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Abstract

This paper introduces a class of correlation filters called
Average of Synthetic Exact Filters (ASEF). For ASEF, the
correlation output is completely specified for each training
image. This is in marked contrast to prior methods such as
Synthetic Discriminant Functions (SDFs) which only spec-
ify a single output value per training image. Advantages of
ASEF training include: insenitivity to over-fitting, greater
flexibility with regard to training images, and more robust
behavior in the presence of structured backgrounds. The
theory and design of ASEF filters is presented using eye
localization on the FERET database as an example task.
ASEF is compared to other popular correlation filters in-
cluding SDF, MACE, OTF, and UMACE, and with other eye
localization methods including Gabor Jets and the OpenCV
Cascade Classifier. ASEF is shown to outperform all these
methods, locating the eye to within the radius of the iris ap-
proximately 98.5% of the time.

1. Introduction
A common way to detect patterns in images is through

correlation with an example template [4]. The simplicity

and efficiency of this approach continually draws researcher

attention despite many known weaknesses, and a steady

progression of advances has continued to breath new life

into this well established technique.

One commonly recognized weakness of simple template

matching is that while the response to a perfect example

of the template pattern will always be high, the relative

strength of responses to alternative patterns can be unpre-

dictable. A family of correlation filters has been developed

that endeavors to overcome this weakness by suppressing

responses to near-miss or distractor patterns, while pre-

serving strong responses to the target pattern. The differ-

ences among these filters lie in how they are constructed

from training samples. Examples include Synthetic Dis-

criminant Functions (SDF)[5], Minimum Variance Syn-

thetic Discriminant Functions (MVSDF) filters[15], Mini-

mum Average Correlation Energy (MACE) filters[8], Opti-

mal Tradeoff Filters (OTF)[12] and Unconstrained MACE

(UMACE)[14].

While these approaches greatly extend the performance

range of correlation filters, there is still further room for im-

provement. Specifically, we propose a new class of filters

called Average of Synthetic Exact Filters (ASEF) that differ

from these prior methods in two important respects. First,

an entire correlation response surface is specified for each

training instance during filter construction. Second, the re-

sulting filters, one per training image, are then simply aver-

aged. The resulting filters are less susceptible to over-fitting

the training data than other methods, and can therefore be

trained over larger and more inclusive training sets. As a

result, they out perform previous methods.

On the task of finding eyes in face images, ASEF out

performs all of the filter types mentioned above, as well as

Haar-based Cascade Classifiers [17] and Gabor Jet-based

methods[19]. This new family of correlation filters thus

shows state-of-the-art performance on the task of eye find-

ing and we anticipate similar performance gains on many

challenging object detection tasks.

2. Background
Accurate registration of face images is an important first

step in face recognition, and one common way of establish-

ing face registration is by finding eyes. As noted below, cor-

relation filters have been applied to eye finding before [3].

This section reviews the eye finding task and past work on

synthetic correlation filters. Emphasis is placed on algo-

rithms that appear in the direct comparisons with ASEF in

Section 4.

2.1. Eye Finding/Localization

Generally, eye finding algorithms return the pixel coor-

dinates of the center of the left and right eyes in frontal, or

near frontal, face images. To be counted as a success, the

algorithm must return the true eye location to within some

tolerance, typically measured as a fraction of the interocular
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distance, i.e. the distance between the centers of the eyes.

As is common, results in Section 4 will report percentage of

eyes correctly located over a range of interocular distances.

Two flavors of eye localization will be considered here.

The first presumes accurate prior knowledge, in essence as-

suming the true eye locations are already known to within a

modest number of pixels. This obviously easier task arises

in practice when face detection accurately locates the whole

face. Our results suggest this task can be equally well

solved using several methods. The more difficult task is

to accurately locate the left and right eye on a face given

no prior constraints, and it is on this task that the superior

performance of ASEF filters becomes apparent.

