

TEXTS IN COMPUTER SCIENCE

Editors

David Gries
Fred B. Schneider

Sivarama P. Dandamudi

Introduction to Assembly
Language Programming

For Pentium and RISC Processors

With 75 Illustrations

Sivarama P. Dandamudi
School of Computer Science
Carleton University
1125 Colonel By Drive
Ottawa, K1S 5B6
Canada
sivarama@scs.carleton.ca

Series Editors:

David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Library of Congress Cataloging-in-Publication Data
Dandamudi, Sivarama P., 1955–

Introduction to Assembly language programming : Pentium and RISC processors /
Sivarama P. Dandamudi.— 2nd ed.

p. cm. — (Texts in computer science)
Includes bibliographical references and index.
ISBN 0-387-20636-1 (alk. paper)
1. Assembler language (Computer program language) 2.

Microprocessors—Programming. I. Title. II. Series.
QA76.73.A87D36 2004
005.13′6—dc22 2004049182

ISBN 0-387-20636-1 Printed on acid-free paper.

Pentium is a registered trademark of Intel Corporation.

 2005, 1998 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (HAM)

9 8 7 6 5 4 3 2 1 SPIN 10949580

springeronline.com

To

my parents, Subba Rao and Prameela Rani,

my wife, Sobha,

and

my daughter, Veda

Preface

The objective of this book is to introduce assembly language programming. Assembly lan-

guage is very closely linked to the underlying processor architecture and design. Popular

processor designs can be broadly divided into two categories: Complex Instruction Set Com-

puters (CISC) and Reduced Instruction Set Computers (RISC). The dominant processor in

the PC market, Pentium, belongs to the CISC category. However, the recent design trend is to

use the RISC designs. Some example RISC processors include the MIPS, SPARC, PowerPC,

and ARM. Even Intel’s 64-bit processor Itanium is a RISC processor. Thus, both types of

processors are important candidates for our study.

This book covers assembly language programming of both CISC and RISC processors.

We use the Intel Pentium processor as the representative of the CISC category. We have

selected the Pentium processor because of its market dominance. To explore RISC assembly

language, we selected the MIPS processor. The MIPS processor is appealing as it closely

adheres to the RISC principles. Furthermore, the availability of the SPIM simulator allows us

to use a Pentium-based PC to learn MIPS assembly language.

New in the Second Edition
The second edition has been substantially revised to reflect the changes that have taken place

since the publication of the first edition. The major changes are listed below:

• We introduced RISC assembly language programming so that the reader can benefit

from learning both CISC and RISC assembly languages. As mentioned before, Pentium

and MIPS processors are used to cover CISC and RISC processors.

vii

viii Preface

• The first edition used MASM/TASM assemblers. In this edition, we use the NASM

assembler. The syntax of NASM is slightly different from that of MASM/TASM as-

semblers. The advantage is that NASM is free! Another advantage is that it works with

both Microsoft Windows and Linux operating systems.

• Consistent with our shift to NASM, we moved away from DOS to Linux. Since NASM

is available for Windows and Linux, most of the programs in this book can be used

with either Windows or Linux. However, we clearly indicate our preference to Linux.

This preference is exposed in chapters like “High-Level Language Interface” that deal

with mixed-mode programming involving C and assembly language. For example, in

Chapter 17, we use the GNU C compiler (gcc) rather than the Microsoft or Borland

C compiler. Similarly, in Appendix C we use the GNU debugger (gdb) to explore the

debugging process.

• The “Basic Computer Organization” chapter (Chapter 2) has been completely rewritten

to give a general background on computer organization. The Pentium processor details

are moved to a new chapter (Chapter 4).

• A completely new chapter has been added to discuss Pentium’s protected mode inter-

rupt processing.

• We have added a new chapter on recursion. This chapter discusses how we can imple-

ment recursive procedures in the Pentium and MIPS assembly languages.

• We have augmented the Pentium assembly language programming by describing its

floating-point instructions. This entire chapter is new in this edition.

In addition to these major changes, all chapters have gone through extensive revision. Some

chapters have been reorganized to eliminate the duplication present in the first edition.

Intended Use
Assembly language programming is part of several undergraduate curricula in computer sci-

ence, computer engineering, and electrical engineering departments. This book can be used

as a text for those courses that teach assembly language.

It can also be used as a companion text in a computer organization course for teaching

the assembly language. Because we cover both CISC and RISC processors, the instructor can

select the assembly language that best fits her or his course.

In addition, it can be used as a text in vocational training courses offered by community

colleges. Because of the teach-by-example style used in the book, it is also suitable for self-

study by computer professionals and engineers.

Instructional Support
The book’s Web site (www.scs.carleton.ca/˜sivarama/asm_book) has complete

chapter-by-chapter PowerPoint slides for instructors. Instructors can use these slides directly

Preface ix

in their classes or can modify them to suit their needs. In addition, instructors can obtain

the solutions manual by contacting the publisher. For more up-to-date details, please see the

book’s Web site.

Prerequisites
The student is assumed to have had some experience in a structured, high-level language such

as C. However, the book does not assume extensive knowledge of any high-level language—

only the basics are needed. Furthermore, it is assumed that the student has a rudimentary

background in the software development cycle, as is obtained in a typical high-level program-

ming course.

Features
Here is a summary of the special features that sets this book apart:

• This is probably the only book to cover the assembly language programming of both

CISC and RISC processors.

• This book uses NASM and Linux as opposed to scores of other books that use MASM

and Windows.

• The book is self-contained and does not assume a background in computer organization.

All necessary background material on computer organization is presented in the book.

• This book contains a methodical organization of chapters for a step-by-step introduction

to the assembly language.

• Extensive examples are used in each chapter to illustrate the points discussed in the

chapter. Our objective is not just to explain how an instruction works but also to provide

the rationale as to why the instruction has been designed the way it is.

• Procedures are introduced early on to encourage modular programming in developing

assembly language programs.

• A set of input and output routines is provided so that the student can focus on developing

assembly language programs rather than spending time in understanding how the input

and output are done using the basic I/O functions provided by the operating system.

• This book does not use fragments of code in examples. All examples are complete in

the sense that they can be assembled and run, giving a better feeling as to how these

programs work.

• All examples and other required software are available from the book’s Web site (www.
scs.carleton.ca/˜sivarama/asm_book) to give opportunities for students

to perform hands-on assembly programming.

• Most chapters are written in such a way that each chapter can be covered in two or

three 60-minute lectures by giving proper reading assignments. Typically, important

x Preface

concepts are emphasized in the lectures while leaving the other material as a reading

assignment. Our emphasis on extensive examples facilitates this pedagogical approach.

• Interchapter dependencies are kept to a minimum to offer maximum flexibility to in-

structors in organizing the material. Each chapter clearly indicates the objectives and

provides an overview at the beginning and a summary at the end.

• Each chapter contains two types of exercises—review and programming—to reinforce

the concepts discussed in the chapter.

• The appendices provide special reference material that contains a thorough treatment

of various topics.

Overview and Organization
The 18 chapters in the book are divided into 6 parts (see the figure on the next page for chap-

ter dependencies). Part I presents introductory topics and consists of the first two chapters.

Chapter 1 provides introduction to the assembly language and gives reasons for programming

in the assembly language. Chapter 2 presents the basics of computer organization with a focus

on three system components: processor, memory, and I/O.

Part II is dedicated to Pentium assembly language programming. It consists of nine

chapters—Chapters 3 through 11. This part begins with a description of the Pentium pro-

cessor organization (Chapter 3). In particular, this chapter gives sufficient details on the 16-

and 32-bit Intel processors so that the student can effectively program in the assembly lan-

guage. Chapter 4 gives an overview of the assembly language. After covering these two

chapters, one can write simple standalone assembly language programs.

To emphasize the importance of modular programming, procedures are introduced early

on (in Chapter 5). The other chapters in this part expand on the overview given in Chapter 4.

Chapter 6 presents the addressing modes supported by the Intel 16- and 32-bit processors.

This chapter also contains a detailed discussion on the motivation for providing the various

addressing modes. Addressing modes are one of the differentiating characteristics of CISC

processors. Chapter 7 discusses the arithmetic instructions and the use of the flags register.

Chapters 8 and 9 present conditional and bit manipulation instructions. A feature of these

two chapters is that they relate how high-level language statements can be implemented using

the instructions discussed in these two chapters. Chapter 10 discusses the string processing

instructions in detail. ASCII and BCD arithmetic instructions are presented in Chapter 11.

The first four chapters of this part—Chapters 3 to 6—should be covered in some detail for

proper grounding in assembly language programming. However, the remaining five chapters

can be studied in any order. In addition, the depth at which these five chapters are covered

can be varied without sacrificing the effectiveness, depending on the time available and im-

portance to the course objective.

Part III is dedicated to the MIPS assembly language programming. Chapter 12 describes

the RISC design principles; it also covers MIPS processor details. The MIPS assembly lan-

guage is presented in Chapter 13. This chapter also gives details on the SPIM simulator. All

Preface xi

Chapter 6

Chapter 5

Chapter 4

Chapter 3

Chapter 13

Chapter 12

Chapter 1

Chapter 2

Chapter 9Chapter 7 Chapter 11

Chapter 8 Chapter 10

Chapter 14

Chapter 15 Chapter 18

Chapter 17

Chapter 16

the programming examples given in this chapter can be run on a Pentium-based PC using the

SPIM simulator. The SPIM simulator details are given in Appendix D.

Part IV focuses on Pentium’s interrupt processing mechanism. We cover both protected-

mode and real-mode interrupt processing. Chapter 14 gives details on protected-mode inter-

rupt processing. This chapter uses Linux system calls to facilitate our discussion of software

interrupts. The next chapter discusses the real-mode interrupt processing. This is the only

chapter that uses DOS to explore how programmed I/O and interrupt-driven I/O are done.

The remaining 3 of the 18 chapters constitute Part V. These chapters deal with advanced

topics. Chapter 16 focuses on how recursive procedures are implemented in Pentium and

MIPS assembly languages. The next chapter deals with the high-level language interface,

which allows mixed-mode programming. We use C and assembly language to cover the prin-

ciples involved in mixed-mode programming. The last chapter discusses Pentium’s floating-

point instructions. To follow the programming examples of this chapter, you need to under-

stand the high-level language interface details presented in Chapter 17.

The seven appendices provide a wealth of reference material the student needs. Ap-

pendix A primarily discusses the number systems and their internal representation. Ap-

pendix B gives information on the use of I/O routines provided with this book and the as-

xii Preface

sembler software. The debugging aspect of assembly language programming is discussed

in Appendix C. The SPIM simulator details are given in Appendix D. Selected Pentium and

MIPS instructions are given in Appendices E and F, respectively. Finally, Appendix G gives

the standard ASCII table.

Acknowledgments
Several people have contributed, either directly or indirectly, in writing this book. First and

foremost, I would like to thank my family for enduring my preoccupation with this project.

My heartfelt thanks to Sobha and Veda for their understanding and patience!

I want to thank Ann Kostant, Executive Editor at Springer, for her positive feedback on

the proposal for the revision. A very special thanks to Wayne Wheeler, Associate Editor, for

handling various aspects of the project in a timely manner. I would also like to express my

appreciation to the staff at the Springer production department for converting my camera-

ready copy into the book in front of you.

I also express my appreciation to the School of Computer Science at Carleton University

for providing a great atmosphere to complete this book.

Feedback
Works of this nature are never error-free, despite the best efforts of the authors, editors, and

others involved in the project. I welcome your comments, suggestions, and corrections by

electronic mail.

Ottawa, Canada Sivarama Dandamudi

January 2004 sivarama@scs.carleton.ca
http://www.scs.carleton.ca/˜sivarama

Contents

Preface vii

PART I: Overview 1

1 Introduction 3

1.1 A User’s View of Computer Systems . 4

1.2 What Is Assembly Language? . 5

1.3 Advantages of High-Level Languages . 8

1.4 Why Program in the Assembly Language? . 9

1.5 Typical Applications . 10

1.6 Why Learn the Assembly Language? . 11

1.7 Performance: C Versus Assembly Language . 12

1.7.1 Multiplication Algorithm . 12

1.8 Summary . 14

1.9 Exercises . 14

1.10 Programming Exercises . 15

1.11 Program Listings . 15

2 Basic Computer Organization 19

2.1 Basic Components of a Computer System . 20

2.2 The Processor . 22

2.2.1 The Execution Cycle . 22

2.2.2 The System Clock . 23

2.3 Number of Addresses . 24

2.3.1 Three-Address Machines . 24

2.3.2 Two-Address Machines . 25

2.3.3 One-Address Machines . 26

2.3.4 Zero-Address Machines . 26

xiii

xiv Contents

2.3.5 The Load/Store Architecture . 26

2.3.6 Processor Registers . 27

2.4 Flow of Control . 28

2.4.1 Branching . 28

2.4.2 Procedure Calls . 30

2.5 Memory . 32

2.5.1 Two Basic Memory Operations . 33

2.5.2 Types of Memory . 35

2.5.3 Storing Multibyte Data . 37

2.6 Input/Output . 38

2.7 Performance: Effect of Data Alignment . 41

2.8 Summary . 43

2.9 Exercises . 43

PART II: Pentium Assembly Language 46

3 The Pentium Processor 47

3.1 The Pentium Processor Family . 47

3.2 The Pentium Registers . 49

3.2.1 Data Registers . 50

3.2.2 Pointer and Index Registers . 50

3.2.3 Control Registers . 51

3.2.4 Segment Registers . 53

3.3 Protected-Mode Memory Architecture . 53

3.3.1 Segment Registers . 54

3.3.2 Segment Descriptors . 55

3.3.3 Segment Descriptor Tables . 57

3.3.4 Segmentation Models . 58

3.4 Real-Mode Memory Architecture . 59

3.5 Mixed-Mode Operation . 62

3.6 Which Segment Register to Use . 63

3.7 Initial State . 64

3.8 Summary . 65

3.9 Exercises . 65

4 Overview of Assembly Language 67

4.1 Assembly Language Statements . 68

4.2 Data Allocation . 69

4.3 Where Are the Operands? . 74

4.3.1 Register Addressing Mode . 75

4.3.2 Immediate Addressing Mode . 75

Contents xv

4.3.3 Direct Addressing Mode . 76

4.3.4 Indirect Addressing Mode . 77

4.4 Data Transfer Instructions . 78

4.4.1 The MOV Instruction . 78

4.4.2 Ambiguous Moves . 79

4.4.3 The XCHG Instruction . 79

4.4.4 The XLAT Instruction . 80

4.5 Overview of Assembly Language Instructions . 80

4.5.1 Simple Arithmetic Instructions . 80

4.5.2 Conditional Execution . 83

4.5.3 Iteration Instruction . 86

4.5.4 Logical Instructions . 87

4.5.5 Shift Instructions . 89

4.5.6 Rotate Instructions . 91

4.6 Defining Constants . 93

4.6.1 The EQU Directive . 93

4.6.2 The %assign Directive . 94

4.6.3 The %define Directive . 94

4.7 Macros . 95

4.8 Illustrative Examples . 98

4.9 Performance: When to Use XLAT Instruction . 108

4.9.1 Experiment 1 . 108

4.9.2 Experiment 2 . 110

4.10 Summary . 110

4.11 Exercises . 111

4.12 Programming Exercises . 113

5 Procedures and the Stack 117

5.1 What Is a Stack? . 118

5.2 Pentium Implementation of the Stack . 118

5.3 Stack Operations . 120

5.3.1 Basic Instructions . 120

5.3.2 Additional Instructions . 121

5.4 Uses of the Stack . 123

5.4.1 Temporary Storage of Data . 123

5.4.2 Transfer of Control . 124

5.4.3 Parameter Passing . 124

5.5 Procedures . 124

5.6 Pentium Instructions for Procedures . 126

5.6.1 How Is Program Control Transferred? . 127

5.6.2 The ret Instruction . 128

xvi Contents

5.7 Parameter Passing . 128

5.7.1 Register Method . 129

5.7.2 Stack Method . 132

5.7.3 Preserving Calling Procedure State . 135

5.7.4 Which Registers Should Be Saved . 136

5.7.5 ENTER and LEAVE Instructions . 137

5.7.6 Illustrative Examples . 138

5.8 Handling a Variable Number of Parameters . 146

5.9 Local Variables . 150

5.10 Multiple Source Program Modules . 156

5.11 Performance: Procedure Overheads . 159

5.11.1 Procedure Overheads . 159

5.11.2 Local Variable Overhead . 160

5.12 Summary . 160

5.13 Exercises . 162

5.14 Programming Exercises . 163

6 Addressing Modes 167

6.1 Introduction . 167

6.2 Memory Addressing Modes . 169

6.2.1 Based Addressing . 171

6.2.2 Indexed Addressing . 171

6.2.3 Based-Indexed Addressing . 173

6.3 Illustrative Examples . 173

6.4 Arrays . 180

6.4.1 One-dimensional Arrays . 180

6.4.2 Multidimensional Arrays . 181

6.4.3 Examples of Arrays . 184

6.5 Performance: Usefulness of Addressing Modes 186

6.6 Summary . 190

6.7 Exercises . 191

6.8 Programming Exercises . 192

7 Arithmetic Flags and Instructions 197

7.1 Status Flags . 197

7.1.1 The Zero Flag . 198

7.1.2 The Carry Flag . 200

7.1.3 The Overflow Flag . 203

7.1.4 The Sign Flag . 205

7.1.5 The Auxiliary Flag . 206

7.1.6 The Parity Flag . 208

Contents xvii

7.1.7 Flag Examples . 209

7.2 Arithmetic Instructions . 211

7.2.1 Multiplication Instructions . 211

7.2.2 Division Instructions . 215

7.3 Illustrative Examples . 218

7.3.1 PutInt8 Procedure . 218

7.3.2 GetInt8 Procedure . 221

7.4 Multiword Arithmetic . 224

7.4.1 Addition and Subtraction . 224

7.4.2 Multiplication . 225

7.4.3 Division . 229

7.5 Performance: Multiword Multiplication . 232

7.6 Summary . 233

7.7 Exercises . 234

7.8 Programming Exercises . 235

8 Selection and Iteration 239

8.1 Unconditional Jump . 239

8.2 Compare Instruction . 242

8.3 Conditional Jumps . 244

8.3.1 Jumps Based on Single Flags . 244

8.3.2 Jumps Based on Unsigned Comparisons 246

8.3.3 Jumps Based on Signed Comparisons . 247

8.3.4 A Note on Conditional Jumps . 249

8.4 Looping Instructions . 250

8.5 Implementing High-Level Language Decision Structures 252

8.5.1 Selective Structures . 252

8.5.2 Iterative Structures . 255

8.6 Illustrative Examples . 257

8.7 Indirect Jumps . 263

8.7.1 Multiway Conditional Statements . 266

8.8 Summary . 266

8.9 Exercises . 268

8.10 Programming Exercises . 269

9 Logical and Bit Operations 271

9.1 Logical Instructions . 272

9.1.1 The and Instruction . 272

9.1.2 The or Instruction . 275

9.1.3 The xor Instruction . 276

9.1.4 The not Instruction . 278

xviii Contents

9.1.5 The test Instruction . 278

9.2 Shift Instructions . 278

9.2.1 Logical Shift Instructions . 279

9.2.2 Arithmetic Shift Instructions . 281

9.2.3 Why Use Shifts for Multiplication and Division? 282

9.2.4 Doubleshift Instructions . 283

9.3 Rotate Instructions . 284

9.3.1 Rotate Without Carry . 284

9.3.2 Rotate Through Carry . 285

9.4 Logical Expressions in High-Level Languages 286

9.4.1 Representation of Boolean Data . 286

9.4.2 Logical Expressions . 286

9.4.3 Bit Manipulation . 287

9.4.4 Evaluation of Logical Expressions . 288

9.5 Bit Instructions . 290

9.5.1 Bit Test and Modify Instructions . 291

9.5.2 Bit Scan Instructions . 291

9.6 Illustrative Examples . 291

9.7 Summary . 297

9.8 Exercises . 297

9.9 Programming Exercises . 299

10 String Processing 301

10.1 String Representation . 301

10.1.1 Explicitly Storing String Length . 302

10.1.2 Using a Sentinel Character . 303

10.2 String Instructions . 303

10.2.1 Repetition Prefixes . 304

10.2.2 Direction Flag . 305

10.2.3 String Move Instructions . 306

10.2.4 String Compare Instruction . 309

10.2.5 Scanning a String . 311

10.3 Illustrative Examples . 312

10.4 Testing String Procedures . 321

10.5 Performance: Advantage of String Instructions 323

10.6 Summary . 324

10.7 Exercises . 325

10.8 Programming Exercises . 326

11 ASCII and BCD Arithmetic 329

11.1 ASCII and BCD Representations of Numbers . 330

Contents xix

11.1.1 ASCII Representation . 330

11.1.2 BCD Representation . 330

11.2 Processing in ASCII Representation . 331

11.2.1 ASCII Addition . 332

11.2.2 ASCII Subtraction . 333

11.2.3 ASCII Multiplication . 334

11.2.4 ASCII Division . 334

11.2.5 Example: Multidigit ASCII Addition . 335

11.3 Processing Packed BCD Numbers . 336

11.3.1 Packed BCD Addition . 336

11.3.2 Packed BCD Subtraction . 338

11.3.3 Example: Multibyte Packed BCD Addition 338

11.4 Performance: Decimal Versus Binary Arithmetic 340

11.5 Summary . 341

11.6 Exercises . 342

11.7 Programming Exercises . 344

PART III: MIPS Assembly Language 345

12 MIPS Processor 347

12.1 Introduction . 347

12.2 Evolution of CISC Processors . 349

12.3 RISC Design Principles . 351

12.4 MIPS Architecture . 354

12.5 Summary . 358

12.6 Exercises . 359

13 MIPS Assembly Language 361

13.1 MIPS Instruction Set . 361

13.1.1 Instruction Format . 362

13.1.2 Data Transfer Instructions . 363

13.1.3 Arithmetic Instructions . 364

13.1.4 Logical Instructions . 368

13.1.5 Shift Instructions . 369

13.1.6 Rotate Instructions . 370

13.1.7 Comparison Instructions . 371

13.1.8 Branch and Jump Instructions . 371

13.2 SPIM Simulator . 373

13.2.1 SPIM System Calls . 373

13.2.2 SPIM Assembler Directives . 375

13.2.3 MIPS Program Template . 377

xx Contents

13.3 Illustrative Examples . 378

13.4 Procedures . 386

13.5 Stack Implementation . 391

13.6 Summary . 393

13.7 Exercises . 394

13.8 Programming Exercises . 395

PART IV: Pentium Interrupt Processing 399

14 Protected-Mode Interrupt Processing 401

14.1 Introduction . 401

14.2 A Taxonomy of Interrupts . 402

14.3 Interrupt Processing in the Protected Mode . 403

14.4 Exceptions . 407

14.5 Software Interrupts . 409

14.6 File I/O . 410

14.6.1 File Descriptor . 410

14.6.2 File Pointer . 410

14.6.3 File System Calls . 410

14.7 Illustrative Examples . 414

14.8 Hardware Interrupts . 418

14.9 Summary . 419

14.10 Exercises . 420

14.11 Programming Exercises . 420

15 Real-Mode Interrupts 423

15.1 Interrupt Processing in the Real Mode . 424

15.2 Software Interrupts . 425

15.3 Keyboard Services . 426

15.3.1 Keyboard Description . 426

15.3.2 DOS Keyboard Services . 427

15.3.3 Extended Keyboard Keys . 431

15.3.4 BIOS Keyboard Services . 434

15.4 Text Output to Display Screen . 440

15.5 Exceptions: An Example . 441

15.6 Direct Control of I/O Devices . 444

15.6.1 Accessing I/O Ports . 444

15.7 Peripheral Support Chips . 446

15.7.1 8259 Programmable Interrupt Controller 446

15.7.2 8255 Programmable Peripheral Interface Chip 448

15.8 I/O Data Transfer . 449

Contents xxi

15.8.1 Programmed I/O . 450

15.8.2 Interrupt-driven I/O . 452

15.9 Summary . 457

15.10 Exercises . 458

15.11 Programming Exercises . 458

PART V: Advanced Topics 461

16 Recursion 463

16.1 Introduction . 463

16.2 Recursion in Pentium Assembly Language . 464

16.3 Recursion in MIPS Assembly Language . 471

16.4 Recursion Versus Iteration . 478

16.5 Summary . 479

16.6 Exercises . 479

16.7 Programming Exercises . 479

17 High-Level Language Interface 483

17.1 Why Program in Mixed Mode? . 484

17.2 Overview . 484

17.3 Calling Assembly Procedures from C . 486

17.3.1 Illustrative Examples . 488

17.4 Calling C Functions from Assembly . 493

17.5 Inline Assembly . 495

17.5.1 The AT&T Syntax . 496

17.5.2 Simple Inline Statements . 497

17.5.3 Extended Inline Statements . 498

17.5.4 Inline Examples . 500

17.6 Summary . 504

17.7 Exercises . 504

17.8 Programming Exercises . 504

18 Floating-Point Operations 507

18.1 Introduction . 507

18.2 Floating-Point Unit Organization . 508

18.2.1 Data Registers . 508

18.2.2 Control and Status Registers . 510

18.3 Floating-Point Instructions . 512

18.3.1 Data Movement . 513

18.3.2 Addition . 514

18.3.3 Subtraction . 514

xxii Contents

18.3.4 Multiplication . 515

18.3.5 Division . 516

18.3.6 Comparison . 517

18.3.7 Miscellaneous . 518

18.4 Illustrative Examples . 519

18.5 Summary . 524

18.6 Exercises . 524

18.7 Programming Exercises . 525

Appendices 527

A Internal Data Representation 529

A.1 Positional Number Systems . 529

A.1.1 Notation . 531

A.2 Number Systems Conversion . 532

A.2.1 Conversion to Decimal . 532

A.2.2 Conversion from Decimal . 534

A.2.3 Conversion Among Binary, Octal, and Hexadecimal 536

A.3 Unsigned Integer Representation . 538

A.3.1 Arithmetic on Unsigned Integers . 539

A.4 Signed Integer Representation . 545

A.4.1 Signed Magnitude Representation . 546

A.4.2 Excess-M Representation . 547

A.4.3 1’s Complement Representation . 547

A.4.4 2’s Complement Representation . 550

A.5 Floating-Point Representation . 551

A.5.1 Fractions . 552

A.5.2 Representing Floating-Point Numbers . 555

A.5.3 Floating-Point Representation . 556

A.5.4 Floating-Point Addition . 560

A.5.5 Floating-Point Multiplication . 561

A.6 Character Representation . 561

A.7 Summary . 563

A.8 Exercises . 564

A.9 Programming Exercises . 566

B Assembling and Linking 567

B.1 Introduction . 567

B.2 Structure of Assembly Language Programs . 568

B.3 Input/Output Routines . 569

B.4 Assembling and Linking . 574

Contents xxiii

B.4.1 The Assembly Process . 574

B.4.2 Linking Object Files . 581

B.5 Summary . 581

B.6 Web Resources . 581

B.7 Exercises . 581

B.8 Programming Exercises . 582

C Debugging Assembly Language Programs 583

C.1 Strategies to Debug Assembly Language Programs 583

C.2 Preparing Your Program . 586

C.3 GNU Debugger . 586

C.3.1 Display Group . 587

C.3.2 Execution Group . 592

C.3.3 Miscellaneous Group . 595

C.3.4 An Example . 595

C.4 Data Display Debugger . 597

C.5 Summary . 602

C.6 Web Resources . 603

C.7 Exercises . 603

C.8 Programming Exercises . 603

D SPIM Simulator and Debugger 605

D.1 Introduction . 605

D.2 Simulator Settings . 608

D.3 Running and Debugging a Program . 610

D.3.1 Loading and Running . 610

D.3.2 Debugging . 610

D.4 Summary . 613

D.5 Exercises . 613

D.6 Programming Exercises . 613

E IA-32 Instruction Set 615

E.1 Instruction Format . 615

E.1.1 Instruction Prefixes . 615

E.1.2 General Instruction Format . 617

E.2 Selected Instructions . 618

F MIPS/SPIM Instruction Set 651

G ASCII Character Set 673

Index 677

PART I

Overview
This part consists of two chapters. The first chapter gives an introduction to assembly

language along with reasons for programming in assembly language. This chapter also

informally introduces the two main processor designs: CISC and RISC.

The second chapter presents the basics of computer organization with a focus on three

system components: processor, memory, and I/O. This chapter also explains why data

alignment improves performance.

These two chapters set the stage for our explorations of assembly languages of CISC and

RISC processors in the remainder of the book.

Chapter 1

Introduction

Objectives
• To introduce the assembly language and explain where it fits in the hierarchy of

computer languages

• To discuss the advantages and disadvantages associated with programming in the

assembly language

• To provide motivation to learn the assembly language

• To demonstrate performance advantages of the assembly language

Users of a computer system can interact with the system at several different levels. At the

highest level, the interaction could be through an application program such as a word proces-

sor. The next two levels use a programming language to facilitate interaction at a lower level.

The hierarchy of levels is discussed in Section 1.1.

High-level programming languages such as C and Java can be used to develop modular

programs. These languages provide several high-level constructs such as if-then-else
and while that facilitate program development and maintenance. After giving a brief in-

troduction to the assembly language in Section 1.2, we elaborate on the main advantages of

high-level languages in Section 1.3. The need for programming in the assembly language

is discussed in Section 1.4. Section 1.5 identifies some typical application areas that benefit

from programming in the assembly language. Section 1.6 discusses some reasons for learn-

ing the assembly language. The performance advantage of the assembly language over C is

demonstrated in Section 1.7. A summary of the chapter is given in the last section.

3

4 Chapter 1 Introduction

1.1 A User’s View of Computer Systems
A user’s view of a computer system depends on the degree of abstraction provided by the

underlying software. Figure 1.1 shows a hierarchy of levels at which users can interact with

a computer system. Moving to the top of the hierarchy shields the user from the lower-

level details. At the highest level, the user interaction is limited to the interface provided by

application software such as a spreadsheet, word processor, and so on. The user is expected

to have only a rudimentary knowledge of how the system operates. Problem solving at this

level, for example, involves composing a letter using the word processor software.

At the next level, problem solving is done in one of the high-level languages such as C

and Java. A user interacting with the system at this level should have detailed knowledge

of software development. Typically, these users are application programmers. Level 4 users

are knowledgeable about the application and the high-level language that they would use to

write the application software. They may not, however, know internal details of the system

unless they also happen to be involved in developing system software such as device drivers,

assemblers, linkers, and so on.

Both levels 4 and 5 are system-independent, i.e., independent of a particular processor

used in the system. For example, an application program written in C can be executed on a

system with an Intel processor or a PowerPC processor without modifying the source code.

All we have to do is recompile the program with a C compiler native to the target system. By

contrast, software development done at all levels below level 4 is system-dependent.

Assembly language programming is referred to as low-level programming because each

assembly language instruction performs a much lower-level task compared to an instruction in

a high-level language. As a consequence, to perform the same task, assembly language code

tends to be much larger than the equivalent high-level language code. Assembly language

instructions are native to the processor used in the system. For example, a program written in

the Pentium assembly language cannot be executed on the PowerPC processor. Programming

in the assembly language also requires knowledge about system internal details such as the

processor architecture, memory organization, and so on.

Machine language is a close relative of the assembly language. Typically, there is a one-

to-one correspondence between the assembly language and machine language instructions.

The processor understands only the machine language, whose instructions consist of strings

of 1’s and 0’s. We say more on these two languages in the next section.

Even though the assembly language is considered a low-level language, programming in

the assembly language will not expose you to all the nuts and bolts of the system. Our oper-

ating system hides several of the low-level details so that the assembly language programmer

can breathe easily. For example, if we want to read input from the keyboard, we can rely on

the services provided by the operating system.

Well, ultimately there has to be something to execute the machine language instructions.

This is the system hardware, which consists of digital logic circuits and the associated support

electronics. A detailed discussion of this topic is beyond the scope of this book. Books on

computer organization discuss this topic in detail.

Section 1.2 What Is Assembly Language? 5

Assembly language level

Machine language level

Operating system calls

Hardware level

Increased
level of

abstraction

System−dependent

Level 0

Level 2

Level 3

Level 4

Level 5

Level 1

(C, Java)

Application program level

High−level language level

System−independent

(spreadsheet, word processor)

Figure 1.1 A user’s view of a computer system.

1.2 What Is Assembly Language?
Assembly language is directly influenced by the instruction set and architecture of the proces-

sor. There are two basic types of processors: CISC (Complex Instruction Set Computers) and

RISC (Reduced Instruction Set Computers). The Pentium is an example of a CISC processor.

6 Chapter 1 Introduction

Most current processors, however, follow the RISC design philosophy. In this book, we use

the MIPS processor to represent the RISC category.

As the name suggests, CISC processors use complex instructions. What is a complex

instruction? For example, adding two integers is considered a simple instruction. But, an

instruction that copies an element from one array to another and automatically updates both

array subscripts is considered a complex instruction. RISC systems use only simple instruc-

tions. Furthermore, RISC systems assume that the required operands are in the processor’s

registers, not in the main memory. We discuss processor registers in the next chapter. For

now, think of them as a scratchpad inside the processor.

A CISC processor, on the other hand, does not impose such restrictions. So what? It turns

out that characteristics like simple instructions and restrictions like register-based operands

not only simplify the processor design but also result in a processor that provides improved

application performance. We give a detailed list of RISC design characteristics and its advan-

tages in Chapter 12.

The assembly language code must be processed by a program in order to generate the

machine language code. Assembler is the program that translates assembly language code

into the machine language. NASM (Netwide Assembler), MASM (Microsoft Assembler),

and TASM (Borland Turbo Assembler) are some of the popular assemblers for the Pentium

processors. In this book, we focus on the NASM assembler. In addition, we use the SPIM

simulator to run the MIPS assembly language programs.

Here are some Pentium language examples:

inc result

mov class_size,45

and mask1,128

add marks,10

The first instruction increments the variable result. This assembly language instruction

is equivalent to

result++;

in C. The second instruction initializes class_size to 45. The equivalent statement in C is

class_size = 45;

The third instruction performs the bitwise and operation on mask1 and can be expressed in

C as

mask1 = mask1 & 128;

The last instruction updates marks by adding 10. This is equivalent to

marks = marks + 10;

in C.

Section 1.2 What Is Assembly Language? 7

As you can see from these examples, most Pentium instructions use two addresses. In

these instructions, one operand doubles as a source and destination (for example, marks and

class_size). In contrast, the MIPS instructions use three addresses as shown below:

andi $t2,$t1,15

addu $t3,$t1,$t2

move $t2,$t1

The operands in these instructions are in processor registers. The processor registers t1,

t2, and t3 are identified by $. The andi instruction performs bitwise and of t1 contents

with 15 and writes the result in t2. The second instruction adds contents of t1 and t2 and

stores the result in t3.

The last instruction copies the t1 value into t2. In contrast to our claim that MIPS

uses three addresses, this instruction seems to use only two addresses. This is not really an

instruction supported by MIPS processor—it is a synthesized assembly language instruction.

When translated by the MIPS assembler, it is replaced by

addu $t2,$0,$t1

The second operand in this instruction is a special register that holds constant zero. Thus,

copying the t1 value is treated as adding zero to it.

These examples illustrate several points:

1. Assembly language instructions are cryptic.

2. Assembly language operations are expressed by using mnemonics (like and, inc,

addu, and so on).

3. Assembly language instructions are low-level. For example, we cannot write the fol-

lowing in the Pentium assembly language:

add marks,value

This instruction is invalid because two variables, marks and value, cannot be used

in a single instruction. In MIPS, for example, we cannot even write something like

addu class_size,45

as it expects all operands in the processor’s internal registers.

We appreciate the readability of the assembly language instructions by looking at the

equivalent machine language instructions. Here are some Pentium and MIPS machine lan-

guage examples:

8 Chapter 1 Introduction

Pentium examples

Assembly language Operation Machine language (in hex)

nop No operation 90

inc result Increment FF060A00

mov class_size, 45 Copy C7060C002D00

and mask, 128 Logical and 80260E0080

add marks, 10 Integer addition 83060F000A

MIPS examples

Assembly language Operation Machine language (in hex)

nop No operation 00000000

move $t2,$t15 Copy 000A2021

andi $t2,$t1,15 Logical and 312A000F

addu $t3,$t1,$t2 Integer addition 012A5821

In the above tables, machine language instructions are written in the hexadecimal number

system. If you are not familiar with this number system, consult Appendix A for a detailed

discussion of various number systems. These examples visibly demonstrate one of the key

differences between CISC and RISC processors: RISC processors use fixed-length machine

language instructions whereas the machine language instructions of CISC processors vary in

length.

It is obvious from these examples that understanding the code of a program in the ma-

chine language is almost impossible. Since there is a one-to-one correspondence between

the instructions of assembly language and machine language, it is fairly straightforward to

translate instructions from the assembly language to the machine language. As a result, only

a masochist would consider programming in a machine language. However, life was not so

easy for some of the early programmers. When microprocessors were first introduced, some

programming was in fact done in machine language!

1.3 Advantages of High-Level Languages
High-level languages are preferred to program applications, as they provide a convenient ab-

straction of the underlying system suitable for problem solving. Here are some advantages of

programming in a high-level language:

1. Program development is faster.

Many high-level languages provide structures (sequential, selection, iterative) that fa-

cilitate program development. Programs written in a high-level language are relatively

Section 1.4 Why Program in the Assembly Language? 9

small compared to the equivalent programs written in an assembly language. These

programs are also easier to code and debug.

2. Programs are easier to maintain.

Programming a new application can take from several weeks to several months and

the life cycle of such an application software can be several years. Therefore, it is

critical that software development be done with a view of software maintainability,

which involves activities ranging from fixing bugs to generating the next version of

the software. Programs written in a high-level language are easier to understand and,

when good programming practices are followed, easier to maintain. Assembly language

programs tend to be lengthy and take more time to code and debug. As a result, they

are also difficult to maintain.

3. Programs are portable.

High-level language programs contain very few processor-dependent details. As a re-

sult, they can be used with little or no modification on different computer systems. By

contrast, assembly language programs are processor-specific.

To illustrate the differences between programs written in C and assembly languages, Sec-

tion 1.7 presents a concrete example that multiplies two 16-bit integers. You can get an idea

of how readable and compact the code written in C is by comparing the C mult procedure

(see Program 1.2 on page 17) with the Pentium assembly language version (see Program 1.3

on page 17). A more detailed discussion is deferred until Section 1.7.

1.4 Why Program in the Assembly Language?
The previous section gives enough reasons to discourage you from programming in the

assembly language. However, there are two main reasons why programming is still done

in the assembly language: (1) efficiency, and (2) accessibility to system hardware.

Efficiency refers to how “good” a program is in achieving a given objective. Here we

consider two objectives based on space (space efficiency) and time (time efficiency).

Space efficiency refers to the memory requirements of a program, i.e., the size of the exe-

cutable code. Program A is said to be more space-efficient if it takes less memory space than

program B to perform the same task. Very often, programs written in an assembly language

tend to be more compact than those written in a high-level language.

Time efficiency refers to the time taken to execute a program. Obviously a program that

runs faster is said to be better from the time-efficiency point of view. If we craft assembly lan-

guage programs carefully, they tend to run faster than their high-level language counterparts.

Section 1.7 demonstrates this advantage through an example.

As an aside, we can also define a third objective: how fast a program can be developed

(i.e., write code and debug). This objective is related to the programmer productivity, and the

assembly language loses the battle to high-level languages, as discussed in the last section.

10 Chapter 1 Introduction

The superiority of the assembly language in generating compact code is becoming in-

creasingly less important for several reasons. First, the savings in space pertain only to the

program code and not to its data space. Thus, depending on the application, the savings in

space obtained by converting an application program from some high-level language to the

assembly language may not be substantial. Second, the cost of memory has been decreasing

and memory capacity has been increasing. Thus, the size of a program is not a major hurdle

anymore. Finally, compilers are becoming “smarter” in generating code that is both space-

and time-efficient. However, there are systems such as embedded controllers and handheld

devices in which space efficiency is important.

One of the main reasons for writing programs in the assembly language is to generate code

that is time-efficient. The superiority of assembly language programs in producing efficient

code is a direct manifestation of specificity. That is, assembly language programs contain

only the code that is necessary to perform the given task. Even here, a “smart” compiler can

optimize the code that can compete well with its equivalent written in the assembly language.

Although the gap is narrowing with improvements in compiler technology, the assembly lan-

guage still retains its advantage for now.

The other main reason for writing assembly language programs is to have direct control

over system hardware. High-level languages, on purpose, provide a restricted (abstract) view

of the underlying hardware. Because of this, it is almost impossible to perform certain tasks

that require access to the system hardware. For example, writing a device driver to a new

scanner on the market almost certainly requires programming in the assembly language. Since

the assembly language does not impose any restrictions, you can have direct control over the

system hardware. If you are developing system software, you cannot avoid writing assembly

language programs.

1.5 Typical Applications
We have identified three advantages to programming in an assembly language.

1. Time efficiency

2. Accessibility to hardware

3. Space efficiency

Time efficiency: Applications for which the execution speed is important fall under two cate-

gories:

1. Time convenience (to improve performance)

2. Time-critical (to satisfy functionality)

Applications in the first category benefit from time-efficient programs because it is convenient

or desirable. However, time efficiency is not absolutely necessary for their operation. For

example, a graphics package that scales an object instantaneously is more pleasant to use than

the one that takes noticeable time.

Section 1.6 Why Learn the Assembly Language? 11

In time-critical applications, tasks have to be completed within a specified time period.

These applications, also called real-time applications, include aircraft navigation systems,

process control systems, robot control software, communications software, and target acqui-

sition (e.g., missile tracking) software.

Accessibility to hardware: System software often requires direct control over the system hard-

ware. Examples include operating systems, assemblers, compilers, linkers, loaders, device

drivers, and network interfaces. Some applications also require hardware control. Video

games are an obvious example.

Space efficiency: As indicated in Section 1.4, for most systems, compactness of application

code is not a major concern. However, in portable and handheld devices, code compactness

is an important factor. Space efficiency is also important in spacecraft control systems.

1.6 Why Learn the Assembly Language?
Programming in the assembly language is a tedious and error-prone process. The natural

preference of a programmer is to program in some high-level language. We discussed a few

good reasons why some applications cannot be programmed in a high-level language. Even

these applications do not require the whole program to be written in the assembly language.

In such instances, a small part of the program is written in the assembly language and the

rest is written in some high-level language. Such programs are called hybrid or mixed-mode

programs. In Chapter 17, we discuss how we can write such hybrid programs.

Learning the assembly language has both practical and educational purposes. Even if you

don’t intend to program in an assembly language, studying it gives you a good understanding

of computer systems. When you program in a high-level language, you are provided only a

“black-box” view of the system. When programming in the assembly language, you need to

understand the internal details of the system (for example, you need to know about processor

internal registers). To understand the assembly language is to understand the computer system

itself!

This book exposes you to the assembly languages of both CISC and RISC processors. We

use the popular Pentium processor to represent the CISC category. We study RISC processors

by looking at the MIPS assembly language. Studying these two assembly languages gives

you a solid foundation to understand the differences between the CISC and RISC design

philosophies and how they impact execution speed of your programs.

A final reason to learn the assembly language is the personal satisfaction that comes with

learning something complex. Sure, learning the assembly language is more difficult than

learning Java. But the assembly language gives you complete control over the system hard-

ware. You feel powerful with the assembly language on your side, making the time spent

learning assembly language worth your while. The insights provided by the assembly lan-

guage will benefit you even if you program only in high-level languages.

12 Chapter 1 Introduction

1.7 Performance: C Versus Assembly Language
Now let’s see how much better we can do by writing programs in assembly language. As an

example, consider multiplying two 16-bit integers. Our strategy is to write the multiplication

procedure in C (a representative high-level language) and in the Pentium assembly language

and compare their execution times.

1.7.1 Multiplication Algorithm

The Pentium instruction set has two instructions for multiplication: one for unsigned integers

and the other for signed integers. These instructions can be used to multiply two integers that

can take up to 32 bits to represent them. For multiplying larger numbers, we have to use one

of the algorithms discussed in Chapter 7 (see Section 7.4.2 on page 225).

Here we consider the algorithm that is based on the longhand multiplication. This algo-

rithm, shown below, takes two n-bit unsigned integers and produces a 2n-bit product.

product := 0

for (i = 1 to n)

if (least significant bit of the multiplier = 1)

then

product := product + multiplicand

end if

Left shift the multiplicand by one bit position

Right shift the multiplier by one bit position

end for

More details on this algorithm are given in Appendix A.

The main program is shown in Program 1.1 on page 16. To avoid the influence of I/O

(i.e., the printf and scanf statements), we time only the mult procedure. To do this, we

use clock(), which is defined in the time.h header file. When clock() is invoked, it

gives the current clock value in terms of number of clock ticks. The number of clock ticks per

second is defined by CLOCKS_PER_SEC. Thus, to obtain the multiplication time in seconds,

we have to divide the clock ticks by CLOCKS_PER_SEC.

The C version of the mult procedure is given in Program 1.2 (page 17). This procedure

multiplies two 16-bit integers. As you can see from this program listing, it directly follows

the algorithm described before.

The assembly language version of the procedure is shown in Program 1.3. As you can see

from this code, the assembly language statements are inserted into the procedure using the

asm construct. For this reason, this method is called inline assembly. We give more details

on this method in Chapter 17. At this time, you are not expected to make any sense out of this

program.

Section 1.7 Performance: C Versus Assembly Language 13

0

1

2

3

4

5

0 20 40 60 80 100

Number of calls (in millions)

T
im

e
(s

ec
o

n
d

s)

C version

AL version

Figure 1.2 Multiplication time comparison on a 2.4-GHz Pentium 4 system: C version uses the mul-

tiplication procedure shown in Program 1.2; the assembly language (AL) version uses the assembly

language procedure shown in Program 1.3.

Speedup

Let us now look at the potential performance benefit we can get from using the assembly lan-

guage. Toward this end, we present the multiplication times for the C and assembly language

versions in Figure 1.2. These timings were obtained on a 2.4-GHz Pentium 4 system running

Red Hat Linux 8.0. The y-axis gives the multiplication time in seconds.

It is clear from this plot that the assembly language version runs substantially faster than

the C version. This plot substantiates our claim that assembly language programs are time-

efficient. For example, to execute the procedure 100 million times, the C version takes about

3.5 seconds more than the assembly language version.

To quantify the performance difference, let us look at the speedup. We define speedup as

Speedup =
Execution time of the C version

Execution time of the assembly language version

Speedup values greater than 1 indicate that performance of the assembly language version

is better—the higher the speedup, the better the assembly language performance. For our

application, we get a speedup of about 4.

The reader should be cautioned that the improvement obtained by the assembly language

programs depends on the application, compiler, and the type of processor, and so on. It is also

important to write an efficient assembly language code in order to get better performance.

If we write sloppy assembly language code, it may run slower than the compiler-generated

14 Chapter 1 Introduction

code. This implies that critical analysis and efficient coding are very important to realize the

potential performance gains from the assembly language.

In practice, assembly language programming is limited to critical sections of a program.

When we say critical, we mean either due to the nature of the application (e.g., real-time

constraints) or due to performance reasons.

1.8 Summary
We introduced assembly language and discussed where it fits in the hierarchy of computer

languages. Our discussion focused on the usefulness of high-level languages vis-à-vis the

assembly language. We noted that high-level languages are preferred, as their use aids in faster

program development, program maintenance, and portability. Assembly language, however,

provides two chief benefits: faster program execution, and access to system hardware.

In the last section, we used an example to demonstrate the performance advantage of

programming in assembly language.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Assemblers

• Assembly language

• CISC

• Machine language

• Mixed-mode programs

• Programmer productivity

• RISC

• Space efficiency

• Speedup

• Time efficiency

1.9 Exercises
1–1 What is the relationship between assembly language and machine language? Under

what circumstances, if any, do you consider programming in machine language?

1–2 Accessibility to hardware is touted as one of the reasons for programming in assembly

language. Discuss why we can’t have full control over hardware by using a high-level

language.

1–3 Why is assembly language called a low-level language and C a high-level language?

1–4 Why is portability of programs important? When portability is important, would you

choose C or assembly language?

1–5 We briefly introduced the CISC and RISC processor types in this chapter. From this

discussion, give some of the differences between these two processor types.

1–6 What is programmer’s productivity? Discuss how a programming language can affect

programmer’s productivity.

Section 1.10 Programming Exercises 15

1.10 Programming Exercises
1–P1 Compile and run the C and assembly language versions of the multiplication program

on your machine. The next section gives details on compiling these programs. Compare

the relative performance of the C and assembly language versions.

1.11 Program Listings
This section gives the source code listings of

mult16m.c main program

mult16c.c multiplication procedure—C version

mult16inline.c multiplication procedure—assembly language version

Compilation is straightforward. The command

gcc -O2 -o c.out mult16m.c mult16c.c

can be used to compile the C version. This produces the executable file c.out. We can

compile the assembly language version using the command

gcc -O2 -o asm.out mult16m.c mult16inline.c

This produces the asm.out executable file.

16 Chapter 1 Introduction

Program 1.1 The C main program

/***

* This program calls the multiply procedure a large *

* number of times and prints the execution time. *

***/

#include <stdio.h>

#include <time.h>

int main(void)

{

clock_t start, finish;

int value1=1000, value2=4096;

int i, j, n;

extern long mult(int, int);

printf ("Please input repeat count: ");

scanf("%d", &n);

start = clock(); /* start clock */

for (j=0; j<n; j++)

for (i=0; i<1000000; i++)

mult(value1, value2);

finish = clock(); /* stop clock */

printf("Multiplication took %f seconds to finish.\n",

((double)(finish-start))/ CLOCKS_PER_SEC);

return 0;

}

Section 1.11 Program Listings 17

Program 1.2 The mult procedure—C version

/***

* This procedure multiplies two 16-bit integers and returns *

* their product. It uses the algorithm given in Chapter 1. *

***/

long mult(int value1, int value2)

{

long product=0;

int i;

for (i=0; i < 16; i++)

{

if (value2 & 1)

product += value1;

value1 <<= 1;

value2 >>= 1;

}

return(product);

}

Program 1.3 The mult procedure—Assembly language version

/**

* This procedure uses inline assembly code to multiply two *

* 16-bit integers. It uses the algorithm given in Chapter 1. *

**/

long mult (int value1, int value2)

{

long product=0;

asm("repeat1: bsfl %2,%%ecx; "

" jz done; "

" shll %%cl,%1; "

" addl %1,%0; "

" btcl %%ecx,%2; "

" jmp repeat1; "

"done: "

:"=r"(product)

:"r"(value1), "r"(value2), "0"(product)

:"%ecx","%edx","cc");

return(product);

}

Chapter 2

Basic Computer

Organization

Objectives
• To provide a high-level view of computer organization

• To describe processor organization details

• To discuss memory organization and structure

• To introduce how input/output devices are interfaced

• To illustrate the importance of data alignment

Programming in a high-level language does not require a detailed knowledge of the system

hardware. Assembly language programmers, however, should have some basic understanding

of the underlying system architecture. A high-level view of computer systems, presented in

Section 2.1, consists of three major components: a processor, a memory unit, and input/output

devices.

The next three sections discuss these three components in detail. Section 2.2 discusses the

basic processor execution cycle. The following two sections look at the number of addresses

used in the instructions and how the control flow is altered. Section 2.5 presents some basic

concepts about the memory system. Section 2.6 gives a brief overview of how input/output

devices are interfaced to the system.

Section 2.7 discusses how data alignment affects execution time of programs. We use

the bubble sort example discussed in Chapter 5 to illustrate the impact of data alignment.

Section 2.8 concludes the chapter with a summary.

19

20 Chapter 2 Basic Computer Organization

Interconnect

CPU

Input/output

Memory

Figure 2.1 High-level view of a computer system.

2.1 Basic Components of a Computer System
A computer system has three main components: a central processing unit (CPU) or proces-

sor, a memory unit, and input/output (I/O) devices (see Figure 2.1). These three components

are interconnected by a system bus. The term “bus” is used to represent a group of electrical

signals or the wires that carry these signals. Figure 2.2 shows details of how they are intercon-

nected and what actually constitutes the system bus. As shown in this figure, the three major

components of the system bus are the address bus, data bus, and control bus.

The width of the address bus determines the memory addressing capacity of the processor.

The width of the data bus indicates the size of the data transferred between the processor and

memory or I/O device. For example, the 8086 processor has a 20-bit address bus and a 16-bit

data bus. The amount of physical memory that this processor can address is 220 bytes, or

1 MB, and each data transfer involves 16 bits. The Pentium, on the other hand, has 32 address

lines and 64 data lines. Thus, the Pentium can address up to 232 bytes, or a 4-GB memory.

Furthermore, each data transfer can move 64 bits. In comparison to the Pentium, Intel’s 64-bit

processor Itanium uses 64 address lines and 128 data lines.

The control bus consists of a set of control signals. Typical control signals include memory

read, memory write, I/O read, I/O write, interrupt, interrupt acknowledge, bus request, and bus

grant. These control signals indicate the type of action taking place on the system bus. For

example, when the processor is writing data into the memory, the memory write signal is

asserted. Similarly, when the processor is reading from an I/O device, the I/O read signal is

asserted.

The system memory, also called main memory or primary memory, is used to store both

program instructions and data. I/O devices such as the keyboard and display are used to

provide user interface. I/O devices are also used to interface with secondary storage devices

such as disks.

The system bus is the communication medium for data transfers. Such data transfers are

called the bus transactions. Some examples of bus transactions are memory read, memory

write, I/O read, I/O write, and interrupt. Depending on the processor and the type of bus used,

Section 2.1 Basic Components of a Computer System 21

I/O device

I/O device

I/O device

Address bus

Processor Memory

Data bus

Control bus

I/O

subsystem

Figure 2.2 Simplified block diagram of a computer system.

there may be other types of transactions. For example, Pentium supports a burst mode of data

transfer in which up to four 64 bits of data can be transferred in a burst cycle.

Every bus transaction involves a master and a slave. The master is the initiator of the

transaction and the slave is the target of the transaction. For example, when the processor

wants to read data from the memory, it initiates a bus transaction, also called a bus cycle, in

which the processor is the bus master and memory is the slave. The processor usually acts

as the master of the system bus, while components like memory are usually slaves. Some

components may act as slaves for some transactions and as masters for other transactions.

When there is more than one master device, which is typically the case, the device re-

questing the use of the bus sends a bus request signal to the bus arbiter using the bus request

control line. If the bus arbiter grants the request, it notifies the requesting device by sending a

signal on the bus grant control line. The granted device, which acts as the master, can then use

the bus for data transfer. The bus-request-grant procedure is called the bus protocol. Different

buses use different bus protocols. In some protocols, permission to use the bus is granted for

only one bus cycle; in others, permission is granted until the bus master relinquishes the bus.

22 Chapter 2 Basic Computer Organization

Decode Execute Fetch Decode Execute Fetch

Execution cycle

Fetch . . .

time

Figure 2.3 Execution cycle of a typical computer system.

2.2 The Processor
The processor acts as the controller of all actions or services provided by the system. It can

be thought of as executing the following cycle forever:

1. Fetch an instruction from the memory;

2. Decode the instruction (i.e., identify the instruction);

3. Execute the instruction (i.e., perform the action specified by the instruction).

This process is often referred to as the fetch-decode-execute cycle, or simply the execution

cycle.

This description raises several questions. Who provides the instructions to the processor?

Who places these instructions in the main memory? How does the processor know where

these instructions are located in the main memory?

When we write programs—whether in a high-level language or in an assembly language—

we are providing a sequence of instructions to perform a particular task (i.e., solving a prob-

lem). These instructions are translated by a compiler/assembler to an equivalent sequence of

machine language instructions that the processor understands.

The operating system, which provides instructions to the processor whenever a user pro-

gram is not executing, loads the user program into the main memory. The operating system

then indicates the location of the user program to the processor and instructs it to execute the

program.

2.2.1 The Execution Cycle

The execution cycle of a processor is shown in Figure 2.3. Fetching an instruction from the

main memory involves placing the appropriate address on the address bus and activating the

memory read signal on the control bus to indicate to the memory unit that an instruction

should be read from that location. The memory unit requires time to read the instruction

at the addressed location. This time is called the access time. The memory then places the

instruction on the data bus. The processor, after instructing the memory unit to read, waits

until the instruction is available on the data bus and then reads the instruction.

Decoding involves identifying the instruction that has been fetched from the memory. To

facilitate the decoding process, machine language instructions follow a particular instruction-

encoding scheme.

Section 2.2 The Processor 23

1

0

clock
cycle

time

Figure 2.4 Clock signal of a computer system.

To execute an instruction, the processor contains hardware consisting of control circuitry

and an arithmetic and logic unit (ALU). The control circuitry is needed to provide timing con-

trols as well as to instruct the internal hardware components to perform a specific operation.

The ALU is mainly responsible for performing arithmetic operations (such as add, divide)

and logical operations (such as and, or) on data.

In practice, instructions and data are not fetched, most of the time, from the main memory.

There is a high-speed cache memory that provides faster access to instructions and data than

the main memory. For example, the Pentium provides a 16 KB on-chip cache. This is divided

equally into data cache and instruction cache. The presence of the on-chip cache is transparent

to application programs—it helps improve application performance.

