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Abstract. A hardware/software partitioning methodology for improving performance in single-chip systems

composed by processor and Field Programmable Gate Array reconfigurable logic is presented. Speedups are

achieved by executing critical software parts on the reconfigurable logic. A hybrid System-on-Chip platform,

which can model the majority of existing processor-FPGA systems, is considered by the methodology. The

partitioning method uses an automated kernel identification process at the basic-block level for detecting

critical kernels in applications. Three different instances of the generic platform and two sets of benchmarks

are used in the experimentation. The analysis on five real-life applications showed that these applications

spend an average of 69% of their instruction count in 11% on average of their code. The extensive experiments

illustrate that for the systems composed by 32-bit processors the improvements of five applications ranges from

1.3 to 3.7 relative to an all software solution. For a platform composed by an 8-bit processor, the performance

gains of eight DSP algorithms are considerably greater, as the average speedup equals 28.
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1. Introduction

In past few years, academic [4, 9] and commercial [6, 7, 26, 28] single-chip plat-
forms emerged that employ processor(s) with Field Programmable Gate Array (FPGA)
logic. These System-on-Chip (SoC) platforms are mainly composed by 8-bit micro-
controllers, as in the ATMEL’s Field Programmable System-Level Integrated Circuit
(FPSLIC) [7], in Triscend’s E5 device [26] and 32-bit processors as in the Altera’s
Excalibur [6], in Xilinx’s Virtex-II Pro [28], Triscend’s A7 and in Garp architecture
[4]. A significant advantage of using FPGA logic is that the functionality of custom
made coprocessors or peripherals implemented in this logic, can be changed due to
the reconfiguration capabilities of such devices. This is not the case in the imple-
mentation in Application Specific Integrated Circuits (ASIC), where a small change
in an application or in a standard requires the re-design of the ASIC component. Ad-
ditionally, significantly less time is spent in implementing a design in FPGA tech-
nology than in ASIC one. The microprocessor-FPGA SoCs are expected to become
more widespread in the future due to emergence of standards, like telecom ones, that
their specification changes over time to meet the contemporary demands. For exam-
ple, this is already the case in the Wireless LAN (WLAN) standards IEEE 802.11x
[14].
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It is important to efficiently utilize the reconfigurable logic in single-chip
microprocessor-FPGA systems. A hardware/software partitioning methodology that di-
vides the application into software running on the microprocessor and on the FPGA
logic is essential for such systems. Partitioning can improve performance [5, 8] and
in some cases even reduce power consumption [10]. More recently, hardware/software
partitioning techniques for SoC platforms composed by a microprocessor and FPGA
[2, 20, 21, 27, 29], were developed. The FPGA unit is treated as an extension of the
microprocessor. Critical parts of the application, called kernels, are moved for execution
on the FPGA for improved performance and usually reduced energy consumption. This
design choice stems from the observation that most embedded DSP and multimedia
applications spend the majority of their execution time in few small code segments (usu-
ally loops), the kernels. This means that an extensive solution space search, as in past
hardware/partitioning works [5, 8, 10], is not a requisite.

In this work, we propose a hardware/software partitioning methodology for accel-
erating software kernels of an embedded application on the reconfigurable logic of a
generic processor-FPGA SoC. The processor executes the non-critical part of the appli-
cation’s software. This type of partitioning is possible in embedded systems, where the
application is usually invariant during the lifetime of the system or of the specification.
The generic processor-FPGA architecture can model a variety of existing systems, like
the ones considered in [6, 7, 26, 28]. Furthermore, the proposed method considers the
communication time for exchanging data values between the FPGA and the processor,
which was not the case in past works for partitioning in processor-FPGA systems [2,
20, 21, 27].

A kernel identification tool at the basic block (BB) level has been developed. The
term basic block expresses a sequence of instructions (operations) with no branches
into or out of the middle. At the end of each basic block there is a branch instruction
that controls which basic block executes next. This tool identifies kernels in the input
software and targets RISC processor based SoCs, which is the mainstream case in both
academia and in industry [4, 6, 7, 9, 26, 28].

