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ABSTRACT
In this work, we try to solve the problem of day-ahead pre-
diction of electricity demand using an ensemble forecasting
model. Based on the Pattern Sequence Similarity (PSF) al-
gorithm, we implemented five forecasting models using dif-
ferent clustering techniques: K-means model (as in original
PSF), Self-Organizing Map model, Hierarchical Clustering
model, K-medoids model, and Fuzzy C-means model. By
incorporating these five models, we then proposed an en-
semble model, named Pattern Forecasting Ensemble Model
(PFEM), with iterative prediction procedure. We evalu-
ated its performance on three real-world electricity demand
datasets and compared it with those of the five forecast-
ing models individually. Experimental results show that
PFEM outperforms all those five individual models in terms
of Mean Error Relative and Mean Absolute Error.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Models, Clustering

General Terms
Design, Experimentation

Keywords
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1. INTRODUCTION
In the electrical power industry, it is essential for decision

makers to accurately predict the future values of variables
such as electricity demand or price. This process of forecast-
ing or prediction is called Time Series Forecasting or Time
Series Prediction.
To forecast electricity demand and/or price, various fore-

casting techniques have been studied in the literature. These
techniques include the wavelet transform models [1], the
ARIMA models [2], the GARCH models [3], the Artificial
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Neural Network models [4] the hybrid model (basically a
combination of Artificial Neural Networks and Fuzzy Logic)
[5], the nearest neighbors methodology [6], the Support Vec-
tor Machines framework [7] and the Least-Square Support
Vector Machine models [8].

Mart́ınez-Álvarez et al. [9] proposed a Label-Based Fore-
casting (LBF) Algorithm using K-means clustering to pre-
dict electricity pricing time series. Using the mean squared
error as a metric, they demonstrated that the LBF method
outperforms several other methods including Näıve Bayes,
Neural Networks, ARIMA, Weighted Nearest Neighbors and
the Mixed Models. Based on the LBF algorithm, they later
developed the Pattern Sequence-based Forecasting (PSF) al-
gorithm [10], which predicts the future evolution of a time
series based on the similarity of pattern sequences. They re-
ported that PSF produced a significant improvement in the
prediction of energy time series compared to several well-
known techniques including its predecessor LBF algorithm.

In this work, we propose a Pattern Forecasting Ensem-
ble Model (PFEM). Five PSF-style forecasting models are
deployed, namely the K-means model (PSF itself), Self-
Organizing Map model, Hierarchical Clustering model, K-
medoids model, and Fuzzy C-means model. Each model is
first applied separately, producing its respective forecasted
values; we then perform a weighted combination of those
values in an iterative manner in order to realize a better en-
ergy time series forecasting model.

We evaluated the performance of PFEM on three publicly
available electricity demand datasets from the New York In-
dependent System Operator (NYISO) [11], the Australia’s
National Electricity Market (ANEM) [12], and the Ontario’s
Independent Electricity System Operator (IESO) [13]. It
was observed that the PFEM was able to provide more ac-
curate and reliable forecasts than the five individual models,
including PSF.

The rest of the paper is organized as follows. In Section
2, we briefly introduce the general principles of the PSF al-
gorithm and give a general description of the five clustering
methods which are the basis for our five individual fore-
casting models respectively. In Section 3, we present our
proposed Pattern Forecasting Ensemble Model (PFEM). In
Section 4, we evaluate the performance of PFEM and com-
pare its performance with five individual models based on
K-means (i.e., same as original PSF), Self-Organizing Map,
Hierarchical Clustering, K -meloids, and Fuzzy C-means. In
Section 5, we reach the conclusion and discuss the future
work.



2. BACKGROUND
In this section, we present a short description of each of the

five clustering methods used in PFEM, namely: K-means,
Self-Organizing Map, Hierarchical Clustering, K-medoids,
and Fuzzy C-means. Each of these methods can be used to
generate a separate forecasting model, as described later in
Section 3. However, in the following subsection, we begin
by describing the basic concept of the PSF algorithm, upon
which the proposed PFEM algorithm is based.

2.1 PSF Algorithm
The Pattern Sequence-based Forecasting (PSF) algorithm

[10] is the basis of the proposed prediction algorithm, where
the basic set of steps taken are repeated for each of the
five individual forecasting models which comprise the PFEM
algorithm. The general idea of the PSF algorithm can be
described as follows:

1. Firstly, a clustering method is used to divide all of
the 24-hour segments in the training dataset into a
set of similar categories (K-means was the method of
choice for clustering in PSF). This allows us to assign
a label for each day in the training set, producing an
associated label sequence. This sequence as well as
the associated cluster centers are stored for use in the
subsequent steps of this process.

2. To predict the demand for a given day, the category
label for the days leading up to the day in question are
determined based on similarity to the cluster centers
previously obtained. This results in a label sequence
which forms a kind of “fingerprint”.

3. The sequence of labels generated during the training
phase is searched for occurrences of this fingerprint,
and matching instances are collected.

4. The demand profiles for the days immediately follow-
ing each of these matches are extracted. The predic-
tion is then generated by taking the average of all of
these profiles.

2.2 Clustering Methods

2.2.1 K-means Clustering
K-means clustering [14] is a simple unsupervised learning

algorithm which partitions N observations into k disjoint
subsets Cj containing Nj data points. The K-means clus-
tering algorithm aims to find the minimum value (or the
local minima in most cases) of an objective function. The
objective function J is described as follows:

J =

K∑
j=1

∑
n∈Cj

d(xn, µj) (1)

where µj is the cluster centroid for points in Cj and d(xn, µj)
points from their respective cluster centers, is a chosen dis-
tance measure between a data point xn and the cluster cen-
ter µj . In most cases, the Euclidean distance is used as a
metric. The algorithm will terminate when no new parti-
tions occur.
K-means is a greedy algorithm and as such its perfor-

mance closely relies on the choice of the parameter k and
the appropriate selection of the initial cluster centers [15].