2.2.2 The System Clock

The system clock provides a timing signal to synchronize the operations of the system. A

clock is a sequence of 1’s and 0’s, as shown in Figure 2.4. The clock frequency is measured

in the number of cycles per second. This number is referred to as Hertz (Hz). We often use

the abbreviations MHz and GHz to represent 106 and 109 cycles per second, respectively.

The system clock defines the speed at which the system operates. All processor operations

take multiple clock cycles. For example, transfer of data from a memory location to Pentium

takes three clock cycles. Thus, the higher the clock rate, the faster the system can work.

The clock period is defined as the length of time taken by one clock cycle.

Clock period =
1

Clock frequency

For example, a clock frequency of 1 GHz yields a clock period of

1

1 × 109
= 1 ns

If it takes three clock cycles to execute an instruction, it takes 3×1 ns = 3 ns.

One way to increase the speed of a computer system is to use a higher clock frequency.

For example, if we use a clock of 2 GHz, the instruction execution time reduces from 3 ns to

1.5 ns. Clock frequency increases with improvements in technology. The original IBM PC

used a clock of 4.77 MHz. Current technology allows clock frequencies higher than 3 GHz.

24 Chapter 2 Basic Computer Organization

Table 2.1 Sample Three-Address Machine Instructions

Instruction Semantics

add dest,src1,src2 Adds the two values at src1 and src2 and stores the

result in dest

sub dest,src1,src2 Subtracts the second source operand at src2 from the

first at src1 and stores the result in dest

mult dest,src1,src2 Multiplies the two values at src1 and src2 and

stores the result in dest

2.3 Number of Addresses
One of the characteristics that shapes the architecture of a processor is the number of addresses

used in its instructions. Most operations can be divided into binary or unary operations.

Binary operations such as addition and multiplication require two input operands whereas

the unary operations such as the logical NOT need only a single operand. Most operations

produce a single result. There are exceptions, however. For example, the division operation

produces two outputs: a quotient and a remainder. Since most operations are binary, we need

a total of three addresses: two addresses to specify the two input operands and one to specify

where the result should go.

Most processors use either two or three addresses. For example, the MIPS processor uses

three addresses whereas the Pentium uses two addresses. However, it is possible to design

systems with one or even zero address. In the rest of this section, we give details on these

machines.

2.3.1 Three-Address Machines

In three-address machines, instructions carry all three addresses explicitly. Most current pro-

cessors use three addresses. The MIPS processor we discuss in Chapter 12, for example, uses

three addresses. Table 2.1 gives some sample instructions of a three-address machine.

On these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

mult T,C,D ; T = C*D

add T,T,B ; T = B + C*D

sub T,T,E ; T = B + C*D - E

add T,T,F ; T = B + C*D - E + F

Section 2.3 Number of Addresses 25

Table 2.2 Sample Two-Address Machine Instructions

Instruction Semantics

load dest,src Copies the value at src to dest

add dest,src Adds the two values at src and dest and stores the

result in dest

sub dest,src Subtracts the second source operand at src from the

first at dest and stores the result in dest

mult dest,src Multiplies the two values at src and dest and stores

the result in dest

add A,A,T ; A = B + C*D - E + F + A

As you can see from this code, there is one instruction for each arithmetic operation. Also

notice that all instructions, barring the first one, use an address twice. In the middle three

instructions, it is the temporary T, and in the last one, it is A. This is the motivation for using

two addresses, as we show next.

2.3.2 Two-Address Machines

In two-address machines, one address doubles as a source and destination. Usually, we use

dest to indicate that the address is used for destination. But you should note that this address

also supplies one of the source operands. The Pentium is an example processor that uses two

addresses. We discuss the Pentium processor details in the next few chapters. Table 2.2 gives

some sample instructions of a two-address machine.

On these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

load T,C ; T = C

mult T,D ; T = C*D

add T,B ; T = B + C*D

sub T,E ; T = B + C*D - E

add T,F ; T = B + C*D - E + F

add A,T ; A = B + C*D - E + F + A

Since we use only two addresses, we use a load instruction to first copy the C value into a

temporary address represented by T. If you look at these six instructions, you will notice that

the operandT is common. If we make this our default, then we don’t need even two addresses:

we can get away with just one address.

26 Chapter 2 Basic Computer Organization

2.3.3 One-Address Machines

In the early machines, when memory was expensive and slow, a special set of registers was

used to provide one of the input operands as well as to receive the result of the operation.

Because of this, these registers are called the accumulators. In most machines, there is just

a single accumulator register. This kind of design, called the accumulator machines, makes

sense if memory is expensive.

In accumulator machines, most operations are performed on the contents of the accumu-

lator and the operand supplied by the instruction. Thus, instructions for these machines need

to specify only the address of a single operand. There is no need to store the result in mem-

ory: this reduces the need for larger memory and speeds up the computation by reducing the

number of memory accesses.

2.3.4 Zero-Address Machines

In zero-address machines, the locations of both operands are assumed to be at a default lo-

cation. These machines use the stack as the source of the input operands and the result goes

back into the stack. Stack is a LIFO (last-in–first-out) data structure that all processors sup-

port, whether or not they are zero-address machines. As the name implies, the last item placed

on the stack is the first item to be taken out of the stack. A good analogy is the stack of trays

you find in a cafeteria. We discuss the stack later in this book (see Section 5.1 on page 118).

All operations on this type of machine assume that the required input operands are the top

two values on the stack. The result of the operation is placed on top of the stack.

2.3.5 The Load/Store Architecture

In this architecture, instructions operate on values stored in internal processor registers. Only

load and store instructions move data between the registers and memory. Table 2.3 gives some

sample instructions for the load/store machines. On these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

load R1,B ; load B

load R2,C ; load C

load R3,D ; load D

load R4,E ; load E

load R5,F ; load F

load R6,A ; load A

mult R2,R2,R3 ; R2 = C*D

add R2,R2,R1 ; R2 = B + C*D

sub R2,R2,R4 ; R2 = B + C*D - E

add R2,R2,R5 ; R2 = B + C*D - E + F

add R2,R2,R6 ; R2 = B + C*D - E + F + A

store A,R2 ; store the result in A

Section 2.3 Number of Addresses 27

Table 2.3 Sample Load/Store Machine Instructions

Instruction Semantics

load Rd,addr Loads the Rd register with the value at address addr

store addr,Rs Stores the value in Rs register at address addr

add Rd,Rs1,Rs2 Adds the two values in Rs1 and Rs2 registers and places the

result in Rd register

sub Rd,Rs1,Rs2 Subtracts the value in Rs2 from that in Rs1 and places the re-

sult in Rd register

mult Rd,Rs1,Rs2 Multiplies the two values in Rs1 and Rs2 and places the result

in Rd register

In this code, we assume that we have six registers to load the values. However, you don’t

need this many registers. For example, once the value in R3 is used, we can reuse this reg-

ister. Typically, RISC processors tend to have many more registers than CISC processors.

For example, the MIPS processor has 32 registers and the Intel Itanium processor has 128

registers. Compared to this, the Pentium has only 10 registers.

RISC machines as well as vector processors use this architecture, which reduces the in-

struction size substantially. If we assume that memory addresses are 32 bits long, an instruc-

tion with all three operands in memory requires 104 bits whereas the register-based operands

require instructions to be 23 bits, as shown in Figure 2.5. In this figure, we use 5 bits to specify

a register as we assume that there are 32 registers as in the MIPS processors. MIPS processor

details are given in Chapters 12 and 13.

2.3.6 Processor Registers

Processors have a number of registers to hold data, instructions, and state information. We

can classify the processors based on the structure of these registers and how the processor

uses them. Typically, we can divide the registers into general-purpose or special-purpose

registers. Special-purpose registers can be further divided into those that are accessible to

the user programs and those reserved for the system use. The available technology largely

determines the structure and function of the register set.

The number of addresses used in instructions partly influences the number of data registers

and their use. For example, in three- and two-address machines, there is no need for the

internal data registers. However, having a few internal registers improves performance by

cutting down the number of memory accesses required to execute a program. RISC processors

typically have a large number of registers.

28 Chapter 2 Basic Computer Organization

104 bits Opcode destination address

8 bits 32 bits

source1 address source2 address

32 bits 32 bits

23 bits Opcode Rdest

8 bits 5 bits 5 bits 5 bits

Rsrc1 Rsrc2

Register format

Memory format

Figure 2.5 A comparison of the instruction size when the operands are in registers versus memory.

Some processors maintain a few special-purpose registers. For example, the Pentium uses

a couple of registers to implement the processor stack. Processors also have several registers

reserved for the instruction execution unit. Typically, there is an instruction register that holds

the current instruction and a program counter that points to the next instruction to be executed.

Registers available in the Pentium processor are described in the next chapter. MIPS

processor registers are discussed in Chapter 12.

2.4 Flow of Control
Program execution, by default, proceeds sequentially. This default behavior is due to the se-

mantics associated with the execution cycle described in Section 2.2.1. The program counter

(PC) register plays an important role in managing the control flow. At a simple level, the PC

can be thought of as pointing to the next instruction. The processor fetches the instruction at

the address pointed to by the PC. When an instruction is fetched, the PC is incremented to

point to the next instruction. If we assume that each instruction takes exactly four bytes as in

the MIPS processors, the PC is automatically incremented by four after each instruction fetch.

This leads to the default sequential execution pattern.

However, sometimes we want to alter this default execution flow. In high-level languages,

we use control structures such as if-then-else and while statements to alter the ex-

ecution behavior based on some run-time conditions. Similarly, we can use procedure calls

to alter the sequential execution. In this section, we describe how processors support flow

control. We look at both branch and procedure calls next. Interrupt is another mechanism to

alter flow control, which is discussed in Chapter 14.

2.4.1 Branching

Branching is implemented by means of a branch instruction. This instruction carries the ad-

dress of the target instruction explicitly. Branch instructions in processors such as the Pentium

are also called the jump instructions. Processors suppport two types of branches: uncondi-

Section 2.4 Flow of Control 29

jump target
instruction y
instruction z

instruction x

instruction b
instruction c

target:
instruction a

Figure 2.6 Control flow in branching.

tional and conditional. In both cases, the transfer control mechanism remains the same (see

Figure 2.6).

Unconditional Branch

The simplest of the branch instructions is the unconditional branch, which transfers control

to the specified target. Here is an example branch instruction:

branch target

Specification of the target address can be done in one of two ways: absolute address or PC-

relative address. In the former, the actual address of the target instruction is given. In the

PC-relative method, the target address is specified relative to the PC contents. Most proces-

sors support absolute address for unconditional branches. Others support both formats. For

example, MIPS processors support absolute address-based branch by

j target

and PC-relative unconditional branch by

b target

In fact, the last instruction is an assembly language instruction. The processor only supports

the j instruction.

If the absolute address is used, the processor transfers control by simply loading the spec-

ified target address into the PC register. If PC-relative addressing is used, the specified target

address is added to the PC contents, and the result is placed in the PC. In either case, since

the PC indicates the next instruction address, the processor will fetch the instruction at the

intended target address.

The main advantage of using the PC-relative address is that we can move the code from

one block of memory to another without changing the target addresses. This type of code is

called relocatable code. Relocatable code is not possible with absolute addresses.

30 Chapter 2 Basic Computer Organization

Conditional Branch

In conditional branches, the jump is taken only if a specified condition is satisfied. For exam-

ple, we may want to take a branch only if two values are equal. Such conditional branches are

handled in one of two basic ways:

• Set-Then-Jump: In this design, testing for the condition and branching are separated.

To achieve communication between these two instructions, a condition code register is

used. The Pentium follows this design, which uses a flags register to record the result

of the test condition. It uses a compare (cmp) instruction to test the condition. This in-

struction sets the various flag bits to indicate the relationship between the two compared

values. Then we can use a conditional jump instruction to jump to the target location if

the specified condition bit is set. The Pentium jump instructions are discussed in detail

in Part II.

• Test-and-Jump: Most processors combine the testing and branching into a single in-

struction. We use the MIPS processor to illustrate the principle involved in this strat-

egy. The MIPS processor provides several branch instructions that test and branch (for

a quick peek, see Table 13.7 on page 374). The one that we are interested in here is the

branch on equal instruction shown below:

beq Rsrc1,Rsrc2,target

This conditional branch instruction tests the contents of the two registers Rsrc1 and

Rsrc2 for equality and transfers control to target if equal. More details on the

MIPS processor branch instructions are given in Chapter 13.

Some processors maintain registers to record the condition of the arithmetic and logical

operations. These are called condition code registers. These registers keep a record of the

status of the last arithmetic/logical operation. For example, when we add two 32-bit integers,

it is possible that the sum might require more than 32 bits. This is the overflow condition

that the system should record. Normally, a bit in the condition code register is set to indicate

this overflow condition. The MIPS processors, for example, do not use condition registers.

Instead, it uses exceptions to flag the overflow condition. On the other hand, the Pentium uses

condition registers, which are called the flags register.

Some instruction sets provide branches based on comparisons to zero. Some example

processors that provide this type of branch instructions include the MIPS processors.

2.4.2 Procedure Calls

The use of procedures facilitates modular programming. Procedure calls are slightly different

from the branches. Branches are one-way jumps: once the control has been transferred to the

target location, computation proceeds from that location, as shown in Figure 2.6. In procedure

calls, we have to return control to the calling program after executing the procedure. Control

is returned to the instruction following the call instruction, as shown in Figure 2.7.

Section 2.4 Flow of Control 31

instruction x
call procA
instruction y
instruction z

procA:
instruction a
instruction b

instruction c
return

Called procedureCalling procedure

. . .

. . .

Figure 2.7 Control flow in procedure calls.

From Figures 2.6 and 2.7, you will notice that the branches and procedure calls are sim-

ilar in their initial control transfer. For procedure calls, we need to return to the instruction

following the procedure call. This return requires two pieces of information:

• End of Procedure: We have to indicate the end of the procedure so that the control

can be returned. This is normally done by a special return instruction. For example, the

Pentium uses ret and the MIPS uses the jr instruction to return from a procedure. We

do the same in high-level languages as well. For example, in C, we use the return
statement to indicate an end of procedure execution. High-level languages allow a

default fall-through mechanism. That is, if we don’t explicitly specify the end of a

procedure, control is returned at the end of the block. In the assembly language, we

must specify the end of a procedure by using the return instruction.

• Return Address: How does the processor know where to return after completing a pro-

cedure? This piece of information is normally stored when the procedure is called.

Thus, when a procedure is called, it not only modifies the PC as in the branch instruc-

tion, but also stores the return address. Where does it store the return address? Two

main places are used: a special register or the stack. Both MIPS and Pentium proces-

sors store the address of the instruction following the call instruction.

The Pentium uses the stack to store the return address. Thus, each procedure call in-

volves pushing the return address onto the stack before control is transferred to the

procedure code. The return instruction retrieves this value from the stack to send con-

trol back to the instruction following the procedure call. A more detailed description of

the procedure call mechanism is found in Chapter 5.

MIPS processors allow any general-purpose register to store the return address. The

return statement specifies this register. The format of the return statement is

32 Chapter 2 Basic Computer Organization

32
2 −1

2

1

0 00000000

00000001

00000002

(in decimal)

Address

FFFFFFFD

FFFFFFFE

FFFFFFFF

Address

(in hex)

Figure 2.8 Logical view of the system memory.

jr $ra

where ra is the register that contains the return address. Chapter 13 gives more details

on this instruction.

Parameter Passing

The general architecture dictates how parameters are passed on to the procedures. There are

two basic techniques: register-based or stack-based. In the first method, parameters are placed

in the processor’s internal registers and the called procedure will read the parameter values

from these registers. In the stack-based method, parameters are pushed onto the stack and the

called procedure would have to read them off the stack.

The advantage of the register method is that it is faster than the stack method. However,

because of the limited number of registers, it imposes a limit on the number of parameters.

Furthermore, recursive procedures cannot use the register-based mechanism. Because RISC

processors tend to have more registers, register-based parameter passing is used in the MIPS

processors. The Pentium, due to the small number of registers, tends to use the stack for pa-

rameter passing. We describe these two parameter passing mechanisms in detail in Chapter 5.

2.5 Memory
The memory of a computer system consists of tiny electronic switches, with each switch set

in one of two states: open or closed. It is, however, more convenient to think of these states

Section 2.5 Memory 33

UNIT

MEMORY

Address

Read

Write

Data

Figure 2.9 Block diagram of the system memory.

as 0 and 1 rather than open and closed. A single such switch can be used to represent two

(i.e., binary) numbers: a zero and a one. Thus, each switch can represent a binary digit or bit,

as it is known. The memory unit consists of millions of such bits. In order to make memory

more manageable, bits are organized into groups of eight bits called bytes. Memory can then

be viewed as consisting of an ordered sequence of bytes. Each byte in this memory can be

identified by its sequence number starting with 0, as shown in Figure 2.8. This is referred to

as the memory address of the byte. Such memory is called byte addressable memory.

The Pentium can address up to 4 GB (232 bytes) of main memory (see Figure 2.8). This

magic number comes from the fact that the address bus of the Pentium has 32 address lines.

This number is referred to as the memory address space (MAS). The memory address space of

a system is determined by the address bus width of the processor used in the system. Typically,

32-bit processors support 32-bit addresses. For example, the MIPS processor we discuss in

Chapter 12 also supports 4-GB memory address space.

The actual memory in a system, however, is always less than or equal to the memory

address space. The amount of memory in a system is determined by how much of this memory

address space is populated with memory chips.

2.5.1 Two Basic Memory Operations

The memory unit supports two fundamental operations: read and write. The read operation

reads a previously stored data and the write operation stores a value in memory. Both of

these operations require an address in memory from which to read a value or to which to

write a value. In addition, the write operation requires specification of the data to be written.

The block diagram of the memory unit is shown in Figure 2.9. The address and data of the

memory unit are connected to the address and data buses, respectively. The read and write

signals come from the control bus.

Two metrics are used to characterize memory. Access time refers to the amount of time

required by the memory to retrieve the data at the addressed location. The other metric is the

memory cycle time, which refers to the minimum time between successive memory opera-

tions.

34 Chapter 2 Basic Computer Organization

Memory transfer rates can be measured by the bandwidth metric. It specifies the number

of bytes transferred per second. For example, a Pentium system with the PC133 memory

can transfer 8 bytes at a frequency of 133 times per second. This gives us a bandwidth of

8 * 133 = 1064 MB/s.

The read operation is nondestructive in the sense that one can read a location of the mem-

ory as many times as one wishes without destroying the contents of that location. The write

operation, on the other hand, is destructive, as writing a value into a location destroys the old

contents of that memory location.

Steps in a typical read cycle

1. Place the address of the location to be read on the address bus,

2. Activate the memory read control signal on the control bus,

3. Wait for the memory to retrieve the data from the addressed memory location and place

it on the data bus,

4. Read the data from the data bus,

5. Drop the memory read control signal to terminate the read cycle.

A simple Pentium read cycle takes three clock cycles. During the first clock cycle, steps

1 and 2 are performed. The Pentium waits until the end of the second clock and reads the

data and drops the read control signal. If the memory is slower (and therefore cannot supply

data within the specified time), the memory unit indicates its inability to the processor and the

processor waits longer for the memory to supply data by inserting wait cycles. Note that each

wait cycle introduces a waiting period equal to one system clock period and thus slows down

the system operation.

Steps in a typical write cycle

1. Place the address of the location to be written on the address bus,

2. Place the data to be written on the data bus,

3. Activate the memory write control signal on the control bus,

4. Wait for the memory to store the data at the addressed location,

5. Drop the memory write signal to terminate the write cycle.

As with the read cycle, the Pentium requires three clock cycles to perform a simple write

operation. During the first clock cycle, steps 1 and 3 are done. Step 2 is performed during the

second clock cycle. Pentium gives memory time until the end of the second clock and drops

the memory write signal. If the memory cannot write data at the maximum processor rate,

wait cycles can be introduced to extend the write cycle.

Section 2.5 Memory 35

2.5.2 Types of Memory

The memory unit can be implemented using a variety of memory chips—different speeds,

different manufacturing technologies, and different sizes. The two basic types of memory are

the read-only memory and read/write memory.

A basic property of memory systems is that they are random access memories in that

accessing any memory location (for reading or writing) takes the same time. Contrast this

with data stored on a magnetic tape. Access time on the tape depends on the location of the

data.

Volatility is another important property of a memory unit. A volatile memory requires

power to retain its contents. A nonvolatile memory can retain its values even in the absence

of power.

Read-Only Memories

Read-only memory (ROM) allows only read operations to be performed. As the name sug-

gests, we cannot write into this memory. The main advantage of ROM is that it is nonvolatile.

Most ROM is factory-programmed and cannot be altered. The term programming in this con-

text refers to writing values into a ROM. This type of ROM is cheaper to manufacture in large

quantities than other types of ROM. The program that controls the standard input and output

functions (called BIOS), for instance, is kept in ROM. Current systems use the flash memory

rather than a ROM (see our discussion later).

Other types of ROM include programmable ROM (PROM) and erasable PROM (EPROM).

PROM is useful in situations where the contents of ROM are not yet fixed. For instance, when

the program is still in the development stage, it is convenient for the designer to be able to

program the ROM locally rather than at the time of manufacture.

In PROM, a fuse is associated with each bit cell. If the fuse is on, the bit cell supplies

a 1 when read. The fuse has to be burned to read a 0 from that bit cell. When PROM is

manufactured, its contents are all set to 1. To program PROM, selective fuses are burned (to

introduce 0’s) by sending high current. This is the writing process and is not reversible (i.e., a

burned fuse cannot be restored). EPROM offers further flexibility during system prototyping.

Contents of an EPROM can be erased by exposing it to ultraviolet light for a few minutes.

Once erased, the EPROM can be reprogrammed.

Electrically erasable PROMs (EEPROMs) allow further flexibility. By exposing to ultra-

violet light, we erase all the contents of an EPROM. EEPROMs, on the other hand, allow the

user to selectively erase contents. Furthermore, erasing can be done in place; there is no need

to place it in a special ultraviolet chamber.

Flash memory is a special kind of EEPROM. One main difference between the EEPROM

and flash memory lies in how the memory contents are erased. The EEPROM is byte-erasable

whereas flash memory is block-erasable. Thus, writing in the flash memory involves erasing

a block and rewriting it.

Current systems use flash memory for BIOS so that changing BIOS versions is fairly

straightforward (you just have to “flash” the new version). Flash memory is also becoming

36 Chapter 2 Basic Computer Organization

very popular as a removable media. The SmartMedia, CompactFlash, and Sony’s Memory

Stick are all examples of various forms of removable flash media.

Flash memory, however, is slower than the RAMs we discuss next. For example, flash

memory cycle time is about 80 ns whereas the corresponding value for RAMs is about 10 ns.

Nevertheless, since flash memories are nonvolatile, they are used in applications where this

property is important. Apart from BIOS, we see them in devices like digital cameras and

video game systems.

Read/Write Memory

Read/write memory is commonly referred to as random access memory (RAM), even though

ROM is also random access memory. This terminology is so entrenched in the literature that

we follow it here with a cautionary note that RAM actually refers to RWM.

Read/write memory can be divided into static and dynamic categories. Static random

access memory (SRAM) retains the data, once written, without further manipulation so long

as the source of power holds its value. SRAM is typically used for implementing the processor

registers and cache memories.

The bulk of main memory in a typical computer system, however, consists of dynamic

random access memory (DRAM). DRAM is a complex memory device that uses a tiny ca-

pacitor to store a bit. A charged capacitor represents 1 bit. Since capacitors slowly lose their

charge due to leakage, they must be refreshed periodically to replace the charges representing

1 bit. A typical refresh period is about 64 ms. Reading from DRAM involves testing to see

if the corresponding bit cells are charged. Unfortunately, this test destroys the charges on the

bit cells. Thus, DRAM is a destructive read memory.

For proper operation, a read cycle is followed by a restore cycle. As a result, the DRAM

cycle time, the actual time necessary between accesses, is typically about twice the read access

time, which is the time necessary to retrieve a datum from the memory.

Several types of DRAM chips are available. We briefly describe some of the most popular

types next.

FPM DRAMs Fast page-mode (FPM) DRAMs are an improvement over the previous

generation DRAMs. FPM DRAMs exploit the fact that we access memory sequentially, most

of the time. To know how this access pattern characteristic is exploited, we have to look at

how the memory is organized. Internally, the memory is organized as a matrix of bits. For

example, a 32-Mb memory could be organized as 8 K rows (i.e., 8192 since K = 1024) and

4-K columns. To access a bit, we have to supply a row address and a column address. In the

FPM DRAM, a page represents part of the memory with the same row address. To access

a page, we specify the row address only once; we can read the bits in the specified page

by changing the column addresses. Since the row address is not changing, we save on the

memory cycle time.

Section 2.5 Memory 37

EDO DRAMs Extended Data Output (EDO) DRAM is another type of FPM DRAM. It

also exploits the fact that we access memory sequentially. However, it uses pipelining to

speed up memory access. That is, it initiates the next request before the previous memory

access is completed. A characteristic of pipelining inherited by EDO DRAMs is that single

memory reference requests are not sped up. However, by overlapping multiple memory access

requests, it improves the memory bandwidth.

SDRAMs Both FPM DRAMs and EDO DRAMs are asynchronous in the sense that their

data output is not synchronized to a clock. The synchronous DRAM (SDRAM) uses an ex-

ternal clock to synchronize the data output. This synchronization reduces delays and thereby

improves the memory performance. The SDRAM memories are used in systems that require

memory satisfying the PC100/PC133 specification. SDRAMs are dominant in low-end PC

market and are cheap.

DDR SDRAMs The SDRAM memories are also called single data rate (SDR) SDRAMs

as they supply data once per memory cycle. However, with increasing processor speeds, the

processor bus (also called front-side bus or FSB) frequency is also going up. For example,

Pentium systems now have 533-MHz FSB that supports a transfer rate of about 4.2 GB/s.

To satisfy this transfer rate, SDRAMs have been improved to provide data at both rising and

falling edges of the clock. This effectively doubles the memory bandwidth and satisfies the

high data transfer rates of faster processors.

RDRAMs Rambus DRAM (RDRAM) takes a completely different approach to increase

the memory bandwidth. A technology developed and licensed by Rambus, it is a memory

subsystem that consists of the RAM, RAM controller, and a high-speed bus called the Rambus

channel. Like the DDR DRAM, it also performs two transfers per cycle. In contrast to the

8-byte-wide data bus of DRAMs, Rambus channel is a 2-byte data bus. However, by using

multiple channels, we can increase the bandwidth of RDRAMs. For example, a dual-channel

RDRAM operating at 533 MHz provides a bandwidth of 533 * 2 * 4 = 4.2 GB/s, sufficient

for the 533-MHz FSB systems.

From this brief discussion it should be clear that DDR SDRAMs and RDRAMs compete

with each other in the high-end market. The race between these two DRAM technologies

continues as Intel boosts its FSB to 800 MHz.

2.5.3 Storing Multibyte Data

Storing data often requires more than a byte. For example, we need four bytes of memory to

store an integer variable that can take a value between 0 and 232 − 1. Let us assume that the

value to be stored is the one in Figure 2.10a.

Suppose we want to store these four bytes of data in memory at locations 100 through

103. How do we store them? Figure 2.10 shows two possibilities: least significant byte

38 Chapter 2 Basic Computer Organization

MSB LSB

(b) Little-endian byte ordering (c) Big-endian byte ordering

102

101

102

101

(a) 32-bit data

1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

1 0 1 1 0 1 1 1

1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 1 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0

0 0 0 0 1 1 1 1

Address

103

100

Address

100

103

Figure 2.10 Two byte-ordering schemes.

(Figure 2.10b) or most significant byte (Figure 2.10c) is stored at location 100. These two

byte-ordering schemes are referred to as the little endian and big endian. In either case, we

always refer to such multibyte data by specifying the lowest memory address (100 in this

example).

Is one byte-ordering scheme better than the other? Not really! It is largely a matter of

choice for the designers. For example, Pentium processors use the little-endian byte ordering.

However, most processors leave it up to the system designer to configure the processor. For

example, the MIPS and PowerPC processors use the big-endian byte ordering by default, but

these processors can be configured to use the little-endian scheme.

The particular byte-ordering scheme used does not pose any problems as long as you are

working with machines that use the same byte-ordering scheme. However, difficulties arise

when you want to transfer data between two machines that use different schemes. In this case,

conversion from one scheme to the other is required. For example, the Pentium provides two

instructions to facilitate such conversion: one to perform 16-bit data conversions and the other

for 32-bit data. Later chapters give details on these instructions.

2.6 Input/Output
Input/output (I/O) devices provide the means by which a computer system can interact with

the outside world. An I/O device can be purely an input device (e.g., keyboard, mouse), purely

Section 2.6 Input/Output 39

S
y
st

em
 b

u
s

Data bus

Address bus

Control bus

Status

Command

Data

I/O Device

I/O Controller

Figure 2.11 Block diagram of a generic I/O device interface.

an output device (e.g., printer, display screen), or both an input and output device (e.g., disks).

Here we present a brief overview of the I/O device interface. Chapters 14 and 15 provide more

details on I/O interfaces.

Computers use I/O devices (also called peripheral devices) for two major purposes—to

communicate with the outside world, and to store data. I/O devices such as printers, key-

boards, and modems are used for communication purposes, and devices like disk drives are

used for data storage. Regardless of the intended purpose of the I/O device, all communica-

tions with these devices must involve the systems bus. However, I/O devices are not directly

connected to the system bus. Instead, there is usually an I/O controller that acts as an interface

between the system and the I/O device.

There are two main reasons for using an I/O controller. First, different I/O devices exhibit

different characteristics and, if these devices were connected directly, the processor would

have to understand and respond appropriately to each I/O device. This would cause the pro-

cessor to spend a lot of time interacting with I/O devices and spend less time executing user

programs. If we use an I/O controller, this controller could provide the necessary low-level

commands and data for proper operation of the associated I/O device. Often, for complex I/O

devices such as disk drives, special I/O controller chips are available.

The second reason for using an I/O controller is that the amount of electrical power used

to send signals on the system bus is very low. This means that the cable connecting the I/O

device has to be very short (a few centimeters at most). I/O controllers typically contain driver

hardware to send current over long cables that connect the I/O devices.

I/O controllers typically have three types of internal registers—a data register, a command

register, and a status register—as shown in Figure 2.11. When the processor wants to interact

with an I/O device, it communicates only with the associated I/O controller.

To focus our discussion, let us consider printing a character on the printer. Before the pro-

cessor sends a character to be printed, it has to first check the status register of the associated

40 Chapter 2 Basic Computer Organization

I/O controller to see whether the printer is online/offline, busy or idle, out of paper, and so

on. In the status register, three bits can be used to provide this information. For example, bit

4 can be used to indicate whether the printer is online (1) or offline (0), bit 7 can be used for

busy (1) or not busy (0) status indication, and bit 5 can be used for out of paper (1) or not (0).

The data register holds the character to be printed, and the command register tells the

controller the operation requested by the processor (for example, send the character in the

data register to the printer). The following summarizes the sequence of actions involved in

sending a character to the printer:

• Wait for the controller to finish the last command;

• Place a character to be printed in the data register;

• Set the command register to initiate the transfer.

The processor accesses the internal registers of an I/O controller through what are known as

I/O ports. An I/O port is simply the address of a register associated with an I/O controller.

There are two ways of mapping I/O ports. Some processors such as the MIPS map I/O

ports to memory addresses. This is called memory-mapped I/O. In these systems, writing

to an I/O port is similar to writing to a memory address. Other processors like the Pentium

have an I/O address space that is separate from the memory address space. This technique is

called isolated I/O. In these systems, to access the I/O address space, special I/O instructions

are needed. Pentium provides two instructions—in and out—to access I/O ports. The in
instruction can be used to read from an I/O port and the out for writing to an I/O port.

Chapter 15 gives more details on these instructions.

Pentium provides 64 KB of I/O address space. This address space can be used for 8-bit,

16-bit, and 32-bit I/O ports. However, the combination cannot be more than the I/O address

space. For example, we can have 64-K 8-bit ports, 32-K 16-bit ports, 16-K 32-bit ports, or a

combination of these that fits the 64-K address space.

Systems designed with processors supporting the isolated I/O have the flexibility of using

either the memory-mapped I/O or the isolated I/O. Typically, both strategies are used. For

instance, devices like the printer or keyboard could be mapped to the I/O address using the

isolated I/O strategy; the display screen could be mapped to a set of memory addresses using

the memory-mapped I/O.

Accessing I/O Devices As a programmer, you can have direct control on any of the I/O de-

vices (through their associated I/O controllers) when you program in the assembly language.

However, it is often a difficult task to access an I/O device without any help. Furthermore, it

is a waste of time and effort if everyone has to develop his or her own routine to access I/O

devices (called device drivers). In addition, system resources could be abused, either unin-

tentionally or maliciously. For instance, an improper disk driver could erase the contents of a

disk due to a bug in the driver routine.

To avoid these problems and to provide a standard way of accessing I/O devices, operating

systems provide routines to conveniently access I/O devices. For example, Linux provides a

Section 2.7 Performance: Effect of Data Alignment 41

byte address

. . .

0 4 8 12 16 20

byte address

. . .

1 5 9 13 17 21

byte address

. . .

2 6 10 14 18 22

byte address

. . .

3 7 11 15 19 23

D0 D7

D8 D15

D16 D23

D24 D31

D0 D31

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

MEMORYCPU

Data bus

Figure 2.12 Byte-addressable memory interface to the 32-bit data bus.

set of system calls to access system I/O devices. In Windows, access to I/O devices can be

obtained from two layers of system software: the basic I/O system (BIOS), and the operating

system. BIOS is ROM resident and is a collection of routines that control the basic I/O

devices. Both provide access to routines that control the I/O devices though a mechanism

called interrupts. Interrupts are discussed in detail in Chapter 14.

2.7 Performance: Effect of Data Alignment
Execution time of a program is influenced by several factors—some of which are under the

control of the programmer. Other factors that influence the running time of a program include

the clock rate of the system, efficiency of the compiler if the program is written in a high-level

language, presence of a cache memory, and so on.

Here we look at the influence of data alignment on the performance of the bubble sort

example discussed in Chapter 5 (see Example 5.5 on page 142). One of the factors influencing

the sort time is the time required to access the array.

Suppose we want to read a 32-bit variable from the memory. Assume that the data bus is

32 bits wide. If the address of this variable is a multiple of four, the 32-bit data are stored in a

single row of memory. Thus the processor can get the data in one read cycle. If this is not true,

then the 32-bit data item is spread over two rows. Thus the processor reads two 32-bits of data

and assembles the required 32-bit data. This scenario is clearly demonstrated in Figure 2.12.

42 Chapter 2 Basic Computer Organization

0

1

2

3

5000 10000 15000 20000 25000

Array size

S
o

rt
 t

im
e

(s
ec

o
n

d
s)

Unaligned

Aligned

Figure 2.13 Impact of data alignment on the performance of the bubble sort algorithm.

In Figure 2.12, the 32-bit data item stored at address 8 (shown by hashed lines) is aligned.

Due to this alignment, the processor can read this data item in one read cycle. On the other

hand, the data item stored at address 17 (shown shaded) is unaligned. Reading this data item

requires two read cycles: one to read the 32 bits at address 16 and the other to read the 32 bits

at address 20. The processor can internally assemble the required 32-bit data item from the

64-bit data read from the memory.

Figure 2.13 shows the impact of data alignment on the sort time of the bubble sort. These

results were obtained on a 2.4-GHz Pentium 4 processor system. The unaligned sort time is

approximately three times more than the aligned sort time.

Except for the performance penalty, data alignment is totally transparent to the application.

However, to avoid this performance penalty, data should be aligned.

• 2-Byte Data: A 16-bit data item is aligned if it is stored at an even address (i.e., ad-

dresses that are multiples of two). This means that the least significant bit of the address

must be 0.

• 4-Byte Data: A 32-bit data item is aligned if it is stored at an address that is a multiple

of four. This implies that the least significant two bits of the address must be 0, as

discussed in the last example.

• 8-Byte Data: A 64-bit data item is aligned if it is stored at an address that is a multiple

of eight. This means that the least significant three bits of the address must be 0. This

alignment is important for processors such as the Pentium that have a 64-bit-wide data

bus. On processors (e.g., 80486) that have 32-bit-wide data bus, a 64-bit data item is

read in two bus cycles and alignment at four-byte boundaries is sufficient.

Section 2.8 Summary 43

The Intel Pentium family of processors allows aligned and unaligned data items. Of

course, unaligned data cause performance degradation. An alignment constraint of this type

is referred to as the soft alignment constraint. Because of the performance penalty associated

with unaligned data, some processors do not allow unaligned data. This alignment constraint

is referred to as the hard alignment constraint.

2.8 Summary
Programmers should have some basic knowledge about the processor and the system archi-

tecture in order to effectively program in the assembly language. This chapter has presented

the basics of computer organization.

We started with a high-level view of the system. At this level, a computer system can

be thought of as consisting of three main components: a processor, a memory unit, and I/O

devices. The remainder of the chapter briefly described these three components.

We also considered the impact of data alignment on the execution time of application

programs. By using the bubble sort example discussed in Chapter 5, we demonstrated the

influence of data alignment on the sort time.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• 0-address machines

• 1-address machines

• 2-address machines

• 3-address machines

• Absolute address

• Accumulator machines

• Conditional branch

• End of procedure

• Isolated I/O

• Load/store architecture

• Memory-mapped I/O

• Number of addresses

• Parameter passing

• PC-relative

• Procedure call

• Processor registers

• Return address

• Stack machines

• Unconditional branch

• Wait cycles

2.9 Exercises
2–1 Describe the execution cycle. What is the default mode of execution?

2–2 What are the main components of the system bus? Describe the functionality of each

component.

2–3 If a system uses a 1.5-GHz clock, what is the clock period?

44 Chapter 2 Basic Computer Organization

2–4 If a processor has 64 address lines, what is the physical memory address space of this

processor? Give the address of the first and last addressable memory locations in hex.

2–5 What are the characteristics of the load/store architecture that sets it apart from the other

architectures discussed in this chapter?

2–6 We stated that the RISC processors use the load/store architecture. What are its advan-

tages over the CISC architectures as exemplified by the Pentium processor?

2–7 Give some of the reasons why instruction execution rate is higher in RISC processors

than in CISC processors.

2–8 From the processor point of view, what are the differences between branches and pro-

cedures?

2–9 Explain the differences between branches that use absolute address and PC-relative

address.

2–10 What are the differences between ROM and RAM?

2–11 Compare and contrast DRAM and SRAM.

2–12 Why do DRAMs need to be refreshed?

2–13 What is the difference between volatile and nonvolatile memories?

2–14 Can you think of a reason why ROMs tend to be nonvolatile and RAMs volatile?

2–15 Consider the Pentium processor with an 800-MHz front-side bus. What is the band-

width of this bus?

2–16 We stated that DDR SDRAMs and RDRAMs compete for the high-end systems that

require higher bandwidth to support 533-MHz FSB. Suppose we use a four-channel

RDRAM memory subsystem. What is the clock frequency that this subsystem should

operate in order to meet the bandwidth requirement of the last question?

2–17 Discuss why I/O controllers are used to interface I/O devices to the system.

2–18 For each address below, state whether a 32-bit value stored at that address is aligned or

not (all numbers are in hex):

(a) 12345678 (c) 9128ADCC

(b) ABCD755A (d) 38B0F050

2–19 Repeat the above exercise for 64-bit values.

PART II

Pentium Assembly Language

This part is dedicated to Pentium assembly language programming. It should be noted that

the Intel 32-bit instruction set architecture is referred to as IA-32 architecture. However,

for concreteness, we refer to the IA-32 instruction set as the Pentium instruction set in this

book. Bear in mind that there are other implementations of this instruction set beside the

Pentium processor. Therefore, our reference to Pentium in this context should be treated

as an alias for IA-32; it certainly does not refer only to the Pentium implementation of this

instruction set.

This part consists of nine chapters—Chapters 3 through 11. It provides the basics of the

assembly language. Before reading this part, you should be familiar with the material

presented in Appendices B and C. These appendices give details on how you can assemble

and debug the assembly language programs.

This part begins with a description of the Pentium processor organization (Chapter 3). In

particular, this chapter gives sufficient details on the 16-bit and 32-bit Intel processors so

that you can effectively program in the assembly language. Chapter 4 gives an overview

of the assembly language. After covering these two chapters, you should be able to write

simple standalone assembly language programs.

To emphasize the importance of modular programming, we introduce procedures early on

in Chapter 5. The other chapters in this part expand on the overview given in Chapter 4.

Chapter 6 presents the addressing modes supported by the Intel 16-bit and 32-bit proces-

sors. This chapter also contains a detailed discussion on the motivation for providing the

various addressing modes. Addressing modes are one of the differentiating characteristics

of CISC processors.

Chapter 7 discusses the arithmetic instructions and the use of the flags register. Chapters 8

and 9 present conditional and bit manipulation instructions. A feature of these two chap-

ters is that they relate how high-level language statements can be implemented using the

instructions discussed in these two chapters. Chapter 10 discusses the string processing

instructions in detail. ASCII and BCD arithmetic instructions are presented in Chapter 11.

Chapter 3

The Pentium Processor

Objectives
• To describe the basic organization of the Pentium processor

• To introduce the Pentium protected-mode memory architecture

• To discuss the real-mode memory organization

We discussed processor design space in the last chapter. Now we look at the Pentium proces-

sor details. We present details of its registers and memory architecture. Other Pentium details

are discussed in later chapters.

We start our discussion with a brief history of the Intel architecture. This architecture en-

compasses the X86 family of processors. All these processors, including the Pentium, belong

to the CISC category. Section 3.2 presents the internal register details of the Pentium pro-

cessor. Even though the Pentium is a 32-bit processor, it maintains backward compatibility

to the earlier 16-bit processors. The next two sections describe the protected- and real-mode

memory architectures. Protected-mode architecture is the native mode for the Pentium pro-

cessor. The real mode is provided to mimic the 16-bit 8086 memory architecture. In both

modes, the Pentium supports segmented memory architecture. In the protected mode, it also

supports paging to facilitate implementation of virtual memory. It is important for an assem-

bly language programmer to understand the segmented memory organization supported by

the Pentium. We conclude the chapter with a summary.

3.1 The Pentium Processor Family
Intel introduced microprocessors way back in 1969. Their first 4-bit microprocessor was the

4004. This was followed by the 8080 and 8085 microprocessors. The work on these early

47

48 Chapter 3 The Pentium Processor

microprocessors led to the development of the Intel architecture (IA). The first processor in

the IA family was the 8086 processor, introduced in 1979. It has a 20-bit address bus and a

16-bit data bus.

The 8088 is a less expensive version of the 8086 processor. The cost reduction is obtained

by using an 8-bit data bus. Except for this difference, the 8088 is identical to the 8086 pro-

cessor. Intel introduced segmentation with these processors. These processors can address

up to four segments of 64 KB each. This IA segmentation is referred to as the real-mode

segmentation and is discussed later in this chapter.

The 80186 is a faster version of the 8086. It also has a 20-bit address bus and 16-bit

data bus, but has an improved instruction set. The 80186 was never widely used in computer

systems. The real successor to the 8086 is the 80286, which was introduced in 1982. It has a

24-bit address bus, which implies 16 MB of memory address space. The data bus is still 16

bits wide, but the 80286 has some memory protection capabilities. It introduced the protection

mode into the IA architecture. Segmentation in this new mode is different from the real-mode

segmentation. We present details on this new segmentation later. The 80286 is backward

compatible in that it can run the 8086-based software.

Intel introduced its first 32-bit processor—the 80386—in 1985. It has a 32-bit data bus

and 32-bit address bus. The memory address space has grown substantially (from 16 MB

address space to 4 GB). This processor introduced paging into the IA architecture. It also

allowed definition of segments as large as 4 GB. This effectively allowed for a “flat” model

(i.e., effectively turning off segmentation). Later sections present details on this. Like the

80286, it can run all the programs written for 8086 and 8088 processors.

The Intel 80486 was introduced in 1989. This is an improved version of the 80386. While

maintaining the same address and data buses, it combined the coprocessor functions for per-

forming floating-point arithmetic. The 80486 processor has added more parallel execution

capability to instruction decode and execution units to achieve a scalar execution rate of one

instruction per clock. It has an 8-KB onchip L1 cache. Furthermore, support for the L2 cache

and multiprocessing has been added. Later versions of the 80486 processors incorporated

features such as energy-saving mode for notebooks.

The latest in the family is the Pentium series. It is not named 80586 because Intel found

belatedly that numbers couldn’t be trademarked! The first Pentium was introduced in 1993.

The Pentium is similar to the 80486 but uses a 64-bit-wide data bus. Internally, it has 128- and

256-bit-wide datapaths to speed internal data transfers. However, the Pentium instruction set

supports 32-bit operands like the 80486. The Pentium has added a second execution pipeline

to achieve superscalar performance by having the capability to execute two instructions per

clock. It has also doubled the onchip L1 cache, with 8 KB for data and another 8 KB for the

instructions. Branch prediction has also been added.

The Pentium Pro processor has a three-way superscalar architecture. That is, it can execute

three instructions per clock cycle. The address bus has been expanded to 36 bits, which gives

it an address space of 64 GB. It also provides dynamic execution including out-of-order and

speculative execution. In addition to the L1 caches provided by the Pentium, the Pentium Pro

has a 256-KB L2 cache in the same package as the CPU.

Section 3.2 The Pentium Registers 49

Table 3.1 Key Characteristics of the IA Family of Processors (“Year” refers to the year of introduction;

“Frequency” refers to the frequency at introduction)

Processor Year

Frequency

(MHz)

Transistor

count

Register

width

Data bus

width

Maximum

address space

8086 1978 8 29 K 16 16 1 MB

80286 1982 12.5 134 K 16 16 16 MB

80386 1985 20 275 K 32 32 4 GB

80486 1989 25 1.2 M 32 32 4 GB

Pentium 1993 60 3.1 M 32 64 4 GB

Pentium Pro 1995 200 5.5 M 32 64 64 GB

Pentium II 1997 266 7 M 32 64 64 GB

Pentium III 1999 500 8.2 M 32 64 64 GB

Pentium 4 2000 1500 42 M 32 64 64 GB

The Pentium II processor has added multimedia (MMX) instructions to the Pentium Pro

architecture. It has expanded the L1 data and instruction caches to 16 KB each. It has

also added more comprehensive power management features including Sleep and Deep Sleep

modes to conserve power during idle times.

The Pentium III processor introduced streaming SIMD extensions (SSE), cache prefetch

instructions, and memory fences and the single-instruction multiple-data (SIMD) architecture

for concurrent execution of multiple floating-point operations. Pentium 4 enhanced these

features further. Table 3.1 summarizes the key characteristics of the IA family of processors.

Intel’s 64-bit Itanium processor is targeted for server applications. For these applications,

the Pentium’s memory address space is not adequate. The Itanium uses a 64-bit address bus to

provide substantially large address space. Its data bus is 128 bits wide. In a major departure,

Intel has moved from the CISC designs of Pentium processors to the RISC orientation for their

Itanium processors. The Itanium also incorporates several advanced architectural features to

provide improved performance for the high-end server market.

In the rest of the chapter, we look at the basic architectural details of the Pentium proces-

sor. Our focus is on the internal registers and memory architecture. Other Pentium details are

covered in later chapters.

3.2 The Pentium Registers
The Pentium has 10 32-bit and 6 16-bit registers. These registers are grouped into general,

control, and segment registers. The general registers are further divided into data, pointer, and

index registers.

50 Chapter 3 The Pentium Processor

15 7 0

AH

BH

CH

DH

AL

BL

CL

DL

AX Accumulator

BX Base

CX Counter

DX Data

31 16

EDX

ECX

EBX

EAX

32-bit registers

8

16-bit registers

Figure 3.1 Data registers of the Pentium processor (16-bit registers are shown shaded).

3.2.1 Data Registers

There are four 32-bit data registers that can be used for arithmetic, logical, and other opera-

tions (see Figure 3.1). These four registers are unique in that they can be used as follows:

• Four 32-bit registers (EAX, EBX, ECX, EDX); or

• Four 16-bit registers (AX, BX, CX, DX); or

• Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).

As shown in Figure 3.1, it is possible to use a 32-bit register and access its lower half of the

data by the corresponding 16-bit register name. For example, the lower 16 bits of EAX can be

accessed by using AX. Similarly, the lower two bytes can be individually accessed by using

the 8-bit register names. For example, the lower byte of AX can be accessed as AL and the

upper byte as AH.

The data registers can be used without constraint in most arithmetic and logical instruc-

tions. However, some registers have special functions when executing specific instructions.

For example, when performing a multiplication operation, one of the two operands should be

in the EAX, AX, or AL register depending on the operand size. Similarly, the ECX or CX

register is assumed to contain the loop count value for iterative instructions.

3.2.2 Pointer and Index Registers

Figure 3.2 shows the four 32-bit registers in this group. These registers can be used either

as 16- or 32-bit registers. The two index registers play a special role in string processing

instructions (discussed in Chapter 10). In addition, they can be used as general-purpose data

registers.

The pointer registers are mainly used to maintain the stack. Even though they can be used

as general-purpose data registers, they are almost exclusively used for maintaining the stack.

The Pentium’s stack implementation is discussed in Chapter 5.

Section 3.2 The Pentium Registers 51

Index registers

0

Source index

Destination indexDI

SI

151631

ESI

EDI

Pointer registers

0

Stack pointer

Base pointer

SP

BP

1631 15

EBP

ESP

Figure 3.2 Index and pointer registers of the Pentium processor.

3.2.3 Control Registers

This group of registers consists of two 32-bit registers: the instruction pointer register and

the flags register. The processor uses the instruction pointer register to keep track of the

location of the next instruction to be executed. Instruction pointer register is sometimes called

the program counter register (see our discussion in the last chapter). The instruction pointer

can be used either as a 16-bit register (IP) or as a 32-bit register (EIP). IP is used for 16-bit

addresses and EIP for 32-bit addresses (see Sections 3.3 and 3.4 for details on the Pentium

memory architecture).

When an instruction is fetched from memory, the instruction pointer is updated to point

to the next instruction. This register is also modified during the execution of an instruction

that transfers control to another location in the program (such as a jump, procedure call, or

interrupt).

The flags register can be considered as either a 16-bit FLAGS register or a 32-bit EFLAGS

register. The FLAGS register is useful in executing 8086 processor code. The EFLAGS

register consists of 6 status flags, 1 control flag, and 10 system flags, as shown in Figure 3.3.

Bits of this register can be set (1) or cleared (0). The Pentium provides instructions to set and

clear some of the flags. For example, the clc instruction clears the carry flag, and the stc
instruction sets it.

The six status flags record certain information about the most recent arithmetic or logical

operation. For example, if a subtract operation produces a zero result, the zero flag (ZF) would

be set (i.e., ZF = 1). Chapter 7 discusses the status flags in detail.

The control flag is useful in string operations. This flag determines whether a string opera-

tion should scan the string in the forward or backward direction. The function of the direction

flag is described in Chapter 10, which discusses the string instructions supported by the Pen-

tium.

52 Chapter 3 The Pentium Processor

F
AZ

F
S
F

T
F

I
F

O
F

D
F

1
0

1
1

1
2

1
4

1
5

1
6

1
3

1
9

1
8

1
7

2
0

2
1

2
2

IO
PL

N
T

R
F

V
M

A
C

V
I
P

V
I
F

Flags register

100

0123456789

0 0

FLAGS

0 0 0 0 0 0 0 00
C
F

P
FD

I

EFLAGS

EIP

15 01631

IP

Control flag

DF = Direction flag

Status flags

CF = Carry flag

PF = Parity flag

ZF = Zero flag

SF = Sign flag

OF = Overflow flag

VIP = Virtual interrupt pending

System flags

NT = Nested task

RF = Resume flag

VM = Virtual 8086 mode

AC = Alignment check

ID = ID flag

TF = Trap flag

IF = Interrupt flag

VIF = Virtual interrupt flag

IOPL = I/O privilege level

3
1

AF = Auxiliary carry flag

Instruction pointer

Figure 3.3 Flags and instruction pointer registers of the Pentium processor.

The 10 system flags control the operation of the processor. A detailed discussion of all

10 system flags is beyond the scope of this book. Here we briefly discuss a few flags in this

group. The two interrupt enable flags—the trap enable flag (TF) and the interrupt enable flag

(IF)—are useful in interrupt-related activities. For example, setting the trap flag causes the

processor to single-step through a program, which is useful in debugging programs. These

two flags are covered in Chapter 14, which discusses the interrupt processing mechanism of

the Pentium.

The ability to set and clear the identification (ID) flag indicates that the processor supports

the CPUID instruction. The CPUID instruction provides information to software about the

vendor (Intel chips use a “GenuineIntel” string), processor family, model, and so on. The

Section 3.3 Protected-Mode Memory Architecture 53

CS

DS

SS

ES

Code segment

Data segment

Stack segment

15 0

Extra segment

FS

GS

Extra segment

Extra segment

Figure 3.4 The six segment registers of the Pentium processor.

virtual-8086 mode (VM) flag, when set, emulates the programming environment of the 8086

processor.

The last flag that we discuss is the alignment check (AC) flag. When this flag is set, the

processor operates in alignment check mode and generates exceptions when a reference is

made to an unaligned memory address. We discuss data alignment and its impact on applica-

tion performance in Section 2.7 on page 41.

3.2.4 Segment Registers

The six 16-bit segment registers of the Pentium are shown in Figure 3.4. These registers

support the segmented memory organization of the Pentium. In this organization, memory is

partitioned into segments, where each segment is a small part of the memory. The processor,

at any point in time, can only access up to six segments of the main memory. The six segment

registers point to where these segments are located in the memory.

A program is logically divided into two parts: a code part that contains only the instruc-

tions, and a data part that keeps only the data. The code segment (CS) register points to where

the program’s instructions are stored in the main memory, and the data segment (DS) register

points to the data part of the program. The stack segment (SS) register points to the program’s

stack segment (further discussed in Chapter 5).

The last three segment registers—ES, FS, and GS—are additional segment registers that

can be used in a similar way as the other segment registers. For example, if a program’s data

could not fit into a single data segment, we could use two segment registers to point to the two

data segments.

3.3 Protected-Mode Memory Architecture
The Pentium supports sophisticated memory architecture under real and protected modes. The

real mode, which uses 16-bit addresses, is provided to run programs written for the 8086. In

54 Chapter 3 The Pentium Processor

32-bitLogical

address linear

address

Page

translation

32-bit

physical

address

Segment

translation

Figure 3.5 Logical to physical address translation process in the protected mode.

this mode, the Pentium supports the segmented memory architecture. The protected mode

uses 32-bit addresses and is the native mode of the Pentium. In protected mode, the Pentium

supports both segmentation and paging. Paging is useful in implementing virtual memory; it is

transparent to the application program, but segmentation is not. We do not look at the paging

features here. We discuss the real-mode memory architecture in the next section and devote

the rest of this section to describing the protected-mode segmented memory architecture.

In the protected mode, the Pentium supports a more sophisticated segmentation mecha-

nism in addition to paging. In this mode, the segment unit translates a logical address into

a 32-bit linear address. The paging unit translates the linear address into a 32-bit physical

address, as shown in Figure 3.5. If no paging mechanism is used, the linear address is treated

as the physical address. In the remainder of this section, we focus on the segment translation

process only.

The protected-mode segment translation process is shown in Figure 3.6. In this mode,

contents of the segment register are taken as an index into a segment descriptor table to get a

descriptor. Segment descriptors provide the 32-bit segment base address, its size, and access

rights. To translate a logical address to the corresponding linear address, the offset is added

to the 32-bit base address. The offset value can be either a 16-bit or 32-bit number.

3.3.1 Segment Registers

Every segment register has a “visible” part and an “invisible” part, as shown in Figure 3.7.

When we talk about segment registers, we are referring to the 16-bit visible part. The visible

part is referred to as the segment selector. There are direct instructions to load the segment

selector. These instructions include mov, pop, lds, les, lss, lgs, and lfs. These in-

structions are discussed in later chapters and in Appendix E. The invisible part of the segment

registers is automatically loaded by the processor from a descriptor table (described next).

As shown in Figure 3.6, the segment selector provides three pieces of information:

• Index: The index selects a segment descriptor from one of two descriptor tables: a local

descriptor table or a global descriptor table. Since the index is a 13-bit value, it can

select one of 213 = 8192 descriptors from the selected descriptor table. Since each

descriptor, shown in Figure 3.8, is 8 bytes long, the processor multiplies the index by 8

and adds the result to the base address of the selected descriptor table.

• Table Indicator (TI): This bit indicates whether the local or global descriptor table

should be used.

Section 3.3 Protected-Mode Memory Architecture 55

ADDER

031

031

SEGMENT SELECTOR

TI RPLINDEX

15 3 1 02

OFFSET

DESCRIPTOR TABLE

BASE ADDRESS

LIMIT

ACCESS RIGHTS
Segment

descriptor

LINEAR ADDRESS

32-bit base address

Figure 3.6 Protected-mode address translation.

0 = Global descriptor table,

1 = Local descriptor table.

• Requester Privilege Level (RPL): This field identifies the privilege level to provide pro-

tected access to data: the smaller the RPL value, the higher the privilege level. Oper-

ating systems don’t have to use all the four levels. For example, Linux uses level 0 for

the kernel and level 3 for the user programs. It does not use levels 1 and 2.

