
Des Autom Embed Syst (2007) 11:119–140

DOI 10.1007/s10617-007-9003-x

Enabling heterogeneous cycle-based and event-driven
simulation in a design flow integrated using the SPIRIT
consortium specifications

Chulho Shin · Peter Grun · Nizar Romdhane ·
Christopher Lennard · Gabor Madl · Sudeep Pasricha ·
Nikil Dutt · Mark Noll

Received: 1 February 2006 / Revised: 15 December 2006 / Accepted: 16 January 2007 / Published online:
3 February 2007
C© Springer Science + Business Media, LLC 2007

Abstract The practical application of electronic system-level (ESL) design has been a key

challenge of transaction-level modeling (TLM) methodologies in the past few years. While

the benefits of ESL are well known, making the investment pay-off has required two key

factors to be resolved: the simulation speed of the virtual platform model has to be fast

enough to enable software design, and the flow from ESL design to implementation has to

be seamless. We introduce two themes to address these issues: cycle-based simulation and a

multi-vendor design-flow integrated using the IP-XACTTM specifications from The SPIRIT

Consortium. Through experimentation with the ARM RealView R© SoC Designer flow, and

C. Shin . P. Grun () . N. Romdhane . C. Lennard
ARM Ltd.
e-mail: Peter.Grun@arm.com

C. Shin
e-mail: Chulho.Shin@arm.com

N. Romdhane
e-mail: Nizar.Romdhane@arm.com

C. Lennard
e-mail: Chris.Lennard@arm.com

G. Madl . S. Pasricha . N. Dutt
University of California, Irvine
e-mail: gabe@ics.uci.edu

S. Pasricha
e-mail: sudeep@ics.uci.edu

N. Dutt
e-mail: dutt@ics.uci.edu

M. Noll
Synopsys
e-mail: Mark.Noll@synopsys.com

Springer

120 C. Shin et al.

the Synopsys coreAssembler tool and Galaxy suite of tools, we show that competent solutions

to both of these adoption issues exist in the industry today.

Keywords ESL . Simulation . SystemC . SPIRIT . IP-XACT . RTL

1 Introduction

The creation and use of virtual platforms is a developing trend to improve time-to-market for

complete embedded systems design. Until a few years ago, designers would often explore

designs at the implementation model (or RT) level. While this was possible for designs

that were relatively simple, exploring today’s complex SoC designs at the RT level is an

intimidating prospect. Not only is the RTL simulation speed too slow to allow adequate

coverage of the large design space in modern SoC designs, but making small changes in the

design can require considerable re-engineering effort due to the highly complex nature of

these systems. To overcome these limitations, system designers have been forced to raise the

level of abstraction of these models. These high level models, usually captured with high

level languages such as C/C++, give an early estimate of the system characteristics before

committing to RTL development. They also provide a virtual representation of the system

on which embedded software development can commence prior to the availability of silicon

[19–21]. This early-prototyping that has helped optimized architectural exploration, as well

as enable the concurrent hardware and software development process, is now a vital part of

industrial embedded system design flows.

With improved realization of the benefits of system-level design, more IP and systems

houses are investing in use of a system level methodology. A rich library of third-party

IP simulation models is emerging, and the creation of virtual system platforms is converg-

ing to a reuse process. The difficulty here is that models from different providers gener-

ally use different scheduling techniques and model interfaces. For example, cycle-based

scheduling is a concept in cycle-accurate modeling that can increase the simulation speed

without losing clock-cycle accuracy of the system. System-level models can take advantage

of the cycle-based abstraction as timing within clock-cycles is not relevant to the system.

However, linking from system-level design to traditional hardware development simula-

tions requires the support of event-based simulation as these simulators are built to handle

intra-cycle timing. Having to integrate models from multiple sources and scheduling do-

mains has brought new issues to the forefront. In this multi-schedule world, there is the

need to handle efficient mixed-level simulation. The key to supporting heterogeneous model

integration is the development of standard interfaces, both for cycle, and for event-based

models.

Beyond the need to address model integration efficiently, the time-to-market advantages

of system-level design and virtual prototyping can only be fully exploited with an efficient

link to hardware implementation. The libraries of reusable hardware IP that exist as sys-

tem models should also exist as re-usable RTL components. In practical commercial design

flows, there is frequently a need to iterate between system specifications and implementa-

tion. The configuration of a system, its component selection, system connectivity, register

assignment and memory maps must be consistent between virtual prototypes and the hard-

ware designs if the system validation and software development threads are all to remain

aligned.

Springer

Enabling heterogeneous cycle-based and event-driven simulation 121

In this paper we cover an approach for cycle-based and event-driven mixed simulation

using the standard SystemC [2, 14, 30] language. In Section 2, we discuss the cycle and event-

based modelling paradigms. We introduce the Realview ESL APIs [25] as a set of generic

SystemC simulation, C++ debugging and C++ profiling interfaces that are compatible

with both cycle-based and event-driven simulation semantics. These specifications provide

a comprehensive TLM interface standard for efficient full-system cycle-based simulation,

as well as ease of integration for event-driven models into cycle-based simulation environ-

ments such as ARM Realview SoC Designer with MaxSim technology [25]. These generic

TLM transport interfaces can support any bus protocol, and in Section 2.1 we provide and

example of how the AMBA protocols are supported. In Section 3, we introduce the reader

to the specifications of The SPIRIT Consortium [22]. These specifications, known as the

IP-XACT meta-data specifications, enable architectural data about a system design configu-

ration and integration requirements to be passed between system-level and implementation

design stages [27]. This can help to keep consistency between virtual prototypes described in

SystemC, and the RTL block assembly used as the front-end to the implementation process.

We address the proposed TLM extensions to The SPIRIT Consortium specifications, and in

Section 4 we describe how the IP-XACT meta-data can be mapped to a SystemC model of

a SoC architecture. Section 5 is the experimental section which covers a mixed cycle-event

simulation and conducts an investigation into simulation-speed trade-offs, and describes a

multi-vendor flow from SystemC to RTL component configuration and assembly using the

IP-XACT specifications. In Section 6 we provide conclusions, followed by an appendix on

different TLM modelling styles.

