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ABSTRACT

The minimum average correlation energy (MACE) filter is a
well known correlation filter for pattern recognition. This pa-
per proposes a nonlinear extension to the MACE filter using
the recently introduced correntropy function in feature space.
Correntropy is a positive definite function that generalizes the
concept of correlation by utilizing higher order moment in-
formation of signal structure. Since the MACE is a spatial
matched filter for an image class, the correntropy MACE can
potentially improve its performance. We apply the correntro-
py MACE filter to face recognition and show that the propo-
sed method indeed outperforms the traditional linear MACE
in both generalization and rejection abilities.

1. INTRODUCTION

Correlation filters have been applied successfully to target de-
tection and recognition problems such as automatic target re-
cognition (ATR) [1] and face recognition [2]. Object recogni-
tion is performed by cross-correlating an input image with a
synthesized template (filter) and the correlation output is sear-
ched for the peak, which is used to determine whether the ob-
ject of interest is present or not. It is well known that matched
filters are the optimal linear filters for signal detection under
linear channel and white noise conditions [3]. For image de-
tection, matched spatial filters (MSF) are optimal in the sense
that they provide the maximum output signal to noise ratio
(SNR) for the detection of a known image in the presence
of white noise, under the reasonable assumption of Gaussian
statistics [4]. However, the performance of the MSF is very
sensitive to even small changes in the reference image and the
MSF cannot be used for multiclass pattern recognition since
the MSF is only optimum for a single image. Therefore distor-
tion invariant composite filters have been proposed in various
papers [1].

The most well known of such composite correlation fil-
ters are the synthetic discriminant function (SDF) [5] and its

This work was supported in part by the National Science Foundation
under grant ECS-0300340 and ECS-0601271

variations. In the conventional SDF approach, the filter is mat-
ched to a composite image that is a linear combination of the
training image vectors such that the cross correlation output at
the origin has the same value with all training images. The ho-
pe is that this composite image will correlate equally well not
only with the training images but also with other distorted ver-
sions of that training images, even with test images in the sa-
me class. The shortcomings of the conventional SDF are that
the SDF does not consider any input noise and it has a poor
rejecting ability for out-of-class (false) images since it con-
trols only a single point in the output correlation plane. Mini-
mum variance SDF (MVSDF) filter has been proposed in [6]
taking into consideration additive input noise. The MVSDF
minimizes the output variance due to zero-mean input noise
while satisfying the same linear constraints as the SDF. One
of major difficulty in MVSDF is that we often do not know
the noise covariance exactly; even when we do know it, we
need its inversion and it may be computationally impossible
in practice. Another correlation filter that is widely used is
the minimum average correlation energy (MACE) filter [7].
The MACE minimizes the average correlation energy of the
output over the training images to produce a sharp correlati-
on peak subject to the same linear constraints as the MVSDF
and SDF filters. In practice, the MACE filter performs better
than the MVSDF with respect to rejecting out-of-class input
images. The MACE filter; however, has been shown to have
poor generalization properties, that is, images in the recogniti-
on class but not in the training exemplar set are not recognized
well. Therefore, the optimal trade-off filters have been propo-
sed by [8] to combine the properties of various SDF's. Most
of these are linear correlation filters. A nonlinear extension to
the MACE filter has been proposed in [9].

Recently, kernel based learning algorithms have been ex-
ploited due to the fact that linear algorithms can be easily ex-
tended to nonlinear versions by the kernel method [10]. The
kernel matched spatial filter (KMSF) has been proposed for
hyperspectral target detection in [11] and the kernel SDF has
been proposed for face recognition [12]. A new generalized
correlation function, called correntropy, defined in a nonline-
ar reproducing kernel Hilbert space (RKHS) has been propo-
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sed in [13] and its application to the matched filter has been
presented in [14].

In this paper we propose a new nonlinear version ofMACE
filter based on correntropy that has better generalization and
rejecting performance than the conventional MACE. In sec-
tion 2, the MACE filter is reviewed briefly. In section 3, we
propose a new MACE filter based on correntropy. In secti-
on 4, we present simulation results for face recognition and
section 5 summarizes and points out some further research.

2. MINIMUM AVERAGE CORRELATION ENERGY
FILTER

We consider a 2-dimensional ith image as a d x 1 column
vector xi, where d is the number of pixel. This 1-dimensional
discrete sequence can be obtained by lexicographically reor-
dering the image. The conventional MACE filter is formulated
in frequency domain.

