
B. Meyer and M. Joseph (Eds.): SEAFOOD 2007, LNCS 4716, pp. 152–169, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reducing the Cost of Communication and Coordination
in Distributed Software Development

Yunwen Ye1,3, Kumiyo Nakakoji1,2, and Yasuhiro Yamamoto2

1 SRA Key Technology Laboratory, Inc.
3-12 Yotsuya, Shinjuku, Tokyo 160-0004, Japan

2 Research Center for Advanced Science and Technology, University of Tokyo
4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan

3 Center for LifeLong Learning and Design, University of Colorado at Boulder
Boulder, CO80309-0430, USA

yunwen@colorado.edu; kumiyo@kid.rcast.u-tokyo.ac.jp;
yxy@kid.rcast.u-tokyo.ac.jp

Abstract. Decades of software engineering research have tried to reduce the
interdependency of source code to make parallel development possible.
However, code remains helplessly interlinked and software development
requires frequent formal and informal communication and coordination among
software developers. Communication and coordination cost still dominates the
cost of software development. When the development team is separated by
oceans, the cost of communication and coordination increases dramatically. To
better understand the cost of communication and coordination in software
development, this paper proposes to conceptualize software as a knowledge
ecosystem that consists of three interlinked elements: code, documents, and
developers. This conceptualization enables us to understand and pinpoint the
social dependency of developers created by the code dependency. We show that
a better understanding of the social dependency would increase the economic
use of the collective attention of software developers with a proposed new
communication mechanism that frees developers from the overload of
communication that does not interest them, and thus reduces the overall cost of
communication and coordination in software development.

Keywords: distributed software development; knowledge collaboration; cost of
communication and coordination; attention cost.

1 Introduction

When a large software project is created by developers separated by oceans and time
zones, communication and collaboration becomes the more dominant forces in
determining the productivity and quality of software development [13]. Most of the
current research in supporting offshore outsourcing software development has mainly
focused on the brawny power brought by many hands through collaboration. The
major concerns have been on the cooperation, communication, and coordination
problems brought by the consequences of division of labor [12, 34].

 Reducing the Cost of Communication and Coordination 153

This paper focuses on another aspect of collaboration in offshore outsourcing
software development that has not been paid enough attention—the brainy power
brought by multiple heads of software developers; that is, the knowledge
collaboration that takes place during the process of software development.

Software development is a knowledge-intensive and creative activity [22]. It
requires knowledge from several different domains, including both the computing
domain and the application domain. As computer applications get larger and more
complex, the amount and kinds of knowledge required grow [38]. Few developers, if
any, have all the knowledge needed in their own heads. The knowledge necessary for
software development is distributed between the developer and the external world,
and the development of a software system requires learning from and integrating the
knowledge from various external sources in the world. Knowledge in the world comes
from cognitive tools that support programming and from peer developers. The
development of software is therefore no longer confined to an individual developer
but has to rely on distributed cognition by reaching into a complex networked world
of information and computer mediated collaboration.

With the current trend of offshore outsourcing, software projects are increasingly
become distributed along different times zones, locations, and cultures. The
distribution of software projects has become necessary due to not only the needs of
shifting labors to places that have lower costs, but also the pursuit of local talents that
are otherwise unavailable. In other words, in addition to delegating the task of
development to the most economically viable places, which is the current driving
force of outsourcing, software development companies need also to ship the task to
the most talented and suitable people regardless of location, time zone, and national
boundary. This, we strongly believe, will soon be the upcoming driving force of
offshore outsourcing. Knowledge-based collaboration is becoming as important as, if
not more than, the current labor-based collaboration in outsourcing.

2 Knowledge Distribution and Collaboration

Software development involves the application of knowledge from a variety of
sources, which are constantly changing. For example, application domains are subject
to rapid change; a vast amount of third-party libraries are continually updated; new
features and functionalities continue to be introduced in programming tools and
environments. Software development therefore is a continual learning process during
which developers have to constantly acquire new knowledge [39].

The knowledge required in software development is not only about the process
knowledge and domain knowledge that are applied in the software system; it also
includes knowledge about the software system itself that developers are currently
creating. One may argue that since the software developer participates in the creation
of the system, he/she should know the system inside out. However, because large
systems are created collaboratively by many developers, not all developers, if any,
would have complete knowledge about the whole system. Meanwhile, with the
increasingly accepted view of software systems as evolving entities, the percentage of
incremental, continuous development in software has risen quickly. Such software
systems need to be continuously developed with iterative processes. Coupled with the

154 Y. Ye, K. Nakakoji, and Y. Yamamoto

high turnover rate in software industry, many software developers find themselves
working to make incremental changes to systems that have been partially developed.
This is especially true in offshore outsourcing software development: local developers
do not have the global knowledge of the whole system.

Software development, therefore, should be viewed as a distributed cognitive
activity [10, 16]. The overall capability of a project team, termed as group knowing, is
determined not only by the sum of the capability of individual developers, but also by
the socio-technical environment consisting of the developers, tools, and accessible
communication channels that affect how they contribute their knowledge to the
project and how they collaborate with each other.

