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Abstract

Edge detection is an important pre-processing step in image segmentation. Conventionally, edges are detected
according to gradient property, then processed by the thresholding technique. By such an approach, "ne edge details in
dark region of the image are eliminated. It is annoying sometimes as they are as useful as those in bright region, although
this is caused by unevenly distributed lighting in many machine vision applications. In this paper, a novel mathematical
morphological edge detection algorithm, based on pseudo top-hat transformation which is derived from top-hat
transformation, is proposed to preserve these edge details as well as prominent ones. The algorithm is also presented in
detail. Comprehensive experimental results show that the proposed algorithm is e$cient for edge details extraction in
place of shading while preserving distinguish features. � 2001 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Edge detection is an essential preliminary step in im-
age segmentation. An edge is the boundary where distinct
intensity changes or discontinuities occur. Edge detection
is a process which transforms a grey-level image to an
edge image, which indicates either the presence or ab-
sence of an edge [1]. Derivative edge detectors are
straightforward methods for edge detection [2]. The
"rst-order di!erential operators such as Robert, Sobel
operators are convolved with images to enhance spatial
intensity changes, then a threshold is applied to obtain
edge points. The second-order di!erential operator such
as Laplacian operator, indicates edge points by its zero-
crossing property [2,3]. Other edge detectors such as
Prewitt operator [2] try to "t a least-squares-error quad-

ratic surface over a 3�3 image window and di!erentiate
the "tted surface. This is named template matching oper-
ator. Template matching operators are superior to the
simple derivative operators, especially as noise increases.
Mathematical morphology provides an alternative ap-

proach to image processing based on shape concept
stemmed from set theory [4]. In the mathematical mor-
phology theory, images are treated as sets, morphological
transformations derived from Minkowski addition and
subtraction are de"ned to extract features in images. As
the performance of classic edge detectors degrades with
noise, morphological edge detector has been studied [5].
Blur-minimum and �-trimmedmean morphological edge
detectors [5,6] have been proposed to detect edges with-
out bias under noise interference conditions. Studies
show that morphological edge detectors have outper-
formed previous edge detectors in robustness of detecting
edges with presence of noise.
As a ubiquitous technique in image segmentation,

thresholding is usually applied as post-processing of edge
detection to obtain edge points. Various threshold
methods have been proposed for image segmentation.
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Applied it to edge detection, a global threshold value is
normally chosen to threshold the whole image into binary
one. For Canny edge detector [7], it was suggested that
thresholding be conducted using hysteresis rather than
simply selecting a threshold value to apply everywhere.
Although these thresholding methods perform well in ex-
tracting distinguishable edges, the tiny grey-level changes
in dark regions are always shaded away. Sometimes they
are actually critical features interested by observer, parti-
cularly in machine vision applications, when lighting is not
evenly distributed on objects as ideally expected. This
demands edge detection algorithm distinguish small grey-
level changes as well as preserving prominent grey-level
changes in di!erent regions. Within these regions aug-
mented distinction of small grey-level changes are able
to be extracted as edge features by di!erent threshold
values determined by certain criteria in each region.
In this paper, a novel mathematical morphology edge

detection algorithm is proposed to extract smooth edge
features in dark regions. As an extension of basic math-
ematical morphological operators, top-hat transforma-
tion sharpens small grey-level changes in place of
shading. But the distinction is not augmented enough to
threshold small grey-level edge changes. As there are
invariant pixels under opening (closing) transformation
of image, pseudo top-hat transformation (PTHT) is de-
"ned. It subtracts original image with invariant pixels set
image, which augments small grey-level changes. The
result image is then decomposed into subimages by re-
cursive quad-tree decomposition scheme, and di!erent
threshold values are determined by certain criteria in
each subimage to obtain edge image. This paper is organ-
ized as follows. Section 2 presents de"nitions of math-
ematical morphological operations and their extensions
as morphological edge detector and top-hat transforma-
tion. Section 3 proposes pseudo top-hat transformation
based on invariant pixels under opening (closing) trans-
formation. Details of the algorithm are discussed in Sec-
tion 4. Section 5 presents comprehensive comparisons
between PTHT edge detection algorithm with existing
edge detection methods. Comparisons on computation
time and memory requirements of di!erent edge detec-
tion methods are given in Section 6. Section 7 concludes
our discussion.

