
Simple Real-Time Human Detection Using a Single Correlation Filter

David S. Bolme Yui Man Lui Bruce A. Draper J. Ross Beveridge
Computer Science Department

Colorado State University
Fort Collins, CO 80521, USA

{bolme,lui,draper,ross}@cs.colostate.edu

Abstract
This paper presents an extremely simple human detection
algorithm based on correlating edge magnitude images with
a filter. The key is the technology used to train the filter:
Average of Synthetic Exact Filters (ASEF). The ASEF based
detector can process images at over 25 frames per second
and achieves a 94.5% detection rate with less than one false
detection per frame for sparse crowds. Filter training is
also fast, taking only 12 seconds to train the detector on 32
manually annotated images. Evaluation is performed on the
PETS 2009 dataset and results are compared to the OpenCV
cascade classifier and a state-of-the-art deformable parts
based person detector.

1. Introduction
One of the simplest ways to detect targets in images is to
convolve an image with a filter or template that responds to
the target. The output of the convolution should produce a
large response where the target is present and a suppressed
response over the background. Targets are then detected
where the convolution output exceeds a threshold. The pri-
mary advantages of this approach is that it is extremely sim-
ple and very fast.

The success of the filter-based object detection depends
on the ability of the filter to distinguish between targets and
background. A typical way to produce a filter is to crop a
template of the target from a training image. Unfortunately,
templates based on one image often do not capture appear-
ance variation adequately and therefore only perform well
in highly controlled object detection scenarios. To com-
pensate, there are a number of techniques to produce filters
from large numbers of templates and therefore more accu-
rately represent targets appearance. For example, a filter can
be produced by averaging templates. Unfortunately, such a
filter often fails to adequately discriminate between targets
and background.

More sophisticated methods based on Synthetic Dis-
criminant Functions (SDF)s [13] can also be used to pro-
duce filters that respond well to the training templates and

produce sharp and stable peaks. One problem with SDFs is
that they do not consider the entire convolution output dur-
ing training. Instead they emphasize only one point in the
output when the filter is aligned with the target. These tech-
niques emphasize good peaks for targets but have much less
control when it comes to suppressing peaks for background
objects with similar appearances.

Recently, a new concept for training filters was intro-
duced called Average of Synthetic Exact Filters (ASEF) [3].
ASEF considers the entire output of the filter under a full
convolution operation. By exploiting the Convolution The-
orem, ASEF provides a mechanism where the entire out-
put for a full training image can be specified. Producing
an ASEF filter is much more like deconvolution than prior
techniques. In [3] it was shown that ASEF filters were much
better at locating eyes on a face because the filters were
much better at suppressing the response of other facial fea-
tures. This study will show that ASEF filters are able to
produce good target/background separation on a more gen-
eral detection problem, namely the PETS 2009 dataset[8].

Detectors based on ASEF filters have many advantages.
Training only requires a small number of hand annotated
images and a few seconds of computation time. The result-
ing detector is tuned specifically to the camera setup. Detec-
tion is much simpler than competing techniques and based
on the highly regular convolution, which means that it is
ideally suited for embedded systems or existing signal pro-
cessing chips. Filter-based detection is many times faster
than competing techniques, while its accuracy is compara-
ble or better.

The rest of this paper is organized as follows. Section 2
discusses other person detection techniques and how they
relate to the work presented here. Section 3 discusses the
process of creating a filter based detector and the method
used to learn the ASEF filter. Section 4 compares the filter
based detector to a morphable parts based approach and a
cascade based classifier. Section 5 summarizes the findings.
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2. Related Work
This paper compares the ASEF filter to two publicly avail-
able detectors. The first detector is based on the Viola and
Jones cascade classifier. This classifier is interesting be-
cause it is a good object detection algorithm and is fast
enough for real time systems[14]. The original context of
this work was in the area of face detection. Viola et. al. also
adapted this algorithm to the problem of people detection
[15]. In that study, detection was based on both visual fea-
tures and motion features computed between video frames.
The detector was also fast enough for real time detection,
reporting a speed of 4 frames per second. In this paper the
OpenCV[16] implementation of the cascade detector was
retrained on the PETS data with good results.