In offshore outsourcing development where software developers are dispersed
geographically, they lost the opportunities of spontaneous and informal fact-to-face
communication that has been shown critical in sharing context awareness and
knowledge in software development [18]. The lost of communication opportunities,
however, is not unique to offshore development; it is similarly detrimental to large
software projects where all developers cannot be collocated in closeness. Allen [1]
reported that when engineers’ office were about 30 meters or more apart, the
frequency of informal communication dropped to nearly the same level as people with
offices separated by many miles.

The key challenge of supporting offshore development, therefore, lies not in
developing tools that make offshore development same as same-site development, but
in seamless integration of individual knowledge to enhance the group knowing
regardless of location. Software developers, especially in offshore development, do
not have a uniformed knowledge structure; each of them has a unique set of skills and
expertise. The key is how to integrate this diversity of expertise and synthesize it into
the group knowing of a software project team through knowledge collaboration in
which ideas and inspiration cross fertilize and feed on each other.

3 Software = Code + Documents + Developers

3.1 Knowledge Resources for Software Development

As a knowledge artifact, software code is the ultimate knowledge resource about the
system. Due to the essential invisibility of software code [3], however, it is not easy to
recover knowledge about the system by simply reading the code. It has long been
recognized that documents that provide high level descriptions of the code and the
design rationale are needed to coordinate the development.

Code and documents, however, are often insufficient for supporting knowledge
collaboration. Documents do not always exist, or quickly fall out of sync with the
code. Much of the knowledge about the code and the design decisions remain in the
head of developers. Many empirically studies have shown that software developers
routinely access their peer developers for knowledge during the development process
through informal communications [19, 21]. Peer developers remain the most
commonly used and valued sources of expertise in software projects [32].

 Reducing the Cost of Communication and Coordination 155

3.2 Software Project as an Evolving Knowledge Ecosystem

We conceptualize a software project as a self-organizing and evolving knowledge
ecosystem [4] that consists of three interlinked elements: code, documents and
developers. In such a knowledge ecosystem, knowledge is embedded in both its
constituting elements and its structure that regulates their inter-relationship, and flows
along the hyperlinked relationship. As developers create artifacts (code and
documents), their knowledge gets distilled into the artifacts. Knowledge gets shared,
exchanged and combined through the dynamic interactions between software
developers, mediated by code, document, and communications.

This conceptualization enables us to model a software project as a socio-technical
information space that has triangulated relationships among code parts, documents
and developers. The nodes that constitute the socio-technical information space
associated with a software system include not only parts of code at different levels of
granularities, but also the documents that have been generated during the
development process, as well as the developers that hold knowledge about them.
Code, documents, and developers are therefore equally important knowledge
resources that should be utilized during software development.

In this knowledge ecosystem, relationships among code, documents and developers
dynamically change as the development process proceeds. The interacting developers
form a knowledge community, defined as a group of people who collaborate with one
another for the construction of knowledge artifacts. In a knowledge community,
people are bonded through the construction of common artifacts. This is especially
true in the case of offshore outsourcing development because, unlike a collocated
software project in a single organization, those developers often do not have a shared
identity defined by their shared belongingness to the organization. In most cases, they
have different organizational and cultural identities [8]; and when they come together
for a software project, they are bonded by the needs of constructing a common
artifact.

3.3 Evolution in Software Projects

The knowledge community aspect has important implications when viewing software
development as collective creative knowledge work that depends on the learning of
developers through knowledge collaboration. The roles of individual developers, both
formally assigned ones and informally perceived ones, change over time during a
project. The social relationships among the developers grow through their

engagement in the project,
affecting how they collaborate,
communicate, and coordinate
with each other, which results in
different ways of sharing and
integrating knowledge.

All three elements constantly
evolve during the process of
software development (Fig. 1).
Artifacts (code and elements)
change over time throughout the Fig. 1. Software Project as a Knowledge Ecosystem

156 Y. Ye, K. Nakakoji, and Y. Yamamoto

development. Individual developers—or, more precisely, what individual developers
know—grow by gaining experience through the engagement with artifacts and peer
developers. The community of developers changes when new members join, old
members leave, both the assigned or perceived roles of members change, and
members’ relationships change.

Existing studies on understanding and supporting software evolution have
primarily focused on the evolution of artifacts. More recent work has started to look at
how individuals change through learning about the system. People learn by reading
source code and documents, and they learn by asking peers questions. They also learn
by solving new problems and experiencing unfamiliar situations. Their old knowledge
is replaced with new knowledge and is restructured during the development process.
A community evolves through individual activities in software development that
result in the change of software artifacts and/or in the individual growth of knowledge
about the system. This paper views the evolutionary process of the developer
community and software systems from the following three relationships (Fig. 2):

(1) The relationship of an individual with artifacts. How one relates with artifacts is
concerned with what knowledge, expertise, and experience the individual has on what
artifacts. This information is useful in identifying a set of people who are likely to
have expertise with a certain artifact.
(2) The relationship of an individual with other developers. How one relates with
other developers impacts knowledge collaboration among developers. This
information helps a developer determine whom to ask for help about a certain artifact
as well as decide whether and how to respond to a question posed by an asker.
(3) The relationship of an individual with the community as a whole. How one relates
with the community is concerned with that individual’s role within the community:
whether he/she is a peripheral member, a core member, or a member in between. This
relationship helps a developer decide how much he/she should contribute to the
community by gaining trust and social reputation within the community.

