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1  Scope 1 

This specification is a detailed description of the Common Intermediate Language (CIL) instruction set, part of the 2 
specification of the Common Language Infrastructure. Partition I describes the architecture of the CLI and provides 3 
an overview of a large number of issues relating to the CIL instruction set. That overview is essential to an 4 
understanding of the instruction set as described here. 5 

Each instruction description describes a set of related CLI machine instructions. Each instruction definition consists 6 
of five parts: 7 

•  A table describing the binary format, assembly language notation and description of each variant of 8 
the instruction. See Section 1.2 . 9 

•  A stack transition diagram that describes the state of the evaluation stack before and after the 10 
instruction is executed. See Section 1.3. 11 

•  An English description of the instruction. See Section 1.4. 12 

•  A list of exceptions that might be thrown by the instruction. See Partition I for details. There are three 13 
exceptions which may be thrown by any instruction and are not listed with the instruction: 14 

ExecutionEngineException indicates that the internal state of the Execution Engine is corrupted and 15 
execution cannot continue. [Note: in a system that executes only verifiable code this exception is not 16 
thrown.] 17 

StackOverflowException indicates that the hardware stack size has been exceeded. The precise timing of 18 
this exception and the conditions under which it occurs are implementation specific. [Note: this exception is 19 
unrelated to the maximum stack size described in clause 1.7.4. That size relates to the depth of the evaluation 20 
stack that is part of the method state described in Partition I, while this exception has to do with the 21 
implementation of that method state on physical hardware.] 22 

OutOfMemoryException indicates that the available memory space has been exhausted, either because the 23 
instruction inherently allocates memory (newobj, newarr) or for an implementation-specific reason (for 24 
example, an implementation based on just-in-time compilation to native code may run out of space to store 25 
the translated method while executing the first call or callvirt to a given method). 26 

•  A section describing the verifiability conditions associated with the instruction. See Section 1.8. 27 

In addition, operations that have a numeric operand also specify an operand type table that describes how they 28 
operate based on the type of the operand. See Section 1.5. 29 

Note that not all instructions are included in all CLI Profiles. See Partition IV for details. 30 

1.1  Data Types 31 

While the Common Type System (CTS) defines a rich type system and the Common Language Specification (CLS) 32 
specifies a subset that can be used for language interoperability, the CLI itself deals with a much simpler set of 33 
types. These types include user-defined value types and a subset of the built-in types.  The subset is collectively 34 
known as the �basic CLI types�: 35 

•  A subset of the full numeric types (int32, int64, native int, and F) 36 

•  Object references (O) without distinction between the type of object referenced 37 

•  Pointer types (native unsigned int and &) without distinction as to the type pointed to 38 

Note that object references and pointer types may be assigned the value null. This is defined throughout the CLI to 39 
be zero (a bit pattern of all bits zero) 40 
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1.1 .1  Numeric Data Types 1 

•  The CLI only operates on the numeric types int32 (4-byte signed integers), int64 (8-byte signed 2 
integers), native int (native size integers), and F (native size floating-point numbers). The CIL 3 
instruction set, however, allows additional data types to be implemented: 4 

•  Short integers. The evaluation stack only holds 4- or 8-byte integers, but other locations (arguments, 5 
local variables, statics, array elements, fields) may hold 1- or 2-byte integers. Loading from these 6 
locations onto the stack either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-extends (ldind.i*, 7 
ldelem.i*, etc.) to a 4-byte value. Storing to integers (stind.u1, stelem.i2, etc.) truncates. Use the 8 
conv.ovf.* instructions to detect when this truncation results in a value that doesn�t correctly 9 
represent the original value. 10 

Note: Short integers are loaded as 4-byte numbers on all architectures and these 4-byte numbers must always be 11 
tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that the default arithmetic 12 
behavior (i.e when no conv or conv.ovf instruction are executed) will have identical results on all implementations. 13 

Convert instructions that yield short integer values actually leave an int32 (32-bit) value on the stack, but it is 14 
guaranteed that only the low bits have meaning (i.e. the more significant bits are all zero for the unsigned 15 
conversions or a sign extension for the signed conversions). To correctly simulate the full set of short integer 16 
operations a conversion to the short form is required before the div, rem, shr, comparison and conditional branch 17 
instructions. 18 

In addition to the explicit conversion instructions there are four cases where the CLI handles short integers in a 19 
special way: 20 

1. Assignment to a local (stloc) or argument (starg) whose type is declared to be a short integer type 21 
automatically truncates to the size specified for the local or argument. 22 

2. Loading from a local (ldloc) or argument (ldarg) whose type is declared to be a short signed integer 23 
type automatically sign extends. 24 

3. Calling a procedure with an argument that is a short integer type is equivalent to assignment to the 25 
argument value, so it truncates. 26 

4. Returning a value from a method whose return type is a short integer is modeled as storing into a 27 
short integer within the called procedure (i.e. the CLI automatically truncates) and then loading from 28 
a short integer within the calling procedure (i.e. the CLI automatically zero- or sign-extends). 29 

In the last two cases it is up to the native calling convention to determine whether values are actually truncated or 30 
extended, as well as whether this is done in the called procedure or the calling procedure. The CIL instruction 31 
sequence is unaffected and it is as though the CIL sequence included an appropriate conv instruction. 32 

•  4-byte integers. The shortest value actually stored on the stack is a 4-byte integer. These can be 33 
converted to 8-byte integers or native-size integers using conv.* instructions. Native-size integers 34 
can be converted to 4-byte integers, but doing so is not portable across architectures. The conv.i4 35 
and conv.u4 can be used for this conversion if the excess significant bits should be ignored; the 36 
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of information. Arithmetic 37 
operations allow 4-byte integers to be combined with native size integers, resulting in native size 38 
integers. 4-byte integers may not be directly combined with 8-byte integers (they must be converted 39 
to 8-byte integers first). 40 

•  Native size integers. Native size integers can be combined with 4-byte integers using any of the 41 
normal arithmetic instructions, and the result will be a native-size integer. Native size integers must 42 
be explicitly converted to 8-byte integers before they can be combined with 8-byte integers. 43 

•  8-byte integers. Supporting 8-byte integers on 32-bit hardware may be expensive, whereas 32-bit 44 
arithmetic is available and efficient on current 64-bit hardware. For this reason, numeric instructions 45 
allow int32 and I data types to be intermixed (yielding the largest type used as input), but these 46 
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types cannot be combined with int64s. Instead, a native int or int32 must be explicitly converted 1 
to int64 before it can be combined with an int64. 2 

•  Unsigned integers. Special instructions are used to interpret integers on the stack as though they 3 
were unsigned, rather than tagging the stack locations as being unsigned. 4 

•  Floating-point numbers. See also Partition I, Handling of Floating Point Datatypes. Storage 5 
locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size. 6 
The supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, as 7 
arguments, as return types, and as local variables) floating-point numbers are represented using an 8 
internal floating-point type. In each such instance, the nominal type of the variable or expression is 9 
either float32 or float64, but its value may be represented internally with additional range and/or 10 
precision. The size of the internal floating-point representation is implementation-dependent, may 11 
vary, and shall have precision at least as great as that of the variable or expression being represented. 12 
An implicit widening conversion to the internal representation from float32 or float64 is performed 13 
when those types are loaded from storage. The internal representation is typically the natural size for 14 
the hardware, or as required for efficient implementation of an operation. The internal representation 15 
shall have the following characteristics: 16 

o The internal representation shall have precision and range greater than or equal to the nominal 17 
type. 18 

o Conversions to and from the internal representation shall preserve value. [Note: This implies 19 
that an implicit widening conversion from float32 (or float64) to the internal representation, 20 
followed by an explicit conversion from the internal representation to float32 (or float64), 21 
will result in a value that is identical to the original float32 (or float64) value.] 22 

Note: The above specification allows a compliant implementation to avoid rounding to the precision of the target 23 
type on intermediate computations, and thus permits the use of wider precision hardware registers, as well as the 24 
application of optimizing transformations which result in the same or greater precision, such as contractions. Where 25 
exactly reproducible behavior is required by a language or application, explicit conversions may be used. 26 

When a floating-point value whose internal representation has greater range and/or precision than its nominal type 27 
is put in a storage location, it is automatically coerced to the type of the storage location. This may involve a loss of 28 
precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value may be retained 29 
in the internal representation for future use, if it is reloaded from the storage location without having been modified. 30 
It is the responsibility of the compiler to ensure that the memory location is still valid at the time of a subsequent 31 
load, taking into account the effects of aliasing and other execution threads (see memory model section). This 32 
freedom to carry extra precision is not permitted, however, following the execution of an explicit conversion 33 
(conv.r4 or conv.r8), at which time the internal representation must be exactly representable in the associated 34 
type. 35 

Note: To detect values that cannot be converted to a particular storage type, use a conversion instruction (conv.r4, 36 
or conv.r8) and then check for an out-of-range value using ckfinite. To detect underflow when converting to a 37 
particular storage type, a comparison to zero is required before and after the conversion. 38 

Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point numbers, 39 
nor does it specify when or whether such representations should be created. This is in keeping with IEC 40 
60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that are created, 41 
nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this behavior is 42 
deliberately left implementation-specific. 43 

1.1 .2  Boolean Data Type 44 

A CLI Boolean type occupies one byte in memory. A bit pattern of all zeroes denotes a value of false. A bit pattern 45 
with any one or more bits set (analogous to a non-zero integer) denotes a value of true. 46 
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1.1 .3  Object  References  1 

Object references (type O) are completely opaque. There are no arithmetic instructions that allow object references 2 
as operands, and the only comparison operations permitted are equality (and inequality) between two object 3 
references. There are no conversion operations defined on object references. Object references are created by 4 
certain CIL object instructions (notably newobj and newarr). Object references can be passed as arguments, stored 5 
as local variables, returned as values, and stored in arrays and as fields of objects. 6 

1.1 .4  Runtime Pointer Types 7 

There are two kinds of pointers: unmanaged pointers and managed pointers. For pointers into the same array or 8 
object (see Partition I), the following arithmetic operations are defined: 9 

•  Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a 10 
pointer of the same kind. 11 

•  Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. Note 12 
that subtracting a pointer from an integer is not permitted. 13 

•  Two pointers, regardless of kind, can be subtracted from one another, producing an integer that 14 
specifies the number of bytes between the addresses they reference. 15 

None of these operations is allowed in verifiable code. 16 

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of 17 
pointers. Since unmanaged pointers must never reference memory that is controlled by the garbage collector, 18 
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable) but since 19 
they are not reported to the garbage collector there is no impact on its operation. 20 

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the contents of 21 
the location to which they point and the pointer itself can be modified. The garbage collector will ignore managed 22 
pointers if they point into memory that is not under its control (the evaluation stack, the call stack, static memory, 23 
or memory under the control of another allocator). If, however, a managed pointer refers to memory controlled by 24 
the garbage collector it must point to either a field of an object, an element of an array, or the address of the element 25 
just past the end of an array. If address arithmetic is used to create a managed pointer that refers to any other 26 
location (an object header or a gap in the allocated memory) the garbage collector�s operation is unspecified. 27 

1.1 .4.1  Unmanaged Pointers  28 

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on their 29 
use, although for the most part they result in code that cannot be verified. While it is perfectly legal to mark 30 
locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are 31 
treated by the CLI), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by 32 
using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an argument or by using a pointer type 33 
for a field or array element. 34 

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be 35 
used. 36 

•  Unmanaged pointers should be treated as unsigned (i.e. use conv.ovf.u rather than conv.ovf.i, etc.). 37 

•  Verifiable code cannot use unmanaged pointers to reference memory. 38 

•  Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is 39 
safe only if one of the following is true: 40 

a. The unmanaged pointer refers to memory that is not in memory managed by the garbage 41 
collector 42 

b. The unmanaged pointer refers to a field within an object 43 
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c. The unmanaged pointer refers to an element within an array 1 

d. The unmanaged pointer refers to the location where the element following the last element in an 2 
array would be located 3 

1.1 .4.2  Managed Pointers (type &)  4 

Managed pointers (&) may point to a local variable, a method argument, a field of an object, a field of a value type, 5 
an element of an array, or the address where an element just past the end of an array would be stored (for pointer 6 
indexes into managed arrays). Managed pointers cannot be null. (They must be reported to the garbage collector, 7 
even if they do not point to managed memory) 8 

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return value, local variable or an 9 
argument or by using a by-ref type for a field or array element. 10 

•  Managed pointers can be passed as arguments and stored in local variables. 11 

•  If you pass a parameter by reference, the corresponding argument is a managed pointer. 12 

•  Managed pointers cannot be stored in static variables, array elements, or fields of objects or value 13 
types. 14 

•  Managed pointers are not interchangeable with object references. 15 

•  A managed pointer cannot point to another managed pointer, but it can point to an object reference or 16 
a value type. 17 

•  Managed pointers that do not point to managed memory can be converted (using conv.u or 18 
conv.ovf.u) into unmanaged pointers, but this is not verifiable. 19 

•  Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously 20 
compromise the integrity of the CLI. This conversion is safe if any of the following is known to be 21 
true: 22 

a. the managed pointer does not point into the garbage collector�s memory area 23 

b. the memory referred to has been pinned for the entire time that the unmanaged pointer is in use 24 

c. a garbage collection cannot occur while the unmanaged pointer is in use 25 

d. the garbage collector for the given implementation of the CLI is known to not move the 26 
referenced memory 27 

1.2  Instruction Variant Table 28 

In Chapter 3 an Instruction Variant Table is presented for each instruction. It describes each variant of the 29 
instructions. The �Format� column of the table lists the opcode for the instruction variant, along with any 30 
arguments that follow the instruction in the instruction stream. For example: 31 

Format Assembly Format Description 

FE 0A <unsigned int16> Ldarga argNum fetch the address of argument argNum. 

0F <unsigned int8>  Ldarga.s argNum fetch the address of argument argNum, short form 
 32 
The first one or two hex numbers in the �Format� column show how this instruction is encoded (its �opcode�). So, 33 
the ldarga instruction is encoded as a byte holding FE, followed by another holding 0A. Italicized type names 34 
represent numbers that should follow in the instruction stream. In this example a 2-byte quantity that is to be treated 35 
as an unsigned integer directly follows the FE 0A opcode. 36 
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Any of the fixed size built-in types (int8, unsigned int8, int16, unsigned int16, int32, unsigned int32, 1 
int64, unsigned in64, float32, and float64) can appear in format descriptions. These types define the number 2 
of bytes for the argument and how it should be interpreted (signed, unsigned or floating-point). In addition, a 3 
metadata token can appear, indicated as <T>. Tokens are encoded as 4-byte integers. All argument numbers are 4 
encoded least-significant-byte-at-smallest-address (a pattern commonly termed �little-endian�). Bytes for 5 
instruction opcodes and arguments are packed as tightly as possible (no alignment padding is done). 6 

The assembly format column defines an assembly code mnemonic for each instruction variant. For those 7 
instructions that have instruction stream arguments, this column also assigns names to each of the arguments to the 8 
instruction. For each instruction argument, there is a name in the assembly format. These names are used later in 9 
the instruction description. 10 

1.2 .1  Opcode Encodings 11 

CIL opcodes are one or more bytes long; they may be followed by zero or more operand bytes. All opcodes whose 12 
first byte lies in the ranges 0x00 through 0xEF, or 0xFC through 0xFF are reserved for standardization. Opcodes 13 
whose first byte lies in the range 0xF0 through 0xFB inclusive, are available for experimental purposes. The use of 14 
experimental opcodes in any method renders the method invalid and hence unverifiable. 15 

The currently defined encodings are specified in Table 1: Opcode Encodings. 16 



-  7 -  

 

 1 

Table 1: Opcode Encodings 2 

0x00 nop 

0x01 break 

0x02 ldarg.0 

0x03 ldarg.1 

0x04 ldarg.2 

0x05 ldarg.3 

0x06 ldloc.0 

0x07 ldloc.1 

0x08 ldloc.2 

0x09 ldloc.3 

0x0a stloc.0 

0x0b stloc.1 

0x0c stloc.2 

0x0d stloc.3 

0x0e ldarg.s 

0x0f ldarga.s 

0x10 starg.s 

0x11 ldloc.s 

0x12 ldloca.s 

0x13 stloc.s 

0x14 ldnull 

0x15 ldc.i4.m1 

0x16 ldc.i4.0 

0x17 ldc.i4.1 

0x18 ldc.i4.2 

0x19 ldc.i4.3 

0x1a ldc.i4.4 

0x1b ldc.i4.5 

0x1c ldc.i4.6 

0x1d ldc.i4.7 

0x1e ldc.i4.8 

0x1f ldc.i4.s 

0x20 ldc.i4 

0x21 ldc.i8 

0x22 ldc.r4 

0x23 ldc.r8 

0x25 dup 

0x26 pop 

0x27 jmp 

0x28 call 

0x29 calli 

0x2a ret 

0x2b br.s 

0x2c brfalse.s 

0x2d brtrue.s 

0x2e beq.s 

0x2f bge.s 

0x30 bgt.s 

0x31 ble.s 

0x32 blt.s 

0x33 bne.un.s 

0x34 bge.un.s 

0x35 bgt.un.s 

0x36 ble.un.s 

0x37 blt.un.s 

0x38 br 

0x39 brfalse 

0x3a brtrue 

0x3b beq 

0x3c bge 

0x3d bgt 

0x3e ble 

0x3f blt 

0x40 bne.un 

0x41 bge.un 

0x42 bgt.un 
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0x43 ble.un 

0x44 blt.un 

0x45 switch 

0x46 ldind.i1 

0x47 ldind.u1 

0x48 ldind.i2 

0x49 ldind.u2 

0x4a ldind.i4 

0x4b ldind.u4 

0x4c ldind.i8 

0x4d ldind.i 

0x4e ldind.r4 

0x4f ldind.r8 

0x50 ldind.ref 

0x51 stind.ref 

0x52 stind.i1 

0x53 stind.i2 

0x54 stind.i4 

0x55 stind.i8 

0x56 stind.r4 

0x57 stind.r8 

0x58 add 

0x59 sub 

0x5a mul 

0x5b div 

0x5c div.un 

0x5d rem 

0x5e rem.un 

0x5f and 

0x60 or 

0x61 xor 

0x62 shl 

0x63 shr 

0x64 shr.un 

0x65 neg 

0x66 not 

0x67 conv.i1 

0x68 conv.i2 

0x69 conv.i4 

0x6a conv.i8 

0x6b conv.r4 

0x6c conv.r8 

0x6d conv.u4 

0x6e conv.u8 

0x6f callvirt 

0x70 cpobj 

0x71 ldobj 

0x72 ldstr 

0x73 newobj 

0x74 castclass 

0x75 isinst 

0x76 conv.r.un 

0x79 unbox 

0x7a throw 

0x7b ldfld 

0x7c ldflda 

0x7d stfld 

0x7e ldsfld 

0x7f ldsflda 

0x80 stsfld 

0x81 stobj 

0x82 conv.ovf.i1.un 

0x83 conv.ovf.i2.un 

0x84 conv.ovf.i4.un 

0x85 conv.ovf.i8.un 

0x86 conv.ovf.u1.un 

0x87 conv.ovf.u2.un 

0x88 conv.ovf.u4.un 
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0x89 conv.ovf.u8.un 

0x8a conv.ovf.i.un 

0x8b conv.ovf.u.un 

0x8c box 

0x8d newarr 

0x8e ldlen 

0x8f ldelema 

0x90 ldelem.i1 

0x91 ldelem.u1 

0x92 ldelem.i2 

0x93 ldelem.u2 

0x94 ldelem.i4 

0x95 ldelem.u4 

0x96 ldelem.i8 

0x97 ldelem.i 

0x98 ldelem.r4 

0x99 ldelem.r8 

0x9a ldelem.ref 

0x9b stelem.i 

0x9c stelem.i1 

0x9d stelem.i2 

0x9e stelem.i4 

0x9f stelem.i8 

0xa0 stelem.r4 

0xa1 stelem.r8 

0xa2 stelem.ref 

0xb3 conv.ovf.i1 

0xb4 conv.ovf.u1 

0xb5 conv.ovf.i2 

0xb6 conv.ovf.u2 

0xb7 conv.ovf.i4 

0xb8 conv.ovf.u4 

0xb9 conv.ovf.i8 

0xba conv.ovf.u8 

0xc2 refanyval 

0xc3 ckfinite 

0xc6 mkrefany 

0xd0 ldtoken 

0xd1 conv.u2 

0xd2 conv.u1 

0xd3 conv.i 

0xd4 conv.ovf.i 

0xd5 conv.ovf.u 

0xd6 add.ovf 

0xd7 add.ovf.un 

0xd8 mul.ovf 

0xd9 mul.ovf.un 

0xda sub.ovf 

0xdb sub.ovf.un 

0xdc endfinally 

0xdd leave 

0xde leave.s 

0xdf stind.i 

0xe0 conv.u 

0xfe 0x00 arglist 

0xfe 0x01 ceq 

0xfe 0x02 cgt 

0xfe 0x03 cgt.un 

0xfe 0x04 clt 

0xfe 0x05 clt.un 

0xfe 0x06 ldftn 

0xfe 0x07 ldvirtftn 

0xfe 0x09 ldarg 

0xfe 0x0a ldarga 

0xfe 0x0b starg 

0xfe 0x0c ldloc 

0xfe 0x0d ldloca 

0xfe 0x0e stloc 
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0xfe 0x0f localloc 

0xfe 0x11 endfilter 

0xfe 0x12 unaligned. 