2. Mathematical morphological operators

Mathematical morphology theory is developed from
geometry. It was introduced by Matheron [4] as a tech-
nique for analyzing geometric structure of metallic and
geologic samples. It was extended to image analysis by
Serra [4]. Based on set theory, mathematical morpho-
logy is established by introducing fundamental operators
applied to two sets. One set is said to be processed by
another which is known as structuring element. Let I de-

note a grey-scale two dimensional image, B denote struc-
turing element. The basic mathematical morphological
operators are dilation and erosion, derived from these,
opening and closing operations are also de"ned.
Dilation of a grey-scale image I(x, y) by a grey-scale

structuring element B(s, t) is denoted by

(I�B) (x, y)"max�I(x!s, y!t)#b(s, t)�. (1)

The domain of I�B is the dilation of the domain of I by
the domain of B.
Erosion of a grey-scale image I(x, y) by a grey-scale

structuring element B(s, t) is denoted by

(I�B) (x, y)"min�I(x#s, y#t)!b(s, t)�. (2)

The domain of I�B is the erosion of the domain of I by
the domain of B.
Opening of a grey-scale image I(x, y) by a grey-scale

structuring element B(s, t) is denoted by

I�B"(I�B)�B. (3)

Closing of a grey-scale image I(x, y) by a grey-scale
structuring element B(s, t) is denoted by

I�B"(I�B)�B. (4)

Dilation is the maximum pixels set union when struc-
turing element overrides image, while erosion is the min-
imum pixels set union when image is overlapped by
structuring element. Dilation expands image set and ero-
sion shrinks it. Opening is erosion followed by dilation
and closing is dilation followed by erosion. Opening
generally smoothes the contour of an image, breaks nar-
row gaps. As opposed to opening, closing tends to fuse
narrow breaks, eliminates small holes, and "lls gaps in
the contours.
The edge of image I, denoted by E

�
(I), is de"ned as the

di!erence set of the dilation domain of I and the domain
of I. This is also known as dilation residue edge detector:

E
�
(I)"(I�B)!I. (5)

Equivalently, the edge of image I, denoted by E
�
(I), can

also be de"ned as the di!erence set of the domain of I and
the erosion domain of I. This is also known as erosion
residue edge detector:

E
�
(I)"I!(I�B). (6)

The opening top-hat transformation of image I, de-
noted as ¹H

�
(I), is de"ned as the di!erence set of the

domain of I and the opening domain of I. It is de"ned as

¹H
�
(I)"I!(I�B). (7)

Similarly, the closing top-hat transformation of image
I, denoted as ¹H

�
(I), can also be de"ned as the di!erence

set of the closing domain of I and the domain of I. It is
de"ned as

¹H
�
(I)"(I�B)!I. (8)
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Fig. 1. Invariant pixels under opening operation by binary structuring element. (a) Grey-scale image. (b) Structuring element. (c)
Opening result of grey-scale image (a).

3. Pseudo top-hat transformation

In order to identify the feature of images, a concept of
&invariant pixels' is introduced based on the binary struc-
turing elements. Under opening and closing operations,
there are some pixels which are invariant in an image.
They can be identi"ed by the following propositions.

Proposition 1. A pixel is invariant under opening if and
only if it is the local minimum value pixel in the neighbor-
hood of the structuring element. That is, let IK denote the
region in image I, which is overlaid by the structuring
element to be eroded, and if I(u, v)"min(IK ), then
(I�B)(u, v)"I(u, v).