The second detector is based on a deformable parts
model is based on the work of Felzenszwalb et.al. [7]. This
detector adopts many ideas from [5] such as Histogram of
Oriented Gradient (HOG) based features and using and used
a Support Vector Machine (SVM) like classifier. The pri-
mary improvement of this method is that it also uses de-
formable parts models in addition to holistic matching to
improve detection accuracy. While accurate, this detector is
too slow for real time detection and takes a few seconds to
process each frame.

We also briefly investigated the person detector from [5].
This method is simpler than the Parts Based model and care-
fully investigated HOG based features as a basis of person
detection. The performance of the detector seemed to be
similar to [7], but was also slower.

In [9], the problem of accurate object detection in
crowded scenarios is discussed. Leibe et.al. point out that
many pedestrian detection techniques have been evaluated
on isolated people and as a result those detectors often fail
in crowded or complex real world situations. They propose
an iterative detection system that both detects and segments
people in a crowded scene. They also suggests that partial
occlusions in crowded scenes may be too difficult for de-
tectors based on simple features or models. In this work,
we have seen evidence to the contrary. The simple ASEF
filter based detector handled partial occlusion better than
the more complex Part Model based detector in many situ-
ations. However, all the detectors tested in this paper failed
as the crowd density increased. In those cases segmenta-
tion is a probably a better strategy for locating individuals
in those dense groups.

A number of detection methods have already been pre-
sented on the PETS 2009 dataset[6], however most of those
rely on tracking or multiple views to more accurately locate
people in the presence of crowds or occlusion. Tracking and
detection are not contradictory. In fact, detection is often an
important part of tracking systems and is typically used to
initialize or maintain tracks. The work discussed here fo-
cuses on improving detection in individual images.

Stalder et.al. [12] test a single frame detector, which of-
fers good solutions to the difficulties encountered in the
PETS 2009 dataset: namely occlusion and dense groups.
Instead of scanning the image using a single detection func-
tion, they learn a separate classifier function for every lo-
cation in the image. While this improves the detection ac-
curacy by simplifying the classification task, it is also not
a generalized detection algorithm such as the ASEF filter
detector discussed here.

3. Methods
To detect people in video, thousands of detection win-
dows must be evaluated every second. The vast majority
of those windows correspond to background and must be
disregarded. Consequently, a classifier must be constructed
that reliably rejects the vast majority of detection windows
presented to it while simultaneously avoiding the mistake
of rejecting windows in which a person is actually present.
This can be a major challenge.

In principle, it makes sense to train a detector on ev-
ery possible detection window in every frame of labeled
video. However, doing this for commonly used types of
detectors such as the Viola Jones cascade classifier is often
too computationally demanding. Instead, these algorithms
are trained iteratively using boosting. While this type of
boosted training is clever, and can after many iterations gen-
erate very good detectors, the process is hard to automate
and in practice can be problematic.

In contrast, the techniques presented here lend them-
selves naturally to efficient training over every possible de-
tection window. This is because the classifier is based upon
convolution, and training can be accomplished efficiently
by exploiting the Convolution Theorem. To be concrete the
filter presented in this study was trained on 3,145,728 de-
tection windows in under 12 seconds. The rest of this sec-
tion discusses the filter based detection algorithm including
regions of interest, preprocessing, training the ASEF corre-
lation filter, and finally filtering and detection.

