Section 3.10 Real Numbers.

||= <time_declaration> Defined in Section 3.9 Integers and Times.

||= <event_declaration> Defined in Section 8.6.2 Event Control.
<task_enable>

:=<name of task>; Defined in Section 9.2.1 Defining a Task.

|=<name of task> ( <expression> <,<expression>>%*) ;
<system_task_ enable>

::=<name of system_ task>;

|=<name of system task> ( <expression> <,<expression>>* ) ;
<name_of system_task>

::=$<SYSTEM IDENTIFIER>
Please note: ~ The $ may not be followed by a space.
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<SYSTEM_IDENTIFIER>
::= An <IDENTIFIER> assigned to an existing system task or function.

A.6 Specify Section

<specify_block>

.:= specify <specify item>* endspecify
<specify_item>

::= <specparam_declaration>

|= <path_declaration>

|= <level sensitive path_declaration>

|[= <edge sensitive path_declaration>

|[= <system_timing_check>

[[= <sdpd>
<specparam_declaration>

::= specparam <list of param_assignments> ;
<list_of param_assignments>

::=<param_assignment><,<param_assignment>>*
<param_assignment>

::=<<identifier>=<constant_expression>>
<path_declaration>

::= <path_description> = <path delay value>;
<path_description>

::= (<specify input terminal descriptor>=> <specify output terminal descriptor>)

|= (<list_of path inputs> *> <list of path_ outputs>)
<list_of path_inputs>

::= <specify_input_terminal descriptor> <,<specify_input_terminal descriptor>>*
<list_ of path_outputs>

::= <specify output terminal descriptor> <,<specify output terminal descriptor>>*
<specify_input_terminal_descriptor>

::=<input_identifier>

||= <input_identifier> [ <constant_expression> ]

||= <input_identifier> [ <constant_expression> : <constant_expression> |
<specify_output_terminal descriptor>

::= <output_identifier>

||= <output identifier> [ <constant expression> ]

||= <output identifier> [ <constant expression> : <constant expression> ]
<input_identifier>

::= the <IDENTIFIER> of a module input or inout terminal
<output_identifier>

::= the <IDENTIFIER> of a module output or inout terminal. See Section 13.2.1 Describing Module Paths
for rules that govern <output_identifier>.
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<path_delay value>
::=<path_delay expression>
||= (<path_delay expression>, <path_delay expression> )
||= (<path_delay expression>, <path_delay expression>,
<path_delay expression> )
||= (<path_delay expression>, <path_ delay expression>,
<path_delay expression>, <path delay expression>,
<path_delay expression>, <path delay expression>)
<path_delay_expression>
::= <constant_mintypmax_expression>
<system_timing_check>
::= $setup( <timing_check event>, <timing_check event>, <timing_check limit>
<,<notify register>>?);
||= $hold( <timing_check event>, <timing_check event>, <timing_check limit>
<,<notify register>>? ) ;
||= $period( <controlled timing check event>, <timing check limit>
<,<notify_register>>? ) ;
|[= $width( <controlled timing_check event>, <timing_check limit>
<,<constant_expression>,<notify_register>>? ) ;
||= $skew( <timing_check event>, <timing_check event>, <timing_check limit>
<,<notify register>>? ) ;
||= $recovery( <controlled timing_check event>, <timing_check event>,
<timing_check limit> <<notify register>>? ) ;
||= $setuphold( <timing_check event>, <timing_check event>,
<timing_check_limit>, <timing_check limit> <<notify register>>? ) ;
<timing_check_event>
::=<timing_check event control>? <specify terminal descriptor>
<&&& <timing_check condition>>?
<specify_terminal_descriptor>
::= <specify_input_terminal_descriptor>
|=<specify output terminal descriptor>
<controlled_timing_check_event>
::=<timing_check event control> <specify terminal descriptor>
<&&& <timing check condition>>?
<timing_check_event_control>
::= posedge
||= negedge
||= <edge control_specifier>
<edge_control_specifier>
::=edge [ <edge descriptor><,<edge descriptor>>*]
<edge_descriptor>
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=01
|| 10
[ 0x
[ x1
[ 1x
| x0
<timing_check_condition>
::=<SCALAR EXPRESSION>
|=~<SCALAR EXPRESSION>
|=<SCALAR_EXPRESSION> == <scalar constant>
|=<SCALAR_ EXPRESSION> === <scalar_constant>
|=<SCALAR_EXPRESSION> != <scalar_constant>
|=<SCALAR_EXPRESSION> !== <scalar_constant>
<SCALAR_EXPRESSION> is a one bit net or a bit select of an expanded vector net.
;= <timing_check limit>
::= <expression>
<scalar_constant>
:=1"b0
|=1°bl
|=1"BO
|=1’B1
<notify_register>
::= <identifier>
<level_sensitive_path_declaration>
::= if (<conditional port_expression>)
(<specify_terminal descriptor> <polarity operator>?=>
<specify terminal descriptor>) = <path delay value>;
||= if (<conditional port expression>)
(<list_of path inputs> <polarity operator>? *>
<list_of path outputs>) = <path_delay value>;

Please note: The following two symbols are literal symbols, not syntax
description conventions:

>k> =>

<conditional_port_expression>

::= <port_reference>

|=<UNARY_ OPERATOR><port reference>

|[= <port_reference><BINARY_ OPERATOR><port_reference>
<polarity_operator>

=t

II=-

<edge_sensitive_path_declaration>
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::=<if (<expression>)>? (<edge identifier>?
<specify_terminal descriptor>=>
(<specify_terminal descriptor> <polarity operator> ?: <data source expression>)) = <path_delay value>;
|=<if (<expression>)>? (<edge identifier>?
<specify_terminal descriptor> *>
(<list_of path outputs> <polarity operator> ?:
<data_source_expression>)) =<path delay value>;
<data_source_expression>

Any expression, including constants and lists. Its width must be one bit or equal to the destination’s width. If
the destination is a list, the data source must be as wide as the sum of the bits of the members.

<edge_identifier>
::= posedge
|= negedge

<sdpd>
::=if(<sdpd_conditional expression>)<path_description>=
<path_delay value>;

<sdpd conditional expresssion>
::=<expression><BINARY OPERATOR><expression>
[=<UNARY_ OPERATOR><expression>

A.7 Expressions

<lvalue>
::= <identifier> Defined in Section 2.5 Identifiers, Keywords, and System Names.
||= <identifier> [ <expression> ]
||= <identifier> [ <constant expression> : <constant expression> ]
||= <concatenation>
<constant_expression>
::=<expression>
<mintypmax_expression>
::= <expression>
||= <expression> : <expression> : <expression>
<expression>
::= <primary>
|=<UNARY_ OPERATOR> <primary>
||= <expression> <BINARY_ OPERATOR> <expression>
||= <expression> <QUESTION MARK> <expression> : <expression>
|= <STRING>
<UNARY_OPERATOR> is one of the following tokens:
+-l~&~&| NN
<BINARY_OPERATOR> is one of the following tokens:
+-F /% =l=====&& || <<=>>= & | " > <K

<QUESTION_MARK> is ? (a literal question mark).
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<STRING> is text enclosed in """ and contained on one line.
<primary>
::= <number>
||= <identifier> Defined in Section 2.5 Identifiers, Keywords, and System Names.
||= <identifier> [ <expression> ]
||= <identifier> [ <constant expression> : <constant expression> ]
||[= <concatenation>
||= <multiple concatenation>
||= <function_call>
|[= ( <mintypmax_expression> )
<number>
::=<DECIMAL NUMBER>
|= <UNSIGNED NUMBER>? <BASE> <UNSIGNED NUMBER>
|= <DECIMAL NUMBER>.<UNSIGNED NUMBER>
|= <DECIMAL NUMBER><.<UNSIGNED NUMBER>>?E<DECIMAL NUMBER>

|=<DECIMAL NUMBER><.<UNSIGNED NUMBER>>?e<DECIMAL NUMBER>

Please note: embedded spaces are illegal in Verilog numbers, but embedded
underscore characters can be used for spacing in any type of
number.

<DECIMAL_NUMBER>
::= A number containing a set of any of the following characters, optionally preceded by + or -
0123456789 _
<UNSIGNED_NUMBER>
::= A number containing a set of any of the following characters:
0123456789 _
<NUMBER>

Numbers can be specified in decimal, hexadecimal, octal or binary, and may optionally start with a + or -.
The <BASE> token controls what number digits are legal. <BASE> must be one of d, h, o, or b, for the
bases decimal, hexadecimal, octal, and binary respectively. A number can contain any set of the following
characters that is consistent with <BASE>:

0123456789abcdefABCDEFxXzZ?
<BASE> is one of the following tokens:
> ’B 0 O °d 'D ’h ’H
<concatenation>
= { <expression> <,<expression>>* }
<multiple _concatenation>
::= { <expression> { <expression> <,<expression>>* } }
<function_call>
::==<name of function> ( <expression> <,<expression>>* )
|=<name of system function> ( <expression> <,<expression>>*)
|=<name of system function>

<name_of function>
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::= <identifier>
<name_of system_function>

::=$<SYSTEM _IDENTIFIER>
Please note:  The $ may not be followed by a space.

<SYSTEM_IDENTIFIER>
::= An <IDENTIFIER> assigned to an existing system task or function

A.8 General

<identifier>

::= <IDENTIFIER><.<IDENTIFIER>>*
Please note:  The period may not be preceded or followedby a space.

<IDENTIFIER>

An identifier is any sequence of letters, digits, dollar signs ($), and underscore (_) symbol, except that the first
must be a letter or the underscore; the first character may not be a digit or $. Upper and lower case letters are
considered to be different. Identifiers may be up to 1024 characters long. Some Verilog-based tools do not
recognize identifier characters beyond the 1024th as a significant part of the identifier. Escaped identifiers start
with the backslash character (\) and may include any printable ASCII character. An escaped identifier ends with
white space. The leading backslash character is not considered to be part of the identifier.

<delay>
::=# <number> Defined in Section 2.3 Numbers2.3 Numbers.
||= # <identifier>
||=# ( <mintypmax_expression> <,<mintypmax_expression>>?<,<mintypmax_expression>>?)
<mintypmax_expression>
= Defined in Section 6.15.1 min/typ/max Delays.
<delay_control>
::=# <number> Defined in Section 2.3 Numbers.
||= # <identifier>
|[=# ( <mintypmax_expression> ) Defined in Section 6.14.1 tril Net Strengths.
<event_control>
::= @ <identifier>
||= @ ( <event_expression> )
<event_expression>
.= <expression> Defined in Chapter 4, Expressions.
|[= posedge <SCALAR _EVENT EXPRESSION>
|= negedge <SCALAR _EVENT_EXPRESSION>
|= <event_expression> or <event_expression>*
<SCALAR_EVENT_EXPRESSION> is an expression that resolves to a one bit value.
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System Tasks and Functions

B.0 System Tasks Overview

This section describes system tasks and functions that are tool implementation specific.

Below is a list of the tasks and functions described. For the function marked with an asterisk, the
host machine native arithmetic is used.

$bitstoreal $rtoi
$display $setup
$finish $skew
$hold $setuphold
$itor $strobe
$period $time
$printtimescale $timeformat
$realtime $width
$realtobits $write
$recovery

These utility tasks and functions provide some broadly useful capabilities. The following sections
describe the behavior of these tasks and functions—without giving the complete implementation
details.

B.1 The Display and Write Tasks

Syntax:

$di splay(P1, P2, ... , Pn);

$write(P1, P2, ..., Pn);
These are the main system task routines for displaying information. The two tasks are identical
except that $display automatically adds a newline character to the end of its output, whereas the

$write task does not. Thus, if you want to print several messages on a single line, you should use
the $write task.

The $display and $write tasks display their parameters in the same order they appear in the
parameter list. Each parameter can be a quoted string, an expression that returns a value, or a null
parameter.

The contents of string parameters are output literally except when certain escape sequences are
inserted to display special characters or specify the display format for a subsequent expression.

Escape sequences are inserted into a string in three ways:
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e The special character \ indicates that the character to follow is a literal or non-printable
character (see Table B-1).

e The special character % indicates that the next character should be interpreted as a format
specification that establishes the display format for a subsequent expression parameter
(Table B-2). For each % character that appears in a string, a corresponding expression
parameter must be supplied after the string.

e The special character string %% indicates the display of the percent sign character % (see
Table B-1).

Any null parameter produces a single space character in the display. (A null parameter is
characterized by two adjacent commas in the parameter list.)

The $display task, when invoked without parameters, simply prints a newline character. A $write
task supplied without parameters prints nothing at all.

Note that because $write does not produce a newline character after outputting its text, most
operating systems simply buffer the text rather than flush it directly to the output. For these
operating systems, you should use the $display task instead of the $write task, or else include an
explicit newline character (\n) in the $write task in order to ‘see’ the text in the output immediately.

B.1.1 Escape Sequences for Special Characters

The following escape sequences, when included in a string parameter, cause special characters to
be displayed:

\n is the newline character

\t is the tab character

\\ is the \ character

\" is the " character

\o is a character specified in 1-3 octal digits

%% is the percent character

Table B- 1: Escape sequences for printing special characters

Example B-1 shows these escape sequences in a string parameter and their results.

module disp;

initial

begin
$display("\\\t%%\n\"\123");

end

endmodule

Highest level modules:
disp
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Example B- 1: Using escape sequences

B.1.2 Format Specifications

Table B-2 shows the escape sequences used for format specifications. Each escape sequence, when
included in a string parameter, specifies the display format for a subsequent expression. For each %
character (except %m) that appears in a string, a corresponding expression must follow the string in
the parameter list. The value of the expression replaces the format specification when the string is
displayed.

Any expression parameter that has no corresponding format specification is displayed using the
default decimal format.

