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Abstract In this paper we present a new algorithm to trans-
form an RGB color image to a grayscale image. We pro-
pose using nonlinear dimension reduction techniques to map
higher dimensional color vectors to lower dimensional ones.
This approach generalizes the gradient domain manipula-
tion for high dimensional images. Our experiments show
that the proposed algorithm generates competitive results
and reaches a good compromise between quality and speed.
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1 Introduction

In this paper we investigate how ISOMAP [35], a non-
manifold learning technique, can be used for color-image
processing. We also present an ISOMAP-based framework
to map a higher dimensional image to a lower dimensional
image, e.g. map a color RGB image to a grayscale image.
The problem can be formulated as follows. An m× n multi-
channel image can be seen as a higher dimensional tensor
ID ∈ Rm×n×D , where each of the mn pixels corresponds to
a color vector Ci with D spectral samples. As output of this
algorithm we want to map this image to a lower dimensional
display range, i.e. a tensor Id ∈ Rm×n×d with all entries con-
strained to lie between 0 and 1 and d < D. In this paper we
will consider D = 3 and d = 1 and map the input image to
gray-scale.

We set two goals: (1) The color distances from the input
color space can be controlled by the user in the output color
space. (2) The algorithm should make use of the dynamic
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range of the display device to show details in the image. We
will propose an elegant solution that combines both goals in
a unified framework.

We are interested in applying manifold learning tech-
niques to the problem at hand. This gives two interesting re-
sults: (1) a new operator for image processing; (2) the map-
ping quality and speed.

One popular technique in the image processing commu-
nity is to extract the gradient field and then manipulate it to
a desirable target. In the end, the target images are recon-
structed from the target gradient field [16]. When dealing
with multidimensional input, the calculation of the gradi-
ent becomes controversial. Our manifold learning approach
generalizes the idea to multidimensional data: we first get
the matrix of the pairwise distances for the input pixels and
then manipulate the distances in the matrix. In the end, we
reconstruct an output that preserves the manipulated dis-
tances.

The quality and speed performances of our algorithm are
compared to several recent approaches, published by Gooch
et al. [17], Rasche et al. [27], Grundland et al. [18] and Smith
et al. [33]. Approaches of Gooch et al. [17] and Rasche et
al. [27] are computationally slow. The algorithm by Gooch
et al. [17] does not allow higher dimensions because it is
intrinsically linked to the L∗a∗b∗ color space, and the algo-
rithm by Rasche et al. [27] does not scale well to a higher
number of spectral samples in an image. By contrast, our
solution computes a nonlinear mapping by using a linear
operator in a sub-manifold of the higher dimensional color
space. This approach gives similar visual quality as well as
improves computation times and can extend to higher di-
mensions. Our algorithm is slower than a fixed global map-
ping, e.g. of Smith et al. [33]. While such a simple operator
can get great results on a large number of images, it is easy
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to show that a fixed global mapping can eliminate arbitrarily
large features.

Our major contributions are as follows:

– We are the first to apply nonlinear manifold learning
to the color-to-gray conversion problem. Our algorithm
gives competitive results compared to state-of-the-art al-
gorithms.

– In our RGB to gray mapping algorithm we propose a new
way of nonlinearly adjusting the contrast by a single pa-
rameter.

One major design decision is if the mapping should be
global or local. While most recent tone mapping algorithms
favor a local mapping, Rasche et al. [27] argue that a global
mapping is important to avoid artifacts when it comes to
mapping higher dimensional color vectors to lower dimen-
sional ones. It is worth mentioning that the default imple-
mentation of Rasche et al. [27] compares every pixel to
every other pixel when minimizing the objective function.
The authors also suggested an alternative implementation
by limiting the comparison to only a small spatial neigh-
borhood for each pixel. This will accelerate their algorithm.
However, this also turns the algorithm into a local contrast
enhancement operator since widely separated points in orig-
inal space may be assigned to the same output intensity
if surrounded by sufficiently different other color values.
Smith et al. [33] also have a local edge sharpening step.
In this paper we will present a global mapping algorithm.
However, our algorithm can use a local mapping to increase
contrast as a post-process. As other existing algorithms have
the same option, we will not make a potential post-process
a focal point of this paper.

