
April 10, 2006 13:55 WSPC/117-ijseke 00275

International Journal of Software Engineering
and Knowledge Engineering
Vol. 16, No. 2 (2006) 293–313
c© World Scientific Publishing Company

HOW DISTRIBUTION AFFECTS THE SUCCESS

OF PAIR PROGRAMMING

GERARDO CANFORA∗, ANIELLO CIMITILE†, GIUSEPPE ANTONIO DI LUCCA‡

and CORRADO AARON VISAGGIO§

RCOST–Research Centre on Software Technology,

University of Sannio, Palazzo ex Poste, Viale Traiano, 82100 Benevento, Italy
∗canfora@unisannio.it
†cimitile@unisannio.it
‡dilucca@unisannio.it
§visaggio@unisannio.it

Received 25 April 2004
Revised 26 July 2005

Accepted 17 August 2005

Recent experiments demonstrated the effectiveness of pair programming in terms of
quality and productivity. Growing interest towards global software development is fos-
tering the design of suitable methods and tools for distributing software processes, at
any level of detail, from entire subprocesses up to a single activity. Consequently, people

placed in different locations could also share programming tasks and related practices,
such as pair programming. Unfortunately, distribution might seriously compromise the
success of pair programming, due to communication and collaboration issues. We have
performed an experiment in order to investigate the impact of distribution on pair pro-
gramming when performing maintenance tasks. An interesting conjecture stems from
the experiment: under certain conditions, distributed pair’s components tend to dismiss
from each other, stopping the collaborative work. This can be a very expensive risk
factor to keep into account when planning tasks of distributed pair programming.

Keywords: Pair programming; distributed software processes; experimental software
engineering.

1. Introduction

Agile methods [1] are becoming popular in industrial settings, basically due to two

reasons: they allow organisations to release working software in the early stages of

development and to decrease software maintenance costs [3]. According to [14], agile

methods lead to the reduction of risk exposure, but only with a certain profile of:

requirements’ stability, system’s architecture, team size, and customer’s knowledge,

and affinity to active collaboration. Many industrial experiences of agile methods

have recently been reported in the literature, identifying the most risky and promis-

293

April 10, 2006 13:55 WSPC/117-ijseke 00275

294 G. Canfora et al.

ing practices, and suggesting recommendations about their successful implementa-

tion in real projects [10, 11, 15, 16].

Pair programming [2, 4] is one of the most attractive among the extreme pro-

gramming practices [17] from both industry and research [5, 6] viewpoints. Ac-

cording to pair programming, two developers work side by side, collaborating on

the same task, e.g. system design, algorithm development, code writing, or test-

ing. One developer, named “driver”, has the control of the keyboard and actively

implements the task. The other developer, usually named “observer”, looks at the

driver’s work and identifies tactical and strategic defects and issues. The observer

may also perform complementary tasks, needed to successfully reach the goal of

the pair. Such tasks detect flaws and mistakes in the document under development:

Notable examples include searching for a better algorithm to use, optimizing parts

of the code, and finding better functions or libraries to call. In addition to coding,

pair programming can be applied to other phases of the process, such as design,

testing, and debugging. From time to time, the developers switch their roles, so

that both develop code equally. A detailed protocol to perform pair programming

was neither developed nor required by professionals: the only recommendation is to

perform continuous review, and the complementary tasks when needed. Conversely,

it is highly recommended to leave the pair members free to set the frequency of role

switching based on their needs, background, and working style.

Some authors suggested composing the pair with people presenting different

levels of experience [23, 24] in order to have greater benefits. Pair programming ad-

vocates affirm that it increases software quality without impacting time to deliver

[4, 5]; moreover the code produced by pairs show greater readability than the code

produced by solo programmers [32]. At the best knowledge of the authors, there are

no studies about the rationale for composing pairs in order to make pair program-

ming successful. Social and methodological aspects must be taken into account, such

as experience, selfishness, work’s method, and leading capability. However, there are

no explicit guidelines on such issues yet. A controlled experiment [6] demonstrated

that pair programming can improve code quality and decrease development time.

Further experiments with students [28, 29, 35] highlighted other benefits of pair

programming concerning learning: the practice helps students to produce signifi-

cantly better programs than the programs produced by individuals; students achieve

higher levels of satisfaction and obtain higher grades. An experiment performed by

Williams [30] produced the following outcomes: programs produced in pairs passed

a greater number of test cases than programs produced by solo programmers; and,

pair programming may increase the enjoyment in the work. Lui and Chan [31] con-

ducted an experiment in order to understand when pair programming outperforms

traditional solo programming when working on computer algorithms in terms of

quality and productivity. Pair programming excels in procedural problems and de-

duction questions, which are key elements in programming algorithms. The authors

conclude that pair programming achieves higher productivity when a pair writes a

more challenging program that demands more time to be spent on design. In [34]

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 295

the authors analyse how pair programming can mitigate the drawbacks due to the

involvement of new people in the late phases of the projects.