2 Heterogeneous transaction-level simulation

Within the growing number of approaches in transaction level modelling [1, 31–33], the

integration and simulation of different IP models has been identified as a key challenge to

build a complex SoC virtual platform. Based on different requirements of each part in the

flow, there is generally a compromise to be made between simulation speed and accuracy. For

example, in the case of a virtual prototype for use purely in embedded software development

some timing accuracy can be sacrificed in order to reach the maximum possible simula-

tion speed. In other cases, such as the use of modeling for detailed architectural analysis

required for on-chip communication design, the clock-cycle accurate timing must be guaran-

teed. Several abstraction levels for SoC-design have emerged (see Section 7 Appendix) but

these can be classified under three major types in most practical cases: untimed, estimated

timing and cycle accurate. Two major scheduling paradigms are gaining wide acceptance in

support of these modeling types: event-driven scheduling and cycle-based scheduling. The

event-driven scheduling relies mainly on a multi-threaded simulation kernel which has to

schedule the processes following the events order. In the cycle-based scheduling paradigm

more functionality is embedded in the components, thereby releasing the scheduler from the

global compute-intensive event-based scheduling tasks. The scheduling then follows strict

synchronous execution semantics with respect to the (global) simulation clock.

The integration of cycle-based and event-driven models in the same simulation environ-

ment is a challenging task as the semantics for the composition are often not well-defined.

A key challenge is to specify how to synchronize the two different scheduling techniques

to allow correct and precise communication between the different models. For example, the

SystemC [14] v2.1 language provides a practical set of language constructs and semantics

for model definition and integration. Models adopting and the language can composed into

Springer

122 C. Shin et al.

a common simulation environment. However, the SystemC language supported by the Open

SystemC Initiative (OSCI) [14] is also provided with an event-based scheduler that acts as a

semantic reference for event-based language execution. As this open-source scheduler relies

purely on the event driven scheduling paradigm this, in part, limits the expressiveness of the

SystemC language. In particular, while the SystemC language semantics are sufficiently rich

to cover fast event and cycle-based execution, the event-drive OSCI kernel does not adequately

support simulation of cycle-based systems. Separating the SystemC language syntax from

the scheduling semantics seems to be a promising next step for improving SystemC as a stan-

dard for SoC modeling and virtual platform assembly. This separation provides the required

flexibility and freedom for different scheduling techniques and paradigms to be developed.

In particular, it enables the model designer to define clear (preferably formal) semantics for

the simulation paradigms and model composition to preserve the advantages of different

scheduling paradigms, while enabling easy integration and exchange of SoC designs.

From fast cycle accurate modelling through to interactive real-time functional modelling,

there will be simulation paradigms of both a cycle and event based nature. Both have their

advantages based upon context, and the co-existence of these paradigms demands efficient

ways to link the scheduling domains. One way to link event-driven models with cycle-based

scheduling paradigms is to develop adapters or transactors between the different models to

synchronize between the two schedulers. For example, to create an adapter between cycle-

based models and event-driven models, one will have to map the cycle to a clock, a transaction

or an instruction event. We describe these techniques further after introducing the basics of

the two dominant transaction-level modeling (TLM) [1, 31, 33] paradigms, the cycle-based

approach and the event-based approach.

2.1 The cycle-based simulation paradigm for TLM

Cycle-based scheduling is an approach in TLM to cope with the simulation speed issues, and

this is particularly relevant for cycle-accurate SoC models. Event-driven scheduling tends

to have slow simulation speed compared to what virtual platform creators and users expect.

There are several reasons that contribute to the performance penalty, the main ones being

pre-emption latencies in the multi-threaded simulation kernel, as well as unnecessary event

handler calls that might be triggered by “blank” events that do not require further computation.

SoC design models in practical use are often specified following the cycle-based schedul-

ing approach. The period is either a clock cycle for cycle accurate models like the bus compo-

nents, or an instruction for instruction accurate models like the instruction set simulators, or

a read/write access for memory models. In this way, the abstraction of the system is attached

to the abstraction of an execution cycle, and this creates an easy way to conceptualize system

synchronization. The cycle-based paradigm requires a simple kernel that schedules the mod-

els only between the cycle boundaries. This simple design can be efficiently implemented

on a single thread with no pre-emption. The event-driven approach, on the other hand, often

requires multiple threads to model complex SoC systems impacting the overall simulation

speed. Based on our experience in developing complex SoC systems, and the measurements

described in Section 5, we believe that the cycle-based scheduling provides better simulation

performance in most practical cases than event-driven, and has to be considered as a feasible

alternative to designing SoC simulation models.

ARM Realview ESL APIs are an example of SystemC modeling interfaces that adopt the

cycle-based scheduling paradigm. They offer a co-ordinated bundle of model interfaces for

use in cycle-accurate simulation, debugging and profiling of SoCs’ virtual platforms. The

Springer

Enabling heterogeneous cycle-based and event-driven simulation 123

set is composed of three interfaces: the Cycle-Accurate Simulation Interface (CASI), the

Cycle-Accurate Debug Interface (CADI) and the Cycle-Accurate Profile Interface (CAPI)

[25].

The Cycle-Accurate Simulation Interface (CASI) defines a set of SystemC interfaces sup-

porting a generic implementation of models (components), ports (master ports) and channels

(slave ports), designed to be used in a cycle-based simulation environment. The CASI inter-

face can be linked to an event-based simulation through use of appropriate synchronization.

The accuracy of the simulation depends on the specific model implementation. Internally,

model timing may be instruction accurate, with one instruction per cycle, cycle-approximate,

with simplified instruction timings or cycle-accurate, with precise timings for internal be-

havior. The timing of a CASI model is represented in form of cycles. The meaning of a cycle

is defined by the specific model implementation, directed by the model’s level of accuracy.

For instance, for an instruction-accurate core a cycle will be the execution of one instruction,

for a cycle-accurate model a cycle will be a clock cycle, whereas for a functional memory

model a cycle will be the execution of a read/write operation.

CASI models must implement two functions that are called by the cycle-based sched-

uler: communicate and update. In the communicate function the communication with other

models is performed, for instance calls to read/write/driveTransaction for trans-

action ports. In the update phase the internal resources are updated, e.g., copies of buffered

data into register or memory locations. CASI models can be used in an event-driven Sys-

temC environment by mapping the communicate and update functions to the positive or

negative edges of a system clock. This can be done by registering these functions as

SC METHODs or SC THREADs sensitive to the clock events. The SC METHOD and

SC THREAD mechanisms are described further in the following subsection, Section 2.2,

on event-based simulation.