The discrete Fourier transform (DFT) of the sequence xi
is denoted by Xi and we define the training image data matrix
X as

X= [Xl,X2, ..,XN], (1)
where the size of X is d x N and N is the number of training
data. Let the vector h be the filter in space domain and its
Fourier transform vector be H. We are interested in the cor-
relation of the input image and the filter. The correlation of
the ith image sequence xi(n) with filter sequence h(n) can
be written as

gi(n) = xi(n) X h(n). (2)
By Parseval's theorem, the correlation energy of the ith image
can be written as a quadratic form

Ei = HHDiH,

The MACE design problem is to minimize Eavg while satis-
fying the constraint, XHH = c, where c = [Cl, C2, * * CN] is
an N dimensional vector. This optimization problem can be
solved using Lagrange multipliers, and the solution is

H = D-lX(XHD-X)-1c. (7)

It is clear that h can be obtained from H by an inverse DFT.
Once h is determined, we apply an appropriate threshold to
the output correlation plane and decide on the class of the test
image.

3. NONLINEAR VERSION OF THE MACE IN RKHS
USING CORRENTROPY

3.1. Correntropy Function in RKHS

Correntropy, as proposed in [13], is a positive definite functi-
on that generalizes the correlation function to nonlinear (non
Gaussian) manifolds. The correntropy of the random process
x(n) at instances i and j is defined as

v(i, j) = E[k(x(i),x(j))], (8)
where E is the expectation operator and k is a kernel functi-
on that obeys the Mercer's conditions. In this paper, we use
the Gaussian kernel, which is the most widely used Mercer
kernel,

k(x, y) 1exp -( 2X ) (9)

For the discrete-time sequence x, we can estimate the corren-
tropy as

vx (in)
(3)

where Di is a diagonal matrix of size dx d whose diagonal ele-
ments are the magnitude squared of the associated element of
Xi, that is, the power spectrum of xi (n) and the superscript H
denotes the Hermitian transpose. The objective of the MACE
filter is to minimize the average correlation energy over all
signals while simultaneously satisfying intensity constraint at
the origin for each signal. The value of the correlation at the
origin can be written as

gi (0) = XiHH = ci, (4)

for all i 1, 2, , N training images, where ci is the user
specified output correlation value at the origin for the ith image.
Then the average energy over all training images is expressed
as

Eavg HHDH, (5)
where

N
D { Z Di. (6)

i=l

1 M
I =mM mi+IZ1k(xli=m

-Xl-m) (10)

where M is the number of samples of x.
Correntropy has very nice properties that make it useful

for nonlinear signal processing. First and foremost, it is a po-
sitive function, which means that it also defines a RKHS, but
unlike the RKHS defined by the covariance function of ran-
dom process it contains higher order statistical information.
This new function quantifies the average angular separation
in the kernel feature space of the random process at a given
temporal lag. Therefore, correntropy can be the metric for si-
milarity measurement in feature space.

According to [15], there exists a mapping f in a stationary
stochastic process x(n) such that

v(i, j) [k(x(i)x (j))] E[ff((i))f((j))], (11)

for a class of joint probability density functions (PDFs) of
(x(i), x(j)), that is, there exists a nonlinear mapping f which
makes the correntropy of x (n) the correlation of f (x(n)).
Equation (11) allows the replacement of the correlation by
the correntropy function. The proof is in [15].
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3.2. Minimum Average Correntropy Energy Filter: Cor-
rentropy MACE

Let the ith image vector be xi = [xi(1)xi(2) ... xi(d)]T and
filter be h = [h(1)h(2) ... h(d)]T, where T denotes trans-
pose. Here, the correntropy MACE filter is formulated in the
feature space by applying a nonlinear mapping function f on-
to the data as well as filter. We denote the transformed training
image matrix and filter vector whose size are d x N and d x 1,
respectively, be

Fx = [fxl,fx2(h(2). , fxN],

fh = [f (h(l))f (h(2)) ..f (h(d))]T.
where,

fxi = [f(i (1))f (xi (2)) ...f(i (d))]

(12)

(13)

where, each element of the matrix is computed without expli-
citly knowing the mapping function f by

d

Vxi() = E k(xi(n), xi(n + 1)),
n=l

(20)

forl =O,1,... ,d -1.
The average correntropy energy over all the training data

can be written as

IN
Eav = N{ Ei = fPVxfh, (21)

i=l

where

(14)

for i= 1, 2,... N. Based on (11) we can estimate the cross
correntropy between ith training image vector and the filter
with given samples as

d

n=l

forallthelagsm= -d+1,-d+2, ,0,1,... ,d -1.
Then we can form a cross correntropy vector voi including all
the lags of voi [m] denoted by

voi = Sifh, (16)

where, Si is the matrix of size (2d -1) x d as

( f (xi (d))
f(xi(d -1))

f(Xi(,))
0

0

0
f (xi (d))

f (Xi (2))
f (X(i))

. ..

...... ... 0
o ... 0

.. .

