RIT Design Notation
Guidelines

Lepartinent of Compuler Science

Copyright & 2002 Department of Computer Science, Rochester Institute of Technology All Rights Reserved

I ntroduction

A software design is usdlessif it cannot be clearly, concisely, and correctly described to
the programmers writing the code. In the congtruction indusiry, architects use blueprints
to describe their design to the contractors responsible for constructing the building.
Software architects need asmilar form of “software blueprints’, that is, a tandard way

of clearly describing the system to be built. Here we introduce the Unified Modding
Language (UML), agraphicd modding language used to visualy express the design of a
software system. UML provides away for a software architect to represent adesignina
standard format so that ateam of programmers can correctly implement the system.

Prior to the development of UML there were many different and incompatible techniques
that software architects used to expresstheir designs. Since there was no one universaly
accepted method, it was difficult for software architects to share their designs with each
other, and more importantly with the programming teams responsible for implementing
the software. In 1994 Grady Booch, James Rumbaugh and Ivar Jacobson (this group of
Computer Scientists is often referred to as the “three amigos’) started work on UML.
One of the gods of UML wasto provide aunified way of modeling any large system, not
just software, using object-oriented design techniques. In order for UML to be widely
used it was important that the language be available to everyone. Therefore, the resulting
language is a nonproprietary indusirid standard and opento all.

There are severa aspects of a system that need to be described in adesign. For example,
the functiond aspects of a system describe the static structure and the dynamic

interactions between components in the system, whereas non-functiona aspects include
items such as timing requirements, reliability, or deployment strategies. In order to

provide away to describe al of the relevant aspects of a software system, UML provides
five different views that document the various aspects of asysem. A viewisan
abgtraction consisting of a number of diagrams that highlight a particular aspect of the
sysem. Thefive views provided by UML are summarized in Table 1 below:

View Description

Use-Case Describes the functiondity that the system should ddliver as perceived
by externd actors (users). Used to document the requirements and
Specifications of a system.

Logical [llustrates how the functionality of the system will be implemented in

terms of the system’ s Satic Structure and dynamic behavior.

Component Shows the organi zation of the code components.

Concurrency Describes the concurrency a system, addressing the problems with
communication and synchronization thet are present in a concurrent

system.

Deployment [llustrates the deployment of the system into physical architecture with

computers and devices called nodes.

Tablel1 UML Views

In addition to the five views of Table 1, UML defines nine different diagram types that
describe specific agpects of the syssem. Since a single diagram cannot possibly capture
al the information required to describe a system, each UML view will consst of severa
diagrams that describe various aspects of the system. The names of the nine types of
UML diagrams, a brief explanation of each type, and the view in which the diagram is

typicdly used isgivenin Table 2.

Name Description

Use-case Captures atypical interaction between auser and a
computing sysem. Useful when defining the user’s
view of the system.

Class Describes the classes that make up a system and the
various kinds of dtatic relationships that exist among
them.

Object A vaiant of the class diagram except that an object

diagram shows a number of ingtances of classes,
instead of the actual classes.

State Describes dl the possible states that a particular object
can get into and how the object’ s state changes as a
result of messages sent to the object.

Sequence Describes how a group of objects collaborate in some
behavior concentrating on the messages sent to dicit
that behavior.

Collaboration Describes how agroup of objects collaborate in some

baokbasar dratiaa acadbao otatia atianc

Views

Use-case

Logicd

Logicd

Logicd,
Concurrency

Logicd,
Concurrency

Logicd,

Lonal

behavior concentrating on the static connections Concurrency

between the objects.
Activity An activity diagram shows a sequentid flow of Logicd,
activities performed in an operation. Concurrency
Component Describes the physical structure of the code in terms Concurrency,
of code components. Component
Deployment Shows the physica architecture of the software and Concurrency,
hardware components that make up a system. Deployment

Table2 UML Diagrams

UML isapowerful tool that has many features and can be used to express very
complicated desgns. At this point we are only interested in the logicd view (the gatic
sructure and dynamic behavior) of asystem. Therefore we will make extensive use of
class, object, state and sequence diagrams when expressing our designs.