While there has been a tremendous amount of prior work

on eye finding, we will mention just a few either because

they also used synthetic correlation filters or because they

are particularly well known. In terms of synthetic correla-

tion filters and eye finding, the only prior work we know of

is by Brunelli and Poggio in 1997. They applied SDF and

Least Squares Synthetic Discriminant Functions (LSSDF)

correlation filters to eye detection [3]. Although this work

showed promise, the results are not competitive with more

recent work.

A well known face detection algorithm, the Viola and

Jones cascade classifier[17], has been adopted by many re-

searchers for eye detection: see [13], [6], and [18]. One

such system, designed by Castrillon-Santana, et al. [13],

uses a cascade classifier in conjunction with skin tone anal-

ysis. In this work we have adopted the cascade detector

from their paper to produce our own cascade based eye lo-

cator. On the easier task where an approximate eye location

is known, the cascade classifier performs well. However,

when the approximate location constraint is removed, the

cascade classifier produces many false detections and con-

sequently performs poorly.

Gabor jets have also been studied extensively as an eye

localization technique. As part of the Elastic Bunch Graph

Matching (EBGM) face recognition algorithm proposed by

Wiskott et al. [19], Gabor jets were used to locate many

fiducial points on faces including the eyes. When we com-

pare ASEF filters to a Gabor jet based eye detector based

on Wiskott’s algorithm, we find the Gabor jet algorithm is

at least 20 times as computationally demanding and is only

applicable to the easier problem where the eye location is

approximately known.

2.2. Correlation Filters

Correlation with an example template works well if the

appearance of the target does not change significantly from

image to image. Unfortunately, in most domains the ap-

pearance of the target does change across images, due to

variations among target instances and changes in imaging

condition (e.g. lighting, pose). There is also the threat that a

template may respond to visually similar non-target objects.

The result is that templates are often poor discriminators in

many object detection tasks.

A large famly of correlation filters have been developed

that improve the response to a variety of input stimuli.

Chronologically, SDF [5] filters were introduced first; they

respond well to positive training images while suppressing

responses to negative training examples. Next, MVSDF[15]

filters, MACE[8] and then OTF[12] filters were introduced.

These refine aspects of the filter design to improve perfor-

mance relative to noise and spatial resolution of response.

All four of these methods are similar in the way that they are

trained. Specifically, they all require a zero/one (target/non-

target) constraint on each training image. It has been found

that these hard constraints are unnecessary and can even

be detrimental for producing robust correlation filters[7].

Unconstrained correlation filters such as MACH[7] and

UMACE[14] relax these constraint and instead favor high

correlation responses on the average training image.

Two other prior approaches to the design of synthetic dis-

criminant filters deserve mention because they address the

entire correlation surface. Minimum Squared Error Syn-

thetic Discriminant Functions (MSESDF) [16] allows the

correlation surface to have an arbitrary response shape. This

type of filter was not tested in this work because there is

no canonical implementation and it has been shown that

when the desired output shape is selected to minimize the

non-centered pixels this filter is equivalent to MACE. The

second approach, Distance Classifier Correlation Filters

(DCCF) [9], produces output shapes that optimally discrim-

inate between classes of objects. While this is useful for

discriminating between objects, it has little use when accu-

rately locating objects. Both these methods still require the

training images to be centered on the target.

In this paper we will compare ASEF to two common op-

timal tradeoff filters that are described in [14]. The first

type of filter, OTF, is based on the SDF formulation which

imposes hard constraints on the output of the filter.

For these filters, the desired output of the filter is cap-

tured in a variable ui. For positive training examples,

ui = 1 and for negative examples ui = 0. In this work

only positive examples are used. The corresponding con-

straint for a single training image is:

ui = h�xi (1)

Because there are fewer constraints than pixels in the filter

there are multiple filters that will satisfy these constraints.