3.3.2 Segment Descriptors

A segment descriptor provides the attributes of a segment. These attributes include its 32-

bit base address, 20-bit segment size, as well as control and status information, as shown in

Figure 3.8. Here we provide a brief description of some of the fields shown in this figure.

• Base Address: This 32-bit address specifies the starting address of a segment in the

4-GB physical address space. This 32-bit value is added to the offset value to get the

linear address (see Figure 3.6).

56 Chapter 3 The Pentium Processor

CS

SS

DS

ES

FS

GS

Invisible part

Segment selector

Segment selector

Segment selector

Segment selector

Segment selector

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment selector

Visible part

Figure 3.7 Visible and invisible parts of segment registers.

1

1

LIMIT

19:16
/

D

3

B

2

4

2

1

2

2

2

13 0

1

9

1

6

1

5

2

4

1

3

1

2

D

P

L

1

V

L

A

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

BASE 31:24 BASE 23:16TYPE0G

0151631

078

P S

+0

+4

Figure 3.8 A segment descriptor.

• Granularity (G): This bit indicates whether the segment size value, described next,

should be interpreted in units of bytes or 4 KB. If the granularity bit is zero, segment

size is interpreted in bytes; otherwise, in units of 4 KB.

• Segment Limit: This is a 20-bit number that specifies the size of the segment. Depend-

ing on the granularity bit, two interpretations are possible:

1. If the granularity bit is zero, segment size can range from 1 byte to 1 MB (i.e., 220

bytes), in increments of 1 byte.

2. If the granularity bit is 1, segment size can range from 4 KB to 4 GB, in increments

of 4 KB.

• D/B Bit: In a code segment, this bit is called the D bit and specifies the default size for

operands and offsets. If the D bit is 0, default operands and offsets are assumed to be

16 bits; for 32-bit operands and offsets, the D bit must be 1.

Section 3.3 Protected-Mode Memory Architecture 57

In a data segment, this bit is called the B bit and controls the size of the stack and stack

pointer. If the B bit is 0, stack operations use the SP register and the upper bound for the

stack is FFFFH. If the B bit is 1, the ESP register is used for the stack operations with a

stack upper bound of FFFFFFFFH. Recall that numbers expressed in the hexadecimal

number system are indicated by suffix H (see Appendix A).

Typically, this bit is cleared for the real-mode operation and set for the protected-mode

operation. Section 3.5 describes how 16- and 32-bit operands and addresses can be

mixed in a given mode of operation.

• S Bit: This bit identifies whether the segment is a system segment or an application

segment. If the bit is 0, the segment is identified as a system segment; otherwise, it is

treated as an application (code or data) segment.

• Descriptor Privilege Level (DPL): This field defines the privilege level of the segment.

It is useful in controlling access to the segment using the protection mechanisms of the

Pentium processor.

• Type: This field identifies the type of segments. The actual interpretation of this field

depends on whether the segment is a system or application segment. For application

segments, the type depends on whether the segment is a code or data segment. For a

data segment, the type can identify it as a read-only, read-write, and so on. For a code

segment, the type identifies it as an execute-only, execute/read-only, and so on.

• P bit: This bit indicates whether the segment is present. If this bit is 0, the processor

generates a segment-not-present exception when a selector for the descriptor is loaded

into a segment register.

3.3.3 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors shown in Figure 3.8. There are

three types of descriptor tables:

• The global descriptor table (GDT);

• Local descriptor tables (LDT);

• The interrupt descriptor table (IDT).

All three descriptor tables are variable in size from 8 bytes to 64 KB. The interrupt descriptor

table is used in interrupt processing and is discussed in Chapter 14. Both LDT and GDT can

contain up to 213 = 8192 8-bit descriptors. As shown in Figure 3.6, the upper 13 bits of a

segment selector are used as an index into the selected descriptor table. Each table has an

associated register that holds the 32-bit linear base address and a 16-bit size of the table. The

LDTR and GDTR registers are used for this purpose. These registers can be loaded using

lldt and lgdt instructions. Similarly, the values of LDTR and GDTR registers can be

stored by sldt and sgdt instructions. These instructions are typically used by the operating

system to set up the segment descriptor tables.

58 Chapter 3 The Pentium Processor

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

CS

SS

DS

ES

FS

GS

CODE

STACK

DATA

DATA

DATA

DATA

Figure 3.9 Segments in a multisegment model.

The global descriptor table contains descriptors that are available to all tasks within the

system. There is only one GDT in the system. Typically, the GDT contains code and data used

by the operating system. The local descriptor table contains descriptors for a given program.

There can be several LDTs, each of which may contain descriptors for code, data, stack, and

so on. A program cannot access a segment unless there is a descriptor for the segment in

either the current LDT or the GDT.

3.3.4 Segmentation Models

The Pentium segments can span the entire memory address space. As a result, we can ef-

fectively make the segmentation invisible by mapping all segment base addresses to zero and

setting the size to 4 GB. Such a model is called a flat model and is used in programming

environments such as UNIX and Linux.

Another model that uses the capabilities of segmentation to the full extent is the multi-

segment model. Figure 3.9 shows an example mapping of six segments. A program, in fact,

can have more than just six segments. In this case, the segment descriptor table associated

with the program will have the descriptors loaded for all the segments defined by the program.

However, at any time, only six of these segments can be active. Active segments are those that

Section 3.4 Real-Mode Memory Architecture 59

Physical address

11000

11450

Offset

(450)

Segment base

(1100)

Figure 3.10 Relationship between logical and physical addresses of memory (all numbers are in hex).

have their segment selectors loaded into the six segment registers. A segment that is not active

can be made active by loading its selector into one of the segment registers, and the processor

automatically loads the associated descriptor (i.e., the “invisible part” shown in Figure 3.7).

The Pentium generates a general-protection exception if an attempt is made to access memory

beyond the segment limit.

3.4 Real-Mode Memory Architecture
The Pentium behaves as a faster 8086 in the real mode. The memory address space of the

8086 processor is 1 MB. To address a memory location, we have to use a 20-bit address. The

address of the first location is 00000H; the last addressable memory location is at FFFFFH.

Since all registers in the 8086 are 16 bits wide, the address space is limited to 216, or

65,536 (64 K) locations. As a consequence, the memory is organized as a set of segments.

Each segment of memory is a linear contiguous sequence of up to 64-K bytes. In this seg-

mented memory organization, we have to specify two components to identify a memory lo-

cation: a segment base and an offset. This two-component specification is referred to as the

logical address. The segment base specifies the start address of a segment in memory and

the offset specifies the address relative to the segment base. The offset is also referred to as

the effective address. The relationship between the logical and physical addresses is shown in

Figure 3.10.

60 Chapter 3 The Pentium Processor

19 0

0

0 0 0 0

19 15

34

16

19 0

0 0 0 0

ADDER

Offset value

Segment register

20-bit physical memory address

Figure 3.11 Physical address generation in the 8086.

Notice from Figure 3.10 that the segment base address is 20 bits long (11000H). So how

can we use a 16-bit register to store the 20-bit segment base address? The trick is to store the

most significant 16 bits of the segment base address and assume that the least significant four

bits are all 0. In the example, we would store 1100H as the segment base. The implied four

least significant zero bits are not stored. This trick works but imposes a restriction on where

a segment can begin. Segments can begin only at those memory locations whose address has

the least significant four bits as 0. Thus, segments can begin at 00000H, 00010H, 00020H,

. . ., FFFE0H, FFFF0H. Segments, for example, cannot begin at 00001H or FFFEEH.

In the segmented memory organization, a memory location can be identified by its logical

address. We use the notation segment:offset to specify the logical address. For example,

1100:450H identifies the memory location (i.e., 11450H), as shown in Figure 3.10. The latter

value to identify a memory location is referred to as the physical memory address.

Programmers have to be concerned with the logical addresses only. However, when the

processor accesses the memory, it has to supply the 20-bit physical memory address. The

conversion of logical address to physical address is straightforward. This translation process,

shown in Figure 3.11, involves adding four least significant zero bits to the segment base value

and then adding the offset value. When using the hexadecimal number system, simply add a

Section 3.4 Real-Mode Memory Architecture 61

120A9

Segment base

Segment base

(1200)

Offset (A9)

(20A9)

Offset

(1000)

Segment 2Segment 1

Figure 3.12 Two logical addresses map to the same physical address (all numbers are in hex).

zero digit to the segment base address at the right and add the offset value. As an example,

consider the logical address 1100:450H. The physical address is computed as follows:

11000 (add 0 to the 16-bit segment base value)

+ 450 (offset value)

11450 (physical address).

For each logical memory address, there is a unique physical memory address. The con-

verse, however, is not true. More than one logical address can refer to the same physical

memory address. This is illustrated in Figure 3.12, where logical addresses 1000:20A9H and

1200:A9H refer to the same physical address 120A9H. In this example, the physical memory

address 120A9H is mapped to two segments.

In our discussion of segments, we never said anything about the actual size of a segment.

The main factor limiting the size of a segment is the 16-bit offset value, which restricts the

segments to at most 64 KB in size. In the real mode, the Pentium sets the size of each

segment to exactly 64 KB. At any instance, a program can access up to six segments. The

8086 actually supported only four segments: segment registers FS and GS were not present

in the 8086 processor.

62 Chapter 3 The Pentium Processor

CODE

STACK

CS

SS

DS

ES

FS

GS

DATA

DATA

DATA

DATA

Figure 3.13 The six segments of the memory system.

Assembly language programs typically use at least two segments: code and stack seg-

ments. If the program has data (which almost all programs do), a third segment is also needed

to store data. Those programs that require additional memory can use the other segments.

The six segment registers of the Pentium point to the six segments, as shown in Fig-

ure 3.13. As described earlier, segments must begin on 16-byte memory boundaries. Except

for this restriction, segments can be placed anywhere in memory. The segment registers are in-

dependent and segments can be contiguous, disjoint, partially overlapped, or fully overlapped,

as shown in Figure 3.14.

3.5 Mixed-Mode Operation
Our previous discussion of protected and real modes of operation suggests that we can use

either 16-bit or 32-bit operands and addresses. The D/B bit indicates the default size. The

question is: Is it possible to mix these two? For instance, can we use 32-bit registers in the

16-bit mode of operation? The answer is yes!

The Pentium provides two size override prefixes—one for the operands and the other for

the addresses—to facilitate such mixed-mode programming. Details on these prefixes are

provided in Chapter 6.

Section 3.6 Which Segment Register to Use 63

(a) Adjacent (b) Disjoint (c) Partially overlapped (d) Fully overlapped

Figure 3.14 Various ways of placing segments in the memory.

3.6 Which Segment Register to Use
This discussion applies to both real and protected modes of operation. In generating a physical

memory address, the Pentium uses different segment registers depending on the purpose of

the memory reference. Similarly, the offset part of the logical address comes from a variety

of sources.

Instruction Fetch When the memory access is to read an instruction, the CS register pro-

vides the segment base address. The offset part is supplied either by the IP or EIP register,

depending on whether we are using 16-bit or 32-bit addresses. Thus, CS:(E)IP points to the

next instruction to be fetched from the code segment.

Stack Operations Whenever the processor is accessing the memory to perform a stack

operation such as push or pop, the SS register is used for the segment base address, and the

offset value comes from either the SP register (for 16-bit addresses) or the ESP register (for

32-bit addresses). For other operations on the stack, the BP or EBP register supplies the offset

value. A lot more is said about the stack in Chapter 5.

Accessing Data If the purpose of accessing memory is to read or write data, the DS register

is the default choice for providing the data segment base address. The offset value comes from

a variety of sources depending on the addressing mode used. Addressing modes are discussed

in Chapter 6.

64 Chapter 3 The Pentium Processor

3.7 Initial State
When the system is turned on, a built-in self-test (BIST) could be done to check the processor

health. The result of this test is returned in the EAX register. EAX contains a zero if the

processor has passed the test; otherwise, a nonzero value is returned.

The EIP is initialized to 0000FFF0H and code segment register is set to F000H. This

segment descriptor contains the following information:

Base address = FFFF0000H
Segment limit = FFFFH

Since we know the values of the EIP and base address, we can find the address of the first

instruction:

Base address: FFFF0000
Offset (in EIP): FFF0

First address: FFFFFFF0

The first instruction executed must be located at 16 bytes below the highest address. This

is where the system’s EPROM/flash memory should be located to provide the initialization

code.

All the other segment registers are cleared to use the segment selector 0. This segment

selector contains the following information:

Base address = 00000000H
Segment limit = FFFFH

As you can see from the base address values, all segments start at address 0. Note also that the

segment size of all segments is limited to 64 KB as in the real mode. In fact, Pentium starts

in the real mode. It maintains a control register (CR0) to facilitate mode switching. The least

significant bit of this register can be used to switch to the protected mode. For example, we

can switch to the protected mode using the following code:

; enter protected mode

mov EAX,CR0 ; EAX = CR0

or EAX,1 ; EAX = EAX OR 1

mov CR0,EAX ; CR0 = EAX

We discuss these instructions in the next chapter. Briefly, the first instruction copies the CR0

register value into the EAX register. The second instruction sets the least significant bit to 1,

and the last instruction copies this modified value back to the CR0 register. We have to use

this indirect method, as modifying the contents of CR0 is not allowed by Pentium.

Note that this code should not be used to switch the mode without setting up the appropri-

ate tables such as global descriptor table, interrupt descriptor table, and so on.

After initialization, the global, local, and interrupt descriptor table registers, GDTR, LDTR

and IDTR, are initialized as follows:

Section 3.8 Summary 65

Base address = 00000000H
Segment limit = FFFFH

All the eight registers discussed in Sections 3.2.1 and 3.2.2 are initialized to zero with the

exception of EAX and EDX. When BIST is selected, the EAX contains the result of the test.

If no BIST is done, EAX is also initialized to zero. The EDX register is used to identify the

processor (386, 486, Pentium).

3.8 Summary
We described the architecture of the Pentium processor. The Pentium can address up to 4 GB

of memory. It provides protected- and real-mode memory architectures. The protected mode

is the native mode of the Pentium processor. In this mode, the Pentium supports both paging

and segmentation. Paging is useful in implementing virtual memory and is not considered

here.

In the real mode, the Pentium supports 16-bit addresses and the memory architecture of the

8086 processor. We discussed the segmented memory architecture in detail, as these details

are necessary to program in the assembly language.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Address translation

• Effective address

• Flat segmentation model

• Instruction pointer

• Linear address

• Logical address

• Mixed-mode operation

• Pentium control registers

• Pentium data registers

• Pentium flags register

• Pentium index registers

• Pentium pointer registers

• Pentium registers

• Physical address

• Protected-mode architecture

• Real-mode architecture

• Segment descriptor

• Segment descriptor tables

• Segment registers

• Segmented memory organization

3.9 Exercises
3–1 What is the purpose of providing various registers in a processor?

3–2 What are the three address spaces supported by the Pentium processor in the protected

mode?

3–3 What is a segment? Why does the Pentium support segmented memory architecture?

66 Chapter 3 The Pentium Processor

3–4 Why is segment size limited to 64 KB in the real mode?

3–5 In the real mode, segments cannot be placed anywhere in memory. Explain the reason

for this restriction.

3–6 In the real mode, can a segment begin at the following physical addresses?

(a) 1235AH (b) 53535H

(c) 21700H (d) ABCD0H

3–7 What is the maximum size of a segment in the protected mode?

3–8 We stated that the Pentium can access up to six segments at a time. What is the hardware

reason for this limitation?

3–9 In the protected mode, segment size granularity can be either 1 byte or 4 KB. Explain

the hardware reason for this restriction.

3–10 What is the purpose of the TI field in the segment descriptor?

3–11 We looked at two descriptor tables: GDT and LDT. What is the maximum number of

descriptors each table can have? Explain the hardware reason for this restriction.

3–12 Describe the logical to physical address translation process in the real mode.

3–13 Describe the logical to linear address translation process in the protected mode.

3–14 Discuss the differences between the segmentation architectures supported in the real

and protected modes.

3–15 If a processor has 16 address lines, what is the physical memory address space of this

processor? Give the address of the first and last addressable memory locations in hex.

3–16 Convert the following logical addresses to physical addresses. All numbers are in hexa-

decimal. Assume the real mode.
(a) 1A2B:019A (b) 3911:200

(c) 2591:10B5 (d) 1100:ABCD

Chapter 4

Overview of Assembly

Language

Objectives
• To introduce the basics of the Pentium assembly language

• To discuss data allocation statements of the assembly language

• To describe data transfer instructions of Pentium

• To provide an overview of the Pentium instruction set

• To examine how constants and macros are defined in the assembly language

• To demonstrate the performance benefits of the translation instruction

The objective of this chapter is to review the basics of the Pentium assembly language. As-

sembly language statements can either instruct the processor to perform a task, or direct the

assembler during the assembly process. The latter statements are called assembler directives.

Section 4.1 discusses the format and types of assembly language statements.

Assemblers provide several directives to reserve storage space for variables. These direc-

tives are discussed in Section 4.2. The instructions of the processor consist of an operation

code to indicate the type of operation to be performed, and the specification of the data re-

quired (also called the addressing mode) by the operation. Section 4.3 describes some basic

addressing modes supported by the Pentium.

The instruction set of the Pentium can be divided into several groups of instructions. Sec-

tion 4.4 discusses the instructions that transfer data, including mov, xchg, and xlat instruc-

tions. Section 4.5 provides an overview of some of the Pentium instructions belonging to the

other groups. Later chapters discuss these instructions in more detail.

67

68 Chapter 4 Overview of Assembly Language

Section 4.6 describes the assembler directives to define constants—numeric as well as

string constants. NASM allows definition of macros with parameters. Macros provide a so-

phisticated text substitution mechanism, which is introduced in Section 4.7. Several examples

are provided in Section 4.8. The performance advantage of the translation instruction xlat
is demonstrated in Section 4.9. The chapter concludes with a summary.

4.1 Assembly Language Statements
Assembly language programs are created out of three different classes of statements. State-

ments in the first class tell the processor what to do. These statements are called executable

instructions, or instructions for short. Each executable instruction consists of an operation

code (opcode for short). Executable instructions cause the assembler to generate machine

language instructions. As stated in Chapter 1, each executable statement typically generates

one machine language instruction.

The second class of statements provides information to the assembler on various aspects

of the assembly process. These instructions are called assembler directives or pseudo-ops.

Assembler directives are nonexecutable and do not generate any machine language instruc-

tions.

The last class of statements, called macros, are used as a shorthand notation for a group of

statements. Macros permit the assembly language programmer to name a group of statements

and refer to the group by the macro name. During the assembly process, each macro is

replaced by the group of statements that it represents and assembled in place. This process

is referred to as macro expansion. We use macros to provide the basic input and output

capabilities to standalone assembly language programs. Macros are discussed in Section 4.7.

Assembly language statements are entered one per line in the source file. All three classes

of the assembly language statements use the same format:

[label] mnemonic [operands] [;comment]

The fields in the square brackets are optional in some statements. As a result of this format, it

is common practice to align the fields to aid readability of assembly language programs. The

assembler does not care about spaces between the fields.

Now let us look at some sample assembly language statements.

repeat: inc result ;increment result by 1

The label repeat can be used to refer to this particular statement. The mnemonic inc
indicates increment operation to be done on the data stored in memory at a location identified

by result. The following assembler directive defines a constant CR. The ASCII carriage-

return value is assigned to it by the EQU directive.

CR EQU 0DH ;carriage-return character

Section 4.2 Data Allocation 69

In the previous two examples, the label field has two different forms. The label in the ex-

ecutable instruction is followed by a colon (:) but not in the directive statement. Certain

reserved words that have special meaning to the assembler are not allowed as labels. These

include mnemonics such as inc and EQU.

The fields in a statement must be separated by at least one space or tab character. More

spaces and tabs can be used at the programmer’s discretion, but the assembler ignores them.

It is a good programming practice to use blank lines and spaces to improve the readability

of assembly language programs. As a result, you rarely see in this book a statement containing

all four fields in a single line. In particular, we almost always write labels on a separate line

unless doing so destroys the program structure. Thus, our first example assembly language

statement is written on two lines as

repeat:

inc result ;increment result by 1

4.2 Data Allocation
In high-level languages, allocation of storage space for variables is done indirectly by spec-

ifying the data types of each variable used in the program. For example, in C, the following

declarations allocate different amounts of storage space for each variable.

char response; /* allocates 1 byte */

int value; /* allocates 4 bytes */

float total; /* allocates 4 bytes */

double temp; /* allocates 8 bytes */

These variable declarations not only specify the amount of storage required, but also indicate

how the stored bit pattern should be interpreted. As an example, consider the following two

statements in C:

unsigned value_1;

int value_2;

Both variables use four bytes of storage. However, the bit pattern stored in them would be

interpreted differently. For instance, the bit pattern (8FF08DB9H)

1000 1111 1111 0000 1000 1101 1011 1001

stored in the four bytes allocated for value_1 is interpreted as representing +2.4149× 109,

while the same bit pattern stored in value_2 would be interpreted as −1.88006× 109.

In the assembly language, allocation of storage space is done by the define assembler di-

rective. The define directive can be used to reserve and initialize one or more bytes. However,

no interpretation (as in a C variable declaration) is attached to the contents of these bytes. It

is entirely up to the program to interpret the bit pattern stored in the space reserved for data.

70 Chapter 4 Overview of Assembly Language

The general format of the storage allocation statement for initialized data is

[variable-name] define-directive initial-value [,initial-value],· · ·

The square brackets indicate optional items. The variable-name is used to identify

the storage space allocated. The assembler associates an offset value for each variable name

defined in the data segment. Note that no colon (:) follows the variable name (unlike a label

identifying an executable statement).

The define directive takes one of the five basic forms:

DB Define Byte ; allocates 1 byte

DW Define Word ; allocates 2 bytes

DD Define Doubleword ; allocates 4 bytes

DQ Define Quadword ; allocates 8 bytes

DT Define Ten Bytes ; allocates 10 bytes

Let us look at some examples now.

sorted DB ’y’

This statement allocates a single byte of storage and initializes it to y. Our assembly language

program can refer to this character location by its name sorted. We can also use numbers

to initialize. For example,

sorted DB 79H

or

sorted DB 1111001B

is equivalent to

sorted DB ’y’

Note that the ASCII value for y is 79H. The following data definition statement allocates

two bytes of contiguous storage and initializes it to 25159.

value DW 25159

The decimal value 25159 is automatically converted to its 16-bit binary equivalent (6247H).

Since Pentium uses little-endian byte ordering (see Chapter 2), this 16-bit number is stored in

memory as

address: x x+1

contents: 47 62

You can also use negative values, as in the following example:

Section 4.2 Data Allocation 71

balance DW -29255

Since 2’s complement representation is used to store negative values, −29,255 is converted to

8DB9H and is stored as

address: x x+1

contents: B9 8D

The statement

total DD 542803535

would allocate four contiguous bytes of memory and initialize it to 542803535 (205A864FH),

as shown below:

address: x x+1 x+2 x+3

contents: 4F 86 5A 20

Range of Numeric Operands

The numeric operand of a define directive can take both signed and unsigned numbers. The

valid range depends on the number of bytes allocated as shown in the following table:

Directive Valid range

DB −128 to 255 (i.e., −27 to 28 − 1)

DW −32,768 to 65,535 (i.e., −215 to 216 − 1)

DD −2,147,483,648 to 4,294,967,295 (i.e., −231 to 232 − 1)

or a short floating-point number (32 bits)

DQ −263 to 264 − 1

or a long floating-point number (64 bits)

Short and long floating-point numbers are represented using 32 or 64 bits, respectively

(see Appendix A for details). We can use DD and DQ directives to assign real numbers, as

shown in the following examples:

float1 DD 1.234

real2 DQ 123.456

Uninitialized Data

To reserve space for uninitialized data, we use RESB, RESW, and so on. Each reserve directive

takes a single operand that specifies the number of units of space (bytes, words, . . .) to be

reserved. There is a reserve directive for each define directive.

72 Chapter 4 Overview of Assembly Language

RESB Reserve a Byte

RESW Reserve a Word

RESD Reserve a Doubleword

RESQ Reserve a Quadword

REST Reserve Ten Bytes

Here are some examples:

response RESB 1

buffer RESW 100

total RESD 1

The first statement reserves a byte while the second reserves space for an array of 100 words.

The last statement reserves space for a doubleword.

Multiple Definitions

Assembly language programs typically contain several data definition statements. For exam-

ple, look at the following assembly language program fragment:

sort DB ’y’ ; ASCII of y = 79H

value DW 25159 ; 25159D = 6247H

total DD 542803535 ; 542803535D = 205A864FH

When several data definition statements are used as above, the assembler allocates contiguous

memory for these variables. The memory layout for these three variables is

address: x x+1 x+2 x+3 x+4 x+5 x+6

contents: 79
︸︷︷︸

sort

47 62
︸ ︷︷ ︸

value

4F 86 5A 20
︸ ︷︷ ︸

total

Multiple data definitions can be abbreviated. For example, the following sequence of eight

DB directives

message DB ’W’

DB ’E’

DB ’L’

DB ’C’

DB ’O’

DB ’M’

DB ’E’

DB ’!’

can be abbreviated as

message DB ’W’,’E’,’L’,’C’,’O’,’M’,’E’,’!’

Section 4.2 Data Allocation 73

or even more compactly as

message DB ’WELCOME!’

Here is another example showing how abbreviated forms simplify data definitions. The

definition

message DB ’B’

DB ’y’

DB ’e’

DB 0DH

DB 0AH

can be written as

message DB ’Bye’,0DH,0AH

Similar abbreviated forms can be used with the other define directives. For instance, a

marks array of size 8 can be defined and initialized to zero by

marks DW 0

DW 0

DW 0

DW 0

DW 0

DW 0

DW 0

DW 0

which can be abbreviated as

marks DW 0, 0, 0, 0, 0, 0, 0, 0

The initialization values of define directives can also be expressions as shown in the following

example.

max_marks DW 7*25

This statement is equivalent to

max_marks DW 175

The assembler evaluates such expressions at assembly time and assigns the resulting value.

Use of expressions to specify initial values is not preferred, because it affects the readability of

your program. However, there are certain situations where using an expression actually helps

clarify the code. In our example, if max_marks represents the sum of seven assignment

marks where each assignment is marked out of 25 marks, it is preferable to use the expression

7*25 rather than 175.

74 Chapter 4 Overview of Assembly Language

Multiple Initializations

In the previous example, if the class size is 90, it is inconvenient to define the array as de-

scribed. The TIMES directive allows multiple initializations to the same value. Using TIMES,

the marks array can be defined as

marks TIMES 8 DW 0

The TIMES directive is useful in defining arrays and tables.

Symbol Table

When we allocate storage space using a data definition directive, we usually associate a sym-

bolic name to refer to it. The assembler, during the assembly process, assigns an offset value

for each symbolic name. For example, consider the following data definition statements:

.DATA

value DW 0

sum DD 0

marks TIMES 10 DW 0

message DB ’The grade is:’,0

char1 DB ?

As noted before, the assembler assigns contiguous memory space for the variables. The

assembler also uses the same ordering of variables that is present in the source code. Then,

finding the offset value of a variable is a simple matter of counting the number of bytes

allocated to all the variables preceding it. For example, the offset value of marks is 6 because

value and sum are allocated 2 and 4 bytes, respectively. The symbol table for the data

segment is shown below:

Name Offset

value 0

sum 2

marks 6

message 26

char1 40

4.3 Where Are the Operands?
Assembly language programs can be thought of as consisting of two logical parts: data and

code. Most assembly language instructions require operands. There are several ways to spec-

ify the location of the operands. These are called the addressing modes. This section is a brief

overview of some of the addressing modes required to do basic assembly language program-

ming. A complete discussion is given in Chapter 6.

An operand required by an instruction may be in any one of the following locations:

Section 4.3 Where Are the Operands? 75

• in a register internal to the processor;

• in the instruction itself;

• in main memory (usually in the data segment);

• at an I/O port (discussed in Chapter 15).

Specification of an operand that is in a register is called register addressing mode, while

immediate addressing mode refers to specifying an operand that is part of the instruction.

Several addressing modes are available to specify the location of an operand residing in mem-

ory. The motivation for providing these addressing modes comes from the perceived need to

efficiently support high-level language constructs (see Chapter 6 for details).

4.3.1 Register Addressing Mode

In this addressing mode, processor’s internal registers contain the data to be manipulated by

the instruction. For example, the instruction

mov EAX,EBX

requires two operands and both are in the processor registers. The syntax of the mov instruc-

tion is

mov destination,source

The mov instruction copies contents of source to destination. The contents of source
are not destroyed. Thus,

mov EAX,EBX

copies the contents of the EBX register into the EAX register. Note that the original contents

of EAX are lost. In this example, the mov instruction is operating on 32-bit data. However, it

can also work on 16- and 8-bit data, as shown below:

mov BX,CX

mov AL,CL

Register-addressing mode is the most efficient way of specifying data because the data are

within the processor and, therefore, no memory access is required.

4.3.2 Immediate Addressing Mode

In this addressing mode, data are specified as part of the instruction itself. As a result, even

though the data are in memory, it is located in the code segment, not in the data segment. This

addressing mode is typically used in instructions that require at least two data items to manip-

ulate. In this case, this mode can only specify the source operand. In addition, the immediate

data are always a constant, given either directly or via the EQU directive (discussed in Sec-

tion 4.6). Thus, instructions typically use another addressing mode to specify the destination

operand. In the following example,

76 Chapter 4 Overview of Assembly Language

mov AL,75

the source operand 75 is specified in the immediate addressing mode and the destination

operand is specified in the register-addressing mode. Such instructions are said to use mixed-

mode addressing.

The remainder of the addressing modes we discuss here deal with operands that are located

in the data segment. These are called the memory addressing modes. We discuss two memory-

addressing modes here: direct and indirect. The remaining memory-addressing modes are

discussed in Chapter 6.

4.3.3 Direct Addressing Mode

Operands specified in a memory-addressing mode require access to the main memory, usually

to the data segment. As a result, they tend to be slower than either of the two previous

addressing modes.

Recall that to locate a data item in the data segment, we need two components: the segment

start address and an offset value within the segment. The start address of the segment is

typically found in the DS register. Thus, various memory-addressing modes differ in the way

the offset value of the data is specified. The offset value is often called the effective address.

In the direct addressing mode, the offset value is specified directly as part of the instruc-

tion. In an assembly language program, this value is usually indicated by the variable name

of the data item. The assembler will translate this name into its associated offset value during

the assembly process. To facilitate this translation, the assembler maintains a symbol table.

As discussed before, the symbol table stores the offset values of all variables in the assembly

language program.

This addressing mode is the simplest of all the memory-addressing modes. A restriction

associated with the memory-addressing modes is that these can be used to specify only one

operand. The examples that follow assume the following data definition statements in the

program.

response DB ’Y’ ; allocates a byte, initializes to Y

table1 TIMES 20 DD 0 ; allocates 80 bytes, initializes to 0

name1 DB ’Jim Ray’ ; 7 bytes are initialized to Jim Ray

Here are some examples of the mov instruction:

mov AL,[response] ; copies Y into AL register

mov [response],’N’ ; N is written into response

mov [name1],’K’ ; write K as the first character of name1

mov [table1],56 ; 56 is written in the first element

This last statement is equivalent to table1[0] = 56 in C.

In NASM, we write

Section 4.3 Where Are the Operands? 77

mov EBX,table1

to copy the address of table1 into the EBX register. If we want the value, we should use []

as in the previous examples. For example, the statement

mov EBX,[table1]

copies the first element of table1 into EBX. This notation is different from the TASM/

MASM notation.

4.3.4 Indirect Addressing Mode

The direct addressing mode can be used in a straightforward way but is limited to accessing

simple variables. For example, it is not useful in accessing the second element of table1 as

in the following C statement:

table1[1] = 99

The indirect addressing mode remedies this deficiency. In this addressing mode, the offset or

effective address of the data is in one of the general registers. For this reason, this addressing

mode is sometimes referred to as the register indirect addressing mode.

The indirect addressing mode is not required for variables having only a single element

(e.g., response). But for variables like table1 containing several elements, the starting

address of the data structure can be loaded into, say, the EBX register and then EBX acts as a

pointer to an element in table1. By manipulating the contents of the EBX register, we can

access different elements of table1.

The following code assigns 100 to the first element and 99 to the second element of

table1. Note that EBX is incremented by 4 because each element of table1 requires

four bytes.

mov EBX,table1 ; copy address of table1 to EBX

mov [EBX],100 ; table1[0] = 100

add EBX,4 ; EBX = EBX + 4

mov [EBX],99 ; table1[1] = 99

Chapter 6 discusses other memory-addressing modes that can perform this task more effi-

ciently.

The effective address can also be loaded into a register by the lea (load effective address)

instruction. The syntax of this instruction is

lea register,source

Thus,

lea EBX,[table1]

78 Chapter 4 Overview of Assembly Language

can be used in place of the

mov EBX,table1

instruction. The difference is that lea computes the offset values at run time, whereas the

mov version resolves the offset value at assembly time. For this reason, we try to use the

latter whenever possible. However, lea offers more flexibility as to the types of source
operands. For example, we can write

lea EBX,[array+ESI]

to load EBX with the address of an element of array whose index is in the ESI register.

However, we cannot write

mov EBX,[array+ESI] ; illegal

as the contents of ESI are known at assembly time.

4.4 Data Transfer Instructions
We now discuss some of the data transfer instructions supported by Pentium. Specifically,

we describe the mov, xchg, and xlat instructions. Other data transfer instructions such as

movsx and movzx are discussed in Chapter 7.

4.4.1 The MOV Instruction

We have already introduced the mov instruction, which requires two operands and has the

syntax

mov destination,source

The data are copied from source to destination and the source operand remains

unchanged. Both operands should be of the same size. The mov instruction can take one of

the following five forms:

mov register,register

mov register,immediate

mov memory,immediate

mov register,memory

mov memory,register

There is no move instruction to transfer data from memory to memory, as the Pentium

processor does not allow it. However, as we will see in Chapter 10, memory-to-memory data

transfer is possible using the string instructions.

Here are some example mov statements:

mov [response],BH

mov EDX,[table1]

mov [name1+4],’K’

Section 4.4 Data Transfer Instructions 79

4.4.2 Ambiguous Moves

Moving an immediate value into memory sometimes causes ambiguity as to the type of

operand. For example, in the statements

mov EBX,table1

mov ESI,name1

mov [EBX],100

mov [ESI],100

it is not clear whether a word (2 bytes) or a byte equivalent of 100 is to be written in the

memory. We can clarify this ambiguity by using a type specifier. For example, we can use

WORD type specifier to identify a word operation and BYTE for a byte operation. Using the

type specifiers, we can write

mov WORD [EBX],100

mov BYTE [ESI],100

We can also write these statements as

mov [EBX],WORD 100

mov [ESI],BYTE 100

Some of the type specifiers available are given below:

Type specifier Bytes addressed

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

4.4.3 The XCHG Instruction

The xchg instruction exchanges 8-, 16-, or 32-bit source and destination operands. The

syntax is similar to that of the mov instruction. Some examples are

xchg EAX,EDX

xchg [response],CL

xchg [total],DX

As in the mov instruction, both operands cannot be located in memory. Note that this restric-

tion is applicable to most instructions. Thus,

xchg [response],[name1] ; illegal

is invalid. The xchg instruction is convenient because we do not need a third register to hold

a temporary value in order to swap two values. For example, we need three mov instructions

80 Chapter 4 Overview of Assembly Language

mov ECX,EAX

mov EAX,EDX

mov EDX,ECX

to perform xchg EAX,EDX. This instruction is especially useful in sorting applications. It is

also useful to swap the two bytes of 16-bit data to perform conversions between little-endian

and big-endian forms. The following example

xchg AL,AH

converts the value in AX to the other endian form. Pentium provides the bswap instruction

to perform such conversions on 32-bit data. The format is

bswap register

This instruction works only on the data located in a 32-bit register.

4.4.4 The XLAT Instruction

The xlat (translate) instruction can be used to perform character translation. The format of

this instruction is shown below:

xlatb

To use this instruction, the EBX register must to be loaded with the starting address of

the translation table and AL must contain an index value into the table. The xlat instruction

adds contents of AL to EBX and reads the byte at the resulting address. This byte replaces

the index value in the AL register. Since the 8-bit AL register provides the index into the

translation table, the number of entries in the table is limited to 256. An application of xlat
is given in Example 4.8.

4.5 Overview of Assembly Language Instructions
This section briefly reviews some of the remaining assembly language instructions. The dis-

cussion presented here would provide sufficient exposure to the assembly language so that

you can write meaningful assembly language programs.

4.5.1 Simple Arithmetic Instructions

The Pentium provides several instructions to perform simple arithmetic operations. In this

section, we describe five instructions to perform addition and subtraction. We defer a full

discussion until Chapter 7.

The INC and DEC Instructions

These instructions can be used to either increment or decrement the operands by one. The

inc (INCrement) instruction adds one to its operand and the dec (DECrement) instruction

Section 4.5 Overview of Assembly Language Instructions 81

subtracts one from its operand. Both instructions require a single operand. The operand can

be either in a register or in memory. It does not make sense to use an immediate operand such

as inc 55 or dec 109.

The general format of these instructions is

inc destination

dec destination

where destination may be an 8-, 16- or 32-bit operand.

inc EBX ; increment 32-bit register

dec DL ; decrement 8-bit register

Let us assume that EBX and DL have 1057H and 5AH, respectively. After executing the

above two instructions, EBX and DL would have 1058H and 59H, respectively. If the initial

values of EBX and DL are FFFFH and 00H, after executing the two statements the contents

of EBX and DL are changed to 0000H and FFH, respectively.

As another example, consider the following program:

.DATA

count DW 0

value DB 25

.CODE

inc [count] ;unambiguous

dec [value] ;unambiguous

mov EBX,count

inc [EBX] ;ambiguous

mov ESI,value

dec [ESI] ;ambiguous

In the above example,

inc [count]

dec [value]

are unambiguous because the assembler knows from the definition of count and value that

they are WORD and BYTE operands. However,

inc [EBX]

dec [ESI]

are ambiguous because EBX and ESI merely point to an object in memory but the actual

object type (whether a WORD or BYTE) is not clear. We have to use a type specifier to

clarify this ambiguity, as shown below:

inc WORD [EBX]

dec BYTE [ESI]

82 Chapter 4 Overview of Assembly Language

Table 4.1 Some Examples of the add Instruction

Before add After add

Instruction Source Destination Destination

add AX,DX DX = AB62H AX = 1052H AX = BBB4H
add BL,CH BL = 76H CH = 27H BL = 9DH
add value,10H — value = F0H value = 00H
add DX,count count = 3746H DX = C8B9H DX = FFFFH

The ADD Instruction

The add instruction can be used to add two 8-, 16- or 32-bit operands. The syntax is

add destination,source

As with the mov instruction, add can also take the five basic forms depending on how the

two operands are specified. The semantics of the add instruction are

destination = destination + source

Some examples of add instruction are givn in Table 4.1. In general,

inc EAX

is preferred to

add EAX,1

as the inc version improves readability and requires less memory space to store the instruc-

tion. However, both instructions execute at the same speed.

The SUB and CMP Instructions

The sub (SUBtract) instruction can be used to subtract two 8-, 16- or 32-bit numbers. The

syntax is

sub destination,source

The source operand is subtracted from the destination operand and the result is placed

in the destination.

destination = destination − source

Table 4.2 gives examples of the sub instruction.

The cmp (CoMPare) instruction is used to compare two operands (equal, not equal, and

so on). The cmp instruction performs the same operation as the sub instruction except that

Section 4.5 Overview of Assembly Language Instructions 83

Table 4.2 Some Examples of the sub Instruction

Before sub After sub

Instruction Source Destination Destination

sub AX,DX DX = AB62H AX = 1052H AX = 64F0H
sub BL,CH CH = 27H BL = 76H BL = 4FH
sub value,10H — value = F0H value = E0H
sub DX,count count = 3746H DX = C8B9H DX = 9173H

the result of subtraction is not saved. Thus, cmp does not disturb the source and destination

operands. While both sub and cmp instructions take the same number of clocks in most

cases, cmp requires one less if the destination is memory. This is because the cmp instruction

does not write the result in memory, whereas the sub instruction does.

The cmp instruction is typically used in conjunction with a conditional jump instruction

for decision making. This is the topic of the next section.

4.5.2 Conditional Execution

The Pentium instruction set has several branching and looping instructions to construct pro-

grams that require conditional execution. In this section, we discuss a subset of these instruc-

tions. A detailed discussion is in Chapter 8.

Unconditional Jump

The unconditional jump instruction jmp, as its name implies, tells the processor that the next

instruction to be executed is located at the label that is given as part of the instruction. This

jump instruction has the form

jmp label

where label identifies the next instruction to be executed. The following example

mov EAX,1

inc_again:

inc EAX

jmp inc_again

mov EBX,EAX

. . .

results in an infinite loop incrementing EAX repeatedly. The instruction

mov EBX,EAX

and all the instructions following it are never executed!

84 Chapter 4 Overview of Assembly Language

From this example, the jmp instruction appears to be useless. Later, we show some

examples that illustrate the use of this instruction.

Conditional Jump

In conditional jump instructions, program execution is transferred to the target instruction

only if the specified condition is satisfied. The general format is

j<cond> label

where <cond> identifies the condition under which the target instruction at label should

be executed. Usually, the condition being tested is the result of the last arithmetic or logic

operation. For example, the following code

read_char:

mov DL,0

. . .

(code for reading a character into AL)

. . .

cmp AL,0DH ;compare the character to CR

je CR_received ;if equal, jump to CR_received

inc CL ;otherwise, increment CL and

jmp read_char ;go back to read another

; character from keyboard

CR_received:

mov DL,AL

. . .

reads characters from the keyboard until the carriage-return (CR) key is pressed. The character

count is maintained in the CL register. The two instructions

cmp AL,0DH ;0DH is ASCII for carriage return

je CR_received ;je stands for jump on equal

perform the required conditional execution. How does the processor remember the result of

the previous cmp operation when it is executing the je instruction? One of the purposes of

the flags register is to provide such short-term memory between instructions. Let us look at

the actions taken by the processor in executing these two instructions.

Remember that the cmp instruction subtracts 0DH from the contents of the AL register.

While the result is not saved anywhere, the operation sets the zero flag (ZF = 1) if the two

operands are the same. If not, ZF = 0. The ZF retains this value until another instruction that

affects ZF is executed. Note that not all instructions affect all the flags. In particular, the mov
instruction does not affect any of the flags.

Thus, at the time of the je instruction execution, the processor checks the ZF and program

execution jumps to the target instruction if and only if ZF = 1. To cause the jump, Pentium

Section 4.5 Overview of Assembly Language Instructions 85

loads the EIP register with the target instruction address. Recall that the EIP register always

points to the next instruction to be executed. Therefore, when the input character is CR,

instead of fetching the instruction

inc CL

it will fetch the

mov DL,AL

instruction. Here are some of the conditions tested by the conditional jump instructions:

je jump if equal

jg jump if greater

jl jump if less

jge jump if greater than or equal

jle jump if less than or equal

jne jump if not equal

Conditional jumps can also test the values of flags. Some examples are

jz jump if zero (i.e., if ZF = 1)

jnz jump if not zero (i.e., if ZF = 0)

jc jump if carry (i.e., if CF = 1)

jnc jump if not carry (i.e., if CF = 0)

Example 4.1 Conditional jump examples.

Consider the following code.

go_back:

inc AL

. . .

. . .

cmp AL,BL

statement_1

mov BL,77H

Table 4.3 shows the actions taken depending on statement_1. �

These conditional jump instructions assume that the operands compared were treated as

signed numbers. There is another set of conditional jump instructions for operands that are un-

signed numbers. But until these instructions are discussed in Chapter 8, these six conditional

jump instructions are sufficient for writing simple assembly language programs.

When you use these conditional jump instructions, sometimes your assembler complains

that the destination of the jump is “out of range.” If you find yourself in this situation, you

can use the trick described in Section 8.3.4 on page 249.

86 Chapter 4 Overview of Assembly Language

Table 4.3 Conditional Jump Examples

statement_1 AL BL Action taken

je go_back 56H 56H Program control transferred to

inc AL

jg go_back 56H 55H Program control transferred to

inc AL

jg go_back 56H 56H No jump; executes

jl go_back mov BL,77H

jle go_back 56H 56H Program control transferred to

jge go_back inc AL

jne go_back 27H 26H Program control transferred to

jg go_back inc AL
jge go_back

4.5.3 Iteration Instruction

Iteration can be implemented with jump instructions. For example, the following code can be

used to execute <loop body> 50 times.

mov CL,50

repeat1:

<loop body>

dec CL

jnz repeat1 ;jumps back to repeat1 if CL is not 0

. . .

. . .

The Pentium instruction set, however, includes a group of loop instructions to support itera-

tion. Here we describe the basic loop instruction. The syntax of this instruction is

loop target

where target is a label that identifies the target instruction as in the jump instructions.

This instruction assumes that the ECX register contains the loop count. As part of execut-

ing the loop instruction, it decrements the ECX register and jumps to the target instruction

if ECX �= 0. Using this instruction, we can write the previous example as

mov ECX,50

repeat1:

<loop body>

loop repeat1

. . .

. . .

Section 4.5 Overview of Assembly Language Instructions 87

4.5.4 Logical Instructions

The Pentium instruction set provides several logical instructions includingand, or, xor, and

not. The syntax of these instructions is

and destination,source

or destination,source

xor destination,source

not destination

The first three are binary operators and perform bitwise and, or, and xor logical operations,

respectively. The not is a unary operator that performs bitwise complement operation. Truth

tables for the logical operations are shown in Table 4.4. Some examples that explain the

operation of these logical instructions are shown in Table 4.5. In this table, all numbers are

expressed in binary.

Logical instructions set some of the flags and therefore can be used in conditional jump

instructions to implement high-level language decision structures in the assembly language.

Until we fully discuss the flags in Chapter 7, the following usage should be sufficient to write

and understand the assembly language programs.

In the following example, we test the least significant bit of the data in the AL register,

and the program control is transferred to the appropriate code depending on the value of this

bit.

. . .

and AL,01H

je bit_is_zero

<code to be executed

when the bit is one>

jmp skip1

bit_is_zero:

<code to be executed

when the bit is zero>

skip1:

<rest of the code>

To understand how the jump is effective in this example, let us assume that AL = 10101110B.

The instruction

and AL,01H

would make the result 00H and is stored in the AL register. At the same time, the logical

operation sets the zero flag (i.e., ZF = 1) because the result is zero. Recall that je tests the ZF

and jumps to the target location if ZF = 1. In this example, it is more appropriate to use jz
(jump if zero). Thus,

jz bit_is_zero

88 Chapter 4 Overview of Assembly Language

Table 4.4 Truth Tables for the Logical Operations

and Operation

Input bits Output bit

Source bi Destination bi Destination bi

0 0 0

0 1 0

1 0 0

1 1 1

or Operation

Input bits Output bit

Source bi Destination bi Destination bi

0 0 0

0 1 1

1 0 1

1 1 1

xor Operation

Input bits Output bit

Source bi Destination bi Destination bi

0 0 0

0 1 1

1 0 1

1 1 0

can replace the

je bit_is_zero

instruction. The conditional jump je is an alias for jz.

A problem with using the and instruction for testing, as used in the previous example, is

that it modifies the destination operand. For instance, in the last example,

and AL,01H

changes the contents of AL to either 0 or 1 depending on whether the least significant bit is

0 or 1, respectively. To avoid this problem, the Pentium provides a test instruction. The

syntax is

Section 4.5 Overview of Assembly Language Instructions 89

Table 4.5 Logical Instruction Examples

and AL,BL or AL,BL xor AL,BL not AL
AL BL AL AL AL AL

1010 1110 1111 0000 1010 0000 1111 1110 0101 1110 0101 0001

0110 0011 1001 1100 0000 0000 1111 1111 1111 1111 1001 1100

1100 0110 0000 0011 0000 0010 1100 0111 1100 0101 0011 1001

1111 0000 0000 1111 0000 0000 1111 1111 1111 1111 0000 1111

test destination,source

The test instruction performs logical bitwise and operation like the and instruction except

that the source and destination operands are not modified. However, test sets the flags just

like the and instruction. Therefore, we can use

test AL,01H

instead of

and AL,01H

in the last example. Like the cmp instruction, test takes one clock less to execute than and
if the destination operand is in memory.

4.5.5 Shift Instructions

The Pentium instruction set includes several shift instructions. We discuss the following two

instructions here: shl (SHift Left) and shr (SHift Right).

The shl instruction can be used to left-shift a destination operand. Each shift to the

left by one bit position causes the leftmost bit to move to the carry flag (CF). The vacated

rightmost bit is filled with a zero. The bit that was in CF is lost as a result of this operation.

SHL

7Bit Position: 6 5 4 3 2 1 0

0CF

The shr instruction works similarly but shifts bits to the right as shown below:

CF

7 6 5 4 3 2 1 0

0SHR

Bit Position:

90 Chapter 4 Overview of Assembly Language

Table 4.6 Shift Instruction Examples

Before shift After shift

Instruction AL or AX AL or AX CF

shl AL,1 1010 1110 0101 1100 1

shr AL,1 1010 1110 0101 0111 0

mov CL,3
shl AL,CL 0110 1101 0110 1000 1

mov CL,5
shr AX,CL 1011 1101 0101 1001 0000 0101 1110 1010 1

The general formats of these instructions are

shl destination,count shr destination,count

shl destination,CL shr destination,CL

The destination can be an 8-, 16-, or 32-bit operand stored either in a register or in memory.

The second operand specifies the number of bit positions to be shifted. The first format

specifies the shift count directly. The shift count can range from 0 to 31. The second format

can be used to indirectly specify the shift count, which is assumed to be in the CL register.

The CL register contents are not changed by either the shl or shr instructions. In general,

the first format is faster!

Even though the shift count can be between 0 and 31, it does not make sense to use count

values of zero or greater than 7 (for an 8-bit operand), or 15 (for a 16-bit operand), or 31 (for

a 32-bit operand). As indicated, Pentium does not allow the specification of shift count to

be greater than 31. If a greater value is specified, Pentium takes only the least significant 5

bits of the number as the shift count. Table 4.6 shows some examples of the shl and shr
instructions.

The following code shows another way of testing the least significant bit of the data in the

AL register.

. . .

shr AL,1

jnc bit_is_zero

<code to be executed

when the bit is one>

jmp skip1

bit_is_zero:

<code to be executed

when the bit is zero>

skip1:

<rest of the code>

Section 4.5 Overview of Assembly Language Instructions 91

If the value in the AL register has a 1 in the least significant bit position, this bit will be

in the carry flag after the shr instruction has been executed. We can then use a conditional

jump instruction that tests the carry flag. Recall that jc (jump if carry) would cause the jump

if CF = 1 and jnc (jump if no carry) causes jump only if CF = 0.

4.5.6 Rotate Instructions

A drawback with the shift instructions is that the bits shifted out are lost. There may be

situations where we want to keep these bits. The rotate family of instructions provides this

facility. These instructions can be divided into two types: rotate without involving the carry

flag, or through the carry flag. We will briefly discuss these two types of instructions next.

Rotate Without Carry

There are two instructions in this group:

rol (ROtate Left)

ror (ROtate Right)

The format of these instructions is similar to the shift instructions and is given below:

rol destination,count ror destination,count

rol destination,CL ror destination,CL

The rol instruction performs left rotation with the bits falling off on the left placed on

the right side, as shown below:

7Bit Position: 6 5 4 3 2 1 0

CFROL

The ror instruction performs right rotation as shown below:

CF

7 6 5 4 3 2 1 0Bit Position:

ROR

For both of these instructions, the CF catches the last bit rotated out of destination.

The examples in Table 4.7 illustrate the rotate operation.

Rotate Through Carry

The instructions

92 Chapter 4 Overview of Assembly Language

Table 4.7 Rotate Examples

Before execution After execution

Instruction AL or AX AL or AX CF

rol AL,1 1010 1110 0101 1101 1

ror AL,1 1010 1110 0101 0111 0

mov CL,3
rol AL,CL 0110 1101 0110 1011 1

mov CL,5
ror AX,CL 1011 1101 0101 1001 1100 1101 1110 1010 1

rcl (Rotate through Carry Left)

rcr (Rotate through Carry Right)

include the carry flag in the rotation process. That is, the bit that is rotated out at one end goes

into the carry flag and the bit that was in the carry flag is moved into the vacated bit, as shown

below:

7Bit Position: 6 5 4 3 2 1 0

CFRCL

CF

7 6 5 4 3 2 1 0Bit Position:

RCR

Some examples of rcl and rcr are given in Table 4.8.

The rcl and rcr instructions provide flexibility in bit rearranging. Furthermore, these

are the only two instructions that take the carry flag bit as an input. This feature is useful in

multiword shifts. As an example, suppose that we want to right shift the 64-bit number stored

in EDX:EAX (the lower 32 bits are in EAX) by one bit position. This can be done by

shr EDX,1

rcr EAX,1

The shr instruction moves the least significant bit of EDX into the carry flag. The rcr in-

struction copies this carry flag value into the most significant bit of EAX. Chapter 9 introduces

two doubleshift instructions to facilitate shifting of 64-bit numbers.

Section 4.6 Defining Constants 93

Table 4.8 Rotate Through Carry Examples

Before execution After execution

Instruction AL or AX CF AL or AX CF

rcl AL,1 1010 1110 0 0101 1100 1

rcr AL,1 1010 1110 1 1101 0111 0

mov CL,3
rcl AL,CL 0110 1101 1 0110 1101 1

mov CL,5
rcr AX,CL 1011 1101 0101 1001 0 1001 0101 1110 1010 1

4.6 Defining Constants
NASM provides several directives to define constants. In this section, we discuss three

directives—EQU, %assign, and %define.

4.6.1 The EQU Directive

The syntax of the EQU directive is

name EQU expression

which assigns the result of the expression to name. For example, we can use

NUM_OF_STUDENTS EQU 90

to assign 90 to NUM_OF_STUDENTS. It is customary to use capital letters for these names in

order to distinguish them from variable names. Then, we can write

. . .

mov ECX,NUM_OF_STUDENTS

. . .

cmp EAX,NUM_OF_STUDENTS

. . .

to move 90 into the ECX register and to compare EAX with 90, respectively. Defining con-

stants this way has two advantages:

1. Such definitions increase program readability. This can be seen by comparing the state-

ment

mov ECX,NUM_OF_STUDENTS

with

94 Chapter 4 Overview of Assembly Language

mov ECX,90

The first statement clearly indicates that we are moving the class size into the ECX

register.

2. Multiple occurrences of a constant can be changed from a single place. For example,

if the class size changes from 90 to 100, we just need to change the value in the EQU
statement. If we didn’t use the EQU directive, we have to scan the source code and make

appropriate changes—a risky and error-prone process!

The operand of an EQU statement can be an expression that evaluates at assembly time.

We can, for example, write

NUM_OF_ROWS EQU 50

NUM_OF_COLS EQU 10

ARRAY_SIZE EQU NUM_OF_ROWS * NUM_OF_COLS

to define ARRAY_SIZE to be 500.

The symbols that have been assigned a value cannot be reassigned another value in a given

source module. If such redefinitions are required, you should use %assign directive, which

is discussed next.

4.6.2 The %assign Directive

This directive can be used to define numeric constants like the EQU directive. However,

%assign allows redefinition. For example, we define

%assign i j+1

and later in the code we can redefine it as

%assign i j+2

Like the EQU directive, it is evaluated once when %assign is processed.

The %assign is case-sensitive. That is, i and I are treated as different. We can use

%iassign for case-insensitive definition.

Both EQU and %assign directives can be used to define numeric constants. The next

directive removes this restriction.

4.6.3 The %define Directive

This directive is like the #define in C. It can be used to define numeric as well as string

constants. For example,

%define X1 [EBP+4]

replaces X1 by [EBP+4]. Like the last directive, it allows redefinition. For example, we can

redefine X1 as

Section 4.7 Macros 95

%define X1 [EBP+20]

The %define directive is case-sensitive. If you want the case-insensitive version, you should

use %idefine.

4.7 Macros
Macros provide a means by which a block of text (code, data, etc.) can be represented by a

name (called the macro name). When the assembler encounters that name later in the program,

the block of text associated with the macro name is substituted. This process is referred

to as macro expansion. In simple terms, macros provide a sophisticated text substitution

mechanism.

In NASM, macros can be defined with %macro and %endmacro directives. The macro

text begins with the %macro directive and ends with the %endmacro directive. The macro

definition syntax is

%macro macro_name para_count

<macro body>

%endmacro

The para_count specifies the number parameters used in the macro. macro_name is the

name of the macro that, when used later in the program, causes macro expansion. To invoke

or call a macro, use the macro_name and supply the necessary parameter values.

Example 4.2 A parameterless macro.

Here is our first macro example that does not require any parameters. Since using left-shift to

multiply by a power of two is more efficient than using multiplication, let us write a macro to

do this.

%macro multEAX_by_16

sal EAX,4

%endmacro

The macro code consists of a single sal instruction, which will be substituted whenever the

macro is called. Now we can invoke this macro by using the macro name multEAX_by_16,

as in the following example:

. . .

mov EAX,27

multEAX_by_16

. . .