0xfe 0x13 volatile. 

0xfe 0x14 tail. 

0xfe 0x15 initobj 

0xfe 0x17 cpblk 

0xfe 0x18 initblk 

0xfe 0x1a rethrow 

0xfe 0x1c sizeof 

0xfe 0x1d refanytype 
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1.3  Stack Transition Diagram 1 

The stack transition diagram displays the state of the evaluation stack before and after the instruction is 2 
executed. Below is a typical stack transition diagram. 3 

�, value1, value2 ! �, result 4 

This diagram indicates that the stack must have at least two elements on it, and in the definition the topmost 5 
value (�top of stack� or �most recently pushed�) will be called value2 and the value underneath (pushed prior 6 
to value2) will be called value1. (In diagrams like this, the stack grows to the right, along the page). The 7 
instruction removes these values from the stack and replaces them by another value, called result in the 8 
description. 9 

1.4  English Description 10 

The English description describes any details about the instructions that are not immediately apparent once the 11 
format and stack transition have been described. 12 

1.5  Operand Type Table 13 

Many CIL operations take numeric operands on the stack. These operations fall into several categories, 14 
depending on how they deal with the types of the operands. The following tables summarize the valid kinds of 15 
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI 16 
rather than the more detailed types used by tools such as CIL verification. The types tracked by the CLI are: 17 
int32, int64, native int, F, O, and &. 18 

A op B (used for add, div, mul, rem, and sub). The table below shows the result type, for each possible 19 
combination of operand types. Boxes holding simply a result type, apply to all five instructions. Boxes marked 20 
" indicate an invalid CIL instruction. Shaded boxes indicate a CIL instruction that is not verifiable. Boxes with 21 
a list of instructions are valid only for those instructions. 22 

Table 2: Binary Numeric Operations 23 

B's Type A's Type 

int32 int64 native int F & O 

int32 int32 " native int " & (add) " 

int64 " int64 " " " " 

native int native int " native int " & (add) " 

F " " " F " " 

& & (add, 
sub) 

" & (add, 
sub) 

" native int 
(sub) 

" 

O " " " " " " 
 24 
Used for the neg instruction. Boxes marked " indicate an invalid CIL instruction. All valid uses of this 25 
instruction are verifiable. 26 

Table 3: Unary Numeric Operations 27 

Operand 
Type 

int32 int64 native int F & O 

Result 
Type 

int32 int64 native int F " " 

 28 
These return a boolean value or branch based on the top two values on the stack. Used for beq, beq.s, bge, 29 
bge.s, bge.un, bge.un.s, bgt, bgt.s, bgt.un, bgt.un.s, ble, ble.s, ble.un, ble.un.s, blt, blt.s, blt.un, 30 
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blt.un.s, bne.un, bne.un.s, ceq, cgt, cgt.un, clt, clt.un. Boxes marked # indicate that all instructions are 1 
valid for that combination of operand types. Boxes marked " indicate invalid CIL sequences. Shaded boxes 2 
boxes indicate a CIL instruction that is not verifiable. Boxes with a list of instructions are valid only for those 3 
instructions. 4 

Table 4: Binary Comparison or Branch Operations 5 

 int32 int64 native int F & O 

int32 # " # " " " 

int64 " # " " " " 

native int # " # " Beq[.s], 
bne.un[.s], 
ceq 

" 

F " " " # " " 

& " " beq[.s], 
bne.un[.s], 
ceq 

" 
#

1 " 

O " " " " " beq[.s], 
bne.un[.s], 
ceq2 

 6 
1. Except for beq, bne.un (or short versions) or ceq these combinations make sense if both operands 7 

are known to be pointers to elements of the same array. However, there is no security issue for a 8 
CLI that does not check this constraint 9 

Note: if the two operands are not pointers into the same array, then the result is simply the distance apart 10 
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly 11 
change at the next garbage collection. Essentially, the result cannot be used to compute anything useful 12 

2. cgt.un is allowed and verifiable on ObjectRefs (O). This is commonly used when comparing an 13 
ObjectRef with null (there is no �compare-not-equal� instruction, which would otherwise be a 14 
more obvious solution) 15 

These operate only on integer types. Used for and, div.un, not, or, rem.un, xor. The div.un and rem.un 16 
instructions treat their arguments as unsigned integers and produce the bit pattern corresponding to the 17 
unsigned result. As described in the CLI Specification, however, the CLI makes no distinction between signed 18 
and unsigned integers on the stack. The not instruction is unary and returns the same type as the input. The shl 19 
and shr instructions return the same type as their first operand and their second operand must be of type native 20 
unsigned int. Boxes marked " indicate invalid CIL sequences. All other boxes denote verifiable combinations 21 
of operands. 22 

Table 5: Integer Operations 23 

 int32 int64 native int F & O 

int32 int32 " native int " " " 

int64 " int64 " " " " 

native int native int " native int " " " 

F " " " " " " 

& " " " " " " 

O " " " " " " 
 24 
Below are the legal combinations of operands and result for the shift instructions: shl, shr, shr_un. Boxes 25 
marked " indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the 26 
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�Shift-By� operand is larger than the width of the �To-Be-Shifted� operand, then the results are 1 
implementation-defined. (eg shift an int32 integer left by 37 bits) 2 

Table 6: Shift Operations 3 

Shift-By  

int32 int64 native int F & O 

int32 int32 " int32 " " " 

int64 int64 " int64 " " " 

native int native int " native int " " " 

F " " " " " " 

& " " " " " " 

 

 

To Be 
Shifted 

O " " " " " " 
 4 
These operations generate an exception if the result cannot be represented in the target data type. Used for 5 
add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, sub.ovf.un The shaded uses are not verifiable, while 6 
boxes marked " indicate invalid CIL sequences. 7 

Table 7: Overflow Arithmetic Operations 8 

 int32 int64 native int F & O 

int32 int32 " native int " & add.ovf.un " 

int64 " int64 " " " " 

native int native int " native int " & add.ovf.un " 

F " " " " " " 

& & 
add.ovf.un, 
sub.ovf.un 

" & 
add.ovf.un, 
sub.ovf.un 

" native int 
sub.ovf.un 

" 

O " " " " " " 
 9 
These operations convert the top item on the evaluation stack from one numeric type to another. The result type 10 
is guaranteed to be representable as the data type specified as part of the operation (i.e. the conv.u2 instruction 11 
returns a value that can be stored in a unsigned int16). The stack, however, can only store values that are a 12 
minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un 13 
instructions. The shaded uses are not verifiable, while boxes marked " indicate invalid CIL sequences. 14 

Table 8: Conversion Operations 15 

Input (from evaluation stack) Convert-To 

int32 int64 native int F & O 

int8 
unsigned int8 
int16 
unsigned int16 

Truncate1 Truncate1 Truncate1 Truncate to 
zero2 

" " 

int32 
unsigned int32 

Nop Truncate1 Truncate1 Truncate to 
zero2 

" " 

int64 Sign extend Nop Sign extend Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 
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unsigned int64 Zero extend Nop Zero extend Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

native int Sign extend Truncate1 Nop Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

native unsigned 
int 

Zero extend Truncate1 Nop Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

All Float Types To Float To Float To Float Change 
precision3 

" " 

 1 
1. �Truncate� means that the number is truncated to the desired size; ie, the most significant bytes of 2 

the input value are simply ignored. If the result is narrower than the minimum stack width of 4 3 
bytes, then this result is zero extended (if the target type is unsigned) or sign-extended (if the 4 
target type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an 5 
8-bit datum yields the result 0xCD; if the target type were int8, this is sign-extended to give 6 
0xFFFF FFCD; if, instead, the target type were unsigned int8, this is zero-extended to give 7 
0x0000 00CD. 8 

2. �Trunc to 0� means that the floating-point number will be converted to an integer by truncation 9 
toward zero. Thus 1.1 is converted to 1 and �1.1 is converted to �1. 10 

3. Converts from the current precision available on the evaluation stack to the precision specified by 11 
the instruction. If the stack has more precision than the output size the conversion is performed 12 
using the IEC 60559:1989 �round to nearest� mode to compute the low order bit of the result. 13 

4. �Stop GC Tracking� means that, following the conversion, the item�s value will not be reported to 14 
subsequent garbage-collection operations (and therefore will not be updated by such operations) 15 

1.6  Implicit  Argument Coercion 16 

While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies a much 17 
richer model for parameters of methods. When about to call a method, the CLI performs implicit type 18 
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv.* instruction into the 19 
CIL stream, which may result in an information loss through truncation or rounding) This implicit conversion 20 
occurs for boxes marked #. Shaded boxes are not verifiable. Boxes marked " indicate invalid CIL sequences. 21 
(A compiler is of course free to emit explicit conv.* or conv.*.ovf instructions to achieve any desired 22 
effect) 23 

Table 9: Signature Matching 24 

Stack Parameter Type In 
Signature int32 native int int64 F & O 

int8 # # " " " " 

unsigned 
int8, bool 

# # " " " " 

int16 # # " " " " 

unsigned 
int16, char 

# # " " " " 

int32 # # " " " " 

unsigned 
int32 

# # " " " " 

int64 " " # " " " 

unsigned " " # " " " 



-  15  -  

 

int64 

native int # Sign 
extend 

# " " " " 

native 
unsigned 
int 

# Zero 
extend 

# Zero 
extend 

" " " " 

float32 " " " Note4 " " 

float64 " " " Note4 " " 

Class " " " " " # 

Value Type 
(Note2) 

Note1 Note1 Note1 Note1 " " 

By-Ref 
( & ) 

" # Start GC 
tracking 

" " # " 

Ref Any 
(Note3) 

" " " " " " 

 1 
1. Passing a built-in type to a parameter that is required to be a value type is not allowed. 2 

2. The CLI�s stack can contain a value type. These may only be passed if the particular value type 3 
on the stack exactly matches the class required by the corresponding parameter. 4 

3. There are special instructions to construct and pass a Ref Any. 5 

4. The CLI is permitted to pass floating point arguments using its internal F type, see clause 1.1.1. 6 
CIL generators may, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction. 7 

Further notes concerning this table: 8 

•  On a 32-bit machine passing a native int argument to an unsigned int32 parameter involves 9 
no conversion. On a 64-bit machine it is implicitly converted. 10 

•   �Start GC Tracking� means that, following the implicit conversion, the item�s value will be 11 
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the 12 
item pointed-to being relocated in the heap. 13 

1.7  Restrictions on CIL Code Sequences 14 

As well as detailed restrictions on CIL code sequences to ensure: 15 

•  Valid CIL 16 

•  Verifiable CIL 17 

there are a few further restrictions, imposed to make it easier to construct a simple CIL-to-native-code 18 
compiler.  This section specifies the general restrictions that apply in addition to this listed for individual 19 
instructions. 20 

1.7 .1  The Instruct ion Stream 21 

The implementation of a method is provided by a contiguous block of CIL instructions, encoded as specified 22 
below. The address of the instruction block for a method as well as its length is specified in the file format (see 23 
Partition II, Common Intermediate Language Physical Layout). The first instruction is at the first byte (lowest 24 
address) of the instruction block. 25 

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of 26 
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each 27 
instruction definition. Instructions follow each other without padding in a stream of bytes that is both alignment 28 
and byte-order insensitive. 29 
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Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next 1 
instruction begins immediately at the next byte. It is invalid for the instruction block (as specified by the 2 
block�s length) to end without forming a complete last instruction. 3 

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction 4 
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction 5 
prefix. 6 

Note: Until the end of the instruction block, the instruction following any control transfer instruction is 7 
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a 8 
branch. Only instructions may appear in the instruction stream, even if unreachable. There are no address-9 
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain 10 
instructions allow embedding of immediate data as part of the instruction, however that differs from allowing 11 
raw data embedded directly in the instruction stream. Unreachable code may appear as the result of machine-12 
generated code and is allowed, but it must always be in the form of properly formed instruction sequences. 13 

The instruction stream can be translated and the associated instruction block discarded prior to execution of the 14 
translation. Thus, even instructions that capture and manipulate code addresses, such as call, ret, etc. can be 15 
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream. 16 

1.7 .2  Valid Branch Targets 17 

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines 18 
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions, 19 
targets specified in exception tables such as protected ranges (see Partition I and Partition II), filter, and handler 20 
targets. 21 

Branch instructions specify branch targets as either a 1-byte or 4-byte signed relative offset; the size of the 22 
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte 23 
following the branch instruction. [Note: Thus, an offset value of zero targets the immediately following 24 
instruction.] 25 

The value of a 1-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a 4-26 
byte offset is can be computed by concatenating the bytes into a signed integer in the following manner: the 27 
byte of lowest address forms the least significant byte, and the byte with highest address forms the most 28 
significant byte of the integer. [Note: This representation is often called �a signed integer in little-endian byte-29 
order�.] 30 

1.7 .3   Exception Ranges 31 

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see 32 
Partition I and Partition II). The starting address of a protected block, filter clause, or handler shall be a valid 33 
branch target as specified in clause 1.7.2. It is invalid for a protected block, filter clause, or handler to end 34 
without forming a complete last instruction. 35 

1.7 .4  Must Provide Maxstack 36 

Every method specifies a maximum number of items that can be pushed onto the CIL Evaluation. The value is 37 
stored in the IMAGE_COR_ILMETHOD structure that precedes the CIL body of each method. A method that 38 
specifies a maximum number of items less than the amount required by a static analysis of the method (using a 39 
traditional control flow graph without analysis of the data) is invalid (hence also unverifiable) and need not be 40 
supported by a conforming implementation of the CLI. 41 

Note: Maxstack is related to analysis of the program, not to the size of the stack at runtime. It does not specify 42 
the maximum size in bytes of a stack frame, but rather the number of items that must be tracked by an analysis 43 
tool. 44 
 45 
Rationale: By analyzing the CIL stream for any method, it is easy to determine how many items will be pushed 46 
on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-native-47 
code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating 48 
internal data structures that model the stack and/or verification algorithm. 49 
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1.7 .5  Backward Branch Constraints  1 

It must be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the 2 
exact state of the evaluation stack at every instruction (where by �state� we mean the number and type of each 3 
item on the evaluation stack). 4 

In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an 5 
unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the 6 
evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that 7 
the evaluation stack at X be empty. 8 

Following on from this rule, it would clearly be invalid CIL if a later branch instruction to X were to have a 9 
non-empty evaluation stack 10 

Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It 11 
ensures that the state of the evaluation stack at the beginning of each CIL can be inferred from a single, 12 
forward-pass analysis of the instruction stream. 13 

Note: the stack state at location X in the above can be inferred by various means: from a previous forward 14 
branch to X; because X marks the start of an exception handler, etc. 15 

See the following sections for further information: 16 

•  Exceptions: Partition I 17 

•  Verification conditions for branch instructions: Chapter 3 18 

•  The tail. prefix: Section 3.19 19 

1.7 .6  Branch Verif icat ion Constraints  20 

The target of all branch instruction must be a valid branch target (see clause 1.7.2) within the method holding 21 
that branch instruction. 22 

1.8  Verifiabil ity 23 

Memory safety is a property that ensures programs running in the same address space are correctly isolated 24 
from one another (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to 25 
running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test 26 
a stronger restriction, called verifiability. Every program that is verified is memory safe, but some programs 27 
that are not verifiable are still memory safe. 28 

It is perfectly acceptable to generate CIL code that is not verifiable, but which is known to be memory safe by 29 
the compiler writer. Thus, conforming CIL may not be verifiable, even though the producing compiler may 30 
know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the pointer 31 
arithmetic versions of add that are required for the faithful and efficient compilation of C programs. For non-32 
verifiable code, memory safety is the responsibility of the application programmer. 33 

CIL contains a verifiable subset. The Verifiability description gives details of the conditions under which a use 34 
of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in much finer 35 
detail than is required for the basic functioning of the CLI, because it is checking that a CIL code sequence 36 
respects not only the basic rules of the CLI with respect to the safety of garbage collection, but also the typing 37 
rules of the CTS. This helps to guarantee the sound operation of the entire CLI. 38 

The verifiability section of each operation description specifies requirements both for correct CIL generation 39 
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack 40 
correspond to the types shown in the stack transition diagram. The verifiability section specifies only 41 
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the 42 
requirements for correct CIL generation and the specific verification conditions that are described with the 43 
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified. 44 
The operation of CIL sequences that meet the correctness requirements but are not verifiable may violate type 45 
safety and hence may violate security or memory access constraints. 46 
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1.8 .1  Flow Control  Restrict ions for Verif iable CIL 1 

This section specifies a verification algorithm that, combined with information on individual CIL instructions 2 
(see Chapter 3) and metadata validation (see Partition II), guarantees memory integrity. 3 

The algorithm specified here creates a minimum level for all compliant implementations of the CLI in the sense 4 
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly 5 
on all compliant implementations of the CLI. 6 

The CLI provides a security permission (see Partition IV) that controls whether or not the CLI shall run 7 
programs that may violate memory safety. Any program that is verifiable according to this specification does 8 
not violate memory safety, and a conforming implementation of the CLI shall run such programs. The 9 
implementation may also run other programs provided it is able to show they do not violate memory safety 10 
(typically because they use a verification algorithm that makes use of specific knowledge about the 11 
implementation). 12 

Note: While a compliant implementation is required to accept and run any program this verification algorithm 13 
states is verifiable, there may be programs that are accepted as verifiable by a given implementation but which 14 
this verification algorithm will fail to consider verifiable. Such programs will run in the given implementation 15 
but need not be considered verifiable by other implementations. 16 

