
1

Copyright  2002 Department of Computer Science, Rochester Institute of Technology All Rights Reserved

Introduction

A software design is useless if it cannot be clearly, concisely, and correctly described to
the programmers writing the code. In the construction industry, architects use blueprints
to describe their design to the contractors responsible for constructing the building.
Software architects need a similar form of “software blueprints”, that is, a standard way
of clearly describing the system to be built. Here we introduce the Unified Modeling
Language (UML), a graphical modeling language used to visually express the design of a
software system. UML provides a way for a software architect to represent a design in a
standard format so that a team of programmers can correctly implement the system.

Prior to the development of UML there were many different and incompatible techniques
that software architects used to express their designs. Since there was no one universally
accepted method, it was difficult for software architects to share their designs with each
other, and more importantly with the programming teams responsible for implementing
the software. In 1994 Grady Booch, James Rumbaugh and Ivar Jacobson (this group of
Computer Scientists is often referred to as the “three amigos”) started work on UML.
One of the goals of UML was to provide a unified way of modeling any large system, not
just software, using object-oriented design techniques. In order for UML to be widely
used it was important that the language be available to everyone. Therefore, the resulting
language is a nonproprietary industrial standard and open to all.

There are several aspects of a system that need to be described in a design. For example,
the functional aspects of a system describe the static structure and the dynamic
interactions between components in the system, whereas non-functional aspects include
items such as timing requirements, reliability, or deployment strategies. In order to
provide a way to describe all of the relevant aspects of a software system, UML provides
five different views that document the various aspects of a system. A view is an
abstraction consisting of a number of diagrams that highlight a particular aspect of the
system. The five views provided by UML are summarized in Table 1 below:

2

View Description

Use-Case Describes the functionality that the system should deliver as perceived
by external actors (users). Used to document the requirements and
specifications of a system.

Logical Illustrates how the functionality of the system will be implemented in
terms of the system’s static structure and dynamic behavior.

Component Shows the organization of the code components.

Concurrency Describes the concurrency a system, addressing the problems with
communication and synchronization that are present in a concurrent
system.

Deployment Illustrates the deployment of the system into physical architecture with
computers and devices called nodes.

Table 1 UML Views

In addition to the five views of Table 1, UML defines nine different diagram types that
describe specific aspects of the system. Since a single diagram cannot possibly capture
all the information required to describe a system, each UML view will consist of several
diagrams that describe various aspects of the system. The names of the nine types of
UML diagrams, a brief explanation of each type, and the view in which the diagram is
typically used is given in Table 2.

Name Description Views

Use-case Captures a typical interaction between a user and a
computing system. Useful when defining the user’s
view of the system.

Use-case

Class Describes the classes that make up a system and the
various kinds of static relationships that exist among
them.

Logical

Object A variant of the class diagram except that an object
diagram shows a number of instances of classes,
instead of the actual classes.

Logical

State Describes all the possible states that a particular object
can get into and how the object’s state changes as a
result of messages sent to the object.

Logical,
Concurrency

Sequence Describes how a group of objects collaborate in some
behavior concentrating on the messages sent to elicit
that behavior.

Logical,
Concurrency

Collaboration Describes how a group of objects collaborate in some
behavior concentrating on the static connections

Logical,
Concurrency

3

behavior concentrating on the static connections
between the objects.

Concurrency

Activity An activity diagram shows a sequential flow of
activities performed in an operation.

Logical,
Concurrency

Component Describes the physical structure of the code in terms
of code components.

Concurrency,
Component

Deployment Shows the physical architecture of the software and
hardware components that make up a system.

Concurrency,
Deployment

Table 2 UML Diagrams

UML is a powerful tool that has many features and can be used to express very
complicated designs. At this point we are only interested in the logical view (the static
structure and dynamic behavior) of a system. Therefore we will make extensive use of
class, object, state and sequence diagrams when expressing our designs.

Unlike Java, UML does not have rigid rules regarding what must or must not be included
in a diagram and it allows a software architect to determine how much detail to include in
the final diagram. When writing up your designs keep in mind what you are trying to
illustrate and who will be using your diagrams. A programmer will require very detailed
information regarding the state and behavior of an object, whereas a system analyst may
only require a general description of the classes that make up the system. Your diagram
should provide enough information to illustrate your design, but not so much detail that a
reader gets lost. The structure of the UML should be based on the needs of the
individuals reading the document.