2.2.2 Self-Organizing Map
Self-Organizing Map (SOM) [16] is an unsupervised learn-

ing artificial neural network which uses a neighborhood func-
tion to preserve the topological properties of the input space
and maps high-dimensional data onto a 2-dimensional grid.

SOMs can be used to produce low dimensional representa-
tions of the data that preserve similarities between points in
the data. Due to SOM’s ability to preserve topological prop-
erties and good visualization features, they perform well for
the prediction of non-linear time series [17].

2.2.3 Hierarchical Clustering
Hierarchical Clustering is a widely used data analysis tool

which seeks to build a binary tree of the data that succes-
sively merges similar groups of points. Among all cluster-
ing techniques known in the literature, Hierarchical Clus-
tering offers great versatility since it does not require a pre-
specified number of clusters [18]. Instead, it only requires a
measure of similarity between groups of data points.

In our work, we will use agglomerative Hierarchical Clus-
tering. The algorithm can be described as follows: given a
dataset D = (x1, x2, . . . , xn) of n points, it first calculates a
distance matrix M with all of the pairwise distances between
points. Then it conducts the following process recursively
until D has only a single data point:

1. Choose the two points xi, xj from D such that the
distance between the two points is the minimum.

i, j = argmin
i,j

d(xi, xj) (2)

where i ̸= j.

2. Cluster xi, xj to form a new point c. The new point
could be the mean of the two points or some other
metric.

3. Remove xi, xj from D and insert c into D. Recalculate
the pairwise distance matrix M .

2.2.4 K-medoids Clustering
The K-medoids algorithm [19] is an adaptation of the K-

means algorithm in which a representative item, or a medoid
is chosen for each cluster at each iteration. Medoids for
each cluster are calculated by finding object i within the
cluster that minimizes

∑
j∈Ci

d(i, j), where Ci is the cluster

containing object i and d(i, j) is the distance between objects
i and j.

There are two advantages of using existing objects as the
centers of the clusters. Firstly, a medoid object serves to
usefully describe the cluster. Secondly, there is no need for
repeated calculation of distances at each iteration, since the
K-medoids algorithm can simply look up distances from a
distance matrix.

The K-medoids algorithm can be described as follows [19]:

1. Choose k data points at random to be the initial cluster
medoids.

2. Assign each data point to the cluster associated with
the closet medoid.

3. Recalculate the positions of the k medoids.

4. Repeat Step 2 and Step 3 until the medoids become
fixed.



2.2.5 Fuzzy C-means Clustering
Fuzzy C-means clustering [20] groups data by assigning

a membership value linking each data point to each clus-
ter center. This value is a reflection of the distance be-
tween the cluster center and the data point. Let X =
{x1, x2, x3, . . . , xn} be the set of data points and V = {v1,
v2, v3, . . . ,vc} be the set of cluster centers. The Fuzzy C-
means clustering algorithm is described as follows [20]:

1. Randomly select c cluster centers.

2. Calculate the fuzzy membership uij of ith data point
to jth cluster center using:

uij =
1∑c

k=1(
dij
dik

)(
2

m−1
)

(3)

where n is the number of data points, dij is the dis-
tance between ith data and jth center, m is the fuzzi-
ness index and greater than or equal to 1.

3. Compute the fuzzy centers vj using:

vj =

∑n
i=1 xi(uij)

m∑n
i=1(uij)m

, ∀j = 1, 2, . . . , c (4)

4. Repeat Step 2 and 3 until the minimum value of objec-
tive function J is achieved or d(U (k+1), U (k)) < β. β is
the termination threshold between [0,1], U = (uij)n×c

is the fuzzy membership matrix and J is defined by
the following formula:

J(U, V ) =

n∑
i=1

c∑
j=1

(uij)
m(.xi, vj) (5)

where d(xi, vj) is the distance between ith data point
and jth cluster center.

Unlike K-means where data points exclusively belong to one
cluster, in the Fuzzy C-means algorithm data points are as-
signed memberships to each cluster center and as such can
belong to more than one cluster at a time. Therefore, Fuzzy
C-means clustering produces better results for overlapped
dataset compared with K-means clustering.

3. PATTERN FORECASTING ENSEMBLE
MODEL (PFEM)

The Pattern Forecasting Ensemble Model (PFEM) con-
sists of four phases: data preprocessing, applying individual
clustering methods, building individual forecasting models
(based on corresponding clustering results), and iterative
ensembling. Figure 1 shows the general idea behind PFEM.
Details about the four phases are given below.

3.1 Data Preprocessing
The same feature selection and data normalization method-

ologies used for the original PSF model [10] were adopted
for this study. This will facilitate direct comparison of PSF
with the proposed method.

3.2 Applying Individual Clustering Methods
In this phase, five individual clustering methods: K-means,

Self-Organizing Map, Hierarchical Clustering, K-medoids and
Fuzzy C-means are applied on the preprocessed data. In
each clustering exercise, cluster labels (which are discrete
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Figure 1: The general framework of Pattern Forecasting
Ensemble Model.

values like 1, 2, 3) are assigned to all the real-number val-
ues in the preprocessed time-series data. Different clustering
methods usually produce different cluster outputs form the
same input data. Thus, the sets of labels assigned to the
preprocessed data by the five methods will apparently be
different from each other.

For each individual clustering method, several parameters
need to be configured. The optimal parameter configura-
tions for each method are determined by employing both
statistical analyses (using well-defined indexes) and empiri-
cal analyses (based on the accuracy of the subsequent fore-
casting results). These parameters are briefly discussed be-
low.