2 Related work

There is a large number of techniques to convert a high dy-
namic range luminance image to a low dynamic range lumi-
nance image. These techniques are broken down into local
and global methods. Global mappings ensure that identical
color values are mapped to identical color values, so that
each pixel in an image can be mapped separately [1, 37]. Lo-
cal mappings are typically more complex and slower; how-
ever, they can adapt the mapping function locally to produce
better results [13, 16, 22, 29]. As these methods have several
advantages and disadvantages, recent work also focused on
combining tone mapping operators [23] and evaluation of
tone mapping [21, 26].

In recent years, transforming a color image into a
grayscale image attracted the interest of several researchers
[4, 14, 17, 18, 24, 27, 28, 34, 36]. The problem is to find
a lower dimension embedding of the original data that can
best preserve the contrast between the data points in origi-
nal data. These papers are strongly related to our work and

we compare our results against two of them in this paper.
The main difficulty of previous works is that they use com-
plex and slow nonlinear optimization algorithms. We believe
that this is too complex for the problem at hand. In con-
trast, we want to follow the strategy of manifold learning
and first detect a sub-manifold in higher dimensional data
before computing a mapping [5, 12, 25, 30, 31, 35]. It is
worth mentioning that recently two other accelerated meth-
ods were proposed and they reported a very good quality.
Grundland et al. [18] make use of predominant component
analysis and accelerate with Gaussian pair sampling. Smith
et al. [33] first use a fast global mapping and then use a local
edge sharpening technique based on the Laplacian pyramid.
We also compare our results to theirs in this paper.

The second similar problem is multispectral and hy-
perspectral image visualization. Traditionally, these images
have been visualized as a cube with a suite of interactive
tools [32]. One set of tools allows to extract one spectral
band at the time or cycle through spectral bands as an ani-
mation. To create RGB images, interactive tools can be used
to specify red, green, and blue values as linear combinations
of spectral bands. That means an RGB value is computed
by a matrix vector multiplication. Along these lines several
authors suggest methods how to automatically create linear
combinations of spectral bands to define the green, red, and
blue color channels of visualization [8, 20, 38, 39]. In this
paper we compare our results to two such methods, Jacob-
son et al.’s [20] and visualization based on PCA [38]. Re-
cent investigation suggest that nonlinearity exists in hyper-
spectral data [19]. Actually ISOMAP has been adopted for
hyperspectral image visualization in [2, 3]. We believe it is
interesting to extend their work to color-to-gray image con-
version. A faster visualization strategy for hyperspectral vi-
sualization was proposed by Cui et al. [9], but their method
cannot be directly applied to the color-to-grayscale prob-
lem.

There is a larger number of general dimensionality re-
duction algorithms in the literature. Prominent examples are
ISOMAP [35], Local Linear Embedding (LLE) [30], Lapla-
cian Eigenmap Embedding [5]. ISOMAP is a special version
of multidimensional scaling, which uses geodesic distance
instead of Euclidean distances between the points. LLE tries
to preserve the local linear structure of the original point set
and casts it as an eigenvalue problem. Laplacian Eigenmap
Embedding formulates the problem as a spectral graph cut
and also solves it as an eigenvalue problem. In recent years,
more advanced versions of manifold learning algorithms
were proposed. These include Hessian Eigenmap Embed-
ding [12], Conformal Maps [31], and Diffusion Maps [25].
These methods are usually computationally more expen-
sive.
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Fig. 1 From left to right: original image, PCA mapping, color2gray mapping, and our result

3 Overview

3.1 Algorithm goals

We formally state the problem as follows. The input to the
algorithm is an m×n image as tensor ID ∈ Rm×n×D , where
each of the N = mn pixels corresponds to a color vector
Ci with D spectral samples. The output of this algorithm is
a tensor Id ∈ Rm×n×d , where each of the N pixels corre-
sponds to a color vector ci with d spectral samples and all
entries are constrained to lie between 0 and 1. For color-to-
gray conversion, D = 3 and d = 1. There is a one-to-one
correspondence between a color vector (pixel) Ci and ci .