Fig. 2. Evolutionary Process in a Software Project

3.4 Socio-technical Costs in Knowledge Collaboration

When peer developers become critical resources for expertise, simply knowing who
has the knowledge is not enough. The knowledge seeker needs to contact the
knowledge providers and ask the question, and the knowledge providers then have to
consent to engage in knowledge collaboration activities [17]. These steps become
exceptionally costly in a globally distributed development project because developers
in one site often do not “know” about those located in another site.

 Reducing the Cost of Communication and Coordination 157

This knowledge collaboration act is affected by and affects the characteristics of
the social relationship between developers and of their relationships with the
community. The communication channels used, the contents of the question and
answer, the ways the questions is asked and the answers provided, as well as the
timing of asking and answering depends on a set of perceived social variables.

All the communication and coordination required for knowledge collaboration
among developers come with a great cost that demands attention and time that can
otherwise be used for development [19]. The technology used in supporting
knowledge collaboration could affect positively or negatively of the perception of
social variables, and the associated total cost of communication and coordination [33].
From the socio-technical perspective [24], we analyze those social factors that affect
knowledge collaboration behaviors and cost (both social and attentional).

Awareness. For a developer to seek external expertise from peers, he/she has to know
who might have the expertise. From a set of potential expertise providers, he/she
needs to choose whom to ask, and then make the decision to ask. This conscientious
decision making process is related to the following social and technical factors.

The asker needs to find where the needed expertise is located, and who potentially
has the expertise. Previous research has shown that such transactive knowledge takes
extensive time to develop [21, 30], and its utilization consumes intensive attentional
cost [23]. The geographical distance in offshore development lowers significantly the
knowledge of knowing who are the experts [18].

Asking a question shows that the developer is missing some knowledge, and he/she
risks of appearing ignorant that impacts his/her overall relationship with the
community. People demonstrate different asking behaviors when they are in public or
in private; to a stranger or to a friend. Generally speaking, people are more willing to
ask questions covertly to those that they are closely related because the close social
relationship provides a psychological safety of admitting a lack of knowledge [6].

Asking question is also challenging because the expertise seeker needs to assess
the reliability of and then understand the answer. Research has shown that a strong tie
between the expertise seeker and the provider resulted from previous interactions
leads to easier quality judgment and helps the interpretation of answers [29].

Asking. When a developer decides to ask a question, he/she needs to make contact
with the experts. A study by Herbsleb and Grinter [14] observed that collocated
developers feel socially comfortable to initiate contact easily because they know each
other, know how to approach them, and have a good sense of how important their
question is related to what the experts seem to be doing at the moment. When
collocation is replaced with remote communication tools in offshore development,
initiating a contact became more difficult due to the loss of such social cues.

The way that the question is presented has a direct impact on the response it will
receive. Rhetorical strategies, linguistic complexity and word choice of the question
all influence the likelihood of others responding to a question [2]. The needs for a
developer to seek expertise mostly arise from a problematic situation that needs to be
resolved in a specific timeframe. The expectation of how soon a help would come is
shaped by a history of interactions with the other party [36].

158 Y. Ye, K. Nakakoji, and Y. Yamamoto

Engagement. Upon receiving a question, the experts need to decide whether to
engage in collaboration with the expertise seeker based on social factors: their
perceived social relationship with the expertise seeker and the community at large.

The theory of social capital provides an analytic framework to understand this
decision-making process. Social capital is the “sum of the actual and potential
resources embedded within, available through, and derived from the network of
relationships possessed by an individual or social unit [25]” and is regarded as
important as financial capital and intellectual capital for an individual as well as a
social organization because it promotes cooperation and reduce transaction cost.
Social capital manifests itself in forms of obligations, expectations, trust, norms of
generalized reciprocity, and reputations.

Social capitals are derived from social interactions. If A helps B, A then holds a
credit slip for B to reciprocate the favor in the future. In other words, A can have a
reasonable expectation that B will do something for him or her down the road, and B
will feel an obligation to help A [5]. Regularly reciprocated fulfillment of obligations
leads to the development of trust among the interacting parties. When this direct
interpersonal reciprocity becomes a norm, it promotes generalized reciprocity.
Persons with a large amount of credit slips are easier to draw collaboration in the
social unit. The norm would also apply social pressure for those who have a large
amount of obligations to engage actively in collaboration with others.

Engagement consumes time and attention. No action, however, has social cost too.
Saying no untactfully to a peer who seeks for your help deteriorate your relation with
him or her, and affects negatively your social reputation among other peers because it
deviates from social norms.

Collective Attention Cost. Asking and answering a question takes cost. In addition to
the time and attention for the asker to formulate and compose the question, and the
expertise provider to read, think and post the reply, considerable collective cost is also
incurred.