When the assembler encounters the macro name multEAX_by_16, it is replaced (i.e., text-

substituted) by the macro body. Thus, after the macro expansion, the assembler finds the

code

96 Chapter 4 Overview of Assembly Language

. . .

mov EAX,27

sal EAX,4

. . .
�

Macros with Parameters

Just as with procedures, using parameters with macros helps us in writing more flexible and

useful macros. The previous macro always multiplies EAX by 16. By using parameters,

we can generalize this macro to operate on a byte, word, or doubleword located either in a

general-purpose register or memory. The modified macro is

%macro mult_by_16 1

sal %1,4

%endmacro

This macro takes one parameter, which can be any operand that is valid in the sal instruction.

Within the macro body, we refer to the parameters by their number as in %1. To multiply a

byte in the DL register

mult_by_16 DL

can be used. This causes the following macro expansion:

sal DL,4

Similarly, a memory variable count, whether it is a byte, word, or doubleword, can be

multiplied by 16 using

mult_by_16 count

Such a macro call will be expanded as

sal count,4

Now, at least superficially, mult_by_16 looks like any other assembly language instruc-

tion, except that we defined it. These are referred to as macroinstructions.

Example 4.3 Memory-to-memory data transfer macro.

We know that the Pentium does not allow memory-to-memory data transfer. We have to use

an intermediate register to facilitate such a data transfer. We can write a macro to perform

memory-to-memory data transfers using the basic instructions of the processor. Let us call

this macro, which exchanges the values of two memory variables, mxchg to exchange dou-

blewords of data in memory.

Section 4.7 Macros 97

%macro mxchg 2

xchg EAX,%1

xchg EAX,%2

xchg EAX,%1

%endmacro

For example, when this macro is invoked as

mxchg value1,value2

it exchanges the memory words value1 and value2 while leaving EAX unaltered. �

To end this section, we give a couple of examples from the io.mac file.

Example 4.4 PutInt macro definition from io.mac file.

This macro is used to display a 16-bit integer, which is given as the argument to the macro,

by calling the proc_PutInt procedure. The macro definition is shown below:

%macro PutInt 1

push AX

mov AX,%1

call proc_PutInt

pop AX

%endmacro

The PutInt procedure expects the integer to be in AX. Thus, in the macro body, we move

the input integer to AX before calling the procedure. Note that by using the push and pop,

we preserve the AX register. �

Example 4.5 GetStr macro definition from io.mac file.

This macro takes one or two parameters: a pointer to a buffer and an optional buffer length.

The input string is read into the buffer. If the buffer length is given, it will read a string that

is one less than the buffer length (one byte is reserved for the NULL character). If the buffer

length is not specified, a default value of 81 is assumed. This macro calls proc_GetStr
procedure to read the string. This procedure expects the buffer pointer in EDI and buffer

length in ESI register. The macro definition is given below:

%macro GetStr 1-2 81

push ESI

push EDI

mov EDI,%1

mov ESI,%2

call proc_GetStr

pop EDI

pop ESI

%endmacro

98 Chapter 4 Overview of Assembly Language

This macro is different from the previous one in that the number of parameters can be be-

tween 1 and 2. This condition is indicated by specifying the range of parameters (1–2 in our

example). A further complication is that, if the second parameter is not specified, we have to

use the default value (81 in our example). As shown in our example, we include this default

value in the macro definition. Note that this default value is used only if the buffer length is

not specified. �

Our coverage of macros is a small sample of what is available in NASM. You should refer

to the latest version of the NASM manual for complete details on macros.

4.8 Illustrative Examples
This section presents several examples that illustrate the use of the assembly language in-

structions discussed in this chapter. In order to follow these examples, you should be able to

understand the difference between binary values and character representations. For example,

when using a byte to store a number, the number 5 is stored as

00000101B

On the other hand, the character 5 is stored as

00110101B

Character manipulation is easier if you understand this difference and the key characteristics

of ASCII, as discussed in Appendix A.

Another prerequisite: Before looking at the examples of this section, you should read the

material presented in Appendix B. This appendix gives details on the structure of the stand-

alone assembly language program. In addition, it also explains how to assemble and link the

assembly language programs to generate the executable file. You would also benefit from

reading Appendix C, which gives details on debugging the assembly language programs.

Example 4.6 ASCII to binary conversion.

The goal of this example is to illustrate how the logical test instruction can be used to test

a bit. The program reads a key from the keyboard and displays its ASCII code in binary. It

then queries the user as to whether he or she wants to quit. Depending on the response, the

program either requests another character input from the keyboard, or terminates.

To display the binary value of the ASCII code of the input key, we test each bit starting

with the most significant bit (i.e., leftmost bit). The mask is initialized to 80H (=10000000B),

which tests only the value of the most significant bit of the ASCII value. If this bit is 0, the

code

test AL,mask

sets the ZF (assuming that the ASCII value is in the AL register). In this case, a 0 is displayed

by directing the program flow using the jz instruction (line 29). Otherwise, a 1 is displayed.

Section 4.8 Illustrative Examples 99

The mask is then divided by 2, which is equivalent to right-shifting mask by one bit position.

Thus, we are ready for testing the second most significant bit. The process is repeated for each

bit of the ASCII value. The pseudocode of the program is as follows.

main()
read_char:

display prompt message

read input character into char
display output message text

mask := 80H {AH is used to store mask}
count := 8 {ECX is used to store count}
repeat

if ((char AND mask) = 0)

then

write 0

else

write 1

end if

mask := mask/2 {can be done by shr}
count := count − 1

until (count = 0)

display query message

read response

if (response = ’Y’)

then

goto done
else

goto read_char
end if

done:
return

end main

The assembly language program, shown in Program 4.1, follows the pseudo-code in a

straightforward way. Note that Pentium provides an instruction to perform integer division.

However, to divide a number by 2, shr is much faster than the divide instruction. More

details about the division instructions are given in Chapter 7.

Program 4.1 Conversion of ASCII to binary representation

1: ;Binary equivalent of characters BINCHAR.ASM

2: ;

100 Chapter 4 Overview of Assembly Language

3: ; Objective: To print the binary equivalent of

4: ; ASCII character code.

5: ; Input: Requests a character from keyboard.

6: ; Output: Prints the ASCII code of the

7: ; input character in binary.

8: %include "io.mac"

9:

10: .DATA

11: char_prompt db "Please input a character: ",0

12: out_msg1 db "The ASCII code of ’",0

13: out_msg2 db "’ in binary is ",0

14: query_msg db "Do you want to quit (Y/N): ",0

15:

16: .CODE

17: .STARTUP

18: read_char:

19: PutStr char_prompt ; request a char. input

20: GetCh AL ; read input character

21:

22: PutStr out_msg1

23: PutCh AL

24: PutStr out_msg2

25: mov AH,80H ; mask byte = 80H

26: mov ECX,8 ; loop count to print 8 bits

27: print_bit:

28: test AL,AH ; test does not modify AL

29: jz print_0 ; if tested bit is 0, print it

30: PutCh ’1’ ; otherwise, print 1

31: jmp skip1

32: print_0:

33: PutCh ’0’ ; print 0

34: skip1:

35: shr AH,1 ; right-shift mask bit to test

36: ; next bit of the ASCII code

37: loop print_bit

38: nwln

39: PutStr query_msg ; query user whether to terminate

40: GetCh AL ; read response

41: cmp AL,’Y’ ; if response is not ’Y’

42: jne read_char ; read another character

43: done: ; otherwise, terminate program

44: .EXIT

Section 4.8 Illustrative Examples 101

Example 4.7 ASCII to hexadecimal conversion using character manipulation.

The objective of this example is to show how numbers can be converted to characters by using

character manipulation. This and the next example are similar to the previous one except that

the ASCII value is printed in hex. In order to get the least significant hex digit, we have to

mask off the upper half of the byte and then perform integer to hex digit conversion. The

example shown below assumes that the input character is L, whose ASCII value is 4CH.

L
ASCII−→ 01001100B

mask off
upper half−→ 00001100B

convert
to hex−→ C

Similarly, to get the most significant hex digit we have to isolate the upper half of the byte

and move these four bits to the lower half, as shown below:

L
ASCII−→ 01001100B

mask off
lower half−→ 01000000B

shift right
4 positions−→ 00000100B

convert
to hex−→ 4

Notice that shifting right by four bit positions is equivalent to performing integer division by

16. The pseudocode of the program shown in Program 4.2 is as follows:

main()
read_char:

display prompt message

read input character into char
display output message text

temp := char
char := char AND F0H {mask off lower half}
char := char/16 {shift right by 4 positions}

{The last two steps can be done by shr}
convert char to hex equivalent and display

char := temp {restore char }
char := char AND 0FH {mask off upper half}
convert char to hex equivalent and display

display query message

read response

if (response = ’Y’)

then

goto done
else

goto read_char
end if

done:
return

end main

102 Chapter 4 Overview of Assembly Language

To convert a number between 0 and 15 to its equivalent in hex, we have to divide the

process into two parts depending on whether the number is below 10 or not. The conversion

using character manipulation can be summarized as follows:

if (number ≤ 9)

then

write (number + ’0’)

then

write (number + ’A’ − 10)

end if

If the number is between 0 and 9, we add the ASCII value for character 0 to convert the

number to its character equivalent. For instance, if the number is 5 (00000101B), it should be

converted to character 5, whose ASCII value is 35H (00110101B). Therefore, we have to add

30H, which is the ASCII value of 0. This is done in Program 4.2 by

add AL,’0’

on line 31. If the number is between 10 and 15, we have to convert it to a hex digit between

A and F. You can verify that the required translation is achieved by

number − 10 + ASCII value for character A

In Program 4.2, this is done by

add AL,’A’-10

on line 34.

Program 4.2 Conversion to hexadecimal by character manipulation

1: ;Hex equivalent of characters HEX1CHAR.ASM

2: ;

3: ; Objective: To print the hex equivalent of

4: ; ASCII character code.

5: ; Input: Requests a character from keyboard.

6: ; Output: Prints the ASCII code of the

7: ; input character in hex.

8: %include "io.mac"

9:

10: .DATA

11: char_prompt db "Please input a character: ",0

12: out_msg1 db "The ASCII code of ’",0

13: out_msg2 db "’ in hex is ",0

14: query_msg db "Do you want to quit (Y/N): ",0

Section 4.8 Illustrative Examples 103

15:

16: .CODE

17: .STARTUP

18: read_char:

19: PutStr char_prompt ; request a char. input

20: GetCh AL ; read input character

21:

22: PutStr out_msg1

23: PutCh AL

24: PutStr out_msg2

25: mov AH,AL ; save input character in AH

26: shr AL,4 ; move upper 4 bits to lower half

27: mov CX,2 ; loop count - 2 hex digits to print

28: print_digit:

29: cmp AL,9 ; if greater than 9

30: jg A_to_F ; convert to A through F digits

31: add AL,’0’ ; otherwise, convert to 0 through 9

32: jmp skip

33: A_to_F:

34: add AL,’A’-10 ; subtract 10 and add ’A’

35: ; to convert to A through F

36: skip:

37: PutCh AL ; write the first hex digit

38: mov AL,AH ; restore input character in AL

39: and AL,0FH ; mask off the upper half-byte

40: loop print_digit

41: nwln

42: PutStr query_msg ; query user whether to terminate

43: GetCh AL ; read response

44:

45: cmp AL,’Y’ ; if response is not ’Y’

46: jne read_char ; read another character

47: done: ; otherwise, terminate program

48: .EXIT

Example 4.8 ASCII to hexadecimal conversion using the xlat instruction.

The objective of this example is to show how the use of xlat simplifies the solution of the

last example. In this example, we use the xlat instruction to convert a number between 0

and 15 to its equivalent hex digit. The program is shown in Program 4.3. To use xlat we

have to construct a translation table, which is done by the following statement (line 17):

hex_table DB ’0123456789ABCDEF’

104 Chapter 4 Overview of Assembly Language

We can then use the number as an index into the table. For example, index value of 10 points

to A, which is the equivalent hex digit. In order to use the xlat instruction, the EBX register

should point to the base of the hex_table and AL should have the number. The rest of the

program is straightforward to follow.

Program 4.3 Conversion to hexadecimal by using the xlat instruction

1: ;Hex equivalent of characters HEX2CHAR.ASM

2: ;

3: ; Objective: To print the hex equivalent of

4: ; ASCII character code. Demonstrates

5: ; the use of xlat instruction.

6: ; Input: Requests a character from keyboard.

7: ; Output: Prints the ASCII code of the

8: ; input character in hex.

9: %include "io.mac"

10:

11: .DATA

12: char_prompt db "Please input a character: ",0

13: out_msg1 db "The ASCII code of ’",0

14: out_msg2 db "’ in hex is ",0

15: query_msg db "Do you want to quit (Y/N): ",0

16: ; translation table: 4-bit binary to hex

17: hex_table db "0123456789ABCDEF"

18:

19: .CODE

20: .STARTUP

21: read_char:

22: PutStr char_prompt ; request a char. input

23: GetCh AL ; read input character

24:

25: PutStr out_msg1

26: PutCh AL

27: PutStr out_msg2

28: mov AH,AL ; save input character in AH

29: mov EBX,hex_table ; EBX = translation table

30: shr AL,4 ; move upper 4 bits to lower half

31: xlatb ; replace AL with hex digit

32: PutCh AL ; write the first hex digit

33: mov AL,AH ; restore input character to AL

34: and AL,0FH ; mask off upper 4 bits

35: xlatb

36: PutCh AL ; write the second hex digit

37: nwln

Section 4.8 Illustrative Examples 105

38: PutStr query_msg ; query user whether to terminate

39: GetCh AL ; read response

40:

41: cmp AL,’Y’ ; if response is not ’Y’

42: jne read_char ; read another character

43: done: ; otherwise, terminate program

44: .EXIT

Example 4.9 Conversion of lowercase letters to uppercase.

This program demonstrates how indirect addressing can be used to access elements of an

array. It also illustrates how character manipulation can be used to convert lowercase letters

to uppercase. The program receives a character string from the keyboard and converts all

lowercase letters to uppercase and displays the string. Characters other than the lowercase

letters are not changed in any way. The pseudocode of Program 4.4 is shown below:

main()
display prompt message

read input string
index := 0

char := string[index]
while (char �= NULL)

if ((char≥ ’a’) AND (char ≤ ’z’))

then

char := char + ’A’ − ’a’

end if

display char
index := index + 1

char := string[index]
end while

end main

You can see from Program 4.4 that the compound if condition requires two cmp instruc-

tions (lines 27 and 29). Also, the program uses the EBX register in indirect addressing mode

and always holds the pointer value of the character to be processed. In Chapter 6 we will see

a better way of accessing the elements of an array. The end of the string is detected by

cmp AL,0 ; check if AL is NULL

je done

and is used to terminate the while loop (lines 25 and 26).

106 Chapter 4 Overview of Assembly Language

Program 4.4 Conversion to uppercase by character manipulation

1: ;Uppercase conversion of characters TOUPPER.ASM

2: ;

3: ; Objective: To convert lowercase letters to

4: ; corresponding uppercase letters.

5: ; Input: Requests a character string from keyboard.

6: ; Output: Prints the input string in uppercase.

7: %include "io.mac"

8:

9: .DATA

10: name_prompt db "Please type your name: ",0

11: out_msg db "Your name in capitals is: ",0

12:

13: .UDATA

14: in_name resb 31

15:

16: .CODE

17: .STARTUP

18: PutStr name_prompt ; request character string

19: GetStr in_name,31 ; read input character string

20:

21: PutStr out_msg

22: mov EBX,in_name ; EBX = pointer to in_name

23: process_char:

24: mov AL,[EBX] ; move the char. to AL

25: cmp AL,0 ; if it is the NULL character

26: je done ; conversion done

27: cmp AL,’a’ ; if (char < ’a’)

28: jl not_lower_case ; not a lowercase letter

29: cmp AL,’z’ ; if (char > ’z’)

30: jg not_lower_case ; not a lowercase letter

31: lower_case:

32: add AL,’A’-’a’ ; convert to uppercase

33: not_lower_case:

34: PutCh AL ; write the character

35: inc EBX ; EBX points to the next char.

36: jmp process_char ; go back to process next char.

37: done:

38: nwln

39: .EXIT

Section 4.8 Illustrative Examples 107

Example 4.10 Sum of the individual digits of a number.

This last example shows how decimal digits can be converted from their character represen-

tations to the binary equivalent. The program receives a number (maximum 10 digits) and

displays the sum of the individual digits of the input number. For example, if the input num-

ber is 45213, the program displays 4 + 5 + 2 + 1 + 3 = 15. Since ASCII assigns a special set

of contiguous values to the digit characters, it is straightforward to get their numerical value

(see our discussion in Appendix A). All we have to do is to mask off the upper half of the

byte, as is done in Program 4.5 (line 28) by

and AL,0FH

Alternatively, we could also subtract the character code for 0

sub AL,’0’

instead of masking the upper half byte. For the sake of brevity, we leave writing the pseu-

docode of Program 4.5 as an exercise.

Program 4.5 Sum of individual digits of a number

1: ;Add individual digits of a number ADDIGITS.ASM

2: ;

3: ; Objective: To find the sum of individual digits of

4: ; a given number. Shows character to binary

5: ; conversion of digits.

6: ; Input: Requests a number from keyboard.

7: ; Output: Prints the sum of the individual digits.

8: %include "io.mac"

9:

10: .DATA

11: number_prompt db "Please type a number (<11 digits): ",0

12: out_msg db "The sum of individual digits is: ",0

13:

14: .UDATA

15: number resb 11

16:

17: .CODE

18: .STARTUP

19: PutStr number_prompt ; request an input number

20: GetStr number,11 ; read input number as a string

21:

22: mov EBX,number ; EBX = address of number

23: sub DX,DX ; DX = 0 -- DL keeps the sum

24: repeat_add:

25: mov AL,[EBX] ; move the digit to AL

108 Chapter 4 Overview of Assembly Language

26: cmp AL,0 ; if it is the NULL character

27: je done ; sum is done

28: and AL,0FH ; mask off the upper 4 bits

29: add DL,AL ; add the digit to sum

30: inc EBX ; update EBX to point to next digit

31: jmp repeat_add

32: done:

33: PutStr out_msg

34: PutInt DX ; write sum

35: nwln

36: .EXIT

4.9 Performance: When to Use XLAT Instruction
The xlat instruction is convenient to perform character conversions. Proper use of xlat
would produce an efficient assembly language program. In this section, we demonstrate by

means of two examples when xlat is beneficial from the performance point of view.

In general, xlat is not really useful if, for example, there is a straightforward method

or a “formula” for the required conversion. This is true for conversions that exhibit a regular

structure. An example of this type of conversion is the case conversion between uppercase and

lowercase letters in ASCII. As you know, the ASCII encoding makes this conversion rather

simple. Experiment 1 takes a look at this type of example.

The use of the xlat instruction, however, produces efficient code if the conversion does

not have a regular structure. Conversion from EBCDIC to ASCII is one example that can

benefit from using the xlat instruction. Conversion to hex is another example, as shown in

Examples 4.7 and 4.8. This example is used in Experiment 2 to show the performance benefit

that can be obtained from using the xlat instruction for the conversion.

4.9.1 Experiment 1

In this experiment, we show how using the xlat instruction for case conversion of letters

deteriorates the performance. We have transformed the code of Example 4.9 to a procedure

that can be called from a C main program that keeps track of the time (see Chapter 1 for

details about the C main program). All interaction with the display is suppressed for these

experiments. This case conversion procedure is called several times to convert a string of

lowercase letters. The string length is fixed at 1000 characters.

We used two versions of the case conversion procedure. The first version does not use the

xlat instruction for case conversion. Instead, it uses the statement

add AL,’A’-’a’

as shown in Program 4.4.

Section 4.9 Performance: When to Use XLAT Instruction 109

0

1

2

3

100 200 300 400 500 600

Number of calls (in thousands)

T
im

e
(s

ec
o

n
d

s) with xlat

without xlat

Figure 4.1 Performance of the case conversion program.

The other version uses the xlat instruction for case conversion. In order to do so, we

have to set up the following conversion table in the data section:

upper_table DB ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Furthermore, after initializing EBX to upper_table, the following code

sub AL,’a’

xlat

replaces the code

add AL,’A’-’a’

You can clearly see the disadvantage of the xlat version of the code. First of all, it

requires additional space to store the translation table upper_table. More important

than this is the fact that the xlat version requires additional time. Note that the add and

sub instructions take the same amount of time to execute. Therefore, the xlat version re-

quires additional time to execute xlat, which generates a memory read to get the byte from

upper_table located in the data segment.

The performance superiority of the first version (i.e., the version that does not use the

xlat instruction) is clearly shown in Figure 4.1. These results were obtained on a 2.4-GHz

Pentium 4 system. In this plot, the x-axis gives the number of times the case conversion

procedure is called to convert a lowercase string of 1,000 characters. The data show that

using the xlat instruction deteriorates the performance by about 35 percent! For the reasons

discussed before, this is clearly a bad example to use the xlat instruction.

110 Chapter 4 Overview of Assembly Language

0

0.25

0.5

0.75

1

100 200 300 400 500 600

Number of calls (in thousands)

T
im

e
(s

ec
o

n
d

s)

with xlat

without xlat

Figure 4.2 Performance of the hex conversion program.

4.9.2 Experiment 2

In this experiment, we use the hex conversion examples of Section 4.8 to show the benefits of

the xlat instruction. As shown in Example 4.7, without using the xlat, we have to test the

input number to see if it falls in the range of 0–9 or 10–15. However, such testing and hence

the associated overhead can be avoided by using a translation table along with xlat.

The two programs of Examples 4.7 and 4.8 have been converted to C callable procedures

as in the last experiment. Each procedure receives a string and converts the characters in

the input string to their hex equivalents. However, the hex code is not displayed. The input

test string in this experiment consists of lowercase and uppercase letters, digits, and special

symbols for a total of 100 characters.

The results, obtained on a 2.4-GHz Pentium 4 system, are shown in Figure 4.2. The data

presented in this figure clearly demonstrate the benefit of using the xlat in this example.

The procedure that does not use the xlat instruction is about 45% slower!

The moral of the story is that judicious use of assembly language instructions is necessary

in order to reap the benefits of the assembly language.

4.10 Summary
In this chapter, we presented basics of the Pentium assembly language programming. We

discussed three types of assembly language statements:

1. Executable statements that instruct the CPU as to what to do;

Section 4.11 Exercises 111

2. Assembler directives that facilitate the assembly process;

3. Macros that facilitate modular program design.

Assembler directives to allocate storage space for data variables and to define numeric and

string constants were discussed in detail. Macros provide a sophisticated text substitution

mechanism. Although not used as frequently as procedures, macros are useful in certain

situations.

An overview of the Pentium instruction set was also presented. While we discussed in

detail the data transfer instructions, there was only a brief review of the remaining instructions

of the Pentium instruction set. A detailed discussion of these instructions is provided in later

chapters.

We also demonstrated the performance advantage of the xlat instruction under certain

conditions. The results show that judicious use of the xlat instruction provides significant

performance advantages for character conversions. On the other hand, there are instances

wherein the xlat instruction deteriorates performance.

4.11 Exercises
4–1 Why doesn’t the CPU execute assembler directives?

4–2 For each of the following statements, what is the amount of storage space reserved (in

bytes)? Also indicate the initialized data. Verify your answers using your assembler.

(a) table TIMES 100 DW -1

(b) value DW -2300

(c) count DW 40000

(d) msg1 DB ’Finder’’s fee is:’,0

(e) msg3 DB ’Sorry! Invalid input.’,0DH,0AH,0

4–3 What is an addressing mode? Why does Pentium provide several addressing modes?

4–4 We discussed four different addressing modes in this chapter. Which addressing mode

is the most efficient? Explain why.

4–5 Can we use the immediate addressing mode in the inc instruction? Justify your answer.

4–6 Discuss the pros and cons of using the lea instruction as opposed to using the mov
instruction to get the effective address.

4–7 Use the following data definitions to answer this question:

.DATA

num1 DW 100

num2 DB 225

char1 DB ’Y’

num3 DD 0

Identify whether the following instructions are legal or illegal. Explain the reason for

each illegal instruction.

112 Chapter 4 Overview of Assembly Language

(a) mov EAX,EBX (b) mov EAX,num2

(c) mov BL,num1 (d) mov DH,char1

(e) mov char1,num2 (f) mov IP,num1

(g) add 75,EAX (h) cmp 75,EAX

(i) sub char1,’A’ (j) xchg AL,num2

(k) xchg AL,23 (l) inc num3

4–8 Assume that the registers are initialized to

EAX = 12345D, EBX = 9528D

ECX = -1275D, EDX = -3001D

What is the destination operand value (in hex) after executing the following instructions:

(Note: Assume that the four registers are initialized as shown above for each question.)

(a) add EAX,EBX (b) sub AX,CX

(c) and EAX,EDX (d) or BX,AX

(e) not EDX (f) shl BX,2

(g) shl EAX,CL (h) shr BX,2

(i) shr EAX,CL (j) sub CX,BX

(k) add ECX,EDX (l) sub DX,CX

4–9 In the following code fragments, state whether mov AX,10 or mov BX,1 is exe-

cuted:

(a) (b)

mov CX,5 mov CX,5

sub DX,DX mov DX,10

cmp DX,CX shr DX,1

jge jump1 cmp CX,DX

mov BX,1 je jump1

jmp skip1 mov BX,1

jump1: jmp skip1

mov AX,10 jump1:

skip1: mov AX,10

. . . skip1:

. . .

(c) (d)

mov CX,15BAH mov CX,5

mov DX,8244H not CX

and DX,CX mov DX,10

jz jump1 cmp CX,DX

mov BX,1 jg jump1

jmp skip1 mov BX,1

jump1: jmp skip1

mov AX,10 jump1:

Section 4.12 Programming Exercises 113

skip1: mov AX,10

. . . skip1:

. . .

4–10 Describe in one sentence what the following code is accomplishing in terms of number

manipulation:

(a) (b)

not AX not AX

add AX,1 inc AX

(c) (d)

sub AH,AH sub AH,AH

sub DH,DH sub DH,DH

mov DL,AL mov DL,AL

add DX,DX mov CL,3

add DX,DX shl DX,CL

add DX,AX shl AX,1

add DX,DX add DX,AX

4–11 Do you need to know the initial contents of the AX register in order to determine the

contents of the AX register after executing the following code? If so, explain why.

Otherwise, find the AX contents.

(a) (b)

mov DX,AX mov DX,AX

not AX not AX

or AX,DX and AX,DX

4.12 Programming Exercises
4–P1 Modify the program of Example 4.6 so that, in response to the query

Do you want to quit (Y/N):

the program terminates only if the response is Y or y; continues with a request for

another character only if the response to the query is N or n; otherwise, repeats the

query.

4–P2 Modify the program of Example 4.6 to accept a string and display the binary equiva-

lent of the input string. As in the example, the user should be queried about program

termination.

4–P3 Modify the addigits.asm program such that it accepts a string from the keyboard

consisting of digit and nondigit characters. The program should display the sum of

the digits present in the input string. All nondigit characters should be ignored. For

example, if the input string is

ABC1?5wy76:˜2

114 Chapter 4 Overview of Assembly Language

the output of the program should be

sum of individual digits is: 21

4–P4 Write an assembly language program to encrypt digits as shown below:

input digit: 0 1 2 3 4 5 6 7 8 9

encrypted digit: 4 6 9 5 0 3 1 8 7 2

Briefly discuss whether or not you would use the xlat instruction. Your program

should accept a string consisting of digit and nondigit characters. The encrypted string

should be displayed in which only the digits are affected. Then the user should be

queried whether he or she wants to terminate the program. If the response is either ’y’

or ’Y’ you should terminate the program; otherwise, you should request another input

string from the keyboard.

The encryption scheme given here has the property that when you encrypt an already

encrypted string, you get back the original string. Use this property to verify your

program.

4–P5 Using only the assembly language instructions discussed so far, write a program to

accept a number in hexadecimal form and display the decimal equivalent of the number.

A typical interaction of your program is (user input is shown in bold):

Please input a positive number in hex (4 digits max.): A10F

The decimal equivalent of A10FH is 41231

Do you want to terminate the program (Y/N): Y

You should refer to Appendix A for an algorithm to convert from base b to decimal.

Hints:

1. Required multiplication can be done by the shl instruction.

2. Once you have converted the hex number into the equivalent in binary using the

algorithm of Appendix A, you can use the PutInt routine to display the decimal

equivalent.

4–P6 Repeat the previous exercise with the following modifications: the input number is

given in decimal and the program displays the result of (integer) dividing the input by

4. You should not use the GetInt routine to read the input number. Instead, you

should read the input as a string using GetStr. A typical interaction of the program is

(user input is shown in bold):

Please input a positive number (<65,535): 41231

41231/4 = 10307

Do you want to terminate the program (Y/N): Y

Remember that the decimal number is read as a string of digit characters. Therefore,

you will have to convert it to binary form to store internally. This conversion requires

Section 4.12 Programming Exercises 115

multiplication by 10 (see Appendix A). We haven’t discussed multiplication instruction

yet (and you should not use it even if you are familiar with it). But there is a way of

doing multiplication by 10 using only the instructions discussed in this chapter. (If you

have done the exercises of this chapter, you already know how!)

4–P7 Write a program that reads an input number (given in decimal) between 0 and 65,535

and displays the hexadecimal equivalent. You can read the input using GetInt rou-

tine. As with the other programming exercises, you should query the user for program

termination.

4–P8 Modify the above program to display the octal equivalent instead of the hexadecimal

equivalent of the input number.

4–P9 Write a complete assembly language program to perform logical-address to physical-

address translation (see Chapter 3 for details on the translation process). Your program

should take a logical address as its input and display the corresponding physical address.

The input consists of two parts: segment value and offset value. Both are given as

hexadecimal numbers. You can assume the real mode.

Chapter 5

Procedures and the Stack

Objectives
• To introduce the stack and its implementation in the Pentium

• To describe stack operations and the use of the stack

• To present procedures and parameter passing mechanisms

• To discuss separate assembly of source program modules

The last chapter gave an introduction to the assembly language programs. Here we discuss

how procedures are written in the assembly language. Procedures are important programming

constructs that facilitate modular programming. The stack plays an important role in proce-

dure invocation and execution. Section 5.1 introduces the stack concept, and the next section

discusses how the stack is implemented in the Pentium processor. Stack operations—push

and pop—are discussed in Section 5.3. Section 5.4 discusses some typical uses of the stack.

After a brief introduction to procedures in Section 5.5, the Pentium instructions for pro-

cedure invocation and return are discussed in Section 5.6. Parameter passing mechanisms are

discussed in detail in Section 5.7. The stack plays an important role in parameter passing.

Using the stack it is relatively straightforward to pass variable number of arguments to a pro-

cedure. We discuss this topic in Section 5.8. The issue of local variable storage in procedures

is discussed in Section 5.9.

Although short assembly language programs can be stored in a single file, real application

programs are broken into several files called modules. The issues involved in writing and

assembling multiple source program modules are discussed in Section 5.10. Section 5.11

presents the performance overheads associated with procedures. The last section provides a

summary of the chapter.

117

118 Chapter 5 Procedures and the Stack

1000 1000

1001

1000

1001

1002

1000

1001

1002

Empty

stack

After

inserting

1000

After

inserting

1001

After

inserting

1002

After

inserting

1003

1003

Figure 5.1 An example showing stack growth: Numbers 1000 through 1003 are inserted in ascending

order. The arrow points to the top-of-stack.

5.1 What Is a Stack?
Conceptually, a stack is a last-in–first-out (LIFO) data structure. The operation of a stack is

analogous to the stack of trays you find in cafeterias. The first tray removed from the stack

would be the last tray that had been placed on the stack. There are two operations associated

with a stack: insertion and deletion. If we view the stack as a linear array of elements, stack

insertion and deletion operations are restricted to one end of the array. Thus, the only element

that is directly accessible is the element at the top-of-stack (TOS). In the stack terminology,

insert and delete operations are referred to as push and pop operations, respectively.

There is another related data structure, the queue. A queue can be considered as a linear

array with insertions done at one end of the array and deletions at the other end. Thus, a queue

is a first-in–first-out (FIFO) data structure.

As an example of a stack, let us assume that we are inserting numbers 1000 through

1003 into a stack in ascending order. The state of the stack can be visualized as shown in

Figure 5.1. The arrow points to the top-of-stack. When the numbers are deleted from the

stack, the numbers will come out in the reverse order of insertion. That is, 1003 is removed

first, then 1002, and so on. After the deletion of the last number, the stack is said to be in the

empty state (see Figure 5.2).

By contrast, a queue maintains the order. Suppose that the numbers 1000 through 1003 are

inserted into a queue as in the stack example. When removing the numbers from the queue,

the first number to enter the queue would be the one to come out first. Thus, the numbers

deleted from the queue would maintain their insertion order.

5.2 Pentium Implementation of the Stack
The memory space reserved in the stack segment is used to implement the stack. The registers

SS and ESP are used to implement the Pentium stack. The top-of-stack, which points to the

last item inserted into the stack, is indicated by SS:ESP, with the SS register pointing to the

Section 5.2 Pentium Implementation of the Stack 119

1000

1001

1002

1000

1001

1002

1000

1001

1000

Empty

stack

Initial

stack

After

1003

removing

After

1002

removing

After

1001

removing

After

1000

removing

1003

Figure 5.2 Deletion of data items from the stack: The arrow points to the top-of-stack.

beginning of the stack segment, and the ESP register giving the offset value of the last item

inserted.

The key Pentium stack implementation characteristics are as follows:

• Only words (i.e., 16-bit data) or doublewords (i.e., 32-bit data) are saved on the stack,

never a single byte.

• The stack grows toward lower memory addresses. Since we graphically represent mem-

ory with addresses increasing from the bottom of a page to the top, we say that the stack

grows “downward.”

• Top-of-stack (TOS) always points to the last data item placed on the stack. TOS always

points to the lower byte of the last word inserted into the stack.

Figure 5.3a shows an empty stack with 256 bytes of memory for stack operations. When

the stack is initialized, TOS points to the byte just outside the reserved stack area. It is an

error to read from an empty stack, as this causes stack underflow.

When a word is pushed onto the stack, ESP is first decremented by two, and then the

word is stored at SS:ESP. Since the Pentium uses little-endian byte order, the higher-order

byte is stored in the higher memory address. For instance, when we push 21ABH, the stack

expands by two bytes, and ESP is decremented by two to point to the last data item, as shown

in Figure 5.3b. The stack shown in Figure 5.3c results when we expand the stack further by

four more bytes by pushing the doubleword 7FBD329AH onto the stack.

The stack full condition is indicated by the zero offset value (i.e., ESP = 0). If we try to

insert a data item into a full stack, stack overflow occurs. Both stack underflow and overflow

are programming errors and should be handled with care.

Retrieving a 32-bit data item from the stack causes the offset value to increase by four to

point to the next data item on the stack. For example, if we retrieve a doubleword from the

stack shown in Figure 5.4a, we get 7FBD329AH from the stack and ESP is updated, as shown

in Figure 5.4b. Notice that the four memory locations retain their values. However, since TOS

is updated, these four locations can be used to store the next data value pushed onto the stack,

as shown in Figure 5.4c.

120 Chapter 5 Procedures and the Stack

? ?

? ?

.

.

.

SS ? ?

? ?

? ?

? ?

A B

2 1

TOS

(254)

ESP

? ?

? ?

? ?

.

.

.

SS ? ?

? ?

? ?

? ?

? ?

TOS

ESP

(256)

.

.

.

SS ? ?

? ?

2 1

A B

7 F

B D

3 2

9 ATOS

ESP

(250)

21ABH

After pushing

7FBD329AH

(b) (c)(a)

(256 bytes)

Empty stack After pushing

Figure 5.3 Stack implementation in the Pentium: SS:ESP points to the top-of-stack.

5.3 Stack Operations
The Pentium instruction set has several instructions to support stack operations. These include

the basic instructions like push and pop that operate on single registers. In addition, separate

instructions are provided to push and pop the flags register as well as the complete register

set.

5.3.1 Basic Instructions

The Pentium allows the push and pop operations on word or doubleword data items. The

syntax is

push source

pop destination

The operand of these two instructions can be a 16- or 32-bit general-purpose register, segment

register, or a word or doubleword in memory. In addition, source for the push instruction

can be an immediate operand of size 8, 16, or 32 bits. Table 5.1 summarizes the two stack

operations.

Section 5.3 Stack Operations 121

2 1

.

.

.

SS ? ?

? ?

A B

7 F

B D

3 2

9 ATOS

ESP

(250)

.

.

.

SS ? ?

? ?

A B

2 1

TOS

ESP

(254)

7 F

B D

3 2

9 A

.

.

.

SS ? ?

? ?

2 1

A B

TOS

ESP

(252)

5 6

8 9

3 2

9 A

5689H

After pushingAfter removing

(a) (b) (c)

7FBD329AH(two data items)

Initial stack

Figure 5.4 An example showing stack insert and delete operations.

On an empty stack shown in Figure 5.3a the statements

push 21ABH

push 7FBD329AH

would result in the stack shown in Figure 5.4a. Executing the statement

pop EBX

on this stack would result in the stack shown in Figure 5.4b with the register EBX receiving

7FBD329AH.

5.3.2 Additional Instructions

The Pentium supports two special instructions for stack manipulation. These instructions can

be used to save or restore the flags and general-purpose registers.

122 Chapter 5 Procedures and the Stack

Table 5.1 Stack Operations on 16- and 32-Bit Data

push source16 ESP = ESP − 2

SS:ESP = source16

ESP is first decremented by 2 to modify TOS.

Then the 16-bit data from source16 is copied

onto the stack at the new TOS. The stack ex-

pands by two bytes.

push source32 ESP = ESP − 4

SS:ESP = source32

ESP is first decremented by 4 to modify TOS.

Then the 32-bit data from source32 is copied

onto the stack at the new TOS. The stack ex-

pands by four bytes.

pop dest16 dest16 = SS:ESP

ESP = ESP + 2

The data item located at TOS is copied to

dest16. Then ESP is incremented by 2 to up-

date TOS. The stack shrinks by two bytes.

pop dest32 dest32 = SS:ESP

ESP = ESP + 4

The data item located at TOS is copied to

dest32. Then ESP is incremented by 4 to up-

date TOS. The stack shrinks by four bytes.

Stack Operations on Flags

The push and pop operations cannot be used to save or restore the flags register. For this,

the Pentium provides two special versions of these instructions:

pushfd (push 32-bit flags)

popfd (pop 32-bit flags)

These instructions do not need any operands. For operating on the 16-bit flags register

(FLAGS), we can use pushfw and popfw instructions. If we use pushf the default operand

size selects either pushfd or pushfw. In our programs, since our default is 32-bit operands,

pushf is used as an alias for pushfd. However, we use pushfd to make the operand size

explicit. Similarly, popf can be used as an alias for either popfd or popfw.

Stack Operations on All General-Purpose Registers

The Pentium also provides special pusha and popa instructions to save and restore the

eight general-purpose registers. The pushad saves the 32-bit general-purpose registers EAX,

ECX, EDX, EBX, ESP, EBP, ESI, and EDI. These registers are pushed in the order specified.

The last register pushed is the EDI register. The popad restores these registers except that it

will not copy the ESP value (i.e., the ESP value is not loaded into the ESP register as part of

the popad instruction). The corresponding instructions for the 16-bit registers are pushaw

Section 5.4 Uses of the Stack 123

and popaw. These instructions are useful in procedure calls, as we show in Section 5.7.4.

Like pushf and popf, we can use pusha and popa as aliases.

5.4 Uses of the Stack
The stack is used for three main purposes: as a scratchpad to temporarily store data, for

transfer of program control, and for passing parameters during a procedure call.

5.4.1 Temporary Storage of Data

The stack can be used as a scratchpad to store data on a temporary basis. For example,

consider exchanging the contents of two 32-bit variables that are in the memory: value1
and value2. We cannot use

xchg value1,value2 ; illegal

because both operands of xchg are in the memory. The code

mov EAX,value1

mov EBX,value2

mov value1,EBX

mov value2,EAX

works, but it uses two 32-bit registers. This code requires four memory operations. However,

due to the limited number of general-purpose registers, finding spare registers that can be used

for temporary storage is nearly impossible in almost all programs.

What if we need to preserve the contents of the EAX and EBX registers? In this case, we

need to save and restore these registers as shown below:

. . .

;save EAX and EBX registers on the stack

push EAX

push EBX

;EAX and EBX registers can now be used

mov EAX,value1

mov EBX,value2

mov value1,EBX

mov value2,EAX

;restore EAX and EBX registers from the stack

pop EBX

pop EAX

. . .

This code requires eight memory accesses. Because the stack is a LIFO data structure, the

sequence of pop instructions is a mirror image of the push instruction sequence.

124 Chapter 5 Procedures and the Stack

An elegant way of exchanging the two values is

push value1

push value2

pop value1

pop value2

Notice that the above code does not use any general-purpose registers and requires eight

memory operations as in the other example. Another point to note is that push and pop
instructions allow movement of data from memory to memory (i.e., between data and stack

segments). This is a special case because mov instructions do not allow memory-to-memory

data transfer. Stack operations are an exception. String instructions, discussed in Chapter 10,

also allow memory-to-memory data transfer.

Stack is frequently used as a scratchpad to save and restore registers. The necessity often

arises when we need to free up a set of registers so they can be used by the current code. This

is often the case with procedures, as we show in Section 5.7.

It should be clear from these examples that the stack grows and shrinks during the course

of program execution. It is important to allocate enough storage space for the stack, as stack

overflow and underflow could cause unpredictable results, often causing system errors.

5.4.2 Transfer of Control

The previous discussion concentrated on how we, as programmers, can use the stack to store

data temporarily. The stack is also used by some instructions to store data temporarily. In

particular, when a procedure is called, the return address of the instruction is stored on the

stack so that the control can be transferred back to the calling program. A detailed discussion

of this topic appears in Section 5.6.

5.4.3 Parameter Passing

Another important use of the stack is to act as a medium to pass parameters to the called

procedure. The stack is extensively used by high-level languages to pass parameters. A

discussion on the use of the stack for parameter passing is deferred until Section 5.7.

5.5 Procedures
A procedure is a logically self-contained unit of code designed to perform a particular task.

These are sometimes referred to as subprograms and play an important role in modular pro-

gram development. In high-level languages, there are two types of subprograms: procedures

and functions. Each function receives a list of arguments and performs a computation based

on the arguments passed onto it and returns a single value. Procedures also receive a list of

arguments just as the functions do. However, procedures, after performing their computation,

may return zero or more results back to the calling procedure. In C language, both these

subprogram types are combined into a single function construct.

Section 5.5 Procedures 125

In the C function

int sum (int x, int y)

{

return (x+y);

}

the parameters x and y are called formal parameters and the function body is defined based

on these parameters. When this function is called (or invoked) by a statement like

total = sum(number1,number2);

the actual parameters—number1 and number2—are used in the computation of the func-

tion sum.

There are two types of parameter passing mechanisms: call-by-value and call-by-reference.

In the call-by-value mechanism, the called function (sum in our example) is provided only

the current value of the arguments for its use. Thus, in this case, the values of these actual

parameters are not changed in the called function; these values can only be used as in a math-

ematical function. In our example, the sum function is invoked by using the call-by-value

mechanism, as we simply pass the values of number1 and number2 to the called function

sum.

In the call-by-reference mechanism, the called function actually receives the addresses

(i.e., pointers) of the parameters from the calling function. The function can change the

contents of these parameters—and these changes are seen by the calling function—by directly

manipulating the actual parameter storage space. For instance, the following swap function

void swap (int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}

assumes that swap receives the addresses of the two parameters from the calling function.

Thus, we are using the call-by-reference mechanism for parameter passing. Such a function

can be invoked by

swap (&data1, &data2);

Often both types of parameter passing mechanisms are used in the same function. As an

example, consider finding the roots of the quadratic equation

ax2 + bx + c = 0 .

126 Chapter 5 Procedures and the Stack

The two roots are defined as

root1 =
−b +

√
b2 − 4ac

2a
,

root2 =
−b −

√
b2 − 4ac

2a
.

The roots are real if b2 ≥ 4ac, and imaginary otherwise.

Suppose that we want to write a function that receives a, b, and c and returns the values of

the two roots (if real) and indicates whether the roots are real or imaginary.

int roots (double a, double b, double c,

double *root1, double *root2)

{

int root_type = 1;

if (4*a*c <= b*b){ /* roots are real */

*root1 = (−b + sqrt(b*b − 4*a*c))/(2*a);

*root2 = (−b − sqrt(b*b − 4*a*c))/(2*a);

}

else /* roots are imaginary */

root_type = 0;

return (root_type);

}

The function receives parameters a, b, and c via the call-by-value mechanism, and root1
and root2 parameters are passed using the call-by-reference mechanism. A typical invoca-

tion of roots is

root_type = roots (a, b, c, &root1, &root2);

We visit this example in Chapter 18, which discusses floating-point operations.

In summary, procedures receive a list of parameters, which may be passed either by the

call-by-value or by the call-by-reference mechanism. If more than one result is to be returned

by a called procedure, the call-by-reference parameter passing mechanism should be used.

5.6 Pentium Instructions for Procedures
The Pentium providescall and ret (return) instructions to write procedures in the assembly

language. The call instruction can be used to invoke a procedure and has the format

call proc-name

where proc-name is the name of the procedure to be called. The assembler replaces

proc-name by the offset value of the first instruction of the called procedure.

Section 5.6 Pentium Instructions for Procedures 127

5.6.1 How Is Program Control Transferred?

The offset value provided in the call instruction is not the absolute value (i.e., offset is

not relative to the start of the code segment pointed to by the CS register), but a relative

displacement in bytes from the instruction following the call instruction. Let us look at the

following example:

offset machine code

(in hex) (in hex)

main:

. . .

00000002 E816000000 call sum

00000007 89C3 mov EBX,EAX

. . .

; end of main procedure

;***

sum:

0000001D 55 push EBP

. . .

; end of sum procedure

;***

avg:

. . .

00000028 E8F0FFFFFF call sum

0000002D 89D8 mov EAX,EBX

. . .

; end of avg procedure

;***

After the call instruction in main has been fetched, the EIP register points to the next

instruction to be executed (i.e., EIP = 00000007H). This is the instruction that should be

executed after completing the execution of sum procedure. The processor makes a note of

this by pushing the contents of the EIP register onto the stack.

Now, to transfer control to the first instruction of the sum procedure, the EIP register

would have to be loaded with the offset value of the

push EBP

instruction in sum. To do this, the processor adds the 32-bit relative displacement found in the

call instruction to the contents of the EIP register. Proceeding with our example, the ma-

chine language encoding of the call instruction, which requires five bytes, is E816000000H.

The first byte E8H is the opcode for the call and the next four bytes give the (signed) relative

displacement in bytes. In this example, it is the difference between 0000001DH (offset of the

push EBP instruction in sum) and 00000007H (offset of the instruction mov EBX,EAX
in main). Therefore, the displacement should be 0000001DH − 00000007H = 00000016H.

128 Chapter 5 Procedures and the Stack

This is the displacement value encoded in the call instruction. Note that this displacement

value in this instruction is shown in the little-endian order, which is equal to 00000016H.

Adding this difference to the contents of the EIP register leaves the EIP register pointing to

the first instruction of sum.

The procedure call in main is a forward call, and therefore the relative displacement

is a positive number. As an example of a backward procedure call, let us look at the sum
procedure call in avg procedure. In this case, the program control has to be transferred back.

That is, the displacement is a negative value. Following the explanation given in the last

paragraph, we can calculate the displacement as 0000001DH − 0000002DH = FFFFFFF0H.

Since negative numbers are expressed in 2’s complement notation, FFFFFFF0H corresponds

to −10H (i.e., −16D), which is the displacement value in bytes.

The following is a summary of the actions taken during a near procedure call:

ESP = ESP − 4 ; push return address onto the stack

SS:ESP = EIP

EIP = EIP + relative displacement ; update EIP to point to the procedure

The relative displacement is a signed 32-bit number to accommodate both forward and back-

ward procedure calls.

5.6.2 The ret Instruction

The ret (return) instruction is used to transfer control from the called procedure to the call-

ing procedure. Return transfers control to the instruction following the call (instruction

mov EBX,EAX in our example). How will the processor know where this instruction is

located? Remember that the processor made a note of this when the call instruction was ex-

ecuted. When the ret instruction is executed, the return address from the stack is recovered.

The actions taken during the execution of the ret instruction are

EIP = SS:ESP ; pop return address at TOS into IP

ESP = ESP + 4 ; update TOS by adding 4 to ESP

An optional integer may be included in the ret instruction, as in

ret 8

The details on this optional number are covered in Section 5.7.2, which discusses the

stack-based parameter passing mechanism.

5.7 Parameter Passing
Parameter passing in assembly language is different and more complicated than that used in

high-level languages. In assembly language, the calling procedure first places all the parame-

ters needed by the called procedure in a mutually accessible storage area (usually registers or

Section 5.7 Parameter Passing 129

memory). Only then can the procedure be invoked. There are two common methods depend-

ing on the type of storage area used to pass parameters: register method or stack method. As

their names imply, the register method uses general-purpose registers to pass parameters, and

the stack is used in the other method.

5.7.1 Register Method

In the register method, the calling procedure places the necessary parameters in the general-

purpose registers before invoking the procedure. Next, let us look at a couple of examples

before considering the advantages and disadvantages of passing parameters using the register

method.

Example 5.1 Parameter passing by call-by-value using registers.

In this example, two parameter values are passed to the called procedure via the general-
purpose registers. The procedure sum receives two integers in the CX and DX registers
and returns the sum of these two integers via AX. No check is done to detect the overflow
condition. The program, shown in Program 5.1, requests two integers from the user and
displays the sum on the screen.

Program 5.1 Parameter passing by call-by-value using registers

1: ;Parameter passing via registers PROCEX1.ASM

2: ;

3: ; Objective: To show parameter passing via registers.

4: ; Input: Requests two integers from the user.

5: ; Output: Outputs the sum of the input integers.

6: %include "io.mac"

7: .DATA

8: prompt_msg1 db "Please input the first number: ",0

9: prompt_msg2 db "Please input the second number: ",0

10: sum_msg db "The sum is ",0

11:

12: .CODE

13: .STARTUP

14: PutStr prompt_msg1 ; request first number

15: GetInt CX ; CX = first number

16:

17: PutStr prompt_msg2 ; request second number

18: GetInt DX ; DX = second number

19:

20: call sum ; returns sum in AX

21: PutStr sum_msg ; display sum

22: PutInt AX

23: nwln

130 Chapter 5 Procedures and the Stack

24: done:

25: .EXIT

26:

27: ;---

28: ;Procedure sum receives two integers in CX and DX.

29: ;The sum of the two integers is returned in AX.

30: ;---

31: sum:

32: mov AX,CX ; sum = first number

33: add AX,DX ; sum = sum + second number

34: ret

Example 5.2 Parameter passing by call-by-reference using registers.

This example shows how parameters can be passed by call-by-reference using the register

method. The program requests a character string from the user and displays the number of

characters in the string (i.e., string length). The string length is computed by the str_len
function. This function scans the input string for the NULL character while keeping track of

the number of characters in the string. The pseudocode is shown below:

str_len (string)

index := 0

length := 0

while (string[index] �= NULL)

index := index + 1

length := length + 1 { AX is used for string length}
end while

return (length)

end str_len

The str_len function receives a pointer to the string in EBX and returns the string

length in the AX register. The program listing is given in Program 5.2. The main procedure

executes

mov EBX,string

to place the address of string in EBX (line 22) before invoking the procedure on line 23.
Note that even though the procedure modifies the EBX register during its execution, it restores
the original value of EBX by saving its value initially on the stack (line 35) and restoring it
(line 44) before returning to the main procedure.

Section 5.7 Parameter Passing 131

Program 5.2 Parameter passing by call-by-reference using registers

1: ;Parameter passing via registers PROCEX2.ASM

2: ;

3: ; Objective: To show parameter passing via registers.

4: ; Input: Requests a character string from the user.

5: ; Output: Outputs the length of the input string.

6:

7: %include "io.mac"

8: BUF_LEN EQU 41 ; string buffer length

9:

10: .DATA

11: prompt_msg db "Please input a string: ",0

12: length_msg db "The string length is ",0

13:

14: .UDATA

15: string resb BUF_LEN ;input string < BUF_LEN chars.

16:

17: .CODE

18: .STARTUP

19: PutStr prompt_msg ; request string input

20: GetStr string,BUF_LEN ; read string from keyboard

21:

22: mov EBX,string ; EBX = string address

23: call str_len ; returns string length in AX

24: PutStr length_msg ; display string length

25: PutInt AX

26: nwln

27: done:

28: .EXIT

29:

30: ;---

31: ;Procedure str_len receives a pointer to a string in EBX.

32: ;String length is returned in AX.

33: ;---

34: str_len:

35: push EBX

36: sub AX,AX ; string length = 0

37: repeat:

38: cmp byte [EBX],0 ; compare with NULL char.

39: je str_len_done ; if NULL we are done

40: inc AX ; else, increment string length

41: inc EBX ; point EBX to the next char.

42: jmp repeat ; and repeat the process

132 Chapter 5 Procedures and the Stack

43: str_len_done:

44: pop EBX

45: ret

Pros and Cons of the Register Method

The register method has its advantages and disadvantages. These are summarized here.

Advantages:

1. The register method is convenient and easier for passing a small number of parameters.

2. This method is also faster because all the parameters are available in registers.

Disadvantages:

1. The main disadvantage is that only a few parameters can be passed by using registers,

as there is a limited number of general-purpose registers available.

2. Another problem is that the general-purpose registers are often used by the calling pro-

cedure for some other purpose. Thus, it is necessary to temporarily save the contents

of these registers on the stack to free them for use in parameter passing before calling

a procedure, and restore them after returning from the called procedure. In this case, it

is difficult to realize the second advantage listed above, as the stack operations involve

memory access.

5.7.2 Stack Method

In this method, all parameters are pushed onto the stack before the procedure is called. As an

example, let us consider passing the two parameters required by the sum procedure shown in

Program 5.1. This can be done by

push number1

push number2

call sum

After executing the call instruction, which automatically pushes the EIP contents onto the

stack, the stack state is shown in Figure 5.5.

Reading the two arguments—number1 and number2—is tricky. Since the parameter

values are buried inside the stack, first we have to pop the EIP value to read the required two

parameters. This, for example, can be done by

pop EAX

pop EBX

pop ECX

Section 5.7 Parameter Passing 133

? ?

number2

number1

Return addressESP

TOS

Figure 5.5 Stack state after the sum procedure call: Return address is the EIP value pushed onto the

stack as part of executing the call instruction.

in the sum procedure. Since we have removed the return address (EIP) from the stack, we

will have to restore it by

push EAX

so that TOS points to the return address.

The main problem with this code is that we need to set aside general-purpose registers to

copy parameter values. This means that the calling procedure cannot use these registers for

any other purpose. Worse still, what if you want to pass 10 parameters? One way to free up

registers is to copy the parameters from the stack to local data variables, but this is impractical

and inefficient.

The best way to get parameter values is to leave them on the stack and read them off

the stack as needed. Since the stack is a sequence of memory locations, ESP + 4 points to

number2, and ESP + 6 to number1. For instance,

mov EBX,[ESP+4]

can be used to read number2, but this causes a problem. The stack pointer is updated by the

push and pop instructions. As a result, the relative offset changes with the stack operations

performed in the called procedure. This is not a desirable situation.

There is a better alternative: we can use the EBP register instead of ESP to specify an

offset into the stack segment. For example, we can copy the value of number2 into the AX

register by

mov EBP,ESP

mov AX,[EBP+4]

This is the usual way of accessing the parameters from the stack. Since every proce-

dure uses the EBP register to access the parameters, the EBP register should be preserved.

Therefore, we should save the contents of the EBP register before executing the

134 Chapter 5 Procedures and the Stack

? ?

number1

number2

Return address

EBPEBP, ESP

EBP + 10

EBP + 8

EBP + 4

(a) Stack after saving EBP

? ?

number1

number2

Return addressESP

(b) Stack after pop EBP

? ?

number1

number2ESP

(c) Stack after ret

Figure 5.6 Changes in stack state during a procedure execution.

mov EBP,ESP

statement. We, of course, use the stack for this. Note that

push EBP

mov EBP,ESP

causes the parameter displacement to increase by four bytes, as shown in Figure 5.6a.

The information stored in the stack—parameters, return address, and the old EBP value—

is collectively called the stack frame. As we show on page 151, the stack frame also consists

of local variables if the procedure uses them. The EBP value is referred to as the frame pointer

(FP). Once the EBP value is known, we can access all items in the stack frame.

Before returning from the procedure, we should use

pop EBP

to restore the original value of EBP. The resulting stack state is shown in Figure 5.6b.

The ret statement discussed in Section 5.6.2 causes the return address to be placed in the

EIP register, and the stack state after ret is shown in Figure 5.6c.

We have a problem here—the four bytes of the stack occupied by the two parameters are

no longer useful. One way to free these four bytes is to increment ESP by four after the call

statement, as shown below:

push number1

push number2

call sum

add ESP,4

For example, C compilers use this method to clear parameters from the stack. The above

assembly language code segment corresponds to the

Section 5.7 Parameter Passing 135

sum(number2,number1);

function call in C.

Rather than adjusting the stack by the calling procedure, the called procedure can also

clear the stack. Note that we cannot write

sum:

. . .

add ESP,4

ret

because when ret is executed, ESP should point to the return address on the stack.