The simulation of a system is divided into multiple stages from start-up, through execution,

to termination. In Fig. 1 we show the stages of simulation and their order of execution. After

constructing a module, the Configure stage will configure the parameters of the model, Init

will initialize the model and allocate any internal data structures needed. The Interconnect

stage will create all the internal connections needed in the modules, Reset allows resetting

the module, while Terminate performs any model clean-up and data de-allocation required.

create

configure init interconnect reset communicate terminate

update

TerminationExecutionInitialization

destruct

Fig. 1 CASI stages of simulation

Springer

124 C. Shin et al.

The Cycle Accurate Debug Interface (CADI) is intended for use in conjunction with the

Cycle-Accurate Simulation Interface (CASI) to allow inspection and modification of the

internal state of SystemC models through an externally attached debugger. The models run

under the supervision of a simulation host which is in charge of managing the SystemC

cycle-based simulation loop, calling the communicate/update methods of the loop in each

cycle.

The Cycle-Accurate Profiling Interface (CAPI) is intended for use in conjunction with the

Cycle-Accurate Simulation Interface (CASI) to allow gathering of customized profiling data

from SystemC models. In order to support profiling, a SystemC model needs to implement

the CAPI interface, supply the type of information to profile, and gather the profile informa-

tion during simulation. The CAPI interface supports a generic implementation of profiling,

allowing collection of different types of data, organized around streams and channels of

information.

2.2 The event-driven simulation paradigm for TLM

A popular example of an event-driven simulation paradigm is the SystemC high-level hard-

ware description language used for TLM. SystemC is a set of library routines and macros

implemented in C++, enabling the modeling of concurrency, hardware timing and reactive

behavior, which are prerequisites for any hardware description language. The basic units

of execution in SystemC are called processes. Processes are called to emulate the parallel

behavior of the target device or system. These processes have sensitivity lists, i.e. a list of

signals that cause the process to be invoked, whenever the value of a signal in this list changes.

We refer to the change of signal values as events. The event on the signal is the triggering

mechanism to activate the process. Any processes sensitive to that signal will recognize that

there was an event on that signal and invoke the process. Thus, the SystemC simulation kernel

uses an event-based scheduler that handles all events on signals, and it schedules processes

when the appropriate events happen at their inputs.

SystemC defines two basic types of processes: methods and threads. Method processes

are function calls: when events (value changes) occur on signals that the method is sen-

sitive to, the method executes and then returns control back to the simulation kernel. In

contrast, thread processes can be suspended and reactivated. The thread process can con-

tain wait() functions that suspend process execution until an event occurs on one of the

signals the process is sensitive to. An event will reactivate the thread process from the state-

ment the process was last suspended. The process will continue to execute until the next

wait().
In a typical system captured in SystemC, several execution threads are used to model

the system behavior. Delays and time constraints can be specified independently within

each thread. Transfer of control from one thread of execution to another always happens at

precisely identified points: threads can only suspend and resume execution when they call

wait() (or, equivalently, when SC METHOD processes return control to the simulator). The

SystemC simulation kernel will never pre-empt execution of a thread as an RTOS might –

instead, an executing thread must always yield execution by calling wait(). Like Verilog and

VHDL, SystemC models the execution of code within a thread between two wait() statements

as happening instantaneously. Simulated time can only advance once a wait() statement has

been called. We refer to the SystemC kernel as event-driven kernel as the scheduling algorithm

is based on a discrete event scheduler which handles a multi-threaded application model.

Springer

Enabling heterogeneous cycle-based and event-driven simulation 125

2.3 Mixed cycle-based and event-driven scheduling

IP from different providers may use varied simulation paradigms, such as cycle-based, or

event-driven. In order to allow aggregating components from such different IP providers, it

is important to support the different simulation models used in a unique consolidated kernel.

This will ensure interoperability between such models, while preserving high speed of the

simulation and avoiding the need for expensive inter-kernel co-simulation approaches.

The cycle-based simulation paradigm offers higher simulation speeds than event-based

simulation for system models that have been abstracted to a cycle-level granularity of be-

haviour (i.e., no intra-cycle behaviours). However, an event-based simulation paradigm al-

lows behaviours at both a cycle level, as well as sub-cycle timing. Integrating event-based

execution is necessary when handling mixed-abstraction system models that support both

cycle-based and pin-accurate simulation.

The combined cycle-based/event-driven kernel needs to ensure synchronization of the

cycle-by-cycle behaviors of the cycle-based components, with the events for the event-driven

components. The events from the event-driven components have to be correctly ordered

compared to the cycle boundaries, to ensure correct synchronization between the cycle-

based behaviors (that may occur on the cycle boundaries only) and the event-driven ones

(that may occur at any moment in time). Additionally, the communicate/update phases from

the cycle-based simulation have to be aligned with the evaluate/update phases of the event-

driven simulations, in order to preserve the simulation semantics of these phases.

Figure 3 shows the pseudo-code for the mixed-level cycle-base/event-driven simulation

approach. The cycle-based communicate phase describes all communication between differ-

ent components. The event-driven evaluate phase will also contain all behaviors that perform

any communication with other components, by e.g., triggering any port-related events. In

order to preserve the ordering between the communication for both the cycle-based and event-

driven components, the cycle-based communicate phase needs to be scheduled adjacent to the

event-driven evaluate phase. Moreover, since the event-driven evaluate may contain multiple

SystemC
simulation

host

CADI
dispacher

Debugger

CADI
target

CASI

model

Simulation state

(steps 3 and 6)

Simulation request

(steps 2 and 5)

CADI request

(step 1)

CADI target state
(step 4)

Calls to
communicate() and

update()
(step 3)

Fig. 2 Simulating a CADI enabled model

Springer

126 C. Shin et al.

Fig. 3 Mixed-level cycle-based/event-driven simulation

delta cycles, scheduling the communicate phase just before the evaluate phase will ensure

that any communication triggered by the cycle-based components will correctly trickle into

the delta cycles for that moment in time.

The cycle-based update phase describes any explicit updating of the internal resources

of the component. The event-driven update phase has a similar meaning, updating all the

primitive channels that in effect contain the state of the shared resources. However, in the

case of the event-driven update, the primitive channels are updated implicitly by the event-

driven kernel. In order to ensure a correct ordering of the behaviors for both the cycle-based

and the event-driven components, the cycle-based and event-driven update phases also need

to be scheduled adjacent to each-other. Again, in order to allow for the multiple delta cycles,

the cycle-based update needs to be scheduled right after the event-driven update phase.

The approach described above can be implemented using a single kernel that drives

both the cycle-based as well as the event-driven models. This is done by combining the

functionality of cycle-based and event-driven simulation paradigms into a single kernel that

synchronizes the events from the event-based side with the cycles from the cycle-based side.