%h or %H display in hexadecimal format
%d or %D display in decimal format

%0 or %0 display in octal format

%b or %B display in binary format

%c or %C display in ASCII character format

%V or %V display net signal strength
%m or %M display hierarchical name
%s or %S display as a string

%t or %T display in current time format

Table B- 2: Escape sequences for format specifications

Example B-2 shows how escape sequences are used to provide format specifications.

module disp;

reg [31:0] rval;

pulldown (pd);

initial

begin
rval = 101;
$display("rval = %h hex %d decimal",rval,rval);
$display("rval = %o octal %b binary",rval,rval);
$display("rval has %c ascii character value",rval);
$display("pd strength value is %Vv",pd);
$display("current scope is %m");
$display("%s is ascii value for 101",101);
$display("simulation time is %t", $time);

end
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endmodule
Highest level modules:
disp

rval = 00000065 hex 101 decimal
rval = 00000000145 octal 00000000000000000000000001100101 binary
rval has e ascii character value
pd strength value is StX
current scope is disp
e is ascii value for 101
simulation time is 0

Example B- 2: Format specifications

The format specifications in Table B-3 are used with real numbers and have the full formatting
capabilities available in the C language. For example, the format specification %10.3g specifies a
minimum field width of 10 with 3 fractional digits.

%e or %E display ‘real' in an exponential format
%f or %F display ‘real' in a decimal format

%g or %G display ‘real' in exponential or decimal format, whichever format
results in the shorter printed output

Table B- 3: Format specifications for real numbers

The net signal strength, hierarchical name, and string format specifications are described in
sections B.1.5 Strength Format through B.1.7 String Format.

The %t format specification works with the $timeformat system task to specify a uniform time unit,
time precision, and format for reporting timing information from various modules that use different
time units and precisions. The $timeformat task and %t format specification are described in
Section B.4 Timescale System Functions Timescale System Functions.

B.1.3 Size of Displayed Data

For expression parameters, the values written to the output file (or terminal) are usually sized
automatically. Verilog reserves just enough characters to hold the largest possible value that can be
returned by the expression, given the expression’s bit length and specified display format.

For instance, the result of a 12-bit expression would be allocated three characters when displayed
in hexadecimal format and four characters when displayed in decimal format, since the
expression’s largest possible value is FFF (hexadecimal) and 4095 (decimal).

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other
radices, leading zeros are always displayed.

You can override the automatic sizing of displayed data by inserting a zero between the %
character and the letter that indicates the radix, as shown below:
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$di spl ay("d=%h a=%®h", data, addr);

In response, Verilog allocates the exact number of characters required to display the current
expression result, instead of the expression’s largest possible value.

Consider the following Verilog description and results:

module mrintwal ;

reg [11:0] x1;

initisl

beqin
rl = 10;

Sdi=plaw( "Printing with mesmmm size — Fd: e ".rl.xl o
fdi=playi "Printing with mindmm size — A4 Hh:.rl.xl )

el

el

Iog file created Jan 20, 1991 12:11:39
Copiling somce file "mrintwal "
Highest 1ol modules:

rrintval -

Printing with saimm size: — ;. 10: -00&:
Printing with mimma size — (10 Q._,,..n
6 simlatim events =1,
(U tine: 0 sscs ompile + 0 sscs link + 0 s=C= similats

Example B- 3: Displayed value sizes

In this example, the result of a 12-bit expression is displayed. The first call to $display uses the
standard format specifier syntax and produces results requiring four and three columns for the
decimal and hexadecimal radices, respectively. The second $display call uses the %0 form of the
format specifier syntax and produces results requiring two columns and one column, respectively.

B.1.4 Unknown and High Impedance Values

When the result of an expression contains an unknown or high impedance value, the following
rules apply to displaying that value.

In decimal (%d) format:
e If all bits are at the unknown value, a single lowercase ‘x’ character is displayed.
e Ifall bits are at the high impedance value, a single lowercase ‘z’ character is displayed.
e If some, but not all, bits are at the unknown value, the uppercase ‘X’ character is displayed.

e If some, but not all, bits are at the high impedance value, the uppercase ‘Z’ character is
displayed.
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e Decimal numerals always appear right-justified in a fixed-width field. (The fixed -width
format is used so that the output produced is consistent with the $monitor task output, which
requires a fixed-columnar format.)

In hexadecimal (%h) and octal (%0) formats:

e FEach group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is
represented as a single octal digit.

e [fall bits in a group are at the unknown value, a lowercase ‘x’ is displayed for that digit.
e [Ifall bits in a group are at a high impedance state, a lowercase ‘z’ is printed for that digit.
e Ifsome, but not all, bits in a group are unknown, an uppercase ‘X’ is displayed for that digit.

e Ifsome, but not all, bits in a group are at a high impedance state, then an uppercase ‘Z’ is
displayed for that digit.

In binary (%b) format, each bit is printed separately using the characters 0, 1, x, and z.

Some of these rules are illustrated in Example B-4 below:

STATEMENT RESULT
$display("%d", 1'bx); X
$display("%h", 14'bx01010); XxXa

$display("%h %0", 12'b001xxx101x01,
12'b001xxx101x01); XXX 1x5X

Example B- 4: Displaying unknown values

B.1.5 Strength Format

The %v format specification is used to display the strength of scalar nets. For each %v
specification that appears in a string, a corresponding scalar reference must follow the string in the
parameter list. The parameter must be an explicit scalar reference; that is, it can not be an
expression, or a bit-select.

The strength of a scalar net is reported in a three-character format. The first two characters indicate
the strength. The third character indicates the scalar’s current logic value and may be any one of
the following:

for a logic 0 value

for a logic 1 value

for an unknown value

for a high impedance value

for a logic 0 or high impedance value
for a logic 1 or high impedance value

T M N X -0

Table B-4: Logic value component of strength format
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The first two characters—the strength characters—are either a two-letter mnemonic or a pair of
decimal digits. Usually, a mnemonic is used to indicate strength information; however, in less
typical cases, a pair of decimal digits may be used to indicate a range of strength levels. Table B-5
shows the mnemonics used to represent the various strength levels.

Mnemonic  Strength Name  Strength Level

Su Supply drive 7
St Strong drive 6
Pu Pull drive 5
La Large capacitor 4
We Weak drive 3
Me Medium capacitor 2
Sm Small capacitor 1
Hi High impedance 0

Table B-5: Mnemonics for strength levels

Note that there are four driving strengths, and three charge storage strengths. The driving strengths
are associated with gate outputs and continuous assignment outputs. The charge storage strengths
are associated with the trireg type net. (See Chapter 6, 6.11 Strengths and Values of Combined
Signals, for more details on strength modeling.)

For the logic values 0 and 1, a mnemonic is used when there is no range of strengths in the signal.
Otherwise, the logic value is preceded by two decimal digits, which indicate the maximum and
minimum strength levels.

For the unknown value, a mnemonic is used when both the 0 and 1 strength components are at the
same strength level. Otherwise, the unknown value X is preceded by two decimal digits, which
indicate the 0 and 1 strength levels respectively.

The high impedance strength can not have a known logic value; the only logic value allowed for
this level is Z.

For the values L and H, a mnemonic is always used to indicate the strength level.

Consider the following call to $monitor:

$noni tor ($tinme,, "group=% signal s=% %W W",
{sigl,sig2,sig3}, sigl, sig2, sig3);

Example B-5 shows the output that might result from such a call, while Table B-6 explains the
various strength formats that appear in the output.

0 group=111 signals=St1 Pul St1l
15 group=011 signal s=Pu0 Pul St1l
30 group=0xz signal s=520 PuH H Z
31 group=0xx signal s=Pu0 65X St X
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45 group=000 signal s=Me0 St0 StO
Example B- 5: Displayed strength

St1 means a strong driving 1 value
Pu0 means a pull driving 0 value
HiZ means the high impedance state

MeO means a 0 charge storage of medium capacitor strength

StX means a strong driving unknown value

PuH means a pull driving 1 or high impedance

65X means an unknown value with a strong driving 0 component and a pull
driving 1 component

520 means an 0 value with a range of possible strength from pull driving to
medium capacitor

Table B- 6: Explanation of strength formats in Example B-5

B.1.6 Hierarchical Name Format

The %m format specifier does not accept a parameter. Instead, it causes Verilog to print the
hierarchical name of the module, task, function, or named block that invokes the system task
containing the format specifier. This is very useful when there are many instances of the module
that calls the system task. One obvious application is timing check messages in a flip-flop or latch
module; the %m format specifier will pinpoint the module instance responsible for generating the
timing check message.

B.1.7 String Format

The %s format specifier is used to print ASCII codes as characters. For each %s specification that
appears in a string, a corresponding parameter must follow the string in the parameter list. The
associated parameter is interpreted as a sequence of 8-bit hexadecimal ASCII codes, with each 8
bits representing a single character. If the parameter is a variable, its value should be right-justified
so that the right-most bit of the value is the least-significant bit of the last character in the string.
No termination character or value is required at the end of a string, and leading zeros are never
printed.

B.2 Strobed Monitoring

Syntax:
$strobe(P1, P2, ..., Pn);
The system task $strobe provides the ability to display simulation data at a selected time, but at the

end of the current simulation time, when all the simulation events that have occurred for that
simulation time, just before simulation time is advanced. The parameters for this task are specified
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in exactly the same manner as for the $display system task—including the use of escape sequences
for special characters and format specifications (see Section B.1 The Display and Write Tasks).

The following example shows how the $strobe system task is used:

forever @negedge cl ock)
$strobe ("At time %, data is %", $tine, data);

In this example, $strobe will write the time and data information to the standard output and the log
file at each negative edge of the clock. The action will occur just before simulation time is
advanced, after all other events at that time have occurred, so that the data written is sure to be the
correct data for that simulation time.

The strobe tasks produce output when they are executed and there is no on/off control necessary.

B.3 Continuous Monitoring

Syntax:

$monitor(P1, P2, ..., Pn);
$monitor;

$monitoron;
$monitoroff;

The $monitor task provides the ability to monitor and display the values of any variables or
expressions specified as parameters to the task. The parameters for this task are specified in exactly
the same manner as for the $display system task—including the use of escape sequences for special
characters and format specifications (see Section B.1 The Display and Write Tasks).

When you invoke a $monitor task with one or more parameters, the simulator sets up a mechanism
whereby each time a variable or an expression in the parameter list changes value—with the
exception of the $time, $stime or $realtime system functions—the entire parameter list is displayed
at the end of the time step as if reported by the $display task. If two or more parameters change
value at the same time, however, only one display is produced that shows the new values.

Note that only one $monitor display list can be active at any one time; however, you can issue a
new $monitor task with a new display list any number of times during simulation.

The $monitoron and $monitoroff tasks control a monitor flag that enables and disables the
monitoring, so that you can easily control when monitoring should occur. Use $monitoroff to turn
off the flag and disable monitoring. Use $monitoron to turn on the flag so that monitoring is
enabled and the most recent call to $monitor can resume its display. A call to $monitoron always
produces a display immediately after it is invoked, regardless of whether a value change has taken
place; this is used to establish the initial values at the beginning of a monitoring session. By
default, the monitor flag is turned on at the beginning of simulation.
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For $monitor tasks issued interactively, there is an alternative method for controlling when
monitoring should occur. The method involves using the disable command to turn off a $monitor
command and then re-executing the command to turn monitoring back on. Example B-6 illustrates
this technique.

C3> $monitor($time,,"rxd=%btxd=%b",rxd,txd);
C4> #100 $stop;.
0 rxd=1 txd=1
20 rxd=0 txd=1
60 rxd=0 txd=0
80 rxd=0 txd=1
C4: $stop at simulation time 100
C5> -3

Example B- 6: Using $monitor interactively

In this example, monitoring is allowed to occur for the first 100 time units of the simulation before
the disable command is issued at C5. The disable command is issued by identifying the command
number of the interactive command you wish to disable and typing a minus sign before it. Here, by
typing -3, we disable command 3, which invokes the $monitor task. Later in the simulation, by
typing a 3 at the interactive command prompt, we can re-execute command 3 to resume
monitoring.

B.4 Timescale System Functions

The following are timescale system functions:
e Stime
e Srealtime

The $time and $realtime system functions allow you to access the current simulation time.

B.4.1 The $time System Function

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the
module that invoked it.

Here is an example:

‘timescale 10 ns/ 1 ns
module test;
reg set;
parameter p = 1.55;
initial
begin
$monitor($time,,"set=",set);
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#p set = 0;
#p set=1;
end

endmodule
// The output from this example is as follows:
/I 0 set=x
Il 2 set=0
Il 3 set=1

Example B- 7: $time system function

In this example, the tool assigns to reg set the value 0 at simulation time 16 nanoseconds, and the
value 1 at simulation time 32 nanoseconds. Note that these times do not match the times reported
by $time. The time values returned by the $time system function are determined by the following
steps:

1. The tool scales the simulation times 16 and 32 nanoseconds to 1.6 and 3.2 because the time
unit for the module is 10 nanoseconds, so time values reported by this module are multiples
of 10 nanoseconds.

2. The tool rounds 1.6 to 2, and 3.2 to 3 because the $time system function returns an integer.
The time precision does not cause the tool to round these values.

B.4.2 The Srealtime System Function

The $realtime system function returns a real number time that, like $time, is scaled to the time unit
of the module that invoked it.

For example:

‘timescale 10 ns/ 1 ns

module test;
reg set;
parameter p = 1.55;
initial
begin
$monitor($realtime,,"set=",set);
#p set=0;
#p set=1;
end
endmodule
/I The output from this example is as follows:
/I 0 set=x
/1 1.6 set=0
/Il 3.2 set=1

Example B- 8: $realtime system function
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In this example, the event times in the register set are multiples of 10 nanoseconds because 10
nanoseconds is the time unit of the module. They are real numbers because $realtime returns a real
number.

B.4.3 The %t Format Specification

The %t format specification works with the $timeformat system task to specify a uniform time unit,
time precision and format that the tool uses to report timing information from various modules that
have different time units and precisions.

Like other format specifications, %t can be used with the $display, $monitor, $write, $strobe,
$fdisplay, $fmonitor, $fwrite, and $fstrobe system tasks to display information.