Our first goal is to find a global mapping that preserves
the pairwise distances between all input pixels. This goal
can be formalized as finding a mapping that minimizes E:

E = 1

2

N∑

i=1

N∑

j=1

(‖ci − cj‖ − dist(Ci,Cj )
)2

. (1)

E can also be presented in a matrix form:

E = 1

2
‖Mc − MC‖F (2)

where F denotes the Frobenius norm; this equation is in
matrix form. Mc and MC are both matrices. Mc(i, j) =
‖ci − cj‖ and MC(i, j) = dist(Ci,Cj ).

The second goal is making use of the dynamic range of
the display to show image details. This goal is partially in
conflict with the first goal and difficult to qualify in a for-
mula, but we found a consistent way to integrate the sec-
ond goal with the first one by modeling a distance function
dist(Ci,Cj ) that provides some user control of the output.
It is very important that we only make consistent modifica-
tions. For example, a local tone mapping operator can pro-
duce colorful images, but the original meaning of the input
is not preserved. This can be very counterproductive for vi-
sualization, because pixels are no longer comparable. Simi-
larly, a global operator, such as histogram equilization in all
color bands, sometimes introduces artificial features that are
not present in the data set.

3.2 Algorithm overview

An overview of our algorithm is shown in Fig. 2. It com-
putes a nonlinear mapping. In general, a nonlinear mapping
is much better at adapting to the structure of the data and it



1352 M. Cui et al.

Fig. 2 Overview of our
algorithm

was therefore also used in previous approaches. The algo-
rithm includes the following stages.

Color space preprocessing We take an input image and
consider each pixel as a higher dimensional color vector.
This gives us a set of vectors in a higher dimensional color
space. If the input image has RGB color vectors, we addi-
tionally map all pixels from RGB to L∗a∗b∗ color space.

Sub-manifold detection Find a sub-manifold in higher di-
mensional space, by computing geodesic rather then Euclid-
ian distances. This stage includes finding nearest neighbors,
computing a geodesic distance matrix, and managing the
contrast by transforming the matrix. The output of this stage
is a distance matrix defining pairwise distances between all
pairs Ci and Cj .

Optimized mapping Find an optimized mapping from
higher to lower dimensional color vectors. At this stage,
each color vector Ci is mapped to a lower dimensional color
vector ci based on a matrix decomposition. This operation
is very fast and finds a global optimum.

Color space postprocessing The color mapping can be
used to construct a lower dimensional image Id . Post-
processing can include local (a gradient domain Poisson
solver [16]) or global (histogram equalization) tone mapping
operators.

Acceleration strategy While the above algorithm steps de-
fine a working algorithm, we need to accelerate the algo-
rithm and reduce memory consumption by using a sub-
sampling strategy. The main idea is to sub-sample the rows
of the matrix DC .

4 An introduction to ISOMAP

In this section we give a brief introduction to ISOMAP, a
very successful strategy for manifold learning that was pro-
posed by Tenenbaum et al. [35]. ISOMAP in essence is

a special version of the classical multidimensional scaling
(classical MDS) algorithm [6].

4.1 Classical MDS algorithm

Classical MDS [6] provides a solution for (2). Since a
global optimum cannot be found for (2), classical MDS
does not minimize the F-norm of the difference matrix
Mc −MC in (2) directly. Instead, it minimizes the difference
of two transformed matrices. The transform first computes
an element-wise square of a matrix and then centers it. The
centering operator τ for a matrix M can be computed by
τ(M) = −HMH/2, and H = I − 1/N ∗ O with O being
a matrix of all ones. If we denote the element-wise square
of Mc and MC as M2

c and M2
C , respectively, we can express

the objective of the transformed minimization problem as

E = ∥∥τ
(
M2

c

) − τ
(
M2

C

)∥∥
F
. (3)

