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ABSTRACT 

This paper considers linear correlation filters used for 
image pattern recognition. First, we develop a statisti- 
cal theory to predict the classification performance of 
a general class of correlation filters for wide sense sta- 
tionary (WSS) clutter. This analysis includes as spe- 
cial cases the Synthetic Discriminant Function (SDF), 
the Minimum Variance SDF (MVSDF), and the Mini- 
mum Average Correlation Energy (MACE) filters. Sec- 
ond, we develop a modified filter design applicable to 
nonzero mean noise; this latter case occurs in many ap- 
plications where the magnitude image is used for classi- 
fication. We compare the performance of several filters 
on synthetic radar imagery. 

1. INTRODUCTION 

Linear correlators are widely used for pattern recog- 
nition of optical and synthetic aperture radar (SAR) 
images. Popular correlator filters include the SDF, 
the MVSDF, and the MACE filter and their variations 
[l, 21, which are referred to as SDF-type correlator fil- 
ters. SDF-type correlators are motivated by matched 
filters found in communication systems. One correla- 
tor is built per class of objects for classification, and 
classification is based on threshold tests of the correla- 
tor outputs. Different SDF-type filters can be derived 
under different optimization criteria. 

Previous performance evaluations of SDF-type cor- 
relators employed Monte Carlo simulation studies to 
consider inter-class performance and detection rates for 
additive zero-mean white noise [3, 41. In this paper we 
first provide a statistical analysis of SDF-type correla- 
tor performance for correlated WSS clutter. When the 
noise is additive Gaussian, this analysis yields analyt- 
ical expressions for the correct classification probabili- 
ties for these correlators. 
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In addition, we develop a class of correlators appli- 
cable to images with nonzero-mean noise. Such noise 
arises, for example, in synthetic aperture radar (SAR) 
applications, where the noise is additive and zero mean 
in a complex SAR image, but the correlation filters are 
applied to the magnitude of that image. The standard 
correlation filters are based on zero mean noise and can 
give poor performance when the noise is nonzero mean. 
We develop modifications for SDF-type correlators for 
SAR image recognition applications, and demonstrate 
improved performance of the modified filters through 
simulation studies. 

2. SDF-TYPE CORRELATORS ON IMAGE 
CLASSIFICATION APPLICATIONS 

We are given a set of ni training vectors {vij}y& for 
each i in one of the I classes; each vector is formed 
by stacking pixel values from a two-dimensional image. 
The processing goal is to classify a distorted data vector 
y into one of I classes. The "distortion" is caused by 
both noise and by deviations such as viewing the object 
at an angle not present in the training images. 

SDF-type correlators are often used to classify a 
measured vector y. One designs correlation filters hi, 
one filter per class, and assigns y to the class whose cor- 
relation output is maximum. Each correlator hi or its 
corresponding two-dimensional discrete Fourier trans- 
form, Hi, is designed such that: 

1. hi is linear circularly shift invariant. 

2. hi minimizes hfAhi or H$AHi for some user- 
specified positive semidefinite matrix A. 

3. The output at the origin for filter hi is 1 for input 
training vectors from the ith class and 0 for input 
vectors from all other classes. That is, = 
6&k, for all IC = 1,. . . ,I, and all j = 1,. . . ,nk. 

3655 0-7803-2431 -5B5 $4.00 O 1995 IEEE 



It is well-known [l] that the solution to the above design 
constraints is given by one of 

hi = A - ' z ( z * A - ~ z ) - ~ u ~  (1) 
Hi = d A - l X ( X * A - l X ) - l ~ i  (2) 

Correlator 
S D F  
M V S D F  

depending on whether the second constraint is imposed 
in the spatial or frequency domain. Here, z is a ma- 
trix of training vectors, X is its corresponding discrete 
Fourier transform, d is a constant, and each element 
of ui is a 0 or 1 corresponding to the third constraint 
above. Particular choices of domain and A result in 
some common filters. Table 1 lists the constraints and 
minimization criteriafor the SDF, MVSDF, and MACE 
filters. In Table 1, Rnn is the noise covariance matrix, 
and D is a diagonal matrix whose diagonal elements are 
the average magnitude spectra of the training patterns. 