3.2.1 Number of Clusters
For K-means, K-medoids, Fuzzy C-means and SOM, the

numbers of clusters are required to be specified in advance.
For this reason, statistical analyses, namely the Silhouette
index [21], the Dunn index [22] and the Davies-Bouldin index
[23] are used to determine in how many groups the original
dataset has to be split. For Hierarchical Clustering, it is
not necessary to specify how many clusters as a priori. This
is because the end result is a dendrogram where the leaves
are data points and interior nodes represent a cluster made
up of all children of the nodes. With the dendrogram, one
can choose various number of clusters to use by cutting the
tree at some particular height. However, we also employ the
three indexes to determine the optimal number of clusters
for Hierarchical Clustering for our convenience.



3.2.2 The Distance Function
In K-means, K-medoids, Fuzzy C-means and SOM, we

use the Euclidean distance function to calculate similarities.
In Hierarchical Clustering, the Mahalanobis distance [24] is
utilized. This is because the respective indexes give more
accurate indications than that with Euclidean distance ac-
cording to our experimental analysis.

3.2.3 Window Size
The window size (the length of the sequence label) is se-

lected through 12 folds cross validation as the K-means (orig-
inal PSF) model does as described in [10].

3.2.4 Parameters for Fuzzy C-means Clustering
With lower value of the termination threshold β, we can

get the better result. But it may require more iterations
and thus more time to terminate. Therefore, a compromise
between the accuracy and the efficiency is needed. In our
experiments, we set the termination threshold β = 10−5.
The fuzziness parameter m significantly effects the fuzzi-

ness of the clustering partition and hence affects the pre-
diction results [25]. As the fuzziness m approaches 1 from
above 0, the partition becomes hard (uik ∈ {0, 1}) and vi
are ordinary means of the clustering. As m � ∞, the par-
tition becomes completely fuzzy (uik = 1/c) and the cluster
means are all equal to the mean of the dataset X.

3.3 Building Individual Forecasting Models
By changing the underlying clustering algorithm, differ-

ent label sequences are produced. In this way, five individ-
ual predicting models are constructed using the same basic
procedure used for the PSF algorithm [10] (see Section 2.1
for details). The mechanisms of all these five models are
exactly the same except for the source label sequences they
use. In this way, K-means model (same as original PSF),
Self-Organizing Map model, Hierarchical Clustering model,
K-medoids model, and Fuzzy C-means model are built sep-
arately. The five models produce their respective prediction
results, which are subsequently used as the inputs in the
next Iterative Ensembling phase.

3.4 Iterative Ensembling
In the iterative ensembling phase, the ensemble model is

constructed by using the five individual forecasting mod-
els produced in the previous phase. The idea of iterative
ensembling is to create a new model derived from a linear
combination of several models with coefficients (weights) to
minimize the forecasting error rates.
In the training stage, the actual values and the predicted

values produced by the individual models are employed to
select the weights which give the minimum prediction error
rates. Then the weights are re-normalized. In the testing
phase, the newly produced weights are used to predict the
value. After prediction, this sample is incorporated into the
training dataset. The weights are re-calculated, and new
samples are learned iteratively in the same way. The idea of
our iterative ensembling is inspired by AdaBoost [26].
The formal process is described as following:

1. Initialize the vector of observation weightsw(0) = (w
(0)
1 ,

w
(0)
2 , . . . , w

(0)
n ), where n is the number of participating

forecasting models for ensemble learning (n = 5 in our
case):

w
(0)
i = 1/n ∀i = 1, 2, . . . , n. (6)

2. For a training dataset with M days, for m = 1 to M :

P(m) =
n∑

i=1

w
(m−1)
i P

(m)
i (7)

where P(m) = (P
(m)
1 , P

(m)
2 , . . . , P

(m)
24 ) is the vector of

combined predicted values for 24 hours in day m, and

P
(m)
i = (P

(m)
i1 , P

(m)
i2 , . . . , P

(m)
i24 ) is the vector of pre-

dicted values for 24 hours in day m generated by the
individual forecasting model i.

(a) Define the prediction error rate for the iteration
m:

err(m) =
1

24

24∑
h=1

| P (m)
h −A

(m)
h |

Ā(m)
(8)

where A(m) = (A
(m)
1 , A

(m)
2 , . . . , A

(m)
24 ) is the vector of

actual values for 24 hours in day m and Ā(m) is the
average of actual values for 24 hours in that day.

(b) Calculate new weights for the iteration m:

w(m) = argmin
w

(m−1)
i ,i=1,...,n

err(m), (9)

such that 0 ≤ w
(m)
i ≤ 1,

∑n
i=1 w

(m)
i = 1

3. Calculate the initial weights for testing:

w =
1

m

M∑
m=1

w(m) (10)

Re-normalize w.

4. Produce the predicted values using Equation (7) with
the weights obtained in Step 3.

5. Add testing sample to the training dataset, increase
M by 1, recalculate the initial weights for testing using
Step 2, 3 and 4 for the next testing sample.

4. EXPERIMENTAL ANALYSIS

4.1 Performance Metrics
Several metrics are used to evaluate the performance of

the PFEM approach:

• Mean Error Relative(MER):

MER = 100× 1

N

N∑
h=1

|x̂h − xh|
x

(11)

where x̂h are predicted and actual demand at hour h,
respectively, x is the mean demand of the day and N
is the number of predicted hours.

• Mean Absolute Error(MAE):

MAE =
1

N

N∑
h=1

|x̂h − xh| (12)



• Mean Absolute Percentage Error(MAPE):

MAPE =
100%

n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣ (13)

where n is the number of the samples. xi is the actual
value and x̂i is the forecast value.
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Figure 2: Correlation between mean relative error and
degree of fuzziness for NYISO electricity demand data.
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Figure 3: Correlation between mean relative error and
degree of fuzziness for ANEM electricity demand data.
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Figure 4: Correlation between mean relative error and
degree of fuzziness for IESO electricity demand data.