All the people who have received the question would at least spend some attention
about the question before they decide to answer or not. When the number of people
who receive the question becomes large, the collective attention consumed also
becomes considerably large. Given the fact that we are now entering a world where
our lives are guided more by the laws of the economics of attention because attention
is quickly becoming the scarcest resource in our society [11], it is imperative for
system designers to take this factor into consideration because the project has a
limited supply of collective attention and should be used economically.

A question means an interruption. The cost of interruption includes both the loss of
working context and the destruction of flow [35]. When multiple project members
receive the request for help, for example, if the request is sent through the project
mailing list, this interruption cost is multiplied with the number of receivers.
Collectively, this cost might outweigh the benefits of knowledge collaboration and
decreases the overall productivity of the whole project [33]. Communication
mechanisms used for knowledge collaboration have to be carefully designed and
chosen by paying attention that the communication would not impact negatively the
overall performance of the project team.

 Reducing the Cost of Communication and Coordination 159

4 A Socio-technical Framework to Supporting Knowledge
Collaboration

We have developed the Dynamic Community framework to help software developers
engage in knowledge collaboration during the process of software development
through sharing and exchanging expertise required for the project. The goals of the
framework are twofold: to increase the ease of accessing external expertise either
through a knowledge repository or from peer experts, and at the same time to reduce
the total cost of experts being interrupted and that of providing help. The essential
guidelines of the Dynamic Community framework are:

(1) Expertise is not an absolute attribute but a relative attribute of a developer. A
group of experts can be identified only after the task is known.

(2) Knowledge collaboration is not the goal; it is only the means to support
developers to solve their current task. The social and technical cost of
knowledge collaboration has to be balanced with the primary goal: to improve
the productivity of the team.

(3) Existing social relationships among developers play an important role and
should be taken into consideration to facilitate knowledge collaboration.

(4) The success of one knowledge collaboration transaction should not come at the
price of developers’ reluctance of further participation in future knowledge
collaboration. The goodwill and limited attention of experts should be
economically utilized to achieve sustainable and long term success. Rather than
focusing only on the success of one act of knowledge collaboration; we focus on
the sustainability of knowledge collaboration because it has to recur repeatedly
during the whole lifecycle of the project.

(5) Social support is costly and should only be used as a back up mechanism for
technical approaches.

4.1 Modeling the Knowledge Ecosystem of a Software Project

The knowledge elements in a software project create a knowledge ecosystem with
complicated interdependency. It consists of a group of developers, their code, related
documents, and the relationships among them (Fig. 3). Three kinds of relationships
exist: those between programmers, those between a programmer and information, and
those between information. We use the term information to refer to both code and

documents (such as design
documents, configuration
management logs, bug reports, and
email archives that are associated
with the development of the code).
The relationship between
programmers captures the social
relationship between them, including
who helped whom, and who sent
emails to whom, as well as their
social dependency derived from the Fig. 3. An Actor-Network of a Software Project

160 Y. Ye, K. Nakakoji, and Y. Yamamoto

technical dependency of the code and documents, such as which software developers
depend on which other software developers for a given piece of code or a document
through calling, using, or describing [7].

The relationship between information includes the syntactic and semantic
dependency among code parts that are linked through data flow, control flow or linear
order. Code nodes in Fig. 4 can have different levels of granularity: code segments,
methods, files, classes and packages. Documents are related to code through multiple
dimensions. For example, a code node implements a portion of a design document;
the design rationale of the code is described in a series of email discussions; a bug
report is fixed by modifying several nodes of code; or a document describes the
functionality of reusable code components.

The relationship between a developer and information includes who writes or
changes the code, who has commented on the code, and who has reused the code
component in his/her own programs.

The knowledge network in Fig. 3 is an actor-network that consists of actants (both
human and artifacts) [20]. The knowledge embedded in each node as well as the links
constitutes the group knowing of a project. The network, as well as the group
knowing, changes as new actants are brought into or removed from the network (e.g.
new information is added or a developer leaves), and as new relationships are
developed, strengthened, or weakened (e.g. another developer started working on a
module, a link between documents were discovered). An individual’s capability about
the project progresses as he/she develops more relationships with other actants.

4.2 A Continuum of Technical Support and Social Support

Using external expertise can be viewed as a software developer’s activating the links
in the actor-network in Fig. 3, and engaging in collaboration with actants. To do so, a
software developer are faced with the following challenges:

(1) He/she might not be aware of where the expertise is located: what is the relevant
information, and who has the expertise on this particular problem?

(2) When the actants are peer developers, how should he/she approach them,
without causing too much communication cost of interruption?

(3) Whether the human actants are willing to engage in providing help?

Accordingly, the Dynamic Community approach (Fig. 4) provides three kinds of
support for in situ knowledge collaboration. Assume a developer (A) is dealing with a
task (α) and needs external expertise.

First, it employs both information access and information delivery mechanisms
[27] to help developers find task-relevant information in the repository that models
the actor-network of the knowledge ecosystem of a project (Fig. 4). Information
access includes browsing or searching, in which the developer articulates what he/she
needs through either traversing the links between the information (browsing) or
formulating a query (searching). Contrary to information access that has to be
initiated by the developer, information delivery proactively provides information by
watching what the developer is writing, inferring what his/her information needs are,
and then recommending the needed information without user initiated search
activities. Information delivery is able to make developers access external expertise in
the repository whose existence they are not even aware of [41].