The solution lies in the optional operand that can be specified in the ret statement. The

format is

ret optional-value

which results in the following sequence of actions:

EIP = SS:ESP

ESP = ESP + 4 + optional-value

The optional-value should be a number (i.e., 16-bit immediate value). Since the pur-

pose of the optional value is to discard the parameters pushed onto the stack, this operand

takes a positive value.

Who Should Clean Up the Stack

We discussed the following ways of discarding the unwanted parameters on the stack:

1. clean-up done by the calling procedure, or

2. clean-up done by the called procedure.

If procedures require a fixed number of parameters, the second method is preferred. In

this case, we write the clean-up code only once in the called procedure independent of the

number of times this procedure is called. We follow this convention in our assembly language

programs. However, if a procedure receives a variable number of parameters, we have to use

the first method. We discuss this topic in detail in Section 5.8.

5.7.3 Preserving Calling Procedure State

It is important to preserve the contents of the registers across a procedure call. The necessity

for this is illustrated by the following code:

. . .

mov ECX,count

136 Chapter 5 Procedures and the Stack

repeat:

call compute

. . .

loop repeat

. . .

The code invokes the compute procedure count times. The ECX register maintains the

number of remaining iterations. Recall that, as part of executing the loop instruction, the

ECX register is decremented by 1 and, if not 0, starts another iteration.

Now suppose that the compute procedure uses the ECX register during its execution.

Then, when compute returns control to the calling program, ECX would have changed, and

the program logic would be incorrect. To preserve the contents of the ECX register, it should

be saved. Of course, we use the stack for this purpose.

5.7.4 Which Registers Should Be Saved

The answer to this question is simple: Save those registers that are used by the calling pro-

cedure but changed by the called procedure. This leads to the following question: Which

procedure, the calling or the called, should save the registers?

Usually, one or two registers are used to return a value by the called procedure. Therefore,

such register(s) do not have to be saved. For example, gcc uses the EAX register to return

integer results.

In order to avoid the selection of the registers to be saved, we could save, blindly, all

registers each time a procedure is invoked. For instance, we could use the pushad instruc-

tion (see page 122). But such an action results in unnecessary overhead, as pushad takes

five clocks to push all eight registers, whereas an individual register push instruction takes

only one clock. Recall that producing efficient code is an important motivation for using the

assembly language.

If the calling procedure were to save the necessary registers, it needs to know the registers

used by the called procedure. This causes two serious difficulties:

1. Program maintenance would be difficult because, if the called procedure were modified

later on and a different set of registers are used, every procedure that calls this procedure

would have to be modified.

2. Programs tend to be longer because if a procedure is called several times, we have

to include the instructions to save and restore the registers each time the procedure is

called.

For these reasons, we assume that the called procedure saves the registers that it uses and

restores them before returning to the calling procedure. This also conforms to the modular

program design principles.

Section 5.7 Parameter Passing 137

? ?

number1

number2

Return address

EBP, ESP

EBP

EBP + 24

EBP + 28

EBP + 32

EBP + 36

EBP + 38

EAX

ECX

EDX

EBX

ESP

ESI

EDI

EBP + 4

EBP + 8

EBP + 12

EBP + 16

EBP + 20

Figure 5.7 Stack state after pusha.

When to Use PUSHA

The pusha instruction is useful in certain instances, but not all. We identify some instances

where pusha is not useful. First, what if some of the registers saved by pusha are used for

returning results? For instance, the EAX register is often used to return integer results. In

this case pusha is not really useful, as popa destroys the result to be returned to the calling

procedure. Second, since pusha takes five clocks whereas a single push takes only a single

clock, pusha is efficient only if you want to save more than five registers. If we want to

save only one or two registers, it may be worthwhile to use the push instruction. Of course,

the other side of the coin is that pusha improves readability of code and reduces memory

required for the instructions.

When pusha is used to save registers, it modifies the offset of the parameters. Note that

pusha

mov EBP,ESP

causes the stack state, shown in Figure 5.7, to be different from that shown in Figure 5.6a on

page 134. You can see that the offset of number1 and number2 increases substantially.

5.7.5 ENTER and LEAVE Instructions

The Pentium instruction set has two instructions to facilitate allocation and release of stack

frames. The enter instruction can be used to allocate a stack frame on entering a procedure.

The format is

enter bytes,level

138 Chapter 5 Procedures and the Stack

The first operand bytes specifies the number of bytes of local variable storage we want on

the new stack frame. We do not need local variable space until Example 5.8 on page 153.

Until then, we set the first operand to zero. The second operand level gives the nesting

level of the procedure. If we specify a nonzero level, it copies level stack frame pointers

into the new frame from the preceding stack frame. In all our examples, we set the second

operand to zero. Thus the statement

enter XX,0

is equivalent to

push EBP

mov EBP,ESP

sub ESP,XX

The leave instruction releases the stack frame allocated by the enter instruction. It

does not take any operands. The leave instruction effectively performs the following:

mov ESP,EBP

pop EBP

We place the leave instruction just before the ret instruction as shown in the following

template for procedures:

proc-name:

enter XX,0

. . .

procedure body

. . .

leave

ret YY

As we show on page 154, the XX value is nonzero only if our procedure needs some local

variable space on the stack frame. The value YY is used to clear the arguments passed on to

the procedure.

5.7.6 Illustrative Examples

In this section, we use three examples to illustrate the use of the stack for parameter passing.

Example 5.3 Parameter passing by call-by-value using the stack.

This is the stack counterpart of Example 5.1, which passes two integers to the proceduresum.

The procedure returns the sum of these two integers in the AX register, as in Example 5.1.

The program listing is given in Program 5.3.

The program requests two integers from the user. It reads the two numbers into the CX

and DX registers using GetInt (lines 16 and 19). Since the stack is used to pass the two

Section 5.7 Parameter Passing 139

numbers, we have to place them on the stack before calling the sum procedure (see lines 21

and 22). The state of the stack after the control is transferred to sum is shown in Figure 5.5

on page 133.

As discussed in Section 5.7.2, the EBP register is used to access the two parameters from

the stack. Therefore, we have to save EBP itself on the stack. We do this by using the enter
instruction (line 35), which changes the stack state to that in Figure 5.6a on page 134.

The original value of EBP is restored at the end of the procedure using the leave in-

struction (line 38). Accessing the two numbers follows the explanation given in Section 5.7.2.

Note that the first number is at EBP + 10, and the second one at EBP + 8. As in Example 5.1,

no overflow check is done by sum. Control is returned to main by

ret 4

because sum has received two parameters requiring a total space of four bytes on the stack.

This ret instruction clears number1 and number2 from the stack.

Program 5.3 Parameter passing by call-by-value using the stack

1: ;Parameter passing via the stack PROCEX3.ASM

2: ;

3: ; Objective: To show parameter passing via the stack.

4: ; Input: Requests two integers from the user.

5: ; Output: Outputs the sum of the input integers.

6: %include "io.mac"

7:

8: .DATA

9: prompt_msg1 db "Please input the first number: ",0

10: prompt_msg2 db "Please input the second number: ",0

11: sum_msg db "The sum is ",0

12:

13: .CODE

14: .STARTUP

15: PutStr prompt_msg1 ; request first number

16: GetInt CX ; CX = first number

17:

18: PutStr prompt_msg2 ; request second number

19: GetInt DX ; DX = second number

20:

21: push CX ; place first number on stack

22: push DX ; place second number on stack

23: call sum ; returns sum in AX

24: PutStr sum_msg ; display sum

25: PutInt AX

140 Chapter 5 Procedures and the Stack

26: nwln

27: done:

28: .EXIT

29:

30: ;---

31: ;Procedure sum receives two integers via the stack.

32: ; The sum of the two integers is returned in AX.

33: ;---

34: sum:

35: enter 0,0 ; save EBP

36: mov AX,[EBP+10] ; sum = first number

37: add AX,[EBP+8] ; sum = sum + second number

38: leave ; restore EBP

39: ret 4 ; return and clear parameters

Example 5.4 Parameter passing by call-by-reference using the stack.

This example shows how the stack can be used for parameter passing using the call-by-

reference mechanism. The procedure swap receives two pointers to two characters and in-

terchanges them. The program, shown in Program 5.4, requests a string from the user and

displays the input string with the first two characters interchanged.

In preparation for calling swap, the main procedure places the addresses of the first

two characters of the input string on the stack (lines 23 to 26). The swap procedure, after

saving the EBP register as in the last example, can access the pointers of the two characters at

EBP + 8 and EBP + 12. Since the procedure uses the EBX register, we save it on the stack as

well. Note that, once the EBP is pushed onto the stack and the ESP value is copied to EBP, the

two parameters (i.e., the two character pointers in this example) are available at EBP + 8 and

EBP + 12, irrespective of the other stack push operations in the procedure. This is important

from the program maintenance point of view.

Program 5.4 Parameter passing by call-by-reference using the stack

1: ;Parameter passing via the stack PROCSWAP.ASM

2: ;

3: ; Objective: To show parameter passing via the stack.

4: ; Input: Requests a character string from the user.

5: ; Output: Outputs the input string with the first

6: ; two characters swapped.

7:

8: BUF_LEN EQU 41 ; string buffer length

9: %include "io.mac"

Section 5.7 Parameter Passing 141

10:

11: .DATA

12: prompt_msg db "Please input a string: ",0

13: output_msg db "The swapped string is: ",0

14:

15: .UDATA

16: string resb BUF_LEN ;input string < BUF_LEN chars.

17:

18: .CODE

19: .STARTUP

20: PutStr prompt_msg ; request string input

21: GetStr string,BUF_LEN ; read string from the user

22:

23: mov EAX,string ; EAX = string[0] pointer

24: push EAX

25: inc EAX ; EAX = string[1] pointer

26: push EAX

27: call swap ; swaps the first two characters

28: PutStr output_msg ; display the swapped string

29: PutStr string

30: nwln

31: done:

32: .EXIT

33:

34: ;---

35: ;Procedure swap receives two pointers (via the stack) to

36: ; characters of a string. It exchanges these two characters.

37: ;---

38: .CODE

39: swap:

40: enter 0,0

41: push EBX ; save EBX - procedure uses EBX

42: ; swap begins here. Because of xchg, AL is preserved.

43: mov EBX,[EBP+12] ; EBX = first character pointer

44: xchg AL,[EBX]

45: mov EBX,[EBP+8] ; EBX = second character pointer

46: xchg AL,[EBX]

47: mov EBX,[EBP+12] ; EBX = first character pointer

48: xchg AL,[EBX]

49: ; swap ends here

50: pop EBX ; restore registers

51: leave

52: ret 8 ; return and clear parameters

142 Chapter 5 Procedures and the Stack

Initial state: 4 3 5 1 2
After 1st comparison: 3 4 5 1 2 (4 and 3 swapped)
After 2nd comparison: 3 4 5 1 2 (no swap)
After 3rd comparison: 3 4 1 5 2 (5 and 1 swapped)

End of first pass: 3 4 1 2 5 (5 and 2 swapped)

Figure 5.8 Actions taken during the first pass of the bubble sort algorithm.

Initial state: 4 3 5 1 2
After 1st pass: 3 4 1 2 5 (5 in its final position)
After 2nd pass: 3 1 2 4 5 (4 in its final position)
After 3rd pass: 1 2 3 4 5 (array in sorted order)

After the final pass: 1 2 3 4 5 (final pass to check)

Figure 5.9 Behavior of the bubble sort algorithm.

Example 5.5 Bubble sort procedure.

There are several algorithms to sort an array of numbers. The algorithm we use here is called

the bubble sort algorithm. We assume that the array is to be sorted in ascending order. The

bubble sort algorithm consists of several passes through the array. Each pass scans the array,

performing the following actions:

• Compare adjacent pairs of data elements;

• If they are out of order, swap them.

The algorithm terminates if, during a pass, no data elements are swapped. Even if a single

swap is done during a pass, it will initiate another pass to scan the array.

Figure 5.8 shows the behavior of the algorithm during the first pass. The algorithm starts

by comparing the first and second data elements (4 and 3). Since they are out of order, 4
and 3 are interchanged. Next, the second data element 4 is compared with the third data

element 5, and no swapping takes place as they are in order. During the next step, 5 and 1 are

compared and swapped and finally 5 and 2 are swapped. This terminates the first pass. The

algorithm has performed N − 1 comparisons, where N is the number of data elements in the

array. At the end of the first pass, the largest data element 5 is moved to its final position in

the array.

Figure 5.9 shows the state of the array after each pass. Notice that after the first pass, the

largest number (5) is in its final position. Similarly, after the second pass, the second largest

number (4) moves to its final position, and so on. This is why this algorithm is called the

bubble sort: during the first pass, the largest element bubbles to the top, the second largest

bubbles to the top during the second pass, and so on. Even though the array is in sorted order

after the third pass, one more pass is required by the algorithm to detect this.

Section 5.7 Parameter Passing 143

bubble_sort (arrayPointer, arraySize)

status := UNSORTED

#comparisons := arraySize

while (status = UNSORTED)

#comparisons := #comparisons − 1

status := SORTED

for (i = 0 to #comparisons)

if (array[i] > array[i+1])

swap ith and (i + 1)th elements of the array

status := UNSORTED

end if

end for

end while

end bubble_sort

Figure 5.10 Pseudocode for the bubble sort algorithm.

The number of passes required to sort an array depends on how unsorted the initial array

is. If the array is in sorted order, only a single pass is required. At the other extreme, if the

array is completely unsorted (i.e., elements are initially in the descending order), the algorithm

requires the maximum number of passes equal to one less than the number of elements in the

array. The pseudocode for the bubble sort algorithm is shown in Figure 5.10.

The bubble sort program (Program 5.5) requests a set of up to 20 nonzero integers from

the user and displays them in sorted order. The input can be terminated earlier by typing a

zero.

The logic of the main program is straightforward. The read_loop (lines 25 to 32) reads

the input integers. Since the ECX register is initialized to MAX_SIZE, which is set to 20

in this program, the read_loop iterates a maximum of 20 times. Typing a zero can also

terminate the loop. The zero input condition is detected and the loop is terminated by the

statements on lines 27 and 28.

The bubble_sort procedure receives the array size and a pointer to the array. These

two parameters are pushed onto the stack (lines 34 and 35) before calling the bubble_sort
procedure. The print_loop (lines 41 to 45) displays the sorted array.

In the bubble-sort procedure, the ECX register is used to keep track of the number of

comparisons while EDX maintains the status information. The ESI register points to the ith

element of the input array.
The while loop condition is tested by lines 91 to 93. The for loop body corresponds to

lines 80 to 89 and 97 to 100. The rest of the code follows the pseudocode. Note that the array
pointer is available in the stack at EBP + 36 and its size at EBP + 40, as we use pushad to
save all registers.

144 Chapter 5 Procedures and the Stack

Program 5.5 Bubble sort program to sort integers in ascending order

1: ;Bubble sort procedure BBLSORT.ASM

2: ; Objective: To implement the bubble sort algorithm.

3: ; Input: A set of nonzero integers to be sorted.

4: ; Input is terminated by entering zero.

5: ; Output: Outputs the numbers in ascending order.

6:

7: %define CRLF 0DH,0AH

8: MAX_SIZE EQU 20

9: %include "io.mac"

10: .DATA

11: prompt_msg db "Enter nonzero integers to be sorted.",CRLF

12: db "Enter zero to terminate the input.",0

13: output_msg db "Input numbers in ascending order:",0

14:

15: .UDATA

16: array resd MAX_SIZE ; input array for integers

17:

18: .CODE

19: .STARTUP

20: PutStr prompt_msg ; request input numbers

21: nwln

22: mov EBX,array ; EBX = array pointer

23: mov ECX,MAX_SIZE ; ECX = array size

24: sub EDX,EDX ; number count = 0

25: read_loop:

26: GetLInt EAX ; read input number

27: cmp EAX,0 ; if the number is zero

28: je stop_reading ; no more numbers to read

29: mov [EBX],EAX ; copy the number into array

30: add EBX,4 ; EBX points to the next element

31: inc EDX ; increment number count

32: loop read_loop ; reads a max. of MAX_SIZE numbers

33: stop_reading:

34: push EDX ; push array size onto stack

35: push array ; place array pointer on stack

36: call bubble_sort

37: PutStr output_msg ; display sorted input numbers

38: nwln

39: mov EBX,array

40: mov ECX,EDX ; ECX = number count

41: print_loop:

42: PutLInt [EBX]

Section 5.7 Parameter Passing 145

43: nwln

44: add EBX,4

45: loop print_loop

46: done:

47: .EXIT

48: ;---

49: ;This procedure receives a pointer to an array of integers

50: ; and the size of the array via the stack. It sorts the

51: ; array in ascending order using the bubble sort algorithm.

52: ;---

53: SORTED EQU 0

54: UNSORTED EQU 1

55: bubble_sort:

56: pushad

57: mov EBP,ESP

58:

59: ; ECX serves the same purpose as the end_index variable

60: ; in the C procedure. ECX keeps the number of comparisons

61: ; to be done in each pass. Note that ECX is decremented

62: ; by 1 after each pass.

63: mov ECX, [EBP+40] ; load array size into ECX

64:

65: next_pass:

66: dec ECX ; if # of comparisons is zero

67: jz sort_done ; then we are done

68: mov EDI,ECX ; else start another pass

69:

70: ;DL is used to keep SORTED/UNSORTED status

71: mov DL,SORTED ; set status to SORTED

72:

73: mov ESI,[EBP+36] ; load array address into ESI

74: ; ESI points to element i and ESI+4 to the next element

75: pass:

76: ; This loop represents one pass of the algorithm.

77: ; Each iteration compares elements at [ESI] and [ESI+4]

78: ; and swaps them if ([ESI]) < ([ESI+4]).

79:

80: mov EAX,[ESI]

81: mov EBX,[ESI+4]

82: cmp EAX,EBX

83: jg swap

84:

85: increment:

86: ; Increment ESI by 4 to point to the next element

146 Chapter 5 Procedures and the Stack

87: add ESI,4

88: dec EDI

89: jnz pass

90:

91: cmp EDX,SORTED ; if status remains SORTED

92: je sort_done ; then sorting is done

93: jmp next_pass ; else initiate another pass

94:

95: swap:

96: ; swap elements at [ESI] and [ESI+4]

97: mov [ESI+4],EAX ; copy [ESI] in EAX to [ESI+4]

98: mov [ESI],EBX ; copy [ESI+4] in EBX to [ESI]

99: mov EDX,UNSORTED ; set status to UNSORTED

100: jmp increment

101:

102: sort_done:

103: popad

104: ret 8

5.8 Handling a Variable Number of Parameters
Procedures in C can be defined to accept a variable number of parameters. The input and

output functions, scanf and printf, are the two common procedures that take variable

number of parameters. In this case, the called procedure does not know the number of param-

eters passed onto it. Usually, the first parameter in the parameter list specifies the number of

parameters passed. This parameter should be pushed onto the stack last so that it is just below

the return address independent of the number of parameters passed.

In assembly language procedures, variable number of parameters can be easily handled

by the stack method of parameter passing. Only the stack size imposes a limit on the number

of parameters that can be passed. The next example illustrates the use of the stack to pass

variable numbers of parameters in assembly language programs.

Example 5.6 Passing variable number of parameters via the stack.

In this example, the procedure variable_sum receives a variable number of integers via

the stack. The actual number of integers passed is the last parameter pushed onto the stack.

The procedure finds the sum of the integers and returns this value in the EAX register.

The main procedure in Program 5.6 requests input from the user. Only nonzero values are

accepted as valid input (entering a zero terminates the input). The read_number loop (lines

24 to 30) reads input numbers using GetLInt and pushes them onto the stack. The ECX

register keeps a count of the number of input values, which is passed as the last parameter

Section 5.8 Handling a Variable Number of Parameters 147

parameter N 1
.

.

.

.

.

.

Number of parameters

N parameters

EBP, ESP EBP

Return address

N

parameter 1

parameter 2

parameter N

EBP + 8

EBP + 4

EBP + 16

EBP + 12

Figure 5.11 State of the stack after executing the enter statement.

(line 32) before calling the variable_sum procedure. The state of the stack at line 53,

after executing the enter instruction, is shown in Figure 5.11.

The variable_sum procedure first reads the number of parameters passed onto it from

the stack at EBP + 8 into the ECX register. The add_loop (lines 60 to 63) successively

reads each integer from the stack and computes their sum in the EAX. Note that on line 61 we

use a segment override prefix. If we write

add EAX,[EBX]

the contents of the EBX are treated as the offset value into the data segment. However, our

parameters are located in the stack segment. Therefore, it is necessary to indicate that the

offset in EBX is relative to SS (and not DS). The segment override prefixes—CS:, DS:, ES:,

FS:, GS:, and SS:—can be placed in front of a memory operand to indicate a segment other

than the default segment.

Notes

1. If you are running this program on a Linux system, you don’t need the segment override

prefix. The reason is that Linux and UNIX systems do not use the physical segmentation

provided by the Pentium. Instead, these systems treat the memory as a single physical

segment, which is partitioned into various logical segments. Figure 5.12 shows the

memory layout for Linux. The bottom two segments are used for the code and data.

For example, the code segment (.text) is placed at the bottom, which is a read-only

segment. The next segment stores the data part (.data and .bss). The stack segment

is placed below the kernel space.

148 Chapter 5 Procedures and the Stack

0xFFFFFFFF

User stack

Kernel virtual memory

(code, data, heap, stack)

ESP

0xC0000000

0x40000000

Run−time heap

Read/write segment

(.text)

0x08048000

0

(.data, .bss)

Shared libraries

executable file

Loaded from

Read−only segment

Figure 5.12 Memory layout of a Linux process.

2. In this example, we deliberately used the EBX to illustrate the use of segment override

prefixes. We could have used the EBP itself to access the parameters. For example, the

code

add EBP,12

sub EAX,EAX

add_loop:

add EAX,[EBP]

add EBP,4

loop add_loop

can replace the code at lines 58 to 63. A disadvantage of this version is that, since

we have modified the EBP, we no longer can access, for example, the parameter count

value in the stack. For this example, however, this method works fine. A better way is to

use an index register to represent the offset relative to the EBP. We defer this discussion

to the next chapter, which discusses some additional addressing modes of the Pentium.

3. Another interesting feature is that the parameter space on the stack is cleared by main.

Since we pass a variable number of parameters, we cannot use ret to clear the param-

Section 5.8 Handling a Variable Number of Parameters 149

eter space. This is done in main by lines 35 to 38. The ECX is first incremented to

include the count parameter (line 35). The byte count of the parameter space is com-

puted on lines 36 and 37. These lines effectively multiply ECX by four. This value is

added to the ESP register to clear the parameter space (line 38).

Program 5.6 Program to illustrate passing a variable number of parameters

1: ;Variable number of parameters passed via stack VARPARA.ASM

2: ;

3: ; Objective: To show how variable number of parameters

4: ; can be passed via the stack.

5: ; Input: Requests variable number of nonzero integers.

6: ; A zero terminates the input.

7: ; Output: Outputs the sum of input numbers.

8:

9: %define CRLF 0DH,0AH ; carriage return and line feed

10:

11: %include "io.mac"

12:

13: .DATA

14: prompt_msg db "Please input a set of nonzero integers.",CRLF

15: db "You must enter at least one integer.",CRLF

16: db "Enter zero to terminate the input.",0

17: sum_msg db "The sum of the input numbers is: ",0

18:

19: .CODE

20: .STARTUP

21: PutStr prompt_msg ; request input numbers

22: nwln

23: sub ECX,ECX ; ECX keeps number count

24: read_number:

25: GetLInt EAX ; read input number

26: cmp EAX,0 ; if the number is zero

27: je stop_reading ; no more nuumbers to read

28: push EAX ; place the number on stack

29: inc ECX ; increment number count

30: jmp read_number

31: stop_reading:

32: push ECX ; place number count on stack

33: call variable_sum ; returns sum in EAX

34: ; clear parameter space on the stack

35: inc ECX ; increment ECX to include count

36: add ECX,ECX ; ECX = ECX * 4 (space in bytes)

37: add ECX,ECX

150 Chapter 5 Procedures and the Stack

38: add ESP,ECX ; update ESP to clear parameter

39: ; space on the stack

40: PutStr sum_msg ; display the sum

41: PutLInt EAX

42: nwln

43: done:

44: .EXIT

45:

46: ;--

47: ;This procedure receives variable number of integers via the

48: ; stack. The last parameter pushed on the stack should be

49: ; the number of integers to be added. Sum is returned in EAX.

50: ;--

51: variable_sum:

52: enter 0,0

53: push EBX ; save EBX and ECX

54: push ECX

55:

56: mov ECX,[EBP+8] ; ECX = # of integers to be added

57: mov EBX,EBP

58: add EBX,12 ; EBX = pointer to first number

59: sub EAX,EAX ; sum = 0

60: add_loop:

61: add EAX,[SS:EBX] ; sum = sum + next number

62: add EBX,4 ; EBX points to the next integer

63: loop add_loop ; repeat count in ECX

64:

65: pop ECX ; restore registers

66: pop EBX

67: leave

68: ret ; parameter space cleared by main

5.9 Local Variables
So far in our discussion, we have not considered how local variables can be used in a proce-

dure. To focus our discussion, consider the following C code:

int compute(int a, int b)

{

int temp, N;

. . .

. . .

}

Section 5.9 Local Variables 151

EBP + 12

EBP + 8

EBP + 4

EBP

a

b

Return address

old EBP

temp

N

Parameters

Local variables

ESP

EBP 4

8EBP

Figure 5.13 Stack frame with space for local variables.

The variables temp and N are local variables that come into existence when the procedure

compute is invoked and disappear when the procedure terminates. Thus, these local vari-

ables are dynamic. We could reserve space for the local variables in a data segment. However,

such space allocation is not desirable for two reasons:

1. Space allocation done in the data segment is static and remains active even when the

procedure is not.

2. More important, it does not work with recursive procedures (e.g., procedures that call

themselves, either directly or indirectly).

For these reasons, space for local variables is reserved on the stack. Figure 5.13 shows the

contents of the stack frame for the C function. In high-level languages, it is also referred to

as the activation record because each procedure activation requires all this information. The

EBP value, also called the frame pointer, allows us to access the contents of the stack frame.

For example, parameters a and b can be accessed at EBP + 12 and EBP + 8, respectively.

Local variables temp and N can be accessed at EBP − 4 and EBP − 8, respectively.

To aid program readability, we can use the %define directive to name the stack locations.

Then we can write

mov EBX,a

mov temp,EAX

instead of

mov EBX,[EBP+12]

mov [EBP-4],EAX

after establishing temp and a labels by using the %define directive as shown below:

152 Chapter 5 Procedures and the Stack

%define a dword [EBP+12]

%define temp dword [EBP-4]

We now look at two examples, both of which compute Fibonacci numbers. However, one

example uses registers for local variables, and the other uses the stack.

Example 5.7 Fibonacci number computation using registers for local variables.

The Fibonacci sequence of numbers is defined as

fib(1) = 1,

fib(2) = 1,

fib(n) = fib(n − 1) + fib(n − 2) for n > 2.

In other words, the first two numbers in the Fibonacci sequence are 1. The subsequent num-

bers are obtained by adding the previous two numbers in the sequence. Thus,

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .,

is the Fibonacci sequence of numbers.

In this and the next example, we write a procedure to compute the largest Fibonacci num-

ber that is less than or equal to a given input number. The main procedure requests this

number and passes it on to the fibonacci procedure.

The fibonacci procedure keeps the last two Fibonacci numbers in local variables.

These are mapped to registers EAX and EBX. The higher of the two Fibonacci numbers

is kept in the EBX. The fib_loop successively computes the Fibonacci number until it is

greater than or equal to the input number. Then the Fibonacci number in EAX is returned to

the main procedure.

Program 5.7 Fibonacci number computation with local variables mapped to registers

1: ;Fibonacci numbers (register version) PROCFIB1.ASM

2: ;

3: ; Objective: To compute Fibonacci number using registers

4: ; for local variables.

5: ; Input: Requests a positive integer from the user.

6: ; Output: Outputs the largest Fibonacci number that

7: ; is less than or equal to the input number.

8:

9: %include "io.mac"

10:

11: .DATA

12: prompt_msg db "Please input a positive number (>1): ",0

13: output_msg1 db "The largest Fibonacci number less than "

14: db "or equal to ",0

15: output_msg2 db " is ",0

Section 5.9 Local Variables 153

16:

17: .CODE

18: .STARTUP

19: PutStr prompt_msg ; request input number

20: GetLInt EDX ; EDX = input number

21: call fibonacci

22: PutStr output_msg1 ; display Fibonacci number

23: PutLInt EDX

24: PutStr output_msg2

25: PutLInt EAX

26: nwln

27: done:

28: .EXIT

29:

30: ;---

31: ;Procedure fibonacci receives an integer in EDX and computes

32: ; the largest Fibonacci number that is less than or equal to

33: ; the input number. The Fibonacci number is returned in EAX.

34: ;---

35: fibonacci:

36: push EBX

37: ; EAX maintains the smaller of the last two Fibonacci

38: ; numbers computed; EBX maintains the larger one.

39: mov EAX,1 ; initialize EAX and EBX to

40: mov EBX,EAX ; first two Fibonacci numbers

41: fib_loop:

42: add EAX,EBX ; compute next Fibonacci number

43: xchg EAX,EBX ; maintain the required order

44: cmp EBX,EDX ; compare with input number in EDX

45: jle fib_loop ; if not greater, find next number

46: ; EAX contains the required Fibonacci number

47: pop EBX

48: ret

Example 5.8 Fibonacci number computation using the stack for local variables.

In this example, we use the stack for storing the two Fibonacci numbers. The variable

fib_lo corresponds to fib(n− 1) and fib_hi to fib(n).

The code

push EBP

mov EBP,ESP

sub ESP,8

154 Chapter 5 Procedures and the Stack

saves the EBP value and copies the ESP value into the EBP as usual. It also decrements the

ESP by 8, thus creating eight bytes of storage space for the two local variables fib_lo and

fib_hi. This three-instruction sequence can be replaced by

enter 8,0

instruction. As mentioned before, the first operand specifies the number of bytes reserved for

local variables. At this point, the stack allocation looks as follows:

EBP + 8

EBP + 4

EBP EBP

? ?

FIB_LO

FIB_HI

Local variables

Return address

ESPEBP 8

4EBP

The two local variables can be accessed at BP − 4 and BP − 8. The two EQU statements

on lines 34 and 35 conveniently establish labels for these two locations. We can clear the local

variable space and restore the EBP value by

mov ESP,EBP

pop EBP

instructions. The leave instruction performs exactly this. Thus, the leave instruction on

line 53 automatically clears the local variable space. The rest of the code follows the logic of

Example 5.7.

Program 5.8 Fibonacci number computation with local variables mapped to the stack

1: ;Fibonacci numbers (stack version) PROCFIB2.ASM

2: ;

3: ; Objective: To compute Fibonacci number using the stack

4: ; for local variables.

5: ; Input: Requests a positive integer from the user.

6: ; Output: Outputs the largest Fibonacci number that

7: ; is less than or equal to the input number.

8: %include "io.mac"

9:

10: .DATA

11: prompt_msg db "Please input a positive number (>1): ",0

Section 5.9 Local Variables 155

12: output_msg1 db "The largest Fibonacci number less than "

13: db "or equal to ",0

14: output_msg2 db " is ",0

15:

16: .CODE

17: .STARTUP

18: PutStr prompt_msg ; request input number

19: GetLInt EDX ; EDX = input number

20: call fibonacci

21: PutStr output_msg1 ; print Fibonacci number

22: PutLInt EDX

23: PutStr output_msg2

24: PutLInt EAX

25: nwln

26: done:

27: .EXIT

28:

29: ;---

30: ;Procedure fibonacci receives an integer in EDX and computes

31: ; the largest Fibonacci number that is less than the input

32: ; number. The Fibonacci number is returned in EAX.

33: ;---

34: %define FIB_LO dword [EBP-4]

35: %define FIB_HI dword [EBP-8]

36: fibonacci:

37: enter 8,0 ; space for two local variables

38: push EBX

39: ; FIB_LO maintains the smaller of the last two Fibonacci

40: ; numbers computed; FIB_HI maintains the larger one.

41: mov FIB_LO,1 ; initialize FIB_LO and FIB_HI to

42: mov FIB_HI,1 ; first two Fibonacci numbers

43: fib_loop:

44: mov EAX,FIB_HI ; compute next Fibonacci number

45: mov EBX,FIB_LO

46: add EBX,EAX

47: mov FIB_LO,EAX

48: mov FIB_HI,EBX

49: cmp EBX,EDX ; compare with input number in EDX

50: jle fib_loop ; if not greater, find next number

51: ; EAX contains the required Fibonacci number

52: pop EBX

53: leave ; clears local variable space

54: ret

156 Chapter 5 Procedures and the Stack

5.10 Multiple Source Program Modules
In the program examples we have seen so far, the entire assembly language program is in

a single file. This is fine for short example programs. Real application programs, however,

tend to be large, consisting of hundreds of procedures. Rather than keeping such a massive

source program in a single file, it is advantageous to break it into several small pieces, where

each piece of source code is stored in a separate file or module. There are three advantages

associated with multimodule programs:

• The chief advantage is that, after modifying a source module, it is only necessary to

reassemble that module. On the other hand, if you keep only a single file, the whole file

has to be reassembled.

• Making modifications to the source code is easier with several small files.

• It is safer to edit a short file; any unintended modifications to the source file are limited

to a single small file.

If we want to separately assemble modules, we have to precisely specify the intermodule

interface. For example, if a procedure is called in the current module but is defined in another

module, we have to state that fact so that the assembler will not flag such procedure calls

as errors. NASM provides two directives—GLOBAL and EXTERN—to facilitate separate

assembly of source modules. These two directives are discussed in the following sections.

A simple example follows this discussion.

GLOBAL Directive

The GLOBAL directive makes the associated label(s) available to other modules of the pro-

gram. The format is

global label1, label2, ...

Almost any label can be made public. These include procedure names, memory variables,

and equated labels, as shown in the following example:

global error_msg, total, sample

. . .

.DATA

error_msg db ’Out of range!’,0

total dw 0

. . .

.CODE

. . .

sample:

. . .

ret

Microsoft and Borland assemblers use PUBLIC directive for this purpose.

Section 5.10 Multiple Source Program Modules 157

EXTERN Directive

The EXTERN directive can be used to tell the assembler that certain labels are not defined in

the current source file (i.e., module), but can be found in other modules. Thus, the assembler

leaves “holes” in the corresponding object file that the linker will fill in later. The format is

extern label1, label2, ...

where label1 and label2 are labels that are made public by a GLOBAL directive in some

other module.

Example 5.9 A two-module example to find string length.

We now present a simple example that reads a string from the user and displays the string
length (i.e., number of characters in the string). The source code consists of two procedures:
main and string_length. The main procedure is responsible for requesting and dis-
playing the string length information. It uses GetStr, PutStr, and PutInt I/O routines.
The string_length procedure computes the string length. The entire source program is
split between two modules: the main procedure is in the module1.asm file, and the proce-
dure string_length is in the module2.asm file. A listing of module1.asm is given
in Program 5.9. Notice that on line 18 we declare string_length as an externally defined
procedure by using the extern directive.

Program 5.9 The main procedure defined in module1.asm calls the sum procedure defined in

module2.asm

1: ;Multimodule program for string length MODULE1.ASM

2: ;

3: ; Objective: To show parameter passing via registers.

4: ; Input: Requests two integers from keyboard.

5: ; Output: Outputs the sum of the input integers.

6:

7: BUF_SIZE EQU 41 ; string buffer size

8: %include "io.mac"

9:

10: .DATA

11: prompt_msg db "Please input a string: ",0

12: length_msg db "String length is: ",0

13:

14: .UDATA

15: string1 resb BUF_SIZE

16:

17: .CODE

18: extern string_length

19: .STARTUP

20: PutStr prompt_msg ; request a string

158 Chapter 5 Procedures and the Stack

21: GetStr string1,BUF_SIZE ; read string input

22:

23: mov EBX,string1 ; EBX = string pointer

24: call string_length ; returns string length in AX

25: PutStr length_msg ; display string length

26: PutInt AX

27: nwln

28: done:

29: .EXIT

Program 5.10 This module defines the sum procedure called by main

1: ;String length procedure MODULE2.ASM

2: ;

3: ; Objective: To write a procedure to compute string

4: ; length of a NULL-terminated string.

5: ; Input: String pointer in EBX register.

6: ; Output: Returns string length in AX.

7: %include "io.mac"

8:

9: .CODE

10: global string_length

11: string_length:

12: ; all registers except AX are preserved

13: push ESI ; save ESI

14: mov ESI,EBX ; ESI = string pointer

15: repeat:

16: cmp byte [ESI],0 ; is it NULL?

17: je done ; if so, done

18: inc ESI ; else, move to next character

19: jmp repeat ; and repeat

20: done:

21: sub ESI,EBX ; compute string length

22: mov AX,SI ; return string length in AX

23: pop ESI ; restore ESI

24: ret

Program 5.10 gives the module2.asm program listing. This module consists of a single

procedure. By using the global directive, we make this procedure public (line 10) so that

other modules can access it. The string_length procedure receives a pointer to a NULL-

Section 5.11 Performance: Procedure Overheads 159

terminated string in EBX and returns the length of the string in AX. The procedure preserves

all registers except for AX.

We can assemble each source code module separately producing the corresponding object

files. We can then link the object files together to produce a single executable file. For

example, using the NASM assembler, the following sequence of commands produces the

executable file:

nasm -f elf module1 ← Produces module1.o

nasm -f elf module2 ← Produces module2.o

ld -s -o module module1.o module2.o io.o ← Produces module

The above sequence assumes that you have io.o in your current directory.

5.11 Performance: Procedure Overheads
As we have seen in this chapter, procedures facilitate modular programming. However, there

is a price to pay in terms of procedure invocation and return overheads. Parameter passing

contributes additional overhead when procedures are used. In addition, allocation of storage

for local variables can also significantly affect the performance. In this section, we quantify

these overheads using the bubble sort and Fibonacci examples discussed before.

5.11.1 Procedure Overheads

This section reports the procedure call/return overhead on the performance of the assembly

language bubble sort procedure discussed in this chapter. In the bubble sort procedure given

in Program 5.5, swapping is done on lines 95–99. For convenience, we reproduce this code

below:

swap:

; swap elements at [ESI] and [ESI+4]

mov [ESI+4],EAX ; copy [ESI] in EAX to [ESI+4]

mov [ESI],EBX ; copy [ESI+4] in EBX to [ESI]

mov EDX,UNSORTED ; set status to UNSORTED

where ESI and ESI+4 point to the elements of the array to be interchanged.

To study the impact of procedure call and return overheads, we replaced the above code

by a call to the following swap procedure:

swap_proc:

mov [ESI+4],EAX ; copy [ESI] in EAX to [ESI+4]

mov [ESI],EBX ; copy [ESI+4] in EBX to [ESI]

mov EDX,UNSORTED ; set status to UNSORTED

ret

Figure 5.14 shows the performance impact of the call/return overhead on the bubble sort

procedure when run on a 2.4-GHz Pentium 4 system. Since the body of the procedure consists

160 Chapter 5 Procedures and the Stack

0

0.5

1

1.5

2

5000 10000 15000 20000 25000

Array size

S
o

rt
 t

im
e

(s
ec

o
n

d
s)

 With sort procedure

Without sort procedure

Figure 5.14 Performance impact of procedure call and return overheads on the bubble sort.

of the same three assembly language statements that it is replacing, the difference between the

two lines can be directly attributed to the call/return overhead. It can be seen from this data

that the overhead is substantial. For this program, the slowdown is by a factor of 2.3. Note

that this overhead increases further if we were to pass parameters via the stack.

5.11.2 Local Variable Overhead

In this section, we use the Fibonacci example to study the performance impact of keeping

local variables in registers as opposed to storing them on the stack.

The Fibonacci procedures given in Programs 5.7 and 5.8 are used to measure the execution

time to compute the largest Fibonacci number that is less than or equal to 25,000. The results

are shown in Figure 5.15. The x-axis represents the number of calls to the procedure (varied

from 1 to 9 million). The execution time increases by a factor of 3.4 when the local variable

storage is moved from registers to the stack. Because of this performance impact, compilers

attempt to keep the local variables in registers.

5.12 Summary
The stack is a last-in–first-out data structure that plays an important role in procedure invo-

cation and execution. It supports two operations: push and pop. Only the element at the

top-of-stack is directly accessible through these operations. The Pentium uses the stack seg-

ment to implement the stack. The top-of-stack is represented by SS:ESP. In the Pentium

Section 5.12 Summary 161

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9

Number of calls (in millions)

T
im

e
(s

ec
o

n
d

s) Local variables in stack

Local variables in registers

Figure 5.15 Local variable overhead: registers versus stack.

implementation, the stack grows toward lower memory addresses (i.e., grows downward). As

discussed in Chapter 12, MIPS also implements the stack in a similar way.

The stack serves three main purposes: temporary storage of data, transfer of control during

procedure calls, and parameter passing.

When writing procedures in assembly language, parameter passing has to be explicitly

handled. Parameter passing can be done via registers or the stack. Although the register

method is efficient, the stack-based method is more general. Also, when the stack is used

for parameter passing, passing a variable number of parameters is straightforward. We have

demonstrated this by means of an example.

As with parameter passing, local variables of a procedure can be stored either in registers

or on the stack. Due to the limited number of registers available, only a few local variables

can be mapped to registers. The stack avoids this limitation, but it is slow.

Real application programs are unlikely to be short enough to keep in a single file. It is

advantageous to break large source programs into more manageable chunks. Then we can

keep each chunk in a separate file (i.e., modules). We have discussed how such multimodule

programs are written and assembled into a single executable file.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

162 Chapter 5 Procedures and the Stack

• Activation record

• Bubble sort

• Call-by-reference

• Call-by-value

• EXTERN directive

• Frame pointer

• Local variables

• Parameter passing

• Parameter passing—register method

• Parameter passing—stack method

• GLOBAL directive

• Segment override

• Stack frame

• Stack operations

• Stack overflow

• Stack underflow

• Top-of-stack

• Variable number of parameters

5.13 Exercises
5–1 What are the defining characteristics of a stack?

5–2 Discuss the differences between a queue and a stack.

5–3 What is top-of-stack? How is it represented in the Pentium?

5–4 What is stack underflow? Which stack operation can potentially cause stack underflow?

5–5 What is stack overflow? Which stack operation can potentially cause stack overflow?

5–6 What are the main uses of the stack?

5–7 In Section 5.4.1 on page 123, we discussed two ways of exchanging value1 and

value2. Both methods require eight memory accesses. Can you write a code fragment

that does this exchange using only six memory accesses? Make sure that your code does

not alter the contents of any registers. Hint: Use the xchg instruction.

5–8 In the Pentium, can we invoke a procedure through the call instruction without the

presence of a stack segment? Explain.

5–9 What are the two most common methods of parameter passing? Identify the circum-

stances under which each method is preferred.

5–10 What are the disadvantages of passing parameters via the stack?

5–11 Can we pass a variable number of parameters using the register parameter passing

method? Explain the limitations and the problems associated with such a method.

5–12 We have stated on page 134 that placing the code

push EBP

mov EBP,ESP

at the beginning of a procedure is good for program maintenance. Explain why.

5–13 In passing a variable number of parameters via the stack, why is it necessary to push

the parameter count last?

5–14 Why are local variables of a procedure not mapped to the data segment?

5–15 How is storage space for local variables created in the stack?

Section 5.14 Programming Exercises 163

5–16 A swap procedure can exchange two elements (pointed to by ESI and EDI) of an array

using

xchg EAX,[EDI]

xchg EAX,[ESI]

xchg EAX,[EDI]

The above code preserves the contents of the EAX register. This code requires six mem-

ory accesses. Can we do better than this in terms of the number of memory accesses if

we save and restore the EAX using push and pop stack operations?

5–17 Verify that the following procedure is equivalent to the string_length procedure

given in Section 5.10. Which procedure is better and why?

string_length1:

push EBX

sub AX,AX

repeat:

cmp [EBX],word 0

je done

inc AX

inc EBX

jmp repeat

done:

pop EBX

ret

5.14 Programming Exercises
5–P1 The bubble sort example discussed in this chapter used a single source file. In this exer-

cise you are asked to split the source code of this program into two modules: the main
procedure in one module, and the bubble sort procedure in the other. Then assemble

and link this code to produce the .exe file. Verify the correctness of the program.

5–P2 Write an assembly language program that reads a set of integers from the keyboard and

displays their sum on the screen. Your program should read up to 20 integers (except

zero) from the user. The input can be terminated by entering a zero or by entering 20

integers. The array of input integers is passed along with its size to the sum procedure,

which returns the sum in the AX register. Your sum procedure need not check for

overflow.

5–P3 Write a procedure max that receives three integers from main and returns the maxi-

mum of the three in AX. The main procedure requests the three integers from the user

and displays the maximum number returned by the max procedure.

5–P4 Extend the last exercise to return both maximum and minimum of the three integers

received by your procedure minmax. In order to return the minimum and maximum

164 Chapter 5 Procedures and the Stack

values, your procedure minmax also receives two pointers from main to variables

min_int and max_int.

5–P5 Extend the last exercise to handle variable number of integers passed on to the minmax
procedure. The main procedure should request input integers from the user. Positive

or negative values, except zero, are valid. Entering a zero terminates the input integer

sequence. The minimum and maximum values returned by the procedure are displayed

by main.

5–P6 Write a procedure to perform string reversal. The procedure reverse receives a

pointer to a character string (terminated by a NULL character) and reverses the string.

For example, if the original string is

slap

the reversed string should read

pals

The main procedure should request the string from the user. It should also display the

reversed string as output of the program.

5–P7 Write a procedure locate to locate a character in a given string. The procedure re-

ceives a pointer to a NULL-terminated character string and the character to be located.

When the first occurrence of the character is located, its position is returned to main. If

no match is found, a negative value is returned. The main procedure requests a charac-

ter string and a character to be located and displays the position of the first occurrence

of the character returned by the locate procedure. If there is no match, a message

should be displayed to that effect.

5–P8 Write a procedure that receives a string via the stack (i.e., the string pointer is passed to

the procedure) and removes all leading blank characters in the string. For example, if

the input string is (⊔ indicates a blank character)

⊔ ⊔ ⊔ ⊔ ⊔Read⊔⊔my⊔lips.

it will be modified by removing all leading blanks as

Read⊔⊔my⊔lips.

5–P9 Write a procedure that receives a string via the stack (i.e., the string pointer is passed to

the procedure) and removes all leading and duplicate blank characters in the string. For

example, if the input string is (⊔ indicates a blank character)

⊔ ⊔ ⊔ ⊔ ⊔Read⊔ ⊔ ⊔my⊔ ⊔ ⊔ ⊔ ⊔lips.

it will be modified by removing all leading and duplicate blanks as

Read⊔my⊔lips.

5–P10 Write a program to read a number (consisting of up to 28 digits) and display the sum

of the individual digits. Do not use GetInt to read the input number; read it as a

sequence of characters. A sample input and output of the program is

Section 5.14 Programming Exercises 165

Input: 123456789
Output: 45

5–P11 Write a procedure to read a string, representing a person’s name, in the format

first-name⊔MI⊔last-name

and displays the name in the format

last-name,⊔first-name⊔MI

where ⊔ indicates a blank character. As indicated, you can assume that the three

names—first name, middle initial, and last name—are separated by single spaces.

5–P12 Modify the last exercise to work on an input that can contain multiple spaces between

the names. Also, display the name as in the last exercise but with the last name in all

capital letters.

Chapter 6

Addressing Modes

Objectives
• To discuss in detail various addressing modes supported by the Pentium processor

• To describe how arrays are implemented and manipulated in assembly language

• To show the performance impact of various addressing modes

In assembly language, specification of data required by instructions can be done in a variety of

ways. In Chapter 4 we discussed four different addressing modes: register, immediate, direct,

and indirect. The last two addressing modes specify operands in memory. However, operands

located in memory can be specified by several other addressing modes. Section 6.2 describes

these memory addressing modes in detail and Section 6.3 gives examples to illustrate their

use.

Arrays are important for organizing a collection of related data. Although one-dimensional

arrays are straightforward to implement, multidimensional arrays are more involved. These

issues are discussed in Section 6.4. This section also gives some examples to illustrate the use

of the addressing modes in processing one- and two-dimensional arrays. Section 6.5 shows

how the performance is affected by the various addressing modes.

6.1 Introduction
CISC processors support a large number of addressing modes compared to RISC processors.

RISC processors use the load/store architecture. In this architecture, assembly language in-

structions take their operands from the processor registers and store the results in registers.

This is what we called the register addressing mode in Chapter 4. These processors use spe-

cial load and store instructions to move data between registers and memory. As a result, RISC

processors support very few (often just two) addressing modes.

167

168 Chapter 6 Addressing Modes

Based-Indexed

with displacement

[BX + SI + disp]

[BX + DI + disp]

[BP + SI + disp]

[BP + DI + disp]

Based-Indexed

with no displacement

[BX + SI] [BP + SI]

[BX + DI] [BP + DI]

Based-IndexedRegister Indirect

[BX] [BP] [SI] [DI]

Memory

IndirectDirect

[disp]

Based

[BP + disp]

Indexed

[DI + disp]

[BX + disp] [SI + disp]

Figure 6.1 Memory addressing modes for 16-bit addresses.

The Pentium, being a CISC processor, provides several addressing modes. The three main

ones are as follows:

• Register Addressing Mode: In this addressing mode, as discussed in Chapter 4, proces-

sor registers provide the input operands and results are stored back in registers. Since

the Pentium uses a two-address format, one operand specification acts as both source

and destination. This addressing mode is the best way of specifying the operands, as

the delay in accessing the operands is minimal.

• Immediate Addressing Mode: This addressing mode can be used to specify at most one

source operand. The operand value is encoded as part of the instruction. Thus, the

operand is available as soon as the instruction is read.

• Memory Addressing Modes: When an operand is in memory, the Pentium provides a

variety of addressing modes to specify it. Recall that we have to specify the logical

address in order to specify the location of a memory operand. The logical address

consists of two components: segment base and offset. Note that offset is also referred

to as the effective address. Memory addressing modes differ in how they specify the

effective address.

We have already discussed the direct and register indirect addressing modes in Chapter 4. The

direct addressing mode gives the effective address directly in the instruction. In the indirect

addressing mode, the effective address is in one of the general-purpose registers. This chapter

discusses the remaining memory addressing modes.

Section 6.2 Memory Addressing Modes 169

[(Index scale) + disp]

[Base + (Index scale) + disp]

*

Addressing Modes

Register Immediate Memory

IndirectDirect

[disp]

IndexedRegister Indirect Based-Indexed

Based-Indexed

[Base]

Based

[Base + disp]

Based-Indexed

with no scale factor
[Base + Index + disp]

with scale factor

*

Figure 6.2 Addressing modes of the Pentium for 32-bit addresses.

6.2 Memory Addressing Modes
The primary motivation for providing different addressing modes is to efficiently support

high-level language constructs and data structures. The actual memory addressing modes

available depend on the address size used (16 bits or 32 bits). The memory addressing modes

available for 16-bit addresses are the same as those supported by the 8086. Figure 6.1 shows

the default memory addressing modes available for 16-bit addresses. The Pentium supports

a more flexible set of addressing modes for 32-bit addresses. These addressing modes are

shown in Figure 6.2 and are summarized below:

Segment + Base + (Index * Scale) + displacement

CS EAX EAX 1 No displacement

SS EBX EBX 2 8-bit displacement

DS ECX ECX 4 32-bit displacement

ES EDX EDX 8

FS ESI ESI

GS EDI EDI

EBP EBP

ESP

The differences between 16-bit and 32-bit addressing are summarized in Table 6.1. How

does the processor know whether to use 16- or 32-bit addressing? As discussed in Chapter 3,

it uses the D bit in the CS segment descriptor to determine if the address is 16 or 32 bits long

(see page 56). It is, however, possible to override these defaults. The Pentium provides two

size override prefixes:

170 Chapter 6 Addressing Modes

Table 6.1 Differences Between 16-Bit and 32-Bit Addressing

16-bit addressing 32-bit addressing

Base register BX EAX, EBX, ECX, EDX

BP ESI, EDI, EBP, ESP

Index register SI EAX, EBX, ECX, EDX

DI ESI, EDI, EBP

Scale factor None 1, 2, 4, 8

Displacement 0, 8, 16 bits 0, 8, 32 bits

66H Operand size override prefix

67H Address size override prefix

By using these prefixes, we can mix 16- and 32-bit data and addresses. Remember that our

assembly language programs use 32-bit data and addresses. This, however, does not restrict

us from using 16-bit data and addresses. For example, when we write

mov EAX,123

the assembler generates the following machine language code:

B8 0000007B

However, when we use a 16-bit operand as in

mov AX,123

the following code is generated by the assembler:

66 | B8 007B

The assembler automatically inserts the operand size override prefix (66H). Similarly, we can

use the 16-bit addresses. For instance, consider the following example:

mov EAX,[BX]

The assembler automatically inserts the address size override prefix (67H) as shown below:

67 | 8B 07

It is also possible to mix both override prefixes as demonstrated by the following example.

The assembly language statement

mov AX,[BX]

causes the assembler to insert both operand and address size override prefixes:

66 | 67 | 8B 07

Section 6.2 Memory Addressing Modes 171

6.2.1 Based Addressing

In the based addressing mode, one of the registers acts as the base register in computing the

effective address of an operand. The effective address is computed by adding the contents of

the specified base register with a signed displacement value given as part of the instruction.

For 16-bit addresses, the signed displacement is either an 8- or a 16-bit number. For 32-bit

addresses, it is either an 8- or a 32-bit number.

Based addressing provides a convenient way to access individual elements of a structure.

Typically, a base register can be set up to point to the base of the structure and the displacement

can be used to access an element within the structure. For example, consider the following

record of a course schedule:

Course number Integer 2 bytes

Course title Character string 38 bytes

Term offered Single character 1 byte

Room number Character string 5 bytes

Enrollment limit Integer 2 bytes

Number registered Integer 2 bytes

Total storage per record 50 bytes

In this example, suppose we want to find the number of available spaces in a particular

course. We can let the EBX register point to the base address of the corresponding course

record and use displacement to read the number of students registered and the enrollment

limit for the course to compute the desired answer. This is illustrated in Figure 6.3.

This addressing mode is also useful in accessing arrays whose element size is not 2, 4, or

8 bytes. In this case, the displacement can be set equal to the offset to the beginning of the

array, and the base register holds the offset of a specific element relative to the beginning of

the array.

6.2.2 Indexed Addressing

In this addressing mode, the effective address is computed as

(Index * scale factor) + signed displacement.

For 16-bit addresses, no scaling factor is allowed (see Table 6.1 on page 170). For 32-bit

addresses, a scale factor of 2, 4, or 8 can be specified. Of course, we can use a scale factor in

the 16-bit addressing mode by using an address size override prefix.

The indexed addressing mode is often used to access elements of an array. The beginning

of the array is given by the displacement, and the value of the index register selects an element

within the array. The scale factor is particularly useful to access arrays of elements whose size

is 2, 4, or 8 bytes.

172 Chapter 6 Addressing Modes

displacement

46 bytes

(50 bytes)

First course record

(50 bytes)

Second course record

Enrollment

registered

Room #

Title

Course #

2

2

5

1

38

2

Enrollment

registered

Room #

Title

Course #

2

2

5

1

38

2

Term

Term

SSA + 50

SSA + 100

SSA

Structure Starting Address

Figure 6.3 Course record layout in memory.

The following are valid instructions using the indexed addressing mode to specify one of

the operands.

add EAX,[EDI+20]

mov EAX,[marks_table+ESI*4]

add EAX,[table1+ESI]

In the second instruction, the assembler would supply a constant displacement that rep-

resents the offset of marks_table in the data segment. Assume that each element of

marks_table takes four bytes. Since we are using a scale factor of four, ESI should have

the index value. For example, if we want to access the tenth element, ESI should have nine as

the index value starts with zero.

If no scale factor is used as in the last instruction, ESI should hold the offset of the element

in bytes relative to the beginning of the array. For example, if table1 is an array of four-byte

elements, ESI register should have 36 to refer to the tenth element. By using the scale factor,

we avoid such byte counting.

Section 6.3 Illustrative Examples 173

6.2.3 Based-Indexed Addressing

Based-indexed addressing mode comes in two flavors: with or without the scale factor. These

two addressing modes are discussed next.

Based-Indexed with No Scale Factor

In this addressing mode, the effective address is computed as

Base + Index + signed displacement.

The displacement can be a signed 8- or 16-bit number for 16-bit addresses; it can be a signed

8- or 32-bit number for 32-bit addresses.

This addressing mode is useful in accessing two-dimensional arrays with the displacement

representing the offset to the beginning of the array. This mode can also be used to access ar-

rays of records where the displacement represents the offset to a field in a record. In addition,

this addressing mode is useful to access arrays passed on to a procedure. In this case, the base

register could point to the beginning of the array, and an index register can hold the offset to

a specific element.

Assuming that EBX points to table1, which consists of four-byte elements, we can use

the code

mov EAX,[EBX+ESI]

cmp EAX,[EBX+ESI+4]

to compare two successive elements of table1. This type of code is particularly useful if

the table1 pointer is passed as a parameter.

Based-Indexed with Scale Factor

In this addressing mode, the effective address is computed as

Base + (Index * scale factor) + signed displacement.