4.2 Experimental Settings
In order to evaluate the performance of the PFEM, three

real-world electricity demand datasets-the New York Inde-
pendent System Operator (NYISO), the Australian Energy
Market Operator (ANEM) and the Ontario’s Independent
Electricity System Operator (IESO) from 2007-2011 are em-
ployed.

For NYISO dataset, historical demand for Capital area
was considered because the Capital district is a representa-
tive sample in terms of electricity consumption in the New
York state. As for AEMO, load data for the New South
Wales area was used since New South Wales is the most
populated Australian state with high electricity demand.

To construct the Pattern Forecasting Ensemble Model for
predicting the electricity demand of a day in 2009, Data from
2007 was used to train the individual clustering classifiers
which were subsequently used to generate predictions for the
data in 2008 and 2009. Then the predicted values and the
actual time series of the data in 2008 were utilized to calcu-
late the initial weights for testing following Step 2 described
in section 3.4. This process is categorized as the training
phase of the PFEM. With the preliminarily predicted time
series in 2009 and the initial weights computed in the previ-
ous step, the final prediction of the electricity demand time
series in 2009 could be produced by using methods shown
in Step 3, 4 and 5 in section 3.4. For comparison, we also
employed the five PSF-based individual learning models to
forecast the 2009 time series. The 2007 and 2008 datasets
were used for training and the 2009 dataset for testing. Like-
wise, we also performed the forecasting experiments for the
2010 dataset using the 2008 and 2009 datasets for training.

4.2.1 Number of Clusters
In order to find optimal numbers of clusters, we analyze

the data for 3 years. For all the three datasets the training
set is chosen from Jan 1, 2007 to 31, Dec 2007.

The optimal numbers of clusters are chosen based on the
majority voting method of Silhouette, Dunn and Davies-
Bouldin indices. The maximum values of Silhouette and
Dunn indices indicate the optimal numbers of clusters when
the best possible clustering is obtained, that is, the distance
among elements in the same cluster is minimized and the dis-
tance among elements from different clusters is maximized
(for Davies-Bouldin index the optimal number of clusters
corresponds the minimum value). If all three indices give
different results, the optimal numbers of clusters are chosen
based on the sub-optimal numbers of clusters. The numbers
of clusters are calculated for 10 times and the most frequent
values are selected. Table 1 shows the numbers of clustering
for different markets in the year 2007 with the three indices.
Similarly, the numbers of clusterings are chosen for the three
datasets in the year 2007, 2008, 2007-2008 and 2008-2009,
which can be seen in Table 2.

4.2.2 Window Size
The dataset for 1 year (2007) was normalized (in order

to eliminate the noise introduced by the presence of global
trend) and divided into 12 parts, each part consisting of a
one-month long subset of given data for one year (2007).
Then, starting from the first month and rotating through
all twelve months in the year, one of the months was used
for testing and the remaining 11 months for training. For
each day of the testing set, given the known optimal number



Market
K-means SOM Hierarchical k-medoid Fuzzy C-means

Silh. DU DB sel. Silh. DU DB sel. Silh. DU DB sel. Silh. DU DB sel. Silh. DU DB sel.

NYISO 3 3 4 3 4 4 4 4 2 6 5 5 6 8 6 6 3 3 4 3

ANEM 5 5 4 5 2 4 4 4 4 4 4 4 4 6 5 6 2 4 3 3

IESO 3 4 3 3 3 4 3 3 3 3 3 3 4 4 3 4 3 4 4 4

Table 1: Numbers of clusters for different markets evaluated with Silhouette (denoted as Silh.), Dunn (DU) and
Davies-Bouldin (DB) indexes for five clustering methods(2007). “sel.” indicates the selected optimal numbers of clusters.

Method
2007 2008 2007-2008 2008-2009

NYISO ANEM IESO NYISO ANEM IESO NYISO ANEM IESO NYISO ANEM IESO

K-means 3 5 3 3 4 3 5 5 3 6 5 3

SOM 4 4 3 6 3 8 7 6 4 4 5 6

Hierarchical 4 4 3 5 2 4 5 4 4 5 5 5

K-medoids 6 5 4 6 5 3 6 5 5 7 6 4

Fuzzy
c-means

3 3 4 6 5 4 6 3 4 3 4 4

Table 2: Optimal numbers of clusters, when the 5 clustering methods achieve the best clustering, for NYISO, ANEM and
IESO markets (2007, 2008, 2007-2008 and 2008-2009)

Method W=1 W=2 W=3 W=4 W=5 W=6 W=7 W=8 W=9 W=10 W=11 W=12 W=13 W=14 Selected

K-means 3.0940 2.9106 2.7445 2.7570 2.8066 2.8485 2.8835 2.9108 2.9733 2.8843 2.9120 2.8740 3.0363 2.8942 3
SOM 3.4371 3.4217 3.5281 3.5693 3.7037 3.7310 3.8234 3.7682 3.8117 3.7612 3.8120 3.8012 3.8411 3.8697 2

Hierarchical 3.5894 3.5067 3.4721 3.4541 3.6008 3.6149 3.6478 3.6845 3.7076 3.7423 3.8077 3.8259 3.8264 3.8273 4
K-medoids 3.3078 3.2503 3.2092 3.3177 3.3370 3.3669 3.5249 3.5572 3.4905 3.4773 3.5413 3.4736 3.5832 3.4611 3

Fuzzy C-means 3.4852 3.4788 3.4526 3.4602 3.5494 3.5669 3.6486 3.6482 3.6210 3.6671 3.6289 3.6653 3.6792 3.6947 3

Table 3: MER-based selection of optimal window sizes for NYISO Demand Dataset(2007) through 12 folds cross-validation