0

f (xi(d))
f(xi(d -1))

f (Xi())

Since the scale factor 1 /d has no influence on the solution, we
ignore the scale factor in this paper.

Then the correntropy energy of the ith image is given by

Ei = vvoi = f/iS[S.fh. (18)

Here, we denote ST Si = Vj and by using the definition of
correntropy in (1 1), we can obtain the dx d correntropy matrix
V,j as

Vxi(°) Vxi(l) ...

Vxi (1 ) Vxi (O) .. .

Vxi= :: *

Vxi (d-1 ) Vxi (d-2) .. .

vxi (d -1)
vxi(d -2)

vxi ((0)

(19)

N

vx = N vxi
i=l

(22)

Since our objective is to minimize the average correntropy
energy in the linear feature space, we can formulate the opti-
mization problem by

minf/Vxfh, subjectto Fxfh c. (23)

where, c is the desired vector for all the training images. The
constraint in (23) means that we specify the correntropy va-
lues between the training input and the filter as the desired
constant. Since the correntropy matrix Vx is positive definite,
there exists an analytic solution. Then the solution in feature
space becomes

fh = Vx1Fx(FiVx1Fx) -lc. (24)

In order to test this filter, let Z be the matrix of L vector testing
images, then the L x 1 output vector is given by

y = FTVx1Fx (FT VxFx) -ic. (25)

Since we do not explicitly know the nonlinear mapping func-
tion f, the final output expression is obtained by approxima-
ting f(x(i))f(x(j)) by k((i),x(j)), which holds good on

an average because of (11). Hence, we do not need to find the
transformation f (.) as expected by the "kernel trick". In prac-
tice, the drawback of the proposed correntropy MACE filter
is on its computation complexity. Fortunately, Vx is a Toep-
litz matrix and FTV-1Fx is a symmetric matrix, therefore
these special structures may be used to reduce the compu-
tational complexity of its inversion. More mathematical and
numerical concerns are needed to obtain a fast algorithm for
implementation of the correntropy MACE filter.

Applying an appropriate threshold to the output of (25),
one can detect and recognize the testing data without genera-
ting the composite filter in the feature space.

3.3. Prewhitening in Feature Space

The MACE filter can be decomposed as a cascade of the pre-
processor and the projection SDF. The preprocessor forces
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the average power spectrum of the training images to beco-
me white. The proposed nonlinear version of the MACE also
has the same property in feature space.

We denote Fx = Vx 2Fx, and due to the property of
correntropy matrix (Toeplitz), we can decompose fh to

fh = VX /2Vx1/2Fx (FT V-1/2V- 1/2Fx) -1c
= VX 2Fx(FXFx) 1c (26)

Equation (26) implies that the training data can be whitened in
feature space by the correntropy matrix. In the space domain,
the autocorrelation matrix can be used as a preprocessor for
prewhitening. In feature space, intuitively, we can also expect
that the correntropy matrix can be used for prewhitening. Ho-
wever, in practice, we cannot obtain whitened data explicitly
since we do not know the mapping function.

4. SIMULATIONS

(c)

Fig. 1. Sample images: (a)True class images (b) False class images(c) True
class images with additive Gaussian noise (SNR=10db).

01 l
0.8

-0~
D~~~~~~~~~~~~~~~~~~~~~Tu iIn this section, we show the performance of the proposed cor-

rentropy MACE filter for face image recognition. In the si-
mulations, we used the facial expression database collected
at the Advanced Multimedia Processing Lab at the Electrical
and Computer Engineering Department of Carnegie Mellon
university [16]. The database consists of 13 subjects, whose
facial images were captured with 75 varying expressions. The
size of each image is 64 x 64. Sample images are depicted in
Fig. 1. In this paper, we tested the proposed method with the
original database images as well as with noisy images. Sam-
ple images with additive Gaussian noise with a 10 dB SNR are

shown in Fig. 1(c). We used only 5 images to composite tem-
plate (filter) per person ( the MACE filter shows a reasonable
recognition result with a small number of training image in
this database [2]). In order to evaluate the performance of the
MACE filter in this data set, we examined 975(13 x75) corre-

lation outputs. From these results and the ones reported in [2]
we picked and report the results of the two most difficult cases
who produced the worst performance with the conventional
MACE method. We test with all the images of each person's
data set resulting in 75 outputs for each class. The simula-
tion results have been obtained by averaging (Monte-Carlo
approach) over 100 different training sets (each training set
consists of randomly chosen 5 images) to minimize the pro-

blem of performance differences due to splitting the relatively
small database in training and testing sets. The kernel size, or,
is chosen to be 10 for the correntropy matrix during training
and 30 for test output. In this data set, it has been observed
that the kernel size around 30%-50% of the standard deviati-
on of the input data would be appropriate. Moreover, we can

control the performance by choosing a different kernel size
during training for prewhitening.

