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Abstract—One of the most important issues for researchers de-
veloping image processing algorithms is image quality. Methodical
quality evaluation, by showing images to several human observers,
is slow, expensive, and highly subjective. On the other hand, a vi-
sual quality matrix (VQM) is a fast, cheap, and objective tool for
evaluating image quality. Although most VQMs are good in pre-
dicting the quality of an image degraded by a single degradation,
they poorly perform for a combination of two degradations. An
example for such degradation is the color crosstalk (CTK) effect,
which introduces blur with desaturation. CTK is expected to be-
come a bigger issue in image quality as the industry moves toward
smaller sensors. In this paper, we will develop a VQM that will
be able to better evaluate the quality of an image degraded by a
combined blur/desaturation degradation and perform as well as
other VQMs on single degradations such as blur, compression, and
noise. We show why standard scalar techniques are insufficient to
measure a combined blur/desaturation degradation and explain
why a vectorial approach is better suited.We introduce quaternion
image processing (QIP), which is a true vectorial approach and has
many uses in the fields of physics and engineering. Our new VQM
is a vectorial expansion of structure similarity using QIP, which
gave it its name—Quaternion Structural SIMilarity (QSSIM). We
built a new database of a combined blur/desaturation degradation
and conducted a quality survey with human subjects. An extensive
comparison between QSSIM and other VQMs on several image
quality databases—including our new database—shows the supe-
riority of this new approach in predicting visual quality of color
images.

Index Terms—Color image processing, hypercomplex numbers,
image quality index, quaternion image processing (QIP).

I. INTRODUCTION

I MAGE quality is the main factor in choosing the best al-
gorithm for processing a color image. An algorithm with

great computation efficiency would be rejected if the resulting
image quality is not sufficient. The quality of digital images
is degraded during acquisition, compression, transmission, pro-
cessing, and reproduction [1]. To control the quality of images,
it is important to be able to identify and quantify image quality
degradations.
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Fig. 1. Examples for FR quality index usage. (a) Compression algorithm as-
sessment. (b) Restoration algorithm assessment. (Full resolution in color can be
seen online in [34].)

Objective quality assessment, which is obtained by the visual
quality matrix (VQM), is preferred over subjective quality as-
sessment, which is obtained by the human observer. Subjective
quality assessment through psychological experiments, repre-
senting human visual system (HVS) behavior, is the best known
method for assessment of image quality. Nevertheless, HVS ex-
periments are slow and expensive and give different results for
the same set of inputs [2]. Objective quality assessment, on the
other hand, is faster and cheaper and always gives the same
score for the same set of inputs. Subjective quality assessment
databases are available on the net [3]–[5] and can be compared
to the objective score of the VQM.
In this paper, we focus on a full-reference (FR) color image

VQM. The degraded image is compared with a reference
image , which is considered to have “perfect quality,” and
difference mean opinion score (DMOS) [6] is created to repre-
sent the degradation score.
A typical use for evaluation of such algorithms, with an FR

VQM, is shown in Fig. 1. Evaluation of the quality performance
of a compression algorithm [see Fig. 1(a)] can done by com-
paring the compressed image with the reference image. Evalua-
tion of a restoration algorithm [see Fig. 1(b)] is done by imple-
menting the restoration on a distorted version of the reference
image, such as blur or desaturation, and comparing the restored
image with the reference image.
Every color pixel is composed from two perpendicular vec-

tors, namely, luminance vector LV and chrominance vector CV,
as shown in Fig. 2. Thus

LV CV LV CV (1)

where LV ,1 and CV LV.
HVS is much more sensitive to light intensity changes than

it is to chrominance changes [7] and is also more sensitive to
contrast than to mean shift [8]. The aforementioned facts are

1We chose to work in RGB color space, but one may also use our convention
in YCbCr, Yuv, CIELAB, or any other tristimulus color space.
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Fig. 2. (a) Luminance vector LV and chrominance vector CV in . (b)