Unlike Java, UML does not have rigid rules regarding what must or must not be included
in adiagram and it alows a software architect to determine how much detall to includein
the find diagram. When writing up your designs keep in mind what you are trying to
illugtrate and who will be usng your diagrams. A programmer will require very detailed
information regarding the state and behavior of an object, whereas a system andyst may
only require agenera description of the classes that make up the system. Y our diagram
should provide enough information to illustrate your design, but not so much detall that a
reader getslost. The structure of the UML should be based on the needs of the
individuas reading the document.

Class Diagrams

A classdiagram in UML is used to describe the gatic sructure of asystem in terms of its
classes and the relationships among those classes. Class diagrams are the most common
way to describe the design of an object-oriented system, and you will find yoursdf using
them dl thetime. Classdiagrams, like UML, are very expressve and provide waysto
describe even the subtlest aspects of aclass. In order to avoid becoming lost in the
details, we will only describe the more commonly used features of classdiagrams. As
you gain more experience you will amost certainly want to read more about the
advanced features of class diagrams, asthey can be very useful. There are many
excdlent references on UML, some of which are listed a the end of this document.

It may not be possible, or even desirable, to use a single class diagram to describe a
complete system. It is better to concentrate on key areas of the design and then document
these ideas uang different class diagrams. Keeping the diagrams smple and using them

to convey key concepts of adesign can be much more effective than using the “ shotgun”
approach of describing everything in as compact a space as possible.

Clock

~~_

seconds ; int
minutes : int
hours : int

start()
adjustTime()
reset()

~~_

"> Behavior

Figure1- A Clock Class Diagram

A cdlass, in aclassdiagram, is drawn as a rectangle that can be divided into three
compartments, as shown in Figure 1. The name of the class appearsin bold text centered
in the compartment at the top of the rectangle. The compartments that describe the state
and behavior of the class are optiona, as shown in Figure 2a. Type information for the
methods that make up the behavior of the classis optiona, however, the names of
routines that take parameters must be followed by an open and closed parentheses (even
if you choose not to put anything inside of them). Parameter and return types for
behaviors may be specified using the colon notation shown in Figures 2b and 2c.

Clock Clock Clock
CS:int KCS:int
mins: int mins: int
hours : int hours : int
=Time) stTime() : void
adjustTime() adjusTime() : void
reset() reset() : void

@

(b)

(©

Figure 2- UML Modd of a Clock Class

When drawing a class diagram you want to include only as much information as a reader
needs to understand your design. Y ou do not want to overwhelm areader with trivia

detail when it is not required. For example, most class diagrams do not contain obvious
behaviors, such as accessors or mutators, so that the non-obvious behaviorsin the class
are easer to recognize. Similarly we may choose to omit such relaively unimportant
detailsasvoi d return vaues, as shown in Figure 2b and 2c. Classes whose behaviors
are wdl known, such as classes provided in asystem library, will either be drawn asa
sngle rectangle with no compartments asin Figure 2a, or omitted from the diagram
dtogether.

Describing the classes that are present in a software system does not provide enough
information for a programmer to understand how these classes work together in a
program. For example, if you were asked to describe afamily it would not be enough to
sy, “A family conssts of parents and children.” Additiond information must be
provided to describe the nature of the relationship between parents and children. To
completely specify the static structure of a system, the classes and the nature of the
relationships between the classes must be defined.

A relaionship exists between two classesif one class “knows’ about the other. In most
object-oriented programming languages, arelationship exiss between two classesif an
ingtance of one classinvokes amethod or accesses the state of an instance of the other
class. Knowing that arelationship exists between two classes does not provide any
information about the nature of the rdaionship. For example, the relationship that exists
between the parentsin afamily is condderably different than the relationship that exists
between the parents and the children. UML defines severd different types of
relationships that can be used to describe the way in which two or more classes are
related in aclassdiagram. Here we use three different types of relaionships
associations, dependencies, and generdizations.

An association is ardationship that ties two or more classes together, and represents a
structura relationship between instances of aclass. An association indicates that objects
of one class are connected to objects of another. This connection is permanent and makes
up part of the state of one of the associated classes. From a programming perspective
two classes are associated if the state of one class contains a reference to an instance of
the other class.