B.S Timescale System Tasks

The following system tasks display and set timescale information:
e S$printtimescale

e S$timeformat

B.5.1 The Sprinttimescale System Task

The $printtimescale system task displays the time unit and precision for a particular module.

Syntax:
$printtimescal e <hi erarchical _nane>;
This system task can be specified with or without an argument.

e When no argument is specified, $printtimescale displays the time unit and precision of the
module that is the current scope (as set by $scope).

e When an argument is specified, $printtimescale displays the time unit and precision of the
module passed to it.

The timescale information appears in the following format:

Time scale of (nodule_nane) is unit / precision

The following example B-9 shows the use of this system task:

‘timescale 1 ms /1 us
module a_dat;
initial
$printtimescale(b_dat.c1);
endmodule
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‘timescale 10 fs /1 fs
module b_dat;

c_dat c1 ();
endmodule

‘timescale 1 ns/1ns
module c_dat;

endmodule

Example B- 9: $printtimescale system task

In this example, module a_dat invokes the $printtimescale system task to display timescale
information about another module ¢ _dat, which is instantiated in module b_dat.

The information about c_dat is displayed in the following format:

Tinme scale of (b_dat.cl) is 1ns / 1ns

B.5.2 The $timeformat System Task

The $timeformat system task performs the following two functions:

1. It specifies how the %t format specification reports time information for the $write,
$display, $strobe, $monitor, $twrite, $fdisplay, $fstrobe, and $fmonitor system tasks.

2. It specifies the time unit for delays entered interactively.

Syntax:

$timeformat (<units_nunber>, <precision_nunber>,
<suffix_string> <mnimmfield_w dth>);

The units_number argument must be an integer in the range from 0 to 15. This argument
represents the time unit as follows:

Unit Number Time Unit Unit Number Time Unit

0 1s -8 10 ns
-1 100 ms -9 1ns
-2 10 ms -10 100 ps
-3 1ms -1 10 ps
-4 100 us -12 1 ps
-5 10 us -13 100 fs
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-6 1 us -14 10 fs
-7 100 ns -15 1fs

Table B- 7: $timeformat units_number arguments

The $timeformat system task performs the following two operations:
1. It sets the time unit for all later entered delays entered interactively.

2. It sets the time unit, precision number, suffix string, and minimum field width for all %t
formats specified in all modules that follow in the source description until another
$timeformat system task is invoked.

The default $timeformat system task arguments are as follows:

Argument D=fault

uni ts_rmnber the smalest time precisicnangument
- ofallthe " timescalecompiler directives
in the source description

recision minber 1}
=uffig string anull character string
ninimmn field width 20

Table B- 8: $timeformat system tasks arguments

The following example shows the use of %t with the $timeformat system task to specify a uniform
time unit, time precision, and format for timing information.
‘timescale 1ms/1ns
module cntrl;
initial
$timeformat(-9, 5, " ns", 10);
endmodule

‘timescale 1fs/1fs
module a1_dat;
reginf;
integer file;
buf #10000000 (01,in1);
initial
begin
file = $fopen("a1.dat");
#00000000 $fmonitor(file,"%m: %t in1=%d
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end
endmodule

01=%h",
$realtime,in1,01);
#10000000 in1 = 0;
#10000000 in1 = 1;

‘timescale 1 ps/ 1 ps
module a2_dat;

regin2;
integer file2;
buf #10000 (02,in2);
initial
begin
file2=$%fopen("a2.dat");
#00000 $fmonitor(file2,"%m: %t in2=%d
02=%h",
$realtime,in2,02);
#10000 in2 = 0;
#10000 in2 = 1;
end
endmodule

Example B- 10: %t used with $timeformat

The contents of file al.dat is as follows:

al dat:
al dat:
al dat:
al dat:

0. 00000 ns inl= x o0l=x
10. 00000 ns inl= 0 ol=x
20. 00000 ns inl= 1 o01=0
30. 00000 ns inl=1 ol=1

The contents of file a2.dat are as follows:

a2_dat:
a2 _dat:
a2 dat:
a2_dat:

0. 00000 ns in2=x 02=x
10. 00000 ns i n2=0 02=Xx
20. 00000 ns in2=1 02=0
30. 00000 ns in2=1 02=1

In this example, the times of events written to the files by the $fmonitor system task in modules
al datand a2 dat are reported as multiples of 1 nanosecond—even though the time units for these
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modules are 1 femtosecond and 1 picosecond respectively—because the first argument of the
$timeformat system task is -9 and the %t format specification is included in the arguments to
$fmonitor. This time information is reported after the module names with five fractional digits,
followed by an “ns” character string in a space wide enough for 10 ASCII characters.

B.6 Simulation Time—The $time Function

Syntax:

$time

$stine

$realtine
The $time and $realtime system functions return the current simulation time. The function $time
returns a 64 bit value, scaled to the time unit of the module that invoked it. If the time value is a
fraction of an integer, $time returns zero. The function $realtime returns a real number that is
scaled to the time unit of the module that invoked it.

B.7 Finish System Task

Syntax:

$f i ni sh;

$finish (n);
The $finish system task simply makes the simulator exit and pass control back to the host operating
system. If a parameter expression is supplied to this task, then its value determines the diagnostic
messages that are printed before the prompt is issued. If no parameter is supplied, then a value of 1
is taken as the default.

Parameter Value Diagnostic Message

0 prints nothing
1 prints simulation time and location
2 prints simulation time, location, and statistics

about the memory and CPU time used in simulation
Table B- 9: Diagnostic messages for $stop and $finish

B.8 Functions and Tasks for Reals

The following functions handle “real” values:

$rtoi converts real values to integers by truncating the real value (for example, 123.45
becomes 123)
$itor converts integers to real values (for example, 123 becomes 123.0)

$realtobits  passes bit patterns across module ports; converts from a real number to the 64-bit
representation (vector) of that real number

Verilog HDL. LRM System Tasks and Functions e 231



$bitstoreal is the reverse of $realtobits; converts from the bit pattern to a real number
Example B-11 shows how the $realtobits and $bitstoreal functions are used in port connections.

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r); endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
initial assign r =$bitstoreal(net_r); endmodule

Example B- 11: Using $realtobits and $bitstoreal

B.9 Timing Checks

You may invoke timing checks in specify blocks to verify the timing performance of your design
by making sure critical events occur within given time limits.

Timing checks perform the following steps:
1.  Determine the elapsed time between two events.

2. Compare the elapsed time to a specified limit.
3. If the elapsed time does not fall within the specified time window, report a timing violation.
Here is a sample timing check message from SILOS III:

"pdmf2.vo", 10164: Timing violation at 2548 in top.pdmf2_inst MUX SEL SYNCI1
$setup(D:2545, (posedge CLK)& & &legal:2548, "3 < 13");

The $setup system task is in file pdmf2.vo at line 10164. The setup violation occurred at
time=2548 in instance top.pdmf2_inst MUX SEL SYNCI1. The "D" net changed at time=2545,
and the expression (posedge CLK)&&&legal changed at time=2548. This delta of 3 is less than
the specified setup time of 13.

Here is a list of system tasks available for performing timing checks:

$setup( data_event, reference_event, limit , notifier );

$hold( reference_event, data_event, limit , notifier );

$width( reference_event, limit , threshold, notifier );
$period(reference_event, limit, notifier );

$skew( reference_event, data_event, limit , notifier );

$recovery( reference_event, data_event, limit , notifier );

$setuphold( reference_event, data_event, setup_limit, hold_limit, notifier;
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Please Note: These tasks may only be invoked inside specify blocks.

As you can see, $width and $period do not require a data_event argument. For these tasks, the tool
derives the data_event from the reference event.

Argument Description Type
the transition at = control = ignal that miodule inputor inout
ref erence event establiz hes the refermnoe time for tracking that ie
timing wiclations on the data ewent zoalar or vector net
data t the gignal change that initistes the timing mcd ule;:'uaptuénr incut
- check and is monitored for violstiorns soalar o et
limit = time limit used to detect timing viokstions | M=t _s:pression
on the event. gHETArCE
threshold the largest pulee width that is ignored by | “=retent_sxpression
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Table B- 10: System timing check arguments

B.9.1 The $setup Timing Check

The $setup system task has the following format:

$set up( data_event,

reference_event,

limt,

Table B-11 defines the $setup system task arguments.

Sestupdrnrante

data_arant

lowet biomd event

1afararcea_auent

uppal bourd avant

limit poeitive coretaht aXpIeeeio hool
SECparanm
notif ier o ptiomal) 1agietar

notifier );
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Table B- 11: $setup arguments

The $setup timing check reports a timing violation in the following case:

(time of reference_event)-(tine of data_event) < limt

If the reference event and data_event occur simultancously, $setup performs the timing check
before it records the new data_event value, therefore no violation occurs.

B.9.2 The $hold Timing Check

The $hold system task has the following format:

$hol d(ref erence_event,data event,limt,notifier);

Table B-12 defines the $hold system task arguments.

£hold Argurmant
1afarance_arnatt lowet bourd ameant
data_emrant ppaI bourd avant
Lizmit poeitive oo retant axpIaes ioh oI
SpECpaTaEm
rotif ierioptiomal) Tagietar

Table B- 12: Arguments of $hold

$hold reports a violation in the following case:

(time of data_event) - (time of reference_event) < limt

$hold always records the new reference event time before it performs the timing check. Therefore,
if simultaneous events occur, there will be a violation.

B.9.3 The $width Timing Check

The $width system task has the following format:

$wi dt h(reference_event,limt,threshold, notifier);
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Table B-13 defines the $width system task arguments.

Swidthfrorerte
1afararce_auant adge tiggeiad avant
limmit poeitive coretaht aXpIseeio ol
SPECpaTan
threshaldioptom) poeitive coretant axpraeeion or
SECDAaYam
notifierfoptioml) 18 getar

Table B- 13: Arguments of $width

The $width timing check monitors the width of signal pulses by timing the duration of signal levels
from one clock edge to the opposite clock edge. Since you do not pass a data_event to $width, the
tool derives it from the reference event, as follows:

data_event = reference_event signal with opposite edge

Because of the way the tools derive the data_event for $width, you must pass an edge triggered
event as the reference _event. A compilation error will occur if the reference event is not an edge
specification.

The $width timing check reports a violation in the following case:

(tinme of data_event) - (time of reference_event) < limt

In other words, the pulse width must be greater than or equal to limit in order to avoid a timing
violation.

Note that the data_event and the reference event will never occur simultaneously because they are
triggered by opposite transitions.

It is important to note that the tools do not accept null arguments for $width. Therefore, if you pass
a notifier to $width, you must also supply the threshold argument. It is permissible, however, to
drop both the threshold and notifier arguments when invoking $width. Example B-12
demonstrates some examples of legal and illegal calls:

Swidth( negedge clr, lim )
Swidth{ negedge clr. lim. thresh, notif
Swidth{ negedge clr, lim, 0, motif §;

Swidthi negedge clr, lim, . notif 3

At ( nesedge ol dan. . rerst 00
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Example B- 12: Legal and illegal $width calls

B.9.4 The $period Timing Check

The $period system task has the following format:

$period(reference_event,linit,notifier);

Table B-14 defines the $period system task arguments.

Sparaod Argments
1afaranca_awant adge tiggmiad avent
eitive core tant aXpree eloh ol
Timmit I P
EPECrATam
no tfiario pioml) Ta gietar

Table B- 14: Arguments of $period

Since you do not pass a data_event to $period, the tool derives it from the reference event, as
follows:

data_event = reference_event signal with the sane edge

Because of the way the tool derives the data_event for $period, you must pass an edge triggered
event as the reference _event. A compilation error will occur if the reference event is not an edge
specification.

The $period timing check reports a violation in the following case:

(time of data_event) - (time of reference_event) < limt

B.9.5 The $skew Timing Check

The $skew system task has the following format:

$skew(reference _event,data event,limt,notifier);

Table B-15 defines the $skew system task arguments.
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Table B- 15: Arguments of $skew

The $skew timing check reports a violation in the following case:

(tinme of data event) - (tine of reference event) > |limt

The $skew timing check always records the new time of reference event before it performs the
timing check. If the data_event and the reference event occur at the same time, $skew does not
report a timing violation.

B.9.6 The Srecovery Timing Check

The $recovery system task has the following format:

$recovery(reference_event,data_event,limt,notifier);

Table B-16 defines the $recovery system task arguments.

Srecovery Arnmant
afaranca_avent alge tiggamad avant
data_emmnt ppal houmd event
itirna tant i
Lt poe itivea conetant aXprageion o1
SEpECaTEm
rotifier(optonal) mgietar

Table B- 16: Arguments of $recovery

You must specify an edge for the reference event you pass to $recovery since it needs either rising
or falling edges, but not both. Omitting the edge specification is the same as specifying all edges—
an illegal reference event argument for $recovery.

The $recovery timing check reports a timing violation in the following case:

(tinme of data_event) - (time of reference_event) < limt
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If the data_event and reference event occur simultaneously, $recovery performs the timing check
before it records the new reference event time and, therefore, no violation occurs.

B.9.7 The $setuphold Timing Check

The $setuphold system task has the following format:

$set uphol d(reference_event, data_event, setup_linmt,

hold_limt,notifier);

Table B-17 defines the $setuphold system task arguments.

Serengphold 41 omvente

1afaTance_awaht

Thold loaer bourd event  Jeatup
uppaI bound sant

Fhold appar bouwnd event

data_ermant

Featup lowar boumd avent

iti tant i

satup, limit Toei wﬂu:um axpIEE fion
SEECaTEm
L conetant aRpraseion o1
hold_liwwit
SpEChaTam
not if ier o pional) Iagietar

Table B- 17: Arguments of $setuphold

The $setuphold timing check is a shorthand way to combine the functionality of $setup and $hold
into one system task call. Therefore, the following invocation of $setuphold:

$set uphol d( posedge cl k, data, tSU, tHLD );

is equivalent in functionality to the following:

$setup( data, posedge clk, tSU);
$hol d( posedge clk, data, tHLD );

Verilog HDL. LRM

System Tasks and Functions e 238



B.9.8 Edge-Control Specifiers

You may use edge-control specifiers to control events in timing checks based on specific edge
transitions between 0, 1, and x.