To produce a single filter SDFs impose additional con-

straints by requiring the filter to be a linear combination of

the training images, while MACE requires the filter to mini-

mize the average output energy over the training set. Under

this process the filter h is defined as:

h = D′−1X(X�D′−1X)−1u (2)
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The distinction between SDF, MVSDF, MACE, and OTF

filters lies entirely in how D′ is defined.

A MVSDF suppresses frequencies corresponding to

noise. To do this we define D′ = C where C is a diag-

onal matrix such that each element of the diagonal corre-

sponds to the power spectrum of the noise. Like [14], we

will assume white noise in which C becomes the identity

matrix (C = I). MVSDF filters typically emphasize lower

frequencies which suppresses noise, but this also has the ef-

fect of producing smoother peaks that are more difficult to

detect.

MACE attempts to produces sharp detectable peaks by

minimizing the average correlation plane energy for the

training set. To do this we define D′ = D where D is a

diagonal matrix containing the average power spectrum of

the training images. MACE filters typically emphasize high

frequencies. This produces sharp peaks, but also makes the

filter much more sensitive to noise.

Finally, OTF finds an optimal balance between the prop-

erties of MVSDF and MACE.

D′ = (Dα + C
√

1 − α2)−1 (3)

This introduces the parameter α which is used to tune the

filter between the noise tolerance of MVSDF and the sharp

easily detected peaks of MACE. In the case that α = 0,

D′ becomes the identity matrix and the filter is equivalent

to the SDF filter. If α = 1, D′ = D and the OTF filter is

equivalent to MACE. Therefore, the process of optimizing

alpha discussed in Section 4 also considers the two special

cases of SDF (α = 0.0) and MACE (α = 1.0).

The second type of optimal tradeoff of filter is an uncon-

strained filter called UMACE. Instead of requiring the filter

to satisfy a set of hard constraints on the correlation out-

put, UMACE only requires a high average response to the

training examples. The resulting filter is defined as:

h = D′−1m (4)

where m is the average of the columns of X (or the average

training image) and D′ is the same as defined in Equation 3.

Here the filter for α = 0.0 becomes the average training

images and for α = 1.0 has similarities to MACE in that it

produces sharp correlation peaks.

The MVSDF, MACE, and OTF filters mentioned above

are all based on similar assumptions, and have many of the

same issues. Each training image is given a single “syn-

thetic correlation value”, which is the value the filter should

return when the filter is centered upon the image. The result

is too few constraints relative to the degrees of freedom in

the filter, leading to over-fitting of the training data. While

unconstrained filters such as UMACE eliminate this over-

fitting, they still share many other problems with these fil-

ters; in particular the filters do not specify the response at

any other location in the training tile.

3. ASEF Correlation Filters
ASEF filters differ from prior correlation filters in that

the convolution theorem is exploited to greatly simplify the

mapping between the input training image and the output

correlation plane. In the Fourier domain the correlation op-

eration becomes a simple element-wise multiplication, and

therefore each corresponding set of Fourier coefficients can

be processed independently. The resulting computations

also naturally account for translational shifts in the spatial

domain. As a result the entire correlation output can be

specified for each training image.

The first major difference between the filters discussed

above and ASEF filters is that ASEF filters are over con-

strained. Where SDF only specifies a single “synthetic cor-

relation value” per training image, ASEF filters are trained

using response images that specify a desired response at ev-

ery location in each training image. This response typically

is a bright peak centered on the target object of interest.

One consequence of completely specifying the correla-

tion output is a perfect balance between constraints and de-

grees of freedom for each training image, and therefore a

complete “exact filter” is determined for every training im-

age. Over-fitting is avoided by averaging the filters defined

from each of the N training images. The UMACE filter also

averages to avoid over-fitting, but there the similarity ends,

since UMACE averages the training images while ASEF

averages a set of exact filters.

Finally, ASEF filters provide much more freedom when

selecting training images and when specifying the synthetic

output. A benefit is that the training images need not be cen-

tered on the target. For each training image, we specify the

desired filter output and may place the peak wherever the

target appears. Because the correlation peak moves in lock-

step with the targets in the training images, all the exact

filters are consequently registered by inverting the correla-

tion process. This increases training flexibility, allowing us

to customize the desired response for each training image.