For example, an implementation of the CLI may choose to correctly track full signatures on method pointers 17 
and permit programs to execute the calli instruction even though this is not permitted by the verification 18 
algorithm specified here. 19 

Implementers of the CLI are urged to provide a means for testing whether programs generated on their 20 
implementation meet this portable verifiability standard. They are also urged to specify where their verification 21 
algorithms are more permissive than this standard. 22 

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here 23 
assumes that the program is valid and does not explicitly call for tests of all validity conditions. Validity 24 
conditions are specified on a per-CIL instruction basis (see Chapter 3), and on the overall file format in 25 
Partition II. 26 

1.8 .1.1  Verif icat ion Algorithm 27 

The verification algorithm shall attempt to associate a valid stack state with every CIL instruction. The stack 28 
state specifies the number of slots on the CIL stack at that point in the code and for each slot a required type 29 
that must be present in that slot. The initial stack state is empty (there are no items on the stack). 30 

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to 31 
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore, 32 
verifiable methods shall have the �zero initialize� bit set, see Partition II (Flags for Method Headers). If this bit 33 
is not set, then a CLI may throw a Verification exception at any point where a local variable is accessed, and 34 
where the assembly containing that method has not been granted SecurityPermission.SkipVerification 35 

Rationale: This requirement strongly enhances program portability, and a well-known technique (definite 36 
assignment analysis) allows a compiler from CIL to native code to minimize its performance impact. Note that 37 
a CLI may optionally choose to perform definite-assignment analysis � in such a case, it may confirm that a 38 
method, even without the �zero initialize� bit set, may in fact be verifiable (and therefore not throw a 39 
Verification exception) 40 
 41 
Note: Definite assignment analysis can be used by the CLI to determine which locations are written before they 42 
are read. Such locations needn�t be zeroed, since it isn�t possible to observe the contents of the memory as it 43 
was provided by the EE. 44 

Performance measurements on C++ implementations (which does not require definite assignment analysis) 45 
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore, 46 
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often 47 
fails when small, unrelated changes are made to the program. 48 

The verification algorithm shall simulate all possible control flow paths through the code and ensures that a 49 
legal stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage 50 
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of any data values during its simulation (e.g. it does not perform constant propagation), but uses only type 1 
assignments. Details of the type system used for verification and the algorithm used to merge stack states are 2 
provided in clause 1.8.1.3. The verification algorithm terminates as follows: 3 

1. Successfully, when all control paths have been simulated. 4 

2. Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL 5 
instruction. 6 

3. Unsuccessfully when additional tests specified in this clause fail. 7 

There is a control flow path from every instruction to the subsequent instruction, with the exception of the 8 
unconditional branch instructions, throw, rethrow, and ret. Finally, there is a control flow path from each 9 
branch instruction (conditional or unconditional) to the branch target (targets, plural, for the switch 10 
instruction). 11 

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type 12 
mismatch between the specified conditions on the stack state (see Chapter 3) and the simulated stack state shall 13 
cause the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it 14 
does not perform the actual computation). The algorithm shall also fail if there is an existing stack state at the 15 
next instruction address (for conditional branches or instructions within a try block there may be more than one 16 
such address) that cannot be merged with the stack state just computed. For rules of this merge operation, see 17 
clause 1.8.1.3. 18 

1.8 .1.2  Verif icat ion Type System 19 

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory 20 
safety violations. The types used by the verification algorithm are specified in clause 1.8.1.2.1, the type 21 
compatibility rules are specified in clause 1.8.1.2.2, and the rules for merging stack states are in clause 1.8.1.3. 22 

1.8 .1.2.1  Verif icat ion Types 23 
The following table specifies the mapping of types used in the CLI and those used in verification. Notice that 24 
verification compresses the CLI types to a smaller set that maintains information about the size of those types 25 
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4 byte 26 
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as 27 
64-bit quantities regardless of the actual representation. 28 

Arrays are objects, but with special compatibility rules. 29 

There is a special encoding for null that represents an object known to be the null value, hence with 30 
indeterminate actual type. 31 

In the following table, �CLI Type� is the type as it is described in metadata. The �Verification Type� is a 32 
corresponding type used for type compatibility rules in verification (see clause 1.8.1.2.2) when considering the 33 
types of local variables, incoming arguments, and formal parameters on methods being called. The column 34 
�Verification Type (in stack state)� is used to simulate instructions that load data onto the stack, and shows the 35 
types that are actually maintained in the stack state information of the verification algorithm. The column 36 
�Managed Pointer to Type� shows the type tracked for managed pointers. 37 

CLI Type Verification Type Verification Type 
(in stack state) 

Managed Pointer to Type 

int8, unsigned int8, bool int8 int32 & int8 

int16, unsigned int16, char int16 int32 & int16 

int32, unsigned int32 int32 int32 & int32 

int64, unsigned int64 int64 int64 & int64 

native int, native unsigned 
int 

native int native int & native int 

float32 float32 float64 & float32 

float64 float64 float64 & float64 
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Any value type Same type Same type & Same type 

Any object type Same type Same type & Same type 

Method pointer Same type Same type Not valid 

 1 
A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable. 2 

Rationale: some uses of returning a managed pointer are perfectly verifiable (eg, returning a reference to a 3 
field in an object); but some not (eg, returning a pointer to a local variable of the called method). Tracking this 4 
in the general case is a burden, and therefore not included in this standard. 5 

1.8 .1.2.2  Verif icat ion Type Compatibi l ity  6 
The following rules define type compatibility. We use S and T to denote verification types, and the notation �S 7 
:= T� to indicate that the verification type T can be used wherever the verification type S can be used, while �S 8 
!:= T� indicates that T cannot be used where S is expected. These are the verification type compatibility (see 9 
Partition I) rules. We use T[] to denote an array (of any rank) whose elements are of type T, and T& to denote a 10 
managed pointer to type T. 11 

1. [:= is reflexive] For all verification types S, S := S 12 

2. [:= is transitive] For all verification types S, T, and U if S := T and T := U, then S := U. 13 

3. S := T if S is the base class of T or an interface implemented by T and T is not a value type. 14 

4. S := T if S and T are both interfaces and the implementation of T requires the implementation of S 15 

5. S := null if S is an object type or an interface 16 

6. S[] := T[] if S := T and the arrays are either both vectors (zero-based, rank one) or neither is a 17 
vector and both have the same rank. 18 

7. If S and T are method pointers, then S := T if the signatures (return types, parameter types, 19 
calling convention, and any custom attributes or custom modifiers) are the same. 20 

8. Otherwise S !:= T 21 

1.8 .1.3  Merging Stack States  22 

As the verification algorithm simulates all control flow paths it shall merge the simulated stack state with any 23 
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack 24 
state is stored for future use. Otherwise the merge shall be computed as follows and stored to replace the 25 
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail. 26 

The merge shall be computed by comparing the number of slots in each stack state. If they differ, the merge 27 
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows. 28 
Let T be the type from the slot on the newly computed state and S be the type from the corresponding slot on 29 
the previously stored state. The merged type, U, shall be computed as follows (recall that S := T is the 30 
compatibility function defined in clause 1.8.1.2.2): 31 

1. if S := T then U=S 32 

2. Otherwise if T := S then U=T 33 

3. Otherwise, if S and T are both object types, then let V be the closest common supertype of S and T 34 
then U=V. 35 

4. Otherwise, the merge shall fail. 36 

1.8 .1.4  Class and Object  Init ia l ization Rules  37 

The VES ensures that all statics are initially zeroed (i.e. built-in types are 0 or false, object references are null), 38 
hence the verification algorithm does not test for definite assignment to statics. 39 

An object constructor shall not return unless a constructor for the base class or a different construct for the 40 
object�s class has been called on the newly constructed object. The verification algorithm shall treat the this 41 
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pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an 1 
uninitialized this except for storing into and loading from the object�s fields. 2 

Note: If the constructor generates an exception the this pointer in the corresponding catch block is still 3 
uninitialized. 4 

1.8 .1.5  Delegate Constructors 5 

The verification algorithm shall require that one of the following code sequences is used for constructing 6 
delegates; no other code sequence in verifiable code shall contain a newobj instruction for a delegate type. 7 
There shall be only one instance constructor method for a Delegate (overloading is not allowed) 8 

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the 9 
start of the sequence). 10 

Note: See Partition II for the signature of delegates and a validity requirement regarding the signature of the 11 
method used in the constructor and the signature of Invoke and other methods on the delegate class. 12 

1.8 .1.5.1  Delegat ing via Virtual  Dispatch 13 
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence 14 
begins with an object on the stack. 15 
dup 16 
ldvirtftn mthd ; Method shall be on the class of the object, 17 
          ; or one of its parent classes, or an interface 18 
          ; implemented by the object 19 
newobj delegateclass::.ctor(object, native int) 20 

Rationale: The dup is required to ensure that it is precisely the same object stored in the delegate as was used 21 
to compute the virtual method. If another object of a subtype were used the object and the method wouldn�t 22 
match and could lead to memory violations. 23 

1.8 .1.5.2  Delegat ing via Instance Dispatch 24 
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence 25 
begins with either null or an object on the stack. 26 
ldftn mthd  ; Method shall either be a static method or 27 
          ; a method on the class of the object on the stack or 28 
          ; one of the object’s parent classes 29 
newobj delegateclass::.ctor(object, native int) 30 

1.9  Metadata Tokens 31 

Many CIL instructions are followed by a "metadata token". This is a 4-byte value, that specifies a row in a 32 
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies 33 
the table or heap. For example, a value of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User 34 
String heap. The value corresponds to the number assigned to that metadata table (see Partition II for the full 35 
list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that 36 
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are 37 
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata 38 
token with value 0x02000007 specifies row number 7 in the TypeDef table) 39 

1.10   Exceptions Thrown 40 

A CIL instruction can throw a range of exceptions. The CLI can also throw the general purpose exception 41 
called ExecutionEngineException. See Partition I for details. 42 
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2  Prefixes to Instructions 1 

These special values are reserved to precede specific instructions. They do not constitute full instructions in 2 
their own right. It is not valid CIL to branch to the instruction following the prefix, but the prefix itself is a 3 
valid branch target. It is not valid CIL to have a prefix without immediately following it by one of the 4 
instructions it is permitted to precede. 5 
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 1 

2.1  tail .  (prefix) – call  terminates current method 2 

Format Assembly Format Description 

FE 14 tail. Subsequent call terminates current method 
 3 
Description: 4 
The tail. instruction must immediately precede a call, calli, or callvirt instruction. It indicates that the 5 
current method�s stack frame is no longer required and thus can be removed before the call instruction is 6 
executed. Because the value returned by the call will be the value returned by this method, the call can be 7 
converted into a cross-method jump. 8 

The evaluation stack must be empty except for the arguments being transferred by the following call. The 9 
instruction following the call instruction must be a ret. Thus the only legal code sequence is 10 

tail. call (or calli or callvirt) somewhere 11 
ret 12 

Correct CIL must not branch to the call instruction, but it is permitted to branch to the ret. The only values on 13 
the stack must be the arguments for the method being called. 14 

The tail.call (or calli or callvirt) instruction cannot be used to transfer control out of a try, filter, catch, 15 
or finally block. See Partition I. 16 

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since 17 
this would jeopardize code identity security. Security checks may therefore cause the tail. to be ignored, 18 
leaving a standard call instruction. 19 

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail. prefix is 20 
ignored when used to exit a method that is marked synchronized. 21 

There may also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in 22 
certain cases. While an implementation is free to ignore the tail. prefix under these circumstances, they 23 
should be clearly documented as they can affect the behavior of programs. 24 

CLI implementations are required to honor tail. call requests where caller and callee methods can be 25 
statically determined to lie in the same assembly; and where the caller is not in a synchronized region; and 26 
where caller and callee satisfy all conditions listed in the �Verifiability� rules below. (To �honor� the tail. 27 
prefix means to remove the caller�s frame, rather than revert to a regular call sequence). Consequently, a CLI 28 
implementation need not honor tail. calli or tail. callvirt sequences. 29 

Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are 30 
required by some languages. In the presence of ldloca and ldarga instructions it isn�t always possible for a 31 
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted. 32 

Exceptions: 33 
None. 34 

Verifiability: 35 
Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed 36 
to the method being called if they point into the stack frame that is about to be removed. The return type of the 37 
method being called must be compatible with the return type of the current method. Verification requires that 38 
no managed pointers are passed to the method being called, since it does not track pointers into the current 39 
frame. 40 
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 1 

2.2  unaligned. (prefix) – pointer instruction may be unaligned 2 

Format Assembly Format Description 

FE 12 <unsigned 
int8> 

unaligned. alignment Subsequent pointer instruction may be unaligned 

 3 
Stack Transition: 4 

..., addr ! ..., addr 5 

Description: 6 
Unaligned. specifies that address (an unmanaged pointer (&), or native int) on the stack may not be aligned 7 
to the natural size of the immediately following ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk 8 
instruction. That is, for a ldind.i4 instruction the alignment of addr may not be to a 4-byte boundary. For 9 
initblk and cpblk the default alignment is architecture dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit 10 
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition I and Partition II) 11 
must use unaligned. if the alignment is not known at compile time to be 8-byte. 12 

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte, 13 
double byte, or quad byte aligned, respectively. 14 

Rationale: While the alignment for a cpblk instruction would logically require two numbers (one for the 15 
source and one for the destination), there is no noticeable impact on performance if only the lower number is 16 
specified. 17 

The unaligned. and volatile. prefixes may be combined in either order. They must immediately precede a 18 
ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed 19 
for the ldsfld and stsfld instructions. 20 

Note: See Partition I, 12.7 for information about atomicity and data alignment. 21 

Exceptions: 22 
None. 23 

Verifiability: 24 
An unaligned. prefix shall be immediately followed by one of the instructions listed above. 25 
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 1 

2.3  volati le.  (prefix) -  pointer reference is volati le 2 

Format Assembly Format Description 

FE 13 volatile. Subsequent pointer reference is volatile 
 3 
Stack Transition: 4 

..., addr ! ..., addr 5 

Description: 6 
volatile. specifies that addr is a volatile address (i.e. it may be referenced externally to the current thread of 7 
execution) and the results of reading that location cannot be cached or that multiple stores to that location 8 
cannot be suppressed. Marking an access as volatile. affects only that single access; other accesses to the 9 
same location must be marked separately. Access to volatile locations need not be performed atomically. [see 10 
Partition I] 11 

The unaligned. and volatile. prefixes may be combined in either order. They must immediately precede a 12 
ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed 13 
for the ldsfld and stsfld instructions. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
A volatile. prefix should be immediately followed by one of the instructions listed above. 18 

 19 
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3  Base Instructions 1 

These instructions form a �Turing Complete� set of basic operations. They are independent of the object model 2 
that may be employed. Operations that are specifically related to the CTS�s object model are contained in the 3 
Object Model Instructions section. 4 
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 1 

3.1  add - add numeric values 2 

Format Assembly Format Description 

58 add Add two values, returning a new value 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is not detected for 7 
integral operations (but see add.ovf); floating-point overflow returns +inf or -inf. 8 

The acceptable operand types and their corresponding result data type is encapsulated in 9 
Table 2: Binary Numeric Operations. 10 

Exceptions: 11 
None. 12 

Verifiability: 13 
See Table 2: Binary Numeric Operations. 14 
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 1 

3.2  add.ovf.<signed> - add integer values with overflow check 2 

Format Assembly Format Description 

D6 add.ovf Add signed integer values with overflow check.  

D7 add.ovf.un Add unsigned integer values with overflow check. 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The acceptable operand 7 
types and their corresponding result data type is encapsulated in Table 7: Overflow Arithmetic Operations. 8 

Exceptions: 9 
OverflowException is thrown if the result cannot be represented in the result type. 10 

Verifiability: 11 
See Table 7: Overflow Arithmetic Operations. 12 
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 1 

3.3  and - bitwise AND 2 

Format Instruction Description 

5F And Bitwise AND of two integral values, returns an integral value 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The and instruction computes the bitwise AND of value1 and value2 and pushes the result on the stack. The 7 
acceptable operand types and their corresponding result data type is encapsulated in 8 
Table 5: Integer Operations. 9 

Exceptions: 10 
None. 11 

Verifiability: 12 
See Table 5: Integer Operations. 13 
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 1 

3.4  arglist -  get argument l ist  2 

Format Assembly Format Description 

FE 00 arglist Return argument list handle for the current method  
 3 
Stack Transition: 4 

… ! …, argListHandle 5 

Description: 6 
The arglist instruction returns an opaque handle (an unmanaged pointer, type native int) representing the 7 
argument list of the current method. This handle is valid only during the lifetime of the current method. The 8 
handle can, however, be passed to other methods as long as the current method is on the thread of control. The 9 
arglist instruction may only be executed within a method that takes a variable number of arguments. 10 

Rationale: This instruction is needed to implement the C �va_*� macros used to implement procedures like 11 
�printf�. It is intended for use with the class library implementation of System.ArgIterator. 12 

Exceptions: 13 
None. 14 

Verifiability: 15 
It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates 16 
it accepts a variable number of arguments. Within such a method its use is verifiable, but verification requires 17 
that the result is an instance of the System.RuntimeArgumentHandle class. 18 
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 1 

3.5  beq.<length> – branch on equal 2 

Format Assembly Format Description 

3B <int32> beq target Branch to target if equal 

2E <int8> beq.s target Branch to target if equal, short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The beq instruction transfers control to target if value1 is equal to value2. The effect is identical to performing 7 
a ceq instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for beq, 1 byte 8 
for beq.s) from the beginning of the instruction following the current instruction. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 13 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 14 
details). 15 

Exceptions: 16 
None. 17 

Verifiability: 18 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 19 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 20 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 21 
path to the destination instruction. See Section 1.5 for more details. 22 
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 1 

3.6  bge.<length> – branch on greater than or equal to 2 

Format Assembly Format Description 

3C <int32> bge target Branch to target if greater than or equal to 

2F <int8> bge.s target Branch to target if greater than or equal to, short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The bge instruction transfers control to target if value1 is greater than or equal to value2. The effect is identical 7 
to performing a clt.un instruction followed by a brfalse target. target is represented as a signed offset (4 8 
bytes for bge, 1 byte for bge.s) from the beginning of the instruction following the current instruction. 9 

The effect of a �bge target� instruction is identical to: 10 

•  If stack operands are integers, then : clt followed by a brfalse target 11 

•  If stack operands are floating-point, then : clt.un followed by a brfalse target 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 14 
prefixes. 15 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 16 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 17 
details). 18 

Exceptions: 19 
None. 20 

Verifiability: 21 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 22 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 23 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 24 
path to the destination instruction. See Section 1.5 for more details. 25 
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 1 

3.7  bge.un.<length> – branch on greater/equal,  unsigned or unordered 2 

Format Assembly Format Description 

41 <int32> bge.un target Branch to target if greater than or equal to (unsigned or unordered) 

34 <int8> bge.un.s target Branch to target if greater than or equal to (unsigned or unordered), 
short form 

 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The bge.un instruction transfers control to target if value1 is greater than or equal to value2, when compared 7 
unsigned (for integer values) or unordered (for float point values). The effect is identical to performing a clt 8 
instruction followed by a brfalse target. target is represented as a signed offset (4 bytes for bge.un, 1 byte for 9 
bge.un.s) from the beginning of the instruction following the current instruction. 10 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 14 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 15 
details). 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 22 
path to the destination instruction. See Section 1.5 for more details. 23 
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 1 