Class Diagrams

A class diagram in UML is used to describe the static structure of a system in terms of its
classes and the relationships among those classes. Class diagrams are the most common
way to describe the design of an object-oriented system, and you will find yourself using
them all the time. Class diagrams, like UML, are very expressive and provide ways to
describe even the subtlest aspects of a class. In order to avoid becoming lost in the
details, we will only describe the more commonly used features of class diagrams. As
you gain more experience you will almost certainly want to read more about the
advanced features of class diagrams, as they can be very useful. There are many
excellent references on UML, some of which are listed at the end of this document.

It may not be possible, or even desirable, to use a single class diagram to describe a
complete system. It is better to concentrate on key areas of the design and then document
these ideas using different class diagrams. Keeping the diagrams simple and using them
to convey key concepts of a design can be much more effective than using the “shotgun”
approach of describing everything in as compact a space as possible.

4

A class, in a class diagram, is drawn as a rectangle that can be divided into three
compartments, as shown in Figure 1. The name of the class appears in bold text centered
in the compartment at the top of the rectangle. The compartments that describe the state
and behavior of the class are optional, as shown in Figure 2a. Type information for the
methods that make up the behavior of the class is optional, however, the names of
routines that take parameters must be followed by an open and closed parentheses (even
if you choose not to put anything inside of them). Parameter and return types for
behaviors may be specified using the colon notation shown in Figures 2b and 2c.

When drawing a class diagram you want to include only as much information as a reader
needs to understand your design. You do not want to overwhelm a reader with trivial

Clock

seconds : int
minutes : int
hours : int

start()
adjustTime()
reset()

State

Behavior

Figure 1 - A Clock Class Diagram

Name

Clock Clock
secs : int
mins : int
hours : int

setTime()
adjustTime()
reset()

Clock
secs : int
mins : int
hours : int

setTime() : void
adjustTime() : void
reset() : void

Figure 2 - UML Model of a Clock Class

 (a) (b) (c)

5

detail when it is not required. For example, most class diagrams do not contain obvious
behaviors, such as accessors or mutators, so that the non-obvious behaviors in the class
are easier to recognize. Similarly we may choose to omit such relatively unimportant
details as void return values, as shown in Figure 2b and 2c. Classes whose behaviors
are well known, such as classes provided in a system library, will either be drawn as a
single rectangle with no compartments as in Figure 2a, or omitted from the diagram
altogether.

Describing the classes that are present in a software system does not provide enough
information for a programmer to understand how these classes work together in a
program. For example, if you were asked to describe a family it would not be enough to
say, “A family consists of parents and children.” Additional information must be
provided to describe the nature of the relationship between parents and children. To
completely specify the static structure of a system, the classes and the nature of the
relationships between the classes must be defined.

A relationship exists between two classes if one class “knows” about the other. In most
object-oriented programming languages, a relationship exists between two classes if an
instance of one class invokes a method or accesses the state of an instance of the other
class. Knowing that a relationship exists between two classes does not provide any
information about the nature of the relationship. For example, the relationship that exists
between the parents in a family is considerably different than the relationship that exists
between the parents and the children. UML defines several different types of
relationships that can be used to describe the way in which two or more classes are
related in a class diagram. Here we use three different types of relationships:
associations, dependencies, and generalizations.

An association is a relationship that ties two or more classes together, and represents a
structural relationship between instances of a class. An association indicates that objects
of one class are connected to objects of another. This connection is permanent and makes
up part of the state of one of the associated classes. From a programming perspective
two classes are associated if the state of one class contains a reference to an instance of
the other class.

In a home heating system, for example, relationships exist between the thermostat, heater,
and users of the system. The relationship that exists between the thermostat and heater
makes up the structure of the system. At anytime while the heating system is in
existence, the thermostat will know about the heater. This type of relationship, that
represents a permanent structural relationship between two classes, would be classified as
an association. The relationship between the thermostat and heater is clearly different
than the relationship that exists between a user and the thermostat. A user is an important
part of the system and “uses” the thermostat to adjust the temperature in a room however,
a user does not make up part of the structure of the system nor is the system always
associated with a user. The heating system in a room continues to function whether or
not we are in the room.

6

For another example of association, consider the relationship that exists between
instances of the Engine and Car classes in an automotive simulation program. The
relationship that exists between instances of the Engine and Car classes form part of
the structure of a Car. As long a Car exists, the Car will know about, or be in a
relationship with the Engine. This is not true about the relationship between the Car
and Driver classes. At night when we are sleeping and our van is in the garage, our
van can still function as a car. On the other hand should someone break into our garage
and remove the engine from our van, it will no longer be capable of functioning as a car.
Therefore, although relationships exist between these classes, there is an association
between the Engine and Car classes, but not between the Driver and Car classes.