For verifying the hardware/software partitioning method, we have used three different
instances of the considered processor-FPGA platform:

(i) four embedded 32-bit processors coupled with two devices from the Xilinx’s Virtex
FPGA family,

(ii) an 32-bit processor with two devices from the Altera’s APEX FPGAs [6], and
(iii) an 8-bit microcontroller coupled with an ATMEL’s AT40K FPGA device [7].

The (ii) and (iii) platform instances correspond to the processor and the FPGA units
used in the Altera’s Excalibur family [6] and the ATMEL’s FPSLIC [7], respectively.

We have used two set of benchmarks for the experimentation:

(a) five real-life applications coded in C language: an IEEE 802.11a Orthogonal Fre-
quency Division Multiplexing (OFDM) transmitter [14], a video compression tech-
nique [22], a cavity detector [3], a wavelet-based image compressor [12] and a JPEG
compliant image encoder [15]. This set of benchmarks is used for the partitioning
experiments with the 32-bit systems.
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(b) Eight DSP and multimedia algorithms, coded in C, from the Texas Instruments (TI)
benchmark suite [25]. This set of benchmarks is used for the FPSLIC-simulated
platform.

The extensive performed experiments show that the kernels in the five real-world
applications contribute an average of 69% of the total dynamic instruction count, while
their size is 11% on average of the total code size. For the Virtex-based platform the
speedups of the five applications range from 1.3 to 3.7, while for the Excalibur-simulated
SoC the speedups are from 1.3 to 3.2 relative to an all-software solution. The performance
improvements of the TI’s algorithms on the FPSLIC-simulated platform range from 3.2
to 68.4, with an average value of 28.1.

The rest of the paper is organized as follows: Section 2 describes the hardware/software
partitioning method. Section 3 presents the extensive experiments for the three different
platforms. Finally, Section 4 concludes this paper and outlines future activities.

2. Hardware/software partitioning methodology

2.1. Hybrid SoC architecture

A general diagram of the considered hybrid SoC architecture is shown in Figure 1.
The platform includes: (a) FPGA logic for executing software kernels, (b) shared sys-
tem data memory, (c) instruction and configuration memories, and (d) an embedded
microprocessor. The microprocessor is typically a RISC processor, like an ARM7 [1].
Communication between the FPGA and the microprocessor takes place via the system’s
shared data memory. Direct communication is also present between the FPGA and the
processor. Part of the direct signals is used by the processor for controlling the FPGA
by writing values to configuration registers located in the FPGA. The rest direct signals
are used from the FPGA for informing the processor. For example, an interrupt signal
is typically present which notifies the processor that the execution of a critical software
part on the FPGA has finished.

Figure 1. Considered hybrid SoC.
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Figure 2. Hardware/software partitioning flow.

Local data memories exist in the FPGA for quickly loading data, as in modern FPGAs
[6, 7, 28]. The main configuration memory of Figure 1 is used to store the whole
configuration bitstream for programming the execution of the application’s kernels on
the FPGA. This generic system architecture can model the majority of the contemporary
processor-FPGA SoCs, like the ones considered in [6, 7, 26, 28].

2.2. Methodology description

The proposed hardware/software partitioning method for processor-FPGA systems in-
terests in increasing application’s performance by mapping critical software parts on the
reconfigurable hardware. The flow of the methodology is illustrated in Figure 2. The
input is a software description of the application in a high-level language, like C/C++.
Firstly, the Control Data Flow Graph (CDFG) Intermediate Representation (IR) is cre-
ated from the input source code. The CDFG is the input to the kernel identification step.
In the kernel detection, an ordering of the basic blocks in terms of the computational
complexity is performed. The computational complexity is represented by the instruc-
tion count, which is the number of instruction executed in running the application on the
microprocessor. The dynamic instruction count has been used as a measure of identifying
critical loop structures in previous work [27]. However, in this work the computational
complexity is defined at a smaller granularity, at the basic block level. The instruction
count is found by a combination of dynamic (profiling) and static analysis. A threshold,
set by the designer, is used to characterize specific basic blocks as kernels. The rest of
the basic blocks are going to be executed on the processor.