3.8  bgt.<length> – branch on greater than 2 

Format Assembly Format Description 

3D <int32> bgt target Branch to target if greater than 

30 <int8> bgt.s target Branch to target if greater than, short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The bgt instruction transfers control to target if value1 is greater than value2. The effect is identical to 7 
performing a cgt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for 8 
bgt, 1 byte for bgt.s) from the beginning of the instruction following the current instruction. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 13 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 14 
details). 15 

Exceptions: 16 
None. 17 

Verifiability: 18 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 19 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 20 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 21 
path to the destination instruction. See Section 1.5 for more details. 22 
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 1 

3.9  bgt.un.<length> – branch on greater than, unsigned or unordered 2 

Format Assembly Format Description 

42 <int32> bgt.un target Branch to target if greater than (unsigned or unordered) 

35 <int8> bgt.un.s target Branch to target if greater than (unsigned or unordered), short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The bgt.un instruction transfers control to target if value1 is greater than value2, when compared unsigned (for 7 
integer values) or unordered (for float point values). The effect is identical to performing a cgt.un instruction 8 
followed by a brtrue target. target is represented as a signed offset (4 bytes for bgt.un, 1 byte for bgt.un.s) 9 
from the beginning of the instruction following the current instruction. 10 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 14 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 15 
details). 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 22 
path to the destination instruction. See Section 1.5 for more details. 23 
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 1 

3.10  ble.<length> – branch on less than or equal to 2 

Format Assembly Format Description 

3E <int32> ble target Branch to target if less than or equal to 

31 <int8> ble.s target Branch to target if less than or equal to, short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The ble instruction transfers control to target if value1 is less than or equal to value2. target is represented as a 7 
signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the instruction following the current 8 
instruction. 9 

The effect of a �ble target� instruction is identical to: 10 

•  If stack operands are integers, then : cgt followed by a brfalse target 11 

•  If stack operands are floating-point, then : cgt.un followed by a brfalse target 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 14 
prefixes. 15 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 16 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 17 
details). 18 

Exceptions: 19 
None. 20 

Verifiability: 21 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 22 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 23 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 24 
path to the destination instruction. See Section 1.5 for more details. 25 
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3.11  ble.un.<length> – branch on less/equal,  unsigned or unordered 2 

Format Assembly Format Description 

43 <int32> ble.un target Branch to target if less than or equal to (unsigned or unordered) 

36 <int8> ble.un.s target Branch to target if less than or equal to (unsigned or unordered), 
short form 

 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The ble.un instruction transfers control to target if value1 is less than or equal to value2, when compared 7 
unsigned (for integer values) or unordered (for float point values). target is represented as a signed offset (4 8 
bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction following the current instruction. 9 

The effect of a �ble.un target� instruction is identical to: 10 

•  If stack operands are integers, then : cgt.un followed by a brfalse target 11 

•  If stack operands are floating-point, then : cgt followed by a brfalse target 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 14 
prefixes. 15 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 16 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 17 
details). 18 

Exceptions: 19 
None. 20 

Verifiability: 21 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 22 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 23 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 24 
path to the destination instruction. See Section 1.5 for more details. 25 
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3.12  blt.<length> – branch on less than 2 

Format Assembly Format Description 

3F <int32> blt target Branch to target if less than 

32 <int8> blt.s target Branch to target if less than, short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The blt instruction transfers control to target if value1 is less than value2. The effect is identical to performing 7 
a clt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for blt, 1 byte 8 
for blt.s) from the beginning of the instruction following the current instruction. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 13 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 14 
details). 15 

Exceptions: 16 
None. 17 

Verifiability: 18 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 19 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 20 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 21 
path to the destination instruction. See Section 1.5 for more details. 22 
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3.13  blt.un.<length> – branch on less than, unsigned or unordered 2 

Format Assembly Format Description 

44 <int32> blt.un target Branch to target if less than (unsigned or unordered)  

37 <int8> blt.un.s target Branch to target if less than (unsigned or unordered), short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The blt.un instruction transfers control to target if value1 is less than value2, when compared unsigned (for 7 
integer values) or unordered (for float point values). The effect is identical to performing a clt.un instruction 8 
followed by a brtrue target. target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) 9 
from the beginning of the instruction following the current instruction. 10 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 14 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 15 
details). 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 22 
path to the destination instruction. See Section 1.5 for more details. 23 
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3.14  bne.un<length> – branch on not equal or unordered 2 

Format Assembly Format Description 

40 <int32> bne.un target Branch to target if unequal or unordered 

33 <int8> bne.un.s target Branch to target if unequal or unordered, short form 
 3 
Stack Transition: 4 

…, value1, value2 ! … 5 

Description: 6 
The bne.un instruction transfers control to target if value1 is not equal to value2, when compared unsigned (for 7 
integer values) or unordered (for float point values). The effect is identical to performing a ceq instruction 8 
followed by a brfalse target. target is represented as a signed offset (4 bytes for bne.un, 1 byte for bne.un.s) 9 
from the beginning of the instruction following the current instruction. 10 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 14 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 15 
details). 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 22 
path to the destination instruction. See Section 1.5 for more details. 23 
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3.15  br.<length> – unconditional branch 2 

Format Assembly Format Description 

38 <int32> br target Branch to target  

2B <int8> br.s target Branch to target, short form 
 3 
Stack Transition: 4 

…, ! … 5 

Description: 6 
The br instruction unconditionally transfers control to target. target is represented as a signed offset (4 bytes 7 
for br, 1 byte for br.s) from the beginning of the instruction following the current instruction. 8 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 9 
prefixes. 10 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 11 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 12 
details). 13 

Rationale: While a leave instruction can be used instead of a br instruction when the evaluation stack is 14 
empty, doing so may increase the resources required to compile from CIL to native code and/or lead to inferior 15 
native code. Therefore CIL generators should use a br instruction in preference to a leave instruction when 16 
both are legal. 17 

Exceptions: 18 
None. 19 

Verifiability: 20 
Correct CIL must observe all of the control transfer rules specified above. 21 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 22 
path to the destination instruction. See Section 1.5 for more details. 23 
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3.16  break – breakpoint instruction 2 

Format Assembly Format Description 

01  break Inform a debugger that a breakpoint has been reached. 
 3 
Stack Transition: 4 

…, ! … 5 

Description: 6 
The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has 7 
been tripped. It has no other effect on the interpreter state. 8 

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint 9 
with minimal disturbance to the surrounding code. 10 

The break instruction may trap to a debugger, do nothing, or raise a security exception: the exact behavior is 11 
implementation-defined 12 

Exceptions: 13 
None. 14 

Verifiability: 15 
The break instruction is always verifiable. 16 
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3.17  brfalse.<length> -  branch on false,  null ,  or zero 2 

Format Assembly Format Description 

39 <int32> brfalse target Branch to target if value is zero (false) 

2C <int8> brfalse.s target Branch to target if value is zero (false), short form 

39 <int32> brnull target Branch to target if value is null (alias for brfalse) 

2C <int8> brnull.s target Branch to target if value is null (alias for brfalse.s), short form 

39 <int32> brzero target Branch to target if value is zero (alias for brfalse) 

2C <int8> brzero.s target Branch to target if value is zero (alias for brfalse.s), short form 
 3 
Stack Transition: 4 

…, value ! … 5 

Description: 6 
The brfalse instruction transfers control to target if value (of type int32, int64, object reference, 7 
managed pointer, unmanaged pointer or native int) is zero (false). If value is non-zero (true) execution 8 
continues at the next instruction. 9 

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the 10 
instruction following the current instruction. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 14 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 15 
details). 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL must observe all of the control transfer rules specified above and must guarantee there is a 20 
minimum of one item on the stack. 21 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 22 
path to the destination instruction. See Section 1.5 for more details. 23 
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3.18  brtrue.<length> - branch on non-false or non-null  2 

Format Assembly Format Description 

3A <int32> brtrue target Branch to target if value is non-zero (true) 

2D <int8> brtrue.s target Branch to target if value is non-zero (true), short form 

3A <int32> brinst target Branch to target if value is a non-null object reference (alias for 
brtrue) 

2D <int8> brinst.s target Branch to target if value is a non-null object reference, short form 
(alias for brtrue.s) 

 3 
Stack Transition: 4 

…, value ! … 5 

Description: 6 
The brtrue instruction transfers control to target if value (of type native int) is nonzero (true). If value is 7 
zero (false) execution continues at the next instruction. 8 

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an 9 
instance of an object (i.e. isn�t the null object reference, see ldnull). 10 

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the 11 
instruction following the current instruction. 12 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 13 
prefixes. 14 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 15 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 16 
details). 17 

Exceptions: 18 
None. 19 

Verifiability: 20 
Correct CIL must observe all of the control transfer rules specified above and must guarantee there is a 21 
minimum of one item on the stack. 22 

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible 23 
path to the destination instruction. See Section 1.5 for more details. 24 



-  45  -  

 

 1 

3.19  call  – call  a method 2 

Format Assembly Format Description 

28 <T> call method Call method described by method 
 3 
Stack Transition: 4 

…, arg1, arg2 … argn ! …, retVal (not always returned) 5 

Description: 6 
The call instruction calls the method indicated by the descriptor method. Method is a metadata token (either a 7 
methodref or methoddef See Partition II) that indicates the method to call and the number, type, and order of 8 
the arguments that have been placed on the stack to be passed to that method as well as the calling convention 9 
to be used. See Partition I for a detailed description of the CIL calling sequence. The call instruction may be 10 
immediately preceded by a tail. prefix to specify that the current method state should be released before 11 
transferring control (see Section 2.1). 12 

The metadata token carries sufficient information to determine whether the call is to a static method, an 13 
instance method, a virtual method, or a global function. In all of these cases the destination address is 14 
determined entirely from the metadata token (Contrast with the callvirt instruction for calling virtual 15 
methods, where the destination address also depends upon the runtime type of the instance reference pushed 16 
before the callvirt; see below). 17 

 If the method does not exist in the class specified by the metadata token, the base classes are searched to find 18 
the most derived class which defines the method and that method is called. 19 

Rationale: This implements�call superclass� behavior. 20 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 21 
on the stack, then the second argument, etc. There are three important special cases: 22 

1. Calls to an instance (or virtual, see below) method must push that instance reference (the this 23 
pointer) before any of the user-visible arguments. The signature carried in the metadata does not 24 
contain an entry in the parameter list for the this pointer but uses a bit (called HASTHIS) to 25 
indicate whether the method requires passing the this pointer (see Partition II) 26 

2. It is legal to call a virtual method using call (rather than callvirt); this indicates that the 27 
method is to be resolved using the class specified by method rather than as specified dynamically 28 
from the object being invoked. This is used, for example, to compile calls to �methods on super� 29 
(i.e. the statically known parent class). 30 

3. Note that a delegate�s Invoke method may be called with either the call or callvirt instruction. 31 

Exceptions: 32 
SecurityException may be thrown if system security does not grant the caller access to the called method. 33 
The security check may occur when the CIL is converted to native code rather than at runtime. 34 

Verifiability: 35 
Correct CIL ensures that the stack contains the correct number and type of arguments for the method being 36 
called. 37 

For a typical use of the call instruction, verification checks that (a) method refers to a valid methodref or 38 
methoddef token; (b) the types of the objects on the stack are consistent with the types expected by the method 39 
call, and (c) the method is accessible from the callsite, and (d) the method is not abstract (ie, it has an 40 
implementation) 41 

The call instruction may also be used to call an object�s superclass constructor, or to initialize a value type 42 
location by calling an appropriate constructor, both of which are treated as special cases by verification. A call 43 
annotated by tail. is also a special case. 44 

If the target method is global (defined outside of any type), then the method must be static. 45 
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3.20  call i– indirect method call  2 

Format Assembly Format Description 

29 <T> calli callsitedescr Call method indicated on the stack with arguments described by 
callsitedescr. 

 3 
Stack Transition: 4 

…, arg1, arg2 … argn, ftn ! …, retVal (not always returned) 5 

Description: 6 
The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1 … argn. The types of 7 
these arguments are described by the signature callsitedescr. See Partition I for a description of the CIL 8 
calling sequence. The calli instruction may be immediately preceded by a tail. prefix to specify that the 9 
current method state should be released before transferring control. If the call would transfer control to a 10 
method of higher trust than the origin method the stack frame will not be released; instead, the execution will 11 
continue silently as if the tail. prefix had not been supplied. 12 

[A callee of �higher trust� is defined as one whose permission grant-set is a strict superset of the grant-set of 13 
the caller.] 14 

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately 15 
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a 16 
pointer can be created using the ldftn or ldvirtftn instructions, or have been passed in from native code. 17 

The standalone signature specifies the number and type of parameters being passed, as well as the calling 18 
convention (See Partition II) The calling convention is not checked dynamically, so code that uses a calli 19 
instruction will not work correctly if the destination does not actually use the specified calling convention. 20 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 21 
on the stack, then the second argument, etc. The argument-building code sequence for an instance or virtual 22 
method must push that instance reference (the this pointer, which must not be null) before any of the user-23 
visible arguments. 24 

Exceptions: 25 
SecurityException may be thrown if the system security does not grant the caller access to the called method. 26 
The security check may occur when the CIL is converted to native code rather than at runtime. 27 

Verifiability: 28 
Correct CIL requires that the function pointer contains the address of a method whose signature matches that 29 
specified by callsitedescr and that the arguments correctly correspond to the types of the destination function�s 30 
parameters. 31 

Verification checks that ftn is a pointer to a function generated by ldftn or ldvirtfn. 32 
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3.21  ceq -  compare equal 2 

Format Assembly Format Description 

FE 01 ceq Push 1 (of type int32) if value1 equals value2, else 0 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of type int32) is pushed 7 
on the stack. Otherwise 0 (of type int32) is pushed on the stack. 8 

For floating-point numbers, ceq will return 0 if the numbers are unordered (either or both are NaN). The 9 
infinite values are equal to themselves. 10 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 11 

Exceptions: 12 

None. 13 

Verifiability: 14 
Correct CIL provides two values on the stack whose types match those specified in 15 
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements. 16 
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3.22  cgt -  compare greater than 2 

Format Assembly Format Description 

FE 02  cgt Push 1 (of type int32) if value1 > value2, else 0 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The cgt instruction compares value1 and value2. If value1 is strictly greater than value2, then 1 (of type int32) 7 
is pushed on the stack. Otherwise 0 (of type int32) is pushed on the stack 8 

For floating-point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments 9 
are NaN). 10 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g. +infinity > 5.0 > -11 
infinity). 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

Exceptions: 14 

None. 15 

Verifiability: 16 
Correct CIL provides two values on the stack whose types match those specified in 17 
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements. 18 
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3.23  cgt.un -  compare greater than, unsigned or unordered 2 

Format Assembly Format Description 

FE 03  cgt.un Push 1 (of type int32) if value1 > value2, unsigned or unordered, 
else 0 

 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The cgt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if 7 

•  for floating-point numbers, either value1 is strictly greater than value2, or value1 is not ordered 8 
with respect to value2 9 

•  for integer values, value1 is strictly greater than value2 when considered as unsigned numbers 10 

Otherwise 0 (of type int32) is pushed on the stack. 11 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g. +infinity > 5.0 > -12 
infinity). 13 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL provides two values on the stack whose types match those specified in 18 
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements. 19 
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3.24  ckfinite – check for a f inite real number 2 

Format Assembly Format Description 

C3  ckfinite Throw ArithmeticException if value is not a finite number 
 3 
Stack Transition: 4 

…, value ! …, value 5 

Description: 6 
The ckfinite instruction throws ArithmeticException if value (a floating-point number) is either a �not a 7 
number� value (NaN) or +/- infinity value. ckfinite leaves the value on the stack if no exception is thrown. 8 
Execution is unspecified if value is not a floating-point number. 9 

Exceptions: 10 
ArithmeticException is thrown if value is not a �normal� number. 11 

Verifiability: 12 
Correct CIL guarantees that value is a floating-point number. There are no additional verification requirements. 13 
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3.25  clt  -  compare less than 2 

Format Assembly Format Description 

FE 04  clt Push 1 (of type int32) if value1 < value2, else 0 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The clt instruction compares value1 and value2. If value1 is strictly less than value2, then 1 (of type int32) is 7 
pushed on the stack. Otherwise 0 (of type int32) is pushed on the stack 8 

For floating-point numbers, clt will return 0 if the numbers are unordered (that is, one or both of the arguments 9 
are NaN). 10 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g. +infinity > 5.0 > -11 
infinity). 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

Exceptions: 14 
None. 15 

Verifiability: 16 
Correct CIL provides two values on the stack whose types match those specified in 17 
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements. 18 
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3.26  clt .un -  compare less than, unsigned or unordered 2 

Format Assembly Format Description 

FE 05  clt.un Push 1 (of type int32) if value1 < value2, unsigned or unordered, 
else 0 

 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The clt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if  7 

•  for floating-point numbers, either value1 is strictly less than value2, or value1 is not ordered with 8 
respect to value2 9 

•  for integer values, value1 is strictly less than value2 when considered as unsigned numbers 10 

Otherwise 0 (of type int32) is pushed on the stack. 11 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g. +infinity > 5.0 > -12 
infinity). 13 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL provides two values on the stack whose types match those specified in 18 
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements. 19 
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3.27  conv.<to type> -  data conversion 2 

Format Assembly Format Description 

67 conv.i1 Convert to int8, pushing int32 on stack 

68 conv.i2 Convert to int16, pushing int32 on stack 

69 conv.i4 Convert to int32, pushing int32 on stack 

6A conv.i8 Convert to int64, pushing int64 on stack 

6B conv.r4 Convert to float32, pushing F on stack 

6C conv.r8 Convert to float64, pushing F on stack 

D2 conv.u1 Convert to unsigned int8, pushing int32 on stack 

D1 conv.u2 Convert to unsigned int16, pushing int32 on stack 

6D conv.u4 Convert to unsigned int32, pushing int32 on stack 

6E conv.u8 Convert to unsigned int64, pushing int64 on stack 

D3 conv.i Convert to native int, pushing native int on stack 

E0 conv.u Convert to native unsigned int, pushing native int on stack 

76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack 
 3 
Stack Transition: 4 

…, value ! …, result 5 

Description: 6 
Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 7 
top of the stack. Note that integer values of less than 4 bytes are extended to int32 (not native int) when they 8 
are loaded onto the evaluation stack, and floating-point values are converted to the F type. 9 

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting 10 
from a float64 to a float32, precision may be lost. If value is too large to fit in a float32, the IEC 11 
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if value is negative) is 12 
returned. If overflow occurs converting one integer type to another the high-order bits are silently truncated. If 13 
the result is smaller than an int32, then the value is sign-extended to fill the slot. 14 

If overflow occurs converting a floating-point type to an integer the value returned is unspecified. The 15 
conv.r.un operation takes an integer off the stack, interprets it as unsigned, and replaces it with a floating-16 
point number to represent the integer; either a float32, if this is wide enough to represent the integer without 17 
loss of precision, else a float64. 18 

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type 19 
cannot properly represent the result value. 20 

The acceptable operand types and their corresponding result data type is encapsulated in 21 
Table 8: Conversion Operations. 22 