3.1. Size Normalization and Preprocessing
One challenge in creating a filter based detector is the prob-
lem of scale changes. In the PETS2009 dataset, View001
the heights of people vary from a minimum of 50 pixels to
a maximum of 150 pixels. This presents two problems. The
first is for training, which assumes the people are approx-
imately the same size. The second is in testing, where the
filter needs to be applied at multiple scales. The solution to
both these problems leverages the geometry of the camera
setup. Because the camera is elevated and looking down
at an approximately planar scene, the y location of the per-
son is a good predictor of a persons height. The approach
here is to divide the scene into regions with approximately
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constant scale (See Figure 1). The four regions are then
rescaled so that people are approximately the same height
in each. Figure 2 shows that the rescaled regions have much
less variance in proportion to the average height than the full
frame. These regions also focus the detection effort on the
side walk which covers most of the action in the videos.1

Figure 1: This image shows the four detection regions
which cover the sidewalk.
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Figure 2: The left plot confirms that the height of people
in the full frame can be approximated nicely using a linear
model. This is expected given the approximately plainer
ground. The right plot shows the height of those people in
the rescaled detection regions. In the rescaled regions there
is much less variation in the person height.

1Having a uniform size also simplifies filter training and ensures that
image is a size compatible with an FFT.

Another challenge stems from the fact that a person’s
appearance is greatly affected by clothing. Many detec-
tion algorithms solve this problem by focusing on gradient
based features[17, 5, 11]. The gradient based features focus
the detection process on edge information and detection is
therefore less dependent on the absolute intensity of the pix-
els. Images are therefore preprocessed to produce the gra-
dient magnitude for each pixel in the detection region using
standard Sobel operators (See Figure 3). This step creates a
new image where the people are defined primarily by there
outline. The images are then value normalized by taking the
log of the pixel values and scaling the image to have a mean
value of zero and unit length in a manor identical to [3].

3.2. Training an ASEF Filter

Original Training Image

Preprocessed Desired Output

Exact Filter - 100% Energy Exact Filter - 95% Energy

ASEF Filter (Average of 512 Exact Filters)

Figure 3: This image shows the intermediate steps when
computing an ASEF filter.

Examples of the filter training process can be found in
Figure 3 and is discussed in detail in [3]. The filters are im-
plemented in Python using the PyVision library[2]. ASEF
filters learn the mapping from a source image to a target im-
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age. More formally, they take in an image f ∈ RP×Q and
maps it to a new image g ∈ RP×Q. That mapping is pa-
rameterized by a filter h ∈ RP×Q and transformation can
be expressed as a convolution:

g = f ⊗ h (1)

When training a standard detector, each detection win-
dow is labeled as either being a positive example if a person
is present or a negative example if it corresponds to back-
ground. In contrast, the ASEF filter is trained on complex
scenes that contain both positive and negative samples. The
entire image is labeled with peaks with a values of 1.0 where
a person is present and a values of 0.0 for background. The
ASEF process learns a mapping from the training images to
the labeled outputs.

More formally, for each training image fi, a synthetic
output gi will be generated which contains a peak for each
person in the image. The peaks in gi will take the shape of
two dimensional Gaussians:

gi(x, y) =
∑

p

e−
(x−xp)2+(y−yp)2

σ2 (2)

where (xp, yp) is the location of person p in the training
image, and σ controls the radius of the peak.

Next, for each training image, an exact filter hi will be
computed which exactly maps the image fi to gi. This com-
putation is efficient in the Fourier domain. The Convolu-
tion Theorem states that convolution in the spatial domain
becomes an element-wise multiplication in the Fourier do-
main. Therefore the problem can be transformed from

gi = fi ⊗ hi (3)

in the spatial domain, to

Gi = Fi �Hi (4)

in the Fourier domain, where Gi, Fi, and Hi are the Fourier
transforms of their lower case counterparts, and� explicitly
indicates an element-wize multiplication. The exact filter2,
Hi, can now be quickly computed by solving Equation 4:

Hi =
Gi

Fi
(5)

where the division is also performed element-wise.
The resulting filter could be considered a weak classi-

fier that performs perfectly on a single training image. It

2The notation differs slightly from that in [3] which considered cor-
relation instead of convolution and therefore used the notation H∗

i . The
method here will learn a ’matched’ filter which means that it will be flipped
on both the x and y axes in the spatial domain. This flipping can also be
performed by taking the complex conjugate in the Fourier domain. The
filter will also be centered on the pixel (0,0).