Edge-control specifiers contain the keyword edge followed by a square bracketed list of from one
to six pairs of edge transitions between 0, 1 and x, as follows:

01
(0)
10
1x
x0
x1

transition
transition
transition
transition
transition

transition

fromO to 1
fromO to x
fromlto O
from1l to x
fromx to O

fromx to 1

Edge transitions involving z are treated the same way as edge transitions involving x.

Syntax B-1 demonstrates the edge-control specifier syntax.

<edge_control_specifier>
::= edge [ <edge descriptor><,<edge_descriptor>>*]

<edge_descriptor>

2=01
|| 10
|| Ox
|| x1
|| 1x
|| xO

Syntax B- 1: Syntax of edge-control specifier

You can use the posedge and negedge constructs as a shorthand for certain edge control specifiers.
For example, the construct:

posedge clr

is equivalent to the following:

edge[ 01, Ox, x1] clr

Similarly, the construct:
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negedge clr

is the same as the following:

edge[ 10, x0, 1x] clr

However, edge-control specifiers offer the flexibility to declare edge transitions other than posedge
and negedge (see examples in Section B.9.9 Notifiers: User-Defined Responses to Timing
Violations).

B.9.9 Notifiers: User-Defined Responses to Timing Violations

Timing check notifiers let you detect timing check violations behaviorally, and, therefore, take an
action as soon as they occur. For example, you may print an informative error message describing
the violation, or you may propagate an x value at the output of the device that reported the
violation.

The notifier is a register—declared in the module where timing checks will occur—that you pass as
the last argument to a system timing check. Whenever a timing violation occurs, the system task
toggles the value of the notifier.

It is important to remember that the notifier is an optional argument to all system timing checks
and can be omitted from the system task call without adversely affecting its operation.

Table B-18 shows how the notifier values are toggled when timing violations occur.

MNotifier values:
BEFZRE siolation AFTER wiclation
X 0
0 1
1 0
2 2

Table B- 18: Notifier toggle values

Example B-13 demonstrates some simple examples of timing checks with notifier arguments.

$setup( data, posedge clk, 10, notify reg ) ;
$width( posedge clk, 16, notify reg ) ;
Example B- 13: Timing checks with notifier arguments

Now consider a more complex example of how to use notifiers in a behavioral model. The example
that follows uses a notifier to set the D flip-flop output to x when a timing violation occurs in an
edge- sensitive user-defined primitive (UDP).
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primtive posdff_udp (q, clock, data, preset, clear
notifier);
output q; reg q;
i nput cl ock, data, preset, clear, notifier;

tabl e
/lclock data p c notifier state ¢
I

r 0 11 ? D? 0 ;

r 1 11 ? o ? 1;

p 1 ? 1 ? 1 1;

p 0 177 ? 0 0 ;

n ? ?? ? ? -

? * 2 7 ? ? -

? ? 01 ? ? 1;

? ? * 1 ? 1 1;

? ? 10 ? ? 0 ;

? ? 1+ ? 0 0 ;

? ? ?? * ? X ; /1 At any
/[Inotifier
event
//output to
X

endt abl e

endprimtive

module dff(q, gbar, clock, data, preset, clear);
output g, gbar;
input clock, data, preset, clear;

reg notifier;
and (enable, preset,clear);

not (gbar, ffout);
buf (q, ffout);

posdff_udp (ffout, clock, data, preset, clear, notifier);

specify
/I Define timing check specparam values
specparam tSU = 10, tHD =1, tPW = 25, tWPC = 10, tREC = 5;

/I Define module path delay rise and fall specparam
/[ min:typ:max values
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specparam tPLHc = 4:6:9 , tPHLc = 5:8:11;
specparam tPLHpc = 3:5:6 , tPHLpc = 4.7:9;

/I Specify module path delays
(clock *> q,gbar) = (tPLHc, tPHLc);
(preset,clear *> q,qbar) = (tPLHpc, tPHLpc);

/I Setup time : data to clock, only when preset and
/lclear are 1
$setup(data, posedge clock &&& enable, tSU, notifier);

/[ Hold time : clock to data, only when preset and clear are 1
$hold(posedge clock, data &&& enable, tHD, notifier);

/I Clock period check
$period(posedge clock, tPW, notifier);

// Pulse width : preset, clear
$width(negedge preset, tWPC, 0, notifier);
$width(negedge clear, tWPC, 0, notifier);

/I Recovery time: clear or preset to clock
$recovery(posedge preset, posedge clock, tREC, notifier);
$recovery(posedge clear, posedge clock, tREC, notifier);
endspecify
endmodule

Example B- 14: Notifier setting a register in response to a timing violation

It is important to remember that this model applies to edge-sensitive UDPs only; for level-sensitive
models, you must generate an additional UDP for x propagation.

B.9.10 Enabling Timing Checks with Conditioned Events

A construct called a conditioned event ties the occurrence of timing checks to the value of a
conditioning signal.

Syntax B-2 demonstrates the conditioned event syntax.

<controlled_timing_check_event>

::= <timing_check_event_control> <specify_terminal_descriptor> < &&&
<timing_check_condition>>?

<timing_check_condition>
::= <scalar_expression>
||= ~<scalar_expression>
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||= <scalar_expression>==<scalar_constant>
||= <scalar_expression>===<scalar_constant>
||= <scalar_expression>!=<scalar_constant>
||= <scalar_expression>!==<scalar_constant>

Syntax B- 2: Syntax of conditioned event

To illustrate the difference between conditioned and unconditioned timing check events, consider
the following unconditioned version of the first line in Example B-15:

$setup( data, posedge clk, 10 );

Here, a setup check will occur every time there is a positive edge on signal clk.

To trigger the setup check on the positive clk edge only when signal clr is high, rewrite the
command as it appears in Example B-15’s first line.

$setup( data, posedge clk &&& clr, 10 ) ;

setup( data, posedge clk &&& (~clr), 10 ) ;
$setup( data, posedge clk &&& (clr===0), 10 );

Example B- 15: Example of conditioned event

The second and third lines of Example B-15 show two ways to trigger the same timing check on
the positive clk edge only when clr is low.

The comparisons used in the condition may be deterministic—as in ===, !==, ~, or no operation, or
non-deterministic—as in == or !=.

In the second example above, note that the comparison uses === and is therefore deterministic.
When comparisons are deterministic, an x value on the conditioning signal will not enable the
timing check.

For non-deterministic comparisons, an x on the conditioning signal will enable the timing check.
There are two constraints to bear in mind when using conditioned events:

1.  The conditioning signal must be a scalar net; the conditioning signal cannot be a vector or
expression.

2. Because conditioning signals cannot be expressions, you may use only one conditioning
signal per event.

If you need more than one conditioning signal for conditioning timing checks, you can combine the
appropriate logic in a separate signal outside the specify block, and then use that single signal as
the conditioning signal.

For example, to perform the previous sample setup check on the positive clk edge only when clr
and set are high, add the following statement outside the specify block:
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and( clr_and_set, clr, set );

Then, add the condition to the timing check using the signal clr_and_set as follows:

$setup( data, posedge clk &&& clr_and_set, 10 );
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Compiler Directives

C.0 Compiler Overview

This section describes implementation-specific compiler directives requiring standardization.

All Verilog compiler directives are preceded by the (*) character. This character is called accent
grave. It is different from the character (*), which is the single quote character. The scope of
compiler directives extends from the point where it is processed, across all files processed, to the
point where another compiler directive supersedes it or the processing completes. See the section
on C.4 ‘resetall for a discussion of the impact this has on libraries.

This appendix describes the following compiler directives:
e ‘define
e ‘default nettype
e ‘unconnected drive
e ‘nounconnected drive
e ‘resetall

e ‘timescale

C.1 ‘define

The directive "define creates macros for text substitution (see also E.7.2 Defining Variable Names
to Control Conditional Compilation). It can be used both inside and outside module definitions.
After a text macro is defined, it can be used in the source description by using the (*) character,
followed by the macro name. The compiler will substitute the text of the macro for the string
‘macro_name.

A text macro substitution facility allows meaningful names to represent commonly used pieces of
text.

The syntax for text macro definitions is as follows:

<text_macro_definition> ::=define <text_macro_nanme> <MACRO TEXT>
<text _nmacro_nane> ::.= <| DENTI FI ER>

<MACRO_TEXT> is any arbitrary text up to the end of the line. Items <text macro name> and
<MACRO_TEXT> must be specified on the same line. If a line comment (that is, a comment using
the characters //) is included in the text, then the comment does not become part of the text
substituted. The text for <MACRO_TEXT> may be blank, in which case the text macro is defined
to be empty and no text is substituted when the macro is used.

The syntax for using a text macro is as follows:
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<text _nmmcro_usage>::= = <text_macro_nanme>
Examples:
“define wordsize 8

reg [1: wordsize] data;

“define typ nand nand #5 //define a nand wtypical delay
“typ_nand g121 (921, nl0, nll);
The text comprising <MACRO_TEXT> must not be split across the following lexical tokens:
e comments
e numbers
e strings
e identifiers
e keywords
e double or triple character operators
For example, the following two lines are illegal specifications:
"define first_half "start of string

$display( first_half end of string");

If you develop compiler directives, be aware of the following:

e If you implement the compiler directive “foo—and if you implement the directive "define as
some tools do—then if you write "define foo, the meaning of “foo is ambiguous.

e In source written for some tools, text macro names may not be the same as compiler directive
keywords.

e Text macro names can be the same as ordinary identifiers. For example, signal name and
‘signal name are different. All text macro names are put into one symbol table. Redefinition
of text macros is allowed; the newest definition of a particular text macro will prevail when
the macro name is used in the source text.

C.2 “default_nettype

The directive "default nettype controls the net type created for implicit net declarations. It can be
used only outside of module definitions. It affects all modules that follow the directive, even across
source file boundaries. Multiple ‘default nettype directives are allowed. The latest one encountered
controls the type of nets that will be implicitly declared. The following is the syntax of the
directive:

“default_nettype <type_of _net>
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The following are the keywords for the net types that can be specified as arguments for the
directive:

wre tri tri 0
wand triand tril
wor trior trireg

When no “default nettype directive is present, implicit nets are of type wire.

See the chapters on 3.5 Implicit Declarations and 6.9 Implicit Net Declarations for a discussion of
implicit net declarations.

C.3 "unconnected_drive and ‘nounconnected_drive

The directive ‘'unconnected drive causes all unconnected input ports between it and
‘nounconnected_drive to be pulled up or down instead of floating to the high impedance value z.
‘unconnected_drive takes one of two arguments—pulll or pull0. When pulll is specified, all
unconnected input ports are automatically pulled up. When pull0 is specified, unconnected ports
are pulled down. These directives must be specified outside modules only.

C.4 ‘resetall

This compiler directive resets all compiler directives to the default values that are active when it is
encountered during compilation. This is useful for ensuring that only those directives that are
desired in compiling a particular source file are active.

The recommended usage is to place "resetall at the beginning of each source text file, followed
immediately by the directives desired in the file. This directive is particularly important in library
files and library directory files. °

C.5 “timescale

This directive specifies the time unit and time precision of the modules that follow it. The time unit
is the unit of measurement for time values such as the simulation time and delay values. The time
precision specifies how the tool rounds time values. The rounded values the tool uses are accurate
to within the unit of time specified as the time precision.

Timescales let you use modules that were developed with different time units together in the same
design. The tool can, for example, simulate a design that contains both a module whose delays are
specified in nanoseconds and a module whose delays are specified in picoseconds.

To use modules with different time units in the same design, you need the following timescale
constructs:

e the ‘timescale compiler directive to specify the unit of measurement for time and precision of
time in the modules in your design

e the $Sprinttimescale system task to display the time unit and precision of a module
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e the $time and $realtime system functions, the $timeformat system task, and the %t format
specification to specify how the tool reports time information

The “timescale compiler directive specifies the unit of measurement for time and delay values and
the degree of accuracy for delays in all modules that follow this directive until the tool reads
another ‘timescale compiler directive.

Syntax:
“tinmescale <tinme_unit>/ <tinme_precision>
The time _unit argument specifies the unit of measurement for times and delays.

The time_precision argument specifies how the tool rounds delay values before using them in
simulation. The values the tool uses will be accurate to within the unit of time that is specified here.
The smallest time_precision argument of all the "timescale compiler directives in the design
determines the time unit of the simulation.

The time_precision argument must be at least as precise as the time_unit argument; it cannot
specify a longer unit of time than time unit.

The integers in these arguments specify an order of magnitude for the size of the value; the valid
integers are 1, 10, and 100. The character strings represent units of measurement; the valid
character strings are s, ms, us, ns, ps, and fs.

The units of measurement specified by these character strings are as follows:

Charactar Sting Unit of Mea=ureament
£ gaconds
e milligeconds
us Mmichosesonds
ns nanceesonds
ps picoeeconds
L femtoeeconds

Table 2- 19: Arguments of time_precision

The following example shows how this directive is used:

“timescale 1ns / 1ps
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Here, all time values in the modules that follow the directive are multiples of 1 nanosecond
because the time unit argument is “1 ns”. Delays are rounded to real numbers with three decimal
places—or, precise to within one thousandth of a nanosecond—because the time precision
argument is “1 ps,” or one thousandth of a nanosecond.

Consider the following example:

“tinmescale 10 us / 100 ns

The time values in the modules that follow this directive are multiples of 10 microseconds because
the time_unit argument is “10 us”. Delays are rounded to within one tenth of a microsecond
because the time_precision argument is “100 ns,” or one tenth of a microsecond.