Exceptions: 23 
None. 24 

Verifiability: 25 
Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. The 26 
same table specifies a restricted set of types that are acceptable in verified code. 27 
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3.28  conv.ovf.<to type> - data conversion with overflow detection 2 

Format Assembly Format Description 

B3 conv.ovf.i1 Convert to an int8 (on the stack as int32) and throw an exception 
on overflow  

B5 conv.ovf.i2 Convert to an int16 (on the stack as int32) and throw an exception 
on overflow  

B7 conv.ovf.i4 Convert to an int32 (on the stack as int32) and throw an exception 
on overflow  

B9 conv.ovf.i8 Convert to an int64 (on the stack as int64) and throw an exception 
on overflow  

B4 conv.ovf.u1 Convert to a unsigned int8 (on the stack as int32) and throw an 
exception on overflow  

B6 conv.ovf.u2 Convert to a unsigned int16 (on the stack as int32) and throw an 
exception on overflow  

B8 conv.ovf.u4 Convert to a unsigned int32 (on the stack as int32) and throw an 
exception on overflow  

BA conv.ovf.u8 Convert to a unsigned int64 (on the stack as int64) and throw an 
exception on overflow  

D4 conv.ovf.i Convert to an native int (on the stack as native int) and throw 
an exception on overflow 

D5 conv.ovf.u Convert to a native unsigned int (on the stack as native int) 
and throw an exception on overflow 

 3 
Stack Transition: 4 

…, value ! …, result 5 

Description: 6 
Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 7 
top of the stack. If the value is too large or too small to be represented by the target type, an exception is 8 
thrown. 9 

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer 10 
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack. 11 

The acceptable operand types and their corresponding result data type is encapsulated in 12 
Table 8: Conversion Operations. 13 

Exceptions: 14 
OverflowException is thrown if the result can not be represented in the result type 15 

Verifiability: 16 
Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. The 17 
same table specifies a restricted set of types that are acceptable in verified code. 18 
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3.29  conv.ovf.<to type>.un – unsigned data conversion with overflow detection 2 

Format Assembly Format Description 

82 conv.ovf.i1.un Convert unsigned to an int8 (on the stack as int32) and throw an 
exception on overflow  

83 conv.ovf.i2.un Convert unsigned to an int16 (on the stack as int32) and throw an 
exception on overflow  

84 conv.ovf.i4.un Convert unsigned to an int32 (on the stack as int32) and throw an 
exception on overflow  

85 conv.ovf.i8.un Convert unsigned to an int64 (on the stack as int64) and throw an 
exception on overflow  

86 conv.ovf.u1.un Convert unsigned to an unsigned int8 (on the stack as int32) and 
throw an exception on overflow  

87 conv.ovf.u2.un Convert unsigned to an unsigned int16 (on the stack as int32) and 
throw an exception on overflow  

88 conv.ovf.u4.un Convert unsigned to an unsigned int32 (on the stack as int32) and 
throw an exception on overflow  

89 conv.ovf.u8.un Convert unsigned to an unsigned int64 (on the stack as int64) and 
throw an exception on overflow  

8A conv.ovf.i.un Convert unsigned to a native int (on the stack as native int) and 
throw an exception on overflow 

8B conv.ovf.u.un Convert unsigned to a native unsigned int (on the stack as 
native int) and throw an exception on overflow 

 3 
Stack Transition: 4 

…, value ! …, result 5 

Description: 6 
Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 7 
top of the stack. If the value cannot be represented, an exception is thrown. The item at the top of the stack is 8 
treated as an unsigned value. 9 

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer 10 
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack. 11 

The acceptable operand types and their corresponding result data type is encapsulated in 12 
Table 8: Conversion Operations. 13 

Exceptions: 14 
OverflowException is thrown if the result cannot be represented in the result type 15 

Verifiability: 16 
Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. The 17 
same table specifies a restricted set of types that are acceptable in verified code. 18 
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3.30  cpblk -  copy data from memory to memory 2 

Format Instruction Description 

FE 17 cpblk Copy data from memory to memory 
 3 
Stack Transition: 4 

…, destaddr, srcaddr, size ! … 5 

Description: 6 
The cpblk instruction copies size (of type unsigned int32) bytes from address srcaddr (of type native int, 7 
or &) to address destaddr (of type native int, or &). The behavior of cpblk is unspecified if the source and 8 
destination areas overlap. 9 

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the 10 
unaligned. prefix instruction). The cpblk instruction may be immediately preceded by the unaligned. prefix 11 
instruction to indicate that either the source or the destination is unaligned. 12 

Rationale: cpblk is intended for copying structures (rather than arbitrary byte-runs). All such structures, 13 
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the 14 
compiler that generates cpblk instructions to be aware of whether the code will eventually execute on a 32-bit 15 
or 64-bit platform. 16 

The operation of the cpblk instruction may be altered by an immediately preceding volatile. or unaligned. 17 
prefix instruction. 18 

Exceptions: 19 
NullReferenceException may be thrown if an invalid address is detected. 20 

Verifiability: 21 
The cpblk instruction is never verifiable. Correct CIL ensures the conditions specified above. 22 
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3.31  div -  divide values 2 

Format Assembly Format Description 

5B div Divide two values to return a quotient or floating-point result 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
result = value1 div value2 satisfies the following conditions: 7 

|result| = |value1| / |value2|, and 8 

sign(result) = +, if sign(value1) = sign(value2), or 9 
 �, if sign(value1) ~= sign(value2) 10 

The div instruction computes result and pushes it on the stack. 11 

Integer division truncates towards zero. 12 

Floating-point division is per IEC 60559:1989. In particular division of a finite number by 0 produces the 13 
correctly signed infinite value and 14 
0 / 0 = NaN 15 
infinity / infinity = NaN. 16 
X / infinity = 0 17 

The acceptable operand types and their corresponding result data type is encapsulated in 18 
Table 2: Binary Numeric Operations. 19 

Exceptions: 20 
Integral operations throw ArithmeticException if the result cannot be represented in the result type. This can 21 
happen if value1 is the smallest representable integer value, and value2 is -1. 22 

Integral operations throw DivideByZeroException if value2 is zero. 23 

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition I). 24 

Example: 25 
+14 div +3  is 4 26 
+14 div -3  is -4 27 
-14 div +3  is -4 28 
-14 div -3  is 4 29 

Verifiability: 30 
See Table 2: Binary Numeric Operations. 31 
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3.32  div.un - divide integer values,  unsigned 2 

Format Assembly Format Description 

5C div.un Divide two values, unsigned, returning a quotient 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The div.un instruction computes value1 divided by value2, both taken as unsigned integers, and pushes the 7 
result on the stack. 8 

The acceptable operand types and their corresponding result data type are encapsulated in 9 
Table 5: Integer Operations. 10 

Exceptions: 11 
DivideByZeroException is thrown if value2 is zero. 12 

Example: 13 
+5 div.un +3  is 1 14 
+5 div.un -3  is 0 15 
-5 div.un +3  is 14316557630 or 0x55555553 16 
-5 div.un -3  is 0 17 

Verifiability: 18 
See Table 5: Integer Operations. 19 
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3.33  dup – duplicate the top value of the stack 2 

Format Assembly Format Description 

25  dup Duplicate value on the top of the stack 
 3 
Stack Transition: 4 

…, value ! …, value, value 5 

Description: 6 
The dup instruction duplicates the top element of the stack. 7 

Exceptions: 8 
None. 9 

Verifiability: 10 
No additional requirements. 11 
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3.34  endfilter – end fi lter clause of SEH 2 

Format Assembly Format Description 

FE 11 Endfilter End filter clause of SEH exception handling 
 3 
Stack Transition: 4 

…, value ! … 5 

Description: 6 
Return from filter clause of an exception (see the Exception Handling section of Partition I for a discussion 7 
of exceptions). Value (which must be of type int32 and is one of a specific set of values) is returned from the 8 
filter clause. It should be one of: 9 

•  exception_continue_search (0) to continue searching for an exception handler 10 

•  exception_execute_handler (1) to start the second phase of exception handling where finally 11 
blocks are run until the handler associated with this filter clause is located. Then the handler is 12 
executed. 13 

Other integer values will produce unspecified results. 14 

The entry point of a filter, as shown in the method�s exception table, must be the (lexically) first instruction in 15 
the filter�s code block. The endfilter must be the (lexically) last instruction in the filter�s code block (hence 16 
there can only be one endfilter for any single filter block). After executing the endfilter instruction, control 17 
logically flows back to the CLI exception handling mechanism. 18 

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be 19 
transferred out of a filter block except through the use of a throw instruction or executing the final 20 
endfilter instruction. In particular, it is not legal to execute a ret or leave instruction within a filter block. 21 
It is not legal to embed a try block within a filter block. If an exception is thrown inside the filter block, it 22 
is intercepted and a value of exception_continue_search is returned. 23 

Exceptions: 24 
None. 25 

Verifiability: 26 
Correct CIL guarantees the control transfer restrictions specified above. Also, the stack must contain exactly 27 
one item (of type int32). 28 
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3.35  endfinally – end the finally or fault  clause of an exception block 2 

Format Assembly Format Description 

DC Endfault End fault clause of an exception block 

DC Endfinally End finally clause of an exception block 
 3 
Stack Transition: 4 

… ! … 5 

Description: 6 
Return from the finally or fault clause of an exception block; see the Exception Handling section of 7 
Partition I for details. 8 

Signals the end of the finally or fault clause so that stack unwinding can continue until the exception handler 9 
is invoked. The endfinally or endfault instruction transfers control back to the CLI exception mechanism. 10 
This then searches for the next finally clause in the chain, if the protected block was exited with a leave 11 
instruction. If the protected block was exited with an exception, the CLI will search for the next finally or 12 
fault, or enter the exception handler chosen during the first pass of exception handling. 13 

An endfinally instruction may only appear lexically within a finally block. Unlike the endfilter 14 
instruction, there is no requirement that the block end with an endfinally instruction, and there can be as many 15 
endfinally instructions within the block as required. These same restrictions apply to the endfault instruction 16 
and the fault block, mutatis mutandis. 17 

Control cannot be transferred into a finally (or fault block) except through the exception mechanism. 18 
Control cannot be transferred out of a finally (or fault) block except through the use of a throw instruction 19 
or executing the endfinally (or endfault) instruction. In particular, it is not legal to �fall out� of a finally 20 
(or fault) block or to execute a ret or leave instruction within a finally (or fault) block. 21 

Note that the endfault and endfinally instructions are aliases � they correspond to the same opcode. 22 

Exceptions: 23 
None. 24 

Verifiability: 25 
Correct CIL guarantees the control transfer restrictions specified above. There are no additional verification 26 
requirements. 27 
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3.36  initblk - initialize a block of memory to a value 2 

Format Assembly Format Description 

FE 18 initblk Set a block of memory to a given byte 
 3 
Stack Transition: 4 

…, addr, value, size ! … 5 

Description: 6 
The initblk instruction sets size (of type unsigned int32) bytes starting at addr (of type native int, or &) to 7 
value (of type unsigned int8). initblk assumes that addr is aligned to the natural size of the machine (but see 8 
the unaligned. prefix instruction). 9 

Rationale: initblk is intended for initializing structures (rather than arbitrary byte-runs). All such structures, 10 
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the 11 
compiler that generates initblk instructions to be aware of whether the code will eventually execute on a 32-12 
bit or 64-bit platform. 13 

The operation of the initblk instructions may be altered by an immediately preceding volatile. or 14 
unaligned. prefix instruction. 15 

Exceptions: 16 
NullReferenceException may be thrown if an invalid address is detected. 17 

Verifiability: 18 
The initblk instruction is never verifiable. Correct CIL code ensures the restrictions specified above. 19 
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3.37  jmp – jump to method 2 

Format Assembly Format Description 

27 <T> jmp method Exit current method and jump to specified method 
 3 
Stack Transition: 4 

… ! … 5 

Description: 6 
Transfer control to the method specified by method, which is a metadata token (either a methodref or 7 
methoddef (See Partition II). The current arguments are transferred to the destination method. 8 

The evaluation stack must be empty when this instruction is executed. The calling convention, number and type 9 
of arguments at the destination address must match that of the current method. 10 

The jmp instruction cannot be used to transferred control out of a try, filter, catch, fault or finally block; or out 11 
of a synchronized region. If this is done, results are undefined. See Partition I. 12 

Exceptions: 13 
None. 14 

Verifiability: 15 
The jmp instruction is never verifiable. Correct CIL code obeys the control flow restrictions specified above. 16 
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3.38  ldarg.<length> -  load argument onto the stack 2 

Format Assembly Format Description 

FE 09 <unsigned 
int16> 

ldarg num Load argument numbered num onto stack. 

0E <unsigned 
int8> 

ldarg.s num Load argument numbered num onto stack, short form. 

02 ldarg.0 Load argument 0 onto stack 

03 ldarg.1 Load argument 1 onto stack 

04 ldarg.2 Load argument 2 onto stack 

05 ldarg.3 Load argument 3 onto stack 
 3 
Stack Transition: 4 

… ! …, value 5 

Description: 6 
The ldarg num instruction pushes the num�th incoming argument, where arguments are numbered 0 onwards 7 
(see Partition I) onto the evaluation stack. The ldarg instruction can be used to load a value type or a built-in 8 
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of 9 
the argument, as specified by the current method�s signature. 10 

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any of the first 4 11 
arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4 through 255. 12 

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial 13 
fixed arguments, not those in the variable part of the signature. (See the arglist instruction) 14 

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are 15 
loaded onto the stack. Floating-point values are expanded to their native size (type F). 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL guarantees that num is a valid argument index. See Section 1.5 for more details on how 20 
verification determines the type of the value loaded onto the stack. 21 
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3.39  ldarga.<length> -  load an argument address 2 

Format Assembly Format Description 

FE 0A <unsigned 
int16> 

ldarga argNum fetch the address of argument argNum. 

0F <unsigned int8>  ldarga.s argNum fetch the address of argument argNum, short form 
 3 
Stack Transition: 4 

…, ! …, address of argument number argNum 5 

Description: 6 
The ldarga instruction fetches the address (of type &, i.e. managed pointer) of the argNum�th argument, where 7 
arguments are numbered 0 onwards. The address will always be aligned to a natural boundary on the target 8 
machine (cf. cpblk and initblk). The short form (ldarga.s) should be used for argument numbers 0 through 9 
255. 10 

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial 11 
fixed arguments, not those in the variable part of the signature. 12 

Rationale: ldarga is used for by-ref parameter passing (see Partition I). In other cases, ldarg and starg 13 
should be used. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL ensures that argNum is a valid argument index. See Section 1.5 for more details on how 18 
verification determines the type of the value loaded onto the stack. 19 
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3.40  ldc.<type> -  load numeric constant 2 

Format Assembly Format Description 

20 <int32> ldc.i4 num Push num of type int32 onto the stack as int32. 

21 <int64> ldc.i8 num Push num of type int64 onto the stack as int64. 

22 <float32> ldc.r4 num Push num of type float32 onto the stack as F. 

23 <float64> ldc.r8 num Push num of type float64 onto the stack as F. 

16 ldc.i4.0 Push 0 onto the stack as int32. 

17 ldc.i4.1 Push 1 onto the stack as int32. 

18 ldc.i4.2 Push 2 onto the stack as int32. 

19 ldc.i4.3 Push 3 onto the stack as int32. 

1A ldc.i4.4 Push 4 onto the stack as int32. 

1B ldc.i4.5 Push 5 onto the stack as int32. 

1C ldc.i4.6 Push 6 onto the stack as int32. 

1D ldc.i4.7 Push 7 onto the stack as int32. 

1E ldc.i4.8 Push 8 onto the stack as int32. 

15 ldc.i4.m1 Push -1 onto the stack as int32. 

15 ldc.i4.M1 Push -1 of type int32 onto the stack as int32 (alias for 
ldc.i4.m1). 

1F <int8> ldc.i4.s num Push num onto the stack as int32, short form. 
 3 
Stack Transition: 4 

… ! …, num 5 

Description: 6 
The ldc num instruction pushes number num onto the stack. There are special short encodings for the integers �7 
128 through 127 (with especially short encodings for �1 through 8). All short encodings push 4 byte integers on 8 
the stack. Longer encodings are used for 8 byte integers and 4- and 8-byte floating-point numbers, as well as 4-9 
byte values that do not fit in the short forms. 10 

There are three ways to push an 8-byte integer constant onto the stack 11 

1. use the ldc.i8 instruction for constants that must be expressed in more than 32 bits 12 

2. use the ldc.i4 instruction followed by a conv.i8 for constants that require 9 to 32 bits 13 

3. use a short form instruction followed by a conv.i8 for constants that can be expressed in 8 or 14 
fewer bits 15 

There is no way to express a floating-point constant that has a larger range or greater precision than a 64 bit 16 
IEC 60559:1989 number, since these representations are not portable across architectures. 17 

Exceptions: 18 
None. 19 

Verifiability: 20 
The ldc instruction is always verifiable. 21 
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3.41  ldftn -  load method pointer 2 

Format Assembly Format Description 

FE 06 <T> ldftn method Push a pointer to a method referenced by method on the stack 
 3 
Stack Transition: 4 

… ! …, ftn 5 

Description: 6 
The ldftn instruction pushes an unmanaged pointer (type native int) to the native code implementing the 7 
method described by method (a metadata token, either a methoddef or methodref; see Partition II) onto the 8 
stack. The value pushed can be called using the calli instruction if it references a managed method (or a stub 9 
that transitions from managed to unmanaged code). 10 

The value returned points to native code using the calling convention specified by method. Thus a method 11 
pointer can be passed to unmanaged native code (e.g. as a callback routine). Note that the address computed by 12 
this instruction may be to a thunk produced specially for this purpose (for example, to re-enter the CIL 13 
interpreter when a native version of the method isn�t available). 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL requires that method is a valid methoddef or methodref token. Verification tracks the type of the 18 
value pushed in more detail than the �native int� type, remembering that it is a method pointer. Such a 19 
method pointer can then be used with calli or to construct a delegate. 20 
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3.42  ldind.<type> -  load value indirect onto the stack 2 

Format Assembly Format Description 

46 ldind.i1  Indirect load value of type int8 as int32 on the stack. 

48 ldind.i2 Indirect load value of type int16 as int32 on the stack. 

4A ldind.i4  Indirect load value of type int32 as int32 on the stack. 

4C ldind.i8  Indirect load value of type int64 as int64 on the stack. 

47  ldind.u1  Indirect load value of type unsigned int8 as int32 on the 
stack. 

49 ldind.u2 Indirect load value of type unsigned int16 as int32 on the 
stack. 

4B ldind.u4 Indirect load value of type unsigned int32 as int32 on the 
stack. 

4E ldind.r4 Indirect load value of type float32 as F on the stack. 

4C ldind.u8  Indirect load value of type unsigned int64 as int64 on the 
stack (alias for ldind.i8). 

4F ldind.r8  Indirect load value of type float64 as F on the stack. 