In ahome heating system, for example, relationships exist between the thermostat, hester,
and users of the sysem. The relationship that exists between the thermogtat and hester
makes up the structure of the system. At anytime while the heating sysem isin

existence, the thermostat will know about the heater. Thistype of relaionship, that
represents a permanent structurd relationship between two classes, would be classified as
an asociation. The relationship between the thermostat and hesater is clearly different
than the reationship that exists between auser and the thermodtat. A user is an important
part of the system and “uses’ the thermostat to adjust the temperature in aroom however,
auser does not make up part of the structure of the system nor isthe system adways
associated with auser. The heeting system in aroom continues to function whether or

not we are in the room.

For another example of association, consider the relationship that exists between
ingances of the Engi ne and Car dassesin an automotive Smulation program. The
relationship that exists between ingtances of the Engi ne and Car classesform part of
the sructure of aCar . AslongaCar exigs, the Car will know about, or beina
relationship withthe Engi ne. Thisisnot true about the relationship between the Car
andDr i ver dasses. At night when we are degping and our van is in the garage, our
van can il function asacar. On the other hand should someone bresk into our garage
and remove the engine from our van, it will no longer be capable of functioning asacar.
Therefore, athough relationships exist between these classes, there is an association
between the Engi ne and Car classes, but not betweentheDr i ver and Car classes.

In UML asolid lineis drawn between two classes to represent an association. The UML
class diagram in Figure 3 specifies that the relationship between the Car and Engi ne
classes in the automotive Smulation program is an association.

Car Engine
running : boolear curRPM : int
myEngine : Engine running : boolean
start() accelerate()
lock() decelerate()
accelerate() stop()

Figure 3- UML Association

The association between the Car and Engi ne of Figure 3 goesin both directions - the
Car knows about the Engi ne andthe Engi ne knows about the Car . Associations,
however, are not dways bi-directional. Congder the relationship between the Engi ne

and GasPedal classes. Thisrdationship can be described as an association because it

is permanent and is part of the structure of aCar . Unlike the association between the

Car and Engi ne classes, the association between the GasPedal andthe Engi ne does
not go in both directions. The GasPedal knows about the Engi ne snceit invokesthe
accel er at e() method of theEngi ne, however, the Engi ne does not know about
the GasPedal gnceit never invokes amethod on that class.

Navigability information can beincluded in aUML class diagram to clarify the nature
of the relationship between two classes. Asshown in Figure 4, an arrow is added to the

solid line that represents an association to indicate the direction of areationship. Inthe
diagram of Figure 4 the arrow indicates that the GasPedal knows about the Engi ne,
but the Engi ne does not know about the Gas Pedal .

Gas Pedal Engine
pogtion : int curRPM : int
myEngine : Engine | running : boolean
stepOn() accelerate()
easeOff() decelerate()
release() stop()

Figure 4 - Adding Navigability I nformation to an Association

In addition to navigability, multiplicity can be used to describe the nature of a

relationship between classes. Consider the relationship between the “ Automated Teller
Maching’ (ATM) and Bank dassesin an dectronic banking sysem. Thisrdationship is
an asociaion since the redaionship is Sructurd and permanent (i.e., the ATMaways
needs to know about the Bank). Furthermore, the association is one way sincethe ATM
knows about (i.e., invokes methods on) the Bank, but the Bank doesinvoke methods on
the ATM However, there are likely to be several instances of the AT Mclass, whereas
there will only be oneingance of the Bank cdass. Thislagt bit of information can be
included in aUML dass diagram by adding multiplicity information to the association.

Multiplicity information has been added to the UML diagramin Figure 5. The**’
indicates that there may be zero, one, or more instances of the ATMclass. The'1' next to
the Bank classindicatesthereis exactly one bank in the system.

ATM ' L, Bank

Figure 5- Multiplicityl nformation added to an Association

Let’s use association, navigability, and multiplicity to mode an inventory system. Our
desgnconsgsof twoclases. | nventory andl t em Thel nvent ory cdassis
responsible for storing items and providing methods to add, delete, locate, and modify
itemsin the callection. Thel t emclass captures the state associated with the items

owned by each department. The UML dass diagram, shown in figure 6, modelsthis
design.

