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Abstract Every picture tells a story. In photography, the
story is portrayed by a composition of objects, commonly
referred to as the subjects of the piece. Were we to remove
these objects, the story would be lost. When manipulating
images, either for artistic rendering or cropping, it is cru-
cial that the story of the piece remains intact. As a result,
the knowledge of the location of these prominent objects
is essential. We propose an approach for saliency detection
that combines previously suggested patch distinctness with
an object probability map. The object probability map infers
the most probable locations of the subjects of the photograph
according to highly distinct salient cues. The benefits of the
proposed approach are demonstrated through state-of-the-
art results on common data sets. We further show the benefit
of our method in various manipulations of real-world pho-
tographs while preserving their meaning.

Keywords Image saliency · Image manipulation ·
Painterly rendering · Cropping · Mosaicing

1 Introduction

Is a picture, indeed, worth a thousand words? According to
a survey of 18 participants, when asked to provide a descrip-
tive title for an assortment of 62 images taken from [13], on
average, an image was described in up to four nouns. For
example, 94.44 % of the participants referred to the fore-
ground ship to describe the top-left image in Fig. 1, 50 %
referred to the background ship as well, 55.55 % mentioned
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the harbor and a mere 27.7 % pointed out the sea. In [15],
prediction of human fixation points was highly improved
when recognition of objects such as cars, faces and pedestri-
ans was integrated into their framework. This further shows
that viewers’ attention is drawn towards prominent objects
which convey the story of the photograph. It is clear from
these results that when manipulating images, in order to pre-
serve the meaning of the photograph, it is crucial that these
singled-out objects remain intact.

Our goal is the detection of pixels which are crucial in
the composition of a photograph. One way to do this would
be to apply numerous object recognizers, an extremely time-
consuming task, usually rendering the application unrealis-
tic. In this paper, we suggest the use of a saliency detection
algorithm to detect the said crucial pixels.

Currently, the three most common saliency detection
approaches are: (i) human fixation detection [5, 11, 14, 19],
(ii) single dominant region detection [10, 13, 16], and
(iii) context-aware saliency detection [9]. Human fixation
detection results in crude inaccurate maps which are inad-
equate for our needs. A single dominant region detection
is insufficient when dealing with real-world photographs
which may consist of more than a single dominant region.
Our work is mostly inspired by [9], but unlike them we de-
tect the salient pixels which construct the prominent objects
precisely, discarding their surroundings (see Fig. 2).

We propose an approach for saliency detection in which
we construct for each image a prominent-object arrange-
ment map, predicting the locations in the image where
prominent objects are most likely to appear.

We introduce two novel principles, object association
and multi-layer saliency. The object association principle
incorporates the understanding that pixels are not indepen-
dent and most commonly, adjacent pixels will pertain to the
same object. Utilizing this principle, we are able to success-
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Fig. 1 Story preserving artistic rendering (Top) “Ships near a harbor.”
(Top-right) Painterly rendering. Details of prominent objects are pre-
served (ships and harbor), while non-salient detail is abstracted away
using a coarser brush stroke. (Bottom) “Girl with a birthday cake.”
(Bottom-right) A ic using flower images. Non-salient detail is ab-
stracted away using larger building-blocks, whereas salient detail is
preserved using fine building-blocks

Fig. 2 Precise detection. Our algorithm detects mostly the objects,
whereas [9] detects also parts of the background

fully predict the location of prominent objects portrayed in
the photograph. In addition, we understand that the dura-
tion in which an observer views an image will affect the ar-
eas he regards as salient. We therefore, introduce a novel
saliency map representation which consists of multiple lay-
ers, each layer corresponding to a different saliency relax-
ation. We especially benefit from this multi-layer saliency

principle when creating different layers of abstractions in
our painterly rendering application.

In addition to these two principles, we incorporate two
principles suggested in [9]—pixel distinctness and pixel
reciprocity—for which we propose a different realization.
We argue that our realization offers a higher precision in a
shorter running time.

Our method yields three representations of saliency
maps: a fine detailed map which emphasizes only the most
crucial pixels such as object boundaries and salient detail;
a coarse map which emphasizes the prominent objects’ en-
closed pixels as well; and a multi-layered map which re-
alizes the multi-layer saliency principle. We demonstrate
the benefits of each of the representations via three exam-
ple applications: painterly rendering, image mosaicing, and
cropping.