Looking above on CV. (c) Color image LV CV . (d) Gray-scale image LV .
(Full resolution in color can be seen online in [34].)

suspected to be the reason why gray-scale VQMs (on the lu-
minance vector) are still being extensively used and developed
[9]–[13].
We will now review some of the existing state-of-the-art

VQMs that are relevant references to our work. Singular value
decomposition (SVD) is a method of transforming an image
into its singular values, which is similar to the well-known
eigenvalues from linear algebra. A gray-scale VQM based on
SVD is described in [14]. This method divides each gray-scale
image into 8 8 blocks and performs SVD transform to pro-
duce a singular value block. A new VQM based on the divisive
normalization (DN) technique has been recently proposed in
[15]. DN is based on a model that describes the early visual
processing in the V1 cortex. Degraded and reference images
are put into a pipeline transform made of wavelet transform
, contrast sensitivity gain , and DN response to produce
the difference image . The final score is
computed using nonlinear summation.
Structural SIMilarity (SSIM) [16] is a widely used VQM2 that

has many versions, including a scaling version [17], a wavelet
version [18], and a perceptual version [19]. Many researchers
chose to combine the SSIM result with other measurements in
order to expand it into color. Bianco et al. [20] combined an
SSIM error map, which was preprocessed with a contrast sen-
sitivity function (CSF), with CPSNR and a region-of-in-
terest map using particle swarm optimization. Lee and Horiuchi
[21] preprocessed each image with a CSF in the S-CIELAB
color space and then performed SSIM on each color channel,
which was averaged to give the final result. Shi et al. [22] com-
bined SSIM with CPSNR using weighted addition, 60%
SSIM, and 40% CPSNR ; they made a similar attempt in
[23]. A comparison of some of the aforementioned VQMs is
done in Section III.
Gray-scale degradation mainly affects the size of the lumi-

nance vector, for example, blur and compression. Chrominance
degradation mainly affects the size of the chrominance vector,
for example, desaturation. Combined degradation affects both
the luminance and chrominance vectors simultaneously, i.e.,

LV LV

CV CV (2)

where LV LV LV, and CV CV CV.
A need for a combined VQM arose when we wanted to mea-

sure a restoration algorithm for the color crosstalk (CTK) ef-

21873 cites according to Google scholar.

Fig. 3. Crosstalk effects in (a) old technologies (35 m) and (b) current sensors
(18 m and 13 m) have color desaturation. (c) Future sensors will probably
have a combined degradation of blur and desaturation. (Full resolution in color
can be seen online in [34].)

fect. CTK, in a CMOS image sensor, is a spatially variant blur
kernel that currently degrades images by color desaturation [24],
as shown in Fig. 3(b). It is expected that, in the future, smaller
sensors will have a larger CTK kernel, which will introduce
a combined degradation of blur and desaturation, as shown in
Fig. 3(c).
In this paper, we suggest building a combined VQM whose

results are better correlated with human subjective tests and is
able to work on images degraded by desaturation, blur, or a com-
bination of both, as shown in Fig. 3. In addition, our new VQM
has fair performance on all the other types of degradation in
comparison with common state-of-the-art VQMs.
This paper is organized as follows: Section II explains our

work, Section III shows the testing we conducted to prove its
efficiency, and Section IV gives the conclusions and future work
to be done.

II. COMBINED DEGRADATION MEASUREMENT

Here, we present the problem we tried to solve, which led
us to our solution. The main aim of our research was to devise
an automatic VQM that will evaluate the quality of an image
degraded by the crosstalk effect. Because CTK is a combined
degradation that combines blur with desaturation, we first tried
using current state-of-the-art VQMs and did not get the result we
wanted. In Section II-A, we show why it was difficult to use ex-
isting VQMs to measure a combined degradation. Section II-B
presents the tool used in our solution, and Section II-C presents
our new VQM.

A. Measuring Combined Degradation With Current VQMs

We choose to divide current state-of-the-art VQMs into three
main categories.