Proof. Let IK denote the region which is overlaid by the
structuring element to be eroded, I

�
denote the structur-

ing element, IK
�

denote the same eroded region. If
I(u, v)"min(IK ), then according to de"nition of Eq. (2),
erosion of I is the minimum value of this region, that is,
IK
�
(u, v)"min�IK !I

�
�. According to the de"nition of

closing, erosion is followed by dilation, which takes the
maximum value of interested region. In the region
IK
�
, I(u, v) is always greater than any other pixels in neigh-

borhood, which means it remains unchanged in dilation
operation. Thus, (I�B)(u, v)"I(u, v). Conversely, if
(I�B)(u, v)"I(u, v), suppose that I(u, v) is in the region IK ,
which it's eroded from, then it must satisfy that
I(u, v)"min(IK ).

Proposition 2. A pixel is invariant under closing if and only
if it is the local maximum value pixel in the neighborhood of
the structuring element. That is, let IK denote the region
which is overlaid by the structuring element to be dilated, if
I(u, v)"max(IK ), then (I�B)(u, v)"I(u, v).

Proof. Let IK denote the region which is overlaid by the
structuring element to be dilated, I

�
denote the structur-

ing element, IK
�

denote the same dilated region. If
I(u, v)"max(IK ), then according to the de"nition of Eq.
(1), the dilation of I is the maximum value of this region,
that is, IK

�
"max�IK #I

�
�. According to the de"nition of

closing, dilation is followed by erosion, which takes the
minimum of interested region. In the region IK

�
, I(u, v) is

always less than any other pixels in neighborhood, which
means it remains unchanged in erosion operation. Thus,
(I�B)(u, v)"I(u, v). Conversely, if (I�B)(u, v)"I(u, v), sup-
pose that I(u, v) is in the region IK , which is it's dilated
from, then it must satisfy I(u, v)"max(IK ).

As indicated in the above propositions, local min-
imums and local maximums are invariant under opening
and closing transformations by binary structuring ele-
ment, respectively. As illustrated in Fig. 1, pixel values in
circles remain unchanged after opening operation. The
result of opening(closing) operation consists invariant
pixels in some speci"c locations of the image.
This leads to an alternative de"nition of top-hat trans-

formation. Instead of subtracting opening set of original
image from original image set, invariant pixels set under
opening(closing) transformation is subtracted from orig-
inal image set, small grey-level changes in image will then
be augmented. Pseudo top-hat transformation is there-
fore de"ned as follows:

De5nition. Let I denote an image set, I
��

denote the
invariant pixels set under opening transformation, then
pseudo opening top-hat transformation, denoted by
P¹H

�
(I), is de"ned as

P¹H
�
(I)"I!I

��
. (9)

De5nition. Let I denote an image set, I
��

denote the
invariant pixels set under closing transformation, then
pseudo closing top-hat transformation, denoted by
P¹H

�
(I), is de"ned as

P¹H
�
(I)"I

��
!I. (10)

Comparing with top-hat transformation which distin-
guishes small grey-level changes in place of shading as
shown in Fig. 2, pseudo top-hat transformation aug-
ments small grey-level changes as well as prominent
grey-level changes as illustrated in Fig. 3. As shown in
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Fig. 2. Opening top-hat transformation illustration. (a) Grey-scale image. (b) Opening transformation. (c) Opening top-hat transforma-
tion result of (a).

Fig. 3. Pseudo opening top-hat transformation illustration. (a) Grey-scale image. (b) Invariant pixels set under opening transformation.
(c) Pseudo opening top-hat transformation result of (a).