I nventory ltem
1 * name: String
P! serialNum: String
add() : void cost : float
delete() : void location : String
modify() : void department : String
locate() : Item

Figure 6 - Inventory System

The class diagram in Figure 6 includes a description of the two classes, | nvent or y and
| t em which make up the inventory system. Since the behaviorsthat are associated with
the | t emclass consst exclusvely of accessors and mutators, the type of methods that
you would expect to find in a class such asthis, they have been omitted from the

diagram. Furthermore the type of data Structure used to implement thel nvent ory
class will not affect the design of the system s0 it has been omitted to make the diagram
easer to understand.

Therdationship betweenthel nvent ory and | t emclassesisdrawn as an association
because it describes the structure of the system (i.e, thel nvent or y congstsof

| t ens). Inthiscasethel nvent or y will not invoke methods of the | t emclass, but
cdearly thel nvent or y mus know about the items. The navigetion information
gpecifiesthat thel nvent or y knows about thel t ens, but that thel t enms do not know
about thel nvent or y. Fndly, the multiplicity information specifiesthat asingle

| nvent or y will hold zero, one, or more items and that the system consists of exactly
oneinventory object.

The second type of relationship that we will discussisadependency. A dependency isa
using relationship that specifies that a change in one class may affect another classthat
usesit. A dependency isinherently a one-way relaionship where one classis dependent
on the other. Returning to the automotive smulation program, clearly ardaionship

exigs betweentheCar and Dr i ver classes, but this relaionship should not be

classified as an association because it does not condtitute part of the structure of the
system. It would be more descriptive to indicate that the Dr i ver usestheCar since
should the Car class change (perhaps the car no longer has an automatic transmission)
theDr i ver may need to changein order to usethe Car .

The difference between an association and a dependency can be made alittle clearer by
looking & the way these relationships are implemented in a program. Associgtions are
usualy implemented as part of the state of one of the classes. For example, in the code
that implements the Sate of the Gas Pedal class, you would expect to find avariable
that refersto the Engi ne object that the GasPedal controls. Aslong astheCar isin
exigence, aGasPedal object will dways be associated with an Engi ne. The state
variable provides a mechanism whereby the Gas Pedal can accessthe Engi ne.

A dependency typicaly takes the form of alocd varidble, parameter, or return vauein

the methods that implement the behavior of the object. These types of variables are often
referred to as automatic since they are created and destroyed as needed. If the variable
isin scope, in other words exists, a class has away to access aclassit dependson. So at
some point in the lifetime of the object it may know about an instance of a classwith

which it isrelated and a other times it will not. Thisreflectsthe trangent, or non-
permanent, nature of a dependency. In the automotive smulation program you would
expect that the Dr i ver hasamethod named dr i veCar () that takes as aparameter a
reference to the Car , whichisto bedriven. TheCar isclearly not part of the state of the
Dri ver. FurthermoreaDr i ver only knows about a specific Car when they are

physcaly driving it.

InaUML class diagram a dependency is drawn as a dashed line as shown in Figure 7.

The arrow on the line points to the independent eement. In Figure 7 the arrow captures
the fact that should the Car change, the Dr i ver may need to change, but if theDr i ver
changes, the Car will not be affected.

Car Engine
running : boolear curRPM : int
myEngine : Engine running : boolean
start() accelerate()
lock() decelerate()
accderate() stop()

Driver

Figure 7- UML Association and Dependency

Generalization, or inheritance, is the third type of relationship that will be used in this
text. In an inheritance relationship a subclass is a specidized form of the superclass. If
you look &t the relationship from the superclass perspective, you could say that the
superclassis agenerdization of itssubclasses. This generdization relationship is
denoted by atriangle connecting a subclassto its parent class. The triangle is connected
to and points at the parent class as shown in Figure 8.