In UML a solid line is drawn between two classes to represent an association. The UML
class diagram in Figure 3 specifies that the relationship between the Car and Engine
classes in the automotive simulation program is an association.

The association between the Car and Engine of Figure 3 goes in both directions - the
Car knows about the Engine and the Engine knows about the Car. Associations,
however, are not always bi-directional. Consider the relationship between the Engine
and GasPedal classes. This relationship can be described as an association because it
is permanent and is part of the structure of a Car. Unlike the association between the
Car and Engine classes, the association between the GasPedal and the Engine does
not go in both directions. The GasPedal knows about the Engine since it invokes the
accelerate() method of the Engine, however, the Engine does not know about
the GasPedal since it never invokes a method on that class.

Navigability information can be included in a UML class diagram to clarify the nature
of the relationship between two classes. As shown in Figure 4, an arrow is added to the

Car

running : boolean
myEngine : Engine

start()
lock()
accelerate()

Engine

curRPM : int
running : boolean

accelerate()
decelerate()
stop()

Figure 3 - UML Association

7

solid line that represents an association to indicate the direction of a relationship. In the
diagram of Figure 4 the arrow indicates that the GasPedal knows about the Engine,
but the Engine does not know about the GasPedal.

In addition to navigability, multiplicity can be used to describe the nature of a
relationship between classes. Consider the relationship between the “Automated Teller
Machine” (ATM) and Bank classes in an electronic banking system. This relationship is
an association since the relationship is structural and permanent (i.e., the ATM always
needs to know about the Bank). Furthermore, the association is one way since the ATM
knows about (i.e., invokes methods on) the Bank, but the Bank does invoke methods on
the ATM. However, there are likely to be several instances of the ATM class, whereas
there will only be one instance of the Bank class. This last bit of information can be
included in a UML class diagram by adding multiplicity information to the association.

Multiplicity information has been added to the UML diagram in Figure 5. The ‘*’
indicates that there may be zero, one, or more instances of the ATM class. The ‘1’ next to
the Bank class indicates there is exactly one bank in the system.

Let’s use association, navigability, and multiplicity to model an inventory system. Our
design consists of two classes: Inventory and Item. The Inventory class is
responsible for storing items and providing methods to add, delete, locate, and modify
items in the collection. The Item class captures the state associated with the items

Gas Pedal

position : int
myEngine : Engine

stepOn()
easeOff()
release()

Engine

curRPM : int
running : boolean

accelerate()
decelerate()
stop()

Figure 4 - Adding Navigability Information to an Association

ATM Bank * 1

Figure 5 - MultiplicityInformation added to an Association

8

owned by each department. The UML class diagram, shown in figure 6, models this
design.

The class diagram in Figure 6 includes a description of the two classes, Inventory and
Item, which make up the inventory system. Since the behaviors that are associated with
the Item class consist exclusively of accessors and mutators, the type of methods that
you would expect to find in a class such as this, they have been omitted from the
diagram. Furthermore the type of data structure used to implement the Inventory
class will not affect the design of the system so it has been omitted to make the diagram
easier to understand.

The relationship between the Inventory and Item classes is drawn as an association
because it describes the structure of the system (i.e., the Inventory consists of
Items). In this case the Inventory will not invoke methods of the Item class, but
clearly the Inventory must know about the items. The navigation information
specifies that the Inventory knows about the Items, but that the Items do not know
about the Inventory. Finally, the multiplicity information specifies that a single
Inventory will hold zero, one, or more items and that the system consists of exactly
one inventory object.

The second type of relationship that we will discuss is a dependency. A dependency is a
using relationship that specifies that a change in one class may affect another class that
uses it. A dependency is inherently a one-way relationship where one class is dependent
on the other. Returning to the automotive simulation program, clearly a relationship
exists between the Car and Driver classes, but this relationship should not be

Inventory

add() : void
delete() : void
modify() : void
locate() : Item

Item

name : String
serialNum : String
cost : float
location : String
department : String

1 *

Figure 6 - Inventory System

9

classified as an association because it does not constitute part of the structure of the
system. It would be more descriptive to indicate that the Driver uses the Car since
should the Car class change (perhaps the car no longer has an automatic transmission)
the Driver may need to change in order to use the Car.