Method W=1 W=2 W=3 W=4 W=5 W=6 W=7 W=8 W=9 W=10 W=11 W=12 W=13 W=14 Selected

K-means 3.0940 2.9106 2.7445 2.7570 2.8066 2.8485 2.8835 2.9108 2.9733 2.8843 2.9120 2.8740 3.0363 2.8942 3
SOM 3.0176 2.9963 2.8940 2.9266 2.9685 2.8958 2.8962 2.9515 2.9874 3.0121 3.0818 3.1324 3.1456 3.0827 3

Hierarchical 3.1001 2.8099 2.7063 2.6131 2.4989 2.5378 2.5636 2.5896 2.6228 2.6762 2.7008 2.7121 2.7157 2.7223 5
K-medoids 3.0831 2.8597 2.7627 2.8017 2.8297 2.9381 2.8089 3.0244 2.8452 2.9224 2.9302 2.9858 2.9351 3.0995 3

Fuzzy C-means 3.1135 3.0842 2.9290 2.8923 2.8718 2.8538 2.8304 2.8512 2.8827 2.8912 2.9262 2.9769 3.0288 3.0519 7

Table 4: MER-based selection of optimal window sizes for ANEM Demand Dataset(2007) through 12 folds cross-validation.

Method W=1 W=2 W=3 W=4 W=5 W=6 W=7 W=8 W=9 W=10 W=11 W=12 W=13 W=14 Selected

K-means 2.6414 2.5821 2.5561 2.5948 2.5621 2.5560 2.5716 2.5964 2.5946 2.5935 2.5687 2.5887 2.5710 2.5966 6
SOM 2.6650 2.4498 2.4414 2.4440 2.4705 2.4976 2.5375 2.5569 2.5904 2.6308 2.6372 2.6392 2.6562 2.6322 3

Hierarchical 2.5956 2.4754 2.4404 2.4580 2.4588 2.4755 2.4734 2.4769 2.4624 2.4597 2.4608 2.4700 2.4811 2.4902 3
K-medoids 2.6218 2.4190 2.5062 2.3822 2.4567 2.4788 2.5751 2.4740 2.5218 2.5317 2.5806 2.5735 2.5629 2.6450 4

Fuzzy C-means 2.5261 2.3559 2.3413 2.3476 2.3746 2.3938 2.3932 2.4416 2.4662 2.5103 2.5100 2.5031 2.5102 2.5003 3

Table 5: MER-based selection of optimal window sizes for IESO Demand Dataset(2007) through 12-fold cross-validation.

Method
2007 2008 2007-2008 2008-2009

NYISO ANEM IESO NYISO ANEM IESO NYISO ANEM IESO NYISO ANEM IESO

K-means 3 3 6 5 5 5 4 5 8 5 5 7

SOM 2 3 3 2 9 7 3 5 4 4 8 4

Hierarchical 4 5 3 5 6 4 4 5 3 5 5 5

K-medoids 3 3 4 2 9 4 2 12 5 3 6 5

Fuzzy
c-means

3 7 3 2 9 7 2 9 4 5 6 6

Table 6: The selected window sizes of NYISO, ANEM and IESO Demand Datasets (2007, 2008, 2007-2008, 2008-2009)
through 12 folds cross-validation

of clusters and proposed sizes of window, predictions were
made and the respective MER calculated. The MER for
given month is obtained by averaging across all days in the

testing set. Iterating through the different window sizes, the
correlation and dependence between size of window and the
MER is evident. Finally, from obtained MER and size of



Market Error
K-means SOM Hierarchical K-medoids Fuzzy C-means PFEM

Err σ Err σ Err σ Err σ Err σ Err σ

NYISO
MER 3.11 0.41 3.06 0.44 2.92 0.31 2.97 0.37 3.18 0.43 2.76 0.35
MAE 39.16 6.88 38.5 7.38 36.79 5.92 37.27 6.21 39.89 6.61 34.78 6.31
MAPE 3.18 0.42 3.12 0.44 2.99 0.32 3.03 0.38 3.26 0.43 2.82 0.36

ANEM
MER 2.98 0.862 3.18 0.76 2.76 0.91 2.79 0.73 2.58 0.67 2.55 0.80
MAE 259.66 85.92 283.23 76.98 244.83 85.89 249.25 71.88 229.28 65.22 228.35 79.00
MAPE 2.96 0.902 3.25 0.81 2.78 0.95 2.86 0.77 2.63 0.71 2.61 0.84

IESO
MER 2.42 0.36 2.67 0.36 2.5 0.41 2.34 0.29 2.31 0.27 2.23 0.25
MAE 384.02 59.27 422.61 49.22 394.26 58.62 371.21 45.23 364.71 39.31 354.99 46.92
MAPE 2.49 0.38 2.74 0.36 2.58 0.43 2.41 0.31 2.37 0.30 2.30 0.27

Table 7: Summary performance results of models tested on demand data of NYISO, ANEM and IESO markets for 2009.

window values, the optimal size of window that corresponds
to minimal mean relative error is selected.
Tables 3, 4 and 5 present the prediction errors with respect

to MER in relation to the size of window and the clustering
technique used for the NYISO, ANEM and IESO electricity
demand datasets respectively. The window sizes selected for
each of the three datasets are shown in the last column of
each table. Correspondingly, we selected the optimal sizes of
window for 2007, 2008, 2007-2008, 2008-2009 datasets using
the same method. The results are shown in Table 6.

4.2.3 Determining Fuzziness Parameter
In order to find the optimal values of the fuzziness param-

eters that minimize the mean relative error we employed the
same cross validation technique that was used to determine
the optimal size of window.
In the case of NYISO and ANEM datasets, as fuzziness

increases, the error rates first drop to the bottom and then
increase to a certain level. Then there will be fluctuations
when the fuzziness is greater that 2. The is because the de-
gree of data overlap in this real-world dataset is relatively
low. The optimal fuzziness parameter is 2 with correspond-
ing MER values 3.37% and 2.93% as shown in Figure 2 and
Figure 3.
For IESO dataset, the optimal fuzziness parameter is 5,

when MRE of 1.82% is achieved as shown in Figure 4.