Fig. 2(a), there are two double pairs as 21}22 and 27}29
that grey-level changes are very small in bottom left
corner and top right corner circles. They are transformed
by opening top-hat transformation, results are 0}0 and
0}1, respectively, as shown in Fig. 2(c). Small grey-level
changes are not distinguished to be thresholded to indi-
cate possible edge points. There are two triple pairs in
Fig. 2(a), one is 46}47}48/5}6}7, which is a prominent
grey-level change, the other is 24}25}26/16}17}18, which
is a rather smooth grey-level change. They are trans-
formed by opening top-hat transformation, results are
39}18}40/0}0}0 and 7}7}7/0}0}0, respectively, as shown
in Fig. 2(c). The prominent change is distinguished,
though the smooth grey-level change is not augmented to
be prominent. As shown in Fig. 3(a), two double pairs
21}22 and 27}29 are transformed by pseudo top-hat
transformation, results are 0}22 and 0}29, respectively,
as shown in Fig. 3(c). The small grey-level changes are
augmented and distinguished signi"cantly. Two triple
pairs 46}47}48/5}6}7 and 24}25}26/16}17}18 as
shown in Fig. 3(a), are transformed by pseudo top-
hat transformation, results are 46}47}48/0}0}0 and
24}25}26/0}0}0, respectively, as shown in Fig. 3(c). The
prominence grey-level change as well as the small grey-
level change are both distinguished to be prominent
changes.

4. The proposed algorithm

4.1. General description

A novel algorithm is presented to detect edges in dark
regions as well as preserve feature edges in bright regions.
The image is "rst processed by a morphological residue
edge detector. The result consists of grey-level edges with
various strengths. Pseudo opening top-hat transforma-
tion is then applied to sharpen edge strengths. As edge
strengths di!er from regions, a recursive quad-tree de-
composition scheme is adopted to threshold image into
edge image in di!erent regions. The overall implementa-
tion algorithm is illustrated in Fig. 4.

4.2. Formal presentation

As illustrated in Fig. 4, there are three steps involved in
the proposed algorithm. Let I denote original image, B
denote the structuring element in following discussions.
Step 1: Morphological residue edge detection process.

Mathematical morphology dilation residue edge detector
is applied to the image. Let I

�
denote edge detected

image, then

I
�
"(I�B)!I. (11)
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Fig. 4. Proposed algorithm to detect edges in dark regions as
well as preserve feature edges in bright regions.

Fig. 5. Illustration of quad-tree decomposition of image. (a) Quad-decomposition of image. (b) Quad-tree architecture.

This image contains grey-level edges with various edge
strengths. Some edges are sharp, some are smooth. If
a global threshold value is applied everywhere, smooth
edges are easily eliminated. To extract these smooth edge
features, this image is processed by pseudo opening top-
hat transformation.
Step 2: Pseudo opening top-hat transformation process.

Pseudo opening top-hat transformation is applied in this
process. Denoting invariant pixels set image as I

�
, di!er-

ence image set of I
�
and I

�
, denoted as I

�
, is obtained:

I
�
"I

�
!I

�
. (12)

This image contains sharpened smooth edges in the pres-
ence of shading, as well as enhanced sharp edges. This
process breaks the homogeneous characteristics of
smooth background, leave it a sawtooth-like plane. This
is solved by recursive quad-tree decomposition thre-
sholding process.

Step 3: Recursive quad-tree decomposition thresholding
process. Image I

�
is decomposed into four subimages

with same size, and each subimage is decomposed into
four further, until the smallest size which is previously
given has been reached. This is illustrated in Fig. 5.
To obtain a threshold value, mean and standard devi-

ation in each M�N subimage are calculated as

�"

1

M�N

�
�
���

	
�

��

I
�

, (13)

�"�
1

M�N

�
�
���

	
�

��

(I
�


!�)�. (14)

The threshold value is assigned as summation result of
mean and standard deviation in each subimage. Mean-
while, global upper threshold bound and global lower
threshold bound are set. As the summation result of
global mean and standard deviation, the upper bound
threshold value is set as the threshold value when the
threshold value in each subimage is greater than this
value. Similarly, as the subtraction result of global mean
and standard deviation, the global lower threshold
bound is set as the threshold value when the threshold
value in each subimage is lower than this value. The
global upper threshold bound is used to guide upper
threshold value in order to extract sharp edges as much
as possible. Similarly the global lower bound is used to
guide lower threshold value in order to avoid extracting
unnecessary small grey-level changes in background,
which are usually not as much concerned as the objects in
foreground. Additionally, in order to compensate the
side-e!ect produced by pseudo opening top-hat trans-
formation, a homogeneous factor is de"ned as the division
of standard deviation by mean in each subimage:

H"�/�. (15)

This equation is interpreted as &roughness' of each subim-
age. In smooth background regions where homogeneous
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Fig. 6. Illustration of recursive quad-tree threshold of image.

characteristics are broken, the homogeneous factor
is small, while in regions that contain sharp edges,
the homogeneous factor is large. If the homogeneous
factor of a subimage is lower than a given value,
this subimage is regarded as part of smooth background,
the maximum grey-level pixel value in this subimage
is then set as threshold value to maintain homogeneous
background region. This thresholding process is per-
formed recursively, that is, four subimages are
combined together as one subimage once each of them
has been thresholded. This process ends when all sub-
images have been thresholded. This procedure is
illustrated in Fig. 6.

5. Experiment result and analysis

In this section, the proposed PTHT edge detection
algorithm is compared with a variety of existing methods
for edge detection. Both synthetic images and natural
scenes are used for comparison. The synthetic images
use the Pratt's Figure of Merit as objective measure
of performance, and the natural scene examines the
applicability of these methods. Di!erent noise distribu-
tions are used in experiment. The amplitude of the Gaus-
sian noise is given in terms of signal-to-noise ratio (SNR)
in dB,

SNR"20 log(10/�),
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Fig. 7. Ideal step edges.

Fig. 8. Ideal step edge with step edge in dark region.

Fig. 9. The binary step edge detected by di!erent edge detectors
under salt-and-pepper noise with noise density 0.03. (a) Lap-
lacian-of-Gaussian edge detector; (b) Sobel edge detector; (c)
Prewitt edge detector; (d) DoE edge detector; (e) PTHT edge
detector; (f) Morphological residue edge detector; (g) Mor-
phological blur-minimum edge detector.

Fig. 10. The binary step edge detected by di!erent edge de-
tectors under salt-and-pepper noise with noise density 0.05. (a)
Laplacian-of-Gaussian edge detector; (b) Sobel edge detector; (c)
Prewitt edge detector; (d) DoE edge detector; (e) PTHT edge
detector; (f) Morphological residue edge detector; (g) Mor-
phological blur-minimum edge detector.

where 10 is the assumed edge height and �� is the noise
variance.

5.1. Synthetic images

The "rst experiment uses synthetic ideal step images
since they allow objective performance measures. Two
8�8 synthetic images are composed of single vertical
edge. One is in binary form, and the other is in grey scale
form, which to the left of the edge, the grey level value is 8,
to the right of the edge the grey level value is 0. The third
one is a synthetic ideal step edge image with step edge in
dark region. This is a typical type of edge simulated for
comparing di!erent edge detection methods for detecting
edges in dark regions. They are illustrated in Figs. 7 and
8, respectively.
Pratt's "gure of merit is a useful tool for quantitatively

evaluating the performance of edge detectors. It is given
by

R"

100

max(N
�
,N

�
)

	�

�
���

1

1#�d�
�

, (16)

where d
�
is the distance between a pixel declared as an

edge point and the nearest ideal edge pixel. The para-
meter � is a calibration constant and is chosen to be 1/9
for the results presented here. N

�
and N

�
represent the

number of ideal edge points and detected edge points,
respectively. A larger value R corresponds to better per-
formance, with 100 being a perfect result.
Salt-and-pepper noise with noise density