 Reducing the Cost of Communication and Coordination 161

Fig. 4. The Dynamic Community Framework

When the relevant information retrieved or delivered from the repository is not
sufficient for the developer to obtain the expertise, he/she need to access
knowledgeable peers. In the Dynamic Community framework, a developer can post a
question about the topic he/she is currently interested in, and a sub-network
of developers is dynamically formed by activating the links in the actor-network of
Fig. 5 through two processes: expert identification and expert selection.

The expert identification process traces the link between a developer and
information, and identifies peer developers that are related to the set of relevant
information nodes (i.e. α, β and γ in Fig. 3 where β and γ are related to α). Depending
on the definition of the relation, those peer developers might have expertise or hold
special interest in the set of information nodes. For brevity, we refer them as experts.
The experts list obtained in this phase is {B, C, D, E, M, N} because they are linked to
either α, β or γ in Fig. 3.

From the above experts list, the expert select process selects those who have good
social relations with the developer A, which is {B, C, D, E}. The relationship between
developers is derived from their previous interaction history and represents the
affinitive relationship existing among them. A link from developer B to A indicates a
high possibility that B is likely to help A when B’s expertise is needed for A’s task.

An ephemeral mailing list (called a DynC) is then dynamically created for the
selected experts and A on the topic α (noted as DynC(A, α) ={A, B, C, D, E}), and A’s

162 Y. Ye, K. Nakakoji, and Y. Yamamoto

question is sent to the members of DynC(A, α). DynC(A, α) members who reply to the
question posted by A is also sent to all the members. When the developer A thinks
there is no more need to discuss about the topic, he/she needs to terminate the DynC,
and the associated dynamic mailing list dissolves. All the discussions, however, are
archived in the repository so that other developers who have similar questions can
benefit by either browsing or searching the repository.

4.3 Cost Reduction Strategies

The Dynamic Community approach attempts to reduce the overall communication
cost in knowledge collaboration in a globally distributed project by utilizing the
following strategies.

First, it considers social support as a costly transaction, and encourages software
developers to explore the technical support afforded by the rich knowledge repository
that weaves together the code, document and previous discussions. All the discussions
in DynC mailing lists are archived and linked with the related information so that
repeated DynCs can be avoided. The combination of sophisticated search, browsing
and delivery mechanisms is employed to make locating relevant information easier
for software developers. The Dynamic Community framework requires a developer to
initiate a DynC from the search results, ensuring he/she has at least spending some
time exploring the related information. Social support is very costly and should not be
used as the main resources for expertise.

Second, the automatic identification of experts relieves a software developer from
gaining an awareness of who the experts are, and thus reduces the cost of finding the
location of expertise and asking the question. Knowing the experts is one of the major
obstacles faced by developers in offshore outsourcing projects due to the lack of
informal and spontaneous communication available in collocated projects.

Third, it reduces the cost incurred on expertise providers by limiting the recipients
of the question only to those who are both able to (through the expert identification
process) and very likely to willing to (through the expert selection process) to answer
the question. Other developers who either do not have the necessary expertise or
whose relationships with the expertise seeker are not strong enough to be motivated to
engage in knowledge collaboration with the seeker are not disturbed. The strong
social relationship also increases the intensity of the engagement and therefore the
effectiveness of knowledge collaboration among participants [6].

Fourth, the DynC mailing list follows the principle of asymmetric disclosure of
information [26] to conserve further the attention and good will of experts. On one
hand, when the question is posted to a DynC, the members selected to the DynC are
not made public either to the expertise seeker or to other members; only a receiver of
the question message knows that he/she is selected as a member of the DynC. Only
when a DynC member sends a reply message, his/her identity is revealed. A DynC
member, therefore, may leave the DynC (a social equivalent of saying “no”) at any
moment without being publicly known. Due to this principle, no participation does not
constitute the violation of social norms, which is punishable by the “iron hand of social
pressure” of enforcing required individual behavior in a social unit [31]. On the other
hand, because replying to the DynC reveals the identity of the sender of the message,
the DynC members’ contribution is publicly acknowledged and can lead to

 Reducing the Cost of Communication and Coordination 163

the improvement of motivation [9]. This socially aware communication mechanism
that allows unwilling peer developers exit socially safely has two implications. The
remaining peers are the participants of willing, and hence the expertise sharing
becomes more effective. From the perspective of the expertise seeker, knowing that
other developers could easily exit, he/she feels less pressured to post a question
because the choice of participation is controlled by the experts.

5 System Development

To illustrate how the Dynamic Community framework supports knowledge
collaboration in distributed software projects while reducing the overall cost of
communication and collaboration, we describe two systems: CodeBroker [40] and
STeP_IN [28] that we have developed. The two systems in combination provide
continuous support for accessing external expertise. In the following usage scenario,
which illustrates the functionality of the two systems, we use the Lucene-java
(http://lucene.apache.org/java/docs/index.html) project as the data (the source code
and its mailing list archive from 2001 to Aug. 2006) to populate the repository.