This addressing mode provides an efficient indexing mechanism into a two-dimensional array

when the element size is 2, 4, or 8 bytes.

6.3 Illustrative Examples
We now present two examples to illustrate the usefulness of the various addressing modes.

The first example sorts an array of integers using the insertion sort algorithm, and the other

example implements a binary search to locate a value in a sorted array.

Example 6.1 Sorting an integer array using the insertion sort.

This example requests a set of integers from the user and displays these numbers in sorted

order. The main procedure reads a maximum of MAX_SIZE integers (lines 20 to 28). It

174 Chapter 6 Addressing Modes

accepts only nonnegative numbers. Entering a negative number terminates the input (lines 24

and 25).

The main procedure passes the array pointer and its size (lines 30 to 34) to the insertion

sort procedure. The remainder of the main procedure displays the sorted array returned by the

sort procedure. Note that the main procedure uses the indirect addressing mode on lines 26

and 41.

The basic principle behind the insertion sort is simple: insert a new number into the sorted

array in its proper place. To apply this algorithm, we start with an empty array. Then insert the

first number. Now the array is in sorted order with just one element. Next insert the second

number in its proper place. This results in a sorted array of size two. Repeat this process until

all the numbers are inserted. The pseudocode for this algorithm, shown below, assumes that

the array index starts with 0:

insertion_sort (array, size)

for (i = 1 to size−1)

temp := array[i]

j := i − 1

while ((temp < array[j]) AND (j ≥ 0))

array[j+1] := array[j]

j := j − 1

end while

array[j+1] := temp

end for

end insertion_sort

Here, index i points to the number to be inserted. The array to the left of i is in sorted
order. The numbers to be inserted are the ones located at or to the right of index i. The next
number to be inserted is at i. The implementation of the insertion sort procedure, shown in
Program 6.1, follows the pseudocode.

Program 6.1 Insertion sort

1: ;TITLE Sorting an array by insertion sort INS_SORT.ASM

2: ;

3: ; Objective: To sort an integer array using insertion sort.

4: ; Input: Requests numbers to fill array.

5: ; Output: Displays sorted array.

6: %include "io.mac"

7:

8: .DATA

9: MAX_SIZE EQU 100

10: input_prompt db "Please enter input array: "

11: db "(negative number terminates input)",0

Section 6.3 Illustrative Examples 175

12: out_msg db "The sorted array is:",0

13:

14: .UDATA

15: array resd MAX_SIZE

16:

17: .CODE

18: .STARTUP

19: PutStr input_prompt ; request input array

20: mov EBX,array

21: mov ECX,MAX_SIZE

22: array_loop:

23: GetLInt EAX ; read an array number

24: cmp EAX,0 ; negative number?

25: jl exit_loop ; if so, stop reading numbers

26: mov [EBX],EAX ; otherwise, copy into array

27: add EBX,4 ; increment array address

28: loop array_loop ; iterates a maximum of MAX_SIZE

29: exit_loop:

30: mov EDX,EBX ; EDX keeps the actual array size

31: sub EDX,array ; EDX = array size in bytes

32: shr EDX,2 ; divide by 4 to get array size

33: push EDX ; push array size & array pointer

34: push array

35: call insertion_sort

36: PutStr out_msg ; display sorted array

37: nwln

38: mov ECX,EDX

39: mov EBX,array

40: display_loop:

41: PutLInt [EBX]

42: nwln

43: add EBX,4

44: loop display_loop

45: done:

46: .EXIT

47:

48: ;---

49: ; This procedure receives a pointer to an array of integers

50: ; and the array size via the stack. The array is sorted by

51: ; using insertion sort. All registers are preserved.

52: ;---

53: %define SORT_ARRAY EBX

54: insertion_sort:

55: pushad ; save registers

176 Chapter 6 Addressing Modes

56: mov EBP,ESP

57: mov EBX,[EBP+36] ; copy array pointer

58: mov ECX,[EBP+40] ; copy array size

59: mov ESI,4 ; array left of ESI is sorted

60: for_loop:

61: ; variables of the algorithm are mapped as follows.

62: ; EDX = temp, ESI = i, and EDI = j

63: mov EDX,[SORT_ARRAY+ESI] ; temp = array[i]

64: mov EDI,ESI ; j = i-1

65: sub EDI,4

66: while_loop:

67: cmp EDX,[SORT_ARRAY+EDI] ; temp < array[j]

68: jge exit_while_loop

69: ; array[j+1] = array[j]

70: mov EAX,[SORT_ARRAY+EDI]

71: mov [SORT_ARRAY+EDI+4],EAX

72: sub EDI,4 ; j = j-1

73: cmp EDI,0 ; j >= 0

74: jge while_loop

75: exit_while_loop:

76: ; array[j+1] = temp

77: mov [SORT_ARRAY+EDI+4],EDX

78: add ESI,4 ; i = i+1

79: dec ECX

80: cmp ECX,1 ; if ECX = 1, we are done

81: jne for_loop

82: sort_done:

83: popad ; restore registers

84: ret 8

Since the sort procedure does not return any value to the main program in registers, we

can use pushad (line 55) and popad (line 83) to save and restore registers. As pushad
saves all eight registers on the stack, the offset is appropriately adjusted to access the array

size and array pointer parameters (lines 57 and 58).

The while loop is implemented by lines 66 to 75, and the for loop is implemented by

lines 60 to 81. Note that the array pointer is copied to the EBX (line 57), and line 53 assigns

a convenient label to this. We have used the based-indexed addressing mode on lines 63, 67,

and 70 without any displacement and on lines 71 and 77 with displacement. Based addressing

is used on lines 57 and 58 to access parameters from the stack.

Section 6.3 Illustrative Examples 177

Example 6.2 Binary search procedure.

Binary search is an efficient algorithm to locate a value in a sorted array. The search process

starts with the whole array. The value at the middle of the array is compared with the number

we are looking for: if there is a match, its index is returned. Otherwise, the search process

is repeated either on the lower half (if the number is less than the value at the middle), or on

the upper half (if the number is greater than the value at the middle). The pseudocode of the

algorithm is given below:

binary_search (array, size, number)

lower := 0

upper := size − 1

while (lower ≤ upper)

middle := (lower + upper)/2

if (number = array[middle])

then

return (middle)

else

if (number < array[middle])

then

upper := middle − 1

else

lower := middle + 1

end if

end if

end while

return (0) {number not found}
end binary_search

The listing of the binary search program is given in Program 6.2. The main procedure is

similar to that in the last example. In the binary search procedure, the lower and upper index

variables are mapped to the AX and CX registers. The number to be searched is stored in the

DX and the array pointer is in the EBX. Register SI keeps the middle index value.

Program 6.2 Binary search

1: ;Binary search of a sorted integer array BIN_SRCH.ASM

2: ;

3: ; Objective: To implement binary search of a sorted

4: ; integer array.

5: ; Input: Requests numbers to fill array and a

6: ; number to be searched for from user.

7: ; Output: Displays the position of the number in

178 Chapter 6 Addressing Modes

8: ; the array if found; otherwise, not found

9: ; message.

10: %include "io.mac"

11:

12: .DATA

13: MAX_SIZE EQU 100

14: input_prompt db "Please enter input array (in sorted order): "

15: db "(negative number terminates input)",0

16: query_number db "Enter the number to be searched: ",0

17: out_msg db "The number is at position ",0

18: not_found_msg db "Number not in the array!",0

19: query_msg db "Do you want to quit (Y/N): ",0

20:

21: .UDATA

22: array resw MAX_SIZE

23:

24: .CODE

25: .STARTUP

26: PutStr input_prompt ; request input array

27: nwln

28: sub ESI,ESI ; set index to zero

29: mov CX,MAX_SIZE

30: array_loop:

31: GetInt AX ; read an array number

32:

33: cmp AX,0 ; negative number?

34: jl exit_loop ; if so, stop reading numbers

35: mov [array+ESI*2],AX ; otherwise, copy into array

36: inc ESI ; increment array index

37: loop array_loop ; iterates a maximum of MAX_SIZE

38: exit_loop:

39: read_input:

40: PutStr query_number ; request number to be searched for

41: GetInt AX ; read the number

42: push AX ; push number, size & array pointer

43: push SI

44: push array

45: call binary_search

46: ; binary_search returns in AX the position of the number

47: ; in the array; if not found, it returns 0.

48: cmp AX,0 ; number found?

49: je not_found ; if not, display number not found

50: PutStr out_msg ; else, display number position

51: PutInt AX

Section 6.3 Illustrative Examples 179

52: jmp user_query

53: not_found:

54: PutStr not_found_msg

55: user_query:

56: nwln

57: PutStr query_msg ; query user whether to terminate

58: GetCh AL ; read response

59: cmp AL,’Y’ ; if response is not ’Y’

60: jne read_input ; repeat the loop

61: done: ; otherwise, terminate program

62: .EXIT

63:

64: ;---

65: ; This procedure receives a pointer to an array of integers,

66: ; the array size, and a number to be searched via the stack.

67: ; It returns in AX the position of the number in the array

68: ; if found; otherwise, returns 0.

69: ; All registers, except AX, are preserved.

70: ;---

71: binary_search:

72: enter 0,0

73: push EBX

74: push ESI

75: push CX

76: push DX

77: mov EBX,[EBP+8] ; copy array pointer

78: mov CX,[EBP+12] ; copy array size

79: mov DX,[EBP+14] ; copy number to be searched

80: xor AX,AX ; lower = 0

81: dec CX ; upper = size-1

82: while_loop:

83: cmp AX,CX ;lower > upper?

84: ja end_while

85: sub ESI,ESI

86: mov SI,AX ; middle = (lower + upper)/2

87: add SI,CX

88: shr SI,1

89: cmp DX,[EBX+ESI*2] ; number = array[middle]?

90: je search_done

91: jg upper_half

92: lower_half:

93: dec SI ; middle = middle-1

94: mov CX,SI ; upper = middle-1

95: jmp while_loop

180 Chapter 6 Addressing Modes

96: upper_half:

97: inc SI ; middle = middle+1

98: mov AX,SI ; lower = middle+1

99: jmp while_loop

100: end_while:

101: sub AX,AX ; number not found (clear AX)

102: jmp skip1

103: search_done:

104: inc SI ; position = index+1

105: mov AX,SI ; return position

106: skip1:

107: pop DX ; restore registers

108: pop CX

109: pop ESI

110: pop EBX

111: leave

112: ret 8

Since the binary search procedure returns a value in the AX register, we cannot use the

pusha instruction as in the last example. On line 89, we use a scale factor of two to convert

the index value in SI to byte count. Also, a single comparison (line 89) is sufficient to test

multiple conditions (i.e., equal to, greater than, or less than). If the number is found in the

array, the index value in SI is returned via AX (line 105).

6.4 Arrays
Arrays are useful in organizing a collection of related data items, such as test marks of a class,

salaries of employees, and so on. We have used arrays of characters to represent strings. Such

arrays are one-dimensional: only a single subscript is necessary to access a character in the ar-

ray. Next we discuss one-dimensional arrays. High-level languages support multidimensional

arrays. Multidimensional arrays are discussed in Section 6.4.2.

6.4.1 One-dimensional Arrays

A one-dimensional array of test marks can be declared in C as

int test_marks [10];

In C, the subscript always starts at zero. Thus, the mark of the first student is given by

test_marks[0] and that of the last student by test_marks[9].

Array declaration in high-level languages specifies the following five attributes:

• Name of the array (test_marks),

Section 6.4 Arrays 181

• Number of the elements (10),

• Element size (4 bytes),

• Type of element (integer), and

• Index range (0 to 9).

From this information, the amount of storage space required for the array can be easily calcu-

lated. Storage space in bytes is given by

Storage space = number of elements * element size in bytes.

In our example, it is equal to 10 * 4 = 40 bytes. In assembly language, arrays are implemented

by allocating the required amount of storage space. For example, the test_marks array can

be declared as

test_marks resd 10

An array name can be assigned to this storage space. But that is all the support you get in

assembly language! It is up to you as a programmer to “properly” access the array, taking into

account the element size and the range of subscripts.

You need to know how the array is stored in memory in order to access elements of the

array. For one-dimensional arrays, representation of the array in memory is rather direct:

array elements are stored linearly in the same order as shown in Figure 6.4. In the remainder

of this section, we use the convention used for arrays in C (i.e., subscripts are assumed to

begin with 0).

To access an element we need to know its displacement value in bytes relative to the

beginning of the array. Since we know the element size in bytes, it is rather straightforward

to compute the displacement from the subscript value:

displacement = subscript * element size in bytes.

For example, to access the sixth student’s mark (i.e., subscript is 5), you have to use 5 * 4 = 20

as the displacement value into the test_marks array. Section 6.4.3 presents an example

that computes the sum of a one-dimensional integer array. If the array element size is 2, 4, or

8 bytes, we can use the scale factor to avoid computing displacement in bytes.

6.4.2 Multidimensional Arrays

Programs often require arrays of more than one dimension. For example, we need a two-

dimensional array of size 50 × 3 to store test marks of a class of 50 students taking three tests

during a semester. For most programs, arrays of up to three dimensions are adequate. In this

section, we discuss how two-dimensional arrays are represented and manipulated in assembly

language. Our discussion can be generalized to higher-dimensional arrays.

182 Chapter 6 Addressing Modes

High memory

Low memory

test_marks[9]

test_marks[8]

test_marks[7]

test_marks[6]

test_marks[5]

test_marks[4]

test_marks[3]

test_marks[2]

test_marks[1]

test_marks[0] test_marks

Figure 6.4 One-dimensional array storage representation.

For example, a 5 × 3 array to store test marks can be declared in C as

int class_marks[5][3]; /* 5 rows and 3 columns */

Storage representation of such arrays is not as direct as that for one-dimensional arrays. Since

the memory is one-dimensional (i.e., linear array of bytes), we need to transform the two-

dimensional structure to a one-dimensional structure. This transformation can be done in one

of two common ways:

• Order the array elements row-by-row, starting with the first row,

• Order the array elements column-by-column, starting with the first column.

The first method, called the row-major ordering, is shown in Figure 6.5a. Row-major or-

dering is used in most high-level languages including C. The other method, called the column-

major ordering, is shown in Figure 6.5b. Column-major ordering is used in FORTRAN. In

the remainder of this section, we focus on the row-major ordering scheme.

Why do we need to know the underlying storage representation? When we use a high-

level language, we really do not have to bother about the storage representation. Access to

arrays is provided by subscripts: one subscript for each dimension of the array. However,

when using the assembly language, we need to know the storage representation in order to

access individual elements of the array for reasons discussed next.

In assembly language, we can allocate storage space for the class_marks array as

class_marks resd 5*3

Section 6.4 Arrays 183

class_marks[0,0]

High memory

class_marks[0,1]

class_marks[0,2]

class_marks[1,0]

class_marks[1,1]

class_marks[1,2]

class_marks[2,0]

class_marks[2,1]

class_marks[2,2]

class_marks[3,0]

class_marks[3,1]

class_marks[3,2]

class_marks[4,0]

class_marks[4,1]

class_marks[4,2]

class_marks class_marks[0,0]

High memory

class_marks[2,1]

class_marks[4,2]

class_marks[1,0]

class_marks[2,0]

class_marks[3,0]

class_marks[4,0]

class_marks[0,1]

class_marks[1,1]

class_marks[3,1]

class_marks[4,1]

class_marks[0,2]

class_marks[1,2]

class_marks[2,2]

class_marks[3,2]

Low memory

(a) Row−major order (b) Column−major order

Low memory

class_marks

Figure 6.5 Two-dimensional array storage representation.

This statement simply allocates the 60 bytes required to store the array. Now we need a

formula to translate row and column subscripts to the corresponding displacement. In the

C language, which uses row-major ordering and subscripts start with zero, we can express

displacement of an element at row i and column j as

displacement = (i * COLUMNS + j) * ELEMENT_SIZE,

where COLUMNS is the number of columns in the array and ELEMENT_SIZE is the number

of bytes required to store an element. For example, displacement of class_marks[3,1]
is (3 * 3 + 1) * 4 = 40. The next section gives an example to illustrate how two-dimensional

arrays are manipulated.

184 Chapter 6 Addressing Modes

6.4.3 Examples of Arrays

This section presents two examples to illustrate manipulation of one- and two-dimensional

arrays. These examples also demonstrate the use of advanced addressing modes in accessing

multidimensional arrays.

Example 6.3 Finding the sum of a one-dimensional array.

This example shows how one-dimensional arrays can be manipulated. Program 6.3 finds the
sum of the test_marks array and displays the result.

Program 6.3 Computing the sum of a one-dimensional array

1: ;Sum of a long integer array ARAY_SUM.ASM

2: ;

3: ; Objective: To find sum of all elements of an array.

4: ; Input: None.

5: ; Output: Displays the sum.

6: %include "io.mac"

7:

8: .DATA

9: test_marks dd 90,50,70,94,81,40,67,55,60,73

10: NO_STUDENTS EQU ($-test_marks)/4 ; number of students

11: sum_msg db ’The sum of test marks is: ’,0

12:

13: .CODE

14: .STARTUP

15: mov ECX,NO_STUDENTS ; loop iteration count

16: sub EAX,EAX ; sum = 0

17: sub ESI,ESI ; array index = 0

18: add_loop:

19: mov EBX,[test_marks+ESI*4]

20: PutLInt EBX

21: nwln

22: add EAX,[test_marks+ESI*4]

23: inc ESI

24: loop add_loop

25:

26: PutStr sum_msg

27: PutLInt EAX

28: nwln

29: .EXIT

Section 6.4 Arrays 185

Each element of the test_marks array, declared on line 9, requires four bytes. The ar-

ray size NO_STUDENTS is computed on line 10 using the predefined location counter symbol

$. The symbol $ is always set to the current offset in the segment. Thus, on line 10, $ points

to the byte after the array storage space. Therefore, ($-test_marks) gives the storage

space in bytes, and dividing this value by four gives the number of elements in the array. The

indexed addressing mode with a scale factor of four is used on lines 19 and 22. Remember

that the scale factor is only allowed in the 32-bit mode. As a result, we have to use ESI rather

than the SI register.

Example 6.4 Finding the sum of a column in a two-dimensional array.

Consider the class_marks array representing the test scores of a class. For simplicity,
assume that there are only five students in the class. Also, assume that the class is given
three tests. As we discussed before, we can use a 5 × 3 array to store the marks. Each row
represents the three test marks of a student in the class. The first column represents the marks
of the first test; the second column represents the marks of the second test, and so on. The
objective of this example is to find the sum of the last test marks for the class. The program
listing is given in Program 6.4.

Program 6.4 Finding the sum of a column in a two-dimensional array

1: ;Sum of a column in a 2-dimensional array TEST_SUM.ASM

2: ;

3: ; Objective: To demonstrate array index manipulation

4: ; in a two-dimensional array of integers.

5: ; Input: None.

6: ; Output: Displays the sum.

7: %include "io.mac"

8:

9: .DATA

10: NO_ROWS EQU 5

11: NO_COLUMNS EQU 3

12: NO_ROW_BYTES EQU NO_COLUMNS * 2 ; number of bytes per row

13: class_marks dw 90,89,99

14: dw 79,66,70

15: dw 70,60,77

16: dw 60,55,68

17: dw 51,59,57

18:

19: sum_msg db "The sum of the last test marks is: ",0

20:

21: .CODE

22: .STARTUP

23: mov ECX,NO_ROWS ; loop iteration count

186 Chapter 6 Addressing Modes

24: sub AX,AX ; sum = 0

25: ; ESI = index of class_marks[0,2]

26: sub EBX,EBX

27: mov ESI,NO_COLUMNS-1

28: sum_loop:

29: add AX,[class_marks+EBX+ESI*2]

30: add EBX,NO_ROW_BYTES

31: loop sum_loop

32:

33: PutStr sum_msg

34: PutInt AX

35: nwln

36: done:

37: .EXIT

To access individual test marks, we use based-indexed addressing with a displacement on

line 29. Note that even though we have used

[class_marks+EBX+ESI*2]

it is translated by the assembler as

[EBX+(ESI*2)+constant]

where the constant is the offset of class_marks. For this to work, the EBX should

store the offset of the row in which we are interested. For this reason, after initializing the

EBX to zero to point to the first row (line 26), NO_ROW_BYTES is added in the loop body

(line 30). The ESI register is used as the column index. This works for row-major ordering.

6.5 Performance: Usefulness of Addressing Modes
The objective of this section is to show the performance impact of the various memory ad-

dressing modes.

Advantage of Based-Indexed Mode

This experiment shows the performance advantage of based-indexed addressing mode over

the register indirect addressing mode. In Program 6.1, we used based-indexed addressing with

and without displacement. For example, the two statements on lines 70 and 71 are equivalent

to

mov EAX,[EBX+EDI]

mov [EBX+EDI+4],EAX

Section 6.5 Performance: Usefulness of Addressing Modes 187

By using a displacement value of 4, we could use the same two registers to access the

next element in the array. We would not have this kind of flexibility if we use only the

indirect addressing mode. To see the relative performance, we have rewritten the insertion sort

procedure discussed in Section 6.3 with only direct and register indirect addressing modes.

We, however, have not modified how the parameters are accessed from the stack.

Program 6.5 Insertion sort procedure using only the indirect addressing mode

;---

; This procedure receives a pointer to an array of integers

; and the array size via the stack. The array is sorted by

; using insertion sort. All registers are preserved.

;---

;%define SORT_ARRAY EBX

ins_sort:

pushad ; save registers

mov EBP,ESP

mov EBX,[EBP+36] ; copy array pointer

mov ECX,[EBP+40] ; copy array size

mov ESI,EBX ; array left of ESI is sorted

add ESI,4

for_loop:

; variables of the algorithm are mapped as follows.

; EDX = temp, ESI = i, and EDI = j

mov EDX,[ESI] ; temp = array[i]

mov EDI,ESI ; j = i-1

sub EDI,4

while_loop:

cmp EDX,[EDI] ; temp < array[j]

jge exit_while_loop

; array[j+1] = array[j]

mov EAX,[EDI]

mov EBX,EDI

add EBX,4

mov [EBX],EAX

sub EDI,4 ; j = j-1

cmp EDI,[EBP+36] ; j >= 0

jge while_loop

exit_while_loop:

; array[j+1] = temp

add EDI,4

mov [EDI],EDX

add ESI,4 ; i = i+1

dec ECX

188 Chapter 6 Addressing Modes

0

4

8

12

16

20

1 2 3 4 5 6 7

Number of calls

S
o

rt
 t

im
e

(s
ec

o
n

d
s)

 Only indirect mode

 All modes

Figure 6.6 Performance impact of using only indirect addressing mode on the insertion sort.

cmp ECX,1 ; if ECX = 1, we are done

jne for_loop

sort_done:

popad ; restore registers

ret

The performance implications of these changes are shown in Figure 6.6. This plot gives

the sort time to sort an array of 50,000 elements on a 2.4-GHz Pentium 4 system. The x-axis

gives the number of times the sort procedure is called and the y-axis gives the corresponding

sort time. The performance of the procedure given in Program 6.1 is represented by the

“All modes” line while the other line represents the performance of the modified version

given here. The data presented in this figure show that using only direct and register indirect

addressing modes deteriorates performance of the insertion sort by about 13%! For example,

when the array is sorted seven times, there is a 2-second difference in the sort time.

Impact of Scale Factor

The goal of this experiment is to show the impact of scale factor on the performance. To

quantify this impact, we have written the insertion sort procedure using the based-indexed

addressing mode that uses a scale factor (see the program listing below).

Section 6.5 Performance: Usefulness of Addressing Modes 189

Program 6.6 Insertion sort procedure with the scale factor

;---

; This procedure receives a pointer to an array of integers

; and the array size via the stack. The array is sorted by

; using insertion sort. All registers are preserved.

;---

%define SORT_ARRAY EBX

ins_sort:

pushad ; save registers

mov EBP,ESP

mov EBX,[EBP+36] ; copy array pointer

mov ECX,[EBP+40] ; copy array size

mov ESI,1 ; array left of ESI is sorted

for_loop:

; variables of the algorithm are mapped as follows.

; DX = temp, ESI = i, and EDI = j

mov EDX,[SORT_ARRAY+ESI*4] ; temp = array[i]

mov EDI,ESI ; j = i-1

dec EDI

while_loop:

cmp EDX,[SORT_ARRAY+EDI*4] ; temp < array[j]

jge exit_while_loop

; array[j+1] = array[j]

mov EAX,[SORT_ARRAY+EDI*4]

mov [SORT_ARRAY+EDI*4+4],EAX

dec EDI ; j = j-1

cmp EDI,0 ; j >= 0

jge while_loop

exit_while_loop:

; array[j+1] = temp

mov [SORT_ARRAY+EDI*4+4],EDX

inc ESI ; i = i+1

dec ECX

cmp ECX,1 ; if ECX = 1, we are done

jne for_loop

sort_done:

popad ; restore registers

ret

As shown in Program 6.6, the ESI and EDI register now hold the array subscript as op-

posed to byte count. While this improves program readability, we pay in terms of performance

as shown in Figure 6.7. The sort times represent the time to sort a 50,000-element array on a

190 Chapter 6 Addressing Modes

0

4

8

12

16

20

1 2 3 4 5 6 7

Number of calls

S
o

rt
 t

im
e

(s
ec

o
n

d
s)

 With scale factor

No scale factor

Figure 6.7 Performance impact of using scale factor on the insertion sort.

2.4-GHz Pentium 4 system. The x-axis gives the number of times the insertion sort procedure

is called. As shown in this plot, the sort time increases by about 7% when we use the scale

factor. This could make a significant difference in the execution times of some programs. For

example, if this sort procedure is called seven times, the execution time increases by a second.

6.6 Summary
Addressing mode refers to the specification of operands required by an assembly language

instruction. We discussed several memory addressing modes supported by the Pentium. We

showed by means of examples how various addressing modes are useful in supporting features

of high-level languages.

Arrays are useful for representing a collection of related data. In high-level languages,

programmers do not have to worry about the underlying storage representation used to store

arrays in memory. However, when manipulating arrays in assembly language, we need to

know this information. This is so because accessing individual elements of an array involves

computing the corresponding displacement value. Although there are two common ways of

storing a multidimensional array—row-major or column-major order—most high-level lan-

guages, including C, use the row-major order. We presented examples to illustrate how one-

and two-dimensional arrays are manipulated in assembly language.

Section 6.7 Exercises 191

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Address size override prefix

• Based addressing mode

• Based-indexed addressing mode

• Binary search

• Column-major order

• Indexed addressing mode

• Insertion sort

• Location counter

• Multidimensional arrays

• One-dimensional arrays

• Operand size override prefix

• Row-major order

6.7 Exercises
6–1 Discuss the restrictions imposed by the immediate addressing mode.

6–2 Where (i.e., in which segment) are the data, specified by the immediate addressing

mode, stored?

6–3 Describe all the 16-bit addressing modes that you can use to specify an operand that is

located in memory.

6–4 Describe all the 32-bit addressing modes that you can use to specify an operand that is

located in memory.

6–5 When is it necessary to use the segment override prefix?

6–6 When is it necessary to use the address size override prefix?

6–7 Is there a fundamental difference between the based and indexed addressing modes?

6–8 What additional flexibility does the based-indexed addressing mode have over based or

indexed addressing modes?

6–9 Given the following declaration of table1

table1 resw 10

fill in the blanks in the following code:

mov ESI, _______ ; ESI = displacement of 5th element

; (i.e., table1[4] in C)

mov AX,[table1+ESI]

cmp AX, _______ ; compare 5th and 4th elements

6–10 What is the difference between row-major and column-major orders for storing multi-

dimensional arrays in memory?

6–11 In manipulating multidimensional arrays in assembly language, why is it necessary to

know their underlying storage representation?

192 Chapter 6 Addressing Modes

6–12 How is the class_marks array in Program 6.4 stored in memory: row-major or

column-major order? How would you change the class_marks declaration so that

we can store it in the other order?

6–13 Assume that a two-dimensional array is stored in column-major order and its subscripts

begin with 0. Derive a formula for the displacement (in bytes) of the element in row i

and column j.

6–14 Suppose that array A is a two-dimensional array stored in row-major order. Assume

that a low value can be specified for each subscript. Derive a formula to express the

displacement (in bytes) of A[i,j].

6.8 Programming Exercises
6–P1 What modifications would you make to the insertion sort procedure discussed in Sec-

tion 6.3 to sort the array in descending order? Make the necessary modifications to the

program and test it for correctness.

6–P2 Modify Program 6.3 to read array input data from the user. Your program should be

able to accept up to 25 nonzero numbers from the user. A zero terminates the input.

Report error if more than 25 numbers are given.

6–P3 Modify Program 6.4 to read marks from the user. The first number of the input indicates

the number of students in class (i.e., number of rows), and the next number represents

the number of tests given to the class (i.e., number of columns). Your program should

be able to handle up to 20 students and 5 tests. Report error when exceeding these

limits.

6–P4 Write a complete assembly language program to read two matrices A and B and display

the result matrix C, which is the sum of A and B. Note that the elements of C can be

obtained as

C[i, j] = A[i, j] + B[i, j] .

Your program should consist of a main procedure that calls the read_matrix proce-

dure twice to read data for A and B. It should then call the matrix_add procedure,

which receives pointers to A, B, C, and the size of the matrices. Note that both A and B

should have the same size. The main procedure calls another procedure to display C.

6–P5 Write a procedure to perform multiplication of matrices A and B. The procedure should

receive pointers to the two input matrices (A of size l×m, B of size m×n), the product

matrix C, and values l, m, and n. Also, the data for the two matrices should be obtained

from the user. Devise a suitable user interface to read these numbers.

6–P6 Modify the program of the last exercise to work on matrices stored in the column-major

order.

6–P7 Write a program to read a matrix (maximum size 10 × 10) from the user and display

the transpose of the matrix. To obtain the transpose of matrix A, write rows of A as

columns. Here is an example:

Section 6.8 Programming Exercises 193

If the input matrix is
⎡

⎢
⎢
⎣

12 34 56 78

23 45 67 89

34 56 78 90

45 67 89 10

⎤

⎥
⎥
⎦

,

the transpose of the matrix is

⎡

⎢
⎢
⎣

12 23 34 45

34 45 56 67

56 67 78 89

78 89 90 10

⎤

⎥
⎥
⎦

.

6–P8 Write a program to read a matrix (maximum size 10 × 15) from the user and display

the subscripts of the maximum element in the matrix. Your program should consist of

two procedures: main is responsible for reading the input matrix and for displaying

the position of the maximum element. Another procedure mat_max is responsible for

finding the position of the maximum element. Parameter passing should be done via

the stack. For example, if the input matrix is

⎡

⎢
⎢
⎣

12 34 56 78

23 45 67 89

34 56 78 90

45 67 89 10

⎤

⎥
⎥
⎦

the output of the program should be

The maximum element is at (2,3),

which points to the largest value (90 in our example).

6–P9 Write a program to read a matrix of integers, perform cyclic permutation of rows, and

display the result matrix. Cyclic permutation of a sequence a0, a1, a2, . . . , an−1 is

defined as a1, a2, . . . , an−1, a0. Apply this process for each row of the matrix. Your

program should be able to handle up to 12 × 15 matrices. If the input matrix is

⎡

⎢
⎢
⎣

12 34 56 78

23 45 67 89

34 56 78 90

45 67 89 10

⎤

⎥
⎥
⎦

,

the permuted matrix is
⎡

⎢
⎢
⎣

34 56 78 12

45 67 89 23

56 78 90 34

67 89 10 45

⎤

⎥
⎥
⎦

.

194 Chapter 6 Addressing Modes

6–P10 Generalize the last exercise to cyclically permute by a user-specified number of ele-

ments.

6–P11 Write a complete assembly language program to do the following:

• Read the names of students in a class into a one-dimensional array.

• Read test scores of each student into a two-dimensional marks array.

• Output a letter grade for each student in the format:

student name letter grade

You can use the following information in writing your program:

• Assume that the maximum class size is 20.

• Assume that the class is given four tests of equal weight (i.e., 25 points each).

• Test marks are rounded to the nearest integer so you can treat them as integers.

• Use the following table to convert percentage marks (i.e, sum of all four tests) to

a letter grade.

Marks range Grade

85–100 A

70–84 B

60–69 C

50–59 D

0–49 F

6–P12 Modify the program for the last exercise to also generate a class summary stating the

number of students receiving each letter grade in the following format:

A = number of students receiving A,

B = number of students receiving B,

C = number of students receiving C,

D = number of students receiving D,

F = number of students receiving F.

6–P13 If we are given a square matrix (i.e., a matrix with equal number of rows and columns),

we can classify it as the diagonal matrix if only its diagonal elements are nonzero; as

an upper triangular matrix if all the elements below the diagonal are 0; and as a lower

triangular matrix if all elements above the diagonal are 0. Some examples are:

Diagonal matrix:
⎡

⎢
⎢
⎣

28 0 0 0

0 87 0 0

0 0 97 0

0 0 0 65

⎤

⎥
⎥
⎦

.

Section 6.8 Programming Exercises 195

Upper triangular matrix:
⎡

⎢
⎢
⎣

19 26 35 98

0 78 43 65

0 0 38 29

0 0 0 82

⎤

⎥
⎥
⎦

.

Lower triangular matrix:
⎡

⎢
⎢
⎣

76 0 0 0

44 38 0 0

65 28 89 0

87 56 67 54

⎤

⎥
⎥
⎦

.

Write an assembly language program to read a matrix and output the type of matrix.

Chapter 7

Arithmetic Flags and

Instructions

Objectives
• To discuss how status flags are affected by arithmetic and logic instructions

• To present the multiplication and division instructions

• To introduce multiword arithmetic operations

We start this chapter with a detailed discussion of the six status flags—zero, carry, overflow,

sign, parity, and auxiliary flags. We have already used these flags informally. The discussion

here helps us understand how some of the conditional jump instructions are executed. The

next section deals with multiplication and division instructions. The instruction set includes

multiplication and division instructions for both signed and unsigned integers. The following

section presents some examples to illustrate the use of the instructions discussed in this chap-

ter. The instruction set supports arithmetic operations on 32-bit values. For applications that

use more than 32 bits, we need to perform multiword arithmetic operations. These operations

are discussed in Section 7.4. The chapter concludes with a summary.

7.1 Status Flags
Six flags in the flags register, described in Chapter 3, are used to monitor the outcome of

arithmetic, logical, and related operations. By now you are familiar with the purpose of some

of these flags. The six flags are the zero flag (ZF), carry flag (CF), overflow flag (OF), sign

flag (SF), auxiliary flag (AF), and parity flag (PF). For obvious reasons, these six flags are

called the status flags.

197

198 Chapter 7 Arithmetic Flags and Instructions

When an arithmetic operation is performed, some of the flags are updated (set or cleared)

to indicate certain properties of the result of that operation. For example, if the result of an

arithmetic operation is zero, the zero flag is set (i.e., ZF = 1). Once a flag is set or cleared, it

remains in that state until another instruction changes its value.

Note that not all assembly language instructions affect all the flags. Some instructions

affect all six status flags, whereas other instructions affect none. And there are other instruc-

tions that affect only a subset of these flags. For example, the arithmetic instructions add and

sub affect all six flags, but inc and dec instructions affect all but the carry flag. The mov,

push, and pop instructions, on the other hand, do not affect any of the flags.

Here is an example illustrating how the zero flag changes with instruction execution.

;initially, assume that ZF is 0

mov EAX,55H ; ZF is still 0

sub EAX,55H ; result is zero

; Thus, ZF is set (ZF = 1)

push EBX ; ZF remains 1

mov EBX,EAX ; ZF remains 1

pop EDX ; ZF remains 1

mov ECX,0 ; ZF remains 1

inc ECX ; result is 1

; Thus, ZF is cleared (ZF = 0)

As we show later, these flags can be tested either individually or in combination to affect the

flow control of a program.

In understanding the workings of these status flags, you should know how signed and

unsigned integers are represented. At this point, it is a good idea to review the material

presented in Appendix A.

7.1.1 The Zero Flag

The purpose of the zero flag is to indicate whether the execution of the last instruction that

affects the zero flag has produced a zero result. If the result is zero, ZF = 1; otherwise, ZF = 0.

This is slightly confusing! You may want to take a moment to see through the confusion.

Although it is fairly intuitive to understand how the sub instruction affects the zero flag,

it is not so obvious with other instructions. The following examples show some typical cases.

The code

mov AL,0FH

add AL,0F1H

sets the zero flag (i.e., ZF = 1). This is because, after executing the add instruction, the AL

would contain zero (all eight bits zero). In a similar fashion, the code

mov AX,0FFFFH

inc AX

Section 7.1 Status Flags 199

also sets the zero flag. The same is true for the following code:

mov EAX,1

dec EAX

Related Instructions

jz jump if zero (jump is taken if ZF = 1)

jnz jump if not zero (jump is taken if ZF = 0)

Usage

There are two main uses for the zero flag: testing for equality, and counting to a preset value.

Testing for Equality: The cmp instruction is often used to do this. Recall that cmp performs

subtraction. The main difference between cmp and sub is that cmp does not store the result

of the subtract operation; it performs subtraction only to set the status flags.

Here are some examples:

cmp char,’$’ ; ZF = 1 if char is $

Similarly, two registers can be compared to see if they both have the same value.

cmp EAX,EBX

Counting to a Preset Value: Another important use of the zero flag is shown below:

sum = 0

for (i = 1 to M)

for (j = 1 to N)

sum = sum + 1

end for

end for

The equivalent code in the assembly language is shown below:

sub EAX,EAX ; EAX = 0 (EAX stores sum)

mov EDX,M

outer_loop:

mov ECX,N

inner_loop:

inc EAX

loop inner_loop

dec EDX

jnz outer_loop

exit_loops:

mov sum,EAX

200 Chapter 7 Arithmetic Flags and Instructions

In this example code, both M and N are assumed to be greater than or equal to 1. The

inner loop count is placed in the ECX register so that we can use the loop instruction to

iterate. Incidentally, the loop instruction does not affect any of the flags.

Since we have two nested loops to handle, we are forced to use another register to keep

the outer loop count. We use the dec instruction and the zero flag to see if the outer loop has

executed M times. This code is more efficient than initializing the EDX register to one and

using the code

inc EDX

cmp EDX,M

jle outer_loop

in place of the dec/jnz instruction combination.

7.1.2 The Carry Flag

The carry flag records the fact that the result of an arithmetic operation on unsigned numbers is

out of range (too big or too small) to fit the destination register or memory location. Consider

the following example:

mov AL,0FH

add AL,0F1H

The addition of 0FH and F1H would produce a result of 100H that requires 9 bits to store, as

shown below.

00001111B (0FH = 15D)

11110001B (F1H = 241D)

1 00000000B (100H = 256D)

Since the destination register AL is only 8 bits long, the carry flag would be set to indicate

that the result is too big to be held in AL.

To understand when the carry flag would be set, it is helpful to remember the range of

unsigned numbers that can be represented. The range for each data size is given below for

easy reference.

Size (bits) Range

8 0 to 255

16 0 to 65,535

32 0 to 4,294,967,295

Any operation that produces a result that is outside this range sets the carry flag to indicate

an underflow or overflow condition. It is obvious that any negative result is out of range, as

illustrated by the following example:

Section 7.1 Status Flags 201

mov EAX,12AEH ;EAX = 4782D

sub EAX,12AFH ;EAX = 4782D − 4783D

Executing the above code sets the carry flag because 12AFH − 12AFH produces a nega-

tive result (i.e., the subtract operation generates a borrow), which is too small to be represented

using unsigned numbers. Thus, the carry flag is set to indicate this underflow condition.

Executing the code

mov AL,0FFH

inc AL

or the code

mov EAX,0

dec EAX

does not set the carry flag as we might expect because inc and dec instructions do not affect

the carry flag.

Related Instructions

The following conditional jumps instructions test the carry flag:

jc jump if carry (jump is taken if CF = 1)

jnc jump if not carry (jump is taken if CF = 0)

Usage

The carry flag is useful in several situations:

• To propagate carry or borrow in multiword addition or subtraction operations.

• To detect overflow/underflow conditions.

• To test a bit using the shift/rotate family of instructions.

To Propagate Carry/Borrow: The assembly language arithmetic instructions can operate on

8-, 16-, or 32-bit data. If two operands, each more than 32 bits, are to be added, the addition

has to proceed in steps by adding two 32-bit numbers at a time. The following example

illustrates how we can add two 64-bit unsigned numbers. For convenience, we use the hex

representation.

1 ← carry from lower 32 bits

x = 3710 26A8 1257 9AE7H
y = 489B A321 FE60 4213H

7FAB C9CA 10B7 DCFAH

202 Chapter 7 Arithmetic Flags and Instructions

To accomplish this, we need two addition operations. The first operation adds the least

significant (lower half) 32 bits of the two operands. This produces the lower half of the result.

This addition operation could produce a carry that should be added to the upper 32 bits of the

input. The other add operation performs the addition of the most significant (upper half) 32

bits and any carry generated by the first addition. This operation produces the upper half of

the 64-bit result. An example to add two 64-bit numbers is given on page 225.

Similarly, adding two 128-bit numbers involves a four-step process, where each step adds

two 32-bit words. The sub and other operations also require multiple steps when the data

size is more than 32 bits.

To Detect Overflow/Underflow Conditions: In the previous example of x + y, if the second

addition produces a carry, the result is too big to be held by 64 bits. In this case, the carry

flag would be set to indicate the overflow condition. It is up to the programmer to handle such

error conditions.

Testing a Bit: When using shift and rotate instructions (introduced in Chapter 4), the bit that

has been shifted or rotated out is captured in the carry flag. This bit can be either the most

significant bit (in the case of a left-shift or rotate), or the least significant bit (in the case of

a right-shift or rotate). Once the bit is in the carry flag, conditional execution of the code is

possible using conditional jump instructions that test the carry flag: jc (jump on carry) and

jnc (jump if no carry).

Why inc and dec Do Not Affect the Carry Flag

We have stated that the inc and dec instructions do not affect the carry flag. The rationale

for this is twofold:

1. The instructions inc and dec are typically used to maintain iteration or loop count.

Using 32 bits, the number of iterations can be as high as 4,294,967,295. This number

is sufficiently large for most applications. What if we need a count that is greater than

this? Do we have to use add instead of inc? This leads to the second, and the main,

reason.

2. The condition detected by the carry flag can also be detected by the zero flag. Why?

Because inc and dec change the number only by 1. For example, suppose that the

ECX register has reached its maximum value 4,294,967,295 (FFFFFFFFH). If we then

execute

inc ECX

we would normally expect the carry flag to be set to 1. However, we can detect this

condition by noting that ECX = 0, which sets the zero flag. Thus, setting the carry flag

is really redundant for these instructions.

Section 7.1 Status Flags 203

7.1.3 The Overflow Flag

The overflow flag is the carry flag counterpart for the signed number arithmetic. The main

purpose of the overflow flag is to indicate whether an operation on signed numbers has pro-

duced a result that is out of range. It is helpful to recall the range of numbers that can be

represented using 8, 16, and 32 bits. For your convenience, the ranges of the numbers are

given below:

Size (bits) Range

8 −128 to +127

16 −32,768 to +32,767

32 −2,147,483,648 to +2,147,483,647

Executing the code

mov AL,72H ; 72H = 114D

add AL,0EH ; 0EH = 14D

sets the overflow flag to indicate that the result 80H (128D) is too big to be represented as an

8-bit signed number. The AL register contains 80H, the correct result if the two 8-bit operands

are treated as unsigned numbers. But it is an incorrect answer for 8-bit signed numbers (80H

represents −128 in signed representation, not +128 as required).

Here is another example that uses the sub instruction. The AX register is initialized to

−5, which is FFFBH in 2’s complement representation.

mov AX,0FFFBH ; AX = -5

sub AX,7FFDH ; subtract 32,765 from AX

Execution of the above code will set the overflow flag as the result

(−5)−(32,765) = −32,770

which is too small to be represented as a 16-bit signed number.

Note that the result will not be out of range (and hence the overflow flag will not be set)

when we are adding two signed numbers of opposite sign or subtracting two numbers of the

same sign.

Signed or Unsigned: How Does the System Know?

The values of the carry and overflow flags depend on whether the operands are unsigned or

signed numbers. Given that a bit pattern can be treated both as representing a signed and an

unsigned number, a question that naturally arises is: How does the system know how your

program is interpreting a given bit pattern? The answer is that the processor does not have a

clue. It is up to our program logic to interpret a given bit pattern correctly. The processor,

however, assumes both interpretations and sets the carry and overflow flags. For example,

when executing

204 Chapter 7 Arithmetic Flags and Instructions

mov AL,72H

add AL,0EH

the processor treats 72H and 0EH as unsigned numbers. And since the result 80H (128) is

within the range of 8-bit unsigned numbers (0 to 255), the carry flag is cleared (i.e., CF = 0).

At the same time, 72H and 0EH are also treated as representing signed numbers. Since the

result 80H (128) is outside the range of 8-bit signed numbers (−128 to +127), the overflow

flag is set.

Thus, after executing the above two lines of code, CF = 0 and OF = 1. It is up to our

program logic to take whichever flag is appropriate. If you are indeed representing unsigned

numbers, disregard the overflow flag. Since the carry flag indicates a valid result, no exception

handling is needed.

mov AL,72H

add AL,0EH

jc overflow

no_overflow:

(no overflow code here)

. . .

overflow:

(overflow code here)

. . .

If, on the other hand, 72H and 0EH are representing 8-bit signed numbers, we can disre-

gard the carry flag value. Since the overflow flag is 1, our program will have to handle the

overflow condition.

mov AL,72H

add AL,0EH

jo overflow

no_overflow:

(no overflow code here)

. . .

overflow:

(overflow code here)

. . .

Related Instructions

The following conditional jumps instructions test the overflow flag:

jo jump on overflow (jump is taken if OF = 1)

jno jump on no overflow (jump is taken if OF = 0)

Section 7.1 Status Flags 205

In addition, a special software interrupt instruction

into interrupt on overflow

is provided to test the overflow flag. Interrupts are discussed in later chapters.

Usage

The main purpose of the overflow flag is to indicate whether an arithmetic operation on signed

numbers has produced an out-of-range result. The overflow flag is also affected by shift,

multiply, and divide operations. More details on some of these instructions can be found in

later sections of this chapter.

7.1.4 The Sign Flag

As the name implies, the sign flag indicates the sign of the result of an operation. Therefore, it

is useful only when dealing with signed numbers. Recall that the most significant bit is used

to represent the sign of a number: 0 for positive numbers and 1 for negative numbers. The

sign flag gets a copy of the sign bit of the result produced by arithmetic and related operations.

The following sequence of instructions

mov EAX,15

add EAX,97

clears the sign flag (i.e., SF = 0) because the result produced by the add instruction is a

positive number: 112D (which in binary is 01110000, where the leftmost bit is zero).

The result produced by

mov EAX,15

sub EAX,97

is a negative number and sets the sign flag to indicate this fact. Remember that negative

numbers are represented in 2s complement notation (see Appendix A). As discussed in Ap-

pendix A, the subtract operation can be treated as the addition of the corresponding negative

number. Thus, 15 − 97 is treated as 15 + (−97), where, as usual, −97 is expressed in 2s

complement form. Therefore, after executing the above two instructions, the EAX register

contains AEH, as shown below:

00001111B (8-bit signed form of 15)

+ 10011111B (8-bit signed number for −97)

10101110B

Since the sign bit of the result is 1, the result is negative and is in 2s complement form. You

can easily verify that AEH is the 8-bit signed form of −82, which is the correct answer.

206 Chapter 7 Arithmetic Flags and Instructions

Related Instructions

The following conditional jumps test the sign flag:

js jump on sign (jump is taken if SF = 1)

jns jump on no sign (jump is taken if SF = 0)

The js instruction causes the jump if the last instruction that updated the sign flag produced

a negative result. The jns instruction causes the jump if the result was nonnegative.

Usage

The main use of the sign flag is to test the sign of the result produced by arithmetic and related

instructions. Another use for the sign flag is in implementing counting loops that should iterate

until (and including) the control variable is zero. For example, consider the following code:

for (i = M downto 0)

<loop body>

end for

This can be implemented without using a cmp instruction as follows:

mov ECX,M

for_loop:

. . .

<loop body>

. . .

dec ECX

jns for_loop

If we do not use the jns instruction, we have to use

cmp ECX,0

jl for_loop

in its place.

From the user point of view, the sign bit of a number can be easily tested by using a logical

or shift instruction. Compared to the other three flags we have discussed so far, the sign flag

is used relatively infrequently in user programs. However, the processor uses the sign flag

when executing conditional jump instructions on signed numbers (details are in Section 8.3

on page 244).

7.1.5 The Auxiliary Flag

The auxiliary flag indicates whether an operation has produced a result that has generated a

carry out of or a borrow into the low-order four bits of 8-, 16-, or 32-bit operands. In computer

Section 7.1 Status Flags 207

jargon, four bits are referred to as a nibble. The auxiliary flag is set if there is such a carry or

borrow; otherwise it is cleared.

In the example

mov AL,43

add AL,94

the auxiliary flag is set because there is a carry out of bit 3, as shown below:

1 ← carry generated from lower to upper nibble

43D = 00101011B

94D = 01011110B

137D = 10001001B

You can verify that executing the following code will clear the auxiliary flag:

mov AL,43

add AL,84

Since the following instruction sequence

mov AL,43

sub AL,92

generates a borrow into the low-order four bits, the auxiliary flag is set. On the other hand,

the instruction sequence

mov AL,43

sub AL,87

clears the auxiliary flag.

Related Instructions and Usage

There are no conditional jump instructions that test the auxiliary flag. However, arithmetic

operations on numbers expressed in decimal form or binary coded decimal (BCD) form use

the auxiliary flag. Some related instructions are as follows:

aaa ASCII adjust for addition

aas ASCII adjust for subtraction

aam ASCII adjust for multiplication

aad ASCII adjust for division

daa Decimal adjust for addition

das Decimal adjust for subtraction

For details on these instructions and BCD numbers, see Chapter 11.

208 Chapter 7 Arithmetic Flags and Instructions

7.1.6 The Parity Flag

This flag indicates the parity of the 8-bit result produced by an operation; if this result is 16

or 32 bits long, only the lower-order 8 bits are considered to set or clear the parity flag. The

parity flag is set if the byte contains an even number of 1 bits; if there are an odd number of 1

bits, it is cleared. In other words, the parity flag indicates an even parity condition of the byte.

Thus, executing the code

mov AL,53

add AL,89

will set the parity flag because the result contains an even number of 1s (four 1 bits), as shown

below:

53D = 00110101B
89D = 01011001B

142D = 10001110B

The instruction sequence

mov AX,23994

sub AX,9182

on the other hand, clears the parity flag since the low-order 8 bits contain an odd number of

1s (five 1 bits) as shown below:

23994D = 01011101 10111010B
+ -9182D = 11011100 00100010B

14813D = 00111001 11011100B

Related Instructions

The following conditional jumps instructions test the parity flag:

jp jump on parity (jump is taken if PF = 1)

jnp jump on no parity (jump is taken if PF = 0)

The jp instruction causes the jump if the last instruction that updated the parity flag produced

an even parity byte; the jnp instruction causes the jump for an odd parity byte.

Usage

This flag is useful for writing data encoding programs. As a simple example, consider trans-

mission of data via modems using the 7-bit ASCII code. To detect simple errors during data

transmission, a single parity bit is added to the 7-bit data. Assume that we are using even

parity encoding. That is, every 8-bit character code transmitted will contain an even number

Section 7.1 Status Flags 209

of 1 bits. Then, the receiver can count the number of 1s in each received byte and flag trans-

mission error if the byte contains an odd number of 1 bits. Such a simple encoding scheme

can detect single bit errors (in fact, it can detect an odd number of single bit errors).

To encode, the parity bit is set or cleared depending on whether the remaining 7 bits con-

tain an odd or even number of 1s, respectively. For example, if we are transmitting character

A, whose 7-bit ASCII representation is 41H, we set the parity bit to 0 so that there is an even

number of 1s. In the following examples, the parity bit is assumed to be the leftmost bit:

A = 01000001

For character C, the parity bit is set because its 7-bit ASCII code is 43H.

C = 11000011

Here is a procedure that encodes the 7-bit ASCII character code present in the AL register.

The most significant bit (i.e., leftmost bit) is assumed to be zero.

parity_encode PROC

shl AL

jp parity_zero

stc ; CF = 1

jmp move_parity_bit

parity_zero:

clc ; CF = 0

move_parity_bit:

rcr AL

parity_encode ENDP

7.1.7 Flag Examples

Here we present two examples to illustrate how the status flags are affected by the arithmetic

instructions. You can verify the answers by using a debugger (see Appendix C for information

on debuggers).

Example 7.1 Add/subtract example.

Table 7.1 gives some examples of add and sub instructions and how they affect the flags.

Updating of ZF, SF, and PF is easy to understand. The ZF is set whenever the result is zero;

SF is simply a copy of the most significant bit of the result; and PF is set whenever there

are an even number of 1s in the result. In the rest of this section, we focus on the carry and

overflow flags.

Example 1 performs −5−123. Note that −5 is represented internally as FBH, which is

treated as 251 in unsigned representation. Subtracting 123 (=7BH) leaves 80H (=128) in AL.

Since the result is within the range of unsigned 8-bit numbers, CF is cleared. For the overflow

flag, the operands are interpreted as signed numbers. Since the result is −128, OF is also

cleared.

210 Chapter 7 Arithmetic Flags and Instructions

Table 7.1 Examples Illustrating the Effect on Flags

Code AL CF ZF SF OF PF

Example 1 mov AL,-5
sub AL,123 80H 0 0 1 0 0

Example 2 mov AL,-5
sub AL,124 7FH 0 0 0 1 0

Example 3 mov AL,-5
add AL,132 7FH 1 0 0 1 0

add AL,1 80H 0 0 1 1 0

Example 4 sub AL,AL 00H 0 1 0 0 1

Example 5 mov AL,127
add AL,129 00H 1 1 0 0 1

Example 2 subtracts 124 from −5. For reasons discussed in the previous example, the CF

is cleared. The OF, however, is set because the result is −129, which is outside the range of

signed 8-bit numbers.

In Example 3, the first add statement adds 132 to −5. However, when treating them as

unsigned numbers, 132 is actually added to 251, which results in a number that is greater

than 255D. Therefore, CF is set. When treating them as signed numbers, 132 is internally

represented as 84H (=−124). Since the result −129 is smaller than −128, the OF is also

set. After executing the first add instruction, AL will have 7FH. The second add instruction

increments 7FH. This sets the OF, but not CF.

Example 4 causes the result to be zero irrespective of the contents of the AL register. This

sets the zero flag. Also, since the number of 1s is even, PF is also set in this example.

The last example adds 127D to 129D. Treating them as unsigned numbers, the result

256D is just outside the range and sets CF. However, if we treat them as representing signed

numbers, 129D is stored internally as 81H (=−127). The result, therefore, is zero and the OF

is cleared.

Example 7.2 A compare example.

This example shows how the status flags are affected by the compare instruction discussed in

Chapter 4 on page 82. Table 7.2 gives some examples of executing the

cmp AL,DL

instruction. We leave it as an exercise to verify (without using a debugger) the flag values.

Section 7.2 Arithmetic Instructions 211

Table 7.2 Some Examples of cmp AL,DL

AL DL CF ZF SF OF PF AF

56 57 1 0 1 0 1 1

200 101 0 0 0 1 1 0

101 200 1 0 1 1 0 1

200 200 0 1 0 0 1 0

−105 −105 0 1 0 0 1 0

−125 −124 1 0 1 0 1 1

−124 −125 0 0 0 0 0 0

7.2 Arithmetic Instructions
For the sake of completeness, we list the complete set of arithmetic instructions below:

Addition: add, adc, inc
Subtraction: sub, sbb, dec, neg, cmp
Multiplication: mul, imul
Division: div, idiv
Related instructions: cbw, cwd, cdq, cwde, movsx, movzx

We already looked at the addition and subtraction instructions in Chapter 4. Here we dis-

cuss the remaining instructions. There are a few other arithmetic instructions that operate on

decimal and BCD numbers. Details on these instructions can be found in Chapter 11.

7.2.1 Multiplication Instructions

Multiplication is more complicated than the addition and subtraction operations for two rea-

sons:

1. First, multiplication produces double-length results. That is, multiplying two n-bit val-

ues produces a 2n-bit result. To see that this is indeed the case, consider multiplying

two 8-bit numbers. Assuming unsigned representation, FFH (255D) is the maximum

number that the source operands can take. Thus, the multiplication produces the maxi-

mum result, as shown below:

11111111 × 11111111 = 11111110 11111111.

(255D) (255D) (65025D)

Similarly, multiplication of two 16-bit numbers requires 32 bits to store the result, and

two 32-bit numbers requires 64 bits for the result.

212 Chapter 7 Arithmetic Flags and Instructions

2. Second, unlike the addition and subtraction operations, multiplication of signed num-

bers should be treated differently from that of unsigned numbers. This is because the

resulting bit pattern depends on the type of input, as illustrated by the following exam-

ple:

We have just seen that treating FFH as the unsigned number results in multiplying 255D

× 255D.

11111111 × 11111111 = 11111110 11111111.

Now, what if FFH represents a signed number? In this case, FFH represents −1D and

the result should be 1, as shown below:

11111111 × 11111111 = 00000000 00000001.

As you can see, the resulting bit patterns are different for the two cases.