Our contributions are threefold. First, we define four
principles of saliency (Sect. 2). Second, based on these prin-
ciples, we present an algorithm for computing the various
saliency map representations (Sects. 3, 4). We show empiri-
cally that our approach yields state-of-the-art results on con-
ventional data sets (Sect. 5). Third, we demonstrate a few
possible applications of image manipulation (Sect. 6).

2 Principles

Our saliency detection approach is based on four principles:
pixel distinctness, pixel reciprocity, object association and
multi-layer saliency.

(1) Pixel distinctness relates to the tendency of a viewer to
be drawn to differences. This principle was previously
adopted for saliency estimation by [4, 9, 13]. We pro-
pose a different realization obtaining higher accuracy in
a shorter running time.

(2) Pixel reciprocity argues that pixels are not independent
of each other. Pixels in proximity to highly distinc-
tive pixels are likely to be more salient than pixels that
are farther away [9]. Since distinctive pixels tend to lie
on prominent objects, this principle further emphasizes
pixels in their vicinity.

(3) Object association suggests that viewers tend to group
items located in close proximity, into objects [17, 20].
As illustrated in Fig. 3, the sets of disconnected dots are
perceived as two objects. The object association princi-
ple captures this phenomenon.

(4) Multi-layer saliency maps contain layers which corre-
spond to different levels of saliency relaxation. The top
layers emphasize mostly the dominant objects, while the
lower levels capture more objects and their context, as
illustrated in Fig. 4.
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3 Basic saliency map

The basis for all of our saliency representations is the Basic
saliency map. Its construction consists of two steps (Fig. 5):
construction of a distinctness map, D, based on the first and
second principles, followed by an estimation of a prominent
object probability map, O , based on the third principle. The
two maps are merged together into the Basic saliency map:

Sb(i) = D(i) · O(i), (1)

where Sb(i) is the saliency value for pixel i. Being a relative
metric, we normalize its values to the range of [0,1].

3.1 Distinctness map

We construct the Distinctness map in two steps: computation
of pixel distinctness, followed by application of the pixel
reciprocity principle.

Estimating pixel distinctness: The pixel distinctness estima-
tion is inspired by [9], where a pixel is considered distinct if

Fig. 3 Object association: Viewers perceive the left image as two ob-
jects. Our result (right) captures this

its surrounding patch does not appear elsewhere in the im-
age. In particular, the more different a pixel is from its k

most similar pixels, the more distinct it is.
Let pi denote the patch centered around pixel i. Let

dcolor(pi,pj ) be the Euclidean distance between the vec-
torized patches pi and pj in normalized CIE L*a*b color
space, and dposition(pi,pj ) the Euclidean distance between
the locations of the patches pi and pj . Thus, we define the
dissimilarity measure, d(pi,pj ), between patches pi and pj

as:

d(pi,pj ) = dcolor(pi,pj )

1 + 3 · dposition(pi,pj )
. (2)

Finally, we can calculate the distinctness value of pixel i,
D̂(i), as follows:

D̂(i) = 1 − exp

{
−1

k

k∑
j=1

d(pi,pj )

}
. (3)

While in most cases the vicinity of each pixel is similar to
itself, in non-salient regions such as the background, we ex-
pect to find similar regions which are also located far apart.
By normalizing dcolor by the distance of the two patches,
such non-salient regions are penalized and thus receive a low
distinctness value.

We accelerate Eq. (3) via a coarse-to-fine framework. The
search for the k most similar patches is performed at each
iteration on a single resolution. Then, a number of chosen
patches, Ñ , and their k̃ designated search locations are prop-
agated to the next resolution.