The following example shows a “timescale directive in the context of an actual source description:

‘timescale 10 ns/ 1 ns

module test;
reg set;
parameter d = 1.55;
initial
begin
#d set=0;
#d set=1;
end
endmodule

Example 2- 16: Example of the ‘timescale directive

The “timescale 10 ns / 1 ns compiler directive specifies that the time unit for module test is 10
nanoseconds. As a result, the time values in the module are multiples of 10 nanoseconds, rounded
to the nearest 1 nanosecond and, therefore, the value stored in parameter d is scaled to a delay of
16 nanoseconds. This means that the tool assigns the value 0 to reg set at simulation time 16
nanoseconds (1.6 x 10 ns), and assigns the value 1 at simulation time 32 nanoseconds.

Parameter d retains its value no matter what timescale is in effect.
These simulation times are determined as follows:
1. The value of parameter d is rounded from 1.55 to 1.6 according to the time precision.
2. The time unit of the module is 10 nanoseconds, and the precision is 1 nanoseconds, so the

tool scales the delay of parameter d from 1.6 to 16.

3. The tool schedules the assignment of 0 to reg set at simulation time 16 nanoseconds (the
tool adds 16 nanoseconds to the current simulation time of 0) and the assignment of 1 at
simulation time 32 nanoseconds (the tool adds 16 nanoseconds to the current simulation
time of 16 nanoseconds). The tool does not round time values when it schedules these
assignments.
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List of System Task and System Function Keywords

D.0 System Tasks Overview

The following is a list of some of the keywords currently used by tools for names of system tasks
and system functions, with a brief description of each keyword. See Appendix B, System Tasks
and Functions, for descriptions of some frequently used tasks and functions.

$bitstoreal
$countdrivers
$display
$fclose
$fdisplay
$fmonitor
$fopen
$fstrobe
$fwrite
$finish
$getpattern
$history
$incsave
$input

$itor

Skey

$list

$log
$monitor
$monitoroff
$monitoron
$nokey
$nolog
$printtimescale

$readmemb
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$readmemh
$realtime
$realtobits
$reset
$reset_count
$reset value
$restart

$rtoi

$save

$scale
$scope
$showscopes
$showvariables
$showvars
$sreadmemb
$sreadmemh
$stime

$stop
$strobe
$time
$timeformat

$write

D.1 Sbitstoreal

See Appendix B, B.8 Functions and Tasks for Reals, for details.

D.2 $countdrivers

Syntax:

$count dri vers(net,
nunber _of 0 drivers,

net is forced,

nunber of 01x _drivers,

nunmber _of _1_drivers, nunber_of _x_drivers);
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The $countdrivers system function is provided to count the number of drivers on a specified net so
that bus contention can be identified.

The $countdrivers system function is provided to count the number of drivers on a specified net so
that bus contention can be identified.

This system function returns a 0 if there is no more than one driver on the net and returns a 1
otherwise (indicating contention). The specified “net” must be a scalar or a bit-select of an
expanded vector net. The number of parameters to the system function may vary according to how
much information is desired.

If you supply additional parameters to the $countdrivers function, each parameter returns the
information described in Table D-1.

Parameter Return Value

net_is forced returns a "1" if the net is forced and a "0" if the net
is not forced

number_of 01x_drivers returns an integer representing the number of

drivers that are in a 0, 1, or x state; this represents
the total number of drivers on the net that are not

forced
number_of 0_drivers returns an integer representing the number of
drivers on the net that are in the "0" state
number_of 1 drivers returns an integer representing the number of
drivers on the net that are in the "1" state
number_of x_drivers returns an integer representing the number of

drivers on the net that are in the "x" state

Table D- 1: Parameter return value for $countdrivers function
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D.3 Sdisplay
See Appendix B, B.1 The Display and Write Tasks, for details.

D.4 Value Change Dump File Tasks

Seven system tasks are provided to create and format the value change dump file.

Syntax:
$dumpfile(<filename>);
$dumpvars(<levels> <,<module|var>>*);
$dumpoft;
$dumpon;
$dumpall;
$dumplimit(<filesize>);
$dumpflush;
The $dumpfile system task specifies the name of the value change dump file.

The $dumpvars system task specifies the variables whose changing values a tool records in the
value change dump file. The $dumpvars when invoked with no arguments dumps all variables in
the design.

The $dumpoff system task stops a tool from recording value changes in the value change dump
file.

The $dumpon system task allows a tool to resume recording value changes in the value change
dump file.

The $dumpall system task creates a checkpoint that shows the current value of all variables being
recorded in the value change dump file.

The $dumplimit system task sets the size of the value change dump file.

The $dumpflush system task empties the dump file buffer and ensures that all the data in that
buffer is stored in the value change dump file.

D.5 File Output

Each of the four formatted display tasks—S$display, $write, $monitor, and $strobe—has a
counterpart that writes to specific files as opposed to the log file and standard output. These
counterpart tasks—S$fdisplay, $fwrite, $fmonitor, and $fstrobe—accept the same type of
parameters as the tasks they are based upon, with one exception: The first parameter must be a
multichannel descriptor that indicates where to direct the file output. A multichannel descriptor is
either a variable or the result of an expression that takes the form of a 32-bit unsigned integer
value. This value determines which open files the task will write to.
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Syntax:

$f di spl ay(<mul ti _channel _descriptor>, P1, P2, ... , Pn);
$fwite(<multi_channel _descriptor> Pl, P2, ... , Pn);
$f strobe(<nmul ti _channel _descriptor>, Pl1, P2, ..., Pn);
$f noni tor(<mul ti _channel _descriptor>, P1, P2, ..., Pn);

$f open(" <nanme_of _file>")
$f cl ose(<mul ti channel _descri ptor>);

The function $fopen opens the file specified as a parameter and returns a 32-bit unsigned
multichannel descriptor that is uniquely associated with the file. It returns O if the file could not be
opened for writing.

The multichannel descriptor should be thought of as a set of 32 flags, where each flag represents a
single output channel. The least significant bit (bit 0) of a multichannel descriptor always refers to
the standard output—that is, the log file and the screen (unless it has been redirected to a file). The
standard output is also called channel 0. The other bits refer to channels that have been opened by

the $fopen system function.

The first call to $fopen opens channel 1 and returns a multichannel descriptor value of 2—that is,
bit 1 of the descriptor is set. A second call to $fopen opens channel 2 and returns a value of 4—that
is, only bit 2 of the descriptor is set. Subsequent calls to $fopen open channels 3, 4, 5, and so on
and returns values of 8, 16, 32, and so on, up to a maximum of 31 channels. Thus, a channel
number corresponds to an individual bit in a multichannel descriptor.

The advantage of multichannel descriptors is that they allow a single system task to write the same
information to multiple outputs simultaneously. This is accomplished by setting more than one bit
in the multichannel descriptor, and can be done by combining the values returned by $fopen in a
bit-wise OR operation. Another advantage of multichannel descriptors is that it is easy to set up
descriptions where the channels that receive diagnostic information can be dynamically altered
during simulation, and even controlled in interactive commands.

Note that the number of simultaneous output channels that may be active at any one time is
dependent on the operating system and is not determined by the tool.

The $fclose system task closes the channels specified in the multichannel descriptor, and does not
allow any further output to the closed channels. The $fopen task will reuse channels that have been
closed.

Example D-1 shows how to set up multichannel descriptors. In this example, three different
channels are opened using the $fopen function. The three multichannel descriptors that are returned
by the function are then combined in a bit-wise OR operation and assigned to the integer variable
messages. The messages variable can then be used as the first parameter in a file output task to
direct output to all three channels at once. To create a descriptor that directs output to the standard
output as well, the messages variable is bit-wise ORed with the constant 1, which effectively
enables channel 0.

integer
messages,
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broadcast,

cpu_chann,
alu_chann,
mem_chann;
initial
begin
cpu_chann = $fopen("cpu.dat"); if(cpu_chann == 0) $finish;
alu_chann = $fopen("alu.dat"); if(alu_chann == 0) $finish;

mem_chann = $fopen("mem.dat"); if(mem_chann == 0) $finish;
messages = cpu_chann | alu_chann | mem_chann;
broadcast = 1 | messages; // includes standard output

end

Example D- I: Setting up multichannel descriptors

The following file output tasks show how the channels opened in Example D-1 might be used:

$fdisplay( broadcast, "system reset at time %d", $time );

$fdisplay( messages, "Error occurred on address bus at time %d, address = %h",
$time, address );

forever @(posedge clock)
$fdisplay( alu_chann, "acc= %h f=%h a=%h b=%h",acc, f, a, b );

Example D- 2: Using multichannel descriptors

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and $monitor,
except that they write to files using the multichannel descriptor for control. Unlike $monitor, any
number of $fmonitor tasks can be set up to be simultaneously active.

Thus, if you need to have more than one monitor task report to the standard output, then use a
$fmonitor with a multichannel descriptor of 1.

D.6 $finish

See Appendix B, B.7 Finish System Task, for details.

D.7 $getpattern

Syntax:

$get pattern (<mem el enent >) ;
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The system function $getpattern provides for fast processing of stimulus patterns that must be
propagated to a large number of scalar inputs. The function reads stimulus patterns that have been
loaded into a memory using the $readmemb or $readmemh system tasks.

Use of this function is limited however: It may only be used in a continuous assignment statement
where the left-hand side is a concatenation of scalar nets, and the parameter to the system function
is a memory element reference.

Example D-3 shows how stimuli stored in a file can be read into a Verilog memory using
$readmemb and applied to the circuit one pattern at a time using $getpattern.

The memory in_mem is initialized with the stimulus patterns by the $readmemb task. The integer
variable index selects which pattern is being applied to the circuit. The for loop increments the
integer variable index periodically to sequence the patterns.

module top;
parameter in_width=10,
patterns=200,
step=20;
reg [1:in_width] in_mem[1:patterns];
integer index;

/l declare scalar inputs
wire i1,i2,i3,i4,i5,i6,i7,i8,i9,i10;

/l assign patterns to circuit scalar inputs (a new pattern
/'is applied to the circuit each time index changes value)
assign {i1,i2,i3,i4,i5,i6,i7,i8,i9,i10}

= $getpattern(in_memlindex]);

initial
begin
// read stimulus patterns into memory
$readmemb("patt.mem", in_mem);

Il step through patterns (note that each assignment
// to index will drive a new pattern onto the circuit
/Il inputs from the $getpattern system task specified

/I above
for(index = 1; index <= patterns; index = index + 1)
#step;
end

/l instantiate the circuit module
mod1cct(o1,02,03,04,05,06,07,08,09,010,
i1,i2,i3,i4,i5,i6,i7,i8,i9,i10);
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endmodule

Example D- 3: Using $getpattern

D.8 Shistory

The S$history system task prints out a list of all interactive commands that have been entered to a
tool.

D.9 $incsave

See section D.23 Saving and Restarting in this Appendix for details.

D.10 Sinput

Syntax:
$i nput ("<fil ename>");

The $input system task allows command input text to come from a named file instead of from the
terminal. At the end of the command file the input is automatically switched back to the terminal.

D.11 Sitor

See Appendix B, B.8 Functions and Tasks for Reals, for more details.

D.12 $key and $nokey

Syntax:

Skey(“<fil enane>"); $key; $nokey;

A key file is created by a tool whenever interactive mode is entered for the first time. The key file
contains all of the text that has been typed in from the standard input. The file also contains
information about asynchronous interrupts.

The $nokey and $key system tasks are used to disable and re-enable output to the key file. An
optional file name parameter for $key causes the old key file to be closed, a new file to be created,
and output to be directed to the new file.
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D.13 S$list

Syntax:

$list;$list (<nanme>);

When invoked without a parameter, $list produces a listing of the module, task, function, or named
block that is defined as the current scope setting. If an optional parameter is supplied, it must refer
to a specific module, task, function or named block, in which case the specified object will be
listed.

D.14 Slog and $nolog

Syntax:

$l og(“<fil enane>"); $l og; $nol og;

Tools may create a log file that contains a copy of all the text that is printed to the standard output.
The log file may also contain, at the beginning of the file, the host command that was used to run
the tool.

The $nolog and $log system tasks are used to disable and re-enable output to the log file. The
$nolog task disables output to the log file, while the $log task re-enables the output. An optional
file name parameter for $log causes the old file to be closed, a new log file to be created, and
output to be directed to the new log file.

D.15 $Smonitor, $Smonitoron, $Smonitoroff

See Appendix B, B.3 Continuous Monitoring, for details.

D.16 $printtimescale

See Appendix B, B.5.1 The $printtimescale System Task, for details.

D.17 $readmemb and $readmemh

Syntax:
$readnenb("<fil enane>", <nmemane>);
$readnenb("<fil enane>", <nemane>, <start_addr>);
$readnenb("<fil enane>", <nemane>, <start_addr>, <finish_addr>);
$readnemh("<fil enane>", <nemane>); $readnenh("<fil enane>",

<memmane>, <start_addr>);
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$readnemh("<fil enane>", <nemane>, <start_addr>, <finish_addr>);

Two system tasks—S$readmemb and $readmemh—read and load data from a specified text file into
a specified memory. Either task may be executed at any time during simulation. The text file to be
read must contain only the following:

e white space (spaces, new lines, tabs, and form-feeds)
e comments (both types of comment are allowed)
e binary or hexadecimal numbers

The numbers must have neither the length nor the base format specified. For $readmemb, each
number must be binary. For $readmembh, the numbers must be hexadecimal. The unknown value (x
or X), the high impedance value (z or Z), and the underscore (_) can be used in specifying a
number as in a Verilog source description. White space and/or comments must be used to separate
the numbers.

In the following discussion, the term “address” refers to an index into the array that models the
memory.

As the file is read, each number encountered is assigned to a successive word element of the
memory. Addressing is controlled both by specifying start and/or finish addresses in the system
task invocation, and by specifying addresses in the data file.

When addresses appear in the data file, the format is an “at” character (@) followed by a
hexadecimal number as follows:

@hh...h

Both upper and lower case digits are allowed in the number. No white space is allowed between the
@ and the number. You may use as many address specifications as you need within the data file.
When the system task encounters an address specification, it loads subsequent data starting at that
memory address.

If no addressing information is specified within the system task, and no address specifications
appear within the data file, then the default start address is the left-hand address given in the
declaration of the memory, and consecutive words are loaded until either the memory is full or the
data file is completely read. If the start address is specified in the task without the finish address,
then loading starts at the specified start address and continues towards the right-hand address given
in the declaration of the memory.