Constraint Criterion to minimize: 
x * h = u  correlator energy: h* h 
x*h = U correlator output variance 

Table 1: The SDF-tvDe correlators 

1 at the origin: h*Rnnh 
MACE I X * H  = d .  U I avz. con. enerev: H'DH 

and so forth for P a , ,  Pc3j and P q j .  
Case I: Additive Gaussian Noise 
If n is additive Gaussian then z = [z1 z2 z3 z4IT is also 
Gaussian with probability density function (pdf) 

f ~ l u i j  ( z )  N N(Pi, Cij) ,  (5) 

Cij (k , I )  = C(lc,I) = hzRmhl. (7) 
Pi = [h h2 h3 h4]*E{n} + ei, (6 )  

Here, ei is the i th unit vector, and Rnn is the covari- 
ance matrix of n. Note in this case C is independent 
of i j  and Pcij = P C i k  Vj,  k .  
Case 11: Non-Additive or Non-Gaussian Noise 
In the general case, the exact pdf of z is difficult to find. 
However, if the noise spatial correlation decays rapidly 
enough, we can show that the correlator outputs are 
approximately Gaussian. If the noise is additive but 
non-Gaussian, the correlator output pdfs are approx- 
imately given by (5)-(7). For non-additive noise, the 
mean and covariance of this approximate Gaussian pdf 
are given by [5]: 

(9) 
where Ryi jy i j  is the covariance matrix of y given vij. 

3. THEORETICAL PERFORMANCE 

In this section we derive the theoretical detection rates 
of SDF-type correlators. To simplify the notation, we 
assume that there are four classes of targets, 
and that four correlators are synthesized; the general- 
ization to more than four classes is obvious. 

Let the test pattern be y = f(vij ,n),  where vij 

is one of the training images from the ith class, n is 
the noise process, and f is a real-valued function. Let 
the four correlators be {hk}i , l .  The four correlator 
outputs at the origin are ZI, = hzy. The decision 
yields the Zth class if zl > ZI,, for all IC # 1. The correct 
detection rate for the given correlator h, and the given 
noise model is: 

4 n; 

i=l  j = 1  

Where Pii is the prior probability, 

4. MODIFIED CORRELATORS FOR 
IMAGES WITH NONZERO MEAN NOISE 

In many applications the noise in the test images have 
nonzero mean. For example, synthetic aperture radar 
(SAR) images are complex-valued, but typically only 
the magnitude of the images is used for pattern classi- 
fication because of large phase deviations between the 
training and test patterns [5].  It is often reasonable to 
assume an additive Gaussian noise model for the com- 
plex measurements; this results in non-Gaussian, mul- 
tiplicative noise in the corresponding magnitude im- 
ages. In this section we modify the standard correlator 
designs to handle such multiplicative noise. 

Assume the complex, noisy test image is given by 
s = vij+n, where t~ij  is one of the complex training im- 
ages from the ith class, and n is complex-valued noise. 
We form y = /SI, where the magnitude is computed at 
each pixel. The noise to the correlator, Iwij + nl - ( w i j  1, 
is multiplicative and is not WSS since it is a function 
of the training images. A direct consequence is that 
the means of the correlator outputs are not equal to 
those corresponding to the noiseless training images, 
and classification performance degrades. If the output 
mean at  the origin of the kth correlator is larger than 
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the ith correlator output given wi (which can happen 
in practice [5]), the misclassification rate increases sig- 
nificant ly. 

To avoid the above problem, we propose a modified 
correlator filter design in which we replace the third 
filter design constraint in Section 2 by: 

3. E{y*hilvkj} = &-k, for all k = 1 ,...,I, 
and j = 1, ..., nk. 

This modification is in keeping with the statistical pat- 
tern recognition goal of separating the ensembles of the 
correlator outputs corresponding to the noisy images, 
and thereby improves robustness to non-additive and 
non-zero-mean noise. 

The optimization criteria for the filter designs are 
also modified correspondingly. Specifically, we replace 
equations (1)-(2) by: 

ui (10) 
Hi = d A - l $ f ( f i * A - l f i ) - l ~ i  (11) 

hi = A-l&(&*A-l&)-l 

where 7% is a matrix o,f ensemble means of the noisy 
training vectors and M is its corresponding Fourier 
transform. 

Three particular modified filters, corresponding to 
Table 1, are shown in Table 2; others can be found 
in [5]. For SDF1 in Table 2, A = I .  For MVSDF1, 
A = R y i j y i j ;  for white noise A is thus diagonal. 
For MAC&, A is a diagonal matrix whose diagonal 
elements are the average of E{IY121~ij}, where Y is 
the frequency representation of y .  