In our implementation, three resolutions were used, R =
{r, 1

2 r, 1
4 r}, where r is the original resolution. An example

Fig. 4 Our multi-layer saliency.
Each layer reveals more objects,
starting from just the leaf, then
adding its branch and finally
adding the other branch

Fig. 5 Basic saliency map construction. The Basic saliency map, Sb

in (d), is the product of the Distinctness map, D in (b), and the Object
probability map, O in (c). While the Distinctness map (b) emphasizes

many pixels on the grass as salient, these pixels are attenuated in the
resulting map, Sb (d), since the grass is excluded from O (c)
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Fig. 6 Our coarse-to-fine framework

Fig. 7 Our method achieves a more accurate boundary detection in a
shorter running time than that of [9]

Table 1 Average run-time on images from [2]

Method Average run-time per image Relative speedup

[9] ∼52 seconds –

Ours ∼23 seconds 2.26

of the progression between resolutions is provided in Fig. 6.
In yellow we mark the patch centered at pixel i at each reso-
lution. At resolution r/4, we mark in red the kr/4 most sim-
ilar patches. These are then propagated to the next resolu-
tion, r/2. The kr/2 most similar patches in r/2 are marked
in green. Similarly, we mark in cyan the next level. We set
kr/4 = kr = 64, kr/2 = 32 and k̃r/4 = k̃r/2 = 16.

The Ñ most distinct pixels are selected and propagated
to the next resolution using a dynamic threshold calculated
at each resolution. Pixels which are discarded at resolution
Rm will be assigned a decreasing distinctness value for all

higher resolutions (D̂l(i) = D̂m(i)

2m−l ∀l < m).
We benefit from our efficient implementation not only in

run-time but also in accuracy (Fig. 7) for two reasons. First,
unlike [9] that deal with high-res images by reducing their
resolution to 250 pixels long, our efficient implementation
enables to process higher resolution and hence detects fine
details more accurately. Secondly, our coarse-to-fine process
also reduces erroneous detections of noise in homogeneous
regions. In Table 1 we show that our method is faster than
that of [9], when tested on a Pentium 2.6 GHz CPU with
4 Gb RAM. Later we show quantitively that our approach is
also more accurate.

Consideration of pixel reciprocity: Assuming that distinctive
pixels are indeed salient, we note that pixels in the vicinity of
highly distinctive pixels (HDP) are more likely to be salient

as well. Therefore, we wish to further enhance pixels which
are near HDP.

First, we denote the H % most distinctive pixels as HDP.
Let dposition(i,HDP) be the distance between pixel i and its
nearest HDP. Let dratio be the maximal ratio between the
larger image dimension and the maximal dposition(i,HDP),
and cdrop-off ≥ 1 be a constant that controls the drop-off rate.
We define the reciprocity effect, R(i), as follows:

γ (i) = log
(
dposition(i,HDP) + cdrop-off

)
,

δ(i) = dratio − γ (i)

maxi{γ (i)} ,

R(i) = δ(i)

maxi δ(i)
. (4)

Finally, we update the Distinctness map with the reci-
procity effect:

D(i) = D̂(i) · R(i). (5)

3.2 Object probability map

Next, we wish to further emphasize the saliency values of
pixels residing within salient objects. Thus, we attempt to
infer the location of these prominent objects by treating spa-
tially clustered HDP as evidence of their presence.

HDP clustering: HDP are grouped together when they are
situated within a radius of 5 % of the larger image dimen-
sion, of each other. Each such group is referred to as an
object-cue.

To disregard small insignificant objects or noise, we ex-
clude object-cues with too few HDP or too small an area.
Object-cues whose number of HDP is smaller than one stan-
dard deviation from the mean number of HDP per object-
cue, are eliminated. Moreover, object-cues whose convex
hull area is smaller than 5 % of the largest object-cue, are
also disregarded.

Constructing the object probability map: To construct the
object probability map, O , we first compute for each
object-cue, o, the center of mass, M(o), as the mean
of the object-cue’s HDP coordinates, {[X(i), Y (i)]|i ∈
HDP(o)}, weighted by their relative distinctness values,

D(i): M =
∑

i∈HDP(o) D(i)·[X(i),Y (i)]∑
i∈HDP(o) D(i)

. In order to accommo-

date non-symmetrical objects, we construct a non-symmetri-
cal probability density function (PDF) for each object-cue.
According to our experiments, a PDF consisting of four
Gaussians, one per object-cue’s quadrant, suffices.