Recently, the distribution of software processes has become very widespread

in industry and recommended practices are emerging [8, 9, 18]. These practices

have been collected within a body of knowledge under the name of Global Software

Development (GSD) [19, 20]. An economic motivation for GSD is that large organi-

sations tend to acquire smaller companies, with the aim of achieving a competitive

advantage by enforcing their workforce, or to penetrate new market segments. In-

stead of one single large organisation, a structure where many organisations are

connected among themselves is becoming more and more widespread [27]. Such

a configuration, named net enterprises or virtual enterprises, considers the inter-

connected organisations scattered in different places, but sharing processes at any

level of detail, down to individual tasks. Consequently they also share the practices

adopted to perform activities, like pair programming. In such cases, organisations

can have the need for distributing pair programming. Distributed pair program-

ming can be considered as a variation of pair programming where developers are

geographically distributed and connected using technological means, rather than

sitting in front of the same computer. Communication and collaboration issues be-

come primarily relevant when distributing software processes [21]. Distance could

have negative effects on communication-intensive tasks and on spontaneous conver-

sation [22]. Baehti et al. [12] investigated the relationships between pair program-

ming and distribution; the results indicate that distributed pair programming in

virtual teams is a feasible way of developing object-oriented software. The results

of the experiment indicate that software development involving distributed pair

programming is comparable to that developed using collocated pair programming

or virtual teams without distributed pair programming. Two metrics were used

for this comparison: productivity (in terms of lines of code per hour) and quality

(in terms of grades obtained). Collocated teams did not achieve statistically signif-

icantly better results than distributed teams. Hanks in [33] introduces a tool for

supporting distributed pair programming: the case study demonstrates that the use

of the tool can significantly improve the distributed work.

Our research work aims at investigating the extent to which the distribution

may deteriorate the recognised benefits of pair programming. The research goal is:

to analyse the effectiveness and efficacy of distributed pair programming with the

purpose of evaluating how distribution deteriorates benefits of the practice, from

the viewpoint of the developer, in the context of a software maintenance student

project. In order to reach the research goal, we have conducted an experiment at

the University of Sannio, Italy. Afterwards, a replica at the University of Naples

“Federico II”, Italy, was done to confirm the findings of the first experiment. Both

experiments have been accompanied by qualitative analysis accomplished with a

questionnaire-guided discussion with experiment subjects.

The paper continues as follows. Section 2 shows the experiment setting; Sec. 3

presents the data gathered. Section 4 discusses the experiment’s replica and its

April 10, 2006 13:55 WSPC/117-ijseke 00275

296 G. Canfora et al.

findings. In Sec. 5 the outcomes of post-experiment qualitative assessment are il-

lustrated. Finally, in Sec. 6 the experiment validity is treated and Sec. 7 draws the

conclusions.

2. The First Experiment

This section describes the experiment made at the University of Sannio in terms

of definition of the hypotheses and metrics, characterization of the context, and

operation.

2.1. Definition

Two main concerns are critical for the distribution of pair programming tasks: col-

laboration and communication. If the technological platform does not address these

two issues adequately, activities like reviewing, switching of roles, and decision-

making can be obstructed up to deteriorating the practice itself. There is evidence

that pair programming can decrease developing time and increase quality of work;

it is reasonable to believe that distribution can cause the lost of such advantages.

The research questions we investigated in the experiment are the following:

RQ1 Are there significant differences in effort when the pair’s components are dis-

tributed, with respect to co-located pair’s components?

RQ2 Are there significant differences in quality when the pair’s components are

distributed, with respect to co-located pair’s components?

From here on, distributed pair indicates a pair whose components are distributed;

co-located pair indicates a pair whose components are co-located.

The experiment investigated RQ1 and RQ2 for maintenance tasks. The null

hypotheses were:

H0RQ1: A significant difference in effort required for implementing modifications

between distributed pair programming and co-located pair programming

does not exist,

µdistr time = µco-loc time

H0RQ2: A significant difference between the quality of maintenance performed

does not exist,

µdistr quality = µco-loc quality

The alternative hypotheses were:

H1RQ1: A significant difference in effort required for implementing modifications

between distributed pair programming and co-located pair programming

does exist,

µdistr time 6= µco-loc time

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 297

H1RQ2: A significant difference between quality of maintenance performed does

exist,

µdistr quality 6= µco-loc quality .

The following metrics were used to measure effort and quality:

(1) Effort spent; measured as the difference between the end time and the start time

required to accomplish the maintenance tasks; ratio scale. Time was calculated

by time sheet fulfilled by subjects.

(2) Quality of the maintenance realised; fqual, an ordinal scale. The quality was

evaluated on the basis of black box testing. Test cases were written and executed

by experimenters and they were hidden from the subjects.

fqual =
∑

i(bini
∗overi), where:

bini is – 1 if the maintainers completed the maintenance request

– 0 otherwise

over i is – 3 if the modified programs passed tests successfully (80% of tests)

– 2 if the modified programs passed tests with partial success

(< 80% AND > 20% of tests)

– 1 if the modified programs did not pass tests (< 20%).

i = 1, 2, 3. For i maintenance requests.

Black box testing was used to evaluate quality mainly for two reasons. Firstly, the

test driven development practice [3] is used in order to build working code, accord-

ing to extreme programming; secondly, the purpose of each iteration in extreme

programming is the production of a system’s feature valuable to the customer.

2.2. Characterization

The experimental subjects were volunteer students of the Software Engineering

II, a course of the fifth (and final) year of the laurea degree in Computer Engi-

neering at the University of Sannio, Benevento. Before running the experiment,

the subjects were trained on pair programming. Such training consisted of sem-

inars about agile methods and extreme programming with special focus on pair

programming practice, whose duration was 4 hrs. Afterwards, the students spent

2 hrs in the laboratory performing pair programming: they developed some Java

programs. The students spent 2 hrs more in the laboratory in order to implement

a training round. During that period students used the protocol outlined in Fig. 1

and the experiment technological platform described in Table 1. After the training

round, they had the opportunity to enforce their knowledge about the experiment’s

tasks and execution by discussing their doubts with experimenters.