Thus, the instruction set provides two multiplication instructions: one for unsigned num-

bers and the other for signed numbers. We first discuss the unsigned multiplication instruction,

which has the format

mul source

The source operand can be in a general-purpose register or in memory. Immediate operand

specification is not allowed. Thus,

mul 10 ; invalid

is an invalid instruction. The mul instruction works on 8-, 16-, and 32-bit unsigned numbers.

But, where is the second operand? The instruction assumes that it is in the accumulator

register. If the source operand is a byte, it is multiplied by the contents of the AL register. The

16-bit result is placed in the AX register as shown below:

8-bit

source
AL AH AL

High-order 8 bits Low-order 8 bits

If the source operand is a word, it is multiplied by the contents of the AX register and the

doubleword result is placed in DX:AX, with the AX register holding the lower-order 16 bits

as shown below:

source

16-bit
AX DX AX

High-order 16 bits Low-order 16 bits

Section 7.2 Arithmetic Instructions 213

If the source operand is a doubleword, it is multiplied by the contents of the EAX register

and the 64-bit result is placed in EDX:EAX, with the EAX register holding the lower-order

32 bits as shown below:

EAX
source

32-bit
EDX EAX

High-order 32 bits Low-order 32 bits

The mul instruction affects all six status flags. However, it updates only the carry and

overflow flags. The remaining four flags are undefined. The carry and overflow flags are set

if the upper half of the result is nonzero; otherwise, they are both cleared.

Setting of the carry and overflow flags does not indicate an error condition. Instead, this

condition implies that AH, DX, or EDX contains significant digits of the result.

For example, the code

mov AL,10

mov DL,25

mul DL

clears both the carry and overflow flags as the result is 250, which can be stored in the AL

register; in this case, the AH register contains 00000000. On the other hand, executing

mov AL,10
mov DL,26
mul DL

sets the carry and overflow flags, indicating that the result is more than 255.

For signed numbers, we have to use the imul (integer multiplication) instruction, which

has the same format1 as the mul instruction

imul source

The behavior of the imul instruction is similar to that of the mul instruction. The only

difference to note is that the carry and overflow flags are set if the upper half of the result

is not the sign extension of the lower half. To understand sign extension in signed numbers,

consider the following example. We know that −66 is represented using 8 bits as

10111110.

Now, suppose that we can use 16 bits to represent the same number. Using 16 bits, −66 is

represented as

1111111110111110.

1The imul instruction supports several other formats, including specification of an immediate value. We do not discuss

these details; see Intel’s Pentium Developer’s Manual.

214 Chapter 7 Arithmetic Flags and Instructions

The upper 8 bits are simply sign-extended (i.e., the sign bit is copied into these bits), and

doing so does not change the magnitude.

Following the same logic, the positive number 66, represented using 8 bits as

01000010

can be sign-extended to 16 bits by adding eight leading zeros as shown below:

0000000001000010.

As with the mul instruction, setting of the carry and overflow flags does not indicate an

error condition; it simply indicates that the result requires double length.

Here are some examples of the imul instruction. Execution of

mov DL,0FFH ; DL = -1

mov AL,42H ; AL = 66

imul DL

causes the result

1111111110111110

to be placed in the AX register. The carry and overflow flags are cleared, as AH contains the

sign extension of the AL value. This is also the case for the following code:

mov DL,0FFH ; DL = -1

mov AL,0BEH ; AL = -66

imul DL

which produces the result

0000000001000010 (+66)

in the AX register. Again, both the carry and overflow flags are cleared.

In contrast, both flags are set for the following code:

mov DL,25 ; DL = 25

mov AL,0F6H ; AL = -10

imul DL

which produces the result

1111111100000110 (−250).

Section 7.2 Arithmetic Instructions 215

7.2.2 Division Instructions

The division operation is even more complicated than multiplication for two reasons:

1. Division generates two result components: a quotient and a remainder.

2. In multiplication, by using double-length registers, overflow never occurs. In division,

divide overflow is a real possibility. The processor generates a special software interrupt

when a divide overflow occurs.

As with the multiplication, two versions are provided to work on unsigned and signed num-

bers.

div source (unsigned)

idiv source (signed)

The source operand specified in the instruction is used as the divisor. As with the multipli-

cation instruction, both division instructions can work on 8-, 16-, or 32-bit numbers. All six

status flags are affected and are undefined. None of the flags is updated. We first consider the

unsigned version.

If the source operand is a byte, the dividend is assumed to be in the AX register and 16

bits long. After division, the quotient is returned in the AL register and the remainder in the

AH register as shown below:

16-bit dividend

and

AX

Divisor

source

Quotient Remainder

8-bit

AL AH

For word operands, the dividend is assumed to be 32 bits long and in DX:AX (upper 16

bits in DX). After the division, the 16-bit quotient will be in the AX and the 16-bit remainder

in the DX as shown below:

AX

AX

Quotient

DX

Remainder

source

16-bit

Divisor

and

DX

32-bit dividend

For 32-bit operands, the dividend is assumed to be 64 bits long and in EDX:EAX. After

the division, the 32-bit quotient will be in the EAX and the 32-bit remainder in the EDX as

shown below:

216 Chapter 7 Arithmetic Flags and Instructions

and

EDX

Divisor

source

Quotient RemainderEAX

EAX EDX

32-bit

64-bit dividend

Example 7.3 Eight-bit division.

Consider dividing 251 by 12 (i.e., 251/12), which produces 20 as the quotient and 11 as the

remainder. The code

mov AX,251

mov CL,12

div CL

leaves 20 (14H) in the AL register and 11 (0BH) in the AH register. �

Example 7.4 Sixteen-bit division.

Consider the 16-bit division: 5147/300. Executing the code

xor DX,DX ; clear DX

mov AX,141BH ; AX = 5147D

mov CX,012CH ; CX = 300D

div CX

leaves 17 (12H) in the AX and 47 (2FH) in the DX. �

Now let us turn our attention to the signed division operation. The idiv instruction has the

same format and behavior as the unsigned div instruction including the registers used for the

dividend, quotient, and remainder.

The idiv instruction introduces a slight complication when the dividend is a negative

number. For example, assume that we want to perform the 16-bit division: −251/12. Since

−251 = FF14H, the AX register is set to FF14H. However, the DX register has to be initialized

to FFFFH by sign-extending the AX register. If the DX is set to 0000H as we did in the

unsigned div operation, the dividend 0000FF14H is treated as a positive number 65300D.

The 32-bit equivalent of −251 is FFFFFF14H. If the dividend is positive, DX should have

0000H.

To aid sign extension in instructions such as idiv, several instructions are provided:

cbw (convert byte to word)

cwd (convert word to doubleword)

cdq (convert doubleword to quadword)

Section 7.2 Arithmetic Instructions 217

These instructions take no operands. The first instruction can be used to sign-extend the AL

register into the AH register and is useful with the 8-bitidiv instruction. The cwd instruction

sign-extends the AX into the DX register and is useful with the 16-bit idiv instruction. The

cdq instruction sign-extends the EAX into the EDX. In fact, both cwd and cdq use the same

opcode 99H, and the operand size determines whether to sign-extend the AX or EAX register.

For completeness, we mention three other related instructions. The cwde instruction sign-

extends the AX into EAX much as the cbw instruction. Just like the cwd and cdq, the same

opcode 98H is used for both cbw and cwde instructions. The operand size determines which

one should be applied. Note that cwde is different from cwd in that the cwd instruction uses

the DX:AX register pair, whereas cwde uses the EAX register as the destination.

The instruction set also includes the following two move instructions:

movsx dest,src (move sign-extended src to dest)

movzx dest,src (move zero-extended src to dest)

In both these instructions, dest has to be a register, whereas the src operand can be in a

register or memory. If the source is an 8-bit operand, the destination has to be either a 16- or

32-bit register. If the source is a 16-bit operand, the destination must be a 32-bit register.

Here are some examples of the idiv instruction:

Example 7.5 Signed 8-bit division.

The following sequence of instructions will perform the signed 8-bit division −95/12:

mov AL,-95

cbw ; AH = FFH

mov CL,12

idiv CL

The idiv instruction will leave −7 (F9H) in the AL and −11 (F5H) in the AH. �

Example 7.6 Signed 16-bit division.

Suppose that we want to divide −5147 by 300. The sequence

mov AX,-5147

cwd ; DX = FFFFH

mov CX,300

idiv CX

performs this division and leaves −17 (FFEFH) in AX and −47 (FFD1H) in DX as the re-

mainder. �

Use of Shifts for Multiplication and Division

Shifts are more efficient to execute than the corresponding multiplication or division instruc-

tions. As an example, consider multiplying a signed 16-bit number in the AX register by 32.

218 Chapter 7 Arithmetic Flags and Instructions

Using the mul instruction, we can write

; multiplicand is assumed to be in AX

mov CX,32 ; multiplier in CX

mul CX

This two-instruction sequence takes 12 clock cycles. Of this, mul takes about 11 clock cycles.

Let us look at how we can perform this multiplication with the sal instruction.

; multiplicand is assumed to be in AX

sal AX,5 ; shift left by 5 bit positions

This code executes in just one clock cycle. This code also requires fewer bytes to encode.

Whenever possible, use the shift instructions to perform multiplication and division by a

power of two.

7.3 Illustrative Examples
To demonstrate the application of the arithmetic instructions and flags, we write two proce-

dures to input and output signed 8-bit integers in the range of −128 to +127. These procedures

are as follows:

GetInt8 Reads a signed 8-bit integer from the keyboard into the

AL register;

PutInt8 Displays a signed 8-bit integer that is in the AL regis-

ter.

The following two subsections describe these procedures in detail.

7.3.1 PutInt8 Procedure

Our objective here is to write a procedure that displays the signed 8-bit integer in AL. In order

to do this, we have to separate individual digits of the number to be displayed and convert them

to their ASCII representation. The steps involved are illustrated by the following example,

which assumes that AL has 108.

separate 1 → convert to ASCII → 31H → display

separate 0 → convert to ASCII → 30H → display

separate 8 → convert to ASCII → 38H → display

Separating individual digits is the heart of the procedure. This step is surprisingly simple! All

we have to do is repeatedly divide the number by 10, as shown below (for a related discussion,

see Appendix A):

Quotient Remainder

108/10 = 10 8

10/10 = 1 0

1/10 = 0 1

Section 7.3 Illustrative Examples 219

The only problem with this step is that the digits come out in the reverse order. Therefore,

we need to buffer them before displaying. The pseudocode for the PutInt8 procedure is

shown below:

PutInt8 (number)

if (number is negative)

then

display ’−’ sign

number := −number {reverse sign}
end if

index := 0

repeat

quotient := number/10 {integer division}
remainder := number % 10 {% is modulo operator}
buffer[index] := remainder + 30H

{save the ASCII character equivalent of remainder}
index := index + 1

number := quotient

until (number = 0)

repeat

index = index − 1

display digit at buffer[index]

until (index = 0)

end PutInt8

Program 7.1 The PutInt8 procedure to display an 8-bit signed number (in getput.asm file)

1: ;---

2: ;PutInt8 procedure displays a signed 8-bit integer that is

3: ;in AL register. All registers are preserved.

4: ;---

5: PutInt8:

6: enter 3,0 ; reserves 3 bytes of buffer space

7: push AX

8: push BX

9: push ESI

10: test AL,80H ; negative number?

11: jz positive

12: negative:

13: PutCh ’-’ ; sign for negative numbers

14: neg AL ; convert to magnitude

15: positive:

220 Chapter 7 Arithmetic Flags and Instructions

16: mov BL,10 ; divisor = 10

17: sub ESI,ESI ; ESI = 0 (ESI points to buffer)

18: repeat1:

19: sub AH,AH ; AH = 0 (AX is the dividend)

20: div BL

21: ; AX/BL leaves AL = quotient & AH = remainder

22: add AH,’0’ ; convert remainder to ASCII

23: mov [EBP+ESI-3],AH ; copy into the buffer

24: inc ESI

25: cmp AL,0 ; quotient = zero?

26: jne repeat1 ; if so, display the number

27: display_digit:

28: dec ESI

29: mov AL,[EBP+ESI-3]; display digit pointed by ESI

30: PutCh AL

31: jnz display_digit ; if ESI<0, done displaying

32: display_done:

33: pop ESI ; restore registers

34: pop BX

35: pop AX

36: leave ; clears local buffer space

37: ret

The PutInt8 procedure, shown in Program 7.1, follows the logic of the pseudocode. Some

points to note are the following:

• The buffer is considered as a local variable. Thus, we reserve three bytes on the stack

using the enter instruction (see line 6).

• The code on lines 10 and 11

test AL,80H

jz positive

tests whether the number is negative or positive. Remember that the sign bit (the left-

most bit) is 1 for a negative number.

• Reversal of sign is done by the

neg AL

instruction on line 14.

• Note that we have to initialize AH with 0 (line 19), as the div instruction assumes a

16-bit dividend is in AX when the divisor is an 8-bit number.

• Conversion to ASCII character representation is done on line 22 using

Section 7.3 Illustrative Examples 221

add AH,’0’

• ESI is used as the index into the buffer, which starts at [EBP − 3]. Thus, [EBP + ESI− 3]

points to the current byte in the buffer (lines 23 and 29).

• The repeat while condition (index = 0) is tested by

jnz display_digit

on line 31.

7.3.2 GetInt8 Procedure

The GetInt8 procedure reads a signed integer and returns the number in AL. Since only 8

bits are used to represent the number, the range is limited to −128 to +127 (both inclusive).

The key part of the procedure converts a sequence of input digits received in character form

to its binary equivalent. The conversion process, which involves repeated multiplication by

10, is illustrated for 158:

Input digit Numeric value Number = number * 10 + numeric value

Initial value — 0

’1’ (31H) 1 0 * 10 + 1 = 1

’5’ (35H) 5 1 * 10 + 5 = 15

’8’ (38H) 8 15 * 10 + 8 = 158

The pseudocode of the GetInt8 procedure is shown below:

GetInt8()
read input character into char

if ((char = ’−’) OR (char = ’+’))

then

sign := char

read the next character into char

end if

number := char − ’0’ {convert to numeric value}
count := 2 {number of remaining digits to read}

repeat

read the next character into char

if (char �= carriage return)

then

number := number * 10 + (char − ’0’)

else

goto convert_done
end if

222 Chapter 7 Arithmetic Flags and Instructions

count := count − 1

until (count = 0)

convert_done:
{check for out-of-range error}
if ((number > 128) OR ((number = 128) AND (sign �= ’−’)))

then

out of range error

set carry flag

else {number is OK}
clear carry flag

end if

if (sign = ’−’)

then

number := −number {reverse the sign}
end if

end GetInt8

Program 7.2 The GetInt8 procedure to read a signed 8-bit integer (in getput.asm file)

1: ;---

2: ;GetInt8 procedure reads an integer from the keyboard and

3: ;stores its equivalent binary in AL register. If the number

4: ;is within -128 and +127 (both inclusive), CF is cleared;

5: ;otherwise, CF is set to indicate out-of-range error.

6: ;No error check is done to see if the input consists of

7: ;digits only. All registers are preserved except for AX.

8: ;---

9: GetInt8:

10: push BX ; save registers

11: push ECX

12: push DX

13: push ESI

14: sub DX,DX ; DX = 0

15: sub BX,BX ; BX = 0

16: GetStr number,5 ; get input number

17: mov ESI,number

18: get_next_char:

19: mov DL,[ESI] ; read input from buffer

20: cmp DL,’-’ ; is it negative sign?

21: je sign ; if so, save the sign

22: cmp DL,’+’ ; is it positive sign?

23: jne digit ; if not, process the digit

24: sign:

25: mov BH,DL ; BH keeps sign of input number

Section 7.3 Illustrative Examples 223

26: inc ESI

27: jmp get_next_char

28: digit:

29: sub AX,AX ; AX = 0

30: mov BL,10 ; BL holds the multiplier

31: sub DL,’0’ ; convert ASCII to numeric

32: mov AL,DL

33: mov ECX,2 ; maximum two more digits to read

34: convert_loop:

35: inc ESI

36: mov DL,[ESI]

37: cmp DL,0 ; NULL?

38: je convert_done ; if so, done reading the number

39: sub DL,’0’ ; else, convert ASCII to numeric

40: mul BL ; multiply total (in AL) by 10

41: add AX,DX ; and add the current digit

42: loop convert_loop

43: convert_done:

44: cmp AX,128

45: ja out_of_range ; if AX > 128, number out of range

46: jb number_OK ; if AX < 128, number is valid

47: cmp BH,’-’ ; if AX = 128, must be a negative;

48: jne out_of_range ; otherwise, an invalid number

49: number_OK:

50: cmp BH,’-’ ; number negative?

51: jne number_done ; if not, we are done

52: neg AL ; else, convert to 2’s complement

53: number_done:

54: clc ; CF = 0 (no error)

55: jmp done

56: out_of_range:

57: stc ; CF = 1 (range error)

58: done:

59: pop ESI ; restore registers

60: pop DX

61: pop ECX

62: pop BX

63: ret

The assembly language code for the GetInt8 procedure is given in Program 7.2. The pro-

cedure uses GetCh to read the input digits into DL.

224 Chapter 7 Arithmetic Flags and Instructions

• The character input digits are converted to their numeric equivalent by subtracting the

character code for 0 (’0’) on line 31.

• The multiplication is done on line 40, which produces a 16-bit result in AX. Note that

the numeric value of the current digit (in DX) is added (line 41) to detect the overflow

condition rather than the 8-bit value in DL.

• When the conversion is done, AX will have the absolute value of the input number.

Lines 44 to 48 perform the out-of-range error check. To do this check, the following

conditions are tested:

AX > 128 ⇒ out of range

AX = 128 ⇒ input must be a negative number to be a valid

number; otherwise, out of range

The ja (jump if above) and jb (jump if below) on lines 45 and 46 are conditional

jumps for unsigned numbers. These two instructions are discussed in the next section.

• If the input is a negative number, the value in AL is converted to 2’s complement rep-

resentation by using the neg instruction (line 52).

• The clc (clear CF) and stc (set CF) instructions are used to indicate the error condi-

tion (lines 54 and 57).

7.4 Multiword Arithmetic
The arithmetic instructions like add, sub, and mul work on 8-, 16- or 32-bit operands.

What if an application requires numbers larger than 32 bits? Such numbers obviously require

arithmetic to be done on multiword operands. In this section, we provide an introduction

to multiword arithmetic by discussing how the basic four arithmetic operations—addition,

subtraction, multiplication, and division—are done on unsigned 64-bit integers.

7.4.1 Addition and Subtraction

Addition and subtraction operations on multiword operands are straightforward. Let us first

look at the addition operation. We start the addition process by adding the rightmost 32 bits of

the two operands. In the next step, the next 32 bits are added along with any carry generated

by the previous addition. Remember that the adc instruction can be used for this purpose.

The procedure add64 (in arith64.asm file), for example, performs addition of two

64-bit numbers in EBX:EAX and EDX:ECX. The result is returned in EBX:EAX. The over-

flow condition is indicated by setting the carry flag.

Section 7.4 Multiword Arithmetic 225

Program 7.3 Addition of two 64-bit numbers

1: ;---

2: ;Adds two 64-bit numbers received in EBX:EAX and EDX:ECX.

3: ;The result is returned in EBX:EAX. Overflow/underflow

4: ;conditions are indicated by setting the carry flag.

5: ;Other registers are not disturbed.

6: ;---

7: add64:

8: add EAX,ECX

9: adc EBX,EDX

10: ret

The 64-bit subtraction is also simple and similar to the 64-bit addition. For this subtraction,

substitute sub for add and sbb for adc in the add64 procedure.

7.4.2 Multiplication

Multiplication of multiword operands is not as straightforward as the addition and subtraction.

In this section, we give two procedures to multiply two unsigned 64-bit numbers. The first

one uses the longhand multiplication (see Appendix A). The second procedure uses the mul
instruction.

Longhand Multiplication

This procedure tests bits of the multiplier from right to left and “appropriately” adds the

multiplicand depending on whether the tested bit is 1 or 0. The following algorithm is a

modification of the basic longhand multiplication. The final 128-bit product is in P:A.

P := 0

A := multiplier

B := multiplicand

count := 64

while (count > 0)

if (LSB of A = 1)

then

P := P + B

CF := carry generated by P + B

else

CF := 0

end if

shift right CF:P:A by one bit position

226 Chapter 7 Arithmetic Flags and Instructions

{LSB of multiplier is not used in the rest of the algorithm}
count := count − 1

end while

Remember that multiplying two 64-bit numbers yields a 128-bit number. To implement

the algorithm for multiplying two unsigned n-bit numbers, we need three n-bit registers. We

could use the memory but using memory slows down multiplication operation substantially.

Since we are interested in multiplying two 64-bit numbers, we have enough general-purpose

registers for use by the algorithm.

To see the workings of the algorithm, let us trace the steps for two 4-bit numbers A = 13D

and B = 5D. The table below shows the contents of CF:P:A after the addition and the shift

operations.

After P + B After the shift

CF P A CF P A

initial state ? 0000 1101 — — —

iteration 1 0 0101 1101 ? 0010 1110

iteration 2 0 0010 1110 ? 0001 0111

iteration 3 0 0110 0111 ? 0011 0011

iteration 4 0 1000 0011 ? 0100 0001

Program 7.4 Multiplication of two 64-bit numbers using the longhand multiplication algorithm

1: ;---

2: ;Multiplies two 64-bit unsigned numbers A and B. The input

3: ;number A is received in EBX:EAX and B in EDX:ECX registers.

4: ;The 128-bit result is returned in EDX:ECX:EBX:EAX registers.

5: ;This procedure uses longhand multiplication algorithm.

6: ;Preserves all registers except EAX, EBX, ECX, and EDX.

7: ;---

8: %define COUNT word[EBP-2] ; local variable

9:

10: mult64:

11: enter 2,0 ; 2-byte local variable space

12: push ESI

13: push EDI

14: mov ESI,EDX ; ESI:EDI = B

15: mov EDI,ECX

16: sub EDX,EDX ; P = 0

17: sub ECX,ECX

18: mov COUNT,64 ; count = 64 (64-bit number)

Section 7.4 Multiword Arithmetic 227

19: step:

20: test EAX,1 ; LSB of A is 1?

21: jz shift1 ; if not, skip add

22: add ECX,EDI ; Otherwise, P = P+B

23: adc EDX,ESI

24: shift1: ; shift right P and A

25: rcr EDX,1

26: rcr ECX,1

27: rcr EBX,1

28: rcr EAX,1

29:

30: dec COUNT ; if COUNT is not zero

31: jnz step ; repeat the process

32: ; restore registers

33: pop EDI

34: pop ESI

35: leave ; clears local variable space

36: ret

The procedure mult64 (in the arith64.asm file) implements this algorithm to multi-

ply two unsigned 64-bit numbers. The two numbers are received in EBX:EAX and EDX:ECX.

The 128-bit result is returned in EDX:ECX:EBX:EAX.

• The procedure uses the ESI:EDI register to store the 64-bit multiplicand B. The multi-

plier A is mapped to EBX:EAX and P to EDX:ECX.

• A local variable COUNT is used. It is accessible at [EBP−2]. The %define statement

on line 8 establishes a convenient label to refer to it.

• The while loop is implemented by lines 19–31. The if condition is implemented by

the test instruction on line 20.

• The 64-bit addition (P+B) is done by lines 22 and 23. These two statements are similar

to the code given in the add64 procedure.

• Right shift of CF:P:A is done by the four 32-bit rcr statements (lines 25–28). Note that

the test instruction (line 20) clears the carry flag independent of the result. Therefore,

if the LSB of A is zero, CF is zero during the right-shift process.

Using the mul Instruction

We now look at an alternative procedure that uses the 32-bit mul instruction for multiplying

two unsigned 64-bit integers. The input number A can be considered as consisting of A0 and

A1, with A0 representing the lower-order 32 bits and A1 the higher-order 32 bits. Similarly,

B0 and B1 represent components of B. Now we can use the mul instruction to multiply these

32-bit components. The algorithm is as follows:

228 Chapter 7 Arithmetic Flags and Instructions

temp = A0 × B0

result = temp

temp = A1 × B0

temp = left shift temp value by 32 bits

{the shift operation replaces zeros on the right}
result = result + temp

temp = A0 × B1

temp = left shift temp value by 32 bits

{the shift operation replaces zeros on the right}
result = result + temp

temp = A1 × B1

temp = left shift temp value by 64 bits

{the shift operation replaces zeros on the right}
result = result + temp

The procedure mult64w follows the above algorithm in a straightforward fashion. This

procedure, like the mult64 procedure, receives the two 64-bit operands in EBX:EAX and

EDX:ECX register pairs. The 128-bit result is returned in registers EDX:ECX:EBX:EAX. It

uses a 128-bit local variable for storing the result. Note that the result is divided into four

components and the %define statements on lines 9–12 assign labels to them.

Program 7.5 Multiplication of two 64-bit numbers using the mul instruction

1: ;---

2: ;Multiplies two 64-bit unsigned numbers A and B. The input

3: ;number A is received in EBX:EAX and B in EDX:ECX registers.

4: ;The 64-bit result is returned in EDX:ECX:EBX:EAX registers.

5: ;It uses mul instruction to multiply 32-bit numbers.

6: ;Preserves all registers except EAX, EBX, ECX, and EDX.

7: ;---

8: ; local variables

9: %define RESULT3 dword[EBP-4] ; most significant 32 bits of result

10: %define RESULT2 dword[EBP-8]

11: %define RESULT1 dword[EBP-12]

12: %define RESULT0 dword[EBP-16]; least significant 32 bits of result

13:

14: mult64w:

15: enter 16,0 ; 16-byte local variable space for RESULT

16: push ESI

17: push EDI

18: mov EDI,EAX ; ESI:EDI = A

19: mov ESI,EBX

Section 7.4 Multiword Arithmetic 229

20: mov EBX,EDX ; EBX:ECX = B

21: ; multiply A0 and B0

22: mov EAX,ECX

23: mul EDI

24: mov RESULT0,EAX

25: mov RESULT1,EDX

26: ; multiply A1 and B0

27: mov EAX,ECX

28: mul ESI

29: add RESULT1,EAX

30: adc EDX,0

31: mov RESULT2,EDX

32: sub EAX,EAX ; store 1 in RESULT3 if a carry

33: rcl EAX,1 ; was generated

34: mov RESULT3,EAX

35: ; multiply A0 and B1

36: mov EAX,EBX

37: mul EDI

38: add RESULT1,EAX

39: adc RESULT2,EDX

40: adc RESULT3,0

41: ; multiply A1 and B1

42: mov EAX,EBX

43: mul ESI

44: add RESULT2,EAX

45: adc RESULT3,EDX

46: ; copy result to the registers

47: mov EAX,RESULT0

48: mov EBX,RESULT1

49: mov ECX,RESULT2

50: mov EDX,RESULT3

51: ; restore registers

52: pop EDI

53: pop ESI

54: leave ; clears local variable space

55: ret

7.4.3 Division

There are several division algorithms to perform n-bit unsigned integer division. Here we

describe and implement what is called the “nonrestoring” division algorithm. The division

operation, unlike the multiplication operation, produces two results: a quotient and a remain-

der. Thus when dividing two n-bit integers—A ÷ B—the quotient and the remainder are

n-bits long as well.

230 Chapter 7 Arithmetic Flags and Instructions

To implement the division algorithm, we need an additional register P that is n+1 bits

long. The algorithm consists of testing the sign of P and, depending on this sign we either add

or subtract B from P. Then P:A is left-shifted while manipulating the rightmost bit of A. After

repeating these steps n times, the quotient is in A and the remainder in P. The pseudocode of

the algorithm is given below.

P := 0

A := dividend

B := divisor

count := 64

while (count > 0)

if (P is negative)

then

shift left P:A by one bit position

P := P + B

else

shift left P:A by one bit position

P := P − B

end if

if (P is negative)

then

set low-order bit of A to 0

else

set low-order bit of A to 1

end if

count := count − 1

end while

if (P is negative)

P := P + B

end if

After executing the algorithm, the quotient is in A and the remainder is in P.

An implementation of this division algorithm is given in Program 7.6. This procedure,

like mult64, receives a 64-bit dividend in EBX:EAX and a 64-bit divisor in the EDX:ECX

register pairs. The quotient is returned in the EBX:EAX register pair and the remainder in the

EDX:ECX register pair. If the divisor is zero, the carry is set to indicate overflow error; the

carry flag is cleared otherwise.

The P register is mapped to SIGN:EDX:ECX, where SIGN is a local variable that is used

to store the sign of P. The code on lines 18–21 checks if the divisor is zero. If zero, the carry

flag is set (line 22) and the control is returned. As in mult64, the procedure uses rcl to left

shift the 65 bits consisting of SIGN:EDX:ECX:EBX:EAX (lines 35–39). The rest of the code

follows the algorithm.

Section 7.4 Multiword Arithmetic 231

Program 7.6 Division of two 64-bit numbers

1: ;---

2: ;Divides two 64-bit unsigned numbers A and B (i.e., A/B).

3: ;The number A is received in EBX:EAX and B in EDX:ECX registers.

4: ;The 64-bit quotient is returned in EBX:EAX registers and

5: ;the remainder is retuned in EDX:ECX registers.

6: ;Divide-by-zero error is indicated by setting

7: ;the carry flag; carry flag is cleared otherwise.

8: ;Preserves all registers except EAX, EBX, ECX, and EDX.

9: ;---

10: ; local variables

11: %define SIGN byte[EBP-1]

12: %define BIT_COUNT byte[EBP-2]

13: div64:

14: enter 2,0 ; 2-byte local variable space

15: push ESI

16: push EDI

17: ; check for zero divisor in EDX:ECX

18: cmp ECX,0

19: jne non_zero

20: cmp EDX,0

21: jne non_zero

22: stc ; if zero, set carry flag

23: jmp SHORT skip ; to indicate error and return

24: non_zero:

25: mov ESI,EDX ; ESI:EDI = B

26: mov EDI,ECX

27: sub EDX,EDX ; P = 0

28: sub ECX,ECX

29: mov SIGN,0

30: mov BIT_COUNT,64 ; BIT_COUNT = # of bits

31: next_pass: ; ****** main loop iterates 64 times ******

32: test SIGN,1 ; if P is positive

33: jz P_positive ; jump to P_positive

34: P_negative:

35: rcl EAX,1 ; right-shift P and A

36: rcl EBX,1

37: rcl ECX,1

38: rcl EDX,1

39: rcl SIGN,1

40: add ECX,EDI ; P = P + B

41: adc EDX,ESI

42: adc SIGN,0

232 Chapter 7 Arithmetic Flags and Instructions

43: jmp test_sign

44: P_positive:

45: rcl EAX,1 ; right-shift P and A

46: rcl EBX,1

47: rcl ECX,1

48: rcl EDX,1

49: rcl SIGN,1

50: sub ECX,EDI ; P = P + B

51: sbb EDX,ESI

52: sbb SIGN,0

53: test_sign:

54: test SIGN,1 ; if P is negative

55: jnz bit0 ; set lower bit of A to 0

56: bit1: ; else, set it to 1

57: or AL,1

58: jmp one_pass_done ; set lower bit of A to 0

59: bit0:

60: and AL,0FEH ; set lower bit of A to 1

61: jmp one_pass_done

62: one_pass_done:

63: dec BIT_COUNT ; iterate for 32 times

64: jnz next_pass

65: div_done: ; division completed

66: test SIGN,1 ; if P is positive

67: jz div_wrap_up ; we are done

68: add ECX,EDI ; otherwise, P = P + B

69: adc EDX,ESI

70: div_wrap_up:

71: clc ; clear carry to indicate no error

72: skip:

73: pop EDI ; restore registers

74: pop ESI

75: leave ; clears local variable space

76: ret

7.5 Performance: Multiword Multiplication
In this section, we study the performance of the mul instruction for some specific values of

multipliers. In particular, we would like to see if multiplication by 10 can be done any faster

than using the mul instruction. Multiplication by 10 can also be done using only additions.

Such multiplications, for example, are needed in the GetInt8 procedure. Suppose we want

to multiply contents of AL (say X) by 10. This can be done as follows:

Section 7.6 Summary 233

0

1

2

3

4

5

6

100 200 300 400 500 600 700

Number of calls (in millions)

T
im

e
(s

ec
o

n
d

s)

MUL version

ADD version

Figure 7.1 Performance of multiplication of a 32-bit number by 10.

sub AH,AH ; AH = 0

mov BX,AX ; BX = X

add AX,AX ; AX = 2X

add AX,AX ; AX = 4X

add AX,BX ; AX = 5X

add AX,AX ; AX = 10X

Figure 7.1 shows the performance of the these two versions for multiplying 255 by 10 on a

2.4-GHz Pentium 4 system. The add version is faster by about 60% despite the fact that it

has more instructions than the mul version. In Chapter 9 we show that special multiplications

by a power of 2 can be efficiently done by shift instructions. Such multiplications are often

required to convert numbers from octal/hexadecimal number systems to the decimal system.

7.6 Summary
The status flags register the outcome of arithmetic and logical operations. Of the six status

flags, zero flag, carry flag, overflow flag, and sign flag are the most important. The zero flag

records whether the result of an operation is zero or not. The sign flag monitors the sign

of the result. The carry and overflow flags record the overflow/underflow conditions of the

arithmetic operations. The carry flag is set if the result on unsigned data is out of range; the

overflow flag is used to indicate the out-of-range condition for signed data.

The instruction set includes instructions for addition, subtraction, multiplication, and divi-

sion. While add and subtract instructions work on both unsigned and signed data, multiplica-

234 Chapter 7 Arithmetic Flags and Instructions

tion and division require separate instructions for signed and unsigned data. These arithmetic

instructions can operate on 8-, 16-, and 32-bit operands. If numbers are represented using

more than 32 bits, we need to devise methods for performing the arithmetic operations on

multiword operands. We discussed how multiword arithmetic operations could be imple-

mented.

We demonstrated that multiplication by special values (for example, multiplication by 10)

can be done more efficiently by using addition. Chapter 9 discusses how the shift operations

can be used to implement multiplication by a power of 2.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Auxiliary flag

• Carry flag

• Multiword arithmetic

• Overflow flag

• Parity flag

• Sign flag

• Status flags

• Zero flag

7.7 Exercises
7–1 What is the significance of the carry flag?

7–2 What is the significance of the overflow flag?

7–3 Suppose the sign flag is not available. Is there a way to detect the sign of a number? Is

there more than one way?

7–4 When is the parity flag set? What is a typical application that uses this flag?

7–5 When subtracting two numbers, suppose the carry flag is set. What does it imply in

terms of the relationship between the two numbers?

7–6 In the last example, suppose the overflow flag is set. What does it imply in terms of the

relationship between the two numbers?

7–7 Is it possible to set both the carry and zero flags? If so, give an example that could set

both these flags; otherwise, explain why not.

7–8 Is it possible to set both the overflow and zero flags? If so, give an example that could

set both these flags; otherwise, explain why not.

7–9 When the zero flag is set, the parity flag is also set. The converse, however, is not true.

Explain with examples why this is so.

7–10 The zero flag is useful in implementing countdown loops (loops in which the counting

variable is decremented until zero). Justify the statement by means of an example.

7–11 Fill in the blanks in the following table:

Section 7.8 Programming Exercises 235

AL CF ZF SF OF PF

mov AL,127
add AL,-128

mov AL,127
sub AL,-128

mov AL,-1
add AL,1

mov AL,127
inc AL

mov AL,127
neg AL

mov AL,0
neg AL

You do not have to fill in the lines with the mov instruction. The AL column represents

the AL value after executing the corresponding instruction.

7–12 Explain why multiplication requires two separate instructions to work on signed and

unsigned data.

7–13 We have stated that, if we use double-length registers, multiplication does not result in

an overflow. Prove this statement for 8-, 16-, and 32-bit operands.

7.8 Programming Exercises
7–P1 Write a program to multiply two signed 8-bit numbers using only shift and add instruc-

tions. Your program can read the two input numbers with GetInt and display the

result by PutInt.

7–P2 Suppose you are given a positive integer. You can add individual digits of this number

to get another integer. Now apply the same procedure to the new integer. If we repeat

this procedure, eventually we will end up with a single digit. Here is an example:

7391928 = 7 + 3 + 9 + 1 + 9 + 2 + 8 = 39

39 = 3 + 9 = 12

12 = 1 + 2 = 3.

Write a program that reads a positive integer from the user and displays the single digit

as obtained by the above procedure. For the example, the output should be 3.

Your program should detect negative input as an error and terminate after displaying an

appropriate error message.

236 Chapter 7 Arithmetic Flags and Instructions

7–P3 Repeat the above exercise with the following modification—use multiplication instead

of addition. Here is an example:

7391928 = 7 * 3 * 9 * 1 * 9 * 2 * 8 = 27216

27216 = 2 * 7 * 2 * 1 * 6 = 168

168 = 1 * 6 * 8 = 48

48 = 4 * 8 = 32

32 = 3 * 2 = 6.

7–P4 The PutInt8 procedure uses repeated division by 10. Alternatively, you can display

an 8-bit number by first dividing it by 100 and displaying the quotient; then divide the

remainder by 10 and display the quotient and remainder (in that order). Modify the

PutInt8 procedure to incorporate this method. Discuss the pros and cons of the two

methods.

7–P5 Write a program to multiply a two-dimensional matrix in the following way: multiply

all elements in row i by (−1)ii. That is, multiply row 1 by −1, row 2 by +2, row 3 by

−3, and so on. Your program should be able to read matrices of size up to 10 × 10. You

should query the user for number of rows, number of columns, and then read the matrix

element values. These values should be within the range of 8-bit signed numbers (i.e.,

between −128 to +127). Internally, use words to store the number so that there will not

be overflow problems with the multiplication. Make sure to do proper error checking,

for example, asking for more than 10 rows or columns, entering an out-of-range value,

and so on.

7–P6 We know that

1 + 2 + 3 + · · · + N =
N × (N + 1)

2
.

Write a program that requests N as input and computes the left-hand and the right-hand

sides of the equation, verifies that they are equal, and displays the result.

7–P7 Write a program that reads a set of test scores as input and outputs the truncated average

value (i.e., discard any fraction generated). The input test scores cannot be negative. So

use this condition to terminate the input. Furthermore, assume that the first number

entered is not the test score but the maximum score that can be obtained for that test.

Use this information to display the average test score as a percentage. For example, if

the average is 18 and the maximum obtainable test score is 20, the average is 90%.

7–P8 Modify the above program to round the average test score. For example, if the average

is 15.55, it should be rounded to 16.

7–P9 Modify the average test score program to display the fractional part as well. Display

the average test score in dd.dd format.

7–P10 Write a program to convert temperature from Celsius to Fahrenheit. The formula is

F =
9

5
× C + 32 .

Section 7.8 Programming Exercises 237

7–P11 Write a program to read length L, width W , and height H of a box (all integers). It

computes and displays the volume and surface area of the box.

Volume = L × W × H

Surface volume = 2 × (L × H + L × W + W × H) .

Chapter 8

Selection and Iteration

Objectives
• To discuss unconditional and conditional jump instructions

• To describe the loop family of instructions

• To explore how this set of instructions can be used to implement high-level language

decision structures

Modern high-level languages provide a variety of decision structures. These structures include

selection structures such as if-then-else and iterative structures such as while and for
loops. The assembly language, being a low-level language, does not provide these structures

directly. However, the assembly language provides several basic instructions that could be

used to construct these high-level language selection and iteration structures. These assembly

language instructions include the unconditional jump, compare, conditional jump, and loop.

We briefly introduced some of these instructions in Chapter 4. The first four sections of this

chapter complement that discussion.

Section 8.5 discusses how the jump, compare, and loop instructions can be used to imple-

ment high-level language selection and iteration structures. After giving some examples in

Section 8.6, we describe the indirect jump instruction and its use in implementing multiway

switch or case statements in Section 8.7. The chapter concludes with a summary.

8.1 Unconditional Jump
We introduced the unconditional jump (jmp) instruction in Chapter 4. It unconditionally

transfers control to the instruction located at the target address. The general format, as we

have seen before, is

jmp target

239

240 Chapter 8 Selection and Iteration

There are several versions of the jmp instruction depending on how the target address is

specified and where the target instruction is located.

Specification of Target

There are two distinct ways by which the target address of the jmp instruction can be speci-

fied: directly and indirectly. The vast majority of jumps are of the direct type. These are the

types of unconditional jumps we discussed in Section 4.5.2. Therefore, we focus our attention

on the direct jump instructions and briefly discuss the indirect jumps in Section 8.7.

Direct Jumps

In the direct jump instruction, the target address is specified directly as part of the instruction.

In the following code fragment

. . .

mov ECX,10

jmp ECX_init_done

init_ECX_20:

mov ECX,20

ECX_init_done:

mov EAX,ECX

repeat1:

dec ECX

. . .

jmp repeat1

. . .

both the jmp instructions directly specify the target. As an assembly language programmer,

you only specify the target address by using a label; the assembler figures out the exact value

by using its symbol table.

The instruction

jmp ECX_init_done

transfers control to an instruction that follows it. This is called the forward jump. On the other

hand, the instruction

jmp repeat1

is a backward jump, as the control is transferred to an instruction that precedes the jump

instruction.

Relative Address

The address specified in a jump instruction is not the absolute address of the target. Rather, it

specifies the relative displacement in bytes between the target instruction and the instruction

following the jump instruction (and not from the jump instructions itself!).

Section 8.1 Unconditional Jump 241

In order to see why this is so, we have to understand how jumps are executed. Recall

that the EIP register always points to the next instruction to be executed (see Chapter 3).

Thus, after fetching the jmp instruction, the EIP is automatically advanced to point to the

instruction following the jmp instruction. Execution of jmp involves changing the EIP from

where it is currently pointing to the target instruction location. This is achieved by adding the

difference (i.e., the relative displacement) to the EIP contents. This works fine because the

relative displacement is a signed number—a positive displacement implies a forward jump

and a negative displacement indicates a backward jump.

The specification of relative address as opposed to absolute address of the target instruc-

tion is appropriate for dynamically relocatable code (i.e., for position-independent code).

Where Is the Target?

If the target of a jump instruction is located in the same segment as the jump itself, it is called

an intrasegment jump; if the target is located in another segment, it is called an intersegment

jump.

Our previous discussion has assumed an intrasegment jump. In this case, the jmp simply

performs the following action:

EIP = EIP + relative-displacement

In the case of an intersegment jump, called far jump, the CS is also changed to point to

the target segment, as shown below:

CS = target-segment

EIP = target-offset

Both target-segment and target-offset are specified directly in the instruction. Thus, for 32-

bit segments, the instruction encoding for the intersegment jump takes seven bytes: one byte

for the specification of the opcode, two bytes for the target-segment, and four bytes for the

target-offset specification.

The majority of jumps are of the intrasegment type. There are two ways to specify in-

trasegment jumps depending on the distance of the target location from the instruction fol-

lowing the jump instruction—that is, depending on the value of the relative displacement.

If the relative displacement, which is a signed number, fits in a byte, a jump instruction

can be encoded by using just two bytes: one byte for the opcode and the other for the relative

displacement. This means that the relative displacement should be within −128 to +127 (the

range of a signed 8-bit number). This form is called the short jump.

If the target is outside this range, 2 or 4 bytes are used to specify the relative displacement.

A two-byte displacement is used for 16-bit segments, and a 4-byte displacement for 32-bit

segments. As a result, the jump instruction requires either 3 or 5 bytes to encode in the

machine language. This form is called the near jump.

If you want to use the short jump form, you can inform the assembler of your intention by

using the operator SHORT, as shown below:

242 Chapter 8 Selection and Iteration

jmp SHORT ECX_init_done

The question that naturally arises at this point is: What if the target is not within −128 or

+127 bytes? The assembler will inform you with an error message that the target can’t be

reached with a short jump.

In fact, specification of SHORT in a statement like

jmp repeat1

in the example code on page 240 is redundant. This is because the assembler can automatically

select the SHORT jump, if appropriate, for all backward jumps. However, for forward jumps,

the assembler needs your help. This is because the assembler does not know the relative

displacement of the target when it must decide whether to use the short form. Therefore, use

the SHORT operator only for forward jumps if appropriate.

Example 8.1 Example encodings of short and near jumps.

Figure 8.1 shows some example encodings for short and near jump instructions. The forward

short jump on line 167 is encoded in the machine language as EB 14, where EB is the opcode

for the short jump. The relative offset to target ECX_init_done is 14H. From the code, it

can be seen that this is the difference between the address of the target (address 0000001FH)

and the instruction following the jump instruction on line 168 (address 0000000BH).

The jump instruction encoding on line 169 requires some explanation. This is a forward

jump, but we have not specified that it could be a short jump (unlike the jump instruction on

line 167). Thus, the assembler reserves five bytes for a near jump (the worst-case scenario).

Even though this jump instruction could be encoded using a short jump, NASM uses near

jump encoding for this instruction. For near jumps, the opcode is E9H and the relative offset

is a 32-bit signed integer. For this instruction, the relative offset of the target is given as

0000000AH, which is the difference between the target address 0000001FH and the address

of the instruction at 00000015H. Another example of a forward short jump that is encoded

using five bytes is given on line 557.

The backward instruction on line 177 uses the short jump form. In this case, the assembler

can decide whether the short or near jump is appropriate. The relative offset is given by FDH

(equal to −3D), which is the offset from the instruction following the jump instruction at

address 24H to repeat1 at 21H.

The near jump on line 172 is encoded with the relative offset of 00000652H. The offset is

presented in little-endian order (see our discussion in Section 2.5.3 on page 37). This offset

represents the difference between addresses 00000671H and 0000001FH. �

8.2 Compare Instruction
Implementation of high-level language decision structures like if-then-else in the

assembly language is a two-step process:

Section 8.2 Compare Instruction 243

. . .

167 00000009 EB14 jmp SHORT ECX_init_done

168 0000000B B978563412 mov ECX,12345678H

169 00000010 E90A000000 jmp ECX_init_done

170 init_ECX:

171 00000015 B912EFCDAB mov ECX,0ABCDEF12H

172 0000001A E952060000 jmp near_jump

173 ECX_init_done:

174 0000001F 89C8 mov EAX,ECX

175 repeat1:

176 00000021 49 dec ECX

177 00000022 EBFD jmp repeat1

. . .

. . .

557 00000662 E905000000 jmp short_jump

558 00000667 B9FFFF00FF mov ECX, 0FF00FFFFH

559 short_jump:

560 0000066C BA32547698 mov EDX, 98765432H

561 near_jump:

562 00000671 E99FF9FFFF jmp init_ECX

. . .

Figure 8.1 Example encodings of jump instructions. The first column gives the line number while the

second column shows the memory address of the instruction. The third column gives the machine

language encoding of the assembly language instruction shown in the fourth column.

1. An arithmetic or comparison instruction updates one or more of the arithmetic flags;

2. A conditional jump instruction causes selective execution of the appropriate code frag-

ment based on the values of the flags.

We discussed the compare (cmp) instruction on page 82. The main purpose of the cmp
instruction is to update the flags so that a subsequent conditional jump instruction can test

these flags.

Example 8.2 Some examples of the compare instruction.

The four flags that are useful in establishing a relationship (<, ≤, >, and so on) between two

integers are CF, ZF, SF, and OF. Table 8.1 gives some examples of executing the

cmp AL,DL

instruction. Recall that the CF is set if the result is out of range when treating the operands as

unsigned numbers. For this example, this range is 0 to 255D. Similarly, the OF is set if the

result is out of range for signed numbers (for our example, this range is −128D to +127D).

244 Chapter 8 Selection and Iteration

Table 8.1 Some Examples of cmp AL,DL

AL DL CF ZF SF OF PF AF

56 57 1 0 1 0 1 1

200 101 0 0 0 1 1 0

101 200 1 0 1 1 0 1

200 200 0 1 0 0 1 0

−105 −105 0 1 0 0 1 0

−125 −124 1 0 1 0 1 1

−124 −125 0 0 0 0 0 0

In general, the value of ZF and SF can be obtained in a straightforward way. Therefore, let

us focus on the carry and overflow flags. In the first example, since 56−57 = −1, CF is set but

not OF. The second example is not so simple. Treating the operands in AL and DL as unsigned

numbers, 200−101 = 99, which is within the range of unsigned numbers. Therefore, CF = 0.

However, when treating 200D (= C8H) as a signed number, it represents −56D. Therefore,

compare performs −56−101 = −157, which is out of range for signed numbers, resulting in

setting OF. We will leave verification of the rest of the examples as an exercise. �

8.3 Conditional Jumps
Conditional jump instructions can be divided into three groups:

1. Jumps based on the value of a single arithmetic flag;

2. Jumps based on unsigned comparisons;

3. Jumps based on signed comparisons.

8.3.1 Jumps Based on Single Flags

The instruction set provides two conditional jump instructions—one for jumps if the flag

tested is set, and the other for jumps when the tested flag is cleared—for each arithmetic flag

except the auxiliary flag. These instructions are summarized in Table 8.2.

As shown in Table 8.2, the jump instructions that test the zero and parity flags have aliases

(e.g., je is an alias for jz). These aliases are provided to improve program readability. For

example,

if (count = 100)

then

<statement1>

end if

Section 8.3 Conditional Jumps 245

Table 8.2 Jumps Based on Single Flag Value

Mnemonic Meaning Jumps if

Testing for zero:

jz jump if zero ZF = 1

je jump if equal

jnz jump if not zero ZF = 0

jne jump if not equal

jecxz jump if ECX = 0 ECX = 0

(no flags tested)

Testing for carry:

jc jump if carry CF = 1

jnc jump if no carry CF = 0

Testing for overflow:

jo jump if overflow OF = 1

jno jump if no overflow OF = 0

Testing for sign:

js jump if (negative) sign SF = 1

jns jump if no (negative) sign SF = 0

Testing for parity:

jp jump if parity PF = 1

jpe jump if parity is even

jnp jump if not parity PF = 0

jpo jump if parity is odd

can be written in the assembly language as

cmp count,100

jz S1

. . .

S1:

<statement1 code here>

. . .

But our use of jz does not convey that we are testing for equality. This meaning is better

conveyed by

246 Chapter 8 Selection and Iteration

cmp count,100

je S1

. . .

S1:

<statement1 code here>

. . .

The assembler, however, treats both jz and je as synonymous instructions.

The only surprising instruction in Table 8.2 is the jecxz instruction. This instruction

does not test any flag but tests the contents of the ECX register for zero. If the operand size is

16 bits, we can use the jcxz instruction instead of jecxz. Both instructions, however, use

the same opcode, E3H. The operand size determines the register—CX or ECX—used.

This instruction is often used in conjunction with the loop instruction. Therefore, we

postpone our discussion of this instruction to Section 8.4, which discusses the loop instruc-

tion.

8.3.2 Jumps Based on Unsigned Comparisons

When comparing two numbers

cmp num1,num2

it is necessary to know whether these numbers num1 and num2 represent singed or un-

signed numbers in order to establish a relationship between them. As an example, assume

that AL = 10110111B and DL = 01101110B. Then the statement

cmp AL,DL

should appropriately update flags to yield that AL > DL if we treat their contents as rep-

resenting unsigned numbers. This is because, in unsigned representation, AL = 183D and

DL = 110D. However, if the contents of the AL and DL registers are treated as representing

signed numbers, AL < DL as the AL register has a negative number (−73D) while the DL

register has a positive number (+110D).

Note that when using a cmp statement like

cmp num1,num2

we are always comparing num1 to num2 (e.g., num1 < num2, num1 > num2, and so on).

There are six possible relationships between two numbers:

num1 = num2

num1 �= num2

num1 > num2

num1 ≥ num2

num1 < num2

num1 ≤ num2

Section 8.3 Conditional Jumps 247

Table 8.3 Jumps Based on Unsigned Comparison

Mnemonic Meaning Condition tested

je jump if equal ZF = 1

jz jump if zero

jne jump if not equal ZF = 0

jnz jump if not zero

ja jump if above CF = 0 and ZF = 0

jnbe jump if not below or equal

jae jump if above or equal CF = 0

jnb jump if not below

jb jump if below CF = 1

jnae jump if not above or equal

jbe jump if below or equal CF = 1 or ZF = 1

jna jump if not above

For the unsigned numbers, the carry and the zero flags record the necessary information in

order to establish one of the above six relationships.

The six conditional jump instructions (along with six aliases) and the flag conditions tested

are shown in Table 8.3. Notice that “above” and “below” are used for > and < relationships

for the unsigned comparisons, reserving “greater” and “less” for signed comparisons, as we

shall see next.

8.3.3 Jumps Based on Signed Comparisons

The = and �= comparisons work with either signed or unsigned numbers, as we essentially

compare the bit pattern for a match. For this reason, je and jne also appear in Table 8.4 for

signed comparisons.

For signed comparisons, three flags record the necessary information: the sign flag (SF),

the overflow flag (OF), and the zero flag (ZF). Testing for = and �= simply involves testing

whether the ZF is set or cleared, respectively. With the signed numbers, establishing < and >

relationships is somewhat tricky.

Let us assume that we are executing the cmp instruction

cmp Snum1,Snum2

248 Chapter 8 Selection and Iteration

Table 8.4 Jumps Based on Signed Comparison

Mnemonic Meaning Condition tested

je jump if equal ZF = 1

jz jump if zero

jne jump if not equal ZF = 0

jnz jump if not zero

jg jump if greater ZF = 0 and SF = OF

jnle jump if not less or equal

jge jump if greater or equal SF = OF

jnl jump if not less

jl jump if less SF �= OF

jnge jump if not greater or equal

jle jump if less or equal ZF = 1 or SF �= OF

jng jump if not greater

Conditions for Snum1 > Snum2

The following table shows several examples in which Snum1 > Snum2 holds.

Snum1 Snum2 ZF OF SF

56 55 0 0 0

56 −55 0 0 0

−55 −56 0 0 0

55 −75 0 1 1

It appears from these examples that Snum1> Snum2 if

ZF OF SF

0 0 0

or

0 1 1

That is, ZF = 0 and OF = SF. We cannot use just OF = SF because if two numbers are equal,

ZF = 1 and OF = SF = 0. In fact, these conditions do imply the “greater than” relationship

between Snum1 and Snum2. As shown in Table 8.4, these are the conditions tested for the

jg conditional jump.

Section 8.3 Conditional Jumps 249

Conditions for Snum1 < Snum2

Again, as in the previous case, we develop our intuition by means of a few examples. The

following table shows several examples in which Snum1< Snum2 holds.

Snum1 Snum2 ZF OF SF

55 56 0 0 1

−55 56 0 0 1

−56 −55 0 0 1

−75 55 0 1 0

It appears from these examples that Snum1< Snum2 if

ZF OF SF

0 0 1

or

0 1 0

That is, ZF = 0 and OF �= SF. In this case, ZF = 0 is redundant and the condition reduces to

OF �= SF. As indicated in Table 8.4, this is the condition tested by the jl conditional jump

instruction.

8.3.4 A Note on Conditional Jumps

All conditional jump instructions are encoded into the machine language using only 2 bytes

(like the short jump instruction). As a consequence, all jumps should be short jumps. That

is, the target instruction of a conditional jump must be 128 bytes before or 127 bytes after the

instruction following the conditional jump instruction itself.

What If the Target Is Outside This Range?

If the target is not reachable by using a short jump, you can use the following trick to overcome

this limitation of the conditional jump instructions.

In the instruction sequence

. . .

target:

. . .

cmp AX,BX

je target ; target is not a short jump

mov CX,10

. . .

if target is not reachable by a short jump, it should be replaced by

250 Chapter 8 Selection and Iteration

. . .

target:

. . .

cmp AX,BX

jne skip1 ; skip1 is a short jump

jmp target

skip1:

mov CX,10

. . .

What we have done here is negated the test condition (je becomes jne) and used an uncon-

ditional jump to transfer control to target. Recall that jmp instruction has both short and near

versions.

8.4 Looping Instructions
Instructions in this group use the CX or ECX register to maintain repetition count. The CX

register is used if the operand size is 16 bits; ECX is used for 32-bit operands. In the following

discussion, we assume that the operand size is 32 bits. The three loop instructions decrement

the ECX register before testing it for zero. Decrementing ECX does not affect any of the

flags. The format of these instructions along with the action taken are shown below:

Mnemonic Meaning Action

loop target loop ECX = ECX − 1

if ECX �= 0

jump to target

loope target loop while equal ECX = ECX − 1

loopz target loop while zero if (ECX �= 0 and ZF = 1)

jump to target

loopne target loop while not equal ECX = ECX − 1

loopnz target loop while not zero if (ECX �= 0 and ZF = 0)

jump to target

The destination specified in these instructions should be reachable by a short jump. This

is a consequence of using the two-byte encoding with a single byte indicating the relative

displacement, which should be within −128 to +127.

The use of the loop instruction is straightforward to understand; however, the other two

loop instructions require some explanation. These instructions are useful in writing loops for

applications that require two termination conditions. The following example illustrates this

point.

Section 8.4 Looping Instructions 251

Example 8.3 A loop example.

Let us say that we want to write a loop that reads a string of characters from the user. The

character input can be terminated either when the buffer is full, or when the user types a

carriage-return (CR) character, whichever occurs first.

CR EQU 0DH

SIZE EQU 81

.UDATA

buffer resb SIZE ; buffer for string input

.CODE

. . .

mov EBX,buffer ; EBX points to buffer

mov ECX,SIZE ; buffer size in ECX

read_more:

GetCh AL

mov [EBX],AL

inc EBX

cmp AL,CR ; see if char is CR

loopne read_more

. . .