Let μx and μy be the object-cue’s center of mass coor-
dinates. Each Gaussian is determined by dx and dy , the dis-
tances to the farthest point in the quadrant. For each quad-
rant, q , a Gaussian PDF is defined as:

Gq(x, y) = a · e−1/2·(x−μx)Σ−1(y−μy). (6)
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Fig. 8 Assuming the red star
marks the center of mass
calculated, the four Gaussian
PDFs offer an adequate
coverage of a non-symmetrical
object

The covariance matrix, Σ , is defined as:

Σ =
[

s · dx 0

0 s · dy

]
, (7)

where s controls the aperture.
Thus, the resulting PDF, G(x,y), is defined as:

G(x,y) = {
Gq(x, y)|(x, y) ∈ Qq

}
, (8)

where Qq are the pixels that lie in quadrant q (Fig. 8).
Finally, we define the object probability map, O , as a

mixture of these non-symmetrical Gaussians.
In Fig. 9 we present an example of our intermediate maps

and their resulting saliency map. To discern between the
contribution of each of the dominant objects in Fig. 9(a) to
the object probability map in Fig. 9(b), we illustrate the two
PDFs in different colors. Each of the PDFs shown are ad-
justed to best fit their designated dominant object; the PDF
associated with the dog (colored in purple) is horizontally
elongated due to the dog’s pose, while the cow’s PDF (col-
ored in orange) is vertically elongated. In Fig. 9(c) we color
the HDPs that contribute to each of the PDFs accordingly.
Note how small objects and noisy background, detected in
our distinctness map (Fig. 9c), are discarded with the help
of our object probability map to produce a pleasing saliency
map (Fig. 9d).

4 Saliency representations

Due to numerous needs of various applications, a single
saliency map representation is insufficient. Some applica-
tions (e.g. image mosaic) require a fine detailed outline of
salient areas while other applications (e.g. cropping) require
a more coarse and definitive representation. Some applica-
tions, such as our painterly rendering framework, might even
require more than a single saliency layer.

Fine saliency map: Our fine saliency representation is de-
fined as the Basic saliency map obtained in Sect. 3 (Fig. 10,
center).

Coarse saliency map: In order to create a more “filled”
saliency map (Fig. 10 right), we incorporate the method
proposed in [6] with our Basic saliency map. We do so by
combining it with the product of a dilated version (using a

Fig. 9 Given an input image with separated multiple dominant ob-
jects (a), our method successfully predicts their locations (b). Note
that while small or insignificant objects, such as the cows found in the
top-left corner, might be detected as salient by our distinctness mea-
sure (c), they are discarded due to their size. The resulting saliency
map is shown in (d)

Fig. 10 Fine and coarse saliency map representations

15-pixel-radius long disc kernel) of the Basic saliency map,
D{Sb}, and a region-based contrast approach (see [6]), RC:

Scoarse(i) = Sb(i) + D{Sb}(i) · RC(i). (9)

Multi-layer saliency maps: Painters use various techniques
to guide our attention when viewing their art. One such tech-
nique is the use of varying degrees of abstraction. For in-
stance, in the paintings in Fig. 11, the prominent objects are
highly detailed while their surroundings and background are
painted with increasing levels of abstraction.

According to the multi-layer saliency principle, we can
create multiple saliency layers with varying relaxations, thus
corresponding well to the varying degrees of abstraction
used in paintings.

We model these layers using three variations, each cre-
ating a different effect. First, we relax our HDP selection
threshold, effectively selecting more objects. Second, we
group farther HDP together into object-cues, thus empha-
sizing more of each object. Finally, we increase the ef-
fect of the pixel reciprocity map, resulting in more area of
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Table 2 Data sets used for evaluation

Data set # of images Category Ground truth

[13] 62 Natural scenes Four subjects “selected regions where objects were present”

[15] 100 Urban scenes Eye-tracking data from 15 people

[2] 1000 Dominant object Accurate contour of dominant object

[2] (1/3 saturation) 1000

Fig. 11 These paintings by Chagall and Munch include several layers
of abstraction

the objects and their immediate context being marked as
salient.