April 10, 2006 13:55 WSPC/117-ijseke 00275

298 G. Canfora et al.

– Write the code
Driver – Listen to the observer’s suggestions and ideas

– Leave the keyboard to the observer when needed

– Continuously check the actions of the driver

Observer – Take the control of the keyboard, but only after common agreement with the driver

– Achieve off-line tasks
– Optimise parts of the code

Fig. 1. Pair programming rules.

Table 1. Experiment technological platform.

Tools Function Purpose Motivation

VNC Share the desktop: it lets
the remote control of a
PC.

Collaboration The experimenters had
experience in using it in
previous projects;
Open Source.

NetMeeting Text chat. Communication Its usage was well known
to all the experimental
subjects.

JBuilder IDE for Java Programs. Programming Subjects had experience
in using it in previous
projects.

Table 2. Experimental design.

Subjects Round I Round II

Group A (8 units) Co-located P1 Distributed P2

Group B (8 units) Distributed P1 Co-located P2

We used a randomised design with one factor (placement of pair’s components)

and two treatments (co-located and distributed). 16 subjects took part in the ex-

periment, forming 8 pairs organised in two groups (A and B) of four pairs. The

experiment consisted of two rounds: during the first round pairs of group A were

co-located and those of group B were distributed; they had to modify program

P1, according to three perfective maintenance requests. During the second round

pairs of group A were distributed and those of group B were co-located; they had

to modify program P2, also in this case according to three perfective maintenance

requests different from Round I. In both rounds pairs were formed randomly within

the groups. The design of the experiment is illustrated in Table 2.

The distribution was achieved by placing the two components of each distributed

pair in two different laboratories of University buildings. Both programs to be

modified during the experiment were written in Java; Table 3 shows information

about the two programs.

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 299

Table 3. Experiment’s classes and related LOCs.

Program LOCs # Classes Functional description

MultisalaMngmt (P1) 171 3 A booking system for a cinema with many
projection rooms.

ProjectMngmt (P2) 95 4 A system for managing the attributes of a
project’s activities.

Figure 2: Tests used.

•Group A co-located

•Group B distributed

Mann
Whitney

•Group A distributed

•Group B co-located

Mann
Whitney

Round I Round II

Fig. 2. Test used.

The students were provided with the following documentation:

(1) listings of the programs’ code;

(2) textual description of maintenance tasks;

(3) time sheet to fill in;

(4) description of the correct execution of pair programming roles;

(5) questionnaire to be compiled at the end of the experiment.

2.3. Operation

The whole experimentation lasted 6 hours. The time was measured with a time sheet

filled in by each pair participating in the experiment and was checked out by one

of the experimenters. This helped enforce the reliability of results. The function

fqual was evaluated by the experimenters, executing the black box tests for the

modified programs of each pair. As shown in Fig. 2, we used a Mann Whitney U

test between the co-located and distributed pairs of the same round, because data

was not normally distributed. This test evaluates the significance of differences in

performance and quality when co-located pairs are different from the distributed

ones.

3. Analysis of Data

In Table 4, the results of statistical tests on the effort and quality data are reported:

both hypotheses were tested by fixing the p-level threshold value at 5%.

April 10, 2006 13:55 WSPC/117-ijseke 00275

300 G. Canfora et al.

Table 4. Statistical test results.

p-level Description

Effort Round I 0.564 Mann Whitney test on effort data between Group A (co-located)
and Group B (distributed) in Round I.

Effort Round II 1.000 Mann Whitney test on effort data between Group A (distributed)
and Group B (co-located) in Round II.

Quality Round I 0.465 Mann Whitney test on quality data between Group A (co-located)
and Group B (distributed) in Round I.

Quality Round II 0.011 Mann Whitney test on quality data between Group A (distributed)
and Group B (co-located) in Round II.

Table 5. Descriptive statistics.

Co-located Distributed

Dev. Stand Avrg Max Min Moda Dev. Stand Avrg Max Min Moda

Round I

Quality 2.5 5.8 9 4 5 2.4 5 8 3 3

Effort 7.9 129 135 119 135 46 123 180 75 Na

Round II

Quality 3 6 9 3 Na 2.5 6.3 9 3 Na

Effort 42.7 116 175 80 Na 52.7 107 155 54 Na

The differences of the response variables are not statistically significant; relying

on the experiment outcomes, it cannot be claimed that pair programming efficiency

is affected by distribution. Only the Round II quality’s results are statistically

significant, as the fourth row of Table 4 shows.

Information about descriptive statistics of the sample is provided in Table 5.

The meanings of the acronyms in Table 5 are: Dev. Stand.: standard devia-

tion; Avrg: average; Max: maximum value; Min: minimum value; Moda: the most

frequent value of the sample; Na: not available.

Figure 3 shows the box plots of effort in both rounds. The median values are very

close; on the contrary, the 25 percentiles are significantly different. This value is an

indicator of the performance of the fastest pairs: the best distributed pairs took a

shorter time than the best co-located pairs. This suggests that the co-located pairs

spent additional time, probably for discussing common policies and strategies to

follow when accomplishing the task. We believe that the distributed pairs, after an

initial period in which they attempted to collaborate and communicate, broke pair

work, behaving as solo-programmers. The best times of distributed pairs, shown in

Fig. 3, suggest that subjects did not negotiate strategies with the companion.