4D ldind.i Indirect load value of type native int as native int on the 
stack 

50 ldind.ref Indirect load value of type object ref as O on the stack. 
 3 
Stack Transition: 4 

…, addr ! …, value 5 

Description: 6 
The ldind instruction indirectly loads a value from address addr (an unmanaged pointer, native int, or 7 
managed pointer, &) onto the stack. The source value is indicated by the instruction suffix. All of the ldind 8 
instructions are shortcuts for a ldobj instruction that specifies the corresponding built-in value class. 9 

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded onto 10 
the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack. 11 

Correct CIL ensures that the ldind instructions are used in a manner consistent with the type of the pointer. 12 

The address specified by addr must be aligned to the natural size of objects on the machine or a 13 
NullReferenceException may occur (but see the unaligned. prefix instruction). The results of all CIL 14 
instructions that return addresses (e.g. ldloca and ldarga) are safely aligned. For datatypes larger than 1 byte, 15 
the byte ordering is dependent on the target CPU. Code that depends on byte ordering may not run on all 16 
platforms. 17 

The operation of the ldind instructions may be altered by an immediately preceding volatile. or unaligned. 18 
prefix instruction. 19 

Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether 20 
to sign extend or zero extend. The ldind.u8 and ldind.u4 variants are provided for convenience; ldind.u8 is 21 
an alias for ldind.i8; ldind.u4 and ldind.i4 have different opcodes, but their effect is identical 22 

Exceptions: 23 
NullReferenceException may be thrown if an invalid address is detected. 24 

Verifiability: 25 
Correct CIL only uses an ldind instruction in a manner consistent with the type of the pointer. 26 
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3.43  ldloc -  load local variable onto the stack 2 

Format Assembly Format Description 

FE 0C<unsigned 
int16> 

ldloc indx Load local variable of index indx onto stack. 

11 <unsigned int8> ldloc.s indx Load local variable of index indx onto stack, short form. 

06 ldloc.0  Load local variable 0 onto stack. 

07 ldloc.1  Load local variable 1 onto stack. 

08 ldloc.2  Load local variable 2 onto stack. 

09 ldloc.3  Load local variable 3 onto stack. 
 3 
Stack Transition: 4 

… ! …, value 5 

Description: 6 
The ldloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack, 7 
where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method 8 
only if the initialize flag on the method is true (see Partition I). The ldloc.0, ldloc.1, ldloc.2, and ldloc.3 9 
instructions provide an efficient encoding for accessing the first four local variables. The ldloc.s instruction 10 
provides an efficient encoding for accessing local variables 4 through 255. 11 

The type of the value is the same as the type of the local variable, which is specified in the method header. See 12 
Partition I. 13 

Local variables that are smaller than 4 bytes long are expanded to type int32 when they are loaded onto the 14 
stack. Floating-point values are expanded to their native size (type F). 15 

Exceptions: 16 
VerificationException is thrown if the the �zero initialize� bit for this method has not been set, and the 17 
assembly containing this method has not been granted SecurityPermission.SkipVerification (and the CIL does 18 
not perform automatic definite-assignment analysis) 19 

Verifiability: 20 

Correct CIL ensures that indx is a valid local index. See Section 1.5 for more details on how verification 21 
determines the type of a local variable. For the ldloca indx instruction, indx must lie in the range 0 to 65534 22 
inclusive (specifically, 65535 is not valid) 23 

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 24 
track both a local�s index, as well as the total number of locals for a given method. If an index of 65535 had 25 
been made legal, it would require a wider integer to track the number of locals in such a method. 26 

Also, for verifiable code, this instruction must guarantee that it is not loading an uninitialized value � whether 27 
that initialization is done explicitly by having set the �zero initialize� bit for the method, or by previous 28 
instructions (where the CLI performs definite-assignment analysis) 29 
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3.44  ldloca.<length> -  load local variable address 2 

Format Assembly Format Description 

FE 0D <unsigned 
int16> 

ldloca index Load address of local variable with index indx 

12 <unsigned int8> ldloca.s index Load address of local variable with index indx, short form 
 3 
Stack Transition: 4 

… ! …, address 5 

Description: 6 
The ldloca instruction pushes the address of the local variable number index onto the stack, where local 7 
variables are numbered 0 onwards. The value pushed on the stack is already aligned correctly for use with 8 
instructions like ldind and stind. The result is a managed pointer (type &). The ldloca.s instruction provides 9 
an efficient encoding for use with the local variables 0 through 255. 10 

Exceptions: 11 
VerificationException is thrown if the the �zero initialize� bit for this method has not been set, and the 12 
assembly containing this method has not been granted SecurityPermission.SkipVerification (and the CIL does 13 
not perform automatic definite-assignment analysis) 14 

Verifiability: 15 

Correct CIL ensures that indx is a valid local index. See Section 1.5 for more details on how verification 16 
determines the type of a local variable. For the ldloca indx instruction, indx must lie in the range 0 to 65534 17 
inclusive (specifically, 65535 is not valid) 18 

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 19 
track both a local�s index, as well as the total number of locals for a given method. If an index of 65535 had 20 
been made legal, it would require a wider integer to track the number of locals in such a method. 21 

Also, for verifiable code, this instruction must guarantee that it is not loading an uninitialized value � whether 22 
that initialization is done explicitly by having set the �zero initialize� bit for the method, or by previous 23 
instructions (where the CLI performs definite-assignment analysis) 24 
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3.45  ldnull – load a null  pointer 2 

Format Assembly Format Description 

14 ldnull Push null reference on the stack 
 3 
Stack Transition: 4 

… ! …, null value 5 

Description: 6 
The ldnull pushes a null reference (type O) on the stack. This is used to initialize locations before they become 7 
live or when they become dead. 8 

Rationale: It might be thought that ldnull is redundant: why not use ldc.i4.0 or ldc.i8.0 instead? The 9 
answer is that ldnull provides a size-agnostic null � analogous to a ldc.i instruction, which does not exist. 10 
However, even if CIL were to include a ldc.i instruction it would still benefit verification algorithms to retain 11 
the ldnull instruction because it makes type tracking easier. 12 

Exceptions: 13 
None. 14 

Verifiability: 15 
The ldnull instruction is always verifiable, and produces a value that verification considers compatible with 16 
any other reference type. 17 
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3.46  leave.<length> – exit  a protected region of code 2 

Format Assembly Format Description 

DD <int32> leave target Exit a protected region of code. 

DE <int8> leave.s target Exit a protected region of code, short form 
 3 
Stack Transition: 4 

…, ! 5 

Description: 6 
The leave instruction unconditionally transfers control to target. Target is represented as a signed offset (4 7 
bytes for leave, 1 byte for leave.s) from the beginning of the instruction following the current instruction. 8 

The leave instruction is similar to the br instruction, but it can be used to exit a try, filter, or catch block 9 
whereas the ordinary branch instructions can only be used in such a block to transfer control within it. The 10 
leave instruction empties the evaluation stack and ensures that the appropriate surrounding finally blocks are 11 
executed. 12 

It is not legal to use a leave instruction to exit a finally block. To ease code generation for exception handlers 13 
it is legal from within a catch block to use a leave instruction to transfer control to any instruction within the 14 
associated try block. 15 

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes. 16 

Exceptions: 17 
None. 18 

Verifiability: 19 
Correct CIL requires the computed destination lie within the current method. See Section 1.5 for more details. 20 
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 1 

3.47  localloc – allocate space in the local dynamic memory pool 2 

Format Assembly Format Description 

FE 0F localloc  Allocate space from the local memory pool. 
 3 
Stack Transition: 4 

size ! address 5 

Description: 6 
The localloc instruction allocates size (type native unsigned int) bytes from the local dynamic memory 7 
pool and returns the address (a managed pointer, type &) of the first allocated byte. The block of memory 8 
returned is initialized to 0 only if the initialize flag on the method is true (see Partition I). The area of memory 9 
is newly allocated. When the current method returns, the local memory pool is available for reuse. 10 

Address is aligned so that any built-in data type can be stored there using the stind instructions and loaded 11 
using the ldind instructions. 12 

The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault. 13 

Rationale: Localloc is used to create local aggregates whose size must be computed at runtime. It can be used 14 
for C�s intrinsic alloca method. 15 

Exceptions: 16 
StackOverflowException is thrown if there is insufficient memory to service the request. 17 

Verifiability: 18 
Correct CIL requires that the evaluation stack be empty, apart from the size item. This instruction is never 19 
verifiable. 20 
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 1 

3.48  mul - multiply values 2 

Format Assembly Format Description 

5A mul Multiply values 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The mul instruction multiplies value1 by value2 and pushes the result on the stack. Integral operations silently 7 
truncate the upper bits on overflow (see mul.ovf). 8 

For floating-point types, 0 × infinity = NaN. 9 

The acceptable operand types and their corresponding result data types are encapsulated in 10 
Table 2: Binary Numeric Operations. 11 

Exceptions: 12 
None. 13 

Verifiability: 14 
See Table 2: Binary Numeric Operations. 15 
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 1 

3.49  mul.ovf.<type> -  multiply integer values with overflow check 2 

Format Assembly Format Description 

D8 mul.ovf Multiply signed integer values. Signed result must fit in same size 

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result must fit in same 
size 

 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on the stack. An 7 
exception is thrown if the result will not fit in the result type. 8 

The acceptable operand types and their corresponding result data types are encapsulated in 9 
Table 7: Overflow Arithmetic Operations. 10 

Exceptions: 11 
OverflowException is thrown if the result can not be represented in the result type. 12 

Verifiability: 13 
See Table 8: Conversion Operations. 14 
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 1 

3.50  neg -  negate 2 

Format Assembly Format Description 

65 neg Negate value 
 3 
Stack Transition: 4 

…, value ! …, result 5 

Description: 6 
The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the 7 
operand type. 8 

Negation of integral values is standard twos complement negation. In particular, negating the most negative 9 
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow 10 
use the sub.ovf instruction instead (i.e. subtract from 0). 11 

Negating a floating-point number cannot overflow; negating NaN returns NaN. 12 

The acceptable operand types and their corresponding result data types are encapsulated in 13 
Table 3: Unary Numeric Operations. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
See Table 3: Unary Numeric Operations. 18 
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 1 

3.51  nop – no operation 2 

Format Assembly Format Description 

00 nop Do nothing 
 3 
Stack Transition: 4 

…, ! …, 5 

Description: 6 
The nop operation does nothing. It is intended to fill in space if bytecodes are patched. 7 

Exceptions: 8 
None. 9 

Verifiability: 10 
The nop instruction is always verifiable. 11 
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 1 

3.52  not - bitwise complement 2 

Format Assembly Format Description 

66 not Bitwise complement 
 3 
Stack Transition: 4 

…, value ! …, result 5 

Description: 6 
Compute the bitwise complement of the integer value on top of the stack and leave the result on top of the 7 
stack. The return type is the same as the operand type. 8 

The acceptable operand types and their corresponding result data type is encapsulated in 9 
Table 5: Integer Operations. 10 

Exceptions: 11 
None. 12 

Verifiability: 13 
See Table 5: Integer Operations. 14 
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 1 

3.53  or - bitwise OR 2 

Format Instruction Description 

60 or Bitwise OR of two integer values, returns an integer. 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the 7 
stack. 8 

The acceptable operand types and their corresponding result data type is encapsulated in 9 
Table 5: Integer Operations. 10 

Exceptions: 11 
None. 12 

Verifiability: 13 
See Table 5: Integer Operations. 14 
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 1 

3.54  pop – remove the top element of the stack 2 

Format Assembly Format Description 

26 pop Pop a value from the stack 
 3 
Stack Transition: 4 

…, value ! … 5 

Description: 6 
The pop instruction removes the top element from the stack. 7 

Exceptions: 8 
None. 9 

Verifiability: 10 
No additional requirements. 11 
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 1 

3.55  rem - compute remainder 2 

Format Assembly Format Description 

5D rem Remainder of dividing value1 by value2 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The acceptable operand types and their corresponding result data type are encapsulated in 7 
Table 2: Binary Numeric Operations. 8 

For integer operands 9 

result = value1 rem value2 satisfies the following conditions: 10 

           result = value1 – value2×(value1 div value2), and 11 

           0 ≤ |result| < |value2|, and 12 

           sign(result) = sign(value1), 13 

where div is the division instruction, which truncates towards zero. 14 

The rem instruction computes result and pushes it on the stack. 15 

For floating-point operands 16 

rem is defined similarly, except that, if value2 is zero or value1 is infinity the result is NaN. If value2 is 17 
infinity, the result is value1 (negated for �infinity). This definition is different from the one for floating-18 
point remainder in the IEC 60559:1989 Standard. That Standard specifies that value1 div value2 is the nearest 19 
integer instead of truncating towards zero. System.Math.IEEERemainder (see Partition IV) provides the IEC 20 
60559:1989 behavior. 21 

Exceptions: 22 
Integral operations throw DivideByZeroException if value2 is zero. 23 

Integral operations may throw ArithmeticException if value1 is the smallest representable integer value and 24 
value2 is -1. 25 

Example: 26 
+10 rem +6  is 4 (+10 div +6 = 1) 27 
+10 rem -6  is 4 (+10 div -6 = -1) 28 
-10 rem +6  is -4 (-10 div +6 = -1) 29 
-10 rem -6  is -4 (-10 div -6 = 1) 30 

For the various floating-point values of 10.0 and 6.0, rem gives the same values; System.Math.IEEERemainder, 31 
however, gives the following values. 32 

System.Math.IEEERemainder(+10.0,+6.0) is  -2 (+10.0 div +6.0 =  1.666…7) 33 
System.Math.IEEERemainder(+10.0,-6.0) is  -2 (+10.0 div -6.0 = -1.666…7) 34 
System.Math.IEEERemainder(-10.0,+6.0) is   2 (-10.0 div +6.0 = -1.666…7) 35 
System.Math.IEEERemainder(-10.0,-6.0) is   2 (-10.0 div -6.0 =    1.666…7) 36 

Verifiability: 37 
See Table 2: Binary Numeric Operations. 38 
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 1 

3.56  rem.un -  compute integer remainder, unsigned 2 

Format Assembly Format Description 

5E rem.un Remainder of unsigned dividing value1 by value2 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
result = value1 rem.un value2 satisfies the following conditions: 7 

 result = value1 – value2×(value1 div.un value2), and 8 

 0 ≤ result < value2, 9 

where div.un is the unsigned division instruction. The rem.un instruction computes result and pushes it on the 10 
stack. Rem.un treats its arguments as unsigned integers, while rem treats them as signed integers. rem.un is 11 
unspecified for floating-point numbers. 12 

The acceptable operand types and their corresponding result data type are encapsulated in 13 
Table 5: Integer Operations. 14 

Exceptions: 15 
Integral operations throw DivideByZeroException if value2 is zero. 16 

Example: 17 
+5 rem.un +3  is 2   (+5 div.un +3 = 1) 18 
+5 rem.un -3  is 5   (+5 div.un -3 = 0) 19 
-5 rem.un +3  is 2   ( -5 div.un +3 = 1431655763 or 0x55555553) 20 
-5 rem.un -3  is -5 or 0xfffffffb ( -5 div.un -3 = 0) 21 

Verifiability: 22 
See Table 5: Integer Operations. 23 
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 1 

3.57  ret – return from method 2 

Format Assembly Format Description 

2A ret Return from method, possibly returning a value 
 3 
Stack Transition: 4 

 retVal on callee evaluation stack (not always present) ! 5 
…, retVal on caller evaluation stack (not always present) 6 

Description: 7 
Return from the current method. The return type, if any, of the current method determines the type of value to 8 
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The 9 
evaluation stack for the current method must be empty except for the value to be returned. 10 

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block. From 11 
within a try or catch, use the leave instruction with a destination of a ret instruction that is outside all 12 
enclosing exception blocks. Because the filter and finally blocks are logically part of exception handling, 13 
not the method in which their code is embedded, correctly generated CIL does not perform a method return 14 
from within a filter or finally. See Partition I. 15 

Exceptions: 16 
None. 17 

Verifiability: 18 
Correct CIL obeys the control constraints describe above. Verification requires that the type of retVal is 19 
compatible with the declared return type of the current method. 20 
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 1 

3.58  shl -  shift integer left  2 

Format Assembly Format Description 

62 shl Shift an integer left (shifting in zeros), return an integer 
 3 
Stack Transition: 4 

…, value, shiftAmount ! …, result 5 

Description: 6 
The shl instruction shifts value (int32, int64 or native int) left by the number of bits specified by 7 
shiftAmount. shiftAmount is of type int32, int64 or native int. The return value is unspecified if shiftAmount 8 
is greater than or equal to the width of value. See Table 6: Shift Operations for details of which operand types 9 
are allowed, and their corresponding result type. 10 

Exceptions: 11 
None. 12 

Verifiability: 13 
See Table 5: Integer Operations. 14 
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 1 

3.59  shr -  shift  integer right 2 

Format Assembly Format Description 

63 shr Shift an integer right (shift in sign), return an integer 
 3 
Stack Transition: 4 

…, value, shiftAmount ! …, result 5 

Description: 6 
The shr instruction shifts value (int32, int64 or native int) right by the number of bits specified by 7 
shiftAmount. shiftAmount is of type int32, int64 or native int. The return value is unspecified if shiftAmount 8 
is greater than or equal to the width of value. shr replicates the high order bit on each shift, preserving the sign 9 
of the original value in the result. See Table 6: Shift Operations for details of which operand types are allowed, 10 
and their corresponding result type. 11 

Exceptions: 12 
None. 13 

Verifiability: 14 
See Table 5: Integer Operations. 15 
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 1 

3.60  shr.un -  shift  integer right,  unsigned 2 

Format Assembly Format Description 

64 shr.un Shift an integer right (shift in zero), return an integer 
 3 
Stack Transition: 4 

…, value, shiftAmount ! …, result 5 

Description: 6 
The shr.un instruction shifts value (int32, int 64 or native int) right by the number of bits specified by 7 
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is 8 
greater than or equal to the width of value. shr.un inserts a zero bit on each shift. See Table 6: Shift Operations 9 
for details of which operand types are allowed, and their corresponding result type. 10 

Exceptions: 11 

None. 12 

Verifiability: 13 
See Table 5: Integer Operations. 14 



-  87  -  

 

 1 

3.61  starg.<length> -  store a value in an argument slot  2 

Format Assembly Format Description 

FE 0B <unsigned 
int16> 

starg num Store a value to the argument numbered num 

10 <unsigned 
int8> 

starg.s num Store a value to the argument numbered num, short form 

 3 
Stack Transition: 4 

…, value ! …, 5 

Description: 6 
The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I). The 7 
type of the value must match the type of the argument, as specified in the current method�s signature. The 8 
starg.s instruction provides an efficient encoding for use with the first 256 arguments. 9 

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed 10 
arguments, not those in the variable part of the signature. 11 

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from 12 
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size 13 
associated with the argument. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL requires that num is a valid argument slot. 18 

Verification also checks that the verification type of value matches the type of the argument, as specified in the 19 
current method�s signature (verification types are less detailed than CLI types). 20 
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 1 

3.62  stind.<type> -  store value indirect from stack 2 

Format Assembly Format Description 

52 stind.i1  Store value of type int8 into memory at address 

53 stind.i2  Store value of type int16 into memory at address 

54 stind.i4  Store value of type int32 into memory at address 

55 stind.i8  Store value of type int64 into memory at address 

56 stind.r4 Store value of type float32 into memory at address 

57 stind.r8  Store value of type float64 into memory at address 

DF stind.i  Store value of type native int into memory at address 

51 stind.ref Store value of type object ref (type O) into memory at address 
 3 
Stack Transition: 4 

…, addr, val ! … 5 

Description: 6 
The stind instruction stores a value val at address addr (an unmanaged pointer, type native int, or managed 7 
pointer, type &). The address specified by addr must be aligned to the natural size of val or a 8 
NullReferenceException may occur (but see the unaligned. prefix instruction). The results of all CIL 9 
instructions that return addresses (e.g. ldloca and ldarga) are safely aligned. For datatypes larger than 1 byte, 10 
the byte ordering is dependent on the target CPU. Code that depends on byte ordering may not run on all 11 
platforms. 12 

Type safe operation requires that the stind instruction be used in a manner consistent with the type of the 13 
pointer. 14 

The operation of the stind instruction may be altered by an immediately preceding volatile. or unaligned. 15 
prefix instruction. 16 

Exceptions: 17 
NullReferenceException is thrown if addr is not naturally aligned for the argument type implied by the 18 
instruction suffix 19 

Verifiability: 20 

Correct CIL ensures that addr be a pointer whose type is known and is assignment compatible with that of val. 21 
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 1 

3.63  stloc -  pop value from stack to local variable 2 

Format Assembly Format Description 

FE 0E <unsigned 
int16> 

stloc indx Pop value from stack into local variable indx. 