For complex white noise, it is easy to show that 

Var{yjvij}  + 7gj = 2u2 + ..i”j, (14) 

where 2u2 is the noise variance. In addition, for MACE1 
it can be shown [5] that 

where y ( k )  is the kth element of y .  
For colored Gaussian noise, the means of the ele- 

ments of y remain the same (see equation (13)), and 
the auto-covariances and cross-covariances of elements 
of y can be obtained by second and forth order numer- 
ical integrations of the joint density of the associated 
elements. 

For non-Gaussian noise, or as an alternative to ana- 
lytical expressions for Gaussian noise, one can estimate 
r i t i j  and Var{ylvij}  using standard sample estimates. 
Specifically, for a given clutter model we generate N 
independent samples of the clutter to form noisy train- 
ing patterns {yk}r!l and compute the sample mean 
and sample variance in the usual way. This approach is 
often computationally attractive because it avoids nu- 
merical integrations; on the other hand, the resulting 
correlator performance is somewhat degraded, because 
this approach can be be regarded as applying a clutter 
model which is not exactly equal to the true clutter 
model to synthesize the correlators. Because the sam- 
ple mean and covariance are consistent estimates, the 
degradation can be made arbitrarily small by choosing 
the sample size N large enough. 

Table 2: The modified SDF-type correlators 
Correlator I Constraint I Criterion to minimize: 5. SIMULATION RESULTS 

In these simulations, 11 training images from each of 
four classes are used; each image is a synthetically- 
generated (by X-Patch) SAR image of one of four ve- 
hicles each at one of eleven azimuth angles. The im- 
ages are 64 x 64 pixels with 1 foot x 1 foot resolu- 

For the special case that n is complex Gaussian, 
analytic expressions for m and R y y  can be obtained. 
In this case y is Rician distributed [5], with pdf 

where V i j  = lwijl, and Io(t) = & s,”” etcosedO is the 
zero-order modified Bessel function of the first kind. 
Let &j = E{yluij}; then we have 

tion. A leave-one-out criterion is employed in the sim- 
ulations, i.e., we synthesize the correlators by leaving 
one of the training patterns out, and test the correla- 
tor with the noisy training pattern which is left out. 
We use complex Gaussian noise, and we assume equal 
prior probabilities Pjj. The exact noise model is used 
to synthesize the correlators, so the performance ob- 
tained here is the best that the modified correlators 
can achieve. Figure 1 shows the correct detection rates 
of the standard and our modified correlators for com- 
plex white Gaussian noise. Both theoretical results and 
Monte-Carlo simluation results are shown. The theo- 
retical curves are obtained by numerically integrating 
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Figure 1: Correlator classification performance on mag- 
nitude images, using white Gaussian noise. Top: theo- 
retical performance. Bottom: Monte-Carlo simulations 

the theoretical detection rates in equation ( 5 )  using 
(8) and (9); they are approximate since the density of 
the correlator outputs at the origin are only approxi- 
mately Gaussian. We see very good agreement between 
theoretical and simulation results, and we see greatly 
improved performance for SDF and MVSDF when the 
modification is employed. More detailed comparisons 
and interpretation can be found in [5]. Figure 2 shows 
the Monte Carlo simulation performance of the stan- 
dard and our modified correlators for colored Gaussian 
noise with SNR=-10 dB, and 2D correlation function 
Rnn(lc,Z) = p m ,  where 0 5 p 5 1. For p=O the 
noise is white, and for p close to 1 the noise is highly 
correlated. Sample means, covariances, and correla- 
tion energy are employed to synthesize the correlators. 
The results also show greatly improved performance 
for SDF when the modification is employed. The per- 
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Figure 2: Monte Carlo simulation performance on mag- 
nitude images, using colored Gaussian noise 

formance of MVSDFl is not computed because of the 
difficulty in realizing the 4096 x 4096 covariance matri- 
ces Ryijyij; its performance should be bounded below 
by the performance of SDFl and MACEl. 

6. CONCLUSIONS 

We presented a theoretical analysis for the detection 
rates of linear correlator filters used for pattern recogni- 
tion in the presence of additive and non-additive noise. 
We also developed a modifiedfilter design method which 
improves the robustness of these linear correlators when 
applied to non-additive noise scenarios. This analysis 
has application in linear pattern recognition systems 
for both optical and synthetic aperture radar imagery. 
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