4.3 Experimental Results
Table 7 and Table 11 show the annual mean and the an-

nual standard deviation of MER, MAE and MAPE for each
learning model based on the testing results of three datasets
in 2009 and 2010, respectively.

4.3.1 NYISO Dataset
Table 8 shows the Mean Error Relative (MER) and Mean

Absolute Error (MAE) obtained for all five individual mod-
els based on the PSF algorithms and the proposed PFEM in
the year 2009. Among all the five individual models, Hierar-
chical Clustering gives the forecasting results with the lowest
MER (2.92%) and MAE(36.79MW ). The PFEM outper-
forms all other models in terms of both MER(2.76%) and
MAE(34.78MW ).
Figure 5 demonstrates the best results for a day’s elec-

tricity demand forecasting with respect to MER in the year
2009. Figure 6 gives the worst prediction results for a day
in the same year. Table 12 summarizes the performance
of all 5 PSF-style algorithms and the PFEM algorithm for
2010. In this case, the lowest mean annual MER (2.77%)
and MEA (36.57MW ) are achieved with K-medoids model.
Again, PFEM outperforms all 5 individuals models with
MER (0.74%) and MAE (36.27MW ). Figure 11 illustrates

the best prediction electricity demand and Figure 12 gives
the worst prediction results for a day in the same year.

4.3.2 ANEM Dataset
As for the Australian electricity demand time series, our

ensemble model also produces the best prediction results
with the MER of 2.55% and a MAE of 228.35MW .

The Fuzzy C-means defeats all other models except the
PFEM. Table 9 presents the details about the performance
of all models for the year 2009 dataset. Figure 7 and 8 il-
lustrate the best and the worst forecasting results for the
ANEM dataset respectively. The lowest MER it can be ob-
tained is 0.744% while the highest error rate is 7.051%.

For 2010 the Hierarchical Clustering based model beats all
other individual models with mean annual MER 2.45% and
MAE 214.61MW , only PFEM achieves MER and MAE of
2.39% and 210.91MW . The best and the worst day-ahead
demand forecasting results for 2010 are represented on Fig-
ure 13 and Figure 14 correspondingly.

4.3.3 IESO Dataset
With respect to the IESO dataset, Fuzzy C-means based

PSF outperforms all other individual models with a MER
of 2.31% and a MAE of 364.71MW . The PFEM gives a
slightly better results than the Fuzzy C-means based model.
Figure 9 and 10 present the best and worst forecasting of the
PFEM in a day of the year 2009. Figure 15 and Figure 16
illustrate the best and worst prediction curves respectively.
It shows that the PFEM is able to predict the day-ahead
electricity load time series very accurately in the best case.

Considering the results for 2010, the Hierarchical Cluster-
ing based model outperforms all other 4 individual models in
terms of MER (2.18%) and MEA (354.15MW ). The PFEM
outperforms all models with MER = 2.10% and MAE =
345.30MW . The best and worst day-ahead electricity de-
mand prediction results for 2010 are represented on Figure
15 and Figure 16. Noticeably, that the best and worst fore-
casting results for 2009 and 2010 are achieved with MER of
0.81% and 0.59% for best and 4.05% and 6.26% for worst
predictions correspondingly.

5. CONCLUSION AND FUTURE WORKS
In this work, a novel forecasting model for electricity de-

mand time series is proposed. Named the“Pattern Forecast-
ing Ensemble Model” (PFEM), the new method is based on
the pre-existing PSF algorithm, but uses a combination of
five separate clustering models: the K-means model (PSF
itself), the SOM model, the Hierarchical Clustering based
model, the K-means model and the Fuzzy C-means model.
The optimal values of parameters such as k, c and the win-
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Figure 7: Best prediction of PFEM
for ANEM dataset(2009).
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Figure 8: Worst prediction of PFEM
for ANEM dataset(2009).
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Figure 9: Best prediction of PFEM
for IESO dataset(2009).
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dow size were also determined through an empirical ap-
proach. We then evaluate the performance of the PFEM and
that of the other five individual models on three real-world
electricity demand datasets. Experimental results indicate
that our proposed approach gives superior results compared
with all the other five individual models in terms of both
MER and MAE. For future work, we intend to explore non-
linear combinations of these individual models and conduct
a quantitative evaluation of this approach along with a com-
parison to the related linearly combined ensemble models.
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Figure 11: Best prediction of PFEM
for NYISO dataset(2010).
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Figure 12: Worst prediction of PFEM
for NYISO dataset(2010).
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Figure 13: Best prediction of PFEM
for ANEM dataset(2010).
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Figure 14: Worst prediction of PFEM
for ANEM dataset(2010).
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Figure 15: Best prediction of PFEM
for IESO dataset(2010).
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Month
K-means SOM Hierarchical K-medoids Fuzzy C-means PFEM

MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW)

Jan. 3.09 43.45 2.89 40.57 2.61 36.72 2.76 38.83 2.85 40.17 2.55 35.85
Feb. 2.89 39.02 2.93 39.72 2.62 35.39 2.75 37.37 2.83 38.32 2.46 33.33
Mar. 3.38 41.43 3.26 39.94 3.24 39.79 3.19 39.39 3.69 45.22 3.07 37.65
Apr. 3.41 38.09 3.38 37.84 3.05 34.37 3.65 41.54 3.64 40.75 3.13 35.02
May. 3.44 37.94 3.03 33.36 2.76 30.32 2.69 28.36 3.32 36.53 2.56 28.62
Jun. 3.15 39.09 3.12 38.69 3.09 38.15 2.86 35.36 2.99 37.07 2.72 33.84
Jul. 3.04 40.89 2.85 37.57 3.02 39.81 2.98 39.08 2.98 39.17 2.89 38.27
Aug. 3.59 51.99 3.61 52.29 3.41 49.65 3.55 51.36 3.64 52.76 3.31 48.19
Sept. 2.47 29.98 2.37 28.75 3.02 36.81 2.37 28.84 2.57 31.32 2.29 27.83
Oct. 2.26 26.17 2.27 26.24 2.33 27.78 2.87 33.11 2.57 29.89 2.22 25.52
Nov. 3.06 35.02 3.24 37.15 2.74 31.17 2.91 33.16 3.36 38.38 2.74 31.41
Dec. 3.53 46.89 3.75 49.91 3.14 41.59 3.08 40.84 3.72 49.17 3.16 41.89
Mean 3.11 39.16 3.06 38.50 2.92 36.79 2.97 37.27 3.18 39.89 2.76 34.78