13 <unsigned 
int8> 

stloc.s indx Pop value from stack into local variable indx, short form. 

0A stloc.0 Pop value from stack into local variable 0. 

0B stloc.1 Pop value from stack into local variable 1. 

0C stloc.2 Pop value from stack into local variable 2. 

0D stloc.3 Pop value from stack into local variable 3. 
 3 
Stack Transition: 4 

…, value ! … 5 

Description: 6 
The stloc indx instruction pops the top value off the evalution stack and moves it into local variable number 7 
indx (see Partition I), where local variables are numbered 0 onwards. The type of value must match the type of 8 
the local variable as specified in the current method�s locals signature. The stloc.0, stloc.1, stloc.2, and 9 
stloc.3 instructions provide an efficient encoding for the first four local variables; the stloc.s instruction 10 
provides an efficient encoding for local variables 4 through 255. 11 

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the 12 
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size 13 
associated with the argument. 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL requires that indx is a valid local index. For the stloc indx instruction, indx must lie in the range 0 18 
to 65534 inclusive (specifically, 65535 is not valid) 19 

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 20 
track both a local�s index, as well as the total number of locals for a given method. If an index of 65535 had 21 
been made legal, it would require a wider integer to track the number of locals in such a method. 22 

Verification also checks that the verification type of value matches the type of the local, as specified in the 23 
current method�s locals signature. 24 
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 1 

3.64  sub -  subtract numeric values 2 

Format Assembly Format Description 

59 sub Subtract value2 from value1, returning a new value 
 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The sub instruction subtracts value2 from value1 and pushes the result on the stack. Overflow is not detected 7 
for the integral operations (see sub.ovf); for floating-point operands, sub returns +inf on positive overflow, -8 
inf on negative overflow, and zero on floating-point underflow. 9 

The acceptable operand types and their corresponding result data type is encapsulated in Table 2: Binary 10 
Numeric Operations. 11 

Exceptions: 12 
None. 13 

Verifiability: 14 
See Table2: Binary Numeric Operations. 15 
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3.65  sub.ovf.<type> -  subtract integer values,  checking for overflow 2 

Format Assembly Format Description 

DA sub.ovf Subtract native int from a native int. Signed result must fit in 
same size 

DB sub.ovf.un Subtract native unsigned int from a native unsigned int. 
Unsigned result must fit in same size 

 3 
Stack Transition: 4 

…, value1, value2 ! …, result 5 

Description: 6 
The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack. The type of the values 7 
and the return type is specified by the instruction. An exception is thrown if the result does not fit in the result 8 
type. 9 

The acceptable operand types and their corresponding result data type is encapsulated in 10 
Table 7: Overflow Arithmetic Operations. 11 

Exceptions: 12 
OverflowException is thrown if the result can not be represented in the result type. 13 

Verifiability: 14 
See Table 7: Overflow Arithmetic Operations. 15 
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 1 

3.66  switch – table switch on value 2 

Format Assembly Format Description 

45 <unsigned int32> <int32>� <int32> switch ( t1, t2 � tn ) jump to one of n values 
 3 
Stack Transition: 4 

…, value ! …, 5 

Description: 6 
The switch instruction implements a jump table. The format of the instruction is an unsigned int32 7 
representing the number of targets N, followed by N int32 values specifying jump targets: these targets are 8 
represented as offsets (positive or negative) from the beginning of the instruction following this switch 9 
instruction. 10 

The switch instruction pops value off the stack and compares it, as an unsigned integer, to N. If value is less 11 
than N, execution is transferred to the value�th target, where targets are numbered from 0 (i.e., a value of 0 12 
takes the first target, a value of 1 takes the second target, etc). If value is not less than N, execution continues at 13 
the next instruction (fall through). 14 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 15 
prefixes. 16 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 17 
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for 18 
details). 19 

Exceptions: 20 
None. 21 

Verifiability: 22 
Correct CIL obeys the control transfer constraints listed above. In addition, verification requires the type-23 
consistency of the stack, locals and arguments for every possible way of reaching all destination instructions. 24 
See Section 1.5 for more details. 25 
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 1 

3.67  xor - bitwise XOR 2 

Format Assembly Format Description 

61 xor Bitwise XOR of integer values, returns an integer 
 3 
Stack Transition: 4 

..., value1, value2 ! ..., result 5 

Description: 6 
The xor instruction computes the bitwise XOR of value1 and value2 and leaves the result on the stack. 7 

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer 8 
Operations. 9 

Exceptions: 10 
None. 11 

Verifiability: 12 
See Table 5: Integer Operations. 13 
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4  Object Model Instructions 1 

The instructions described in the base instruction set are independent of the object model being executed. Those 2 
instructions correspond closely to what would be found on a real CPU. The object model instructions are less 3 
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to 4 
the underlying operating system. 5 

Rationale: The object model instructions provide a common, efficient implementation of a set of services used 6 
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions 7 
defined by the common type system. This include (among other things):  8 

Field layout within an object 9 

Layout for late bound method calls (vtables) 10 

Memory allocation and reclamation 11 

Exception handling 12 

Boxing and unboxing to convert between reference-based Objects and Value Types 13 

For more details, see Partition I. 14 
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 1 

4.1  box – convert value type to object reference 2 

Format Assembly Format Description 

8C <T> box valTypeTok  Convert valueType to a true object reference 
 3 
Stack Transition: 4 

…, valueType ! …, obj 5 

Description: 6 
A value type has two separate representations (see Partition I) within the CLI: 7 

•  A �raw� form used when a value type is embedded within another object or on the stack. 8 

•  A �boxed� form, where the data in the value type is wrapped (boxed) into an object so it can exist 9 
as an independent entity. 10 

The box instruction converts the �raw� valueType (an unboxed value type) into an instance of type Object (of 11 
type O). This is accomplished by creating a new object and copying the data from valueType into the newly 12 
allocated object. ValTypeTok is a metadata token (a typeref or typedef) indicating the type of valueType (See 13 
Partition II) 14 

Exceptions: 15 
OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 16 

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 17 
native code rather than at runtime. 18 

Verifiability: 19 
Correct CIL ensures that valueType is of the correct value type, and that valTypeTok is a typeref or typedef 20 
metadata token for that value type. 21 
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 1 

4.2  callvirt  – call  a method associated, at runtime, with an object 2 

Format Assembly Format Description 

6F <T> callvirt method  Call a method associated with obj 
 3 
Stack Transition: 4 

…, obj, arg1, … argN ! …, returnVal (not always returned) 5 

Description: 6 
The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the 7 
runtime type of obj rather than the compile-time class visible in the method metadata token. Callvirt can be 8 
used to call both virtual and instance methods. See Partition I for a detailed description of the CIL calling 9 
sequence. The callvirt instruction may be immediately preceded by a tail. prefix to specify that the current 10 
stack frame should be released before transferring control. If the call would transfer control to a method of 11 
higher trust than the original method the stack frame will not be released. 12 

[A callee of �higher trust� is defined as one whose permission grant-set is a strict superset of the grant-set of 13 
the caller] 14 

method is a metadata token (a methoddef or methodref; see Partition II) that provides the name, class and 15 
signature of the method to call. In more detail, callvirt can be thought of as follows. Associated with obj is 16 
the class of which it is an instance. If obj�s class defines a non-static method that matches the indicated method 17 
name and signature, this method is called. Otherwise all classes in the superclass chain of obj�s class are 18 
checked in order. It is an error if no method is found. 19 

Callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method 20 
has a return value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is 21 
accessed as argument 0, arg1 as argument 1 etc. 22 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 23 
on the stack, then the second argument, etc. The this pointer (always required for callvirt) must be pushed 24 
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the 25 
parameter list for the this pointer, but uses a bit (called HASTHIS) to indiciate whether the method requires 26 
passing the this pointer (see Partition II) 27 

Note that a virtual method may also be called using the call instruction. 28 

Exceptions: 29 
MissingMethodException is thrown if a non-static method with the indicated name and signature could not be 30 
found in obj�s class or any of its superclasses. This is typically detected when CIL is converted to native code, 31 
rather than at runtime. 32 

NullReferenceException is thrown if obj is null. 33 

SecurityException is thrown if system security does not grant the caller access to the called method. The 34 
security check may occur when the CIL is converted to native code rather than at runtime. 35 

Verifiability: 36 
Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of 37 
the parameters of the method being called. 38 

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of obj is 39 
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent 40 
with the types expected by the method call, and (d) the method is accessible from the callsite. A callvirt 41 
annotated by tail. has additional considerations � see Section 1.5. 42 
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 1 

4.3  castclass – cast an object to a class 2 

Format Assembly Format Description 

74 <T> castclass class  Cast obj to class 
 3 
Stack Transition: 4 

…, obj ! …, obj2 5 

Description: 6 
The castclass instruction attempts to cast obj (an O) to the class. Class is a metadata token (a typeref or 7 
typedef), indicating the desired class. If the class of the object on the top of the stack does not implement class 8 
(if class is an interface), and is not a subclass of class (if class is a regular class), then an 9 
InvalidCastException is thrown. 10 

Note that: 11 

1. Arrays inherit from System.Array 12 

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[] 13 

3. For the purposes of 2., enums are treated as their undertlying type: thus E1[] can cast to E2[] if E1 14 
and E2 share an underlying type 15 

If obj is null, castclass succeeds and returns null. This behavior differs from isInst. 16 

Exceptions: 17 
InvalidCastException is thrown if obj cannot be cast to class. 18 

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 19 
native code rather than at runtime. 20 

Verifiability: 21 

Correct CIL ensures that class is a valid typeRef or typeDef token, and that obj is always either null or an 22 
object reference. 23 
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 1 

4.4  cpobj -  copy a value type 2 

Format Assembly Format Description 

70 <T> cpobj classTok Copy a value type from srcValObj to destValObj 
 3 
Stack Transition: 4 

…, destValObj, srcValObj ! …, 5 

Description: 6 
The cpobj instruction copies the value type located at the address specified by srcValObj (an unmanaged 7 
pointer, native int, or a managed pointer, &) to the address specified by destValObj (also a pointer). Behavior 8 
is unspecified if srcValObj and dstValObj are not pointers to instances of the class represented by classTok (a 9 
typeref or typedef), or if classTok does not represent a value type. 10 

Exceptions: 11 
NullReferenceException may be thrown if an invalid address is detected. 12 

Verifiability: 13 
Correct CIL ensures that classTok is a valid typeRef or typeDef token for a value type, as well as that 14 
srcValObj and destValObj are both pointers to locations of that type. 15 

Verification requires, in addition, that srcValObj and destValObj are both managed pointers (not unmanaged 16 
pointers). 17 
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 1 

4.5  initobj -  init ial ize a value type 2 

Format Assembly Format Description 

FE 15 <T> initobj classTok Initialize a value type 
 3 
Stack Transition: 4 

…,addrOfValObj ! …, 5 

Description: 6 
The initobj instruction initializes all the fields of the object represented by the address addrOfValObj (of type 7 
native int, or &) to null or a 0 of the appropriate built-in type. After this method is called, the instance is 8 
ready for the constructor method to be called. Behavior is unspecified if either addrOfValObj is not a pointer to 9 
an instance of the class represented by classTok (a typeref or typedef; see Partition II), or classTok does not 10 
represent a value type. 11 

Notice that, unlike newobj, the constructor method is not called by initobj. Initobj is intended for initializing 12 
value types, while newobj is used to allocate and initialize objects. 13 

Exceptions: 14 
None. 15 

Verifiability: 16 
Correct CIL ensures that classTok is a valid typeref or typedef token specifying a value type, and that valObj 17 
is a managed pointer to an instance of that value type. 18 
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 1 

4.6  is inst – test  if  an object is an instance of a class or interface 2 

Format Assembly Format Description 

75 <T> isinst class  test if obj is an instance of class, returning null or an instance of that 
class or interface 

 3 
Stack Transition: 4 

…, obj ! …, result 5 

Description: 6 
The isinst instruction tests whether obj (type O) is an instance of class. Class is a metadata token (a typeref 7 
or typedef see Partition II) indicating the desired class. If the class of the object on the top of the stack 8 
implements class (if class is an interface) or is a subclass of class (if class is a regular class), then it is cast to 9 
the type class and the result is pushed on the stack, exactly as though castclass had been called. Otherwise 10 
null is pushed on the stack. If obj is null, isinst returns null. 11 

Note that: 12 

1. Arrays inherit from System.Array 13 

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[] 14 

3. For the purposes of 2., enums are treated as their undertlying type: thus E1[] can cast to E2[] if E1 15 
and E2 share an underlying type 16 

Exceptions: 17 
TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 18 
native code rather than at runtime. 19 

Verifiability: 20 
Correct CIL ensures that class is a valid typeref or typedef token indicating a class, and that obj is always 21 
either null or an object reference 22 
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 1 

4.7  ldelem.<type> – load an element of an array 2 

Format Assembly Format Description 

90 ldelem.i1 Load the element with type int8 at index onto the top of the stack as 
an int32 

92 ldelem.i2 Load the element with type int16 at index onto the top of the stack 
as an int32 

94 ldelem.i4 Load the element with type int32 at index onto the top of the stack 
as an int32 

96 ldelem.i8 Load the element with type int64 at index onto the top of the stack 
as an int64 

91  ldelem.u1 Load the element with type unsigned int8 at index onto the top of 
the stack as an int32 

93 ldelem.u2 Load the element with type unsigned int16 at index onto the top of 
the stack as an int32 

95 ldelem.u4 Load the element with type unsigned int32 at index onto the top of 
the stack as an int32 

96 ldelem.u8 Load the element with type unsigned int64 at index onto the top of 
the stack as an int64 (alias for ldelem.i8) 

98 ldelem.r4 Load the element with type float32 at index onto the top of the 
stack as an F 

99 ldelem.r8 Load the element with type float64 at index onto the top of the 
stack as an F 

97 ldelem.i Load the element with type native int at index onto the top of the 
stack as an native int 

9A ldelem.ref Load the element of type object, at index onto the top of the stack as 
an O 

 3 
Stack Transition: 4 

…, array, index ! …, value 5 

Description: 6 
The ldelem instruction loads the value of the element with index index (of type int32 or native int) in the 7 
zero-based one-dimensional array array and places it on the top of the stack. Arrays are objects and hence 8 
represented by a value of type O. The return value is indicated by the instruction. 9 

For one-dimensional arrays that aren�t zero-based and for multidimensional arrays, the array class provides a 10 
Get method. 11 

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded onto 12 
the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack. 13 

Exceptions: 14 
NullReferenceException is thrown if array is null. 15 

IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 16 

ArrayTypeMismatchException is thrown if array doesn�t hold elements of the required type. 17 

Verifiability: 18 
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Correct CIL code requires that array is either null or a zero-based, one-dimensional array whose declared 1 
element type matches exactly the type for this particular instruction suffix (e.g. ldelem.r4 can only be applied 2 
to a zero-based, one dimensional array of float32s) 3 
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 1 

4.8  ldelema – load address of an element of an array 2 

Format Assembly Format Description 

8F <T> ldelema class Load the address of element at index onto the top of the stack 
 3 
Stack Transition: 4 

…, array, index ! …, address 5 

Description: 6 
The ldelema instruction loads the address of the element with index index (of type int32 or native int) in the 7 
zero-based one-dimensional array array (of element type class) and places it on the top of the stack. Arrays are 8 
objects and hence represented by a value of type O. The return address is a managed pointer (type &). 9 

For one-dimensional arrays that aren�t zero-based and for multidimensional arrays, the array class provides a 10 
Address method. 11 

Exceptions: 12 
NullReferenceException is thrown if array is null. 13 

IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 14 

ArrayTypeMismatchException is thrown if array doesn�t hold elements of the required type. 15 

Verifiability: 16 
Correct CIL ensures that class is a typeref or typedef token to a class, and that array is indeed always either 17 
null or a zero-based, one-dimensional array whose declared element type matches class exactly. 18 



-  104 -  

 

 1 

4.9  ldfld – load field of an object 2 

Format Assembly Format Description 

7B <T> ldfld field  Push the value of field of object, or value type, obj, onto the stack 
 3 
Stack Transition: 4 

…, obj ! …, value 5 

Description: 6 
The ldfld instruction pushes onto the stack the value of a field of obj. obj must be an object (type O), a 7 
managed pointer (type &), an unmanaged pointer (type native int), or an instance of a value type. The use of 8 
an unmanaged pointer is not permitted in verifiable code. field is a metadata token (a fieldref or fielddef 9 
see Partition II) that must refer to a field member. The return type is that associated with field. ldfld pops the 10 
object reference off the stack and pushes the value for the field in its place. The field may be either an instance 11 
field (in which case obj must not be null) or a static field. 12 

The ldfld instruction may be preceded by either or both of the unaligned. and volatile. prefixes. 13 

Exceptions: 14 
NullReferenceException is thrown if obj is null and the field is not static. 15 

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is 16 
converted to native code, not at runtime. 17 

Verifiability: 18 
Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type 19 
compatible with that required for the lookup being performed. For verifiable code, obj may not be an 20 
unmanaged pointer. 21 
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 1 

4.10  ldflda – load field address 2 

Format Assembly Format Description 

7C <T> ldflda field  Push the address of field of object obj on the stack 
 3 
Stack Transition: 4 

…, obj ! …, address 5 

Description: 6 
The ldflda instruction pushes the address of a field of obj. obj is either an object, type O, a managed pointer, 7 
type &, or an unmanaged pointer, type native int. The use of an unmanaged pointer is not allowed in 8 
verifiable code. The value returned by ldflda is a managed pointer (type &) unless obj is an unmanaged 9 
pointer, in which case it is an unmanaged pointer (type native int). 10 

field is a metadata token (a fieldref or fielddef; see Partition II) that must refer to a field member. The field 11 
may be either an instance field (in which case obj must not be null) or a static field. 12 

Exceptions: 13 
InvalidOperationException is thrown if the obj is not within the application domain from which it is being 14 
accessed. The address of a field that is not inside the accessing application domain cannot be loaded. 15 

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is 16 
converted to native code, not at runtime. 17 

NullReferenceException is thrown if obj is null and the field isn�t static. 18 

Verifiability: 19 
Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with 20 
that required for the lookup being performed. 21 

Note: Using ldflda to compute the address of a static, init-only field and then using the resulting pointer to 22 
modify that value outside the body of the class initializer may lead to unpredictable behavior. It cannot, 23 
however, compromise memory integrity or type safety so it is not tested by verification. 24 
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 1 