• Gray-scale VQMs—measuring the change in LV . Gray-
scale VQMs, such as mean-square error, peak signal-to-
noise ratio (PSNR), SVD [14], and SSIM [16], [25], per-
form quality measurement on the size of the luminance
vector and ignore the impact of color on image quality.
These VQMs are able to predict the quality results for
degradations on the luminance vector such as blur and
compression noise but fail in predicting changes such as
desaturation of color.

• Chrominance VQMs—measuring the change in CV .
Chrominance VQMs, such as colorfulness [26], perform
measurement on the size of the chrominance vector (de-
saturation) and thus ignore the impact of luminance on
image quality. Although they are able to predict the quality
results for degradations on the chrominance vector such
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as desaturation, saturation, and color noise, they fail in
predicting changes such as blur and compression noise on
the luminance vector because they ignore the luminance
vector impact.

• Combined VQMs—measuring the change in . In our
opinion, a combined VQM should measure three types of
degradations, with good correlation to the human opinion
score:
1) luminance-only degradations, such as blur;
2) chrominance-only degradations, such as desaturation;
3) combined luminance–chrominance degradations, such
as blur combined with desaturation.

To the best of our knowledge, we have not encountered a
VQM that performs well on a combined degradation and
gives an adequate match to human opinion. Some can-
didates for such a VQM were DN [15] and color SSIM
(CSIM) [21].
We chose a SSIM VQM as a starting point for our work
because it is well known for predicting human score lu-

minance vector LV well,3 and adding color measurement
to it would produce a better combined degradation mea-
surement. Although this paper shows a color adaptation of
a gray-scale VQM, i.e., SSIM, we believe that this frame-
work can be used to adapt other gray-scale VQMs to color.
One naive approach to expand existing VQMs into color
is through linear combination of the separate results of
each color space. We call this approach the dot-product ap-
proach and mark it as . For any VQM, this approach can
be written as

(3)

where is any gray-scale VQM that we want to expand
to color, is a VQM measurement on one of
the color channels— , , or —where , , and
are subparts of color vectors and . In our case,
SSIM, which is an expansion of SSIM to color, i.e.,

CSIM. Thus

CSIM SSIM SSIM

SSIM (4)

One of the main subparts of SSIM, which will be reviewed
in Section II-C, is the scalar cross correlation, which we

mark as . If we consider a single pixel in a color
image, a scalar cross correlation simplifies into

(5)

The final result of (5) is a dot product between the two color
vectors, which explains why we call the method presented
in (3) the dot-product approach.

3Most papers we have encountered compare themselves to its results

Fig. 4. Simple test case, which represents combined degradations from (a) orig-

inal pixel with LV

and CV into (b) with

LV and CV , (c)

with LV and CV , and (d)

with LV and CV . (Full resolution in color
can be seen online in [34].)

Our main claim is that the dot-product approach is insuf-
ficient for measuring combined degradations in luminance
and chrominance. To prove our claim, we consider a simple
case of a synthetic image, as shown in Fig. 4(a),4 con-

taining a single-color pixel LV CV ,
and degrade it with a combined degradation as in (2) to

produce LV CV . We wanted to
test three degradation levels: with and

, as shown in Fig. 4(b); with and
, as shown in Fig. 4(c); and with

and , as shown in Fig. 4(d). This case is very
common when combined blur and desaturation are intro-
duced because blur often brightens dark areas and desat-
uration makes , , and values become closer to their
values.
Calculating the scalar correlation between and its de-
graded versions using (5), we get almost the same re-
sult for all three images, i.e., 0.353. As one can clearly no-
tice, our eyes can sense the difference between the images,
whereas the scalar cross correlation cannot, thus producing
low correlation with our visual score.
Our solution to this problem came from the origin of
modern vector analysis, which will be reviewed in the
following section.