To control the number of HDP selected, we modify H—
the percentage of pixels considered as HDP. To influence
object association, we adapt s—the scale parameter that
controls the aperture of the Gaussian PDFs (Eq. (7)). Last,
we adjust cdrop-off that controls the reciprocity drop-off rate
(Eq. (4)). The result of modifying each of these parameters
is illustrated in Fig. 12.

5 Empirical evaluation

We show both quantitative and qualitative results against
state-of-the-art saliency detection methods. In our quanti-
tative comparison we show that our approach consistently
achieves top marks while competing methods do well on one
data set and fail on other.

Coarse saliency map: All the results in these experiments
were obtained by setting H = 2 %, cdrop-off = 20, and s = 1.

We compare our saliency detection on three common data
sets, those of [2, 13, 15] (refer to Table 2 for details regard-
ing the various data sets). In each of the data sets we test
against leading methods.

In data sets of [13] and [15], we test our method against
those of [6, 9, 13–15] (Fig. 13, top). It can be seen that
our detection is comparable with [15] and outperforms all
others. Unlike [15], our results are obtained without the
use of top-down methods such as face and car recogniz-
ers.

Next, owing to publicly-available results of [2] on their
data set, we test our method against that of [2] as well
(Fig. 13, bottom-left). The detection of [6] outperforms all

Fig. 12 Modification of the multi-layer saliency parameters generates
layers of varying degrees of detection. Smaller H implies fewer ob-
jects, hence the top branch is not detected. Smaller s implies less pixels
associated with an object-cue, hence part of the leaf is missed. Higher
cdrop-off implies lower relation between proximate pixels, therefore the
leaf boundary is more pronounced than its body

other methods on this particular data set since their approach
detects high-contrast regions. When applying their approach
to this data set after reducing the saturation levels to a third
of their original value (Fig. 13, bottom-right), their perfor-
mance is significantly reduced. Our approach suffers only a
minor setback on the adjusted data set.

Fine saliency map: Figures 2, 7 and 14 present a few qualita-
tive comparisons between our fine saliency maps and state-
of-the-art methods (see [1] for additional comparisons). It
can be seen that our approach provides a more accurate de-
tection.

Multi-layer saliency map: Since previous work did not
consider the multi-layer representation, comparison is not
straightforward. Nevertheless, to provide a sense of what
we capture, we compare our multi-layer representation to
results of varying saliency thresholds of [9]. All our re-
sults were obtained with the following fixed parameter val-
ues: Layer 1: H = 0.5 %, s = 1, cdrop-off = 2, Layer 2:
H = 0.7 %, s = 2, cdrop-off = 5, and Layer 3: H = 3 %,
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Fig. 13 Quantitive evaluation. (Top-left) Results on the 62-image data set of [13]. (Top-right) Results on the 100-image data set of [15]. (Bot-
tom-left) Results on the 1000-image data set of [2]. (Bottom-right) Results on same data set with saturation levels at a 1/3 of original value

Fig. 14 Qualitative evaluation of fine saliency. Our algorithm detects
the salient objects more accurately than state-of-the-art methods, mak-
ing our detection more suitable for image manipulations. Note that

since the model in [6] is based on region contrast, the results for these
particular two examples are not very good. Comparisons on complete
data sets are provided in Fig. 13

s = ∞, cdrop-off = 20. The layers for [9] were obtained by
thresholding at 10, 30, and 100 % of the total saliency (other
options were found inferior).

To quantify the difference in behavior we have selected
a set of 20 images from the database of [2]. For each image
we manually marked the pixels on each object, and ordered
the objects in decreasing importance. A good result should
capture the dominant object in the first layer, the following

object in the second layer and the least dominant objects in
the third. To measure this, we compute the hit rate and false-
alarm rate of each layer versus the corresponding ground-
truth object-layer. Our results are presented in Fig. 15. It can
be seen that our hit rates are higher than those of [9] at lower
false alarm rates.

Figure 16 compares the results qualitatively. It shows
that thresholding the saliency of [9] produces arbitrary lay-
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ers that cut through objects. Conversely, our multi-layer
saliency maps produce much more intuitive results. For ex-
ample, we detect the flower in the first layer, its branch in
the second and the leaves in the third.