The worst times of distributed pairs (Fig. 3) are due to people trying to col-

laborate although they had problems with communication. In other words, the

distributed pairs’ components tend to dismiss from each other after an initial time

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 301

Box Plot (2v*4c)

 Median
 25%-75%
 Non-Outlier Range

Var25 Var26
40

60

80

100

120

140

160

180
Box Plot (2v*4c)

 Median
 25%-75%
 Non-Outlier Range

Var22 Var23
60

80

100

120

140

160

180

200

Fig. 3. Effort for co-located (Var 25) and distributed (Var 26) pairs in Round I; effort for
co-located (Var 22) and distributed (Var 23) pairs in Round II.

of collaboration. It should be noticed, also, that the dispersion of values of dis-

tributed pairs’ effort is broader than that of co-located ones in both box plots. The

collaboration within the co-located pairs entails a levelling of the upper and lower

values of the effort interval. This is due to a phenomenon of performances’ com-

pensation: when the driver slows down the rhythm of work, the observer keeps the

control of the keyboard and continues the work. By assuming that the distributed

pairs’ data reflect the behaviour of a solo programmer, the graphs become mean-

ingful. When slowed down, the solo programmer preferred to neglect the help of

the observer rather than dealing with matters of communication and collaboration

in order to maintain the pairing.

Round II suggests the breaking of the distributed pairs with even more evidence,

as shown in Fig. 3: both the median and 25 percentile are greater for co-located

pairs; and the dispersion of values is once again broader for distributed pairs. The

more remarkable difference with the results of Round I is the interval in which

the co-located values vary, which is tighter than in Round I. This difference is

probably due to the fact that subjects learned to work better in pairs after Round I

experience. This conclusion is confirmed also in Fig. 4, where the quality of co-

located pairs is significantly better than that of distributed pairs in the second

round.

In summary, the analysis of data from the first experiment suggests that with-

out adequate means of communication and collaboration, the pairs tend to break

down. This can be an important risk factor when implementing distributed pair

programming. The dismissal occurs mainly under two conditions:

(1) The absence of an adequate communication support: the contemporary review

is one of the aspects that make pair programming advantageous. Contemporary

review requires fluent communication in order to be decisive for the effectiveness

April 10, 2006 13:55 WSPC/117-ijseke 00275

302 G. Canfora et al.

Box Plot (2v*4c)

 Median
 25%-75%
 Non-Outlier Range

Var18 Var19
2

3

4

5

6

7

8

9
Box Plot (2v*4c)

 Median
 25%-75%
 Non-Outlier Range

Var21 Var22
2

3

4

5

6

7

8

9

10

Fig. 4. Quality for co-located (Var 18) and distributed (Var 19) pairs in Round I; quality for
co-located (Var 21) and distributed (Var 22) pairs in Round II.

of pair programming. A textual chat, for instance, is obstructive for the pair;

the operations for using the chat disturb the continuity of work.

(2) The absence of an adequate collaboration support: switching roles avoid inter-

rupting the rhythm of work. It requires that the observer can keep the control

of the workstation whenever the driver cannot go on coding. Some desktop

sharing tools suffer from technological limitations that make switching roles

annoying.

The dismissal conjecture has been confirmed by subjects in a questionnaire-guided

post-experiment assessment: while in the co-located round most of the pairs worked

together for all the tasks, in the distributed round, after an initial time during which

pairs tried to settle a common strategy of action, several among them tended to

work as singleton developers. The initial roles became frozen, the switching was

increasingly disregarded and finally only the driver developed the code whereas

the observer looked at the companion working. Sometimes the observer attempted

observations and suggestions that were neglected by the driver or often mismatched.

4. Experiment’s Replica

The experiment’s replica was aimed at testing the same hypotheses of the first

experiment, while minimising the occurrence of the dismissal phenomenon. In order

to limit the dismissal, we have followed two main policies. Firstly, we have performed

a more intensive and focussed training to students: in addition to seminaries and

lab exercises, students have been trained in working together and making faster

decisions.

Secondly, the time for performing the tasks was sensitively reduced: it went

from 180 minutes per round to 90 minutes per round. From the first experiment’s

assessment discussion we learnt that in the first period the distributed pairs strove

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 303

Table 6. Experimental design.

Subjects Round I Round II

Group A (4 units) Co-located P1 Distributed P2

Group B (4 units) Distributed P1 Co-located P2

Table 7. Information on replica’s programs.

Program LOCs # Classes Description

AreaCalculating (P1) 76 2 This program calculates the areas of plan geometry
figures.

AverageNumber (P2) 67 3 This program calculates some statistical values on
a sample of numbers.

to work together. Then, given that the rhythm of work slowed down too much and

that the communication and collaboration became too difficult to implement, they

started to work alone. Our idea was to reduce the total amount of time available to

the subjects, so as to gather data when distributed pairs were still trying to work

together.

The definition of the replica is the same definition of the first experiment dis-

cussed in Sec. 2; therefore, only the characterization and operation will be discussed

here.

4.1. Characterization and operation

The subjects were volunteer students of the Software Engineering Course in the

fourth year of the laurea degree in Computer Engineering at the University of

Naples “Federico II”. They had to implement three maintenance requests on a

C++ program. The first maintenance request was corrective, the other two were

perfective ones.

Four pairs have been involved in the experiment’s replica, organised in two

groups (A and B). The experiment design is shown in Table 6. The experiment

consisted of two rounds. In Round I group A’s pairs were co-located and group

B’s pairs were distributed and they had to implement three maintenance requests

to the program AreaCalculating. In Round II group A’s pairs were distributed and

group B’s pairs were co-located and they had to implement other three maintenance

requests to the program AverageNumber. Information about programs is reported

in Table 7.