The kernels are synthesized on the FPGA architecture for acceleration. The non-
critical application’s parts are converted from the CDFG IR back to the source code
representation. Then, the source code is compiled using a compiler for the specific
processor and it is run on the microprocessor. After the hardware/software partitioning,
there is a separation of the application since there are parts (non-critical ones) that they are
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going to be executed on the processor and parts (the kernels) which are executed on the
FPGA. This separation of the application to critical and non-critical parts, defines the data
communication requirements between the processor and the FPGA. The proposed design
method considers the data exchange time through the shared memory for calculating the
application’s execution time, which is not the case in previous works in processor-FPGA
SoCs [2, 20, 21, 27].

Currently, we consider the case where the processor and the FPGA execute in mutual
exclusion. The kernels are replaced in the software description with calls to FPGA.
When a call to FPGA is reached in the software, the processor activates the FPGA and the
proper state of the Finite State Machine (FSM) is enabled on the FPGA for executing the
kernel. The data required for the kernel execution are written to the shared data memory
by the processor. Then, these data are read by the FPGA. When the FPGA executes a
specific critical software part, the processor usually enters an idle state for reducing power
consumption. After the completion of the kernel execution, the FPGA signals an interrupt
that causes the processor to continue executing the rest of the application. So, the FPGA,
by asserting the interrupt, wakes up the processor. Additionally, the FPGA writes the
data required for executing the remaining software. Then, the execution of the software
is continued on the processor and the FPGA remains idle. With the mutual exclusive
operation, the processor and the FPGA never access the data memory concurrently,
fact that simplifies the system architecture. Since the partitioning method interests in
accelerating a sequential software program, which is often the case in implementing
embedded applications in a high-level language like C, the performance gains from
concurrent execution of the FPGA and the processor could be likely small. We mention
that works in single-chip processor-FPGA systems [2, 20, 21, 27, 29] also assumed a
mutual exclusive operation. However, the parallel execution on the processor and on the
FPGA is a topic of our future research activities.

With the mutual exclusive operation of the processor and the FPGA, the total number
of execution cycles after hardware/software partitioning is:

Cycleshw/sw = Cyclessw + CyclesFPGA + Cyclescomm (1)

where Cyclessw represents the number of cycles needed for executing non-critical parts
on the processor, CyclesFPGA corresponds to the cycles that are required for executing
the kernels on the FPGA, and Cyclescomm is the time required for transferring data,
through the shared data memory of Figure 1, between the processor and the FPGA. The
Cycleshw/sw are multiplied with the clock period of the processor for calculating the total
execution time thw/sw after the partitioning.

For estimating the CyclesFPGA of the application’s kernels on the FPGA, we consider
the following procedure. We describe each kernel in a synthesizable Register-Transfer
Level (RTL) description using VHDL language. Loop unrolling and pipelining trans-
formations are used for achieving better performance when each kernel is synthesized
on the FPGA. Each kernel is a state of an FSM (controller), so that when the kernels
are synthesized they could share the same hardware. This sharing is doable because the
kernels are not executed concurrently since they are belonging to a sequential software
description. For executing a specific kernel on the FPGA, the proper state of the controller
is selected. The reconfigurable logic runs at the maximum possible clock frequency after
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synthesizing all the kernels of an application. For synthesis, placing and routing of the
RTL descriptions of the kernels, standard commercial tools can be used. In this work,
we have utilized the Synplify Pro ver. 7.3.1 of the Synplicity Inc. [24].