B. QIP

Here, we will review the mathematical framework used to
develop our new VQM—quaternion image processing (QIP).
Using QIP, researchers expanded common image processing
scalar tools, such as Fourier transform [27], correlation [28], and
edge detection [29], into color vectors. This approach treats each
color pixel as a single quaternion number and has relative low
complexity in comparison with other vector approaches [29].
Quaternion space is the origin of modern vector analysis. It

was first presented by Hamilton [30] 160 years ago. Hamilton
is the inventor of the word “vector,” the dot product, and the
cross product, which were derived from quaternion multiplica-
tion. Quaternion use was widespread until the beginning of the
twentieth century (Maxwell’s equations were first formulated
in quaternions). Later on, quaternions were replaced by modern
vector analysis and have been long forgotten. In recent years,

4This example is in standard RGB color space but can be also illustrated in
YCbCr, CIELAB, or any other tristimulus color space.
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scientists have cleared the dust off quaternions. With the use of
quaternions, researchers found a more efficient way to calculate
rotations in 3-D space. Modern applications for quaternions are
found in computer graphics, physics, and aerospace flight dy-
namics
A quaternion number has a real part and three imagi-

nary parts and can be written as

(6)

where , and , , and are its basic elements.
It is common to refer to in (6) as the quaternion scalar part,

which is denoted by , and to as its vector part,
which is denoted by . In the case where , the quaternion
number is called a pure quaternion. In this paper, color pixels
will be represented as a pure quaternion number .
Addition and multiplication of quaternion numbers are asso-

ciative as in familiar algebra. Multiplication is, however, not
commutative and defined by the product rule of its basic ele-
ments, i.e.,

(7)

and by the regular use of the distributive law.
The quaternion conjugate is defined by

(8)

The quaternion modulus is defined by

(9)

Note that these definitions are consistent with regular complex
numbers for any case where two of the three imaginary coeffi-
cients are zero, e.g., .
Let be pure quaternion numbers, i.e.,

, and let and be their vector parts, respectively.
Their multiplication is defined by the following standard quater-
nion multiplication:

(10)

where is the standard dot product, and is the vector cross
product. Vectorial scalar and cross multiplication were obtained
by using the quaternion universal law given in (7). It is shown
that any pure vector multiplication consists of two
parts—its scalar part and its vector part

.
When measuring a multiplication relation between two vec-

tors, as in the cross-correlation product, one should take into ac-
count both cross product and dot product as in (10). The reason
for this is that when performing a dot product between two vec-
tors, as in (3) and (5), we measure only part of the energy dif-
ference between the vectors.
The field of QIP was first introduced by Sangwine [31]

and has extensively expanded in the last decade. Sangwine

Fig. 5. Artificial image with luminance LV sinusoidally varying with from
left to right in (a), marked as the continuous wave in (b). In this case, SSIM
components are as follows: average luminance , marked as dashed line in

(b); LV (ac part), marked as the continuous line in (c); and contrast
component, marked as the dashed line in (d).

presented a holistic discrete Fourier transformation that treats a
color pixel as a single number. He defined each color pixel as
a pure quaternion number, i.e.,

(11)

where , , and represent red, green, and
blue values, respectively, and is the pixel location.
From that, he defined a 3-D quaternion Fourier transform. This
transform, which has many other versions, was later expanded
by Said et al. to six dimensions in [32].
We chose quaternion algebra because it holds an implemen-

tation of vector cross correlation [28], as will be reviewed in
Section II-C.

C. Developing QSSIM

SSIM VQM has three parts, and to illustrate them, we have
constructed an artificial example, as shown in Fig. 5(a), which

has luminance LV sinusoidally varying with from left to right,
marked as the continuous wave in Fig. 5(b).
1) —marked as the dashed line in Fig. 5(b).

2) LV —marked as the continuous sine wave in
Fig. 5(c).