Subjects received the documentation discussed in Sec. 2.2. The main differences

between the experiment and the replica were:

(1) The time available to accomplish the overall tasks was reduced to 90 minutes,

in order to avoid the dismissal phenomenon;

(2) The number of subjects decreased to 8;

(3) NetMeeting was used for desktop sharing instead of VNC;

April 10, 2006 13:55 WSPC/117-ijseke 00275

304 G. Canfora et al.

Table 8. Mann-Whitney U tests on effort and quality data for the second experiment.

p-level Description

Effort 0.083 Mann Whitney tests on effort data between co-located and distributed
pairs.

Quality 0.043 Mann Whitney tests on quality data between co-located and distributed
pairs.

Table 9. Descriptive statistics of the replica’s sample.

Co-located Distributed

Dev. Stand Avrg Max Min Moda Dev. Stand Avrg Max Min Moda

Round I

Quality 0.7 8.5 9 8 Na 1.4 7 8 6 Na

Effort 1.4 46 47 45 Na 22.6 66 82 50 Na

Round II

Quality 0 9 9 9 9 1.4 7 8 6 Na

Effort 16.3 41.5 53 30 Na 19.1 61.5 75 48 Na

(4) Dev-C++ was used as IDE for C++ programs, because subjects had experience

in using it from previous projects.

4.2. Replica’s results

In Table 8, the Mann Whitney U test results on quality and effort data are reported,

because data was not normally distributed. The hypotheses were tested by fixing

the p-level threshold value at 5%.

There is empirical evidence that the quality of pair programming is affected by

distribution (p = 0.043 < 0.05), as the second row of Table 8 shows, whereas there

is no empirical evidence that distribution affects effort.

Descriptive statistics of the sample are provided in Table 9.

In Fig. 5 the box plots for effort and quality are illustrated. The box plots of

effort show that the performance of distributed pairs is worse than the performance

of co-located pairs. The worst co-located pairs reached the same level of the best

distributed ones. This result seems to contradict the dismissal conjecture. Actually,

the replica was planned in order to reduce the dismissal phenomenon within the

pair. In fact, the available time for accomplishing the tasks was reduced: during the

observation time, subjects of distributed pairs worked as pairs while dealing with

collaboration and communication problems.

Based on such considerations, the overall degradation of performance in dis-

tribution seems to be due to technological issues. The dismissal phenomenon has

not yet emerged in the replica, but the negative side effects of inadequate commu-

nication and collaboration had. Such consideration appears clear when analyzing

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 305

Box Plot (2v*4c)

 Median
 25%-75%
 Non-Outlier Range

Var14 Var15
20

30

40

50

60

70

80

90
Box Plot (2v*4c)

 Median
 25%-75%
 Non-Outlier Range

Var9 Var10
5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

Fig. 5. Effort for co-located (Var 14) and distributed (Var 15) pairs; quality for co-located
(Var 9) and distributed (Var 10) pairs.

quality data illustrated in Fig. 5. The median value is greater for co-located than

for distributed pairs. Moreover, it should be observed that the worst quality level

of co-located pairs is better than the best level of distributed ones.

The difference between the quality obtained from co-located and distributed

pairs is greater than the one in the first experiment (see Fig. 4). We believe also

that this was due to the reduction of available time. In the first experiment people

tried to collaborate in the initial phase, but then started to work alone, ameliorating

the quality of the work because they removed the continuous effort in establishing

a pair fashion style of work.

During the replica, people worked as pairs while facing problems connected

with the platform: the reviews were affected by such problems and consequently

the quality was very low.

5. The Dismissal Phenomenon: Causes and Remedies

After the experiment and its replica, experimenters had a questionnaire-guided

discussion with subjects, in order to accomplish a qualitative investigation on the

experiment outcomes.

The most relevant result of the discussion was the confirmation of the dismissal

conjecture, also issued in [26]. Together with the subjects, we strove to identify two

main candidate causes for the phenomenon: the communication limit (we named

it the faulty phone cause) and the divergence of approaches (we named it the

two-minds cause). They are described in the following:

1. The faulty phone cause. As previously discussed, communication is a critical

issue for implementing distributed pair programming successfully. Communi-

cation is important for performing contemporary review and decision-making

within the pair. If the technology support does not satisfy completely the need

April 10, 2006 13:55 WSPC/117-ijseke 00275

306 G. Canfora et al.

for comfortable communication, it could obstruct the driver while typing and the

observer while inspecting the code. In our experience the text chat was not com-

pletely adequate to support distributed pair programming as it forced subjects

to pay attention continuously to the chat window in order to get the compan-

ion’s intervention, and so they had to take their eyes off the code frequently.

After a while, people felt uncomfortable using this method of communication

and switched to work alone on the code, ignoring messages from the pair’s com-

panion. This contributed to break distributed pair.

2. The two-minds cause. Each member of the pair brought a proper idea of

strategies to meet the goals. Having the companion far from them discourages

people to argue for their own ideas. The pair’s components tend to assume an

undisciplined behaviour and the roles are performed chaotically: the control of

the machine is taken without the consensus of the companion and the reviews

are neglected. In distributed pair programming, the collaborative work of the

pair needs to be more disciplined than in co-located pair programming. It is

necessary to train the subjects adequately.

The conducted assessment also suggested solutions in order to manage such issues

adequately.