Fig. 2 shows the average test output peak values for image
recognition. The desired output peak value should be close to
one when the test image belongs to the training image class
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Index of test image
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0.6

00.4
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10 20 30 40
Index of test image

Falscla6

50 60 70

True c7a
False cias

50 60 70

Fig. 2. The averaged test output peak values (100 Monte-Carlo simulations
with N=5), (Top): Conventional MACE, (Bottom): Correntropy MACE.
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index of test image

Fig. 3. The test output peak values with additive Gaussian noise (N=5),(Top):
Conventional MACE, circle-true class with SNR=lOdB, cross-false class
with SNR=2dB, (Bottom): Correntropy MACE, circle-true class with
SNR=lOdB, cross-false class with SNR=2dB.
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- - - MACE (No noise)
- - MACE (SNR:2dB)

MACE (SNR:OdB)
Proposed method
(No noise, SNR:2dB, OdB)

Table 1. Comparison of standard deviations of all the Monte-Carlo simulati-
on outputs (lOOx75 outputs)

True False True False
(No noise) (No noise) (SNR:OdB) (SNR:OdB)

MACE
Correntropy-
MACE

0.0498 0.0086 0.0527 0.0245

0.0488 0.0051 0.0485 0.0038

0.35
MACE
Proposed method

0.3

0.2 0.4 0.6
Probability of False Alarm

0.8 1

Fig. 4. The comparison of ROC curves with different SNRs.

0.25(

-o2 0.2

>

-o 0.15

0.1

(true class) and otherwise it should be close to zero. Fig. 2
(Top) shows that the correlation output peak values of the
conventional MACE in false classes is close to zero and it
means that the MACE has a good rejecting ability of fal-
se class. However, some outputs in the test image set, even

in the true class, are not recognized as the true class. Fig. 2
(Bottom) shows the output values of the proposed correntro-
py MACE and we can see that the generalization and rejec-
ting performance are improved. As a result, the two images
can be recognized well even with a small number of training
images. One of problems of the conventional MACE is that
the performance can be easily degraded by additive noise in
the test image since the MACE does not have any special me-
chanism to consider input noise. Therefore, it has a poor rejec-
ting ability for a false class image when noise is added into a

false class. Fig. 3 (Top) shows the noise effect on the conven-

tional MACE. When the class images are seriously distorted
by additive Gaussian noise ( SNR =2dB), the correlation out-
put peaks of some test images from false class become great
than that of the true class, hence wrong recognition happens.
The results in Fig. 3 (Bottom) are obtained by the proposed
method. The correntropy MACE shows a much better perfor-
mance especially for rejecting even in a very low SNR envi-
ronment. Fig. 4 shows the comparison of ROC curves with
different SNRs. In the conventional MACE, we can see that
the false alarm rate is increased as additive noise power is
increased. However, in the proposed method, the probability
of detection with zero false alarm rate is 1. The correntropy
MACE shows much better recognition performance than the
conventional MACE.

One of advantage of the proposed method is that it is mo-
re robust than the conventional MACE. That is, the variation
of the test output peak value due to a different training set is
smaller than that of the MACE. Fig. 5 shows standard devia-
tions of 100 Monte-Carlo outputs per test input when the test

0.05,

o
10 20 30 40 50

index of test image
60 70

Fig. 5. The comparison of standard deviation of 100 Monte-Carlo simulation
outputs of each noisy false class test images.

input are noisy false class images. Table shows the compa-

rison of the standard deviation of 750 outputs (100 Monte-
Carlo outputs for 75 inputs) for each class. From the table 1,

we can see that the variations of the correntropy MACE out-
puts due to different training set is much less than those of the
conventional MACE and it tells us that our proposed nonline-
ar version of the MACE outperforms the conventional MACE
and achieves a robust performance for distortion-tolerant pat-
tern recognition.

5. CONCLUSIONS

In this paper, we have proposed and evaluated a correntro-
py based nonlinear MACE filter for object recognition. We
presented experimental results for face recognition. Using re-

cently introduced correntropy idea, the nonlinear version of
the MACE can be implemented in a higher dimensional fea-
ture space and this correntropy MACE overcomes the main
shortcomings of the conventional MACE which is poor ge-

neralization, as well as the effect of the input noise. The cor-

rentropy MACE also shows good rejecting performance. This
is due to the prewhitening effect in feature space. Simulation
results show that the detection and recognition performance
of the correntropy MACE is better than that of the MACE
in particular in a noisy environment, which indicates that the
proposed method is robust and exhibits better distortion tole-
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rance than the MACE. Although we have shown the simula-
tion results for face recognition, the correntropy MACE filter
can be used in other object recognition problems such as the
synthetic aperture radar (SAR) ATR system.
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