6 Applications

In this section we describe three possible applications for
utilizing our saliency maps. The first, painterly rendering,
which employs our multi-layer saliency representation in or-
der to create varying degrees of abstraction. The second, im-
age mosaicing, makes use of our fine saliency representation
to accurately fit mosaic pieces. Lastly, we use our coarse
saliency representation as a cue for image cropping. All the
results in the paper were obtained completely automatically,
using fixed values for all the parameters.

Fig. 15 Hit rates and false-alarm rates of our multi-layer saliency
maps compared to thresholding the saliency of [9]. Our layers provide
better correspondence with objects in the image

6.1 Painterly rendering

Painters often attempt to create an experience of discovery
for the viewer by immediately drawing the viewer’s atten-
tion to the main subject, later to less relevant areas and so on.
Two examples of this can be seen in Fig. 11, where the dom-
inant objects and figures are drawn with fine detail, whereas
the background is abstracted and hence less observed.

Our multi-layer saliency maps facilitate the automatic re-
creation of this effect. Based on a photograph, we produce
non-photorealistic renderings with different levels of detail.
This is done by applying various rendering effects accord-
ing to the saliency layers. Our method offers a simplistic
bottom-up solution as opposed to a more complex high-level
approach such as in [21].

Single layer saliency has been previously suggested for
painterly abstraction [7]. In [12], layers of frequencies are
used instead. Our approach is the first to use saliency layers
for abstraction. By using the saliency layers as cues for de-
grees of abstraction, we are able to successfully preserve the
story of the photograph.

Given an image, we create a 4-layer saliency map: Fore-
ground, Immediate-surroundings, Contextual-surroundings
and Canvas. For each layer, we create a non-photo realistic
rendering of the image, based on its corresponding saliency
layer (Fig. 17). We suggest this method as a general frame-
work for painterly rendering enabling any non-realistic ren-
dering method to be applied to the different layers. To illus-
trate our framework, we use simplistic rendering tools as an
example.

In our demonstration we employ three standard tools:
Saturation, Texturing, and Brushing (further described
in [1]). Then, the layers are alpha-blended, one by one, to
create the final painterly rendering. The alpha map of each
layer is also based on the corresponding saliency layer.

Foreground: This layer should include only the most promi-
nent objects and preserve their sharpness and fine-detail.
The saliency layer, SFG, used for this layer is obtained by

Fig. 16 Our multi-layer saliency maps are meaningful and explore the
image more intuitively. This behavior is not obtained by thresholding
the saliency map of [9], which results in arbitrary layers. The layers

for [9] were obtained by thresholding their saliency map to include 10,
30 and 100 % of the total saliency (other thresholds produced inferior
results). This figure is best viewed on screen
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Fig. 17 Painterly rendering framework

Fig. 18 Painterly rendering. The fine details of the dominant objects
are maintained, abstracting the background

setting H = 2 %, cdrop-off = 20, s = 1. This layer is ren-
dered with saturation and very light texturing. To highlight
the salient details, the alpha map is computed as: αFG =
exp(3SFG).

Immediate surroundings: To capture the immediate sur-
rounding, the saliency layer SIS is computed with H = 2 %,
cdrop-off = 100, s = 2. SIS is used as the alpha map as well
(αIS = SIS). Saturation and texturing are both applied.

Contextual surroundings: The layer SCS, is obtained by set-
ting H = 3 %, cdrop-off = 100, and disabling s. Here, too,
SCS is used as the alpha map (αCS = SCS).

Canvas: The canvas contains all the non-salient areas. All
detail is abstracted away while attempting to preserve some
resemblance to the original composition. We apply brushing
and texturing.

Results: Figures 1 (top), 18, 19 provide a test of our results.
The fine details are maintained on the prominent objects,
while the background is more abstracted. In Fig. 19 we ap-
plied our painterly approach using the saliency of [9] (layers
defined as 10, 30 and 100 % of the total saliency). Using our
multi-layer representation we are able to better capture fine
details such as the eyes and nose and allow a smooth transi-
tion between salient and non-salient regions.

6.2 Image mosaic

Mosaic is the art of creating images with an assemblage of
small pieces or building blocks. We suggest the use of an as-
sortment of small images as our building blocks, in a similar
approach to [3].