For example, training images may have multiple targets per

training image as long as the synthetic output contains mul-

tiple corresponding peaks.

3.1. Definition of an ASEF Filter

Figure 1 illustrates the process of constructing an ASEF

filter. Note first the training pairs fi, gi consist of a train-

ing image and associated desired correlation output. The

correlation image gi is synthetically generated with a bright

peak at the center of the target, in our case the left eye, and

small values everywhere else. Specifically, we define gi to

be a two dimensional Gaussian centered at the target loca-

tion (xi, yi) and with radius σ:

gi(x, y) = e−
(x−xi)

2+(y−yi)
2

σ2 (5)

2107



ASEF SDF

1.0

f1 g1 h1 x1 u1

1.0

f2 g2 h2 x2 u2

1.0

f3 g3 h3 x3 u3

1/N
∑N

i=0 hi SDF

Figure 1. This figure compares ASEF training to the training for

SDF. For ASEF, the image fi is an image in the training set and

gi is the corresponding desired filter output. A correlation filter hi

is produced by in the Fourier domain that exactly transforms fi to

gi. The final correlation filter is produced by taking the average

of many Exact Filters. SDF and similar methods only specify one

correlation value for each training image.

The role played by σ is similar to that of α in OTF: it trades

off noise tolerance against peak sharpness. 1

By the Convolution Theorem, we know that convolution

in the spatial domain becomes element-wise multiplication

in the Fourier domain:

g(x, y) = (f ⊗ h)(x, y) = F−1(F (ω, ν)H(ω, ν)) (6)

This relationship forms the basis for finding synthetic exact

filters, where f is the image, h is the filter, and g is the

correlation output in the spatial and corresponding capital

letters (F , H , and G) indicate their respective 2D Fourier

transforms.

To solve for the exact filter, first note the correlation is

computed by simply substituting the complex conjugate of

H into Equation 6.

G(ω, ν) = F (ω, ν)H∗(ω, ν) (7)

1The synthetic output need not be peaks. For example an edge filter

could be learned by specifying a bright response along edges of interest.

Next, solve for the exact filter:

H∗
i (ω, ν) =

Gi(ω, ν)
Fi(ω, ν)

(8)

where the division is an element-wise division between the

transformed target output Gi and the transformed training

image Fi. This type of computation is not entirely new.

Similar computations are used to perform deconvolutions

or to produce inverse filters[11]. However, we have not yet

seen a synthetic correlation plane used for this purpose in

the main stream literature.

One can see from Figure 1 that the exact filters h1, h2,

and h3 do not appear to have a structure that would respond

well to an eye but instead are specific to each training image.

To produce a filter that generalizes across the entire train-

ing set, we compute the average of multiple exact filters.

Averaging emphasizes features common across training ex-

amples while suppressing idiosyncratic features of single

training instances. This is visually evident in the final ASEF

shown in the bottom row of Figure 1.

A deeper motivation for averaging may be found in ag-

gregation theory also known as bagging. In particular, the

exact filter can be thought of as a weak classifier that per-

forms perfectly on a single training image. As shown by

Breiman [2], a summation of a set of weak classifier’s out-

performs all the component classifiers and, more impor-

tantly, if the weak classifier’s are unbiased, thier summation

converges upon a classifier with zero variance error.

Because the Fourier transform is a linear operation, the

average can be computed in either the Fourier or the spatial

domain.

H∗
μ(ω, ν) =

1
N

N∑

i=1

H∗
i (ω, ν) (9)

hμ(x, y) =
1
N

N∑

i=1

hi(x, y) (10)

where Hμ or hμ are the final ASEF filters. Note that if

computed in the spatial domain the Exact filters can be

cropped before averaging which allows ASEF filters to be

constructed from training images of different size.