Behavioural protocol. Pair programming forces two people to share tools of work

they use to consider strictly personal. This makes people resilient in assuming either

an “observer” or “driver” behaviour completely, mainly because they do not know

exactly which kinds of tasks are charged on the observer role and which ones on

the driver role. Researchers and practitioners suggest to switch the two roles when

necessary. The problem is that switching is less spontaneous in distributed settings

if people are not adequately experienced with agile methods. In this case people tend

to work mainly asynchronously on different tasks more than as a pair on the same

task. People need adequate training to properly apply pair programming: the duties

of the observer and those of the driver must be distinguished clearly. A behavioural

protocol can be useful for people with scarce experience of pair programming.

Communication enabler. In order to support distributed pair work, communi-

cation means must implement a metaphor of the actual world. Effective platforms

for distance communication must enable some sociological peculiar aspects of real

life communication. In distributed pair programming, people need a communica-

tion means that owns at least two features: vocal communication and a blackboard.

Vocal dialogue lets people communicate and keep on working on their task at the

same time. Vocal dialogue helps people collaborate in a more realistic way than

text-based chat or instant messaging. The latter devices force people to assume an

unnatural behaviour and this obstructs the continuity of work. Defective communi-

cation is one of the candidate causes of pair dismissal (faulty phone cause). An

interesting advise stemmed from subjects. Video-chat tools are neither required nor

considered as useful. Blackboard can be exploited as a means to transmit graphs,

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 307

algorithm drafts, pictures as hints of design documentation’s pieces.

Different experiences and capabilities. Our experimental subjects had a

similar academic background. Differences among them consisted mainly of their

academic curricula. Some of them had less experience as developers in firms, but

not so much to determine a well defined gap with the others. The gaps in terms of

capabilities within the pairs were too reduced for being useful but enough for lead-

ing the pair far away from co-ordination. The pair needs a component with more

experience, who can act as a leader for the pair. Distribution magnifies critical

situations: the leader figure becomes fundamental for successful task completion.

Change tracing and highlighting. The environment supporting distributed pair

programming must keep track of the modifications realised by the two developers. It

seems to be important for co-operative work to have an immediate idea of the place

and author of a modification. Distribution emphasises because pair’s components do

not share physical space, e.g., they cannot use fingers to point the code under review.

The platform can use different colours for referring to the different programmers. It

should be useful to also keep track of the time of modifications. Overhead was due

to the need for keeping in mind who has modified which part of code and when.

Awareness of the project. Distributed pairs tend to reduce discussions; as a

consequence, the pair’s components do not develop a common vision of the project:

they consider different priorities for the goals of the project and different strate-

gies to be adopted, different approaches to solve problems. Frequent rounds for

knowledge leveraging must be properly planned during all phases of the project;

they are recommended especially at the start up of the project. Some subjects pro-

posed that one in the pair should have a greater awareness of the project than the

other one. Such a person should assume mainly the role of the observer during the

development phases.

6. Experimental Validity

This section presents a discussion of the threats considered as more relevant for the

design of the experiment, referring to the classification in [13].

6.1. Internal validity

Maturation. The subjects were students not experienced with pair programming.

For both experiments, during the first round, the subjects acquired competence

in the new practice, then exploited it in the second one. We used the Wilcoxon

test between the rounds of the same group, in order to evaluate the significance

of differences in performance and quality due to the maturation of groups between

the two rounds.

April 10, 2006 13:55 WSPC/117-ijseke 00275

308 G. Canfora et al.

•Group A co-located

•Group B distributed

•Group A distributed

•Group B co-located
Wilcoxon

Wilcoxon

Round I Round II

Fig. 6. Design of statistical test for maturity threat.

Table 10. Wilcoxon tests results in order to evaluate the maturity threat.

p-level Description

Effort Group A 0.465 Wilcoxon test on effort data of the Group A between Round I

and II.
Effort Group B 0.715 Wilcoxon test on effort data of the Group B between Round I

and II.
Quality Group A 0.345 Wilcoxon test on quality data of the Group A between Round I

and II.
Quality Group B 0.969 Wilcoxon test on quality data of the Group B between Round I

and II.

In Fig. 6 the design of tests are illustrated and in Table 10 the results are

reported: there is no empirical evidence that maturation affects differences in each

group’s performance and quality between the two rounds (p > 0.05).

6.2. Construct validity

Mono Operation bias: The subjects were required to modify one program in

each round, according to three specific maintenance requests. The difference of

assignment in each round can affect the final results. In order to evaluate if such

differences between rounds are statistically significant, we have used Wilcoxon tests.

The tests were accomplished both for the first experiment and the replica (Fig. 7).

In Table 11 the tests results are reported: there is no empirical evidence that

the assignment specifications affect quality and performances.

7. Conclusions

Several experiments have demonstrated the benefits of pair programming in terms

of performances and quality. The distribution of software processes and teams is

increasing within the industry. We have made an experiment and a replica in order

to evaluate the impact of distribution on pair programming. Both the first exper-

iment and the replica have produced empirical evidence that the quality of pair

programming is affected by distribution.

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 309

•Group A co-located

•Group B distributed

•Group A distributed

•Group B co-located

Wilcoxon

Round I Round II

Fig. 7. Design of statistical test for mono-bias threat.

Table 11. Wilcoxon tests results in order to evaluate the mono-bias threat.

p-level Description

Effort first experiment 0.508 Wilcoxon test on effort data between Round I and II in
the first experiment.

Quality first experiment 0.445 Wilcoxon test on quality data between Round I and II in
the first experiment.

Effort replica 0.715 Wilcoxon test on effort data between Round I and II in
the replica.

Quality replica 0.109 Wilcoxon test on quality data between Round I and II in
the replica.