Computer

/N

L aptop Desktop PDA

Figure 8- Generalization (Inheritance)

Both associations and generdizations (inheritance) can beillugtrated in asingle diagram
asshown in Figure 9. This diagram describes the rel ationshi ps between a processor, disk
controller, and disk drive. Herethe CPU is asociated with the classCont r ol | er that
decribes dl controllers. SCSI Cont r ol | er ,asub-classof Cont r ol | er, istheclass
that isassociated with Di skDr i ve. Inaclassdiagram, associations should only be

10

shown a the highest possible level. For example, in Figure 9 the association is between
the CPU and Cont r ol | er (the superclass) and not between the CPU and the
SCSI Cont rol | er (thesubclass). Thisindicates that the CPU is designed to work with

anyControl | er notjutaSCSI Control |l er.

1 *
CPU Controller
. . 1.4 1
Disk Drive SCSI Controller
Figure 9- Simple Computer System

Example Class Diagrams

The best way to master the basics of class diagramsis to use them to model smple
systems. This section presents four different UML class diagrams dong with a
description of the system that each diagram models. In order to improve your
understanding of class diagrams, take afew minutes to review each UML classdiagram
before reading the description of the diagram. Write down what you believe isthe
description of the system being modeled. Then read the description of the system that
follows and reconcile your description with the one given in this document.

The first class diagram that models two classes in a systemn used by a veterinarian to track
patients (i.e., pets) isgiven in Figure 10 below:

Pet 1 Lx PetOwner

Figure 10 - Petsand Pet Owners

Pet and Pet Omer aretwo of the classesin the veterinarian animd tracking software
gysem. Theclass Pet includesdl the Sate that the sysem maintainsfor asingle
anima, and the class Pet Owner contains the state associated with the owner of aPet .

11

Inthe UML class diagram of Figure 10, the state and behavior for these classes have been
omitted since the only thing of interest hereis the relationship between the two classes.
The date of every Pet object contains areferenceto its owner. Since this relationship
provides structurd information and instances of the Pet classwill dways contain a
referenceto aPet Owner , the relaionship is modeled as an association.

The aosence of the navigability information in the drawing indicates that the association
isbi-directiond. In other words, aPet knows about its owner and aPet Oamner knows
about itspet. Findly, the multiplicity information shows that every Pet has exactly one
owner, and every Pet Owner hasone or more Pet s If the multiplicity information was
omitted, nothing could be said about the number of Pet Owner sassociated with aPet
and the number of Pet sassociated with aPet Oawner .

The next class diagram that will be discussed is shown in Figure 11 below:

Shelf

Book alfq Page

Patron

Figurel1l-A Library

The class diagram in Figure 11 describes the relationships that exists between books,
pages of abook, shelves, and the patrons of atypicd library. This diagram indicates that
aBook contains one or more pages. This relationship has been modelled as an
association because the pages are actualy part of the book. If werip the pages out of the
book, that book is no longer abook. Note, however, that whether the pages are in the
book or nat, they are dtill pages. Thisis the reason why the solid line that specifies the
association between the Book and Page classes has an arrow that points to the Page
class. Thisindicatesthat the Book classis associated with the Page class and not the
other way arround. Compare thisto the relationship that exists between the Shel f and
Book classes. Clearly abook it not part of a shelf, and a shdlf is not part of abook,
however, should the properties of abook change (becomestaller, heavier, etc.) the shelf

may have to change to accommodate the book. This meansthat in this relationship the
Shel f classisdependent upon the Book class. The arrow specifies the independent
class(i.e, the class that does not have to change).

The UML class diagram, in Figure 12 models the types of accounts provided by atypica
bank.

Bank

1

*

Account

audit() : void

/\

Checking Savings MoneyM ar ket

audit() : void audit() : void audit() : void

Figure 12 - Banking System

In this system a bank is associated with, or has, one or more accounts. The lack of
navigahility informetion indicates that the association goesin both directions. Clearly the
bank knows about its accounts, but the accounts also know about the bank. This means
that an account can utilize the services provided by its bank, perhaps obtaining the

current interest rate set by the Federal Reserve Bank. An account is a generalization of
three classes. Checking, Saving and Money Market. Theaudi t () method isdefined in
the Account cdassandisabehavior that dl of its subclasses will have.