If both start and finish addresses are specified as parameters to the task, then loading begins at the
start address and continues toward the finish address, regardless of how the addresses are specified
in the memory declaration.

When addressing information is specified both in the system task and in the data file, the addresses
in the data file must be within the address range specified by the system task parameters, otherwise
an error message is issued and the load operation is terminated.
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A warning message is issued if the number of data words in the file differs from the number of
words in the range implied by the start and finish addresses.

For example, consider the following declaration of memory mem:

reg[7:0] rmenil:256];

Given this declaration, each of the following statements will load data into mem in a different
manner:

initial $readmemh("memdata", nmen);initial $readmenh("nmem data",
mem 16);initial $readmemh("nmem data", nmem 128, 1);

The first statement will load up the memory at simulation time O starting at the memory address 1.
The second statement will begin loading at address 16 and continue on towards address 256. For
the third and final statement, loading will begin at address 128 and continue down towards address
1.

In the third case, when loading is complete, a final check is performed to ensure that exactly 128

numbers are contained in the file. If the check fails, a tool issues a warning message.

D.18 Srealtime

See $time in Appendix B.4.2 The S$realtime System Function for details.

D.19 Srealtobits

See Appendix B, B.8 Functions and Tasks for Reals, for details.

D.20 Sreset, Sreset_count and $reset_value

The $reset system task enables a tool to be reset to its “Time 0 state so that processing (e.g.,
simulation) can begin again.

The $reset_count system function keeps track of the number of times the tool is reset. The
$reset_value system function returns the value specified by the reset value parameter argument to
the $Sreset system task. The $reset value system function is used to communicate information from
before a reset of a tool to the time 0 state to after the reset.

The following are some of the simulation methods that you can employ with this system task and
these system functions:

e determine the force statements your design needs to operate correctly, reset the simulation
time to 0, enter these force statements, and start to simulate again

e reset the simulation time to 0 and apply new stimuli
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e determine that debug system tasks, such as $monitor and $strobe, are keeping track of the
correct nets or registers, reset the simulation time to 0, and begin simulation again

The S$reset system task tells a tool (for example a simulator) to return the processing of your design
to its logical state at time 0. When a tool executes the $reset system task, it takes the following
actions to stop the process (e.g., simulation):

e disables all concurrent activity, initiated in either initial and always procedural blocks in the
source description or through interactive mode (disables, for example, all force and assign
statements, the current $monitor system task, and any other active task)

e cancels all scheduled simulation events

After a simulation tool executes the $reset system task, the simulation is in the following state:
e The simulation time is 0.
e All registers and nets contain their initial values.

e The tool begins to execute the first procedural statements in all initial and always blocks.

Syntax:

$reset ;

$reset (<stop_val ue>);

$reset (<stop_val ue>, <reset _val ue>);

$reset (<stop_val ue>, <reset val ue>, <di aghosti cs_val ue>);

The st op_val ue ar gunment

The stop_value argument indicates whether interactive mode or processing is entered immediately
after resetting of the tool. A value of 0 or no argument causes interactive mode to be entered after

resetting the tool. A non-zero value passed to $r eset causes the tool to begin
processi ng i medi ately.

Ther eset _val ue ar gunent

The reset_value is an integer that you specify whose value is returned by the $reset value system
function after you reset the tool. You cannot declare an integer that keeps its value after a reset. All
declared integers return to their initial value after reset, but entering an integer as this argument
allows you to access what its value was before the reset with the $reset_value system function.
This argument provides you with a means of communicating information from before the reset of a
tool to after the reset of the tool.

The di agnosti c_val ue ar gunent
The diagnostic_value is the third argument. It specifies the kind of diagnostic messages a tool

displays before it resets the time to 0. Increasing integer values result in increased information. A
value of zero results in no diagnostic message.
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D.21 $restart

See section D.23 Saving and Restarting for details.

D.22 S$rtoi

See Appendix B, B.8 Functions and Tasks for Reals, for details.

D.23 Saving and Restarting

Three system tasks, $save, $restart, and $incsave, work in conjunction with one another to save the
complete state of a tool into a permanent file such that the tool state can be reloaded at a later time
and the tool can continue processing where it left off.

Syntax:

$save("<name_of file>");
$restart ("<name_of _file>");
$i ncsave("<increnental _fil ename>");

These system tasks work in conjunction with one another to save the complete state of a tool into a
permanent file such that the tool state can be reloaded at a later time and the tool can continue
processing where it left off. They are often used during long runs of a tool to save checkpoint
versions of the internal state at regular intervals. They are also useful to perform quick “try and
see” experiments without having to repeat the entire processing each time.

All three system tasks take a file name as a parameter. The file name must be supplied as a string
enclosed in quotation marks.

The $save system task saves the complete state into the host operating system file specified as a
parameter.

The $incsave system task saves only what has changed since the last invocation of $save. It is not
possible to do an incremental save on any file other than the one produced by the last $save.

The $restart system task restores a previously saved state from a specified file. The state
description to be restarted does not have to be related in any way to the description being replaced.

It should be noted that interactive commands are also saved by the $save task; thus, when you use
$restart to restore a tool’s state, you also replace the current set of commands with the saved set of
commands.

D.23.1 Incremental Save and Restart

Restarting from an incremental save is similar to restarting from a full save, except that the name of
the incremental save file is specified in the restart command. The full save file that the incremental
save file was based upon must still be present, as it is required for a successful restart. If the full
save file has been changed in any way since the incremental save was performed, errors will result.

Verilog HDL LRM 262 o List of System Task and System Function Keywords



The incremental restart is useful for going back in time. If a full save is performed near the
beginning of processing, and an incremental save is done at regular intervals, then going back in
time is as simple as restarting from the appropriate file.

The module shown in Example D-4 saves the incremental state of the simulation every 10,000

time units. The files are recycled as time advances.

module checkpoint;

initial

#500 $save("save.dat");
always

begin

#100000 $incsave("inc1.dat");

( );
#100000 $incsave("inc2.dat");
#100000 $incsave("inc3.dat");
#100000 S$incsave("inc4.dat");
end

endmodule

Example D- 4: Using incremental save

D.24 S$scale

Syntax:

$scal e(<hi erarchi cal _nane>);

The $scale function allows the user to take a time value from a module with one time unit to be
used in a module with a different time unit. The time value is converted from the time unit of one
module to the time unit of the module that invokes $scale.

D.25 $scope

Syntax:

$scope(" <nane>");

The $scope system task allows a particular level of hierarchy to be specified as the interactive
scope for identifying objects. This task accepts a single parameter argument that must be the
complete hierarchical name of a module, task, function, or named block. The initial setting of the
interactive scope is the first top-level module.
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D.26 $showscopes

Syntax:

$showscopes; $showscopes(n);

The $showscopes system task produces a complete list of modules, tasks, functions, and named
blocks that are defined at the current scope level. An optional integer parameter can be given to
$showscopes. A nonzero parameter causes all the modules, tasks, functions and named blocks in or
below the current hierarchical scope to be listed. No parameter or a zero results in only objects at
the current scope level to be listed.

D.27 $showvars

Syntax:

$showar s; $showars(<list_of variabl es>);

The $showvars system task produces status information for register and net variables, both scalar
and vector. When invoked without parameters, $showvars displays the status of all variables in the
current scope. When invoked with a <list_of variables>, $showvars shows only the status of the
specified variables. If the <list of variables> includes a bit-select or part-select of a register or net
then the status information for all the bits of that register or net are displayed.

The system task $showvariables displays information similar to that of $showvars, but allows more
control over the information displayed.

D.28 $sreadmemb and $sreadmemh

Syntax:
$sreadnenb( <mem nane>, <start _addr >, <fi ni sh_addr >,
<stringl> <string2>,,,);
$sreadnenmh(<mem nane>, <start _addr >, <fi ni sh_addr >,
<stringl> <string2>,,,);
Where:

<mem_name> name of the memory structure
<start addr> memory start address

<finish_addr> memory end address
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<stringN> the string value containing the actual data to be placed into memory, beginning
at <start_addr>

The system tasks $sreadmemb and $sreadmemh load data into memory from a Verilog source
character string.

The $sreadmemh and $sreadmemb system tasks take memory data values and addresses as string
arguments. These strings take the same format as the strings that appear in the input files passed as
arguments to $readmemb and $readmembh.

D.29 $stime

See $time in Appendix B.4.1 The $time System Function for details.

D.30 $stop

Syntax:

$st op;
$st op(n);

The $stop system task puts the tool (for example a simulator) into halt mode, issues an interactive
command prompt, and passes control to the user. This task takes an optional expression parameter
(0, 1, or 2) that determines what type of diagnostic message is printed. The amount of diagnostic
messages output increases with the value of the optional parameter passed to $stop.

D.31 Sstrobe

See Appendix B, B.2 Strobed Monitoring, for details.

D.32 $time, $stime and Srealtime

See $time in Appendix B.4.1 The $time System Function, B.4.2 The $realtime System Function,
and B.6 Simulation Time—The $time Function for details.

D.33 Stimeformat

See Appendix B, B.5.2 The $timeformat System Task for details.

D.34 $write

See Appendix B, B.1 The Display and Write Tasks, for details.
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List of Compiler Directive Keywords

E.0 Compilier Directive Overview

The following list gives all the keywords currently used by the Verilog family of products for
names of compiler directives. See Appendix C, Compiler Directives, for descriptions of some

frequently used compiler directives.

‘accelerate

‘autoexpand_vectornets

“celldefine

“default nettype
“define

“else

“endcelldefine

“endif

“endprotect
“endprotected
‘expand_vectornets
‘ifdef

‘include

‘noaccelerate
‘noexpand_vectornets
‘noremove_gatenames
‘noremove_netnames
‘nounconnected drive
“protect

“protected
‘remove_gatenames
‘remove_netnames
‘resetall

‘timescale
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e ‘unconnected drive

E.1 “accelerate and ‘noaccelerate

The directive "accelerate results in an acceleration algorithm being applied to modules following
the directive. There is also a ‘'noaccelerate directive that causes those modules which follow to use
a normal algorithm.

These directives can only be specified outside the module definitions. Any number of these
directives may appear in the source description.

E.2 "autoexpand_vectornets

This directive lets the compiler expand vectors as needed to form proper connections between
elements of the description.

This directive may only appear outside a module boundary.

E.3 “celldefine and “endcelldefine

The directives “celldefine and “endcelldefine tag modules as cell modules. Cells are used by certain
PLI routines for applications such as delay calculations. It is advisable to pair each "celldefine with
an "endcelldefine. More than one of these pairs may appear in a single source description.

These directives may appear anywhere in the source description but it is recommended that the
directives are specified outside the module definition.

E.4 “default_nettype

See Appendix C, C.2 “default nettype, for details.

E.S “define
See Appendix C, C.1 define, for details.

E.6 "expand_vectornets

This directive causes all vector nets to be expanded into a group of scalar nets, except those with
the keyword vectored in their declarations.

This directive may only appear outside a module boundary.

E.7 “ifdef, “else, “endif

These conditional compilation compiler directives are used to optionally include lines of a Verilog
HDL source description during compilation. The “ifdef compiler directive checks for the definition
of a variable name. If the variable name is defined then the lines following the “ifdef directive are
included. If the variable name is not defined and an “else directive exists then this source is
compiled.

Verilog HDL LRM 267 e List of Compiler Directive Keywords



Note: SILOS III has a reserved keyword “silos” that is always true. This enables you to enclose
Silos specific code and commands with a “ifdef ... “else ... ‘endif compiler directive so they can
be run in SILOS III but not other simulators or synthesis tools.

These directives may appear anywhere in the source description.

Situations where the “ifdef, “else, and “endif compiler directives may be useful include:
e selecting different representations of a module such as behavioral, structural, or switch level
e choosing different timing or structural information

e selecting different stimulus for a given run of a tool

Syntax:

The “ifdef, “else, and “endif compiler directives have the following syntax:

“ifdef <text_macro_name>
<first_group_of |ines>
“el se
<second_group_of |ines>
“endi f

The text macro_name is a Verilog HDL identifier. The first group of lines and
second _group of lines are any parts of a Verilog HDL source description. The “else compiler
directive and second group of lines are optional.

The "ifdef, “else, and “endif compiler directives work in the following manner:

e When an ‘ifdef is encountered, the text macro name is tested to see if it is defined as a text
macro name using “define within the Verilog HDL source description.

e Ifthe text macro name is defined, the first group of lines is compiled as part of the
description. If there is an “else compiler directive, the second group of lines is ignored.

e Ifthe text macro name has not been defined, the first group of lines is ignored. If there is
an “else compiler directive the second group of lines is compiled.

Example E-1 shows the "ifdef, “else, and “endif compiler directives in a module.
module and op (a, b, ¢);
output a;
input b, c;
“ifdef behavioral
wirea=b & c;

‘else
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and (a,b,c);
‘endif

endmodule

Example E- 1: An example of the conditional compilation specification

Syntax checking

Any group of lines that the compiler ignores still must follow the Verilog HDL lexical conventions
for white space, comments, numbers, strings, identifiers, keywords, and operators.

E.7.1 Nesting the “ifdef, "else, and “endif Compiler Directives

You can nest the “ifdef, “else, and “endif compiler directives as shown in Example E-2.

module test(out);
output out;
“define wow
“define nest_one
‘define second_nest
‘define nest_two
“ifdef wow
initial $display("wow is defined");
“ifdef nest_one
initial $display("nest_one is defined");
“ifdef nest_two
initial $display("nest_two is defined");
“else
initial $display("nest_two is not defined");
“endif
‘else
initial $display("nest_one is not defined");
“endif
‘else
initial $display("wow is not defined");
‘ifdef second_nest
initial $display("nest_two is defined");
‘else
initial $display("nest_two is not defined");
“endif
“endif
endmodule
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Example E- 2: Nested ‘ifdef, else, and ‘endif compiler directives

E.7.2 Defining Variable Names to Control Conditional Compilation

The "ifdef variables are defined using the compiler directive (*define) to define a text macro.