Table 8: Performance of all models tested on NYISO demand data for 2009.

Month
K-means SOM Hierarchial K-medoids Fuzzy C-means PFEM

MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW)

Jan. 5.92 468.94 5.15 482.18 4.97 457.47 4.42 410.97 4.09 376.24 4.52 420.75
Feb. 3.93 369.69 3.68 347.89 3.29 310.16 3.27 309.89 2.94 277.27 3.13 295.26
Mar. 1.88 162.09 2.67 230.52 2.37 196.76 2.12 181.62 2.19 170.89 1.86 160.05
Apr. 2.62 210.94 2.76 223.38 2.09 169.46 2.18 177.11 2.07 169.42 1.97 159.63
May. 2.48 208.27 2.37 205.69 1.86 162.91 2.32 200.77 2.04 177.88 1.87 163.81
Jun. 2.32 220.06 2.68 246.29 2.02 192.58 2.25 212.23 1.94 184.12 1.96 186.31
Jul. 2.38 224.77 2.61 246.67 2.08 198.16 2.24 212.59 2.14 202.69 2.21 208.52
Aug. 2.61 231.65 2.97 264.59 2.27 201.07 2.58 230.34 2.28 201.73 2.18 193.78
Sept. 2.24 187.95 2.83 238.16 2.29 185.64 2.28 192.23 2.28 191.59 2.03 170.49
Oct. 2.96 248.99 3.17 266.39 3.19 261.27 2.83 236.04 2.54 214.06 2.52 211.71
Nov. 3.23 296.75 3.72 338.18 3.29 300.62 3.52 320.97 3.25 297.08 3.24 295.43
Dec. 3.25 285.82 3.59 308.92 3.44 301.88 3.57 306.34 3.28 288.41 3.11 274.51
Mean 2.98 259.66 3.18 283.23 2.76 244.83 2.79 249.25 2.58 229.28 2.55 228.35

Table 9: Performance of all models tested on ANEM demand data for 2009.

Month
K-means SOM Hierarchial K-medoids Fuzzy C-means PFEM

MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW)

Jan. 1.94 347.33 1.96 357.19 1.63 295.57 1.95 355.46 1.95 346.89 1.81 329.19
Feb. 2.31 399.73 2.36 406.96 1.91 331.03 2.04 354.55 2.68 347.96 2.18 376.81
Mar. 2.27 369.71 2.75 449.66 3.05 495.62 2.68 439.05 2.29 374.83 2.27 370.83
Apr. 2.54 376.76 3.78 450.44 2.46 367.02 2.43 362.47 2.29 341.58 2.27 337.68
May. 2.24 310.57 2.74 383.07 2.83 400.38 2.38 334.71 2.68 381.81 2.09 294.88
Jun. 2.89 444.41 2.62 406.57 2.74 420.28 2.46 376.94 2.45 376.13 2.49 382.84
Jul. 2.17 326.39 2.55 387.35 2.43 366.49 2.25 340.94 2.07 313.55 2.03 301.91
Aug. 2.93 482.93 2.96 494.02 2.85 473.09 2.75 454.78 2.79 461.18 2.75 456.64
Sept. 2.63 400.62 2.32 351.71 2.49 364.35 2.23 337.52 2.19 331.82 2.21 336.37
Oct. 1.96 285.77 2.96 445.78 2.34 353.89 2.16 325.12 2.22 334.91 2.01 302.12
Nov. 2.84 438.99 3.28 504.81 2.82 434.97 2.83 433.89 2.63 402.67 2.51 387.04
Dec. 2.53 425.14 2.58 433.88 2.57 428.49 2.02 340.67 2.17 363.35 2.28 383.68
Mean 2.42 384.02 2.67 422.61 2.50 394.26 2.34 371.21 2.31 364.71 2.23 354.99

Table 10: Performance of all models tested on IESO demand data for 2009.

Market Error
K-means SOM Hierarchal K-medoids Fuzzy C-means PFEM

Err σ Err σ Err σ Err σ Err σ Err σ

NYISO
MER 3.09 0.61 3.11 0.55 2.97 0.54 2.77 0.54 3.07 0.56 2.74 0.57
MAE 40.72 11.45 40.87 10.86 40.87 10.86 36.57 10.38 40.35 10.84 36.27 11.11
MAPE 3.16 0.49 3.12 0.55 2.99 0.58 2.79 0.57 3.26 0.63 2.78 0.58

ANEM
MER 2.78 0.56 2.89 0.39 2.45 0.71 2.64 0.52 2.73 0.51 2.39 0.46
MAE 243.88 52.78 254.17 38.63 214.61 60.99 232.11 47.29 239.93 46.91 210.92 44.11
MAPE 2.83 0.58 2.96 0.41 2.48 0.74 2.69 0.55 2.78 0.52 2.44 0.48

IESO
MER 2.29 0.48 2.52 0.47 2.19 0.45 2.28 0.46 2.59 0.53 2.10 0.44
MAE 372.48 91.21 410.51 89.67 354.15 83.38 368.67 86.72 422.13 102.99 345.30 87.04
MAPE 2.35 0.52 2.59 0.51 2.24 0.48 2.34 0.49 2.66 0.56 2.18 0.48

Table 11: Summary performance results of models tested on demand data of NYISO, ANEM and IESO markets for 2010.