The synchronization is achieved by defining a unique current time value that is kept and

updated. This is used to trigger both the events/sensitivity lists of the event-based side as well

as the cycle behaviors of the cycle-based side.

This approach ensures that the behaviors of both the cycle-based and event-driven com-

ponents are ordered correctly in time as well as compared to each-other, while preserving

the semantics of the respective cycle-based and event-driven phases.

3 A summary of the SPIRIT IP-XACT standard

Regardless of the simulation paradigm chosen, the architecture of a system model constructed

in SystemC needs to be able to be exchanged with down-stream hardware implementation

tools. In particular, being able to ensure that RTL component assembly and configuration is

automatically aligned with the SystemC descriptions is key to an integrated design flow. To

ensure that system descriptions are valid regardless of design environment, design language,

design style, naming rules and design abstraction, a mark-up language must be used to

describe IP components and systems. This is not a replacement for the design IP itself, but

rather a way of relating the design intent (for example, that which an engineer would read in

a Technical Reference Manual) to elements of the design IP. For this, the XML [23] language

is ideally suited.

Based on the concept of a system-design mark-up that is exchangeable between tool

environments, The SPIRIT Consortium [22] was formed. The specifications of The Consor-

tium offer a language, design-style, and environment neutral way to describe a component’s

interfaces, register sets, configuration and its integration requirements, including both inter-

face connectivity and system memory maps. The defining principles for deployment of The

Springer

Enabling heterogeneous cycle-based and event-driven simulation 127

IP-XACT
Data Import /
Export

IP-XACT
Enabled IP

Component

IP

Component

XML

Component

IP

Component

XML

IP-XACT
Meta-data

IP-XACT Enabled
SoC Design Tool

Configurable
IP

Point

Tool

IP-XACT
TGI

Point
Tool

IP-XACT Enabled
Generators

SoC

Design IP

XML

SoC

Design IP

Design
XML

Generator
XMLDesign Build

Design Capture

mP

system_bus

Component
IP

UART GPIO

address

interface

registers

Design Build

mP

system_bus

Component
IP

UART GPIO

μP
Component

IP

UART GPIO

address

interface

registers
protocol

buswidth

protocol

buswidth

MEM

Fig. 4 SPIRIT IP-XACT usage in a SoC design environment

SPIRIT Consortium specifications are shown in Fig. 4. The deployment of these specifica-

tions requires IP to be delivered with simple component descriptions in a compliant format,

for a design environment to be able to read these descriptions in along with the design IP,

and for design and verification generators to be linked to the IP-XACT-compliant tools using

standard interfaces provided by The Consortium specifications.

The user of IP-XACT-enabled design flows can manage IP-XACT component descrip-

tions (files) in single library. This single library can be imported automatically into any

IP-XACT-compliant tool, along with IP-XACT-compatible definitions for any bus interfaces

referenced within the components. The IP-XACT design descriptions include definitions

for: top-level I/O, bus interfaces, memory maps, identification of related views of the IP

including simulation model and design implementation, and implementation constraints for

the flow to synthesis. The interfaces of any component will reference IP-XACT-compliant

busDefinitions that enable a design environment to recognise that a component is supporting

particular protocols such as AMBA AHB, AMBA AXI, OCP-IP, JTAG, etc. A design tool that

can interpret IP-XACT-compliant data can automatically instantiate and connect IP-XACT

components to form a design. The topology of the interconnected design itself is represented

as an IP-XACT design file, and this can be exported from a design-environment into any

other IP-XACT-compliant tool. An IP-XACT design file describes which components are

instantiated, how their bus interfaces are connected, component configuration details, and

any ad-hoc, or non-interface based connections between components.

To enable design operations to be encapsulated in functions and scripts that can be launched

from a design environment, The SPIRIT Consortium specification defines the concept of

generators. These generators may be functions, for example, that configure IP to the system-

design held within the design tool, that automatically configure verification IP, or that perform

IP stitching for non-common bus protocols and APIs, and so on. Generators are interfaced

to a design-environment through either a data-dumping file-exchange mechanism (Loose

Generator Interface, LGI), or through a full get-set environment neutral API (Tight Gener-

ator Interface, TGI). The TGI utilizes the language neutral W3C SOAP [24] standard for

communication between generator and design environment.

To facilitate the link from TLM modelling to implementation, the upcoming IP-XACT

standards from The SPIRIT Consortium will support any transactional model hierarchy. This

Springer

128 C. Shin et al.

Fig. 5 Hierarchy of views and busInterfaces in IP-XACT 1.4

support will be provided in the IP-XACT v1.4 standard, the ESL Extensions to the current

v1.2 specification. The flexibility of the solution is encapsulated in the ability to define

extended busDefinition and a new concept of compatibleBusses1 that expresses how abstract

interfaces are related to refined interfaces on a component. These definitions will also enable

the identification of adaptors that are required to bridge between models at different levels

of abstractions, and in different simulation environments.

In Fig. 5 we show a simple example of how the specifications of The SPIRIT Consortium

will handle multi-abstraction design topologies. A macroComponent, depicted in Fig. 6, can

encapsulate components at different abstraction levels. Depending on what interfaces the

macroComponent is connected to, the design tool can reference the component at the relevant

abstraction level as depicted in Fig. 5. A single design configuration can represent the concep-

tual connectivity of the system, but a configuration step is often necessary to assign views that

need to be instantiated. In this configuration step, the requirements on attaching interfaces at

different abstraction levels are examined. In general, it would be expected that an IP provider

supplying a set of busDefinitions at various abstraction levels would also supply abstractors
that bridge between these TLM levels, allowing a way for the automatic insertion of required

abstractors to maintain the original system connectivity constraints. In the case of moving

1 Note that IP-XACT v1.4 standard was still evolving when this article was written. Details of IP-XACT v1.4
are subject to change until the standard is officially released.

Springer

Enabling heterogeneous cycle-based and event-driven simulation 129

component

(PV)

Component ports

BusDefinition logical ports

Component busInterface

reference

AXI

OCP

AHB

compatibleBus

component

(RTL)

map of compatibleBus/busInterface
for each related object (component)

macroComponent

relatedObjects

Fig. 6 Encapsulation of different abstraction-level components using the macroComponent construct of IP-
XACT 1.4

between models that use different simulation paradigms, event and cycle-based for example,

a similar mechanism can be used to identify requirements for adaptor insertion automatically.