The “define compiler directive

The "define compiler directive allows you to create macros for text substitution (see also C.1
“define). Text macros may be placed both inside and outside module definitions. When a tool
encounters the ‘ifdef compiler directive, it checks to see if its variable name matches a text macro
name in a ‘define compiler directive. The syntax for this usage of the "define compiler directive is
as follows:

“define <text macro name> [<macro_ contents>]

E.8 ‘include

The file inclusion (“include) compiler directive is used to insert the entire contents of a source file
in another file during compilation. The result is as though the contents of the included source file
appear in place of the “include command. The “include compiler directive can be used to include
global or commonly used definitions and tasks without encapsulating repeated code within module
boundaries.

Advantages of using the ‘include compiler directive include the following:
e providing an integral part of configuration management
e improving the organization of Verilog HDL source descriptions

e facilitating the maintenance of Verilog HDL source descriptions

Syntax:

The syntax for the ‘include compiler directive is as follows:

“include "<fil enane>"

The compiler directive ‘include can be specified anywhere within the Verilog HDL description.
The <filename> is the name of the file to be included in the source file. The <filename> can be a
full or relative path name, as in the following example:

“include "parts/count.v"
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Only white space or a comment may appear on the same line as the “include compiler directive.
Examples of legal comments for the “include compiler directive are as follows:

“include "fileB" include "fileB" // including fileB

Nested ‘include Compiler Directives
An “include file can contain other “include compiler directives. Recursive “include directives are

considered an error.

E.9 ‘noexpand_vectornets

This directive causes no expansion to take place except where explicitly specified by the keyword
scalared in a vector net declaration.

This directive may only appear outside a module boundary.

E.10 “protect and "endprotect

These directives are used to mark regions in a source description that will be processed by a tool
into an intermediate form. This allows proprietary Verilog source descriptions to be protected from
being accessed or modified.

These directives may appear anywhere in the source description.

E.11 “protected and "endprotected

The directive “protected and ‘endprotected bound a region once it has been compiled into a
protected form.

A tool is passed a file containing a Verilog source description with the directives “protect and
‘endprotect. After processing, a new source file is created that differs from the original file in two
ways:

e the directive ‘protect and “endprotect become ‘protected and ‘endprotected respectively.

e the regions marked for protection in the original source description become unreadable.

E.12 ‘'remove_gatenames and ‘noremove_gatenames

The directive ‘remove gatenames causes any gate instance names that have been specified in
modules affected by this directive to be eliminated from the second and all subsequent instances of
each module. This directive cannot be used if it is necessary to refer to gates by hierarchical name.
The directive 'noremove gatenames stops the elimination of gate names.

These directives must be specified outside the module definition. All the modules between
‘remove gatenames and ‘noremove gatenames are affected.
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E.13 ‘remove netnames and ‘noremove_netnames

The directive ‘remove netnames causes any net names that have been specified in modules
affected by this directive to be eliminated from the second and all subsequent instances of each
module. This directive cannot be used if it is necessary to refer to nets by hierarchical name. The
directive ‘'noremove netnames stops the elimination of names.

These directives must be specified outside of modules. All modules between ‘remove netnames
and ‘noremove netnames are affected.

E.14 “resetall

See Appendix C, C.4 “resetall, for details.

E.15 “timescale

See Appendix C, C.5 “timescale, for details.

E.16 "unconnected_drive and ‘nounconnected_drive

The directive ‘'unconnected drive causes unconnected input ports to be automatically pulled up (if
pulll is specified) or down (if pull0 is specified) instead of floating to the high impedance value z.
Inputs are pulled up or down in all modules between the directives ‘'unconnected drive and
‘nounconnected drive.

This directive may only appear outside a module boundary.
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List of Keywords

Keywords

Keywords are pre-defined non-escaped identifiers which define the language constructs. An
escaped identifier is never treated as a keyword. All keywords are defined in lower-case unless the

upper-case option is used when compiling.

al ways
and

assign (see al so assign)

begi n

buf

bufifO
bufifl
case

casex
casez

cnos
deassi gn
def aul t
def par am
di sabl e
edge

el se

end
endcase
endnodul e
endf uncti on
endprimtive
endspecify
endt abl e
endt ask
event

for

force
forever
fork
function
hi ghz0

hi ghz1
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if
initial

i nout

i nput

i nt eger
join

| arge
macr onodul e
medi um
nodul e
nand
negedge
nmos

nor

not
notifO
notifl

or

out put
par anet er
pros
posedge
primtive
pul 10

pul I'1
pul I up
pul I down
r cnos

reg

rel ease

r epeat

r nnos

r pnos
rtran
rtrani fO
rtranifl
scal ared
smal |
specify
specpar am
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strength
strongO
strongl
suppl yo
suppl y1
tabl e

t ask
time
tran
tranifo
tranifl
tri
tri 0
tril
triand
trior
trireg
vectored
wai t
wand
weak0
weak1
whi | e
wre
wor
xnor
xor
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Index

in state table 93

$input
syntax 260
$itor 234
$keepcommands 260
$list
syntax 261
$monitor 226
and fixed width format 223
compared to $display 226

| syntax 226
) turn off 227
! $monitoroff 226
compared to ‘==0" 38 syntax 226
logical negation operator 38 $monitoron 226
syntax 226
" $peri0d 238
$printtimescale 230
" $readmemb 262
null string 47 syntax 262
$readmemh 262
$ syntax 262
$realtime 228
$bitstoreal 166, 234 $timeformat 230
$countdrivers 255 $realtobits 166, 234
syntax 255 $recovery 239
$display 225 $restart
compared to $monitor 226 syntax 265
compared to $write 218 $rtoi 234
escape sequences 219 $save
size of displayed data 222 syntax 265, 267
syntax 218 $setup 236
$dumpall 256 $setuphold 240
$dumpfile 256 $skew 239
$dumpflush 256 $stime
$dumplimit 256 syntax 233
$dumpoff 256 $strobe 226
$dumpon 256 compared to $display 226
$dumpvars 256 syntax 226
$fclose 258 $time 27, 228, 233
syntax 257 $timeformat 230
$fdisplay 258 syntax 233
syntax 257 $timeformat 233
$finish 233 $width 238
syntax 233 $write 225
$fmonitor 258 compared to $display 218
syntax 257 escape sequences 219
$fopen 258 size of displayed data 222
syntax 257 syntax 218
$fstrobe 258
syntax 257 o,
$fwrite 258
syntax 257 %
$getpattern 259 in format specifications 219, 222
$hold 236
$incsave
syntax 265
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&

&&
logical AND operator 37

2

in null expressions 219

:concatenation operator 43
:for escape sequences in strings 219

?

?
equivalent to z in literal number values 8, 118
in state table 91, 93

@

@
for addressing memory 262

in compiler directives 247
‘accelerate compiler directive 271
‘autoexpand_vectornets compiler directive 271
“celldefine compiler directive 271
‘default_nettype 248

syntax 249
" define 247

and text macro substitutions 14
“else compiler directive 271
“endcelldefine compiler directive 271
“endif compiler directive 271
‘expand_vectornets compiler directive 271
‘ifdef compiler directive 271
‘include compiler directive 274
‘noaccelerate compiler directive 271
‘noexpand vectornets compiler directive 275
‘nounconnected_drive 249
‘protect compiler directive 275
‘remove_gatenames compiler directive 275
‘remove_netnames compiler directive 276
‘resetall 249
“timescale 249
‘unconnected_drive 249
‘unconnected_drive compiler directive 276

logical OR operator 37

<

<<
left shift operator 41

in assignment statement 51

>

>>
right shift operator 41

0

for minimizing bit lengths of expressions 222
logic zero 15
01 transition 93

1

1
logic one 15

A

acceleration

and module path destinations 181
always

and activity flow 104, 105

as structured procedure 134

syntax 136
ambiguous strength 79
arguments

for system timing checks 235
arithmetic operators 35

% 34

* 34

/34

+34

and unknown logic values 35
arrays

element 25

index 25

no multiple dimension 25

of integers 27

of time variables 27

word 25
assign keyword 51, 153
assignment 56

continuous 51, 105
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left hand side 51

of delays to module paths 189
procedural 107

procedural versus continuous 105
right hand side 51

B

b
binary number format 7
base format
binary 7
decimal 7
hexadecimal 7
octal 7
begin-end block statement 112, 130
behavioral modeling 138
bidirectional pass gate 65
binary display format 7
and high impedance state 223
and unknown logic value 223
binary operators 33
precedence 33
binary operators: 43
bit-select
of vector net or register 44
out of bounds 44, 45
references of real numbers 29
bit-wise operators 39
compared to logical operators 39
blank module terminal 158
block statement 134
definition 129
fork-join 129
naming of 133
parallel 129
sequential 129, 131
start and finish times 134
timing for embedded blocks 133
blocking procedural assignment 106
processing assignments 111
syntax 106
bufif gate 63

Cc

capacitive networks 24

case statement
compared to if-else-if statement 116
syntax 115

casex 117

casez 117

cells 155

charge storage
strength 20

charge storage strength 68

checkpoints 265
cmos 66
cmos gate 66
collapsing ports 169
chart of resulting net types 168
rules 168
that connect nets of different types 168
combinational UDPs 86
compared to level-sensitive sequential 92
input and output fields in state table 89
combined signal strengths 79
combined signal values 79
comments 6
compare
string operation 46
compiler directives 247
concatenation
and repetition multiplier 43
and unsized numbers 43
of names 169
of operands 43
operator 43
string operation 46
concurrency
of activity flow 104
condition
deterministic 246
non-deterministic 246
conditional operator 42
and ambiguous results 42
modeling tri-state output busses 42
syntax 42
conditional statement
syntax 111
conditioned event 246
constraints 246
versus unconditioned event 245
conflicts 21
connecting ports
by name 166
by position with ordered list 164
rules 168
connection
difference between full and parallel 184
Sull 184
parallel 184
constant expression 31
continuous assignment 51
and $getpattern 259
and connecting ports 167
and driving strength 68, 224
and net variables 105
and supply nets 25
and wire nets 21
driving strength of 55
explicit declaration 53
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implicit declaration 53

syntax 51

versus procedural assignment 56
continuous monitoring 226
copy

string operation 46
counting number of drivers 255

D

d
decimal number format 7
data types 30
deassign keyword 153
decimal display format 7
and high impedance state 222
and unknown logic value 222
compatibility with $monitor 223
decimal notation 28
declaring
events 125
multiple module paths in a single statement 185
parameters in specify blocks 178
default
in case statement 115
in if-else-if statements 114
defparam 30, 160
delay
calculating for high impedance (z) transitions 81
calculating for unknown logic value (x) transitions 81
control 122, 123
distributed 180
fall 81
falling 83
gate 83
inertial 55
module path 202
propagation 60, 81
rise 81, 83
specify one value 81
specify three values §1
specify two values 81
syntax for delay control 123
turn-off 83
delay specification 60
describing module paths 184
diagnostic messages
from $stop and $finish 233
disable
and turning off monitoring tasks 227
named blocks 151
syntax 147
tasks 151
use of 147
displaying information 225
distributed delays and SDPDs 194

dominating net 168
don’t-care bits
in case statements 118
don’t-care condition
in state table 91
drive strength specification 59
driving strength 68
compared to charge storage strength 224
keywords 55

E

edge control specifiers 242
edge descriptors 29
edge transitions 241
edge-sensitive paths 202
syntax 200
edge-sensitive UDPs 93
compared to level-sensitive UDPs 92
element
of array 25
embedding modules 155, 156
enable 126
enabling tasks 141, 143
endmodule keyword 155
endprimitive keyword 88
endtable keyword 89
equality operators 37
and ambiguous results 37
and operands of different sizes 37
precedence 37
escape sequences 218, 219
escaped identifiers 11
event
control 123, 124
declaration syntax 125
explicit 123
expression 123
implicit 123
level sensitive control 126
named 125
OR construct 126
syntax of triggering statement 125
event control
repeat 129
examples
"joining" events 133
$monitor 224
$strobe 226
$width timing check 238
‘timescale compiler directive 251
begin-end block 130
behavioral model 104
bit-select 44
calculating delays for unknown logic value transitions
189
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case statement 116
casex 118
casez in instruction decoder 118
delay control 123
disable statement 151
edge-sensitive paths 200
edge-sensitive UDP 93
escaped identifiers 11
event OR construct 126
factorial function 146
for loop 121
for loop in multiplier 122
hierarchical path names 171
identifiers 11
if-else statement 114
infinite zero-delay loop 136
intra-assignment timing controls 127
level-sensitive paths 199
loading memories from text files 263
memory addressing 45
memory declaration 26
minimum
typical
maximum values 48
module instance 157
part-select 45
passing module parameters to tasks 142
problem in string value padding 47
race condition 127
real numbers 28
register and net declarations 18, 19
repeat loop in multiplier 120
SDPDs 193
sized constant numbers 8
specify block 177
specify parameters 178
specparams 178
strength outputs 224
strings 9
system tasks 12
text macro substitutions 248
time-sequenced waveform 131
traffic light sequencer 137
tri-state output bus 42
two sequential events working in parallel 134
variable delays for synchronizing clock 138
vector XOR 55
while loop in counter 120
exit simulator 233
expansion
of macro modules 162
of vector nets 19
explicit event 123
expressions 50
bit lengths 50
constant 31

self-determined 49

F

fall delay 81, 83
files
output to 258
finish time
in parallel block statements 133
in sequential block statements 133
for loop 119
force keyword 154
force keyword:precedence over assign 153
forever loop 119
fork-join block statement 129
format specifications
timescales 221
format specifications
string 225
format specifications
tor T 221
full connection 184
function
syntax 144
functions
and scope 174
as structured procedures 134
definition 135
purpose 139
returning a value 145
rules 145
syntax for function call 145