does not, however, generalize well to the larger dataset. As
seen in Figure 3, the exact filter looks more like noise than
a template that will respond to a person’s outline. To pro-
duce a more general classifier, exact filters are computed
for every training image and then averaged. The motivation
for averaging exact filters can be found in the literature for
bootstrap aggregation or bagging[4]. Aggregating a collec-
tion of simple filters converges on a filter that minimizes the
variance error. A more intuitive way to think about the av-
eraging process is that it keeps features that are consistent
across many filters while averaging out features that are id-
iosyncratic to a single instance. Therefore, the final ASEF
filter is computed as:

h =
1
N

N∑
i=1

hi =
1
N
F−1

(∑
i

Hi

)
(6)

where N is the number of training images. Averaging has
some nice properties which makes training an ASEF filter
fast and easy to compute: it does not overfit the training
data, it only requires a single pass for each image, and it
only requires enough memory to store one filter.

One limitation of ASEF is that it typically requires a
large number of training images to converge to a good fil-
ter. Two methods were used to reduce the total number of
frames required for training. The first, which was adopted
from [3], is to use duplicate training images that have been
perturbed by small scales, small rotations, small transla-
tions, and reflections. This increases the number of training
images and also encourages the filter to be more robust to
small changes in rotation and scale.

This paper introduces a second technique which im-
proves the stability of the exact filters. In Equation 5, fre-
quencies in the training image fi that contain very little en-
ergy are weighted heavily in corresponding the exact filter.
These frequencies can cause the exact filter to become un-
stable, and in the extreme case where the energy is zero
cause a divide by zero error. To correct for this problem the
exact filters are constructed using the largest frequencies in
Fi that contain 95% of the total energy.

Removing the small frequencies appears to remove much
of the “noise” in the exact filter (See Figure 3). In tests, this
heuristic allowed ASEF filters to be trained on fewer images
without adversely affecting their accuracy or appearance.

3.3. Filter Based Object Detection
Object detection using a filter is simple and fast. The four
detection regions are rescaled and preprocessed using the
same procedure as the training. This produces four gradi-
ent magnitude images which are convolved with the ASEF
filter using the FFT method, as in Equation 2. The result-
ing correlation output should have a peaks where people
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Preprocessed Convolution Result

Figure 4: This shows the preprocessed images (left) and
the result of the convolution with the ASEF Filter (right).
Detected peaks are highlighted.

are present, and suppressed responses to image background.
The correlation output is then scanned for local maxima.
Any maxima that exceeds a user defined threshold is con-
sidered a detection. See Figure 4 for examples.

4. Results
To better understand the performance of the filter based
detector a careful analysis was conducted on two se-
quences from the PETS 2009 test set. For all tests
View 001 was used. The first sequence, S2L1 T1234, rep-
resents an easy detection problem where people tend to
be sparsely distributed around the frame. The second se-
quence, S1L1 T1357, represent a more crowded scene with
a moderately dense crowd walking from the right to left
along the side walk.

As mentioned before, for evaluation purposes two detec-
tors were used for comparison. The first is based on the
well known Ada-Boost Cascade Object Detector [14]. The
OpenCV implementation[16, 14, 10] was retrained on the
PETS 2009 dataset with the same preprocessing that was
used for the filter based method used in this paper. The only
difference is that detection regions were rescaled to twice
the size (196 × 128) because the cascade failed to accu-
rately detect people on the small images used by the filter.
The speed of this algorithm should compare to the person
detector created by Viola et.al. [15]. This detector also pro-
vides a basis of comparison for good object detector trained
on the same training data as the filter based detector.

Matlab code was also obtained for the parts based per-
son detector described in [7] which evaluated very well for
detection accuracy. This implementation was used ”out of
the box” with no retraining and should therefore represent
state-of-the-art performance in terms of accuracy.