Parts of the hardware/software partitioning method have been automated for a software
description in C language. In particular, for the CDFG creation from the C code, we have
used the SUIF2 [23] and MachineSUIF compiler infrastructures [16], as it is described
in Section 2.3. The automation of the kernel identification step is described in Section
2.4. For the translation from the CDFG format to the C source code, the m2c compiler
pass from the Machine-SUIF distribution is utilized.

2.3. CDFG creation

Figure 3 shows the flow for extracting the CDFG from an application coded in C. For
this purpose the SUIF2 [23] and Machine-SUIF [16] toolsets are used. We have utilized
existing compiler passes in the SUIF2/Machine-SUIF distribution for constructing the
CDFG. We have also developed a new pass (cfg to cdfg), which is shown in the shaded
box in Figure 3.

The c2suif compiler pass is used to transform the C source code to a SUIF2 High-
Level IR (HIR) representation. Constructs like for loops, while loops, and if-then-else
structures remain visible in the HIR. The HIR is the input to the lower pass, which
performs various transformations, as loop and conditional statements dismantling to
lower operations. An instruction in a basic block in the Machine-SUIF has an opcode
that describes its functionality, a set of input operands and an output operand. The output
of the lower pass is a Low-Level IR (LIR). The LIR is transformed to SUIF Virtual

Figure 3. CDFG creation from C code.
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Machine (SUIFvm) IR [11] with the s2m pass. The opcodes of the SUIFvm library are
architecture independent. The il2cfg pass of the Machine-SUIF distribution transforms
the SUIFvm IR to Control Flow Graph (CFG) format. Then, optimizations like Constant
Sub-expression Elimination (CSE), Constant Propagation, Dead Code Elimination, are
performed to produce optimized CFG. Finally, our cfg to cdfg pass constructs for each
CFG node the corresponding Data Flow Graph (DFG); thus the CDFG of the C input
code is produced.

2.4. Kernel identification

The kernel identification step of the partitioning methodology outputs the kernel and
non-critical parts of the software description. The inherent computational complexity
of basic blocks, represented by the dynamic instruction count, is a meaningful measure
to detect dominant kernels. The number of instructions executed when an application
runs on the microprocessor is obtained by a combination of profiling and static analysis
within basic blocks. Figure 4 shows the diagram of the kernel identification.

The input to the kernel identification process is the CDFG IR of the input source
code. As already mentioned, for the CDFG representation, we have chosen the SUIFvm
representation for the instruction opcodes inside basic blocks [11]. The SUIFvm in-
struction set assumes a generic RISC machine, not biased to any existing architecture.
Thus, the information obtained from the kernel identification, could stand for any RISC

Figure 4. Kernel identification procedure.



192 GALANIS, DIMITROULAKOS AND GOUTIS

processor architecture. This means that the detected critical software parts are kernels
for various types of RISC processors. The aforementioned statement was justified by
experimentation, using the profiling utilities of the compilation tools of the processors
considered in the experiments. In fact, the order of the instruction counts of the basic
blocks is retained in the RISC processors used in our experiments.

We have used the HALT library [17] of the Machine-SUIF distribution for performing
profiling at the basic block level. The profiling step reports the execution frequency
of the basic blocks. For the static analysis, a MachineSUIF pass has been developed
that identifies the type of instructions inside each basic block. Afterwards, a custom
developed compiler pass calculates the static size of the basic block using the SUIFvm
opcodes. The static size and the execution frequency of the basic blocks are inputs to
a developed instruction mix pass that outputs the dynamic instruction count. After the
instruction count calculation for each basic block, an ordering of the basic blocks is
performed. We consider kernels, the basic blocks which have an instruction count over
a user-defined threshold. This threshold represents the percentage of the contribution
of the basic block’s instruction count in the application’s overall instruction count. For
example, basic blocks contributing more than 10% in the total instruction count can be
considered as kernels.