We have found that ASEF filters perform best when

trained on as many images as possible. In this paper we

have augmented the training set by introducing random sim-

ilarity transforms as part of simulating the face detection

process. In general, image transformations that introduce

small variations in rotation, scale, and translation are bene-

ficial to producing robust ASEF filters because they expose

the filter to a greater variety of images. This family of trans-

forms also focuses the filter on regions near the peaks and

therefore producing a filter that emphasizes the image data

near the target object.
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4. Experimental Evaluation
All experiments used the FERET dataset [10]. This

dataset contains 3,368 images of 1,204 people, with man-

ually selected eye coordinates for each image. For these ex-

periments, the FERET data set was randomly partitioned by

subject into two sets of 602 people and 1699 images each.

One of these sets was further partitioned by image into a

training set with 1024 images and a validation set with 675

images. The training and validation sets were used to tune

the algorithms. The other set of 602 people was sequestered

during training and used as a testing set.

Faces were initially found in all images using the

OpenCV face detector. This detector places the eyes very

close to their true location most of the time, which made

eye detection too easy for adequate testing of alternative

eye finding methods. To make the eye localization problem

more difficult, face detection is simulated by first aligning

the faces to produce 128×128 images with the eyes located

at (32.0, 40.0) and (96.0, 40.0), and then applying a random

similarity transform that rotates by up to ±π/16, scales by

up to 1.0±0.1, and translates by up to ±4.0 pixels. Each of

the initial 1, 024 training images was randomly perturbed 8
times yielding 8, 192 training images.

For the correlation filters tested in this paper, each image

tile was normalized by first taking the log (log(v + 1)) of

the pixel values to reduce the effect of shadows and intense

lighting, and then normalizing the values to have a mean of

0.0 and a squared sum of 1.0, to give the images a consistent

intensity. Finally, a cosine window is applied to the image

which reduces the frequency effects of the edge of the im-

age when transformed by the Fast Fourier Transform (FFT).

ASEF was trained on the full 128×128 image tile, while the

other correlation filters were trained on 64× 64 image cen-

tered on an eye. Localization is performed by correlating a

testing or validation image with the left and right filters and

selecting the global maximum in the correlation output.

Evaluation of the eye location algorithms tested in this

paper is based on the distance from the manually selected

eye coordinate, normalized by the interocular distance. For

example, the left eye normalized distance is computed as

follows:

D =
||Pl − Ml||
||Ml − Mr|| (11)

where D is the normalized distance, Pl is the predicted eye

location from the algorithm and Ml and Mr are the manu-

ally selected left and right eye coordinates. We have chosen

the operating point of D < 0.10 as the criteria for a success-

ful localization. This corresponds to a target that is approx-

imately the size of the human iris. In most cases, this paper

only shows the results for the left eye. Results for the right

eye were similar and always corroborate conclusions drawn

here. Right eye results and more analysis can be found in

the supplemental material.

4.1. Experiment 1: Localization Restricted to Eye
Regions

This experiment is intended to simulate an eye localiza-

tion problem. In this section we compare ASEF filters to the

competing correlation filters and to Cascade Classifier and

Gabor Wavelet eye localization algorithms. For this experi-

ment all the algorithms have been configured to only search

for an eye within a small region surrounding the expected

location of the eye. This is consistent with many real sys-

tems where the face is first located using a face detector.

Typically, the eyes end up in the same regions of the face

detection window.

Before running a formal test, the training and validation

data where used to find an optimal configuration for each of

the algorithms. These results can be found in Figure 3a.

The OTF correlation filters were trained using set sizes

sampled densely from 1 to 24. Additional large set sizes

were also tried to illustrate the over-fitting of this type of

filter. Values for α where also sampled on a range from 0.0

to 1.0 at an interval of 0.1. The configuration that performed

best on the validation set was selected for the final test.

Because ASEF and UMACE filters do not over-fit the

datasets, these algorithms were trained on all 8192 training

images to obtain the best generalization over the dataset.