Geometrically, we are now minimizing the pairwise an-
gular distances instead of the pairwise Euclidean distances.
The benefit we gain from this transform is that the global op-
timum of (3) can be computed in closed form. Let us denote
λ1, λ2, . . . , λd as the largest d eigenvalues of matrix τ(M2

C)

and v1, v2, . . . , vd as their corresponding eigenvectors. Then
the d-dimensional output ci is computed as [11]

ci =

⎡

⎢⎢⎢⎢⎣

√
λ1 · v1i√
λ2 · v2i

...√
λd · vdi

⎤

⎥⎥⎥⎥⎦
. (4)

4.2 The ISOMAP algorithm

In classical MDS, how to calculate dist(Ci,Cj ) is left for
the user to decide. In the ISOMAP algorithm, Tenenbaum et
al. proposed using the geodistance between the input data
points for dist(Ci,Cj ): the input data set is treated as a
graph. Each input point in the original D-dimensional space
is a node in the graph and is connected to its k nearest neigh-
bors (k is a parameter provided by the user). The distance
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between two points Ci and Cj is calculated as the shortest
path between the two corresponding nodes in the graph.

The ISOMAP algorithm has two computational bottle-
necks [10]. First, for a graph that has N nodes, it takes
(O(N2 logN)) to find all pairwise shortest paths in the
matrix DC using Dijkstra’s algorithm. Second, we need to
solve the eigenvalue problem for the N × N matrix τ(MC),
which takes O(N3). The overall complexity is O(N3). For
a medium size image with size 300 by 300, the total num-
ber of pixels, which is N , equals 90000 and the algorithm is
very slow.

4.3 The landmark ISOMAP algorithm

In [11], an accelerated version of ISOMAP is proposed,
which is called landmark ISOMAP. The new algorithm
starts by selecting only a small fraction of the whole in-
put point set called landmark points L1,L2, . . . ,Ln. If we
denote n as the number of landmark points then usually we
pick n = �N ∗0.02�. The original ISOMAP algorithm is run
on the n landmark points to get a skeleton for the output in
the d-dimensional output space. The rest of the output is em-
bedded into the skeleton by projecting to the first d principle
axes of the landmark points. We denote the squared pairwise
distance matrix for the landmark points as L2

C and λi , and vi

as the eigenvalues and eigenvectors of τ(L2
C), as before. We

further define δi as a column vector of the squared distances
from Ci to all the landmark points and δL to be the mean of
all the column vectors of L2

C . Now we can express the j th
component of ci as

cij = −1

2

vj√
λj

(δi − δL). (5)

Since only the pairwise distances between the land-
marks and the remaining points are needed for the inter-
polation, the cost for Dijkstra’s algorithm is reduced to
O(nN logN). The ISOMAP algorithm on landmark points
requires O(n3). Since n � N , the overall complexity is re-
duced to O(N logN).

5 Algorithm details

In the following we explain in detail how the landmark
ISOMAP algorithm is used for our color-to-gray mapping
problem.

5.1 Color space preprocessing

Given an RGB image with m rows and n columns, we can
interpret each pixel as a color vector Ci in a D-dimensional
color space yielding N = mn color vectors. If we are work-
ing with RGB images as input, we transform each of the

Fig. 3 Left: input image. Right: color distribution in L ∗ a ∗ b color
space. This figure shows how an image is mapped to CIEL∗a∗b∗ color
space. The shown color distribution will require a nonlinear mapping
to ensure a meaningful conversion to grayscale. Please note that no
line can be found in color space so that a color projection onto the line
results in a useful grayscale conversion

vectors Ci into CIEL∗a∗b∗ color space. This transforma-
tion is useful, because the Euclidean distance between the
pixels in L∗a∗b∗ is similar to the visual difference perceived
by human eyes. The L∗ coordinate refers to the luminance
and the a∗ and b∗ coordinates describe the position of the
pixel in a two-dimensional chromatic space. The positive
a∗-axis points towards red and the negative a∗-axis points
towards green. Similarly, the positive b∗-axis points towards
yellow and the negative b∗-axis points towards blue. As the
color space preprocessing is optional, we use the same vari-
ables Ci to denote the input and the output of this stage.
L∗a∗b∗ color space preprocessing only works when the in-
put is an RGB image. Figure 3 shows an example of color
space. For multispectral images it is important to drop the
spectral bands that are destroyed by atmospheric water va-
por. Additionally, we provide the option to scale individual
spectral bands (we did not use this feature in our results).