3. Experimental results

3.1. Set-up

Two set of benchmarks are used for validating the proposed hardware/software parti-
tioning methodology. The first one consists of five applications and it is used for the
experimentation with the Virtex-based [28] and the Excalibur-simulated [6] systems
which are both composed by 32-bit RISC processors. The first application is an IEEE
802.11a OFDM transmitter [14]. The second one is a cavity detector which is a medi-
cal image processing application [3]. The third one is a video compression technique,
called Quadtree Structured Difference Pulse Code Modulation (QSDPCM) [22], while
the fourth one is a still-image JPEG encoder [15]. Finally, the fifth one is a wavelet-based
image compressor [12]. The partitioning experiments are performed with the following
applications’ inputs: (a) 4 payload symbols for the OFDM transmitter at a 54 Mbps
rate, (b) an image of size 640 × 400 bytes for the cavity detector, (c) an image of size
512 × 512 bytes for the wavelet-based image compressor, (d) two video frames of size
176 × 144 bytes each for the QSDPCM, and (e) an image of size 256 × 256 bytes for
the JPEG encoder.

The second set of benchmarks is used for the 8-bit FPSLIC-simulated [7] platform. It
is composed by smaller applications, actually algorithmic kernels, that can be handled
by the computational capabilities of a low-cost and low-performance (compared to the
32-bit processors) 8-bit RISC processor core. These algorithms are derived from the TI’s
DSP and imaging benchmark suite, which is public available at [25]. Eight representative
DSP and multimedia algorithms are used: an 3 × 3 convolution kernel, a 2-Dimensional
(2D) 8 × 8 Forward Discrete Cosine Transform (FDCT), a 2D 8 × 8 Inverse DCT
(IDCT), a 64-point Fast Fourier Transform (FFT), a complex FIR filter, a 16 × 16 point
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Minimum Absolute Differences (MAD) unit, a 168 by 256 matrix multiplication, and
the vertical pass of a 2D Discrete Wavelet Transform (DWT).

For calculating the Cyclescomm in Eq. (1), we assume that the shared data memory
is modelled as a multi-port and single clock cycle accessible Static RAM (SRAM).
This is a reasonable assumption since our methodology targets configurable SoCs. In
modern configurable SoCs-like the Xilinx’s Virtex-Pro [28] and the Altera’s Excalibur
[6]–there are fast on-chip data SRAMs that can be configured in respect to their number
of ports and to their access delay. Thus, they can be configured to be multi-ported and
single-cycle accessible RAMs as it is the case in the conducted experiments.

3.2. Kernel identification results

The analysis results for the first set of benchmarks using the developed kernels identifica-
tion flow are shown in Table 1. The results correspond to the kernels of each application.
The threshold for the kernel detection was set to the 10% of the total dynamic instructions
of the application. We have found by experimentation with the considered applications
that a threshold set to the 10% contributes the most to the performance improvements

Table 1. Results from the kernel identification process

Static size Instruction % total % total

Kernel (bytes) count static size instructions

Cavity detector

K1 181 367,681,952 1.5 42.5

K2 150 114,265,800 1.2 13.2

K3 150 114,265,800 1.2 13.2

K4 429 95,038,944 3.6 11.0

OFDM transmitter

K1 264 304,128 1.7 23.1

K2 862 206,880 5.5 15.7

K3 154 162,624 1.0 12.3

K4 160 138,240 1.0 10.5

Wavelet-based image compressor

K1 186 31,664,640 1.4 24.2

K2 173 29,451,520 1.3 22.5

K3 123 21,159,936 1.0 16.2

K4 120 20,643,840 0.9 15.8

JPEG encoder

K1 409 25,987,860 3.7 36.6

K2 1,056 8,650,752 9.6 12.2

K3 1,048 8,585,216 9.5 12.1

K4 21 7,455,504 0.2 10.5

QSDPCM

K1 121 1,045,161,216 0.5 27.4

K2 1,088 496,336,896 4.4 13.0

K3 1,268 401,702,400 5.1 10.5
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Figure 5. Contribution of the applications’ kernels to the instruction count.

when hardware/software partitioning took place on the Virtex-based and the Excalibur-
simulated platforms.