The validation set is used to select values for α for UMACE

and σ (sampled at 1, 2, 3, 4, 5, and 6) for ASEF. Figure 3a

also showed the effect of training on smaller data sets.

For this experiment, the correlation filters are restricted

to a region within 20 pixels of the mean eye coordinate.

This is required to eliminate many false alarms that appear

in other parts of the face such as the “wrong” eye, the nose,

and the mouth.

The cascade classifier we have chosen is the OpenCV

cascade classifier trained for eyes [13]. In preliminary ex-

periments we found that the cascade classifier on average

produces 3.5 false alarms per face, of which one is often the

”wrong” eye, and the others correspond to the nose, mouth,

or the center of the forehead. The detection that is closest

to the mean eye coordinate is selected as the predicted eye

coordinate.

The Gabor jet locator is similar to the algorithm de-

scribed in [19]. The algorithm uses 256 exemplar jets. The

Gabor jet algorithm performs a gradient decent search for

the location of the eye starting at the mean coordinate. This

search is naturally restricted to a basin of attraction near that

mean coordinate and therefore will only produce localiza-

tions near that mean.

The results shown in Figure 3b indicate that all of the al-

gorithms perform quite well when the search is restricted to

the region near the eye. One of the most interesting results

is that two correlation filter methods (ASEF and UMACE)

perform significantly better than the two common eye local-

ization methods. These are the two filters that do not over fit
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the training data and therefore train on all 8,192 training im-

ages. These results suggest that a large training set is impor-

tant for accurate localization. Furthermore, sliding window

approaches do not evaluate their classification functions at

every pixel. To achieve real time performance, sliding win-

dows typically use a gate. Correlation computes correlation

at every pixel simultaneously and therefore should produce

more accurate localizations. The filters also will not miss a

target just because it was not centered properly in the sliding

window.

4.2. Experiment 2: Localization Without Restric-
tions

This experiment looks at the more difficult problem of

finding an eye when the approximate location of the eye is

not known a priori. This experiment is relevant to many

other vision problems, like generalized object detection,

where the location of the object in the scene may be un-

predictable.

The correlation filters were trained and configured using

the same training sets, validation sets, and parameters as

in the previous experiments. The difference between the

experiments is that the search space is expanded to include

the entire image.

The Gabor jet method was excluded from this experi-

ment because there was no easy way to extend the algorithm

to search the entire image. The cascade classifier was also

excluded, because its high false alarm rate made selecting

the correct detection without the help of prior information

infeasible.

Figure 3c and 3d shows that the best ASEF filters are

considerably more accurate than any of the other training

methods. An investigation into this issue found that the OTF

and UMACE filters where still producing strong responses

for the correct eye, but were often distracted by stronger re-

sponses to other locations of the face, typically the ”wrong”

eye or the nose. This result is almost expected because the

left and right eyes have similar appearances.

What is surprising is that ASEF filters rarely detect the

wrong eye. The correlation outputs for ASEF typically

show a very high response to the correct eye, and a very low

or non-existant response to the “wrong” eye. The majority

of the ASEF mistakes tend to be responses to background or

to unusual features of the face such as dark rimmed glasses.

Interestingly, ASEF is the only method tested in this re-

search that does not require prior knowledge of the location

of the eye to achieve good performance on this problem.

We believe this is caused by two features unique to the

ASEF training process. First, ASEF filters are trained on the

entire face image, including the “wrong” eye, nose, mouth,

etc. OTF and UMACE, on the other hand, were centered

on the correct eye and therefore had no exposure to these or

other distractions (see Figure 1). Second, because ASEF

completely specifies the correlation output for the entire

training image, it specifies both the high response for the

correct eye and the low responses for the rest of the face.

Every exact filter that becomes part of the “average” there-

fore has learned to ignore these other features. The result is

that the most common distractors are rarely associated with

mistakes.