Suppose a developer (lu1283) needs to write a program that processes a stream of
token extracted from a document in an information retrieval system, which uses the
third-party open source library (Lucene-java). He first needs to normalize each token
by lowering its cases, but he is not aware that a method already exists in the library.
He sets to create his own program and writes a doc comment in the editor to describe
his task (Fig. 5). As soon as the doc comment is written in the editor, CodeBroker
automatically delivers a set of task-relevant library methods in the lower buffer of the
editor. Lu1283 finds the second method probably does what he needs, and clicks the
method name in the buffer.

The document for the method is shown (Fig. 7). Now he knows this method is
what he wants but he is not sure how it can be used. So he clicks the Examples button,
and looks at the example code (Fig. 8). Now he wonders if this method does more
than lowering the case. He clicks the Discussion Archive link and reads previous
discussions on this method (Fig. 9) but could not find answers to his question. He
thinks that other developers in the team might have used it before, so he clicks the Ask
Experts link and posts a question (Fig.10).

Fig. 5. CodeBroker: An Enhanced Emacs Editor for Java Programming

164 Y. Ye, K. Nakakoji, and Y. Yamamoto

Fig. 6. Enhanced Javadoc documentation

Fig. 7. Example code

Fig. 8. Discussion Archive

Upon the submission of the question, a DynC mailing list is created by the
STeP_IN system. Five members (lu292, lu1192, lu229, lu953 and lu1953) are
selected, regardless of their physical locations. They all have used this method before
(5, 4, 2, 2, 1 times respectively) in their previous programs and have expertise on this

 Reducing the Cost of Communication and Coordination 165

method. In addition, all five members have affinitive social relationships with lu1283
and the community, and they are very likely to help lu1283. Lu292 and lu1953 have
sent emails to lu1293 before, so they should have known lu1283 by certain degree.
Lu1192 and lu229 have got helped in the community by others more than they have
helped others; therefore, it is their turn to fulfill their social obligations to reciprocate
the favor they have received. Lu953 is an eager helper [15], and had helped others
more than 101 times, so he might also offer help this time.

The members, however, are not forced to help because lu1283 as well as other
members do not know that they received this question due to the design principle of
asymmetry of information disclosure. If some of the members are currently busy and
do not have time to offer help for lu1283, no body would notice; and they will not
face social consequences of being non-cooperative in this case.

Fig. 9. Ask Experts

6 Discussions

The two systems introduced in the paper are meant to illustrate how the conceptual
framework of Dynamic Community can be applied to support knowledge
collaboration in globally distributed software development while reducing the cost of
communication. The conceptual framework can be applied to support different tasks
in distributed offshore projects. To illustrate its potential, we briefly sketch its
possible application in maintenance support and agile development.

After a software system has been developed and deployed, the original developers
are often assigned to other projects and the maintenance work is handed over to other
members. Under such conditions, maintainers often do not know who are the original
designers and developers of the module under maintenance and do not know who to
approach for design rationales. The dynamic community can be applied to deal with
this situation. Suppose a maintainer A needs to modify a module α. It is quite possible
that many programmers have used or changed module α during its lifecycle. All those
programmers can be considered experts on α and they can be identified from the
configuration management systems such as CVS used during the development phase
[23]. Because those original programmers have new assignments as their current
work, they might not be readily available to help A. Using the two-phase selection of
experts in the Dynamic Community framework, a list of experts who have knowledge
and are most likely to assist A can be selected to form a DynC for this task.

166 Y. Ye, K. Nakakoji, and Y. Yamamoto

Communication can be limited to those selected members and the results archived for
later use.

In agile development, document-based formal coordination mechanisms are
replaced with frequent, intensive, and informal communications. As systems are
incrementally developed, the dependency of code changes accordingly; and the
related developers that need to be involved in communication and coordination
change, too [37]. Currently, developers have to decide by themselves who they should
engage in collaboration. If we apply the Dynamic Community framework to this, a
system can be developed to identify automatically the subgroup of developers that
should be involved based on the social dependency derived from the dependency of
code that each developer is developing, and create a DynC mailing list for their
communication. As a developer moves his focus of development, different DynC
mailing lists can be created accordingly in an automatic manner to reduce the cost of
communication by limiting the number of communicants to the concerned members
and by reducing the cost of determining communicants.

7 Concluding Remarks

In this paper, we conceptualize a distributed software project as a distributed
knowledge ecosystem, and model it as an actor-network. This modeling enables us to
view software artifacts produced in the development process and developers as
knowledge actants, which constitute the organizational knowing of the project, and
which should be engaged equally as knowledge resources for the indispensable
knowledge collaboration in software development. Based on this conceptualization
and modeling, we proposed the Dynamic Community framework as a new
communication mechanism for knowledge collaboration. The framework reduces the
cost of communication in offshore outsourcing software development by (1) using
information delivery and search mechanisms to allow developers locate relevant
knowledge from a knowledge repository that consists of code, documents and
discussions in order to reduce the frequency of collaboration with other developers;
(2) automatically selecting experts to mitigate the difficulty of finding the experts and
initiating contacts; and (3) forming an ephemeral DynC mailing list that consists only
of developers who are both technically capable and socially willing to engage in
collaboration with a particular developer on a particular topic.