More can be understood about the concept of the macroComponent in IP-XACT v1.4

through considering Fig. 6. This illustrates how a macroComponent can represent components

of different abstraction levels. In the figure, the component at the abstraction level of RTL

has a busInterface of the busDefintion type that is only compatible with AHB compatibleBus
whereas the component at the abstraction level of PV has a busInterface of the busDefinition
type that is compatible with all three compatibleBusses, AXI, OCP and AHB in this example.

This macroComponent can be instantiated and connected in a design, for example, where all

other components are at PV or at RT abstraction level. Depending on the abstraction level

of the components connected to the macroComponent, the design tool will decide which

component needs to be actually instantiated.

For specification of a TLM port, IP-XACT 1.4 offers a protocol element in a busDefinition
where a specific protocol in TLM (for example, basic protocol of OSCI TLM or sc port of

SystemC) can be specified for a given TLM port. Function parameters can also be specified

in the protocol element. Thus, a netlisting tool that understands IP-XACT 1.4 will be able

to connect two TLM ports based on the description found in IP-XACT’s corresponding

busDefinition descriptions.

4 Mapping a TLM design to an IP-XACT topology description

To create the link from system-design through to hardware implementation, the system

topology at the TLM level must be mapped to the RTL design configuration. For those

components that exist at both the TLM level as well as the RT level, system configuration

and assembly can be performed in an automatic and consistent manner.

A typical architecture for an ESL SoC design tool that supports IP-XACT is shown in

Fig. 7. In addition the basic capability of maintaining an internal database to represent system

Springer

130 C. Shin et al.

IP-XACT output

IP-XACT input

ESL Tool with

IP-XACT support

IP-XACT information
creation and

manipulation.mxp
IP-XACT related

information

existent or

non-existent

IP-XACT related

information

modified or

created

.mxp

Netlists in IP-XACT XML

IP-XACT information

visibility

Netlists in
IP-XACT XML

Component description in
IP-XACT XML

Bus definition in
IP-XACT XML

LGI-related files (XML)

ESL Tool data files ESL Tool data files

RTL Design Tool

RTL Design Tool

IP-XACT design file

export and import

Fig. 7 IP-XACT usage in an ESL design tool

model connectivity, register and bus interface configuration, system memory maps, etc., the

tool needs to have the ability to relate its internal data structure to the IP-XACT description

of the system design. In Fig. 7, the internal database is identified as a library configuration

file (.mxp) and a design configuration file (.mxp). A tool implementing IP-XACT database

manipulation is likely to have a wizard for the specific view of the design that exposes

IP-XACT-related information. This wizard allows for manual edit and automatic import of

existing IP-XACT IP description files. In this way, regardless of an internal proprietary data-

base format, the import of a design IP will capture and create the multi-vendor IP-XACT

descriptions for that IP as a by-product of the IP import process.

The SoC design tool’s internal database will be automatically updated by manipulation

of the design through changing of connections; and duplicating, removing or configuring

components in a system design through the GUI. As part of The SPIRIT Consortium’s

IP-XACT standard, it is mandatory that any IP-XACT-compatible design-environment also

reflect these changes into the IP-XACT description of the full design. Hence, once an optimal

design is determined by going through iterative simulations with fast models at ESL level, the

language-neutral description of the system interconnect and configuration can be exported

immediately to an RTL tool in the form of an IP-XACT design file.

Mapping an IP-XACT design to the cycle-based SystemC interface constructs is enabled

through simple equivalence relations between the IP-XACT and internal tool data structures.

In the example of Fig. 7, the library configuration file (.conf) contains IP library-specific

information such as library types, paths and a list of ports defined in IP-XACT component

description. A design configuration file (.mxp) contains information such as IP instance

names, instance-specific port information, connectivity and parameters.

Springer

Enabling heterogeneous cycle-based and event-driven simulation 131

To enable complete import and export between design environments, the library and design

configuration files need to be annotated to express design IP properties (IP-XACT library

module name and path), ports (IP-XACT port name, type and corresponding IP-XACT bus

interface VLNV), and a TLM-to-IP-XACT port mapping table per component. The annotated

information is kept in the library configuration file (.conf) and the design configuration file

(.mxp) in the example show in Fig. 7.

A concept particular to IP-XACT meta-data that needs to be accommodated by the ESL

design tool is the interconnect channels. Channels are IP connection elements with specific

interfacing rules that enable netlisting between masters and slaves for non-symmetric pro-

tocols (e.g., ARM AHB master and slave interfaces are non-symmetric). The channels are

handled as pseudo-elements in the ESL design tool as they are not necessary for ESL con-

nections due to the fact that there is no concept of symmetry in signal interfaces at the TLM

level. This IP-XACT channel information is added to the internal design configuration file

(.mxp). Because channels are handled as pseudo-elements, a direct connection between ports

of two different components may be represented as a connection that involves an IP-XACT

channel in between in the design configuration file and the exported IP-XACT design file.

The mapping of an IP-XACT channel to its relevant IP-XACT bus definition needs to be

stored separately and in a global manner because this information is neither design-specific

nor library-specific, and is reusable across designs. In addition, for support of RTL generation

flow, an ESL tool may need to generate an LGI file that contains information needed for design

generation in a downstream RTL stitching tool.

4.1 The flow from ESL to implementation

In moving from a TLM environment to a hardware implementation environment, the system

design configuration must not only move between design environments often supplied by

different tool vendors, but it must also apply to IP supplied in both SystemC and hardware

implementation languages. It is critical that the design constructed in the downstream hard-

ware design environments is validated as being equivalent to that exported from the system

design environment. From that perspective, it is critical that the hand-off be able to gener-

ate an RTL representation of the design, configure a basic integration test, and launch the

implementation script-generation process.

The RTL generation process involves two basic steps: component instantiation and com-

ponent interconnection. The information required for component instantiation is available

directly from the IP-XACT component descriptions as it contains the relevant signal and

parameter descriptions required for component instantiation in languages like Verilog and

VHDL. The connectivity is modelled in IP-XACT by bus interfaces, and by ad-hoc connec-

tions. Making ad-hoc connections in the RTL is a simple process as these connections map

directly between the IP-XACT description and wire/signal based connections in the RTL

domain. Translating the bus interface connections into RTL connections requires additional

information. This can be handled via an IP-XACT generator which understands the details

of the interface to signal mapping for a specific type of interface or it can be done via a

generic interface-to-signal generator, provided that the RTL design environment is capa-

ble of requesting and modelling the additional information required (e.g. how to deal with

mismatched signal widths, how to deal with missing signals, etc.).