3) Contrast —marked as the dashed line in Fig. 5(d).
Borrowed from electrical terminology, we chose to call the

dc part and LV the ac part. Together, they form the scalar
cross-correlation part— —which will be reviewed at
the end of this section.
Our color expansion named quaternion SSIM (QSSIM) has

three parts, and to illustrate them, we have constructed an artifi-

cial example, which has luminance LV and chrominance CV
sinusoidally varying with from left to right, as shown in
Fig. 7(a) and its scatter plot in Fig. 7(e). Another artificial ex-
ample is given in Fig. 8.
1) —marked as the center of the scatter plot in the exam-
ples in Fig. 8(a).

2) —shown as the scatter plot in Fig. 8(b).
3) Contrast —marked as the transparent sphere in Fig. 8(b).
We now go over each subpart of SSIM and explain how we

expanded them to QSSIM color VQM.
The SSIM gray-scale average, which we define as the dc part,

is calculated by averaging luminance vector LV over an image
area, i.e.,

dc LV (12)
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Fig. 6. Artificial example that has the same color object (ac part) from Fig. 7(a)
with different background lights (dc part). (a) Red background. (b) Green back-
ground. (c) Blue background. Their matching scatter plots are shown in (d), (e),
and (f), respectively. (Full resolution in color can be seen online in [34].)

Fig. 7. Artificial example with a constant background (dc part) with different
degraded objects (ac part). (a) Full-color object. (b) Object with low color con-
trast. (c) Object with low luminance contrast. (d) Object with combined degra-
dations. Their matching scatter plots can be seen in (e), (f), (g), and (h), respec-
tively. (Full resolution in color can be seen online in [34].)

where LV is the luminance vector value of the image, and
and describe the pixel location. A measuring example for the
dc part of a synthetic image shown in Fig. 5(a) and its view pre-
sented as a sinus wave in Fig. 5(b) can be seen as the dashed line
in Fig. 5(b). In this example, the dc part is a constant value that
does not change over a certain area and will be always greater

than zero, i.e., dc sup LV —where sup LV is the max-
imum possible value for luminance. In a gray-scale image, this
is the background light.
Our expansion to color vector average, which was defined

in (12), was done by calculating the average of each color
channel— , , and —separately and adding them to-

gether— . Because vectors are
a subspace of quaternions, the above can be also defined in
quaternions

dc (13)

The average color is also called the centroid of the color scatter
plot, which is now a 3-D vector in color space. In a color
image, the dc part is the background light, which has brightness
and color.
To illustrate we have constructed an artificial example that

has the same object from Fig. 7(a) with different background
lights—red in Fig. 6(a), green in Fig. 6(b), and blue in Fig. 6(c).

Fig. 8. Subparts of QSSIM. (a) DC part of a color scatter plot. (b) AC part,
marked as ; contrast, marked as .

Another example for a scatter plot with an indicator of the color
dc part is shown in Fig. 8(a) and is placed at the center of
mass for the scatter plot.
Subtracting the background light (dc part) from the pixel will

reveal the object, and we defined it as the ac part. The SSIM
gray-scale ac part is defined as

ac LV dc LV (14)

where dc is defined in (12). The object without the background
light contains all the information needed for quality evaluation,
and the ac part, which is marked as the continuous sinus wave
in Fig. 5(d), is the object without its background light. Notice
that the ac part can have positive or negative values.
Our expansion to the color ac part is defined as

ac dc (15)

where dc is defined in (13). The ac part of a color image is the
color object without its background colored light. To illustrate

, we have constructed an artificial example that has
different objects (ac part) with the same background (dc part),
as shown in Fig. 7(a). Another example for a scatter plot with
an indicator of the color ac part is shown in Fig. 8(b),
which is a scatter plot with its center of mass at the axis origin.
SSIM gray-scale contrast is the average vector size of the ac

part, i.e.,

ac (16)

where ac is defined in (14). An image having high luminance
contrast is considered to have better quality than a low-contrast
image. A simplified 1-D version of (16) is shown in Fig. 5(d).
Our expansion to color contrast was done using stan-

dard vector analysis by calculating (14) for each color
channel—ac , ac , and ac —and then calculating

ac , where

ac ac ac ac is the vector size of
ac ac ac ac . As in the case of average
color, the above can be also defined in quaternions. Thus

ac (17)
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where ac is defined in (15). An artificial example of a scatter
plot with an indicator of is shown in Fig. 8(b) as the trans-
parent sphere inside the scatter plot of .
Color contrast is now an indicator for three image quality

degradation factors.
1) Luminance contrast—the amount of brightness span; a
degradation example is shown in Fig. 7(c) and (g).