The difference between an association and a dependency can be made a little clearer by
looking at the way these relationships are implemented in a program. Associations are
usually implemented as part of the state of one of the classes. For example, in the code
that implements the state of the GasPedal class, you would expect to find a variable
that refers to the Engine object that the GasPedal controls. As long as the Car is in
existence, a GasPedal object will always be associated with an Engine. The state
variable provides a mechanism whereby the GasPedal can access the Engine.

A dependency typically takes the form of a local variable, parameter, or return value in
the methods that implement the behavior of the object. These types of variables are often
referred to as automatic since they are created and destroyed as needed. If the variable
is in scope, in other words exists, a class has a way to access a class it depends on. So at
some point in the lifetime of the object it may know about an instance of a class with
which it is related and at other times it will not. This reflects the transient, or non-
permanent, nature of a dependency. In the automotive simulation program you would
expect that the Driver has a method named driveCar() that takes as a parameter a
reference to the Car, which is to be driven. The Car is clearly not part of the state of the
Driver. Furthermore a Driver only knows about a specific Car when they are
physically driving it.

In a UML class diagram a dependency is drawn as a dashed line as shown in Figure 7.
The arrow on the line points to the independent element. In Figure 7 the arrow captures
the fact that should the Car change, the Driver may need to change, but if the Driver
changes, the Car will not be affected.

10

Generalization, or inheritance, is the third type of relationship that will be used in this
text. In an inheritance relationship a subclass is a specialized form of the superclass. If
you look at the relationship from the superclass’ perspective, you could say that the
superclass is a generalization of its subclasses. This generalization relationship is
denoted by a triangle connecting a subclass to its parent class. The triangle is connected
to and points at the parent class as shown in Figure 8.

Both associations and generalizations (inheritance) can be illustrated in a single diagram
as shown in Figure 9. This diagram describes the relationships between a processor, disk
controller, and disk drive. Here the CPU is associated with the class Controller that
describes all controllers. SCSIController, a sub-class of Controller, is the class
that is associated with DiskDrive. In a class diagram, associations should only be

Computer

Laptop Desktop PDA

Figure 8 - Generalization (Inheritance)

Car

running : boolean
myEngine : Engine

start()
lock()
accelerate()

Engine

curRPM : int
running : boolean

accelerate()
decelerate()
stop()

Driver

Figure 7 - UML Association and Dependency

11

shown at the highest possible level. For example, in Figure 9 the association is between
the CPU and Controller (the superclass) and not between the CPU and the
SCSIController (the subclass). This indicates that the CPU is designed to work with
any Controller not just a SCSIController.

Example Class Diagrams

The best way to master the basics of class diagrams is to use them to model simple
systems. This section presents four different UML class diagrams along with a
description of the system that each diagram models. In order to improve your
understanding of class diagrams, take a few minutes to review each UML class diagram
before reading the description of the diagram. Write down what you believe is the
description of the system being modeled. Then read the description of the system that
follows and reconcile your description with the one given in this document.

The first class diagram that models two classes in a system used by a veterinarian to track
patients (i.e., pets) is given in Figure 10 below:

Pet and PetOwner are two of the classes in the veterinarian animal tracking software
system. The class Pet includes all the state that the system maintains for a single
animal, and the class PetOwner contains the state associated with the owner of a Pet.

CPU

SCSI Controller

Controller
1 *

Figure 9 - Simple Computer System

Disk Drive
1..4 1

Pet PetOwner

Figure 10 - Pets and Pet Owners

1 1..*

12

In the UML class diagram of Figure 10, the state and behavior for these classes have been
omitted since the only thing of interest here is the relationship between the two classes.
The state of every Pet object contains a reference to its owner. Since this relationship
provides structural information and instances of the Pet class will always contain a
reference to a PetOwner, the relationship is modeled as an association.

The absence of the navigability information in the drawing indicates that the association
is bi-directional. In other words, a Pet knows about its owner and a PetOwner knows
about its pet. Finally, the multiplicity information shows that every Pet has exactly one
owner, and every PetOwner has one or more Pets. If the multiplicity information was
omitted, nothing could be said about the number of PetOwners associated with a Pet,
and the number of Pets associated with a PetOwner.