Month
K-means SOM Hierarchical K-medoids Fuzzy C-means PFEM

MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW)

Jan. 2.68 36.77 2.89 39.63 2.61 35.63 2.61 35.83 2.73 37.32 2.46 33.95
Feb. 2.53 33.14 2.33 30.87 2.04 27.18 2.03 26.89 2.28 30.28 1.96 25.89
Mar. 2.52 29.63 2.57 30.14 2.61 30.65 2.52 29.76 2.64 31.06 2.42 28.40
Apr. 2.93 31.87 3.01 32.72 2.63 28.56 2.28 24.93 3.12 33.88 2.42 26.26
May. 3.35 42.02 3.41 42.64 3.23 40.45 2.99 37.83 3.43 42.85 2.94 37.30
Jun. 3.06 41.34 2.97 40.06 3.26 44.17 2.97 40.39 2.92 39.55 2.89 39.10
Jul. 3.98 62.22 3.95 62.41 3.93 54.28 3.31 47.94 4.05 63.71 3.44 50.46
Sept. 3.83 50.44 3.68 48.68 3.71 48.93 3.49 45.96 3.67 52.98 3.27 42.65
Oct. 2.32 26.04 2.45 27.88 2.33 26.42 2.27 25.62 3.81 50.29 2.08 23.51
Nov. 2.71 32.35 2.83 33.97 2.82 33.71 2.67 32.02 2.48 27.84 2.57 30.88
Dec. 3.27 44.62 3.28 44.87 2.73 37.26 2.38 32.37 3.16 43.07 2.59 35.32
Mean 3.09 40.72 3.11 40.87 2.97 39.06 2.77 36.57 3.01 40.35 2.74 36.27

Table 12: Performance of all models tested on NYISO demand data for 2010.

Month
K-means SOM Hierarchical K-medoids Fuzzy C-means PFEM

MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW)

Jan. 4.41 400.34 3.84 351.47 4.15 378.93 3.91 356.08 3.93 359.73 3.63 335.61
Feb. 2.73 254.43 3.32 309.16 2.55 240.69 3.14 290.54 2.62 244.52 2.64 246.29
Mar. 2.54 221.64 2.77 239.93 2.32 200.71 2.43 211.67 2.13 185.98 2.15 186.79
Apr. 2.55 204.82 2.84 229.27 2.68 216.33 2.58 207.24 2.62 211.01 2.35 188.32
May. 2.48 217.79 2.74 239.92 1.96 171.71 2.35 205.07 2.93 258.05 2.06 181.64
Jun. 2.42 227.29 2.34 221.69 1.74 166.11 2.14 203.51 2.35 222.64 2.02 192.97
Jul. 2.28 217.94 2.51 240.11 1.54 150.04 1.97 190.69 2.47 236.19 1.98 188.91
Aug. 2.71 247.68 2.81 257.91 1.91 176.93 2.37 218.62 2.72 249.59 2.27 209.07
Sep. 2.75 228.26 2.58 217.47 2.00 170.51 2.39 202.92 2.64 222.79 2.02 171.29
Oct. 3.31 271.44 3.06 251.00 2.86 234.09 2.95 240.93 3.48 285.75 2.67 218.72
Nov. 2.63 218.76 3.05 254.64 2.72 226.68 2.58 214.96 2.41 200.01 2.36 197.03
Dec. 2.67 216.29 2.89 237.65 2.98 242.67 2.97 243.05 2.52 202.94 2.64 214.38
Mean 2.78 243.88 2.89 254.17 2.45 214.61 2.64 232.10 2.73 239.93 2.39 210.91

Table 13: Performance of all models tested on ANEM demand data for 2010.

Month
K-means SOM Hierarchical K-medoids Fuzzy C-means PFEM

MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW) MER(%) MAE(MW)

Jan. 2.09 364.46 2.16 376.11 1.61 281.01 1.85 321.80 2.13 370.98 1.53 304.54
Feb. 1.85 318.37 1.79 309.31 1.68 289.51 1.66 287.60 1.81 312.67 1.61 275.35
Mar. 2.06 323.03 2.49 391.73 2.28 357.84 2.26 352.95 2.47 387.77 2.12 330.70
Apr. 1.80 256.00 2.79 404.61 2.02 291.81 1.95 279.72 2.75 396.48 1.82 259.58
May. 2.57 397.83 2.92 456.09 2.59 397.54 2.48 383.41 2.82 443.48 2.37 370.40
Jun. 2.76 439.81 2.46 398.17 2.38 367.08 2.41 386.29 2.79 451.16 2.25 358.47
Jul. 3.09 548.15 3.42 612.35 2.96 525.82 3.23 564.81 3.74 671.03 3.09 549.91
Aug. 2.77 478.41 3.02 533.66 2.76 480.63 2.81 484.82 3.16 562.05 2.63 462.74
Sep. 2.88 441.52 2.75 420.97 2.58 395.93 2.64 403.06 2.71 415.73 2.38 361.03
Oct. 1.67 242.83 1.98 292.05 1.85 270.93 1.83 266.62 2.25 329.57 1.66 243.50
Nov. 2.09 326.84 2.42 378.94 1.85 290.25 2.33 365.46 2.51 391.24 2.06 322.79
Dec. 1.97 332.63 2.08 352.31 1.79 301.48 1.94 327.58 1.98 333.53 1.85 304.69
Mean 2.32 372.48 2.52 410.51 2.18 354.15 2.28 368.670 2.59 422.14 2.10 345.30

Table 14: Performance of all models tested on IESO demand data for 2010.