2) Color contrast (also known as colorfulness)—the amount
of color in an image; a degradation example is shown in
Fig. 7(b) and (f).

3) Combined contrast (color and luminance)—a degradation
example is shown in Fig. 7(d) and (h).

To illustrate the importance of the three contrast degradation
types, we constructed an artificial example, with a degraded
version of the ac part from Fig. 7(a), luminance contrast degra-
dation in Fig. 7(c), color contrast degradations in Fig. 7(b),
and combined degradation in Fig. 7(d). The aforementioned
example shows why we think these degradations are important
factors when measuring the quality of a color image, in which
the quality of Fig. 7(d) seems lower than that of Fig. 7(c). This
measurement capability is the main reason for using quaternion
in our work.
The main part in SSIMmeasuring the difference between two

gray-scale images is the scalar cross correlation, which is de-
fined by

ac ac (18)

where ac is defined in (14).
Our expansion to color cross correlation, which is the main

reason for using quaternions in our work, was defined in [28] as

ac ac (19)

where ref and deg are the reference and degraded images, re-
spectively, is quaternion conjugate defined in (8), and ac

, where is the dc part (also known
as the centroid of the background light).
If we take a single pixel, as in the example of Fig. 4, and take

into account quaternion multiplication, from (10), (19) reduces
to

(20)

The aforementioned results show that a vector correlation is
composed of two parts, namely, scalar correlation and

cross correlation , which form color correlation .
We can now explain why we failed in measuring a combined

degradation, as presented in Fig. 4, by saying that using scalar

cross correlation, as in (5), measures only part of the vector cor-
relation and thus lacks the ability to get good results for all types
of degradations.
Using a quaternion color correlation, given in (20), for the

example given in Fig. 4, we get , ,
and , which shows a quality difference between
the images.
We believe that (19) is the key for the success of our new

VQM because it measures both cross and dot products of two
vectors and covers every type of change between the color vec-
tors:
1) luminance degradation—as the example in Fig. 7(c);
2) chrominance degradation—as the example in Fig. 7(b);
3) combined degradation—as the example in Fig. 7(d).
This leads to the QSSIM final version,5 which was composed

to be the same as SSIM but with quaternion subparts,6 i.e.,

QSSIM

D. QSSIM Connection to SSIM

SSIM is a special case of QSSIM because the latter mea-
sures direction and size and the formermeasures only size. Here,
we will show how we can compress QSSIM into gray-scale
SSIM and why, at the same time, SSIM cannot be expanded
into QSSIM.
We will now mathematically prove why a linear combination

of SSIM, as suggested in Section II-A, cannot give QSSIM.
Lemma 1:

QSSIM SSIM SSIM SSIM (21)

is true for any values of , , and when measuring two dif-
ferent color images.

Proof: Our proof is done on a single-color pixel but can be
expanded into an entire color image. Because and

(see explanation in Section II-C), we can divide
(21) by the terms connected to these elements and get

Because we are dealing with a single-color pixel, we can sim-
plify using (10) and get

The minus sign turns into a plus sign because we measure
only the size of QSSIM. This leads us to

We know that

5Download it at http://www.ee.bgu.ac.il/kolaman/kolaman2011/.
6We chose to implement QSSIM in RGB color space, but it can also be used

in YCbCr, CIELAB, or any other tristimulus color space
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Fig. 9. Subjective experiment samples of (a) reference image LV CV

and its degraded versions with (b) CV CV, (c)

CV CV, (d) CV CV, (e)

CV CV, (f) CV CV, and (g)

CV CV. (Full resolution in color can be seen online in [34].)