The next class diagram that will be discussed is shown in Figure 11 below:

The class diagram in Figure 11 describes the relationships that exists between books,
pages of a book, shelves, and the patrons of a typical library. This diagram indicates that
a Book contains one or more pages. This relationship has been modelled as an
association because the pages are actually part of the book. If we rip the pages out of the
book, that book is no longer a book. Note, however, that whether the pages are in the
book or not, they are still pages. This is the reason why the solid line that specifies the
association between the Book and Page classes has an arrow that points to the Page
class. This indicates that the Book class is associated with the Page class and not the
other way arround. Compare this to the relationship that exists between the Shelf and
Book classes. Clearly a book it not part of a shelf, and a shelf is not part of a book,
however, should the properties of a book change (becomes taller, heavier, etc.) the shelf

Book Page

Shelf

Patron

1..**

1..**

Figure 11 - A Library

13

may have to change to accommodate the book. This means that in this relationship the
Shelf class is dependent upon the Book class. The arrow specifies the independent
class (i.e., the class that does not have to change).

The UML class diagram, in Figure 12 models the types of accounts provided by a typical
bank.

In this system a bank is associated with, or has, one or more accounts. The lack of
navigability information indicates that the association goes in both directions. Clearly the
bank knows about its accounts, but the accounts also know about the bank. This means
that an account can utilize the services provided by its bank, perhaps obtaining the
current interest rate set by the Federal Reserve Bank. An account is a generalization of
three classes: Checking, Saving and Money Market. The audit() method is defined in
the Account class and is a behavior that all of its subclasses will have.

The class diagram in Figure 13 models a simple home heating system.

Bank

Account

audit() : void

Savings

audit() : void

MoneyMarket

audit() : void

Checking

audit() : void

1

*

Figure 12 - Banking System

14

UML class diagrams are an excellent tool for capturing the static aspects of a system,
namely the classes in the system and the relationships between classes. What we have
not talked about yet is how we capture the dynamic aspects of a system. Using a class
diagram it is not possible to document that in the home heating system of Figure 13 the
thermostat queries the room for the current temperature and turns on the heaters if
necessary. A class diagram can show that a thermostat knows about a room and knows
about the heaters, but it cannot say anything about what specific interactions the
thermostat has with these items. In the next section we introduce UML sequence
diagrams that are used to describe the dynamic behavior of an object-oriented system.

Sequence Diagrams

Sequence diagrams describe how groups of objects dynamically collaborate with each
other. Typically, a single sequence diagram describes a single behavior. It diagrams a
number of objects and the messages passed betweens these objects. Sequence diagrams
provide a way to describe the dynamic behavior of a system.

To illustrate some of the basic features of sequence diagrams, here we will model the
behavior of a printing system. The system consists of a number of printers, each of
which has different resources; the size and type of paper it is currently holding, or the
ability to print in color. Each printer is serviced by a print queue that holds the jobs for
this printer. Information about the printer resources, and the location of the queues that

Room

Thermostat Heater

ElectricHeater AubeTH101D

1

1

*

Figure 13 - Home Heating System

15

service the printers is maintained by the printer registry. The class diagram for this
system is given in Figure 14.

Although the class diagram in Figure 14 explains the static structure of the printing
system, it does not explain how the objects collaborate to achieve a specific behavior.
For example, a question that a programmer needs to ask when implementing this system
is “How does a job find a printer with the set of resources it requires?” The answer is
that when a print job needs to be sent to a printer, a message is sent to the registry that
contains the job to be printed and a list of the required resources. The registry then
searches each of its print queues looking for the first printer that has the resources
required to print this job. If such a printer exists, the registry sends a newJob()
message to the print queue, which in turn will send a print() message to the correct
Printer. This process is described in the sequence diagram given in Figure 15.

Printer

myResources : resources
curJob : Job

print() : void
busy() : Boolean
on() : boolean

PrintQueue

printJobs : List
myPrinter : Printer
myRegistry : Registry

newJob() : void
length() : int
getResource() : Resources

1

Registry

findQueue() : PrintQueue

1

*

Figure 14 - Printing System

16

Time flows from top to bottom in a sequence diagram and the vertical lines that run down
the diagram denote the lifetime of an object. Since a sequence diagram illustrates
objects, as opposed to classes, a slightly different labelling convention is used. In a
sequence diagram each line is labelled with the name of the object, followed by the name
of the class from which the object is instantiated. A colon is used to separate the name of
the object from the name of the class. It is not necessary to supply names for all of the
objects, however, the class name must always be given. When labelling a line using only
a class name, the class name must be preceeded by a colon.

A vertical rectangle shows that an object is active; that is, handling a request. The object
can send requests to other objects, which is indicated by a horizontal arrow. An object
can send itself requests, this is indicated with an arrow that points back to the object. The
dashed horizontal arrow indicates a return from a message, not a new message. In Figure
15 the PrintQueue sends the print(job) message to a Printer which is
followed by a return. Note that after handling the message the Printer object is no
longer active and therefore the vertical rectangle ends.