4.11  ldlen – load the length of an array 2 

Format Assembly Format Description 

8E ldlen Push the length (of type native unsigned int) of array on the 
stack 

 3 
Stack Transition: 4 

…, array ! …, length 5 

Description: 6 
The ldlen instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the 7 
stack. 8 

Arrays are objects and hence represented by a value of type O. The return value is a native unsigned  int. 9 

Exceptions: 10 
NullReferenceException is thrown if array is null. 11 

Verifiability: 12 
Correct CIL ensures that array is indeed always either null or a zero-based, one dimensional array. 13 
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 1 

4.12  ldobj -  copy value type to the stack 2 

Format Assembly Format Description 

71 <T> ldobj classTok Copy instance of value type classTok to the stack. 
 3 
Stack Transition: 4 

…, addrOfValObj ! …, valObj 5 

Description: 6 
The ldobj instruction copies the value pointed to by addrOfValObj (of type managed pointer, &, or unmanaged 7 
pointer, native unsigned  int) to the top of the stack. The number of bytes copied depends on the size of the 8 
class represented by classTok. ClassTok is a metadata token (a typeref or typedef; see Partition II) 9 
representing a value type. 10 

Rationale: The ldobj instruction is used to pass a value type as a parameter. See Partition I. 11 

It is unspecified what happens if addrOfValObj is not an instance of the class represented by ClassTok or if 12 
ClassTok does not represent a value type. 13 

The operation of the ldobj instruction may be altered by an immediately preceding volatile. or unaligned. 14 
prefix instruction. 15 

Exceptions: 16 
TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 17 
native code rather than at runtime. 18 

Verifiability: 19 
Correct CIL ensures that classTok is a metadata token representing a value type and that addrOfValObj is a 20 
pointer to a location containing a value of the type specified by classTok. Verifiable code additionally requires 21 
that addrOfValObj is a managed pointer of a matching type. 22 
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 1 

4.13  ldsfld – load static f ield of a class 2 

Format Assembly Format Description 

7E <T> ldsfld field  Push the value of field on the stack 
 3 
Stack Transition: 4 

…, ! …, value 5 

Description: 6 
The ldsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack. 7 
field is a metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. The 8 
return type is that associated with field. 9 

The ldsfld instruction may have a volatile. prefix. 10 

Exceptions: 11 
None. 12 

Verifiability: 13 
Correct CIL ensures that field is a valid metadata token referring to a static field member. 14 
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4.14  ldsflda – load static f ield address 2 

Format Assembly Format Description 

7F <T> ldsflda field  Push the address of the static field, field, on the stack 
 3 
Stack Transition: 4 

…, ! …, address 5 

Description: 6 
The ldsflda instruction pushes the address (a managed pointer, type &, if field refers to a type whose memory 7 
is managed; otherwise an unmanaged pointer, type native int) of a static field on the stack. field is a metadata 8 
token (a fieldref or fielddef; see Partition II) referring to a static field member. (Note that field may be a 9 
static global with assigned RVA, in which case its memory is unmanaged; where RVA stands for Relative 10 
Virtual Address, the offset of the field from the base address at which its containing PE file is loaded into 11 
memory) 12 

Exceptions: 13 
MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is 14 
converted to native code, not at runtime. 15 

Verifiability: 16 
Correct CIL ensures that field is a valid metadata token referring to a static field member if field refers to a type 17 
whose memory is managed. 18 

Note: Using ldsflda to compute the address of a static, init-only field and then using the resulting pointer to 19 
modify that value outside the body of the class initializer may lead to unpredictable behavior. It cannot, 20 
however, compromise memory integrity or type safety so it is not tested by verification. 21 
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 1 

4.15  ldstr – load a l iteral string 2 

Format Assembly Format Description 

72 <T> ldstr string push a string object for the literal string  
 3 
Stack Transition: 4 

…, ! …, string 5 

Description: 6 
The ldstr instruction pushes a new string object representing the literal stored in the metadata as string (that 7 
must be a string literal). 8 

The ldstr instruction allocates memory and performs any format conversion required to convert from the form 9 
used in the file to the string format required at runtime. The CLI guarantees that the result of two ldstr 10 
instructions referring to two metadata tokens that have the same sequence of characters return precisely the 11 
same string object (a process known as �string interning�). 12 

Exceptions: 13 
None. 14 

Verifiability: 15 
Correct CIL requires that string is a valid string literal metadata token. 16 
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4.16  ldtoken -  load the runtime representation of a metadata token 2 

Format Assembly Format Description 

D0 <T> ldtoken token Convert metadata token to its runtime representation 
 3 
Stack Transition: 4 

… ! …, RuntimeHandle 5 

Description: 6 
The ldtoken instruction pushes a RuntimeHandle for the specified metadata token. The token must be one of: 7 

A methoddef or methodref : pushes a RuntimeMethodHandle 8 

A typedef or typeref : pushes a RuntimeTypeHandle 9 

A fielddef or fieldref : pushes a RuntimeFieldHandle 10 

The value pushed on the stack can be used in calls to Reflection methods in the system class library 11 

Exceptions: 12 
None. 13 

Verifiability: 14 
Correct CIL requires that token describes a valid metadata token. 15 
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 1 

4.17  ldvirtftn -  load a virtual method pointer 2 

Format Assembly Format Description 

FE 07 <T> ldvirtftn mthd Push address of virtual method mthd on the stack 
 3 
Stack Transition: 4 

… object ! …, ftn 5 

Description: 6 
The ldvirtftn instruction pushes an unmanaged pointer (type native int) to the native code implementing 7 
the virtual method associated with object and described by the method reference mthd (a metadata token, either 8 
a methoddef or methodref; see Partition II) onto the stack. The value pushed can be called using the calli 9 
instruction if it references a managed method (or a stub that transitions from managed to unmanaged code). 10 

The value returned points to native code using the calling convention specified by mthd. Thus a method pointer 11 
can be passed to unmanaged native code (e.g. as a callback routine) if that routine expects the corresponding 12 
calling convention. Note that the address computed by this instruction may be to a thunk produced specially for 13 
this purpose (for example, to re-enter the CLI when a native version of the method isn�t available) 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL ensures that mthd is a valid methoddef or methodref token. Also that mthd references a non-static 18 
method that is defined for object. Verification tracks the type of the value pushed in more detail than the 19 
�native int� type, remembering that it is a method pointer. Such a method pointer can then be used in verified 20 
code with calli or to construct a delegate. 21 
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 1 

4.18  mkrefany – push a typed reference on the stack 2 

Format Assembly Format Description 

C6 <T> mkrefany class  Push a typed reference to ptr of type class onto the stack 
 3 
Stack Transition: 4 

…, ptr ! …, typedRef 5 

Description: 6 
The mkrefany instruction supports the passing of dynamically typed references. ptr must be a pointer (type &, 7 
or native int) that holds the address of a piece of data. Class is the class token (a typeref or typedef; see 8 
Partition II) describing the type of ptr. Mkrefany pushes a typed reference on the stack, that is an opaque 9 
descriptor of ptr and class. The only legal operation on a typed reference on the stack is to pass it to a method 10 
that requires a typed reference as a parameter. The callee can then use the refanytype and refanyval 11 
instructions to retrieve the type (class) and address (ptr) respectively. 12 

Exceptions: 13 
TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 14 
native code rather than at runtime. 15 

Verifiability: 16 
Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptr is a 17 
pointer to exactly that type. Verification additionally requires that ptr be a managed pointer. Verification will 18 
fail if it cannot deduce that ptr is a pointer to an instance of class. 19 
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 1 

4.19  newarr – create a zero-based, one-dimensional array 2 

Format Assembly Format Description 

8D <T> newarr etype Create a new array with elements of type etype 
 3 
Stack Transition: 4 

…, numElems ! …, array 5 

Description: 6 
The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of 7 
type elemtype, a metadata token (a typeref or typedef; see Partition II). numElems (of type native int) 8 
specifies the number of elements in the array. Valid array indexes are 0 ≤ index < numElems. The elements of 9 
an array can be any type, including value types. 10 

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate 11 
value type (System.Int32, etc.). Elements of the array are initialized to 0 of the appropriate type. 12 

One-dimensional arrays that aren�t zero-based and multidimensional arrays are created using newobj rather 13 
than newarr. More commonly, they are created using the methods of System.Array class in the Base 14 
Framework. 15 

Exceptions: 16 
OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 17 

OverflowException is thrown if numElems is < 0 18 

Verifiability: 19 
Correct CIL ensures that etype is a valid typeref or typedef token. 20 
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 1 

4.20  newobj – create a new object 2 

Format Assembly Format Description 

73 <T> newobj ctor Allocate an uninitialized object or value type and call ctor  
 3 
Stack Transition: 4 

…, arg1, … argN ! …, obj 5 

Description: 6 
The newobj instruction creates a new object or a new instance of a value type. ctor is a metadata token (a 7 
methodref or methodef that must be marked as a constructor; see Partition II) that indicates the name, class and 8 
signature of the constructor to call. If a constructor exactly matching the indicated name, class and signature 9 
cannot be found, MissingMethodException is thrown. 10 

The newobj instruction allocates a new instance of the class associated with constructor and initializes all the 11 
fields in the new instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the 12 
given arguments along with the newly created instance. After the constructor has been called, the now 13 
initialized object reference is pushed on the stack. 14 

From the constructor�s point of view, the uninitialized object is argument 0 and the other arguments passed to 15 
newobj follow in order. 16 

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other 17 
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj. 18 

Value types are not usually created using newobj. They are usually allocated either as arguments or local 19 
variables, using newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they 20 
are initialized using initobj. However, the newobj instruction can be used to create a new instance of a value 21 
type on the stack, that can then be passed as an argument, stored in a local, etc. 22 

Exceptions: 23 
OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 24 

MissingMethodException is thrown if a constructor method with the indicated name, class and signature could 25 
not be found. This is typically detected when CIL is converted to native code, rather than at runtime. 26 

Verifiability: 27 
Correct CIL ensures that constructor is a valid methodref or methoddef token, and that the arguments on the 28 
stack are compatible with those expected by the constructor. Verification considers a delegate constructor as a 29 
special case, checking that the method pointer passed in as the second argument, of type native int, does 30 
indeed refer to a method of the correct type. 31 
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 1 

4.21  refanytype – load the type out of a typed reference 2 

Format Assembly Format Description 

FE 1D refanytype  Push the type token stored in a typed reference 
 3 
Stack Transition: 4 

…, TypedRef ! …, type 5 

Description: 6 
Retrieves the type token embedded in TypedRef. See the mkrefany instruction. 7 

Exceptions: 8 
None. 9 

Verifiability: 10 
Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). The 11 
refanytype instruction is always verifiable. 12 
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4.22  refanyval – load the address out of a typed reference 2 

Format Assembly Format Description 

C2 <T> refanyval type Push the address stored in a typed reference 
 3 
Stack Transition: 4 

…, TypedRef ! …, address 5 

Description: 6 
Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef must match the 7 
type specified by type (a metadata token, either a typedef or a typeref; see Partition II). See the mkrefany 8 
instruction. 9 

Exceptions: 10 
InvalidCastException is thrown if type is not identical to the type stored in the TypedRef (ie, the class 11 
supplied to the mkrefany instruction that constructed that TypedRef) 12 

TypeLoadException is thrown if type cannot be found. 13 

Verifiability: 14 

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). The 15 
refanyval instruction is always verifiable. 16 
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 1 

4.23  rethrow – rethrow the current exception 2 

Format Assembly Format Description 

FE 1A rethrow  Rethrow the current exception 
 3 
Stack Transition: 4 

…, ! …, 5 

Description: 6 
The rethrow instruction is only permitted within the body of a catch handler (see Partition I). It throws the 7 
same exception that was caught by this handler. 8 

Exceptions: 9 
The original exception is thrown. 10 

Verifiability: 11 
Correct CIL uses this instruction only within the body of a catch handler (not of any exception handlers 12 
embedded within that catch handler). If a rethrow occurs elsewhere, then an exception will be thrown, but 13 
precisely which exception is undefined 14 
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4.24  sizeof – load the size in bytes of a value type 2 

Format Assembly Format Description 

FE 1C <T> sizeof valueType Push the size, in bytes, of a value type as a unsigned int32 
 3 
Stack Transition: 4 

…, ! …, size (4 bytes, unsigned) 5 

Description: 6 
Returns the size, in bytes, of a value type. valueType must be a metadata token (a typeref or typedef; see 7 
Partition II) that specifies a value type. 8 

Rationale: The definition of a value type can change between the time the CIL is generated and the time that it 9 
is loaded for execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof 10 
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class 11 
library. The computation can occur entirely at runtime or at CIL-to-native-code compilation time. sizeof 12 
returns the total size that would be occupied by each element in an array of this value type � including any 13 
padding the implementation chooses to add. Specifically, array elements lie sizeof bytes apart 14 

Exceptions: 15 
None. 16 

Verifiability: 17 
Correct CIL ensures that valueType is a typeref or typedef referring to a value type. It is always verificable. 18 



-  120 -  

 

 1 

4.25  stelem.<type> – store an element of an array 2 

Format Assembly Format Description 

9C stelem.i1 Replace array element at index with the int8 value on the stack 

9D stelem.i2 Replace array element at index with the int16 value on the stack 

9E stelem.i4 Replace array element at index with the int32 value on the stack 

9F stelem.i8 Replace array element at index with the int64 value on the stack 

A0 stelem.r4 Replace array element at index with the float32 value on the stack 

A1 stelem.r8 Replace array element at index with the float64 value on the stack 

9B  stelem.i Replace array element at index with the i value on the stack 

A2 stelem.ref Replace array element at index with the ref value on the stack 
 3 
Stack Transition: 4 

…, array, index, value ! …, 5 

Description: 6 
The stelem instruction replaces the value of the element with zero-based index index (of type int32 or native 7 
int) in the one-dimensional array array with value. Arrays are objects and hence represented by a value of type 8 
O. 9 

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array 10 
element. This cast can fail, even for verified code. Thus the stelem.ref instruction may throw the 11 
ArrayTypeMismatchException. 12 

For one-dimensional arrays that aren�t zero-based and for multidimensional arrays, the array class provides a 13 
StoreElement method. 14 

Exceptions: 15 
NullReferenceException is thrown if array is null. 16 

IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 17 

ArrayTypeMismatchException is thrown if array doesn�t hold elements of the required type. 18 

Verifiability: 19 
Correct CIL requires that array be a zero-based, one-dimensional array whose declared element type matches 20 
exactly the type for this particular instruction suffix (eg stelem.r4 can only be applied to a zero-based, one 21 
dimensional array of float32�s); also that index lies within the bounds of array 22 
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 1 

4.26  stfld – store into a field of an object 2 

Format Assembly Format Description 

7D <T> stfld field  Replace the value of field of the object obj with val 
 3 
Stack Transition: 4 

…, obj, value ! …, 5 

Description: 6 
The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type native int, or &) 7 
with value. field is a metadata token (a fieldref or fielddef; see Partition II) that refers to a field member 8 
reference. stfld pops the value and the object reference off the stack and updates the object. 9 

The stfld instruction may have a prefix of either or both of unaligned. and volatile.. 10 

Exceptions: 11 
NullReferenceException is thrown if obj is null and the field isn�t static. 12 

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is 13 
converted to native code, not at runtime. 14 

Verifiability: 15 
Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types 16 
appropriate for the assignment being performed. For verifiable code, obj may not be an unmanaged pointer. 17 

Note: Using stfld to change the value of a static, init-only field outside the body of the class initializer may 18 
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not 19 
tested by verification . 20 



-  122 -  

 

 1 

4.27  stobj -  store a value type from the stack into memory 2 

Format Assembly Format Description 

81 <T> stobj classTok Store a value of type classTok from the stack into memory 
 3 
Stack Transition: 4 

…, addr, valObj ! …, 5 

Description: 6 
The stobj instruction copies the value type valObj into the address specified by addr (a pointer of type native 7 
int, or &). The number of bytes copied depends on the size of the class represented by classTok. classTok is a 8 
metadata token (a typeref or typedef; see Partition II) representing a value type. 9 

It is unspecified what happens if valObj is not an instance of the class represented by classTok or if classTok 10 
does not represent a value type. 11 

The operation of the stobj instruction may be altered by an immediately preceding volatile. or unaligned. 12 
prefix instruction. 13 

Exceptions: 14 
TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 15 
native code rather than at runtime. 16 

Verifiability: 17 
Correct CIL ensures that classTok is a metadata token representing a value type and that valObj is a pointer to 18 
a location containing an initialized value of the type specified by classTok. In addition, verifiable code requires 19 
that valObj be a managed pointer. 20 
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4.28  stsfld – store a static f ield of a class 2 

Format Assembly Format Description 

80 <T> stsfld field  Replace the value of field with val 
 3 
Stack Transition: 4 

…, val ! …, 5 

Description: 6 
The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token 7 
(a fieldref or fielddef; see Partition II) that must refer to a static field member. Stsfld pops the value off 8 
the stack and updates the static field with that value. 9 

The stsfld instruction may be prefixed by volatile.. 10 

Exceptions: 11 
MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is 12 
converted to native code, not at runtime. 13 

Verifiability: 14 
Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type 15 
appropriate for the assignment being performed. 16 

Note: Using stsfld to change the value of a static, init-only field outside the body of the class initializer may 17 
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not 18 
tested by verification. 19 
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 1 

4.29  throw – throw an exception 2 

Format Assembly Format Description 

7A throw  Throw an exception 
 3 
Stack Transition: 4 

…, object ! …, 5 

Description: 6 
The throw instruction throws the exception object (type O) on the stack. For details of the exception 7 
mechanism, see Partition I. 8 

Note: While the CLI permits any object to be thrown, the common language specification (CLS) describes a 9 
specific exception class that must be used for language interoperability. 10 

Exceptions: 11 
NullReferenceException is thrown if obj is null. 12 

Verifiability: 13 
Correct CIL ensures that class a valid typeRef token indicating a class, and that obj is always either null or an 14 
object reference, i.e. of type O. 15 
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 1 

4.30  unbox – Convert boxed value type to its  raw form 2 

Format Assembly Format Description 

79 <T> unbox valuetype  Extract the value type data from obj, its boxed representation  
 3 
Stack Transition: 4 

…, obj ! …, valueTypePtr 5 

Description: 6 
A value type has two separate representations (see Partition I) within the CLI: 7 

•  A �raw� form used when a value type is embedded within another object. 8 

•  A �boxed� form, where the data in the value type is wrapped (boxed) into an object so it can exist 9 
as an independent entity. 10 

The unbox instruction converts obj (of type O), the boxed representation of a value type, to valueTypePtr (a 11 
managed pointer, type &), its unboxed form. valuetype is a metadata token (a typeref or typedef) indicating 12 
the type of value type contained within obj. If obj is not a boxed instance of valuetype, or, if obj is a boxed 13 
enum and valuetype is not its underlying type, then this instruction will throw an InvalidCastException 14 

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to copy 15 
the value type from the object. Typically it simply computes the address of the value type that is already 16 
present inside of the boxed object. 17 

Exceptions: 18 
InvalidCastException is thrown if obj is not a boxed valuetype (or if obj is a boxed enum and valuetype is not 19 
its underlying type) 20 

NullReferenceException is thrown if obj is null. 21 

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to 22 
native code rather than at runtime. 23 

Verifiability: 24 
Correct CIL ensures that valueType is a typeref or typedef metadata token for some value type, and that obj is 25 
always an object reference, i.e. of type O, and represents a boxed instance of a valuetype value type. 26 

 27 

 28 