The kernels are given in descending order of instruction count. Table 1 reports the
kernel’s static size in instruction bytes for the SUIFvm opcode representation, the in-
struction count for each kernel, and the percentages of its contribution to the total static
size and instruction count of the application. From the results of Table 1, it is inferred that
a small part of the code, the kernel’s code, corresponds to the majority of the instruction
count, and thus to the execution time of the application. We mention that all the kernels in
the considered applications are loop bodies without conditional statements inside them.

Figure 5 illustrates the % instruction count of the kernels to the total instruction count.
The contribution of each kernel to the accumulated instruction count for each application
is also given. The applications spend an average of 68.5% of their instruction count in
10.9% on average of their code.

3.3. Virtex-based SoCs

In this section, we present the results from partitioning the five applications of the first
set of benchmarks on a SoC that has a Virtex FPGA device as its reconfigurable logic.
These results correspond to the speedups after executing the kernels on the FPGA.

We have used four different types of 32-bit embedded RISC processors: an ARM7,
an ARM9 [1], and two SimpleScalar processors [19]. The SimpleScalar processor is an
extension of the MIPS32 IV core [18]. These processors are widely used in embedded
SoCs. The first type of the MIPS processor (MIPSa) uses one integer ALU unit, while the
second one (MIPSb) has two integer ALU units. We have used instruction-set simulators
for the considered embedded processors for estimating the number of execution cycles.
More specifically, for the ARM processors, the ARM Developer Suite (version 1.2) [1]
was utilized, while the performance for the MIPS-based processors is estimated using
the SimpleScalar simulator tool [19]. Typical clock frequencies are considered for the
four processors: the ARM7 runs at 100 MHz, the ARM9 at 250 MHz, and the MIPS
processors at 200 MHz. These clock frequencies were taken from reference designs from
the ARM and MIPS websites. The five applications were optimized for best performance
when compiled for the considered processors.

The performance results from applying the partitioning methodology in the five ap-
plications are presented in Table 2. For each application, the four considered processor
architectures (Proc. Arch.) are used for estimating the clock cycles (Cyclesinit) required
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Table 2. Speedups for the Virtex-based SoCs

XCV50 XCV400

App. Proc. Arch. Cyclesinit Ideal Sp. Cycleshw/sw Est. Sp. Cycleshw/sw Est. Sp.