5.2 Sub-manifold detection

This part of the algorithm computes pairwise distances
between two color vectors Ci and Cj . There are several
choices for a distance function dist(Ci,Cj ) from (1) and
we want to propose a different one from previous work. For
example, Rasche et al. [27] use the simple Euclidian dis-
tance function (in CIEL∗a∗b∗ color space) and reduce the
problem to a multidimensional scaling problem that requires
nonlinear majorization techniques to find a local optimal
solution. Color2gray [17] defines a more complex distance
function as a combination of the luminance difference and
the difference of projection on a certain direction in the chro-
matic space. This distance function leads to a nonlinear op-
timization problem that the authors solve with a conjugate-
gradient method.

Following the ISOMAP framework described in Sect. 4,
we propose to use a transformed geodesic distance
dist(Ci,Cj ) = f (geodesic(Ci,Cj )) between two color vec-
tors. The geodesic distance is computed in a manifold
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spanned by the color vectors and brings a significant advan-
tage. The strength of this algorithm is that we can compute
a global optimum directly with multidimensional scaling.
However, please note that the geodesic distance computa-
tion provides a mapping of one color space to another that
is still nonlinear and is able to adapt to the structure of the
data.

The distance computation has three steps. First, we need
to construct a graph by computing the k-nearest-neighbors
(KNN) of each input point Ci and connect each point with
its k nearest neighbors with an edge weighted by their mu-
tual distances. In our experiments, k is usually set to 10 50.
Second, we need to compute a geodesic distance matrix by
computing shortest distances from all the landmark points
Li to the rest of all points Ci in the graph. Third, we can ma-
nipulate the geodesic distances to provide some user control
to improve the contrast in the final image.

An implementation detail worth mentioning is that the
graph constructed by the KNN algorithm might not be con-
nected. For example, k input points can be tightly clustered
and form a clique of the graph, so that they will be isolated
from the rest of the point set. Since we need to know the dis-
tance matrix from the landmark points to all the points and
the entries of the matrix cannot be infinity, we use a simple
and fast solution to alleviate this problem. We find the dom-
inant component in the graph that has the largest number of
points. For any other component, we add an edge connect-
ing the two closest points between this component and the
dominant component.

5.3 Contrast management

Our contrast management is motivated by a strategy com-
mon to high dynamic range image tone mapping. The input
image is usually first transformed to a new domain in which
the manipulation becomes easier. Then the output image is
recovered from the manipulated image in the new domain.
In [16] the input is transformed into the gradient domain,
then the gradient is manipulated and the output is recovered
by solving a PDE. In [15] the input is transformed into the
wavelet domain, then the wavelets coefficients are manipu-
lated and the output is recovered using the inverse wavelet
transform. Similarly, we transform the input into the pair-
wise distances domain, then we manipulate the distances,
and the output is recovered by the ISOMAP algorithm.

The manipulation can be done by nonlinearly scaling
the geodesic(Ci,Cj ) distance function with another func-
tion, f . This allows to enhance contrast, while still using
a distance-preserving mapping. We chose a simple func-
tion f (x) = xλ that allows the user to control one para-
meter in the mapping. The output of our contrast man-
agement step is a distance matrix DC with entries xij =
f (geodesic(Ci,Cj )). This matrix can be used to directly

Fig. 4 Left: input image. Middle: a small λ = 1 reveals a 70. Right:
a bigger λ = 4 reveals a 29

Fig. 5 Possible settings for the candy example from Fig. 11.
Left: a small λ = 0.8 preserves the details of the image well and
the spherical shape and the highlights of the candy are well visible.
Right: a bigger λ = 3 reduces local contrast and the spheres look like
flat circles

project color vectors in a lower dimensional color space as
described in the next subsection. We illustrate the power
of the parameter λ using two examples shown in Figs. 4
and 5. Intuitively, the parameter can either enhance local
contrast (small distances) and reduce global contrast (large
distances), or enhance global contrast and reduce local con-
trast. Please note that the parameter controls geodesic dis-
tances.