0.03, 0.05, 0.07 and Gaussian noise with SNR 35, 37, 40
are added to these three ideal step edges, respectively.
Lapalacian-of-Gaussian (Log), Sobel, Prewitt, di!erence
of estimation (DoE) [8], pseudo top-hat transform
(PTHT), morphological residue (MR), morphological
blur-minimum residue (MBMR) edge detectors are

applied to them, respectively. Figs. 9, 10 and 11 illustrate
the results of applying Log, Sobel, Prewitt, DoE, PTHT,
MR, MBMR edge detectors to ideal binary step edge
under salt-and-pepper noise with di!erent noise densit-
ies, respectively. It is shown that PTHT and MR edge
detectors perform equally well under salt-and-pepper
noise environment. Tables 1, 2 and 3 show the results of
measured values of Pratt's Figure of Merit for di!erent
edge detectors under di!erent noise distributions for dif-
ferent ideal step edges, respectively.
Table 1 illustrates the results of applying these edge

detection methods to ideal binary step edge. The perfor-
mance of Log, Sobel, Prewitt edge detectors are similar,
as all of them are derivative edge detectors. It is shown
that DoE edge detector is superior to derivative edge
detectors. PTHT andMR edge detectors perform equally
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Fig. 11. The binary step edge detected by di!erent edge de-
tectors under salt-and-pepper noise with noise density 0.07. (a)
Laplacian-of-Gaussian edge detector; (b) Sobel edge detector; (c)
Prewitt edge detector; (d) DoE edge detector; (e) PTHT edge
detector; (f) Morphological residue edge detector; (g) Mor-
phological blur-minimum edge detector.

Table 1
The measured values of Pratt's Figure of Merit for a variety of
di!erent edge operators and noise distributions for binary ideal
step edge

Edge Noise distribution
detector

SAP0.03 SAP0.05 SAP0.07 G35 G37 G40

Log 66.7 58.3 41.7 50 41.7 50
Sobel 75 75 67.5 60 45 60
Prewitt 75 75 67.5 52.5 45 60
DoE 90 90 82.5 60 60 75
PTHT 90 90 90 90 90 90
MR 90 90 90 90 90 90
MBMR 90 90 75 90 90 90

Table 2
The measured values of Pratt's Figure of Merit for a variety of
di!erent edge operators and noise distributions for grey-scale
ideal step edge

Edge Noise distribution
detector

SAP0.03 SAP0.05 SAP0.07 G35 G37 G40

Log 50 58.3 50 50 50 50
Sobel 52.5 52.5 75 50 52.5 50
Prewitt 52.5 52.5 75 58.3 52.5 58.3
DoE 82.5 82.5 90 52.5 82.5 75
PTHT 90 90 90 90 90 90
MR 90 82.5 90 90 90 90
MBMR 90 90 75 90 90 90

Table 3
The measured values of Pratt's Figure of Merit for a variety of
di!erent edge operators and noise distributions for ideal step
edge with step edge in dark region

Edge Noise distribution
detector

SAP0.03 SAP0.05 SAP0.07 G35 G37 G40

Log 33.3, 0 33.3, 0 16.7, 0 16.7, 0 0, 0 25, 0
DoE 90, 0 90, 0 90, 0 25, 82.5 25, 75 45, 67.5
PTHT 90, 90 90, 90 90, 90 90, 90 90, 90 90, 90
MR 90, 90 90, 90 90, 90 90, 90 90, 90 90, 90
MBMR 90, 0 90, 0 82.5, 0 90, 52.5 90, 67.5 90, 75

well, so does MBMR edge detector, under di!erent
Gaussian noise distributions. Table 2 shows the results of
applying these edge detection methods to ideal grey-scale

step edge. Log, Sobel, and Prewitt edge detectors perform
similarly, though worse than DoE edge detector. PTHT,
MR and MBMR edge detectors obtain similar results.
The results of applying di!erent edge detectors to detect
ideal step edge with step edge in dark region are shown in
Table 3. The pair number indicates the measured value of
Pratt's Figure of Merit for ideal step edge with step edge
in dark region respectively. It is shown that Log edge
detector performs worse than DoE edge detector. PTHT
and MR edge detectors provide equally satisfactory per-
formance. MBMR edge detector performs well under
salt-and-pepper noise distributions with 0.03, 0.05,
though worse than PTHT edge detector under di!erent
Gaussian noise distributions.
The nonlinear pre"lters discussed in Ref. [9], such as