Cavity ARM7 178,828,950 2.4 87,819,165 2.0 86,707,865 2.1

ARM9 161,441,889 2.3 86,334,039 1.9 83,555,789 1.9

MIPSa 470,433,835 2.3 242,474,404 1.9 240,251,804 2.0

MIPSb 310,248,110 2.2 165,856,481 1.9 163,633,881 1.9

OFDM ARM7 397,851 3.3 137,070 2.9 126,878 3.1

ARM9 362,990 3.4 141,791 2.6 116,310 3.1

MIPSa 459,594 3.4 164,186 2.8 143,801 3.2

MIPSb 352,788 3.3 130,003 2.7 109,618 3.1

Compressor ARM7 25,832,508 2.5 12,845,410 2.0 11,399,596 2.3

ARM9 20,574,658 2.3 13,337,377 1.5 9,722,842 2.1

MIPSa 62,468,206 2.5 30,410,887 2.1 27,519,259 2.3

MIPSb 40,541,866 2.3 22,117,384 1.8 19,225,756 2.1

JPEG ARM7 23,003,868 4.0 6,705,747 3.4 6,215,818 3.7

ARM9 19,951,193 3.2 8,019,506 2.5 6,794,684 2.9

MIPSa 34,451,609 3.3 12,542,045 2.7 11,562,186 3.0

MIPSb 19,637,417 3.2 7,669,659 2.6 6,689,801 2.9

QSDPCM ARM7 4,026,384,618 1.6 3,069,033,988 1.3 3,054,066,323 1.3

ARM9 3,895,248,922 1.5 3,052,413,515 1.3 3,014,994,353 1.3

MIPSa 7,006,016,541 1.7 4,606,022,856 1.5 4,576,087,526 1.5

MIPSb 4,910,759,258 1.7 3,365,035,660 1.5 3,335,100,331 1.5

Averages: 2.1 2.4

from executing the whole application on the processor. We have assumed two different
Virtex FPGA devices [28]: (a) the smallest available Virtex device, the XCV50 FPGA,
and (b) the medium size device XCV400. The ideal speedup (Ideal Sp.) reports the max-
imum performance improvement, according to Amdahl’s Law, if application’s kernels
were ideally executed on the FPGA in zero time. The estimated speedup (Est. Sp.) is the
measured performance improvement after utilizing the developed partitioning method.
The estimated speedup is calculated as:

Est Sp = Cyclesinit/Cycleshw/sw (2)

where Cycleshw/sw represents the execution cycles after the partitioning.
The clock frequencies after synthesizing, placing and routing the designs using the

Synplify Pro toolset [24], range from 45 to 77 MHz for the XCV50 device and from 37 to
77 MHz for the XCV400. From the results given in Table 2, it is evident that significant
performance improvements are achieved when critical software parts are mapped on
the FPGA. It is noticed that better performance gains are achieved for the ARM7 case
than the ARM9-FPGA SoC. This occurs since the speedup of kernels in the FPGA has
greater effect when the FPGA co-exists with a lower-performance processor, as it is the
ARM7 relative to the ARM9. Furthermore, the speedup is almost always greater for the
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MIPSa than the MIPSb processor, since the latter one employs one more integer ALU
unit.

For the case of the different Virtex devices, the performance improvements are greater
for the XCV400 due to the larger number of Control Logic Blocks (CLBs) which permit
the implementation of more operations on the FPGA hardware. This leads to better ker-
nels’ acceleration through the larger amount of spatial computation due to the increased
number of instantiated operations in the reconfigurable logic relative to the smaller FPGA
device, the XCV50. The average estimated speedup is 2.1 for the XCV50 and 2.4 for
the XCV400. We also notice that the reported estimated speedups for each application
and for each processor-FPGA SoC are fairly close to the ideal speedups determined by
the Amdahl’s Law, especially for the XCV400 case.

3.4. Excalibur-simulated SoCs

The results from accelerating the kernels of the five applications of the first set of
benchmarks on the Excalibur-simulated SoC [6] are given in this section. In the Excalibur
devices, an ARM9 processor is used that it is clocked at 200 MHz, which is also the
case in these experiments. The applications were again optimized for best performance
when compiled for the ARM9. The ARM Developer Suite was used for estimating the
cycles required for the software execution. Two cases of APEX FPGAs are utilized for
simulating the EPXA1 and the EPXA10 Excalibur devices, where the EPXA10 stands
for a larger amount of reconfigurable logic. After the kernels’ synthesis with the Synplify
Pro, the reported clock frequencies range from 20 to 38 MHz for the EPXA1, and from
22 to 30 MHz for the EPXA10.

The performance gains after the hardware/software partitioning are given in Figure 6.
Greater speedups are achieved for the EPXA10-simulated system, as in the case of the
Virtex-based SoCs, where greater performance was achieved for the larger Virtex device.
The average speedup is 2.1 for the EPXA1 and 2.3 for the EPXA10. Comparing these
average speedups with the ones for the ARM9-Virtex system, they are approximately the
same although the ARM9 is clocked at a lower speed and the clock frequencies after the
kernel synthesis for the APEX devices, are smaller than the ones in the Virtex FPGAs.