The hardware script generation process takes into account the specific aspects of the

implementation flow being used, including tools and tool versions as well as the specific

target technology being used. This will include details about cells available in the library.

Subsystem design constraints include input/output timing requirements, DRC requirements,

Springer

132 C. Shin et al.

external drive/load characteristics, clock definitions, and timing exceptions such as false and

multi-cycle paths. This type of synthesis information is well standardized in the industry, and

common to multiple flows. As this information involved in the script-generation process is

standard to the industry, this can be included directly into the IP-XACT descriptions and be

relevant for any downstream synthesis environment.

Whenever possible the constraints are specified in a technology independent manner.

This greatly enhances the portability of the constraints as the IP can be targeted to different

technologies without any updates to the IP-XACT meta-data.

Beyond the generic design synthesis constraints described above, an important element of

the design flow to be passed into the implementation flow is the expression of implementation

‘intent’. This is the final critical input to the script generation process. An example of why the

expression of synthesis intent is important is the following: an IP block may contain many

arithmetic components, so the IP author provides specific directives to the script generator to

tune it to functions that focus more on arithmetic optimization than combinatorial optimiza-

tion. The knowledge about a design being data-path or control-dominated is a well known

factor in influencing the best style of synthesis optimization.

The personalization of the script generation process is determined by optimization focus,

design characteristics, hierarchy preservation, blocks, to compile, customizations, DFT in-

tent, and physical intent. While providing directives to a synthesis engine to drive the style of

design optimization is a common concept, the way in which this intent is expressed is often

vendor specific. The vendor extension mechanism in The SPIRIT Consortium specifications

enables the capture of the specific parts of this implementation flow. The style of vendor

extensions that best enable the flow can be provided by the specific tool or IP vendor.

The process described above is highlighted in Fig. 8.

Hardware Design Tool

• Design IP

• Technology Lib

Synthesis Tools

• Gate-level Netlist

• HTML Reports

• ATPG Results

IP
-X

A
C

T
m

e
ta

-d
a
ta

• SoC netlist

• Implementation

Constraints

• Tool Version

Vendor

Extensions

Generated Synthesis Scripts

Synthesis Intent

Fig. 8 IP-XACT enabled HW implementation flow

Springer

Enabling heterogeneous cycle-based and event-driven simulation 133

5 Experiments

Two experiments were performed to examine the concepts described above. The first is a

direct comparison of architectures simulating on the cycle-based SoC Designer simulation

kernel versus the event-based OSCI kernel. The second was an examination of the design-flow

export from SoC Designer to Synopsys coreAssembler

5.1 Simulation efficiency experiment

To compare the performance of an event-driven and cycle-level simulation kernel, we chose

the OSCI SystemC simulator as an example of an event-driven simulation kernel, and ARM

RealView SoC Designer with MaxSim technology as an example of a cycle-level simulation

kernel. As a driver example, we chose a DLX RISC processor architecture based embedded

system, running a simple assembly application (GCD) that computes the greatest common

divisor of two integer numbers. To ensure that both simulation models use the same software

application, we use the assembly file generated by the DLX compiler generated by ARM’s

RealView Core Generator toolsuite (which is based on the LISA description language [18]),

for both the OSCI SystemC and SoC Designer simulation models.

Figure 9 shows the OSCI SystemC implementation of the processor model. In the SystemC

model, the processor model consists of nine process threads, as shown. Five threads are

reserved to model the cycle-accurate pipeline of the DLX processor. To enforce cycle-accurate

delays the memory accesses have been modelled as sc threads. The SystemC scheduler

manages the context switching and preemption between the threads used in the simulation.

There is significant inter-thread communication in the application as it simulates the event

passing between hardware component models. We have chosen thread-based modeling as

a first option for our comparison, due to the fact that this seems the most common choice

Fig. 9 The DLX simulation environment using the event-driven SystemC kernel

Springer

134 C. Shin et al.

Fig. 10 The ARM RealView SoC designer model simulation environment

for modeling multi-cycle behaviors, allowing our comparison to show range of performance

tradeoffs available.

Figure 10 shows the SoC Designer simulation environment using the DLX example. The

cycle-based model for the DLX processor has been generated from a LISA description,

using the ARM RealView Core Generator suite. It implements the communicate and update

functions of a cycle-based model, modeling a finite state machine that describes the pipeline

behavior of the processor. The SoC Designer engine allows the user to monitor the transaction-

level communication between hardware elements with the possibility of stopping, stepping,

or restarting the simulation as needed. Registers, memories and processor pipeline can be

observed and profiled, and the execution of the GCD application can be debugged on the

DLX application in simulation time.

To measure the performance of the cycle-based SoC Designer kernel and the event-driven

SystemC kernel we compared the time required to execute 10 million cycles while executing

the GCD application in an infinite loop. The DLX processor directly addresses the writable

data memory. We ran a set of experiments using the GCD example where we varied the

delays for the data memory reads and writes, from 0 to 100 cycles, in increments of 5 cycles.

The performance results were carried out on a 1.6GHz Pentium 4-M processor with 768MB

RAM running the Windows XP OS and are shown in Fig. 11. From the results of running the

simulation comparison study, we can see that the performance of the multi-threaded SystemC

kernel degrades drastically when short delays are used, while SoC Designer’s performance is

almost constant. This confirms our intuition that the increasing number of preemptions adds

a significant overhead to the simulation. This suggests that the SystemC kernel’s simulation

Springer

Enabling heterogeneous cycle-based and event-driven simulation 135

0 10 20 30 40 50 60 70 80 90 100

Memory Access Delay (cycle)

S
im

u
la

ti
o

n
 T

im
e

 (
s
e

c
)

0

10

20

30

40

50

60

RealView SoC Designer OSCI SystemC

Fig. 11 Performance experiments using the ARM RealView SoC designer and OSCI systemc environments

performance degrades faster in comparison with the SoC Designer cycle-based simulation

when we analyze complex systems with complex interactions.

In the event-driven space, previous work has reported performance improvements of 30–

50% when using method-based instead of thread-based descriptions [28, 29]. Our results,

as shown in Fig. 11, confirm our expectation that using a cycle-based approach leads to

further performance gains (a factor 5 to 13 in our experiments, depending on the amount

of inter-component communication). While more performance points can be found inside

this range, comparing the thread-based/event-driven and cycle-based modeling approaches

shows a good perspective of the performance ranges available when describing complex

IPs.