the lower-upper-middle (LUM), comparison and selec-
tion (CS) and weighted majority of samples with min-
imum range (WMMR) pre"lters, are also applied to these
three ideal step edges. Comparison results are presented
in Tables 4, 5 and 6, respectively. As shown in these
tables, the measured values of Pratt's Figure of Merit are
all zeroes, obtained from LUM, CS or WMMR pre"lters
and Sobel edge detector, under di!erent noise distribu-
tions, which fail to extract ideal binary/grey-scale step
edge and ideal step edge with step edge in dark
region. However, PTHT edge detector performs well in
this task.

5.2. Natural scenes

Experiments are performed on a picture of camera-
man. As shown in Fig. 12, cameramanwears a black coat,
on which it is too dark to see any details in shading part
of the coat by human eyes. If this image is enhanced as
Fig. 13, it shows clearly the edge features of pocket,
buttons and hands in the dark regions of the coat.
For comparison purpose, classical Sobel edge detector,

mathematical morphological residue edge detector, DoE
edge detector, Lum pre"lter followed by Sobel edge de-
tector are applied on this image. The experiment results
are shown as in Figs. 14, 15, 16, and 17, respectively.
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Table 4
The measured values of Pratt's Figure of Merit for Lum, Cs, Wmmr pre"lter and noise distributions for binary ideal step edge

Edge detector Noise distribution

SAP0.03 SAP0.05 SAP0.07 G35 G37 G40

Lum pre"lter followed by Sobel 0 0 0 0 0 0
Cs pre"lter followed by Sobel 0 0 0 0 0 0
Wmmr pre"lter followed by Sobel 0 0 0 0 0 0
PTHT 90 82.5 82.5 90 90 90

Table 5
The measured values of Pratt's Figure of Merit for Lum, Cs, Wmmr pre"lter followed by Sobel edge detector under di!erent noise
distributions for grey-scale ideal step edge

Edge detector Noise distribution

SAP0.03 SAP0.05 SAP0.07 G35 G37 G40

Lum pre"lter followed by Sobel 0 0 0 0 0 0
Cs pre"lter followed by Sobel 0 0 0 0 0 0
Wmmr pre"lter followed by Sobel 0 0 0 0 0 0
PTHT 90 90 90 90 90 90

Table 6
The measured values of Pratt's Figure of Merit for Lum, Cs, Wmmr pre"lter followed by Sobel edge detector under di!erent noise
distributions for ideal step edge with step edge in dark region

Edge detector Noise distribution

SAP0.03 SAP0.05 SAP0.07 G35 G37 G40

Lum pre"lter followed by Sobel 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Cs pre"lter followed by Sobel 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Wmmr pre"lter followed by Sobel 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
PTHT 90, 90 90, 90 67.5, 90 82.5, 90 90, 90 90, 90

Fig. 12. Picture of a cameraman. Fig. 13. Picture of enhanced cameraman.
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Fig. 14. Cameraman processed by Sobel.

Fig. 15. Cameraman processed by Morphological residue.

Fig. 16. Cameraman processed by DoE.

Fig. 17. Cameraman processed by Lum pre"lter followed by
Sobel.

Fig. 18. Cameraman processed by PTHT.