In the first experiment, the dismissal phenomenon emerged: if the technological

platform does not support adequately communication and collaboration, the dis-

tributed pair working gets interrupted and just one of the pair’s components keeps

control of the workstation, neglecting the review and the switch requests from the

remote companion. This entails the lost of benefits in terms of performance and

quality, critical to pair programming.

Such phenomenon is a factor of risk and should be properly managed when

planning the implementation of distributed pair programming within a process

activity.

The replica was planned in order to minimise the pair dismissal phenomenon.

The data collected from the replica reflected the actual behaviour of distributed

pairs while facing communication and collaboration problems and striving to work

together.

In the first experiment the dismissal phenomenon played a central role in the

definition of the final results. In the replica, the dismissal was limited. The replica’s

results about quality make us believe that the support platform is the candidate

factor for maintaining unchanged quality and performance when distributing pair

programming.

Both the replica and the experiment offered the following main outcomes.

• Empirical evidence that the distribution affects pair programming

quality. Some factors of distribution settings make the quality of pair program-

April 10, 2006 13:55 WSPC/117-ijseke 00275

310 G. Canfora et al.

ming lower. The quality assessment of the experiment suggested that such factors

have to be searched in the infrastructure of collaboration. Communication has to

be fluent and neither obstructive for the driver nor the observer. On the contrary,

reviewing code and discussing a common strategy require additional effort to be

accomplished successfully.

• No empirical evidence that effort increases when distributing pair

programming. Although the dismissal phenomenon favoured a higher expense

of time in co-located tasks, the differences are not statistically significant. The

qualitative analysis confirmed that the time can be reduced with distribution.

The motivation for that is not encouraging: this is due to the breaking down of

collaboration. Finally, it is only a waste of resources: two programmers are paid

whereas only one works, without benefits of contemporary reviews.

• Some candidate factors determining the success of pair programming.

We have identified them in the selection of an appropriate communication and

collaboration support.

The experiment was executed in academic settings. Such kind of experiments helps

to fix bugs within the experimental design, before executing it in industrial setting.

As a matter of fact, the phenomenon of dismissal was noticed only after the first

round of the experiment, and not foreseen during the design of the experiment.

Furthermore, experiments with students help to point out which are the likely

findings that can be interesting for industry, in order to propose appealing investi-

gations and gain maximum collaboration from professionals.

A strong limitation of the experiment is its size: the samples are small, the time

for observation is short, the size of the problem is scarcely significant if compared

with marketplace applications. Such limitations can be accepted by considering the

experiment as a preliminary investigation on distributed pair programming. The

aim is to define the most suitable design for executing the experiment in industrial

setting.

From the experiments the following research questions emerged:

(1) Does an appropriate platform let the distributed pair programming

remain beneficial as well as the co-located? From the post-experiment

assessment discussion, one major reason for the dismissal of the pair and, con-

sequently, of the deterioration of pair programming effectiveness, is the lack

of an appropriate platform. Such platform should comprise at least: an audio

channel as support for communication, a system to exchange/share images and

drafts, a versioning control assisting continuous reviews. This suggests that an

ad-hoc system for distributed pair programming would be helpful.

(2) What is the best combination of the pairs in terms of competence,

experience, and character profile in distribution? It seems that knowl-

edge and behavioural aspects of individuals are critical for the success of pair

programming. All the subjects have highlighted that these aspects have a

great impact on the practice. It should be very interesting to have empirical

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 311

evidence of such relationships. Moreover, it should be useful to understand how

to properly manage such factors in forming the pair. If this issue is impor-

tant for co-located pair programming, it becomes critical for distributed pair

programming, where the implementation of the practice is obstructed by other

kinds of problems. For instance, the difference of culture and habits can become

further hurdles to the success of pair programming.

(3) Is distributed pair programming only a need or can it fit certain

business targets better than co-located pair programming? Till now

distribution is considered a need which arose from the widespread diffusion

of pair programming and global software development. Moreover, maintaining

the components physically detached can be beneficial for pair programming in

specific contexts. The switching of role should happen in a more disciplined

manner. The pair can exploit resources that are placed in two different organi-

sations, and govern them directly. Pair programming can be used for merging

people with very complementary competencies and located in two different

places. Investigating when and how distribution can improve the practice of

pair programming should present interesting findings.

Acknowledgements

We would like to thank the Software Engineering course students from Naples

Federico II and Sannio Universities for having taken part in the experiments and

for their useful observations in the assessment discussion. We would like to thank

Orazio Abissinia, Teresa Daniela Mallardo, and Porfirio Tramontana for their useful

support in preparing the experiment environment and for their assistance in running

the experiment.

References

1. AA. VV, Manifesto for Agile Software Development, http://agilemanifesto.com
(accessed on 27 June 2005).

2. L. Williams, What is Pair Programming?, http://pairprogramming.com (accessed on
27 June 2005).

3. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
Reading, MA, 2000.

4. D. Wells, Pair Programming, http://www.extremeprogramming.org/rules/pair.html
(accessed on 27 June 2005).

5. A. Cockburn and L. Williams, The costs and benefits of pair programming in Extreme
Programming Examined, eds. G. Succi and M. Marchesi, Addison-Wesley-Longman,
Boston, MA, 2001, pp. 223–243.

6. L. Williams, W. Cunningham, R. Jeffries, and R. R. Kessler, Straightening the case
for pair programming, IEEE Software 17(4) (2000) 19–25.