4.1. Training Time
The ASEF filter is trained on 32 frames taken from
View 001 of training sequence ”Time 14-03”. Each frame
is divided into 4 detection regions, and each detection re-
gion is randomly perturbed 4 times. Thus, the ASEF filter
is trained on 512 total images (32 × 4 × 4 = 512). Each
training window is 96 × 64 pixels. This gives a grand to-
tal of 3,201,024 pixels or detection windows. Training took
approximately 11.5 seconds running on an Apple MacBook
Pro with a 2.4Ghz Intel Core 2 Duo processor. This in-
cluded reading in the original frames, extracting and ran-
domly permuting the detection windows, computing the
ASEF filter, and writing the trained filter to disk.

A training time comparison between ASEF and the
OpenCV cascade classifier can be found in Table 1. The
Cascade training was terminated when it reached a time
limit of six hours and had trained to a depth of 13 nodes.

Table 1: Total training time for ASEF and the OpenCV Cas-
cade Classifier

Method # Tiles Size Training Time
(min:sec)

ASEF 512 96x64 0:12
Cascade 512 192x128 361:01

4.2. Detection Speed
The most obvious advantage of filter based detectors is the
speed at which they can process images. Figure 5 com-
pares the rate at which the detectors processed frames in the
S1L1 T1357 sequence. The ASEF filter detector is the clear
winner with an median rate of 25.37 frames per second. The
Viola and Jones based Cascade comes in second with a me-
dian rate of 6.75 frames per second which is actually very
close to the frame rate of the video (7 frames per second).
The parts based method was much slower than real time and
took on average 5.2 seconds to process each frame.

4.3. Detection Accuracy
The methods to measure detection accuracy were adopted
from [6]. Accuracy is measured in terms of correct de-
tections, missed detections, and false detections. To deter-
mine if a ground truth rectangle G and a detection rectangle
D constituted a correct detection, a simple measure called
overlap ratio was used:

overlap =
|G
⋂
D|

|G
⋃
D|

(7)
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Figure 5: This shows detection speed for each algorithm for
each frame in the S1L1 T1357 testing sequence.

In [6] an overlap ratio exceeding 0.60 was determined to
be a successful detection. This criteria however presented
a number of issues. The most important had to do with the
size of the detection rectangles.

To obtain ground truth data, the center of the torso was
manually located for each person in 50 randomly selected
frames from each of the two video sequences. A detection
rectangle was then approximated by estimating the height
from the model shown in Figure 2. The width was also
estimated to be approximately 1/3 the size of the height.
This rectangle size is a good approximation of the size of
a person in a video sequence. This same method was used
to estimate the detection size for every detection from the
filter based detector. Under these circumstances the metric
appears to adequately measure correct detections.

The Cascade and Parts Model detectors returned detec-
tion rectangles that were often much larger than the person,
and therefore the overlap ratio was very low. The result was
that the computed detection rates for both algorithms were
very low even in the easy test sequence. When viewing im-
ages the algorithms were clearly detecting a majority of the
people in the video. In order to measure the detection ac-
curacy for these algorithms a number of adjustments were
required. First, the detection rectangle were resized using
the same model used by the ground truth and the ASEF de-
tector. Second, an overlap threshold of 0.6 was found to
be too high because of high variance in the positional accu-
racy of the Cascade and Parts Model detectors. Therefore,
a threshold of 0.4 is used in this study which seems to more
accurately reflect the performance of the detectors.

One other difficulty with the Cascade and Parts Based
detectors is that they both scan a range in scale space, which
produces false detections at inappropriate scales. Because
the filter based method only considers a small range in scale
space it is less prone to this type of error. To level the play-
ing field, detection from those two algorithms were only
evaluated if their height was between 0.7 and 1.3 times the
estimated height of a person at that location. Likewise, the
ASEF and Cascade detectors only searched for people in the
region near the sidewalk. This gave the Parts based method
an advantage because it detects people for the full frame.
Therefore detections and truths were only evaluated if the
lower center of the bounding box fell within the regions R1
and R2 for the people counting scenario.