TABLE I
VQM COMPARISON USING THE LINEAR CORRELATION COEFFICIENT FOR

OUR DATABASE

which leads us to

Although one may find specific values of , , and for
which (21) may not be true, these specific values will not be
true for all the other cases.
Adapting QSSIM into gray scale and getting the same results

as SSIM can be done, because in this case, term in
the color correlation goes to zero and leaves the scalar correla-
tion. This can be done by scaling each color channel by and
inputting the gray image into QSSIM.

III. EXPERIMENTS AND TESTING

Here, we describe the experiment on human subjects to
test our hypothesis, in which we found an interesting connec-
tion between blur and desaturation. Testing and comparison
between QSSIM and other VQMs was done on external
databases, which shows the superiority of QSSIM over other
state-of-the-art VQMs.

A. Subjective Experiment of a Combined Blur/Desaturation
Degradation

Our main hypothesis is that a combined degradation of gray
scale and color, such as desaturation with blur in the crosstalk
effect, is an effect that can be measured well by our new VQM.
To prove that, we had to build a database that included combined
degradations of blur with desaturation.
Doing our initial testing, we found that there must be a big

enough difference between blurred images in order for the
experiment to succeed. We chose two types of Gaussian blur
degradations with and and combined them with

TABLE II
VQM COMPARISON USING THE RANK CORRELATION COEFFICIENT FOR

OUR DATABASE

three types of saturation levels, i.e., CV, CV, and CV.
We created two sets of degraded images: the first three images,
which are denoted by deg , deg , and deg , had a Gaussian blur
with , and the second triplet, which are denoted by deg ,
deg , and deg , had . Each triplet has one full-color

image with blur only and two desaturated images with CV

and CV, thus creating six degraded images for each source
image, i.e.,

LV CV

BLR LV CV

BLR LV CV

BLR LV CV

BLR LV CV

BLR LV CV

BLR LV CV (22)

where BLR LV is a Gaussian blur with variance
of . We expected to get a lower quality score as the image

number increased, i.e.,

(23)
where is the subjective quality score of a degraded
image number .
In our subjective experiment, we asked viewers, of both gen-

ders, with good eyesight and chromatic viewing capabilities (no
color blindness) to give a quality score to a degraded image in
comparison with its original image and produce a DMOS. Ex-
periments were conducted under the same viewing conditions
and a calibrated screen showing one of the original images,
taken from [33], next to a degraded version. Each viewer was
asked to view a set of 40 random image pairs, as shown in Fig. 9,
and to give a quality evaluation of the degraded image using a
slider with words describing quality. Slider position was then
translated to a score between 1 for a very bad image and 100
for a perfect image. A total of 880 images were viewed by 20
viewers, of whom three viewers were rejected by an outlier re-
jection test. To build the DMOS, we averaged the -score for
each viewer and normalized it to 1.
Results from the experiment, which are available online [34],

confirmed our hypothesis that blur and color desaturation have
a combined impact on image quality. We found that blur has a
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TABLE III
VQM COMPARISON USING THE LINEAR CORRELATION COEFFICIENT FOR THE

IVC DATABASE

TABLE IV
VQM COMPARISON USING THE RANK CORRELATION COEFFICIENT FOR THE

IVC DATABASE

TABLE V
VQM COMPARISON USING THE LINEAR CORRELATION COEFFICIENT FOR THE

TID DATABASE

stronger impact on image quality and that desaturation creates
subquality levels between two blurred images. This means that
the quality score of degraded images deg , deg , deg , deg ,
deg , and deg shown in Fig. (b)–(g), respectively, matched
(23).