7. M. M. Muller and W. F. Tichy, Case study: Extreme Programming in a University
Environment, in Proc. 23rd International Conference on Software Engineering (ICSE
2001), Toronto, Canada, IEEE CS Press, 2001, pp. 537–544.

April 10, 2006 13:55 WSPC/117-ijseke 00275

312 G. Canfora et al.

8. C. Ebert and P. de Neve, Surviving global software development, IEEE Software 18(2)
(2001) 62–69.

9. E. Carmel and R. Agarwal, Tactical approaches for alleviating distance in global
software development, IEEE Software 18(2) (2001) 22–29.

10. M. C. Paulk, Extreme programming from a CMM perspective, IEEE Software 18(6)
(2001) 19–26.

11. J. Grenning, Launching extreme programming at a process-intensive company, IEEE
Software 18(6) (2001) 27–33.

12. P. Baheti, E. Gehringer, and D. Stotts, Exploring the efficacy of distributed pair
programming, in Proc. Extreme Programming and Agile Methods — XP/Agile
Universe 2002, Second XP Universe and First Agile Universe Conference, Chicago,
IL, LNCS, Springer-Verlag, 2002, pp. 208–220.

13. C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, Boston, 1999.

14. B. Boehm, Get ready for Agile Methods, with care, Computer 32(1) (2002) 64–69.
15. M. Lippert, P. Becker-Pechau, H. Greitling, J. Koch, A. Kornstadt, S. Roock, A.

Schmolitzky, H. Wolf, and H. Zullinghoven, Developing complex projects using XP
with extension, Computer 36(6) (2003) 67–73.

16. O. Murru, R. Deias, and G. Mugheddu, Assessing XP at a European internet company,
IEEE Software 20(3) (2003) 37–43.

17. D. Wells, Extreme Programming: A gentle introduction,
http://www.extremeprogramming.org (accessed on 27 June 2005).

18. H. Miller and J. Sanders, Scoping the Global Market: Size is just part of the story,
IEEE IT Pro 1(3) (1999) 49–54.

19. P. Fuglewicz, Global Software Development: Attainable challenge or the holy trail?,
Cutter It Journal 12(3) (1999) 22–26.

20. J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, An empirical study
on Global Software Development: Distance and speed, in Proc. 23rd Int. Conf.
on Software Engineering (ICSE 2001), Toronto, Canada, IEEE CS Press, 2001,
pp. 81–90.

21. D. Chaffey, Groupware, Workflow and Intranets, Digital Press, Boston, MA, 1998.
22. J. D. Herbsleb, and R. E. Grinter, Architecture, coordination, and distance: Conway’s

law and beyond, IEEE Software 16(5) (1999) 63–70.
23. R. W. Jensen, A pair programming experience, CrossTalk, March 2003,

http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html (accessed on 14 July
2005).

24. AA. VV., Pair Programming is Done by Peers, http://www.c2.com/cgi/
wiki?PairProgrammingIsDoneByPeers (accessed on 27 June 2005).

25. W. J. Orlikowski, Knowing in practice: Enacting a collective capability in distributed
organizing, Organization Science 13(3) (2002) 249–273.

26. G. Canfora, A. Cimitile, and C. A. Visaggio, Lessons learned about distributed
pair programming: What are the knowledge needs to address? in Proc. IEEE Int.
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE-2003), Linz, Austria, IEEE CS Press, 2003, pp. 314–319.

27. N. Nohria and R. Eccles, Networks and Organizations: Structure, Form, and Action,
Harvard Business School Press, Cambridge, MA, 1992.

28. C. McDowell, B. Hanks, and L. Werner, Experimenting with pair programming in
the classroom, in Proc. 8th Annual Conf. on Innovation and Technology in Computer
Science and Education 2003, Thessaloniki, Greece, ACM Press, 2002, pp. 60–64.

April 10, 2006 13:55 WSPC/117-ijseke 00275

How Distribution Affects the Success of Pair Programming 313

29. E. F. Gehringer, A pair-programming experiment in a non-programming course, in
Proc. Companion of the 18th Annual ACM SIGPLAN Conference on Object Oriented
2003, Anaheim, CA, ACM Press, 2003, pp. 187–190.

30. L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L. Werner, Building pair
programming knowledge through a family of experiments, in Proc. 2003 Int. Symp.
on Empirical Software Engineering (ISESE 2003), Rome, Italy, IEEE CS Press, 2003,
pp. 143–152.

31. K. M. Lui and K. C. C. Chan, When does a pair outperform two individuals?, in
Proc. Fourth Int. Conf. on eXtreme Programming and Agile Processes in Software
Engineering (XP 2003), Genova, Italy, LNCS, Springer-Verlag, 2003, pp. 225–233.

32. J. T. Nosek, The case of collaborative programming, Communications of ACM 41(3)
(1998) 105–108.

33. B. F. Hanks, Distributed pair programming: An empirical study, in Proc. Extreme
Programming and Agile Methods — XP/Agile Universe 2004: 4th Conference on
Extreme Programming and Agile Methods, Calgary, Canada, LNCS, Springer-Verlag,
2004, p. 81–91.

34. L. Williams, A. Sukhia, and A. J. Anton, An initial exploration of the relationship
between pair programming and Brooks’ law, in Proc. Agile Development Conference
(ADC’04), Salt Lake City, Utah, IEEE CS Press, 2004, pp. 11–20.

35. M. M. Muller and F. Padberg, An empirical study about the feelgood factor in pair
programming, in Proc. 10th Int. Symp. on Software Metrics (METRICS’04), Chicago,
Illinois, IEEE CS Press, 2004, pp. 151–158.