The class diagram in Figure 13 modds a Smple home heating system.

13

Room

Ther mostat q Heater

/\ AN

AubeTH101D ElectricHeater

Figure 13 - Home Heating System

UML cdlass diagrams are an excellent tool for capturing the static aspects of a system,
namely the classesin the system and the relationshi ps between classes. What we have
not talked about yet is how we capture the dynamic aspects of asystem. Using aclass
diagram it is not possible to document that in the home heeting system of Figure 13 the
thermostat queries the room for the current temperature and turns on the heatersiif
necessary. A class diagram can show that a thermostat knows about a room and knows
about the heaters, but it cannot say anything about what specific interactions the
thermostat has with these items. In the next section we introduce UML sequence
diagramsthat are used to describe the dynamic behavior of an object- oriented system.

Sequence Diagrams

Sequence diagrams describe how groups of objects dynamically collaborate with each
other. Typically, a single sequence diagram describes asingle behavior. It diagramsa
number of objects and the messages passed betweens these objects. Sequence diagrams
provide away to describe the dynamic behavior of a system.

Toillugtrate some of the basic features of sequence diagrams, here we will mode the
behavior of aprinting sysem. The system congists of a number of printers, each of
which has different resources; the size and type of paper it is currently holding, or the
ability to print in color. Each printer is serviced by a print queue that holds the jobs for
this printer. Information about the printer resources, and the location of the queues that

14

sarvice the printersis maintained by the printer registry. The class diagram for this
sysgemisgiven in Fgure 14.

Registry

findQueue() : PrintQueue

1

PrintQueue Printer

printJobs: List myResources : resources
myPrinter : Printer 1 curJob : Job
myRegistry : Registry

: print() : void
newJob() 5v0|d busy() : Boolean
length() : int on() : boolean
getResource() : Resources

Figure 14 - Printing System

Although the class diagram in Figure 14 explains the Satic structure of the printing
system, it does not explain how the objects collaborate to achieve a specific behavior.
For example, aquestion that a programmer needs to ask when implementing this sysem
is“How does ajob find a printer with the set of resourcesit requires?” The answer is
that when a print job needs to be sent to a printer, a message is sent to the registry that
containsthe job to be printed and alist of the required resources. Theregistry then
searches each of its print queues looking for the first printer that has the resources
required to print thisjob. If such aprinter exists, the registry sendsanewJob()
message to the print queue, which in turnwill send apr i nt () message to the correct
Pri nt er . Thisprocessis described in the sequence diagram given in Figure 15.

15

findQueue(job)

P aReg: Registry jobs: PrintQueue :Printer

*[for al queues]
getResources() q

[printer found)] |
newJobjob) P print(job)

Figure 15 - Sequence Diagram

Time flows from top to bottom in a sequence diagram and the verticd linesthat run down
the diagram denote the lifetime of an object. Since a sequence diagram illustrates
objects, as opposed to classes, adightly different |abdling conventionisused. Ina
sequence diagram each line is|abelled with the name of the object, followed by the name
of the class from which the object isingtantiated. A colon is used to separate the name of
the object from the name of the class. It is not necessary to supply namesfor dl of the
objects, however, the class name must dways be given. When labelling aline using only
aclass name, the class name must be preceeded by a colon.

A vertica rectangle shows that an object is active; that is, handling arequest. The object
can send requests to other objects, which isindicated by a horizontal arrow. An object
can send itsdf requests, thisis indicated with an arrow that points back to the object. The
dashed horizontal arrow indicates a return from a message, not anew message. In Figure
15thePri nt Queue sendsthepri nt (j ob) messagetoaPri nt er whichis
followed by areturn. Note that after handling the messagethe Pr i nt er objectisno
longer active and therefore the vertical rectangle ends.