B. Comparison Between QSSIM and Other VQMs

We compared our new VQM, i.e., QSSIM, against common
VQMs, such as color PSNR (CPSNR), SVD [14], and SSIM,
and two color state-of-the-art VQMs, such as a DN matrix [15]
and CSIM [22].7

7Other color VQM correlated poorly so that we chose not to present them in
our comparison tables

TABLE VI
VQM COMPARISON USING THE RANK CORRELATION COEFFICIENT FOR THE

TID DATABASE

TABLE VII
VQM COMPARISON USING THE LINEAR CORRELATION COEFFICIENT FOR THE

LIVE DATABASE

TABLE VIII
VQM COMPARISON USING THE RANK CORRELATION COEFFICIENT FOR THE

LIVE DATABASE

The tables present the correlation between VQM and DMOS
[6] results by calculating the Pearson’s linear correlation coeffi-
cient in Tables I, III, V, and VII and the Spearman’s rank corre-
lation coefficient in Tables II, IV, VI, and VIII. Correlation was
directly performed on the raw data from the VQMs.
Comparison was made on four different databases of sub-

jective HVS assessment. Tables III and IV belong to the IVC
database [5]. Tables V and VI belong to the TID database [4].
Tables VII and VIII belong to the LIVE database [3].

C. Analysis

Looking at Tables I and II, it is clear that our proposedQSSIM
outperforms all the other VQMs in our subjective experiment.
This confirms our hypothesis that QSSIM is able to measure
combined degradation of blur and desaturation. Further detail
can be extracted from the scatter plot and their fitting curves in
Figs. 10–12.
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Fig. 10. Scatter plot with the linear fitting curves for our subjective experiment [34]. (a) Our proposed QSSIM. (b) SSIM [16]. (c) DN [15]. (d) CISM [21]. (e)
SVD [14]. (f) CPSNR. (Full resolution in color can be seen online in [34].)

Fig. 11. Scatter plot with the linear fitting curves for LIVE subjective experiment [3]. (a) Our proposed QSSIM. (b) SSIM [16]. (c) DN [15]. (d) CISM [21]. (e)
SVD [14]. (f) CPSNR. (Full resolution in color can be seen online in [34].)

QSSIM also performs well on other databases [3]–[5].
Looking at Tables III, IV, and VIII, it is clear that QSSIM is
best correlated with HVS, outperforming other VQMs both
in the overall performance and in most degradation types. In
the linear case of Table VII, QSSIM is second best after DN.
Looking at Tables V and VI, it is difficult to determine which
VQM performs best. If we consider only the separate degra-
dation types and disregard ambiguous results, where it is hard
to determine which VQM is best, QSSIM clearly outperforms
other VQMs in 5 and CISM in 4, and CPSNR is best in 3 out
of 16 degradation types.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have developed a new VQM for color im-
ages that combines quality measurement for degradations in lu-
minance, chrominance, and a combination of both.

Our main claim is that such a VQM is necessary because
some degradation in color images, such as CTK, affects both
chrominance and luminance. We tested this hypothesis in a sub-
jective experiment on human subjects and proved that HVS is
sensitive to a combined degradation of blur and desaturation.
Our experiment showed that blur has a stronger effect on image
quality and that desaturation creates intermediate quality levels
between blurred images. In order for this to occur, the dif-
ference between Gaussian blur types must be above a certain
threshold.
Correlation measurements on our database showed that

QSSIM outperforms all other VQMs. We also showed how
well QSSIM performs on three other external databases in
comparison with several state-of-the-art VQMs.
This paper provides a framework for extending existing gray-

scale VQMs into color using QIP. We believe that future work
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Fig. 12. Scatter plot with the linear fitting curves for TID subjective experiment [4]. (a) Our proposed QSSIM. (b) SSIM [16]. (c) DN [15]. (d) CISM [21]. (e)
SVD [14]. (f) CPSNR. (Full resolution in color can be seen online in [34].)

may include similar extensions of other gray-scale VQMs. An-
other future work will include a more extensive experiment with
several types of Gaussian blur to determine the exact threshold
difference that allows this quality model to stay consistent.
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