In Fig. 6 we demonstrate the usefulness of nonlinear
mapping and geodesic distances. When we compare the re-
sults of PCA and our algorithm, we can see that PCA is
unable to detect the nonlinear structure of the problem and
does not show the two rectangles. While it is not reason-
able to assume that the colors of a real-world example with
thousands of colors are aligned in this way, this nonlinear
structure problem would appear many times in subsections
of the color space.

5.4 Landmark selection

In the original paper [11] the author proposes to select the
matrix rows randomly. The author suggests that a more so-
phisticated clustering technique might have disadvantages
because the clustering problem is domain-specific and the
computational cost of clustering is high. While these argu-
ments are reasonable for a general algorithm, our experi-
ments show that clustering can improve the results of our
algorithm. First, we found that this is fairly risky to make a
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random selection, as parts of the color space with few color
vectors can receive no or insufficient samples. In graphics
applications it might be interesting to ignore outliers, but
for visualization applications outliers often convey impor-
tant and meaningful information. Second, we need to build
the kd-tree to accelerate the KNN algorithm so that we can
reuse it for the computation of more uniformly distributed
landmarks. To select landmarks we can set a parameter s

that specifies the sub-sampling factor. We traverse the kd-
tree depth first and stop the traversal if a node contains less
than s × N points. We select the centroid of all the points
contained in the kd-tree node as a landmark.

5.5 Color space postprocessing

After we get a set of color vectors ci , we can assemble the
low dimensional image. If the output is grayscale, we lin-
early map the range of all output intensity values to the range
of [0,1]. Additionally, we implemented histogram equaliza-
tion and a gradient domain tone mapping algorithm [16] as

Fig. 6 Top left: the PCA result on the input image in Fig. 3. Top right:
our result. Bottom left: we show how the original colors are projected to
1D for the PCA result. Bottom right: we show how the original colors
are projected to 1D for our result

potential post-process to enhance contrast. However, while
we found that these algorithms can make certain images to
look nicer, they make it hard to compare with other algo-
rithms. First, these postprocessing operations are in conflict
with the goals of the original algorithm and second, the com-
parison with other methods would be influenced. We also
omit a comparison to Smith et al. [33]. They basically use
an edge sharpening operator to achieve their results in diffi-
cult cases, but we consider this a potential post-process.

6 Results

6.1 Visual comparison

The authors in [7] gave an exhaustive comparison of the
state-of-the-art color-to-gray algorithms. We run our algo-
rithm through the same set of test images with a fixed para-
meter λ = 0.4. The number of nearest neighbors k is fixed
to 50. There are more complicated algorithms to dynami-
cally decide k according to the neighborhood of a particular
point, but we opted not to use these computationally more
expensive approaches. In the results, we found that with the
help of λ we are able to enhance the details in the original
image in a novel way that no other algorithms can achieve.
In Figs. 7–10 we show some examples. In each case we
picked the best two algorithms ranked in [7] and compare
to our results. In Fig. 7, it can be observed that our result
can distinguish the color difference between the two anten-
nas. Also, the body colors are better stratified than in the
other two. The outlines in the upper parts of the wings are
also the clearest among the three. In Fig. 8, we can see that
in the middle right part of the tree, there are three blocks of
red leaves. Our method can highlight these three red blocks.
In Fig. 9, both other two methods mapped the red petals to
similar colors as the green leaves. In contrast, our method
mapped the red petals to the brightest color in the whole im-
age, which is satisfactory. In Fig. 10, at the bottom left of
the original images, there are some faint circles that only a
careful observe can find. All other methods neglected these
circles. In contrast, our algorithm highlights these circles.