A greedy method was used to associate detection regions
with ground truth regions. Starting with the detection with
the highest score, each detection region was matched to the
truth region with the highest overlap if it exceeded the over-
lap threshold. This was counted as a correct detection and
that detection and ground truth region was removed from
consideration in further matches. Any detection or truth re-
gions that were not matched were counted as errors, either a
missed detection or a false detection. The correct detection
rate is counted as the number of correct divided by the to-
tal number of truth, and false detections are reported as the
average number of false detections per frame.

The results of the accuracy evaluation can be found in
Figure 6. As expected, all the detectors perform well on the
sparsely populated scenario. The ASEF detector has a clear
advantage and achieves a 94.5% correct detection rate with
less than one false detection per frame. This is 15% higher
than the other two detectors. On the crowded scenario all
the detectors do poorly. This is most likely due to over-
lapping people and occlusion making detecting individuals
difficult. In this harder case the Parts Based detector has a
small advantage with a detection rate of 50.7%.

For a more qualitative analysis we selected a threshold
for each algorithm which produced no more than 1.0 false
detection per frame on the easier sequence. To better un-
derstand the situations in which the detectors had difficulty
we carefully studied the detection results for the ASEF and
Part Model algorithms for each manually annotated frame.
Some notable examples are shown in Figure 7. ASEF had
very few missed detections in the sparse video sequence
with the most common cause being partial occlusion. It also
had difficulty when a person was partially outside of the de-
tection regions. The Part Model algorithm had more diffi-
culty with occlusion but also had difficulty detecting people
near the top of the frame. This is probably because the size
of the people were smaller than the lower bound on the de-
tector. False detections for both algorithms seemed to be de-

6



tections that were offset from the true location of a person,
or a bad response to two or more people in close proximity.

For the densely packed crowd the most common issue
was missed detections. In many cases one person was al-
most totally occluded by another. In these cases both detec-
tors tended to produce only one detection and therefore the
other person was missed. Both algorithms almost always
missed some of the detections for densely packed groups
of people and occasionally missed all of the detections in a
group. The Parts Based model seems to have a higher detec-
tion rate in the densely packed groups which may account
for its slightly higher detection rates in Figure 6. As stated
before, the solution to this problem is probably not to pro-
duce better detectors but instead to segment those groups
using methods similar to [9] or by adding trackers which
can follow people through occlusion.

Table 2: This table shows the detection rates for 1.0 false
detections per frame and the associated thresholds.

Algorithm Recall False Det. Thresh

Sequence: S2L1 T1234
ASEF 0.945 0.84 0.1066

Cascade 0.720 0.78 -
Parts Based 0.799 0.92 -1.103

Sequence: S1L1 T1357
ASEF 0.469 0.90 0.1015

Cascade 0.520 2.16 -
Parts Based 0.507 1.00 -0.5464

5. Conclusions
This paper demonstrates that a simple filter based person
detector can perform well on a difficult detection problem.
The most notable feature of the detector is its speed which
runs at over 25 frames per second. We have also compared
that detector to the more sophisticated method of [7] and
showed that results are comparable or better for the two sce-
narios tested.

This technique also has some limitations. The ASEF fil-
ter was trained specifically on View001. It remains to be
tested whether a filter trained for one view will perform well
for other cameras. Another problem is that the current tech-
nique does not scan multiple scales in the same way as the
Cascade or Parts Based detectors. These issues will be stud-
ied in more detail in future work.
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Figure 6: These plots show quanitative results of the de-
tection algorithm using the standard Recall / 1-Precision
curves suggested in [1]. The top plot shows that ASEF has
a clear advantage in the sparse crowd of sequence S2L1-
T1234. The bottom plot shows that all detectors have diffi-
culty on the high density crowd of sequence S1L1-T1357.
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Figure 7: This figure shows some interesting detection chal-
lenges in the PETS dataset. Green rectangles indicate suc-
cesses, red rectangles indicate false detections, and red el-
lipses indicate missed detections. From top to bottom: ex-
ample false detections from people walking in close prox-
imity, occlusion from the background, partial occlusion
from by people, total occlusion by people, and densely
packed groups of people.
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