We subdivide the original photograph into size-varying
square blocks. The size of the block is determined by the
value of saliency in that area. We use a quadtree decompo-
sition where a block is subdivided if the saliency sum of its
enclosed area is greater than 64. We also avoid blocks with a
width greater than 32 pixels or smaller than 4 pixels. Lastly,
we replace each block with an image with a similar mean
color value. Some results can be seen in Figs. 1(bottom),
20–21. In Fig. 20 we demonstrate how our accurate saliency
detection achieves better abstraction than that of [9] in non-
salient regions, while preserving salient detail.

6.3 Cropping

Content-aware media retargeting and cropping has drawn
much attention in recent years [18, 22]. We present a sim-
plistic cropping framework which makes use of the coarse
saliency representation. In our implementation, row and col-
umn cropping are performed identically and independently
of each other. For simplicity we refer to row cropping in
our illustration. Our approach consists of three stages: row
saliency scoring, saliency crossing detection, and crop loca-
tion inference.

Row saliency scoring: Each row is assigned the mean value
of the 2.5 % most salient pixels in it.

Saliency crossing detection: Assuming that a prominent ob-
ject consists of salient pixels surrounded by non-salient pix-
els, we search for all row pairs which enclose rows with
a Row saliency score greater than a predefined threshold
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Fig. 19 Painterly rendering comparison. Unlike [9], our approach better preserves fine details such as the eyes, nose and ears

Fig. 20 Image mosaicing
comparison. Our approach
better preserves the prominent
objects (dog & ball), while [9]
erroneously preserves the field
on the right and abstracts the
dog’s tail

Fig. 21 Image mosaicing. Salient details are preserved with the use of
smaller building blocks

thmid (thmid = 0.55). A pair of rows are considered if the
distance between them is at least 10 pixels and at least one
of the rows enclosed between them has a Row saliency score
greater than thhigh (thhigh = 0.7).

Crop Location Inference: The first and last row pairs de-
tected in the previous stage are used. Starting from the first
row of the first pair we scan upwards until we cross a row
with a Row saliency score less than thlow (thlow = 0.35).
We do the same for the last row of the last pair (scanning
downwards). The two rows found are set as the cropping
boundaries.

Example results of our method are presented in Fig. 22.
We compare our cropping method using our coarse repre-
sentation as cue for salient regions versus the use of the
saliency map of [9] as a cue map. It can be seen that our
saliency maps yield a more precise and intuitive cropping.

Using our approach we are able to successfully capture mul-
tiple objects (Fig. 22, top-center) as well as preserving the
“story” of the photograph (Fig. 22, bottom-center) by cap-
turing both object and context. We evaluate our results ac-
cording to a well-known correctness measure [8]. Given
a bounding-box Bs , created according to a saliency map,
and a bounding-box Bgt , created according to the ground-
truth, we calculate the cropping correctness according to
Sc = area(Bs∩Bgt )

area(Bs∪Bgt )
. We show that in both examples our crop-

ping leads to higher scores than [9].

7 Conclusions

We have presented a novel approach for saliency detection.
We introduced a set of principles which successfully de-
tect salient regions. Based on these principles, three saliency
map representations, each benefiting a different application
need, were demonstrated. We illustrated some of the uses
of our saliency representation on three applications. First, a
painterly rendering framework which creates a non-realistic
rendering of an image with varying degrees of abstraction.
Second, an image mosaicing tool, which constructs an im-
age using a data set of images. Lastly, a cropping tool that
automatically crops out the non-salient regions of an image.

Limitations: When applying the object probability map
we assume that the subjects of the image are not of highly
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Fig. 22 Examples of our cropping application

Fig. 23 Given an image consisting of prominent objects of highly
varying sizes (a), our object probability map might erroneously regard
the smaller objects (which were correctly detected as distinct (b)) as
insignificant and discard them (c)

varying sizes (allowed ratio of 1:20 between the smallest and
the largest prominent object). In cases where a very large
difference is found, our approach might erroneously regard
one of these objects as insignificant. In Fig. 23 we illustrate
such a case. This can be avoided by adjusting the allowable
difference in sizes between prominent objects. In our tests
we found that in most cases this assumption is reasonable.
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