Fig. 7 From left to right: original color image; decolorize [18]; smith08 [33]; ours, λ = 0.4
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Fig. 8 From left to right: original color image; smith08 [33]; color2gray [17]; ours, λ = 0.4

Fig. 9 From left to right: original color image; smith08 [33]; CIEY [14]; ours, λ = 0.4

Fig. 10 From left to right: original color image; smith08 [33]; decolorize [18]; ours, λ = 0.4

This might be helpful if these circles are real features. At
the same time, we also want to point out that the watch
face and the printed page seem to be too bright. We might
also enhance noise and artifacts instead of real features that
are desirable. Results on other test images can be found in
the supplementary material to the paper. It is worth noting
that we are not doing an objective user study for the results
like [7]. Therefore, we are not claiming that our results are
always better than the other algorithms. We emphasize that
our algorithm can highlight some features of the original
images that other algorithms might omit. It is not always
the case that our results are the most satisfactory. For exam-
ple, in Fig. 14, our method does not distinguish the orange-
highlighted lines and the pink-highlighted lines very well.
More comparisons are shown in the supplementary mater-
ial. In some cases, our results show salt-and-pepper noise
artifacts. We find that the artifacts depend on the parameter
k in the k-nearest-neighbors search. We will further discuss
this in Sect. 6.3.

6.2 Timing comparison

We implemented our algorithm in Matlab on a 3.6 GHz
Xeon processor. The algorithm is of average complexity and
takes about 500 lines of code including the display, input,
and output routines. While Matlab greatly helps the sim-
plicity of implementation, a complete C++ implementation
would be much faster. However, since our algorithm speed is
already very competitive, we opted against further low level
optimizations and porting our code to C++.

We used color images proposed in previous work to com-
pute an RGB color-to-gray scale mapping. We selected a set
of six input images that were picked as examples in previ-
ous work, so that we could compare directly to the images
produced by other algorithms. In Fig. 1 we compare the vi-
sual results of color-blind tests, a linear mapping by using
PCA, a mapping using color2gray [17], a mapping using
the algorithm by Rasche et al. [27], and our algorithm. We
used the C++ implementation from the original authors for
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color2gray algorithm and Rasche et al. algorithm. We did
not use any GPU acceleration of all algorithms.

In Table 1 we show timings of the results. Even though
we compare our results in a Matlab implementation, we
can outperform the implementation speed of the other al-
gorithms.

In Figs. 11–13 we show more visual comparisons. We
would argue that our visual result for the candy image is
stronger than the competing algorithms. For the flower and
sunrise image we can see advantages and disadvantages in
all algorithms.

6.3 Parameter selection

We found that the parameter k in the k-nearest-neighbors
search algorithm plays an important role in the final results.

Table 1 Comparison of computation times in seconds of color2gray,
Rasche et al., and our algorithm. Each row of the table are results for
one data set whose name is in the leftmost column

C2G [17] Rasche [27] Ours Image size

Number 6 57 n/a 6 124 ∗ 120

Number 35 52 n/a 6 128 ∗ 125

Number 8 46 n/a 4 120 ∗ 120

Candy 494 400 32 212 ∗ 218

Flower 2100 330 86 311 ∗ 300

Sunrise 1060 n/a 42 295 ∗ 212

The larger the value of k, the higher the quality of the results.
An example is shown in Fig. 14. When k is not big enough,
there might be some noticeable salt-and-pepper noise arti-
facts in the result. However, increasing k will significantly
increase the computation time. For example, in Fig. 15,
when k = 15, the computation time is 10.37 s. When k = 50,
the computation time is 12.53 s. When k = 200, the compu-
tation time is 17.50 s. Larger k will also make the distance
matrix less sparse and significantly increase the storage re-
quirement. For our experiments we fix k to be 50 to balance
the speed and the quality.

7 Discussion

In the following we discuss the results and the comparison
to other algorithms.