5.2 ESL to design implementation experiment

We developed an integrated TLM to implementation flow using the RealView SoC Designer

tool for TLM, and the Synopsys coreAssembler [26] tool for RTL design and verification.

These experiments were performed on an ARM 1176JZ-S processor subsystem supporting

the basic components required to enable embedded software to execution. This includes the

support of a RAM, ROM, a timer and interrupt controller, etc.. This is connected using AMBA

AXI bus fabric infra-structure components. All of these components have RTL views, and cor-

responding SystemC models within the ARM RealView SoC Designer ESL tool. The trans-

action level interface used is the ARM RealView ESL simulation API, a cycle-based trans-

actional interface. The experiments were performed using the IP-XACT v1.1 specifications.

Initially the IP-XACT meta-data was captured for individual components at the RT level.

This included using meta-data to identify: the RTL I/O signals, design files that are used to

describe the functionality of the component e.g. Verilog RTL source files; and the interfaces

Springer

136 C. Shin et al.

supported by the component at an abstract level (e.g. a AXI slave port) and I/O signals used

to implement the interface.

It takes less than half a day to capture and validate IP-XACT descriptions for simple

peripherals with standard interfaces. For cores with multiple complex bus interfaces (e.g.,

co-processor, interrupt bus, etc.), the effort required to build the IP-XACT descriptions varies

depending on the degree of re-use of validated bus definitions. After completion, the IP-XACT

component definitions were imported into SoC Designer and the coreAssembler tools.

In the SoC Designer tool, an IP-XACT SoC design definition is relatively straight forward

to create as it is only required to define the components instantiated in the design, the

parameter values associated with the instantiate components and the interconnect between

the interfaces provided by the components. As typically there is a direct alignment between

the IP-XACT and SystemC component interface definitions, the SystemC representation of

the system is a direct mapping of the design definition held within the IP-XACT design

definition. However, there are some cases where an RTL pin does not generally have a

corresponding simulation interface at the TLM level, such as core debug interfaces and

some bus sideband signals. In these cases, connections are omitted during the design-file

generation process and interfaces can be connected manually in the RTL assembly phase,

supported by Synopsys coreAssembler. Alternatively, it is possible to declare the missing

RTL pins as bus interfaces in the IP-XACT description, and expose them to the SoC Designer

to allow explicit connection in the tool. This way, the generated design file will contain the

interfaces/connections for these elements as well.

For our experiment with the ARM 1176 subsystem, once we had completed simulation in

SoC Designer the architectural topology was exported in the IP-XACT format and imported

into the Synopsys coreAssembler tool to begin the path to implementation. The results of this

automated path from ESL to RT component configuration and assembly are shown in Fig. 12

where the architecture existing as a SystemC model in SoC Designer (left hand side of the

figure) has been automatically recreated as an RTL design built from the exported IP-XACT

description in coreAssembler (right hand side of the figure). Once the design is assembled at

in RTL, the flow into system synthesis can commence.

6 Conclusions

We have introduced the concept of heterogeneous system-model integration and flow to

implementation, as well as the concept of cycle-based simulation supported by standard

interfaces, the ARM RealView ESL APIs. We have compared the cycle-based execution

paradigm against the event-based simulation paradigm for TLM system-simulation and have

found that cycle-based simulation is generally faster for modeling systems in an abstract

fashion. In particular, when dealing with systems exhibiting complex communication, not

needing to rely on the overhead of an event-scheduler is particularly advantageous for cycle-

based simulation.

Using the cycle-based interfaces of SoC Designer that can be readily associated with RTL

connectivity requirements, we have shown how the IP-XACT meta-data standard from The

SPIRIT Consortium can be used to link RTL implementation tools to ESL tools. This flow

can maintain system-design consistency between RTL and TLM representations of a design,

across the design language barriers and between tools vendors.

Our experiments show that ARM RealView SoC Designer and Synopsys coreAssembler

together provide a practical TLM-based design flow, starting with fast modeling and moving

seamlessly to RTL IP integration and synthesis.

Springer

Enabling heterogeneous cycle-based and event-driven simulation 137

Fig. 12 Realview SoC designer (MaxSim) TLM to synopsys coreassembler implementation

Springer

138 C. Shin et al.

7 Appendix: Summary of transaction level modeling styles

There are a number of other styles for TLM modeling [1, 31, 33] that have appeared in

the industry recently, and these are described here. In Cycle Accurate (CA) models [15,

16], system components and the bus architecture are captured at a cycle and pin accurate

level. While these models are extremely accurate, they are too time-consuming to model

and only provide a moderate speedup over RTL models. Pin-Accurate Bus Cycle Accu-

rate (PA-BCA) models [17] capture the system at a higher abstraction level than CA mod-

els. Behavior inside components need not be scheduled at every cycle boundary, which

allows rapid system prototyping and considerable simulation speedup over RTL. The com-

ponent interface and the bus are still modeled at a cycle and pin accurate level, which

enables accurate communication space exploration. However, with the increasing role of

embedded software and rising design complexity, even the simulation speedup gained with

PA-BCA models is not enough. More recent research approaches [4–8] have focused on

using concepts found in the Transaction Level Modeling (TLM) [1–3, 31, 33] domain

to speed up simulation. We will first elaborate on TLM models before describing these

approaches.

Transaction Level Models [1–3, 31, 33] are bit-accurate models of a system with specifics

of the bus protocol replaced by a generic bus (or channel), and where communication takes

place when components call read() and write() methods provided by the channel interface.

Since detailed timing and pin-accuracy are omitted, these models are fast to simulate and

are useful for early functional validation of the system [1]. Gajski et al. [3] also proposed a

top-down system design methodology with four models at different abstraction levels. The

architecture model in their methodology corresponds to the TLM level of abstraction while

the next lower abstraction level (called the communication model) is a bus cycle accurate

(BCA) model where the generic channel has been replaced by bit and timing accurate signals

corresponding to a specific bus protocol.

Early work with TLM established SystemC 2.0 [2] as the modeling language of choice for

the approach. Pasricha [1] described how TLM can be used for early system prototyping and

embedded software development. Paulin et al. [9] define a system level exploration platform

for network processors which need to handle high speed packet processing. The SOCP

channel described in their approach is based on OCP semantics and is essentially a simple

TLM channel with a few added details such as support for split transactions. Nicolescu et al.