ASEF UMACE

Figure 2. This figure shows the eye localization and correlation

output for the best correlation filter configurations from Experi-

ment 2. A good correlation filter should produce a small bright

peak at the correct location of the right eye and a mostly dark for

the rest of the image. The second row down illustrates near misses

for the left eye for both filters and missed right eye for UMACE

filter.

4.3. Experiment 3: Runtime Performance

One advantage of the correlation algorithm used with

these filters is that the algorithm is simple and fast. As seen

in the previous section, ASEF is producing much better re-

sults than the older filter based algorithms. This boost in

accuracy could allow correlation filters to become fast and

simple solutions to problems that were previously too diffi-

cult for correlation filter methods.

The primary performance bottle neck is the computa-

tion of the FFT. Both the left and right eye filters can be

combined into one complex filter where the real part corre-

sponds to the left eye and the imaginary part corresponds

to the right eye. By pre-computing the FFT of this com-

bined filter, eye detection can be performed using just two

FFTs by using one FFT to transform the image into the

Fourier domain, computing the element-wise multiplica-

tion, and then using the other FFT to compute the corre-
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Figure 3. These plots show the results for Experiments 1 (top) and 2 (bottom). The top row shows that the eye localization problem is much

easier when the algorithms use prior knowledge of the location of the eye. When this knowledge is not used ASEF clearly outperforms the

other algorithms.

lation plane. We have benchmarked the FFTW library as

computing 683.5 complex 2D FFTs per second at 128×128
pixels.2 This benchmark could be improved either using

specialized FFT hardware or optical correlation devices.

Correlation filters can be easily compared to the Gabor

jet algorithm which requires 41 FFTs to compute the cor-

relation of an image with the 40 complex Gabor wavelets.

This means the Gabor jet algorithm requires at least 20
times as many FFTs as a correlation filter approach.

2Based on using both cores of a MacBook Pro Laptop with a 2.4Ghz

Intel Core 2 Duo processor and 2Gb Ram.

In addition, FFT implementations use the underlying

hardware efficiently and the element wise multiplication

and maxima detection are very fast. For this reason correla-

tion filters may be faster than many sliding window object

detection algorithms with an expensive or inefficient “clas-

sifier function”. In this final experiment the correlation filter

methods were benchmarked at over twice as fast as the cas-

cade classifier.

A speed comparison can be found in Table 1. The sim-

plicity of the correlation filters make them by far the fastest.

All tests were performed in python using SciPy, OpenCV,
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and PyVision[1]. Most computation for the correlation fil-

ters and cascade classifier were performed by calling C or

fortran implementations. A significant amount of the Ga-

bor computation is performed in python so performance in-

creases should be realized by converting those functions to

a compiled language.

Table 1. These are the times to process all 1699 images in the test-

ing set for each of the three classes of algorithms. All correlation

filters are should to have about the same performance of which

best is shown here.

Experiment Filters Gabor Cascade Mean

Testing Time 52.21s 4859.53s 142.19s 19.53s

5. Conclusions
This paper introduces Average of Synthetic Exact Filters

(ASEF) as a method of constructing correlation filters for

detecting objects. Eye detection experiments show ASEF

filters to be superior to previously proposed synthetic cor-

relation filters as well as to two other commonly proposed

eye detection algorithms.

ASEF filters differ from previous synthetic correlation

filters in two important ways. First, for every training im-

age ASEF creates an exact filter that recreates the entire de-

sired correlation surface. Since the background may involve

distracting patterns, this improves the filter’s discrimination

ability. Second, the final filter is the average of the exact

filters for all the training images. This averaging avoids

over-fitting by emphasizing common features shared across

images.

We believe that ASEF will perform well on many similar

tasks. We have already extended this work to locate more

points on faces, such as the nose, eye brows, and mouth with

excellent results. In addition, ASEF has performed well at

detecting faces and locating pupils in images from an iris

sensor. In the future we hope to test ASEF in a variety

problems including face detection, face verification, auto-

matic target recognition, and medical image registration.
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