The ephemeral DynC mailing list resulted from the Dynamic Community approach
is neither a direct emails, nor a mail list, it is something in between with persistent
storage similar to discussion forums. It is similar to mailing lists in that the email is
sent to unspecified members, and the participation in knowledge collaboration is
completely controlled by its recipients. It is not mailing lists in that the recipients are
not determined by their own subscriptions but by their social relationships with the
initiator and their technical expertise on the topic. The latter point makes DynC
mailing list similar to direct emails because they are intentionally targeted recipients
who have already established social ties with the sender. However, it differs from
direct emails in that recipients remain anonymous to the sender and other members,
leaving the control of participation to the recipients, and in that the recipients are
automatically identified and chosen.

 Reducing the Cost of Communication and Coordination 167

In offshore outsourcing software development, many development activities need
to be coordinated and collaborated through communication channels. To reduce the
communication cost, it is important for a project team to be able to operate within a
communicative economy with a variety of communicative resources at its developer’s
disposal [33]. Both the unique structure of each communication channel and the
socio-technical relationships among developers determine the collective cost and
benefits of each communicative act. To reduce the cost of communication and
coordination, developers should be able to choose the most appropriate channel for
their needs. The Dynamic Community framework provides a new communication
mechanism that has its special niche. It is not meant to replace any of the currently
dominating communication channels such as face-to-face, direct emails or mailing
lists, but as a complimentary one. For example, if a developer happens to know who
are the experts on a topic of interest, and is socially comfortable to directly approach
the experts, he/she can use the face to face or direct emails (if not collocated). If the
developer feels that the topic is important enough to be known by all members of the
project, he/she can send it through project-wide mailing lists. If the developer thinks
that his/her question only concerns a few, but does not know who they are, the DynC
mailing list is a perfect match for that.

References

1. Allen, T.J.: Managing the flow of technology. MIT Press, Cambridge, MA (1977)
2. Arguello, J., et al.: Talk to me: Foundations for successful individual-group interactions in

online communities. In: Proceedings of conference on human factors in computer systems
(chi06)., pp. 959–968. ACM Press, Montréal, Canada (2006)

3. Brooks, F.P.J.: The mythical man-month: Essays on software engineering, 20th edn.
Addison-Wesley, Reading, MA (1995)

4. Brown, J.S., Duguid, P.: Organizing knowledge. Society for Organizational Learning
Journal 1(2), 28–44 (1999)

5. Coleman, J.C: Social capital in the creation of human capital. American Journal of
Sociology 94, S95–S120 (1988)

6. Cross, R., Borgatti, S.P: The ties that share: Relational characteristics that facilitate
information seeking. In: Huysman, M., Wulf, V. (eds.) Social capital and information
technology, pp. 137–161. MIT Press, Cambridge, MA (2004)

7. de Souza, C.R.B., et al.: How a good software practice thwarts collaboration: The multiple
roles of apis in software development. In: de Souza, C.R.B., et al. (eds.) Proceedings of the
12th acm sigsoft twelfth international symposium on foundations of software engineering
(fse04), pp. 221–220. Newport Beach, CA (2004)

8. Dorina, C.G: Distribution dimensions in software development projects: A taxonomy.
IEEE Software 23(5), 45 (2006)

9. Fischer, G., Scharff, E., Ye, Y.: Fostering social creativity by increasing social capital. In:
Huysman, M., Wulf, V. (eds.) Social capital, pp. 355–399 (2004)

10. Goldberg, A.: Collaborative software engineering. Journal of Object Technology 1(1), 1–
19 (2002)

11. Goldhaber, M.H.: The attention economy. First Monday, vol. 2(4) (1997)
12. Herbsleb, J., Grinter, R.E.: Splitting the organization and integrating the code: Conway’s

law revisited. In: Proceedings of international conference on software engineering
(icse99), pp. 85–95 (1999)

168 Y. Ye, K. Nakakoji, and Y. Yamamoto

13. Herbsleb, J., Mockus, A.: An empirical study of speed and communication in globally-
distributed software development. IEEE Transactions on Software Engineering 29(3), 1–
14 (2003)

14. Herbsleb, J.D., Grinter, R.E: Architectures, coordination, and distance: Conway’s law and
beyond. IEEE Software, 63–70 (September- October 1999)

15. Hoff, B.v.d., Ridder, J.d., Aukema, E.: Exploring the eagerness to share knowledge: The
role of social capital and ict in knowledge sharing. In: Huysman, M., Wulf, V. (eds.)
Social capital and information technology, pp. 163–186. MIT Press, Cambridge, MA
(2004)

16. Hollan, J., Hutchins, E., Kirsch, D.: Distributed cognition: Toward a new foundation for
human-computer interaction research. In: Carroll, J.M. (ed.) Human-computer interaction
in the new millennium, pp. 75–94. ACM Press, New York (2001)