Figure 6. Speedups for the Excalibur-simulated SoCs.
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Table 3. Speedups for the FPSLIC-simulated SoC

App. Cyclesinit Ideal Sp. Cycleshw/sw Est. Sp.

FFT 213,427 3.4 66,883 3.2

Matrix Mult. 1,491,462 36.9 43,445 34.3

FDCT 308,472 34.5 9,528 32.4

IDCT 329,298 35.5 9,858 33.4

Convolution 180,385 5.2 36,001 5.0

MAD 122,374,066 96.9 1,787,826 68.4

FIR complex 259,889 32.9 8,289 31.4

Wavelet 193,524 17.4 11,403 17.0

Average 28.1

Finally, and in the Excalibur-based system the speedups are quite close to the ideal ones
obtained with the Amdahl’s Law.

3.5. FPSLIC-simulated SoC

In this section we present the speedups after partitioning the second set of benchmarks
on an ATMEL’s FPSLIC-based system. In FPSLIC devices, an 8-bit AVR core, capa-
ble of 30 Millions Instruction Per Second (MIPS), is coupled with a AT40K FPGA. In
this experiment, both the AVR and the configurable logic are clocked to 20 MHz. The
execution cycles of the non-critical parts of the algorithms on the AVR microcontroller
are estimated using the profiling utilities of the Embedded Workbench suite from the
IAR Systems Inc. [13]. The algorithms were optimized for best performance when com-
piled for the AVR. We have used the developed kernel identification flow for detecting
critical basic blocks, although manual kernel detection can be performed since these
eight algorithms are relatively small programs. Two basic blocks, at maximum, were
characterized as kernels, which were the cases in the FDCT, in the IDCT and in the
wavelet algorithms. All the kernels are inner for-loops (without conditional structures)
of the main computation bodies in each algorithm.

From Table 3, it is deduced that the speedups are significantly greater than the ones
obtained for the five large applications with the 32-bit platforms. This is due to two
reasons: (a) the kernel(s) of each algorithm contributes to a larger amount to the to-
tal instruction count than the kernels in each of the five real-life applications; (b) the
speedups are greater when the reconfigurable logic is coupled with a lower-performance
instruction-set processor, as it is the AVR relative to the 32-bit processors.

For a straightforward comparison of the larger speedups when a low-performance
processor is coupled with reconfigurable logic relative to a higher-performance processor
system, we have performed the following experiment. We have assumed a 32-bit ARM7
processor coupled with an AT40K FPGA, both clocked at 20 MHz, as in the case of
the AVR-AT40K system. The eight applications from the TI’s benchmark suite were
partitioned on the ARM7 system. Significantly smaller speedups are achieved for the
ARM7-based SoC, as shown in Figure 7. The average value of the execution cycles
improvement for the ARM7 platform is 6.0, while for the AVR is 28.1, as illustrated in
Table 3.
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Figure 7. Speedup comparison for AVR and ARM7 AT40-based SoCs.

4. Conclusions-future work

A partitioning method for accelerating critical software parts in processor-FPGA SoCs
was presented. Two set of benchmarks were used and three instances of a generic
processor-FPGA platform were used. Important speedups have been achieved when
the kernels were executed on the FPGA logic. For the Virtex-based system the execution
cycles improvement ranges from 1.3 to 3.7, while for the Excalibur-simulated system
the speedup ranges from 1.3 to 3.2. For these two 32-bit systems, it is shown that the
speedup increases when a larger FPGA is used and the effect of the kernel acceleration
on the FPGA is different when a different processor is utilized. For the low-cost 8-bit
FPSLIC-simulated SoC, significantly greater speedups are achieved, with an average
value of 28.1, when DSP algorithms are partitioned on this system. Future work focuses
on the parallel execution of the processor and the FPGA for possible greater performance
improvements. Also, the effect of the proposed partitioning methodology in the energy
consumption of an application will be researched.
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