Local vs. global operator Our mapping algorithm is a
global operator. It means that for two input points Ci and
Cj , if their values are the same, they will always be mapped
to the same grayscale value ci in spite of their spatial lo-
cations in the input image. This is in contrast to other local
mapping operators, which will distort the grayscale values to
enhance local contrast. We did not include a local enhance-
ment step for two reasons: first, the local enhancement can-
not be naturally incorporated in the ISOMAP framework;
second, we believe in some cases global operators might be

Fig. 11 From left to right: the original image, color2gray mapping [17]; Rasche et al. mapping [27]; ours, λ = 0.8

Fig. 12 From left to right: the original image; color2gray mapping [17]; Rasche et al. mapping [27]; ours, λ = 2.0
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Fig. 13 From left to right: the original image; decolorize [18]; color2gray [17]; ours, λ = 2.0

Fig. 14 First row, from left to right: original image; CIEY [14]; decolorize [18]. Second row, comparison of different settings of parameter k for
our method. From left to right: k = 15, k = 30, k = 50

Fig. 15 From left to right: original color image; our method with k = 15, k = 50, k = 200; all the other parameters are fixed

desirable. For example, if we want to impose tone-mapping
on an output grayscale image or mutual information based
registration on an output image pair, global operators will be
preferable.

Control of the output Similarly to color2gray [17] and
Rasche et al. [27], we allow for some control of the output.
Similarly to color2gray, we are able to select a direction in
L∗a∗b∗ color space and decide whether to map this direc-
tion to a lighter or darker color. However, we do not have an
equivalent for luminance consistency constraints in Rasche
et al.’s algorithm. The idea of luminance consistency is to
enforce that the relative order of color luminance of simi-
lar gamut is enforced. While this control mechanism sounds
reasonable in the description, we were not able to verify its
importance in the test images and the influence of luminance
consistency constraints was also not evaluated in the origi-
nal paper. In contrast to previous approaches, we provide a
parameter λ for contrast management.

Linear vs. nonlinear optimization We think the strength of
this algorithm is that it uses a linear operation to map col-
ors from a higher dimensional color space to a lower di-
mensional one. While the overall mapping is still nonlin-
ear, the nonlinear aspect is due to the sub-manifold detection
and geodesic distance computation that precedes the actual
mapping step. Our optimization can be computed directly
by spectral matrix decomposition and leads to a global opti-
mum. This part of the algorithm is very stable and does not
have the many problems of nonlinear optimization. In con-
trast, previous algorithms [17, 27] use nonlinear optimiza-
tion. While nonlinear optimization is a powerful tool, it is
also very hard to set up and it is not really possible to know
if the proposed solution is close to the global optimum.

Sub-manifolds in color images Similarly to previous work
our algorithm is beneficial if the color distribution in the
original RGB image contains sufficient complexity. Some
color images are simple enough so that the simple conver-
sion with Photoshop is sufficient. Even though our algorithm
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is especially suitable for color distributions that exhibit local
or global lower dimensional manifolds, we found the output
to be meaningful for all input images.

Limitations The algorithm has several limitations and
challenges. First, the sub-manifold detection algorithm uses
a k-nearest-neighbor algorithm (KNN) to find neighbors for
each color vector in color space. KNN has some known
disadvantages: a fixed number of k might not work well
on all data sets; KNN search becomes slow in high di-
mensions. It might be possible to improve results using an
adaptive KNN sampling algorithm. This typically comes
at the cost of implementation speed. It might actually be
more useful to take the opposite approach and use a fast
approximate k-nearest-neighbor algorithm instead. The sec-
ond challenge is the memory consumption of the algorithm.
Part of the problem arises from our implementation in Mat-
lab. However, it would be worthwhile to explore more ag-
gressive sub-sampling and clustering strategies for rows and
columns.

8 Conclusions

In this paper we explained the ISOMAP algorithm and used
it for color image to grayscale conversion. We cast the prob-
lem into a dimension reduction problem that has a simple
parameter for users to control the level of contrast enhance-
ment naturally. The speed of the algorithm is fast and the
quality is competitive with respect to the state-of-the-art
global color-to-gray algorithms. There are several interest-
ing avenues for future work. First, we want to implement an
out of core algorithm for the mapping, so that a high quality
reference solution can be computed for very large images.
Second, based on the current solution, we want to improve
the quality of the mapping. We are also interested in algo-
rithms for preprocessing textures and shaders in computer
games to assist color-blind users.
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