Two forms of control information can be placed in a sequence diagram: condition and
iteration. The condition marker indicates when amessage is sent. The condition appears

in square brackets above the message: for example, [pri nt er f ound] . The message
isonly sent if the condition istrue. The iteration marker indicates that a message is sent

many times to multiple receiver objects. The basis of the iteration appears within square
brackets immediately preceded by an asterisk (‘**). In Figure 15 the control information
*[for all queues] indicatesthat theRegi st ry will sendaget Resour ces()

16

message to each of the Pr i nt Queue objectsthat itismanaging. The condition marker
[printer found] specifiesthat the print job will be sent to a printer only if aprinter
with the correct resourcesis located.

A sequence diagram illudirates the sequencing of eventsin an object-oriented system. It
does not show the algorithms that are involved, only the order in which messages are
sent. Each of the classes that appear in a sequence diagram should be described in a
separate class diagram. Note that if a sequence diagram indicates that an object sendsa
message to another object, then in the corresponding class diagram there must be a
relationship, either an association or dependency, between those two classes. Y ou should
include a separate sequence diagram for each of the mgjor behaviorsin the system being
moddled. What isa“magor” behavior? It depends on your audience and what
information you are trying to convey in your drawing, but as a guideline you should
include those behaviors that are centra to an understanding of the software being
developed. For example, in our home heating system, it would be essentid to understand
the behaviors associated with obtaining the room temperature and activating the heaters.
However, the behaviors associated with testing the thermodtat or putting it into “Vacation
Mode” would be lessimportant. Y ou must be very careful not to hide the centra aspects
of the the design by including a great ded of unnecessary informetion.

Summary

In this document we introducted the Unified Modeling Language (UML), whichisa
graphica modeling language that can be used to visudly express the desgn of a software
system. UML provides away for a software architect to represent a design in a standard
format so that ateam of programmers can correctly implement the sysem. UML isa
powerful tool that has many features and can be used to express very complicated
designs. In this document we only described class and sequence diagrams.

A classdiagram in UML is used to describe the satic Sructure of asystem in terms of its
classes and the relationships among those classes. A relationship exists between two
classesif one class “knows’ about the other. In this document we described three
different types of relationships. associations, dependencies, and generdizations. A
sequence diagram describes how groups of objects dynamically collaborate with each
other. Sequence diagrams provide away to describe the dynamic behavior of a system.

When congructing UML diagrams remember that there are no rigid rules regarding what
must or must not be included in adiagram. It isup to you to decide how much detall to
indude in your diagrams. When documenting your designs usng UML keep in mind
what you are trying to illustrate and who will be using your diagrams. When in doubt ask
you ingructor for additiona guidance.

17

The features of UML introduced in this document are summarized in Figure 16.

Figure 16 - Summary of UML Modeling Elements

Class Assnciation
Class Name ClassA ClassB
Class Name
Dependency
atribute Type
lassC - lassD
behavior(args):return ClassC Class
Navigability Generalization
>
ClassA
Multiplicity 4
0.* Zeroor More | |
1..* Oneor More
1.n 1ton Subclassl Subclass?
n Exactlyn
* Zeroor More
Objects
anObject : Object anObject : Object
i Invocation o
i Activation
| p
. D
Time |
| >
! D
! Return
v

18

References

Books

UML Didilled: A Brief Guide to the Standard Object Modding Language, second
edition, by Fowler and Scott, Addison-Wesley, @2000.

The Unified Modding Language User Guide, by Booch, Rumbaugh, and Jacobson,
Addison-Wesley, @1999.

The Unified Modeling Language Reference Manud, by Rumbaugh, Jacobson, and
Booch, Addison-Wedey, @1999.

The Essence of Object-Oriented Programming with Javaand UML, firg edition,
Wampler, Addison-Wedley, @2002.

Java Design: Objects, UML, and Process, first edition, by Knoernschild, Addison
Wesley, @2002.

UML Explained, first edition, by Scott, Addison-Wedey, @2001.
UML inaNutshel, by Snan S Alhir, O’ Rellly and Associates, @1998.

Web
Unified Modding Language Resource Center, http://mww.rationa .com/um

UML Resource Page, http:/Aww.omg.org/uml

UML Home Page, http://www.uml.org
UML Design Center, http:/mww.sdmagazine.com/umi

19

http://www.rational.com/uml
http://www.omg.org/uml
http://www.uml.org
http://www.sdmagazine.com/uml