[10] propose a component based bottom-up system design methodology where components

modelled at different abstractions are connected together with a generic channel like the one

used in TLM, after encapsulating them with suitable wrappers. Commercial tools such as

the Incisive Verification Platform [11], ConvergenSC System Designer [12] and Cocentric

System Studio [13] are also providing support for system modeling at the higher TLM

abstraction, in addition to lower level RTL modeling.

Previous work in [28, 29] has reported performance improvements when switching from

thread-based modeling to method-based modeling in an event-driven environment. We be-

lieve that using cycle-based approach offers further performance improvement opportunities,

on top of the improvements gained by avoiding the context switching present in the threaded

approaches.

Recently, research efforts [4–8] have focused on adapting TLM concepts to speed up ar-

chitecture exploration. Xinping et al. [4] use function calls instead of slower signal semantics

to describe models of AMBA 2.0 and CoreConnect bus architectures at a high abstraction

level. However, the resulting models are not detailed enough for accurate communication

exploration. Caldari et al. [5] similarly attempt to model AMBA 2.0 using function calls

Springer

Enabling heterogeneous cycle-based and event-driven simulation 139

for reads/writes on the bus, but also model certain bus signals and make extensive use of

SystemC clocked threads which can slow down simulation. Ogawa et al. [6] also model data

transfers in AMBA 2.0 using read/write transactions but use low level handshaking semantics

in the models which need not be explicitly modelled to preserve cycle accuracy. Pasricha et

al. [7, 8] introduced the Cycle Count Accurate at Transaction Boundaries (CCATB) model-

ing abstraction to create simulation models for fast architecture exploration. CCATB trades

off intra-transaction visibility for simulation speedup, resulting in improved performance

compared to existing simulation abstractions.

References

1. Pasricha, S. Transaction Level Modeling of SoC with SystemC 2.0. In Synopsys User Group Conference
(SNUG), 2002.

2. Grötker, T., S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer Academic Publishers,
2002.

3. Gajski, D. et al. SpecC: Specification Language and Methodology. Kluwer Academic Publishers, January
2000.

4. Xinping, Z., and M. Sharad. A Hierarchical Modeling Framework for on-chip Communication Architec-
tures. In IEEE/ACM International Conference on Computer-Aided Design, 2002.

5. Caldari, M., M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti. Transaction-Level Models
for AMBA Bus Architecture Using SystemC 2.0. DATE 2003.

6. Ogawa, O. et al. A Practical Approach for Bus Architecture Optimization at Transaction Level. DATE
2003.

7. Pasricha, S., N. Dutt, and M. Ben-Romdhane. Extending the Transaction Level Modeling Approach for
Fast Communication Architecture Exploration. DAC, 2004.

8. Pasricha, S., N. Dutt, and M. Ben-Romdhane. Fast Exploration of Bus-based On-chip Communication
Architectures. CODES+ISSS, 2004.

9. Paulin, P. et al. StepNP: A System-Level Exploration Platform for Network Processors. IEEE Design and
Test of Computers, 2002.

10. Nicolescu, G. et al, Mixed-Level Cosimulation for Fine Gradual Refinement of Communication in SoC
Design. DATE, 2001.

11. Cadence NCSystemC www.cadence.com/products/nc systemc.html.
12. Coware. www.coware.com.
13. CoCentric Studio www.synopsys.com/products/cocentric studio.
14. Open SystemC Initiative www.systemc.org.
15. Yim, J. et al. A C-Based RTL Design Verification Methodology for Complex Microprocessor. DAC, 1997.
16. Jang, H., et al. High-Level System Modeling and Architecture Exploration with SystemC on a Network

SoC: S3C2510 Case Study. DATE, 2004.
17. Séméria, L. et al. Methodology for Hardware/ Software Co-verification in C/C++. ASP-DAC, 2000.
18. Pees, S. et al. LISA—Machine Description Language for Cycle-Accurate Models of Programmable DSP

Architectures. DAC, 1999.
19. FPGA Journal: Samsung’s ViP Design Methodology Reduces SoC Design Time Up to 40 Percent

http://www.fpgajournal.com, September 2004.
20. Alberto Sangiovanni-Vincentelli, G. Martin. A Vision for Embedded Systems: Platform-Based Design

and Software Methodology. IEEE Design and Test of Computers, 18(6):23–33, 2001.
21. Lennard, C.K., and E. Granata. The Meta-Methods: Managing Design Risk During IP Selection and

Integration. European IP 99 Conference, November 1999.
22. SPIRIT Consortium, SPIRIT 1.1 Specification. www.spiritconsortium.org, June 2005.
23. World Wide Web Consortium. Extensible Markup Language (XML) 1.0. Third Edition, 2004.
24. SOAP Specifications: www.w3.org/TR/soap.
25. ARM RealView ESL Tools: www.arm.com/products/DevTools.
26. Synopsys IP Reuse Tools: www.synopsys.com/products/designware/ipreuse tools.html.
27. Grun, P., C. Shin, C. Baxter, C. Lennard, M. Noll, and G. Madl. Integrating a Multi-Vendor ESL-to-Silicon

Design Flow using SPIRIT. IP-SoC 2005.
28. Charest, E.M.A., and A. Tsikhanovich. Designing with SystemC: Multi-Paradigm Modeling and Simu-

lation Performance Evaluation. In Proceedings of The 11th Annual International HDL Conference, San
Jose, CA, pp. 33–45, March 11–12, 2002.

Springer

140 C. Shin et al.

29. Sharad, S. and S.K. Shukla. Efficient Simulation of System Levelmodels Via Bisimulation Preserving
Transformations. FERMAT Lab Virginia Tech., Blacksburg, VA, Tech. Rep., 2003–07.

30. Müller, W., J. Ruf, and W. Rosenstiel. SystemC Methodologies and Applications. Kluwer, Norwell, MA,
2003.

31. Cai, L. and D. Gajski. Transaction Level Modeling: An Overview. In Proc. Int’l Conf. Hardware/Software
Codesign and System Synthesis (CODES + ISSS 03), IEEE Press, pp. 19–24, 2003.

32. Posadas, H., F. Herrera, P. Sánchez, E. Villar, and F. Blasco. System-Level Performance Analysis in
SystemC. In Proceedings of the Design, Automation and Test Conference, IEEE, pp. 378–383, 2004.

33. Klingauf, W. Systematic Transaction Level Modeling of Embedded Systems with SystemC. Proc. DATE,
2005.

34. Benini, L., D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Ponzino. SystemC Cosimulation and
Emulation of Multiprocessor SoC Design. IEEE Computer, April 2003.

Springer