Table 7
The computation and memory requirements of PTHT algo-
rithm for an N�N image

PTHT Computation Memory(Bits)
time

Step 1 O(N�) 16N�

Step 2 O(1) 16N�

Step 3 O(N�/Ns�) (4��(N�N)#4��(N/2�N/2)
#2#4
�(N/Ns�N/Ns))*8

Total O(N�) 32N�#(4��(N�N)
#O(N�/Ns�) #4��(N/2�N/2)#2

#4
�(N/Ns�N/Ns))*8

Sobel edge detector, morphological residue edge detector
detect contour of cameraman successfully, but fail to
extract contour of tower. DoE edge detector detects
contour of cameraman only, fails to detect contour of
tower, and edge features of cameraman in dark regions
are lost. Lum pre"lter followed by Sobel edge detector

extracts contour of cameraman only and fails to detect
contour of tower. It is shown in Fig. 18 that proposed
PTHT edge detection algorithm detects the contour of
cameraman, extracts contour of tower as well as extracts
edge features in dark regions on the coat of cameraman
successfully.
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Table 8
The computation and memory requirements of stacking "ltering
algorithm for an N�N window (all stack "lters were trained
using 10 passes of the training algorithm)

Table lookups Swaps Memory(Bits)
per pixel per pixel

Filtering N� N/A 2	�

Training N� (N� 2	�
��

Total 11N� (10*(N�) 2	�
#10*2	

�
��

6. Computation time and memory requirements

The computation time and memory requirements of
PTHT edge detection algorithm for N�N images are
listed in Table 7, in which Ns is subimage size. As there
are three steps involved in PTHT edge detection algo-
rithm, the computation and memory requirements of
each step are listed, respectively. For morphological resi-
due edge detection process, for an N�N image, mor-
phological residue edge detection requires to store two
images, one is dilated image and the other is original one,
thus it requires 2N�*8 bits computer memory. Mor-
phological dilation process consists of two for-loops, they
require O(N�) computation time, while the assignment
operation which takes O(1) time can be ignored. For
pseudo opening top-hat transformation, it involves two
images, one is invariant pixels set image, the other is the
result image from former step, thus it requires 2N�*8 bits
computer memory. The operation is simply assignment
operation that takes O(1) computation time. For recur-
sive quad-tree decomposition threshold process, image is
divided into four subimages, each of which is Ns�Ns.
The "nal total numbers of subimages are N�/Ns�. As-
sume n"log

�
(N�/Ns�), to split image into this "nal

number, it requires 4�#4�#2#4
�� times which are
approximately O(N�/Ns�) computation time. In each im-
age splitting process, it is simply assignment operation
which takes O(1) computation time, which is much less
than splitting times that can be ignored. For memory
requirement, it requires (4��(N�N)#4��(N/2�
N/2)#2#4
�(N/Ns�N/Ns))*8 bits memory. For
comparison purpose, the computation time and memory
requirements of stack "ltering, which is the core part of
implementation of DoE edge detector, are listed in Table
8. For a size 256�256 image, assume that Ns equals 16,
memory requirement for PTHT edge detection algorithm
is 2.3 MB. For the stacking "ltering algorithm, for a size
256�256 image, and a 5�5 window, the memory
requirement is 324 MB.

7. Conclusion

A novel mathematical morphology edge detection al-
gorithm to detect smooth edge features in dark regions in
image has been presented. Pseudo top-hat morphologi-
cal transformation, stemmed from top-hat morpho-
logical transformation, is de"ned to distinguish small
grey-level changes in dark regions. A recursive quad-tree
decomposition scheme is also proposed to threshold
grey-level edge image to binary edge image. Compre-
hensive comparison experiments have been carried out
on synthetic and natural scene images. Experimental
results show that PTHT edge detection algorithm out-
performs other edge detection methods on retrieving
smooth edge features in dark regions while preserving
boundary of objects successfully. Selecting appropriate
illumination is an important aspect for machine vision
system design. However, this edge detection algorithm
has provided an e$cient solution to machine vision
applications, when lighting is not evenly distributed on
objects inspected. The ambient illumination, such as con-
trolled frontal illumination and backlighting illumina-
tion, is adequate for the cases investigated using the
proposed technique which is not sensitive to the range of
lighting conditions.
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