G

gate level modeling
logic gate syntax 60
gate type specification 58
gates
bidirectional pass 65
bufif 63
cmos 66
compared to continuous assignments 57
connection list 60
delay 83
notif 63
notif0 63
notifl 63
pulldown 66
pullup 66
syntax 60
terminal list 60
ground 25
guidelines
for connection operators 183
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H

h
hexadecimal number format 7
hexadecimal display format 7
and high impedance state 223
and unknown logic value 223
hierarchy
level 169
of modules 155
scope 169
scope rules for naming 174
top level names 169
high impedance state
and numbers 8
and trireg nets 22
and user-defined primitives 96
effect in different bases 8
symbolic representation 15
highz0 59
highz1 59

identifiers 11
definition 10
escaped 11
keywords 12

if-else statement

omitting else from nested if 112

purpose 111
if-else-if statement

compared to case statement 116

syntax 113
implicit

declarations 20, 248

event 123
incremental restart 266
incremental save 265
index

of array 25

of memory 26
inertial delay 55
initial 135

and activity flow 104, 105

for specifying waveforms 135

syntax 135
initial statements

in UDPs 95
instantiation

macro module 162

of modules 155
integers 27

division 34

intra-assignment timing controls 129

K

keywords 12
compiler directive 270
system function 253
system task 253
Verilog 277

L

left shift operator 41
Legal module paths
One output driver 195
level-sensitive
event control 126
paths 199
sequential UDPs 92
versus combinational UDP 92
level-sensitive UDPs
compared to edge-sensitive UDPs 92
lexical conventions 14, 248
lexical token
comment 6
definition of 6
number 7
operator 6
types 6
white space 6
libraries
and ‘resetall 249
logic gates
bidirectional pass 65
bufif 63
cmos 66
compared to continuous assignments 57
delay 83
notif 63
pulldown 66
pullup 66
syntax 60
logic one 15
logic strength modeling 81
logic zero 15
logical operators 37
138
&& 37
137
and ambiguous results 37
and unknown logic value 37
compared to bit-wise operators 39
precedence 37
looping statement
for loop 119
forever loop 119
repeat loop 119
while loop 119
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Isb (least significant bit) 18

macro module 162
expansion 162
instantiation 162
macromodule keyword 162
syntax 162
macros
and ‘define 247
memory 26
addressing 45
assigning values to 26
declaration syntax 25
index 26
real number memories 29
using temporary registers for bit- and part-selects 45
minimum
typical
maximum values
for module path delays 186, 188
format 48
modeling
asynchronous clear/preset on an edge-triggered D
flip-flop 152
behavioral 138
logic strength 81
module
and user-defined primitives 88
hierarchy 155
instance parameter value assignment 161
keyword 155
macro 162
overriding parameter values 162
parameter dependencies 161
port 158
syntax 156
for specifying instantiations 156
terminal 158
top-level 156
module parameter
as delay 30
as width of variables 30
compared to specify parameter 177, 178
dependencies 161
overriding values 162
passing to tasks 142
syntax 29
module path
definition 181
delay 202
delay assignment 185
description syntax 182
destination 181, 185
polarity 197

source 178, 181, 185
modulus operator
definition 34
monitor flag 227
monitoring
continuous 226
strobed 226
msb (most significant bit) 18
multi-channel descriptor 256, 257
multiple drivers
at same strength level 78
driving the same net 21
inside a module 184, 195
outside a module 195
multiple module path delays
assigning in one statement 185
multi-way decisions
case statement 115
if-else-if statement 114

N

named blocks
and hierarchical names 169
and scope 174
purpose 133
named events 125
used with event expressions 125
negedge 242
net and register bit addressing 44
nets 25
delay 83
implicit declaration 67
initialization 20
scalar 167
trireg strength 68
types of 25
wired logic 78
nmos 65
node
in hierarchical name tree 169
non_blocking procedural assignment 111
evaluating assignments 107
multiple assignments 110
processing assignments 111
syntax 107
notif gate 63
notifier 245
toggle values 243
null
expression 219
string 47
numbers 7
base format 7
size specification 7
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(o)

0
octal number format 7
octal display format 7
on/off control
of monitoring tasks 227
operands 47
bit-select 43
concatenation 43
definition 31
function call 43
part-select 43
strings 47
operators 43
138
&& 37
*> 185
|37
<<41
=51
=> 185
>> 41
and real numbers 29
arithmetic 35
binary 6, 33
bit-wise 39
concatenation 43
conditional 42
definition 6
equality 37
left shift operator 41
logical 37
reduction 41
relational 36
right shift operator 41
shift 41
ternary 6
unary 6
operators: 43
optimization
of processing stimulus patterns 259
output
to files 258
overriding module parameter values 162
assigning values in-line within module instances 161
defparam 162
compared to assignmesions 161

P

parallel block statement
finish time 133
fork-join 129
start time 133
syntax 132

parallel connection 184
parameter
keyword for module parameters 177
module type 29
syntax 29
parentheses
and changing operator precedence 34
part-select
of vector net or register 44
references of real numbers 29
syntax 44
pmos 65
polarity 197
negative 196
positive 197
unknown 196
port 169
collapsing 167
connecting
by name 166
by position with ordered list 164
rules for 168
declaration 163
definition 162
module 158
of user-defined primitives 89
rules for collapsing 168
posedge 242
power supplies
modeled by supply nets 25
precedence
binary operators 33
equality operators 37
logical operators 37
relational operators 36
primitive instance identifier 60
primitive keyword 88
procedural assignment 107
and integers 27
and time variables 27
blocking 106
non_blocking 111
versus continuous assignment 56
procedural continuous assignments 153, 154
assign 153
deassign 153
definition 152
syntax 152
procedural continuous assignments: release 154
procedural continuous assignments:force 154
procedural continuous assignments:precedence 153
procedural statements
in behavioral models 104
procedural timing controls 129
delay control 123
event control 123
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fork-join block 133
intra-assignment timing controls 129
procedure
always statement 134
function 134
initial statement 134
task 134
propagation delay
for gates and nets 81
in logic gate syntax 60
pull0 59
pulll 59
pulldown source 66
pullup source 66

Q

qualified paths 202
edge-sensitive 202
level-sensitive 199

R

race condition 127
random access memory(RAM)
modeled by register arrays 25
range
syntax 19
rcmos 66
read-only memory(ROM)
modeled by register arrays 25
real numbers 29, 234
and operators 29
conversion to integers 29
format specifications used with 221
in port connections 166
operators with real number operands 33
specifying 28
syntax 28
reducing pessimism 99, 116
reduction operators 41
syntax restrictions 41
unary NAND 40
unary NOR 40
registers 19
and level-sensitive sequential UDPs 91
declaration syntax 25
for modeling memories 25
notifier 243
used in procedural assignments 56
relational operators 36
and unknown bit values 36
precedence 36
release keyword 154
repeat event control 129
repeat loop 119

repetition multiplier 43
resistive devices
modeled with tri0 and tril nets 25
restrictions on data types
in continuous assignments 51, 56, 167
in port collapsing 167
in procedural assignments 51, 56, 105
when connecting ports 167
right shift operator 41
rise delay 81, 83
rnmos 65
rpmos 65
rtranif0 65
rtranifl 65
rules
for describing module paths 184

S

s
in string display format 225
scalars
compared to vectors 18
scalar nets and driving strength of continuous
assignment 55
scientific notation 28
scope
and hierarchical names 169
rules 174
SDPDs 194
and multiple path delays 193
SDPDs and distributed delays 194
self-determined expression 49
sequential block statement 131
finish time 133
start time 133
syntax 130
sequential UDP initialization 95
sequential UDPs
input and output fields in state table 89
set of values (0, 1, x, z) 15
shift operators 41
<<41
>> 41
signed arithmetic
bit length rules 49
integers signed arithmetic 27
losing bits 48
registers are unsigned arithmetic 16
silos keyword 271
simulating module path delays
when driving wired logic 195
simulation
going back with incremental restart 266
simulation time and timing controls 123
time 233
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size of displayed data 222
sized numbers 7
source
pulldown 66
pullup 66
specify block system tasks
$hold 236
$period 238
$recovery 239
$setup 236
$setuphold 240
$skew 239
$width 238
specify parameter 178
advantages over module parameters 178
specify parameters
as run time constant in specify block 177
specifying transition delays on module paths 189
assigning one value 186
assigning six values 188
assigning three values 187
assigning two values 187
X transitions 189
specparam 178
advantages over module parameter 178
syntax 177
versus module parameter 178
standard output 257
start time
in parallel block statements 133
in sequential block statements 133
state dependent path delays 194
state dependent path delays and distributed delays
194
strength 60
ambiguous 79
and logic conflicts 21
and scalar net variables 15
charge storage 68
driving 68
gates that accept specifications 59
of combined signals 79
on trireg nets 22
range of possible values 71
reduction by non-resistive devices 80
reduction by resistive devices 80
scale of strengths 69
supply net 81
tri0 80
tril 80
trireg 81
strings 47
definition 9
display format 225
in vector variables 46
manipulation 9

operations 46
padding 9
special characters 10
value padding 47
variable declaration 9

strobed monitoring 226

strong0 59

strongl 59

structured procedure 138
always statement 134
function 134
initial statement 134
task 134

supply net strength 81

supply nets 25

supply0 59

supplyl 59

switches
MOS 65

syntax
$display 218
$fclose 257
$Sftdisplay 257
$finish 233
$fmonitor 257
$fopen 257
$fstrobe 257
$fwrite 257
$getpattern 259
$incsave 265, 267
$keepcommands 260
$list 260, 261
$monitor 226
$monitoroff 226
$monitoron 226
$readmemb 262
$readmemh 262
$restart 265, 267
$save 265, 267
$stime 233
$stop 233
$strobe 226
$time 233
$write 218
‘default nettype 249
always 136
assign 152
behavioral statements 211
case statement 115
conditional operator 42
conditional statement 111
continuous assignment 51
deassign 152
declarations 208
declaring events 125
delay control 123
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disable statement 147
edge-sensitive paths 200
event control 124

event triggering statement 125
expressions 217

for addressing memory 45
for enabling tasks 141

for loop 119

force 152

forever loop 119

formal definition 217
function 144

function call 145

general 217

if-else-if statement 113
initial statement 135
integer declaration 27
level-sensitive paths 198
logic gates 60

macro module 162
memory declaration 25
module 156

module instantiation 156, 209
module parameter 29

module path delay assignment 185

module path description 182
parallel block statement 132
part-select 44
port

declaration 163

definition 162
primitive instances 208

procedural continuous assignments 152

range 19
real numbers 28
register declaration 25
release 152
repeat loop 119
SDPD 190
sequential block statement 130
source text 206
specify block 176
specify parameter 177
specify section 215
specparam 177
state dependent path delays 190
text macro
definitions 13, 247
usage 13, 247
time variable declaration 27
UDPs 88
wait statement 126
while loop 119
system functions 246
system tasks 246
for continuous monitoring 226

for displaying information 225
for fetching simulation time 233
for interrupting the simulator 233
for processing stimulus patterns faster 259
for showing number of drivers 255
for writing formatted output to files 258
showing the timescale of a module 230
specifying how %t reports time information 233
specifying the time unit of delays entered
interactively 233
system tasks and functions 246

T

t
timescale format 221, 229
table keyword 89
tasks
and hierarchical names 169
and scope 173
as structured procedures 134
definition 135
disabling within a nested chain 147
enabling 141, 143
passing parameters 142
purpose 139
syntax
for enabling 141
terminal
in logic gate syntax 60
module 158
ternary operators
?:33
text macro substitutions 14, 248
and ‘define 247
definition syntax 13, 247
in interactive mode 13
redefinition 14, 248
usage syntax 13, 247
time 233
and incremental restart 266
arithmetic operations performed on time variables 27
simulation 123
variables 27
time precision 250
time unit 250
timeformat
$timeformat 230
timing checks 246
$hold 236
$period 238
$recovery 239
$setup 236
$setuphold 240
$skew 239
$width 238
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arguments 235
data_event 235
end edge offset 235
hold_limit 235
limit 235
list of system tasks 235
notifier 235
reference_event 235
setup_limit 235
start_edge offset 235
threshold 235
top-level module 156
tran 65
tranif0 65
tranifl 65
transistors 65
transitions
0193
order for module path delay assignment 188
unspecified 93
tree structure
of hierarchical names 169
tri nets 25
trireg
and charge storage strength 68
turn-off delay 83
types of nets
supply nets 25
tri nets 21
tri0 80
tri0 nets 25
tril 80
tril nets 25
triand 21
trior 21
trireg 81
trireg nets 22, 224
wire 21
wired AND 21
wired logic 78
wired nets 21
wired OR 21

U

UDPs
definition 89
edge-sensitive UDPs 93
level-sensitive dominance 99, 100
level-sensitive sequential UDPs 92
mixing level- and edge-sensitive descriptions 98
ports 89
reducing pessimism 99
state table 89
summary of symbols in state table 100
unary operators

138
<< 41
>> 4]
unconnected port 158
underline character 8
unknown logic value
and numbers 8§
effect in different bases 8
in state table 89, 90, 93
symbolic representation 15
unspecified transitions 93
user-defined primitives
definition 89
edge-sensitive 93
level-sensitive dominance 100
level-sensitive sequential 92
mixing level- and edge-sensitive descriptions 98
ports 89
reducing pessimism 99
state table 89
summary of symbols in state table 100

Vv

value change dump file 256
value set (0, 1, x,z) 15
values

of combined signals 79
Vee 25
VCD

value change dump file 256
Vdd 25
vectors 18

and vector net expansion 19
Vss 25

W

wait statement
as level-sensitive event control 126
syntax 126
to advance simulation time 123
weak0 59
weakl 59
while loop 119
white space 6
wired logic nets
wand 78
wired-AND configurations 21
wired-OR configurations 21
wor 78
wires 21
word
of array 25
writing formatted output to files 258
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X

X
as display format for unknown logic value 222
in state table 89, 90
unknown logic value 15

X

as display format for unknown logic value 223

z

z
as display format for high impedance state 222
high impedance state 15

z
as display format for high impedance state 223
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