17. Illich, I.: Deschooling society. Harper and Row, New York (1971)
18. Kraut, R.E., et al.: Informal communications in organizations: Form, function, and

technology. In: Oskamp, I.S., Spacapan, S. (eds.) Human reactions to technology: The
claremont symposium on applies social psychology, Sage Publications, Beverly Hills, CA
(1990)

19. Kraut, R.E., Streeter, L.: Coordination in software development. CACM 38(3), 69–81
(1995)

20. Latour, B.: Reassembling the social: An introduction to actor-network-theory. Oxford
University Press, Oxford (2005)

21. McDonald, D.W., Ackerman, M.S.: Just talk to me: A field study of expertise location. In:
McDonald, D.W., Ackerman, M.S. (eds.) Proceedings of conference on computer
supported cooperative work (cscw’98), pp. 315–324. Seattle, WA (1998)

22. Meyer, B.: The unspoken revolution in software engineering, pp. 121–124. IEEE
Computer Society Press, Los Alamitos (2006)

23. Mockus, A., Herbsleb, J.: Expertise browser: A quantitative approach to identifying
expertise. In: Proceedings of 2002 international conference on software engineering,
Orlando, FL, pp. 503–512 (2002)

24. Mumford, E.: Socio-technical system design: Evolving theory and practice. In: Bjerknes,
P.G., Ehn, P., Kyng, M. (eds.) Computers and democracy, pp. 59–76. Averbury,
Aldershot, UK (1987)

25. Nahapiet, J., Ghoshal, S.: Social capital, intellectual capital, and the organizational
advantage. Academy of Management Review 23, 242–266 (1998)

26. Nakakoji, K.: Supporting software development as collective creative knowledge work. In:
Nakakoji, K. (ed.) Proceedings of ase workshop on supporting knowledge collaboration in
software development, Tokyo, (in press) (2006)

27. Nakakoji, K., Fischer, G.: Intertwining knowledge delivery and elicitation: A process
model for human-computer collaboration in design. Knowledge-Based Systems 8(2-3),
94–104 (1995)

28. Nishinaka, Y., et al.: Please step_in: A socio-technical platform for in situ networking. In:
Proceedings of the 12th Asia-Pacific Software Engineering Conference, pp. 813–820.
IEEE CS Press, Taipei (2005)

29. O’Reilly, C.A.: Variations in decision makers’ use of information sources: The impact of
quality and accessibility of information. Academy of Management Journal 25(4), 756–771
(1982)

30. Orlikowski, W.J.: Knowing in practice: Enacting a collective capability in distributed
organizing. Organization Science 13(3), 249–273 (2002)

 Reducing the Cost of Communication and Coordination 169

31. Pentland, A.: Socially aware computation and cmmunication. Computer 38(3), 33–40
(2005)

32. Perlow, L.A.: The time famine: Toward a sociology of work time. Administrative Science
Quarterly 44(1), 57–81 (1999)

33. Reder, S.: The communication economy of the workgroup: Multi-channel genres of
communication. In: Proceedings of cscw1988, pp. 354–368. ACM Press, New York
(1988)

34. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software
development. In: Proceedings of 2006 international conference on software engineering,
Shanghai, pp. 731–740 (2006)

35. Szoestek, A.M., Markopoulos, P.: Factors defining face-to-face interruptions in the office
environment. In: Proceedings of conference on human factors in computer systems, pp.
1379–1384 (2006)

36. Tyler, J.R., Tang, J.C: When can i expect an email response? A study of rhythms in email
usage. In: Proceedings of the eighth european conference on computer supported
cooperative work (ecscw2003), pp. 239–258. Helsinki (2003)

37. Wagstrom, P., Herbsleb, J.: Dependency forecasting. CACM 49(10), 55–56 (2006)
38. Walz, D.B., Elam, J.J., Curtis, B.: Inside a software design team: Knowledge acquisition,

sharing, and integration. CACM 36(10), 63–77 (1993)
39. Weinberg, G.M.: The psychology of computer programming. Van Nostrand Reinhold,

New York (1971)
40. Ye, Y., Fischer, G.: Information delivery in support of learning reusable software

components on demand. In: Proceedings of 2002 International Conference on Intelligent
User Interfaces (IUI’02), pp. 159–166. ACM Press, San Francisco (2002)

41. Ye, Y., Fischer, G.: Supporting reuse by delivering task-relevant and personalized
information. In: Proceedings of 2002 international conference on software engineering
(icse’02), pp. 513–523. Orlando, FL (2002)

	Reducing the Cost of Communication and Coordination in Distributed Software Development
	Introduction
	Knowledge Distribution and Collaboration
	Software = Code + Documents + Developers
	Knowledge Resources for Software Development
	Software Project as an Evolving Knowledge Ecosystem
	Evolution in Software Projects
	Socio-technical Costs in Knowledge Collaboration

	A Socio-technical Framework to Supporting Knowledge Collaboration
	Modeling the Knowledge Ecosystem of a Software Project
	A Continuum of Technical Support and Social Support
	Cost Reduction Strategies

	System Development
	Discussions
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