Two forms of control information can be placed in a sequence diagram: condition and
iteration. The condition marker indicates when a message is sent. The condition appears
in square brackets above the message: for example, [printer found]. The message
is only sent if the condition is true. The iteration marker indicates that a message is sent
many times to multiple receiver objects. The basis of the iteration appears within square
brackets immediately preceded by an asterisk (‘*’). In Figure 15 the control information
*[for all queues] indicates that the Registry will send a getResources()

aReg : Registry jobs : PrintQueue
findQueue(job)

*[for all queues]
getResources()

Figure 15 - Sequence Diagram

:Printer

[printer found]
newJob(job)

print(job)

17

message to each of the PrintQueue objects that it is managing. The condition marker
[printer found] specifies that the print job will be sent to a printer only if a printer
with the correct resources is located.

A sequence diagram illustrates the sequencing of events in an object-oriented system. It
does not show the algorithms that are involved, only the order in which messages are
sent. Each of the classes that appear in a sequence diagram should be described in a
separate class diagram. Note that if a sequence diagram indicates that an object sends a
message to another object, then in the corresponding class diagram there must be a
relationship, either an association or dependency, between those two classes. You should
include a separate sequence diagram for each of the major behaviors in the system being
modelled. What is a “major” behavior? It depends on your audience and what
information you are trying to convey in your drawing, but as a guideline you should
include those behaviors that are central to an understanding of the software being
developed. For example, in our home heating system, it would be essential to understand
the behaviors associated with obtaining the room temperature and activating the heaters.
However, the behaviors associated with testing the thermostat or putting it into “Vacation
Mode” would be less important. You must be very careful not to hide the central aspects
of the the design by including a great deal of unnecessary information.

Summary

In this document we introducted the Unified Modeling Language (UML), which is a
graphical modeling language that can be used to visually express the design of a software
system. UML provides a way for a software architect to represent a design in a standard
format so that a team of programmers can correctly implement the system. UML is a
powerful tool that has many features and can be used to express very complicated
designs. In this document we only described class and sequence diagrams.

A class diagram in UML is used to describe the static structure of a system in terms of its
classes and the relationships among those classes. A relationship exists between two
classes if one class “knows” about the other. In this document we described three
different types of relationships: associations, dependencies, and generalizations. A
sequence diagram describes how groups of objects dynamically collaborate with each
other. Sequence diagrams provide a way to describe the dynamic behavior of a system.

When constructing UML diagrams remember that there are no rigid rules regarding what
must or must not be included in a diagram. It is up to you to decide how much detail to
include in your diagrams. When documenting your designs using UML keep in mind
what you are trying to illustrate and who will be using your diagrams. When in doubt ask
you instructor for additional guidance.

18

The features of UML introduced in this document are summarized in Figure 16.

Class Name

Class Name

attribute:Type

behavior(args):return

ClassA ClassB

ClassC ClassD

Class Association

Dependency

ClassA

Subclass1 Subclass2

Generalization

Figure 16 - Summary of UML Modeling Elements

Navigability

Multiplicity

0..* Zero or More
1..* One or More
1..n 1 to n
n Exactly n
* Zero or More

anObject : Object anObject : Object

Activation

Time

Objects

Invocation

Return

19

References

Books

UML Distilled: A Brief Guide to the Standard Object Modeling Language, second
edition, by Fowler and Scott, Addison-Wesley, @2000.

The Unified Modeling Language User Guide, by Booch, Rumbaugh, and Jacobson,
Addison-Wesley, @1999.

The Unified Modeling Language Reference Manual, by Rumbaugh, Jacobson, and
Booch, Addison-Wesley, @1999.

The Essence of Object-Oriented Programming with Java and UML, first edition,
Wampler, Addison-Wesley, @2002.

Java Design: Objects, UML, and Process, first edition, by Knoernschild, Addison-
Wesley, @2002.

UML Explained, first edition, by Scott, Addison-Wesley, @2001.

UML in a Nutshell, by Sinan Si Alhir, O’Reilly and Associates, @1998.

Web

Unified Modeling Language Resource Center, http://www.rational.com/uml

UML Resource Page, http://www.omg.org/uml

UML Home Page, http://www.uml.org

UML Design Center, http://www.sdmagazine.com/uml

http://www.rational.com/uml
http://www.omg.org/uml
http://www.uml.org
http://www.sdmagazine.com/uml