We use loopne to test the two conditions for terminating the read loop. �

A problem with the above code is that if ECX is initially 0, the loop attempts to read 216 or

65536D characters from the user unless terminated by typing a CR character. This is not what

we want!

The instruction jecxz provides a remedy for this situation by testing the ECX register.

The syntax of this instruction is

jecxz target

which tests the ECX register, and if it is zero, control is transferred to the target instruction.

Thus, it is equivalent to

cmp ECX,0

jz target

except that jecxz does not affect any of the flags, while the cmp/jz combination affects the

status flags. By using this instruction, the previous example can be written as

mov EBX,buffer ; BX points to buffer

mov ECX,SIZE ; buffer size in ECX

jecxz read_done

read_more:

GetCh AL

252 Chapter 8 Selection and Iteration

mov [EBX],AL

inc EBX

cmp AL,CR ; see if char is CR

loopne read_more

read_done:

. . .

Notes on Execution Times of loop and jcxz Instructions

1. The functionality of the loop instruction can be replaced by

dec ECX

jnz target

Surprisingly, the loop instruction is slower than the corresponding dec/jnz instruc-

tion pair. The loop instruction takes five or six clocks depending on whether the jump

is taken or not. The dec/jnz instruction pair takes only two clocks. Of course, the

loop instruction is better for program readability.

2. Similarly, the jecxz instruction takes five or six clocks, whereas the equivalent

cmp ECX,0

jz target

takes only two clocks. Thus, for code optimization, these complex instructions should

be avoided.

8.5 Implementing High-Level Language Decision Structures
In this section, we see how the jump and loop instructions can be used to implement high-level

language selective and iterative structures.

8.5.1 Selective Structures

The selective structures allow the programmer to select from alternative actions. Most high-

level languages provide the if-then-else construct that allows selection from two alter-

native actions. The generic format of this type of construct is

if (condition)

then

true-alternative

else

false-alternative

end if

The true-alternative is executed when the condition is true; otherwise, the false-alternative is

executed. In C, the format is

Section 8.5 Implementing High-Level Language Decision Structures 253

if (condition)

{

statement-T1

statement-T2

. . .

. . .

statement-Tn

}

else

{

statement-F1

statement-F2

. . .

. . .

statement-Fn

};

We now consider some example C statements and the corresponding assembly language

code generated by the Turbo C compiler.

Example 8.4 An if example with a relational operator.

Consider the following C code, which assigns the larger of value1 and value2 to bigger.

All three variables are declared as integers (int data type).

if (value1 > value2)

bigger = value1;

else

bigger = value2;

The Turbo C compiler generates the following assembly language code (we have embellished

the code a little to improve readability):

mov AX,value1

cmp AX,value2

jle else_part

then_part:

mov AX,value1 ; redundant

mov bigger,AX

jmp SHORT end_if

else_part:

mov AX,value2

mov bigger,AX

end_if:

. . .

254 Chapter 8 Selection and Iteration

As you can see from this example, the condition testing is done by a pair of compare and

conditional jump instructions. The label then_part is really not needed but is included

to improve readability of the code. The first statement in the then_part is redundant, but

Turbo C compiler generates it anyway. �

Example 8.5 An if example with an and logical operator.

The following code tests whether ch is a lowercase character or not. The condition in this

example is a compound condition of two simple conditional statements connected by logical

and operator.

if ((ch >= ’a’) && (ch <= ’z’))

ch = ch - 32;

(Note: && stands for the logical and operator in C.) The corresponding assembly language

code generated by the Turbo C compiler is (the variable ch is mapped to the DL register)

cmp DL,’a’

jb not_lower_case

cmp DL,’z’

ja not_lower_case

lower_case:

mov AL,DL

add AL,224

mov DL,AL

not_lower_case:

. . .

The compound condition is implemented by two pairs of compare and conditional jump in-

structions. Notice that ch−32 is implemented as addition of −32. Also, you see redundancy

in the code generated by the compiler. An advantage of writing in the assembly language is

that we can avoid such redundancies. �

Example 8.6 An if example with an or logical operator.

As a last example, consider the following code with a compound condition using the logical

or operator:

if ((index < 1) || (index > 100))

index = 0;

(Note: || stands for the logical or operator in C.) The assembly language code generated is

cmp CX,1

jl zero_index

cmp CX,100

jle end_if

Section 8.5 Implementing High-Level Language Decision Structures 255

zero_index:

xor CX,CX ; CX = 0

end_if:

. . .

The Turbo C compiler maps the variable index to the CX register. Also, the code uses the

exclusive-or (xor) logical operator to zero CX. �

8.5.2 Iterative Structures

High-level languages provide several looping constructs. These include while, repeat-
until, and for loops. Here we briefly look at how we can implement these iterative struc-

tures using the assembly language instructions.

While Loop

The while loop tests a condition before executing the loop body. For this reason, this loop

is called the pretest loop or the entry-test loop. The loop body is executed repeatedly as long

as the condition is true.

Example 8.7 An example while loop.

Consider the following example code in C:

while(total < 700)

{

<loop body>

}

The Turbo C compiler generates the following assembly language code:

jmp while_cond

while_body:

. . .

< instructions for

while loop body >

. . .

while_cond:

cmp BX,700

jl while_body

end_while:

. . .

The variable total is mapped to the BX register. An initial unconditional jump transfers

control to while_cond to test the loop condition. �

256 Chapter 8 Selection and Iteration

Repeat-Until Loop

This is a post-test loop or exit-test loop. This iterative construct tests the repeat condition after

executing the loop body. Thus, the loop body is executed at least once.

Example 8.8 A repeat-until example.

Consider the following C code:

do

{

<loop body>

}

while (number > 0);

The Turbo C compiler generates the following assembly language code:

loop_body:

. . .

< instructions for

do-while loop body >

. . .

cond_test:

or DI,DI

jg loop_body

end_do_while:

. . .

The variable number is mapped to the DI register. To test the loop condition, it uses or
rather than the cmp instruction. �

For Loop

The for loop is also called the counting loop because it iterates a fixed number of times.

Here we consider two for loop examples.

Example 8.9 Upward counting for loop.
for (i = 0; i < SIZE; i++) /* for (i = 0 to SIZE−1) */

{

<loop body>

};

The Turbo C compiler generates the following assembly language code:

xor SI,SI

jmp SHORT for_cond

loop_body:

. . .

Section 8.6 Illustrative Examples 257

< instructions for

the loop body >

. . .

inc SI

for_cond:

cmp SI,SIZE

jl loop_body

. . .

As with the while loop, an unconditional jump transfers control to for_cond to first test

the iteration condition before executing the loop body. The counting variable i is mapped to

the SI register. �

Example 8.10 Downward counting for loop.
for (i = SIZE-1; i >= 0; i--) /* for (i = SIZE−1 downto 0) */

{

<loop body>

};

The Turbo C compiler generates the following assembly language code:

mov SI,SIZE-1

jmp SHORT for_cond

loop_body:

. . .

< instructions for

the loop body >

. . .

dec SI

for_cond:

or SI,SI

jge loop_body

. . .

The counting variable i is mapped to the SI register and or is used to test if i has reached

zero. �

8.6 Illustrative Examples
In this section, we will present two examples to show the use of the selection and iteration

instructions discussed in this chapter. The first example uses linear search for locating a

number in an unsorted array, and the second example sorts an array of integers using the

selection sort algorithm.

258 Chapter 8 Selection and Iteration

Example 8.11 Linear search of an integer array.

In this example, the user is asked to input an array of nonnegative integers and then query

whether a given number is in the array or not. The program uses a procedure that implements

the linear search to locate a number in an unsorted array.

The main procedure initializes the input array by reading a maximum of MAX_SIZE
number of nonnegative integers into the array. The user, however, can terminate the input

by entering a negative number. The loop instruction (line 37), with ECX initialized to

MAX_SIZE (line 29), is used to iterate a maximum of MAX_SIZE times. The other loop

termination condition (i.e., input of a negative number) is tested on lines 32 and 33. The

rest of the main program queries the user for a number and calls the linear search procedure

to locate the number. This process is repeated as long as the user appropriately answers the

query.

The linear search procedure receives a pointer to an array, its size, and the number to be

searched via the stack. The search process starts at the first element of the array and proceeds

until either the element is located or the array is exhausted. We use the loopne instruction

to test these two conditions for the termination of the search loop. The ECX is initialized

(line 79) to the size of the array. In addition, a compare (line 84) tests if there is a match

between the two numbers. If so, the zero flag is set and loopne terminates the search loop.

If the number is found, the index of the number is computed (lines 88 and 89) and returned in

AX.

Program 8.1 Linear search of an integer array

1: ;Linear search of integer array LIN_SRCH.ASM

2: ;

3: ; Objective: To implement linear search of an integer

4: ; array; demonstrates the use of loopne.

5: ; Input: Requests numbers to fill array and a

6: ; number to be searched for from user.

7: ; Output: Displays the position of the number in

8: ; the array if found; otherwise, not found

9: ; message.

10: %include "io.mac"

11:

12: MAX_SIZE EQU 100

13:

14: .DATA

15: input_prompt db "Please enter input array: "

16: db "(negative number terminates input)",0

17: query_number db "Enter the number to be searched: ",0

18: out_msg db "The number is at position ",0

19: not_found_msg db "Number not in the array!",0

20: query_msg db "Do you want to quit (Y/N): ",0

21:

Section 8.6 Illustrative Examples 259

22: .UDATA

23: array resw MAX_SIZE

24:

25: .CODE

26: .STARTUP

27: PutStr input_prompt ; request input array

28: mov EBX,array

29: mov ECX,MAX_SIZE

30: array_loop:

31: GetInt AX ; read an array number

32: cmp AX,0 ; negative number?

33: jl exit_loop ; if so, stop reading numbers

34: mov [EBX],AX ; otherwise, copy into array

35: inc EBX ; increment array address

36: inc EBX

37: loop array_loop ; iterates a maximum of MAX_SIZE

38: exit_loop:

39: mov EDX,EBX ; EDX keeps the actual array size

40: sub EDX,array ; EDX = array size in bytes

41: sar EDX,1 ; divide by 2 to get array size

42: read_input:

43: PutStr query_number ; request number to be searched for

44: GetInt AX ; read the number

45: push AX ; push number, size & array pointer

46: push EDX

47: push array

48: call linear_search

49: ; linear_search returns in AX the position of the number

50: ; in the array; if not found, it returns 0.

51: cmp AX,0 ; number found?

52: je not_found ; if not, display number not found

53: PutStr out_msg ; else, display number position

54: PutInt AX

55: jmp SHORT user_query

56: not_found:

57: PutStr not_found_msg

58: user_query:

59: nwln

60: PutStr query_msg ; query user whether to terminate

61: GetCh AL ; read response

62: cmp AL,’Y’ ; if response is not ’Y’

63: jne read_input ; repeat the loop

64: done: ; otherwise, terminate program

65: .EXIT

260 Chapter 8 Selection and Iteration

66:

67: ;---

68: ; This procedure receives a pointer to an array of integers,

69: ; the array size, and a number to be searched via the stack.

70: ; If found, it returns in AX the position of the number in

71: ; the array; otherwise, returns 0.

72: ; All registers, except EAX, are preserved.

73: ;---

74: linear_search:

75: enter 0,0

76: push EBX ; save registers

77: push ECX

78: mov EBX,[EBP+8] ; copy array pointer

79: mov ECX,[EBP+12] ; copy array size

80: mov AX,[EBP+16] ; copy number to be searched

81: sub EBX,2 ; adjust index to enter loop

82: search_loop:

83: add EBX,2 ; update array index

84: cmp AX,[EBX] ; compare the numbers

85: loopne search_loop

86: mov AX,0 ; set return value to zero

87: jne number_not_found ; modify it if number found

88: mov EAX,[EBP+12] ; copy array size

89: sub EAX,ECX ; compute array index of number

90: number_not_found:

91: pop ECX ; restore registers

92: pop EBX

93: leave

94: ret 10

Example 8.12 Sorting of an integer array using the selection sort algorithm.

The main program is very similar to that in the last example, except for the portion that

displays the sorted array. The sort procedure receives a pointer to the array to be sorted and

its size via the stack. It uses the selection sort algorithm to sort the array in ascending order.

The basic idea is as follows:

1. Search the array for the smallest element;

2. Move the smallest element to the first position by exchanging values of the first and

smallest element positions;

3. Search the array for the smallest element from the second position of the array;

4. Move this element to the second position by exchanging values as in step 2;

5. Continue this process until the array is sorted.

The selection sort procedure implements the following pseudocode:

Section 8.6 Illustrative Examples 261

selection_sort (array, size)

for (position = 0 to size−2)

min value := array[position]

min position := position

for (j = position+1 to size−1)

if (array[j] < min value)

then

min value := array[j]

min position := j

end if

end for

if (position �= min position)

then

array[min position] := array[position]

array[position] := min value

end if

end for

end selection_sort

The selection sort procedure, shown in Program 8.2, implements this pseudocode with

the following mapping of variables: position is maintained in ESI, and EDI is used for

the index variable j. min_value is maintained in DX and min_position in AX. The

number of elements to be searched for finding the minimum value is kept in ECX.

Program 8.2 Sorting of an integer array using the selection sort algorithm

1: ;Sorting an array by selection sort SEL_SORT.ASM

2: ;

3: ; Objective: To sort an integer array using selection sort.

4: ; Input: Requests numbers to fill array.

5: ; Output: Displays sorted array.

6: %include "io.mac"

7:

8: MAX_SIZE EQU 100

9:

10: .DATA

11: input_prompt db "Please enter input array: "

12: db "(negative number terminates input)",0

13: out_msg db "The sorted array is:",0

14:

15: .UDATA

16: array resw MAX_SIZE

17:

262 Chapter 8 Selection and Iteration

18: .CODE

19: .STARTUP

20: PutStr input_prompt ; request input array

21: mov EBX,array

22: mov ECX,MAX_SIZE

23: array_loop:

24: GetInt AX ; read an array number

25: cmp AX,0 ; negative number?

26: jl exit_loop ; if so, stop reading numbers

27: mov [EBX],AX ; otherwise, copy into array

28: add EBX,2 ; increment array address

29: loop array_loop ; iterates a maximum of MAX_SIZE

30: exit_loop:

31: mov EDX,EBX ; EDX keeps the actual array size

32: sub EDX,array ; EDX = array size in bytes

33: sar EDX,1 ; divide by 2 to get array size

34: push EDX ; push array size & array pointer

35: push array

36: call selection_sort

37: PutStr out_msg ; display sorted array

38: nwln

39: mov ECX,EDX ; ECX = array size

40: mov EBX,array

41: display_loop:

42: PutInt [EBX]

43: nwln

44: add EBX,2

45: loop display_loop

46: done:

47: .EXIT

48:

49: ;---

50: ; This procedure receives a pointer to an array of integers

51: ; and the array size via the stack. The array is sorted by

52: ; using the selection sort. All registers are preserved.

53: ;---

54: %define SORT_ARRAY EBX

55: selection_sort:

56: pushad ; save registers

57: mov EBP,ESP

58: mov EBX,[EBP+36] ; copy array pointer

59: mov ECX,[EBP+40] ; copy array size

60: sub ESI,ESI ; array left of ESI is sorted

61: sort_outer_loop:

Section 8.7 Indirect Jumps 263

62: mov EDI,ESI

63: ; DX is used to maintain the minimum value and AX

64: ; stores the pointer to the minimum value

65: mov DX,[SORT_ARRAY+ESI] ; min. value is in DX

66: mov EAX,ESI ; EAX = pointer to min. value

67: push ECX

68: dec ECX ; size of array left of ESI

69: sort_inner_loop:

70: add EDI,2 ; move to next element

71: cmp DX,[SORT_ARRAY+EDI] ; less than min. value?

72: jle skip1 ; if not, no change to min. value

73: mov DX,[SORT_ARRAY+EDI] ; else, update min. value (DX)

74: mov EAX,EDI ; & its pointer (EAX)

75: skip1:

76: loop sort_inner_loop

77: pop ECX

78: cmp EAX,ESI ; EAX = ESI?

79: je skip2 ; if so, element at ESI is its place

80: mov EDI,EAX ; otherwise, exchange

81: mov AX,[SORT_ARRAY+ESI] ; exchange min. value

82: xchg AX,[SORT_ARRAY+EDI] ; & element at ESI

83: mov [SORT_ARRAY+ESI],AX

84: skip2:

85: add ESI,2 ; move ESI to next element

86: dec ECX

87: cmp ECX,1 ; if ECX = 1, we are done

88: jne sort_outer_loop

89: popad ; restore registers

90: ret 8

8.7 Indirect Jumps
So far, we have used only the direct jump instruction. In direct jump, the target address (i.e., its

relative offset value) is encoded into the jump instruction itself (see Figure 8.1 on page 243).

We now look at indirect jumps. We limit our discussion to jumps within a segment.

In an indirect jump, the target address is specified indirectly through either memory or a

general-purpose register. Thus, we can write

jmp [ECX]

if the ECX register contains the offset of the target. In indirect jumps, the target offset is the

absolute value (unlike the direct jumps, which use a relative offset value). The next example

shows how indirect jumps can be used with a jump table stored in memory.

264 Chapter 8 Selection and Iteration

Example 8.13 An example with an indirect jump.

The objective here is to show how we can use the indirect jump instruction. To this end, we

show a simple program that reads a digit from the user and prints the corresponding choice

represented by the input. The listing is shown in Program 8.3. An input between 0 and 9 is

valid. Any other input to the program may cause the system to hang up or crash. If the input

is 0, 1, or 2, the program displays a simple message to indicate the class selection. Other digit

inputs terminate the program. If a nondigit input is given to the program, it displays an error

message and requests a valid digit input.

In order to use the indirect jump, we have to build a jump table of pointers (see lines 9–

18). The input is tested for its validity on lines 33 to 36. If the input is a digit, it is converted

to act as an index into the jump table and stored in ESI. This value is used in the indirect jump

instruction (line 42). The rest of the program is straightforward to follow.

Program 8.3 An example demonstrating the use of the indirect jump

1: ;Sample indirect jump example IJUMP.ASM

2: ;

3: ; Objective: To demonstrate the use of indirect jump.

4: ; Input: Requests a digit character from the user.

5: ; Output: Appropriate class selection message.

6: %include "io.mac"

7:

8: .DATA

9: jump_table dd code_for_0 ; indirect jump pointer table

10: dd code_for_1

11: dd code_for_2

12: dd default_code ; default code for digits 3-9

13: dd default_code

14: dd default_code

15: dd default_code

16: dd default_code

17: dd default_code

18: dd default_code

19:

20: prompt_msg db "Type a digit: ",0

21: msg_0 db "Economy class selected.",0

22: msg_1 db "Business class selected.",0

23: msg_2 db "First class selected.",0

24: msg_default db "Not a valid code!",0

25: msg_nodigit db "Not a digit! Try again.",0

26:

27: .CODE

Section 8.7 Indirect Jumps 265

28: .STARTUP

29: read_again:

30: PutStr prompt_msg ; request a digit

31: sub EAX,EAX ; EAX = 0

32: GetCh AL ; read input digit and

33: cmp AL,’0’ ; check to see if it is a digit

34: jb not_digit

35: cmp AL,’9’

36: ja not_digit

37: ; if digit, proceed

38: sub AL,’0’ ; convert to numeric equivalent

39: mov ESI,EAX ; ESI is index into jump table

40: add ESI,ESI ; ESI = ESI * 4

41: add ESI,ESI

42: jmp [jump_table+ESI] ; indirect jump based on ESI

43: test_termination:

44: cmp AL,2

45: ja done

46: jmp read_again

47: code_for_0:

48: PutStr msg_0

49: nwln

50: jmp test_termination

51: code_for_1:

52: PutStr msg_1

53: nwln

54: jmp test_termination

55: code_for_2:

56: PutStr msg_2

57: nwln

58: jmp test_termination

59: default_code:

60: PutStr msg_default

61: nwln

62: jmp test_termination

63:

64: not_digit:

65: PutStr msg_nodigit

66: nwln

67: jmp read_again

68: done:

69: .EXIT

266 Chapter 8 Selection and Iteration

8.7.1 Multiway Conditional Statements

In high-level languages, a two- or three-way conditional execution can be controlled easily by

using if statements. For large multiway conditional execution, writing the code with nested

if statements is tedious and error-prone. High-level languages like C provide a special con-

struct for multiway conditional execution. In this section we look at the C switch construct

for multiway conditional execution.

Example 8.14 Multiway conditional execution in C.

As an example of the switch statement, consider the following code:

switch (ch)

{

case ’0’:

count[0]++; /* increment count[0] */

break;

case ’1’:

count[1]++;

break;

case ’2’:

count[2]++;

break;

case ’3’:

count[3]++;

break;

default:

count[4]++;

}

The semantics of the switch statement are as follows: if character ch is 0, execute the

count[0]++ statement. The break statement is necessary to escape out of the switch
statement. Similarly, if ch is 1, count[1] is incremented, and so on. The default case

statement is executed if ch is not one of the values specified in the other case statements.

The Turbo C compiler produces the assembly language code shown in Figure 8.2. The

jump table is constructed in the code segment (lines 31–34). As a result, the CS segment

override prefix is used in the indirect jump statement on line 11. Register BX is used as

an index into the jump table. Since each entry in the jump table is two bytes long, BX is

multiplied by two using shl on line 10. �

8.8 Summary
We discussed the unconditional and conditional jump instructions as well as compare and

loop instructions in detail. These assembly language instructions are useful in implementing

high-level language selection and iteration constructs such as if-then-else and while

Section 8.8 Summary 267

1: _main PROC NEAR

2: . . .

3: . . .

4: mov AL,ch

5: cbw

6: sub AX,48 ; 48 = ASCII for ’0’

7: mov BX,AX

8: cmp BX,3

9: ja default

10: shl BX,1 ; BX = BX*2

11: jmp WORD PTR CS:jump_table[BX]

12: case_0:

13: inc WORD PTR [BP-10]

14: jmp SHORT end_switch

15: case_1:

16: inc WORD PTR [BP-8]

17: jmp SHORT end_switch

18: case_2:

19: inc WORD PTR [BP-6]

20: jmp SHORT end_switch

21: case_3:

22: inc WORD PTR [BP-4]

23: jmp SHORT end_switch

24: default:

25: inc WORD PTR [BP-2]

26: end_switch:

27: . . .

28: . . .

29: _main ENDP

30: jump_table LABEL WORD

31: dw case_0

32: dw case_1

33: dw case_2

34: dw case_3

35: . . .

Figure 8.2 Assembly language code for the switch statement.

loops. Through detailed examples, we discussed how these high-level decision structures are

implemented in the assembly language.

In the previous chapters, we extensively used direct jump instructions. In this chapter, we

introduced the indirect jump instruction. In this jump instruction, the target of the jump is

specified indirectly. Indirect jumps are useful to implement multiway conditional statements

268 Chapter 8 Selection and Iteration

such as the switch statement in C. By means of an example, we have shown how such

multiway statements of high-level languages are implemented in the assembly language.

8.9 Exercises
8–1 What is the difference between SHORT and NEAR jumps?

8–2 What is the range of SHORT and NEAR jumps? Explain the reason for this range limit.

8–3 What are forward and backward jumps?

8–4 Why does the assembler need your help for forward near jumps?

8–5 As you know, all conditional jumps are SHORT jumps. How do you handle conditional

near jumps?

8–6 Describe the semantics of the jecxz instruction and explain how it is useful.

8–7 In Table 8.3, explain intuitively why the flags tested are necessary and sufficient to

implement conditional jumps.

8–8 We have stated on page 249 that to detect Snum1<Snum2, the condition ZF = 0 is not

necessary. Justify this statement.

8–9 In Table 8.4, explain intuitively why the flags tested are necessary and sufficient to

implement conditional jumps.

8–10 Fill in the blanks in the following table, assuming that the

cmp AH,AL

instruction is executed. Note that all numbers are in decimal.

AH AL CF ZF SF OF

21 −21

−21 −21

−21 21

255 −1

129 −1

128 −1

128 −128

128 127

8–11 What is the difference between loop and loopne instructions?

8–12 Compare and contrast direct and indirect jumps.

8–13 What high-level language construct requires the use of the indirect jump for efficient

implementation?

Section 8.10 Programming Exercises 269

8.10 Programming Exercises
8–P1 Modify Program 8.1 so that the user can enter both positive and negative numbers (in-

cluding zero). In order to facilitate this, the user will first enter a number indicating the

number of elements of the array that he or she is going to enter next. For example, in

the input

5 1987 −265 1349 0 5674

the first number 5 indicates the number of array entries to follow. Your program should

perform array bound checks.

8–P2 Suppose we are given a sorted array of integers. Further assume that the array is sorted

in ascending order. Then we can modify the linear search procedure to search for a

number S so that it stops searching either when S is found or when a number greater

than S is found. Modify the linear search program shown in Program 8.1 to work on

a sorted array. For this exercise, assume that the user supplies the input data in sorted

order.

8–P3 In the last exercise, you assumed that the user supplies data in sorted order. In this exer-

cise, remove this restriction on the input data. Instead, use the selection sort procedure

given in Program 8.2 to sort the array after reading the input data.

8–P4 Write an assembly language program to read a string of characters from the user and

that prints the vowel count. For each vowel, the count includes both uppercase and

lowercase letters. For example, the input string

Advanced Programming in UNIX Environment

produces the following output:

Vowel Count

a or A 3

e or E 3

i or I 4

o or O 2

u or U 1

8–P5 Do the last exercise using an indirect jump. Hint: Use xlat to translate vowels to five

consecutive numbers so that you can use the number as an index into the jump table.

8–P6 Suppose that we want to list each uppercase and lowercase vowel separately (i.e., a

total of 10 count values). Modify the programs of the last two exercises to do this.

After doing this exercise, express your opinion on the usefulness of the indirect jump

instruction.

8–P7 Merge sort is a technique to combine two sorted arrays. Merge sort takes two sorted

input arrays X and Y—say of size m and n—and produces a sorted array Z of size m+n

that contains all elements of the two input arrays. The pseudocode of merge sort is as

follows:

270 Chapter 8 Selection and Iteration

mergesort (X, Y, Z, m, n)

i := 0 {index variables for arrays X, Y, and Z}
j := 0

k := 0

while ((i < m) AND (j < n))

if (X[i] ≤ Y[j]) {find largest of two}
then

Z[k] := X[i] {copy and update indices}
k := k+1

i := i+1

else

Z[k] := Y[j] {copy and update indices}
k := k+1

j := j+1

end if

end while

if (i < m) {copy remainder of input array}
while (i < m)

Z[k] := X[i]

k := k+1

i := i+1

end while

else

while (j < n)

Z[k] := Y[j]

k := k+1

j := j+1

end while

end if

end mergesort

The merge sort algorithm scans the two input arrays while copying the smallest of the

two elements from X and Y into Z. It updates indices appropriately. The first while loop

terminates when one of the arrays is exhausted. Then the other array is copied into Z.

Write a merge sort procedure and test it with two sorted arrays. Assume that the user en-

ters the two input arrays in sorted (ascending) order. The merge sort procedure receives

the five parameters via the stack.

Chapter 9

Logical and Bit

Operations

Objectives
• To discuss logical family of instructions

• To describe shift and rotate family of instructions

• To see how these instructions are useful in bit manipulation and Boolean expressions

As we have seen in the last chapter, high-level languages provide several conditional and loop

constructs. These constructs require Boolean or logical expressions for specifying conditions.

The assembly language provides several logical instructions to implement logical expressions.

These instructions, described in Section 9.1, are also useful in implementing bitwise logical

operations.

Bit manipulation is an important aspect of any high-level language. The logical instruc-

tions discussed in Section 9.1 are useful in bit manipulation. In addition, several shift and

rotate instructions are provided to facilitate bit manipulation. Shift instructions are discussed

in Section 9.2, while rotate instructions are described in Section 9.3.

Issues related to logical expressions in high-level languages are discussed in Section 9.4.

There are several instructions to test and modify bits and to scan for a bit. These instructions

are discussed in Section 9.5. Section 9.6 gives some examples to illustrate the application of

logical and shift/rotate instructions. The chapter concludes with a summary.

271

272 Chapter 9 Logical and Bit Operations

9.1 Logical Instructions
Logical instructions manipulate logical data just like the arithmetic instructions manipulate

arithmetic data (e.g., integers) with operations such as addition and subtraction. The logical

data can take one of two possible values: true or false.

As the logical data can assume only one of two values, a single bit is sufficient to represent

these values. Thus, all logical instructions that we discuss here operate on a bit-by-bit basis.

By convention, if the value of the bit is 0, it represents false, and a value of 1 represents

true.

The assembly language provides logical operators in the logical family of instructions.

There is a total of five logical instructions: and, or, not, xor, and test. Except for the

not operator, all of the logical operators are binary operators (i.e., they require two operands).

These instructions operate on 8-, 16-, or 32-bit operands.

All of these logical instructions affect the status flags. Since operands of these instructions

are treated as a sequence of independent bits, these instructions do not generate carry or

overflow. Therefore, the carry (CF) and overflow (OF) flags are cleared, and the status of the

auxiliary flag (AF) is undefined.

Only the remaining three arithmetic flags—the zero flag (ZF), the sign flag (SF), and

the parity flag (PF)—record useful information about the result of these logical instructions.

Since we discussed these instructions in Chapter 4, we look at their typical use in the following

subsections.

9.1.1 The and Instruction

The and instruction is useful mainly in three situations:

1. To support compound logical expressions and bitwise and operations of high-level

languages;

2. To clear one or more bits of a byte, word, or doubleword;

3. To isolate one or more bits of a byte, word, or doubleword.

The use of the and instruction to express compound logical expressions and to implement

bitwise and operations is discussed in Section 9.4. Here we concentrate on how and can be

used to clear or isolate selected bits of an operand.

Clearing Bits

If you look at the truth table of the and operation (see page 88), you notice that the source bi

acts as a masking bit: if the masking bit is 0, the output is 0 no matter what the other input bit

is; if the masking bit is 1, the other input bit is passed to the output. Consider the following

example:

Section 9.1 Logical Instructions 273

AL = 11010110 ← operand to be manipulated

BL = 11111100 ← mask byte

and AL,BL = 11010100

Here, AL contains the operand to be modified by bit manipulation and BL contains a set of

masking bits. Let us say that we want to force the least significant two bits to 0 without

altering any of the remaining 6 bits. We select our mask in BL such that it contains 0’s in

those two bit positions and 1’s in the remainder of the masking byte. As you can see from this

example, the and instruction produces the desired result.

Here are some more examples that utilize the bit clearing capability of the and instruction.

Example 9.1 Even-parity generation (partial code).

Let us consider generation of even parity. Assume that the most significant bit of a byte

represents the parity bit; the rest of the byte stores the data bits. The parity bit can be set or

cleared so as to make the number of 1’s in the whole byte even.

If the number of 1’s in the least significant seven bits is even, the parity bit should be 0.

Assuming that the byte to be parity-encoded is in the AL register, the following statement

and AL,7FH

clears the parity bit without altering the remaining seven bits. Notice that the mask 7FH has a

0 only in the parity bit position. �

Example 9.2 ASCII-to-numeric conversion of digit characters.

In this example, we convert an ASCII decimal digit character to its equivalent 8-bit binary

number. To see how this can be done by using the and instruction, take a look at the rela-

tionship between the ASCII code and the 8-bit binary representation of the 10 digits shown in

Table 9.1.

It is clear from this table that if we mask out the third and fourth bits (from left) in the

ASCII code byte, we can transform the byte into an equivalent 8-bit unsigned binary number

representation.

In fact, we can mask out all of the upper four bits without worry, which is what the

following code does. If AL has the ASCII code of a decimal digit, the statement

and AL,0FH

produces the desired result in AL. �

Isolating Bits

Another typical use of the and instruction is to isolate selected bits for testing. This is done

by masking out all the other bits, as shown in the next example.

274 Chapter 9 Logical and Bit Operations

Table 9.1 ASCII-to-Binary Conversion of Digits

Decimal ASCII code 8-bit binary code

digit (in binary) (in binary)

0 0011 0000 0000 0000

1 0011 0001 0000 0001

2 0011 0010 0000 0010

3 0011 0011 0000 0011

4 0011 0100 0000 0100

5 0011 0101 0000 0101

6 0011 0110 0000 0110

7 0011 0111 0000 0111

8 0011 1000 0000 1000

9 0011 1001 0000 1001

Example 9.3 Finding an odd or even number.

In this example, we want to find out if the unsigned 8-bit number in the AL register is an odd

or an even number. A simple test to determine this is to check the least significant bit of the

number: if this bit is 1, it is an odd number; otherwise, an even number.

Here is the code to perform this test using the and instruction.

and AL,1 ; mask = 00000001B

jz even_number

odd_number:

. . .

<code for processing odd number>

. . .

even_number:

. . .

<code for processing even number>

. . .

If AL has an even number, the least significant bit of AL is 0. Therefore,

and AL,1

would produce a zero result in AL and sets the zero flag. The jz instruction is then used to

test the status of the zero flag and to selectively execute the appropriate code fragment. This

example shows the use of and to isolate a bit—the least significant bit in this case. �

Section 9.1 Logical Instructions 275

9.1.2 The or Instruction

Like the and instruction, the or instruction is useful in two applications:

1. To support compound logical expressions and bitwise or operations of high-level lan-

guages;

2. To set one or more bits of a byte, word, or doubleword.

The use of the or instruction to express compound logical expressions and to implement

bitwise or operations is discussed in Section 9.4. We now discuss how the or instruction can

be used to set a given set of bits.

As you can see from the truth table for the or operation (see page 88), when the source bi

is 0, the other input is passed on to the output; when the source bi is 1, the output is forced to

take a value of 1 irrespective of the other input. This property is used to set bits in the output.

This is illustrated in the following example.

AL = 11010110B ← operand to be manipulated

BL = 00000011B ← mask byte

or AL,BL = 11010111B

The mask value in BL causes the least significant two bits to change to 1. Here are some

examples that illustrate the use of the or instruction.

Example 9.4 Even-parity encoding (partial code).

Consider the even-parity encoding discussed in Example 9.1 (on page 273). If the number

of 1’s in the least significant 7 bits is odd, we have to make the parity bit 1 so that the total

number of 1’s is even. This is done by

or AL,80H

assuming that the byte to be parity-encoded is in the AL register. This or operation forces

the parity bit to 1 while leaving the remainder of the byte unchanged. �

Example 9.5 Conversion of digits to ASCII characters.

This is the counterpart of Example 9.2 on page 273. Here we would like to convert an 8-

bit unsigned binary number (between 0 and 9, both inclusive) to the corresponding ASCII

character code. Such a conversion is often required to print or display numbers.

The conversion process involves making the third and fourth bits (from left) of the binary

number 1’s (refer to Table 9.1 on page 274). If the AL register has the binary number to be

converted, the instruction

or AL,30H

will perform the desired conversion. Note that our mask input 00110000B (30H) will change

the two bits to 1’s without affecting the remaining 6 bits. �

276 Chapter 9 Logical and Bit Operations

Cutting and Pasting Bits

The and and or instructions can be used together to “cut and paste” bits from two or more

operands. We have already seen that and can be used to isolate selected bits—analogous to

the “cut” operation. The or instruction can be used to “paste” the bits. For example, the

following code creates a new byte in AL by combining odd bits from AL and even bits from

BL registers.

and AL,55H ; cut odd bits

and BL,0AAH ; cut even bits

or AL,BL ; paste them together

The first and instruction selects only the odd bits from the AL register by forcing all even

bits to 0 by using the mask 55H (01010101B). The second and instruction selects the even

bits by using the mask AAH (10101010B). The or instruction simply pastes these two bytes

together to produce the desired byte in the AL register.

9.1.3 The xor Instruction

The xor instruction is useful mainly in three different situations:

1. To support compound logical expressions of high-level languages;

2. To toggle one or more bits of a byte, word, or doubleword;

3. To initialize registers to zero.

The use of the xor instruction to express a compound logical expression is discussed in

Section 9.4. Here we focus on the use of xor to toggle bits and initialize registers to zero.

Toggling Bits

Using the xor instruction, we can toggle a specific set of bits. To do this, the mask should

have 1 in the bit positions that are to be flipped. The following example illustrates this appli-

cation of the xor instruction.

Example 9.6 Parity conversion.

Suppose we want to change the parity encoding of incoming data—if even parity, change to

odd parity, and vice versa. To accomplish this change, all we have to do is flip the parity bit,

which can be done by

xor AL,80H

Thus, an even-parity encoded ASCII character A—01000001B—is transformed into odd-

parity encoding, as shown below:

01000001B ← even-parity encoded ASCII character A

xor 10000000B ← mask byte

11000001B ← odd-parity encoded ASCII character A

Section 9.1 Logical Instructions 277

Notice that if we perform the same xor operation on odd-parity encoding of A, we get

back the even-parity encoding! This is an interesting property of the xor operation: xoring

twice gives back the original value. This is not hard to understand, as xor behaves like the

not operation by selectively flipping bits. This property is used in the following example to

encrypt a byte. �

Example 9.7 Encryption of data.

Data encryption is useful in applications that deal with sensitive data. We can write a simple

encryption program by using the xor instruction. The idea is that we will use the encryption

key as the mask byte of the xor instruction as shown below. Assume that the byte to be

encrypted is in the AL register and the encryption key is A6H.

; read a data byte into AL

xor AL,0A6H

; write the data byte back from AL

Suppose we have received character B, whose ASCII code is 01000010B. After encryp-

tion, the character becomes d in ASCII, as shown below.

01000010B ← ASCII character B

00100110B ← encryption key (mask)

01100100B ← ASCII character d

An encrypted data file can be transformed back into normal form by running the encrypted

data through the same encryption process again. To continue with our example, if the above

encrypted character code 64H (representing d) is passed through the encryption procedure,

we get 42H, which is the ASCII code for the character B. �

Initialization of Registers

Another use of the xor instruction is to initialize registers to 0. We can, of course, do this by

mov AX,0

but the same result can be achieved by

xor AX,AX

This works no matter what the contents of the AX register are. To see why this is so, look at

the truth table for the xor operation given on page 88. Since we are using the same operand

as both inputs, the input can be either both 0 or 1. In both cases, the result bit is 0—see the

first and last rows of the xor truth table.

These two instructions, however, are not exactly equivalent. The xor instruction affects

flags, whereas the mov instruction does not. Of course, we can also use the sub instruction

to do the same. All three instructions take one clock cycle to execute, even though the mov
instruction requires more bytes to encode the instruction.

278 Chapter 9 Logical and Bit Operations

9.1.4 The not Instruction

The not instruction is used for complementing bits. Its main use is in supporting logical

expressions of high-level languages (see the discussion in Section 9.4).

Another possible use for the not instruction is to compute 1’s complement. Recall that

1’s complement of a number is simply the complement of the number. Since most systems

use the 2’s complement number representation system, generating the 2’s complement of an

8-bit signed number using not involves

not AL

inc AL

However, the instruction set also provides the neg instruction to reverse the sign of a

number. Thus, the not instruction is not used for this purpose.

9.1.5 The test Instruction

The test instruction is the logical equivalent of the compare (cmp) instruction. It performs

the logical and operation but, unlike the and instruction, test does not alter the destination

operand. That is, test is a nondestructive and instruction.

This instruction is used only to update the flags, and a conditional jump instruction nor-

mally follows it. For instance, in Example 9.3 on page 274, the instruction

and AL,1

destroys the contents of the AL register. If our purpose is to test whether the unsigned number

in the AL register is an odd number, we can do this using testwithout destroying the original

number. For convenience, the example is reproduced below with the test instruction.

test AL,1 ; mask = 00000001B

jz even_number

odd_number:

. . .

even_number:

. . .

9.2 Shift Instructions
The instruction set provides two types of shift instructions: one type for logical shifts, and the

other for arithmetic shifts. The logical shift instructions are

shl (SHift Left)

shr (SHift Right)

and the arithmetic shift instructions are

sal (Shift Arithmetic Left)

sar (Shift Arithmetic Right)

Section 9.2 Shift Instructions 279

Another way of looking at these two types of shift instructions is that the logical type

instructions work on unsigned binary numbers, and the arithmetic type works on signed binary

numbers. We will get back to this discussion later in this section.

Effect on Flags

As in the logical instructions, the auxiliary flag is undefined following a shift instruction.

The carry flag (CF), zero flag (ZF), and parity flag (PF) are updated to reflect the result of a

shift instruction. The CF always contains the bit last shifted out of the operand. The OF is

undefined following a multibit shift. In a single-bit shift, OF is set if the sign bit has been

changed as a result of the shift operation; OF is cleared otherwise. The OF is rarely tested in

a shift operation; we often test the CF and ZF flags.

9.2.1 Logical Shift Instructions

Since we discussed the logical shift instructions in Chapter 4, we discuss their usage here.

These instructions are useful mainly in two situations:

1. To manipulate bits;

2. To multiply and divide unsigned numbers by a power of 2.

Bit Manipulation

The shift operations provide flexibility to manipulate bits as illustrated by the following ex-

ample.

Example 9.8 Another encryption example.

Consider the encryption example discussed on page 277. In this example, we use the follow-

ing encryption algorithm: encrypting a byte involves exchanging the upper and lower nibbles

(i.e., 4 bits). This algorithm also allows the recovery of the original data by applying the

encryption twice, as in the xor example on page 277.

Assuming that the byte to be encrypted is in the AL register, the following code imple-

ments this algorithm:

; AL contains the byte to be encrypted

mov AH,AL

shl AL,4 ; move lower nibble to upper

shr AH,4 ; move upper nibble to lower

or AL,AH ; paste them together

; AL has the encrypted byte

To understand this code, let us trace the execution by assuming that AL has the ASCII

character A. Therefore,

AH = AL = 01000001B

280 Chapter 9 Logical and Bit Operations

Table 9.2 Doubling and Halving of Unsigned Numbers

Binary number Decimal value

00011100 28

00111000 56

01110000 112

11100000 224

10101000 168

01010100 84

00101010 42

00010101 21

The idea is to move the upper nibble to lower in the AH register, and the other way around

in the AL register. To do this, we use the shl and shr instructions. The shl instruction

replaces the shifted bits by 0’s and after the shl

AL = 00010000B

Similarly, shr introduces 0’s in the vacated bits on the left. Thus, after the shr instruction

AH = 00000100B

The or instruction pastes these two bytes together, as shown below:

AL = 00010000B
AH = 00000100B

or AL,AH = 00010100B

We will show in Section 9.3.1 that this can be done better by using a rotate instruction

(see Example 9.9 on page 284). �

Multiplication and Division

Shift operations are very effective in performing doubling or halving of unsigned binary num-

bers. More generally, they can be used to multiply or divide unsigned binary numbers by a

power of 2.

In the decimal number system, we can easily perform multiplication and division by a

power of 10. For example, if we want to multiply 254 by 10, we will simply append a 0 at

the right (analogous to shifting left by a digit with the vacated digit receiving a 0). Similarly,

division of 750 by 10 can be accomplished by throwing away the 0 on the right (analogous to

right shift by a digit).

Since computers use the binary number system, they can perform multiplication and di-

vision by a power of 2. This point is further clarified in Table 9.2. The first half of this table

Section 9.2 Shift Instructions 281

shows how shifting a binary number to the left by one bit position results in multiplying it

by 2. Note that the vacated bits are replaced by 0’s. This is exactly what the shl instruction

does. Therefore, if we want to multiply a number by 8 (i.e., 23), we can do so by shifting the

number left by three bit positions.

Similarly, as shown in the second half of the table, shifting right by one bit position is

equivalent to dividing by 2. Thus, we can use the shr instruction to perform division by a

power of 2. For example, to divide a number by 32 (i.e., 25), we right-shift the number by

five bit positions. Remember that this division process corresponds to integer division, which

discards any fractional part of the result.

9.2.2 Arithmetic Shift Instructions

This set of shift instructions

sal (Shift Arithmetic Left)

sar (Shift Arithmetic Right)

can be used to shift signed numbers left or right, as shown below.

7Bit Position: 6 5 4 3 2 1 0

0CFSAL

CF

7 6 5 4 3 2 1 0Bit Position:

SAR

As with the logical shift instructions, the CL register can be used to specify the count value.

The general format is

sal destination,count sar destination,count

sal destination,CL sar destination,CL

Doubling Signed Numbers

Doubling a signed number by shifting it left by one bit position may appear to cause problems

because the leftmost bit is used to represent the sign of the number. It turns out that this

is not a problem at all. See the examples presented in Table 9.3 to develop your intuition.

The first group presents the doubling effect on positive numbers and the second group shows

the doubling effect on negative numbers. In both cases, a 0 replaces the vacated bit. Why

isn’t shifting out the sign bit causing problems? The reason is that signed numbers are sign-

extended to fit a larger-than-required number of bits. For example, if we want to represent

numbers in the range of +3 and −4, three bits are sufficient to represent this range. If we use

282 Chapter 9 Logical and Bit Operations

Table 9.3 Doubling of Signed Numbers

Signed binary number Decimal value

00001011 +11

00010110 +22

00101100 +44

01011000 +88

11110101 –11

11101010 –22

11010100 –44

10101000 –88

a byte to represent the same range, the number is sign-extended by copying the sign bit into

the higher-order five bits, as shown below.

+3 =

sign bit
copied
︷ ︸︸ ︷

00000 011B

−3 =

sign bit
copied
︷ ︸︸ ︷

11111 101B

Clearly, doubling a signed number is no different than doubling an unsigned number.

Thus, no special shift left instruction is needed for the signed numbers. In fact, sal and shl
are one and the same instruction—sal is an alias for shl.

Halving Signed Numbers

Can we also forget about treating the signed numbers separately in halving a number? Unfor-

tunately, we cannot! When we are right-shifting a signed number, the vacated left bit should

be replaced by a copy of the sign bit. This rules out the use of shr for signed numbers. See

the examples presented in Table 9.4. The sar instruction does precisely this—the sign bit is

copied into the vacated bit on the left.

Remember that the right-shift operation performs integer division. For example, right-

shifting 00001011B (+11D) by a bit results in 00000101B (+5D).

9.2.3 Why Use Shifts for Multiplication and Division?

Shifts are more efficient to execute than the corresponding multiplication or division instruc-

tions. As an example, consider multiplying a signed 16-bit number in the AX register by 32D.

Using the mul instruction, we can write

Section 9.2 Shift Instructions 283

Table 9.4 Division of Signed Numbers by 2

Signed binary number Decimal value

01011000 +88

00101100 +44

00010110 +22

00001011 +11

10101000 −88

11010100 −44

11101010 −22

11110101 −11

; multiplicand is assumed to be in AX

mov CX,32 ; multiplier in CX

mul CX

This two-instruction sequence takes 12 clock cycles. Of this, mul takes about 11 clock cycles.

Let us look at how we can perform this multiplication with the sal instruction.

; multiplicand is assumed to be in AX

sal AX,5 ; shift left by 5 bit positions

This code executes in just one clock cycle. This code also requires fewer bytes to encode.

Thus, this code is both more space- and time-efficient than the mul version.

9.2.4 Doubleshift Instructions

The instruction set has two doubleshift instructions for 32-bit and 64-bit shifts. These two in-

structions operate on either word or doubleword operands and produce a word or doubleword

result, respectively. The doubleshift instructions require three operands, as shown below:

shld dest,src,count ; left-shift

shrd dest,src,count ; right-shift

dest and src can be either a word or a doubleword. While the dest operand can be in a

register or memory, the src operand must be in a register. The shift count can be specified

as in the shift instructions—either as an immediate value or in the CL register.

A significant difference between shift and doubleshift instructions is that the src operand

supplies the bits in doubleshift instructions, as shown below:

284 Chapter 9 Logical and Bit Operations

CF dest (register or memory)

src (register)

src (register)

dest (register or memory) CF

15/3115/31

15/31 15/31

0

0 0

0

shrd

shld

Note that the bits shifted out of the src operand go into the dest operand. However, the

src operand itself is not modified by the doubleshift instructions. Only the dest operand is

updated appropriately. As in the shift instructions, the last bit shifted out is stored in the carry

flag. Later we present an example that demonstrates the use of the doubleshift instructions

(see Example 9.10 on page 285).

9.3 Rotate Instructions
A drawback with the shift instructions is that the bits shifted out are lost. There are situations

where we want to keep these bits. The doubleshift instructions provide this capability on word

or doubleword operands. The rotate family of instructions remedies this drawback on a variety

of operands. These instructions can be divided into two types: rotate without involving the

carry flag (CF), or rotate through the carry flag. Since we presented these two types of rotate

instructions in Section 4.5.6, we discuss their typical usage in the next two subsections.

9.3.1 Rotate Without Carry

The rotate instructions are useful in rearranging bits of a byte, word, or doubleword. This is

illustrated below by revisiting the data encryption example given on page 279.

Example 9.9 Encryption example revisited.

In Example 9.8, we encrypted a byte by interchanging the upper and lower nibbles. This can

be done easily either by

mov CL,4

ror AL,CL

or by

mov CL,4

rol AL,CL

This is a much simpler solution than the one using shifts. �

Section 9.3 Rotate Instructions 285

9.3.2 Rotate Through Carry

The rcl and rcr instructions provide flexibility in bit rearranging. Furthermore, these are

the only two instructions that take the carry flag bit as an input. This feature is useful in

multiword shifts, as illustrated by the following example.

Example 9.10 Shifting 64-bit numbers.

We have seen that multiplication and division by a power of 2 is faster if we use shift opera-

tions rather than multiplication or division instructions. Shift instructions operate on operands

of size up to 32 bits. What if the operand to be manipulated is bigger?

Since the shift instructions do not involve the carry flag as input, we have two alternatives:

either use rcl or rcr instructions, or use the doubleshift instructions for such multiword

shifts. As an example, assume that we want to multiply a 64-bit unsigned number by 16. The

64-bit number is assumed to be in the EDX:EAX register pair with EAX holding the least

significant 32 bits.

Rotate version:

mov ECX,4 ; 4 bit shift

shift_left:

shl EAX,1 ; moves leftmost bit of EAX to CF

rcl EDX,1 ; CF goes to rightmost bit of EDX

loop shift_left

Doubleshift version:

shld EDX,EAX,4 ; EAX is unaffected by shld

shl EAX,4

Similarly, if we want to divide the same number by 16, we can use the following code:

Rotate version:

mov ECX,4 ; 4 bit shift

shift_right:

shr EDX,1 ; moves rightmost bit of EDX to CF

rcr EAX,1 ; CF goes to leftmost bit of EAX

loop shift_right

Doubleshift version:

shrd EAX,EDX,4 ; EDX is unaffected by shld

shr EDX,4

�

As you can see from these examples, we can avoid looping by using the doubleshift instruc-

tions.

286 Chapter 9 Logical and Bit Operations

9.4 Logical Expressions in High-Level Languages
This section discusses Boolean data representation and evaluation of compound logical ex-

pressions. Boolean variables can assume one of two values: true or false.

9.4.1 Representation of Boolean Data

In principle, only a single bit is needed to represent the Boolean data. However, such a

representation, although compact, is not convenient, as testing a variable involves isolating

the corresponding bit.

Most languages use a byte to represent the Boolean data. If the byte is zero, it represents

false; otherwise, true. Note that any value other than 0 can represent true.

In C, which does not provide an explicit Boolean data type, any data variable can be used

in a logical expression to represent Boolean data. The rules mentioned above apply: if the

value is 0, it is treated as false and any nonzero value is treated as true.

9.4.2 Logical Expressions

The logical instructions are useful in implementing logical expressions of high-level lan-

guages. For example, C provides the following four logical operators:

C operator Meaning

&& AND

|| OR

ˆ Exclusive-OR

˜ NOT

To illustrate the use of logical instructions in implementing high-level language logical

expressions, let us look at the following C example:

if (˜(X && Y) ˆ (Y || Z))
X = Y + Z;

The corresponding assembly language code generated by the Turbo C compiler is shown in

Figure 9.1.

The variable X is mapped to [BP−12], Y to CX, and Z to [BP−14]. The code on lines 1

to 8 implements partial evaluation of (X && Y). That is, if X is false, it doesn’t test the Y
value. This is called partial evaluation, which is discussed later (see Section 9.4.4). The result

of the evaluation, 0 or 1, is stored in AX. The not instruction is used to implement the ˜
operator (line 10), and the value of ˜(X && Y) is stored on the stack (line 11).

Similarly, lines 13 to 21 evaluate (Y || Z), and the result is placed in AX. The value of

˜(X && Y) is recovered to DX (line 23), and the xor instruction is used to implement the

ˆ operator (line 24). If the result is zero (i.e., false), the body of the if statement is skipped

(line 25).

Section 9.4 Logical Expressions in High-Level Languages 287

1: cmp WORD PTR [BP-12],0 ; X = false?

2: je false1 ; if so, (X && Y) = false

3: or CX,CX ; Y = false?

4: je false1

5: mov AX,1 ; (X && Y) = true

6: jmp SHORT skip1

7: false1:

8: xor AX,AX ; (X && Y) = false

9: skip1:

10: not AX ; AX = ˜(X && Y)

11: push AX ; save ˜(X && Y)

12: ; now evaluate the second term

13: or CX,CX ; Y = true?

14: jne true2 ; if so, (Y || Z) = true

15: cmp WORD PTR [BP-14],0 ; Z = false?

16: je skip2

17: true2:

18: mov AX,1 ; (X || Y) = true

19: jmp SHORT skip3

20: skip2:

21: xor AX,AX ; (X || Y) = false

22: skip3:

23: pop DX ; DX = ˜(X && Y)

24: xor DX,AX ; ˜(X && Y) ˆ (Y || Z)

25: je end_if ; if zero, whole exp. false

26: if_body:

27: mov AX,CX ; AX = Y

28: add AX,WORD PTR [BP-14] ; AX = Y + Z

29: mov WORD PTR [BP-12],AX ; X = Y + Z

30: end_if:

31: . . .

Figure 9.1 Assembly language code for the example logical expression.

9.4.3 Bit Manipulation

Some high-level languages provide bitwise logical operators. For example, C provides bitwise

and (&), or (|), xor (ˆ), and not (˜) operators. These can be implemented by using the

logical instructions of the assembly language.

The C language also provides shift operators: left shift (<<) and right shift (>>). These

operators can be implemented with the assembly language shift instructions.

Table 9.5 shows how the logical and shift families of instructions are used to implement

the bitwise logical and shift operators of the C language. The variable mask is assumed to be

in the SI register.

288 Chapter 9 Logical and Bit Operations

Table 9.5 Examples of Bitwise Operators

C statement Assembly language code

mask = mask>>2 shr SI,2
(right-shift mask by two bit positions)

mask = mask<<4 shl SI,4
(left-shift mask by four bit positions)

mask = ˜mask not SI
(complement mask)

mask = mask & 85 and SI,85
(bitwise and)

mask = mask | 85 or SI,85
(bitwise or)

mask = mask ˆ 85 xor SI,85
(bitwise xor)

9.4.4 Evaluation of Logical Expressions

Logical expressions can be evaluated in one of two ways: by full evaluation, or by partial

evaluation. These methods are discussed next.

Full Evaluation

In this method of evaluation, the entire logical expression is evaluated before assigning a value

(true or false) to the expression. Full evaluation is used in Pascal.

For example, in full evaluation, the expression

if ((X ≥ ’a’) AND (X ≤ ’z’)) OR ((X ≥ ’A’) AND (X ≤ ’Z’))

is evaluated by evaluating all four relational terms and then applying the logical operators.

For example, the Turbo Pascal compiler generates the assembly language code shown in Fig-

ure 9.2 for this logical expression.

Partial Evaluation

The final result of a logical expression can be obtained without evaluating the whole expres-

sion. The following rules help us in this:

1. In an expression of the form

cond1 AND cond2

Section 9.4 Logical Expressions in High-Level Languages 289

1: cmp ch,’Z’

2: mov AL,0

3: ja skip1

4: inc AX

5: skip1:

6: mov DL,AL

7: cmp ch,’A’

8: mov AL,0

9: jb skip2

10: inc AX

11: skip2:

12: and AL,DL

13: mov CL,AL

14: cmp ch,’z’

15: mov AL,0

16: ja skip3

17: inc AX

18: skip3:

19: mov DL,AL

20: cmp ch,’a’

21: mov AL,0

22: jb skip4

23: inc AX

24: skip4:

25: and AL,DL

26: or AL,CL

27: or AL,AL

28: je skip_if

29: << if body here >>

30: skip_if:

31: << code following the if >>

Figure 9.2 Assembly language code for full evaluation.

the outcome is known to be false if one input is false. For example, if we follow the

convention of evaluating logical expressions from left to right, as soon as we know that

cond1 is false, we can assign false to the entire logical expression. Only when cond1
is true do we need to evaluate cond2 to know the final value of the logical expression.

2. Similarly, in an expression of the form

cond1 OR cond2

the outcome is known if cond1 is true. The evaluation can stop at that point. We need

to evaluate cond2 only if cond1 is false.

290 Chapter 9 Logical and Bit Operations

1: cmp ch,’a’

2: jb skip1

3: cmp ch,’z’

4: jbe skip2

5: skip1:

6: cmp ch,’A’

7: jb skip_if

8: cmp ch,’Z’

9: ja skip_if

10: skip2:

11: << if body here >>

12: skip_if:

13: << code following the if >>

Figure 9.3 Assembly language code for partial evaluation.

This method of evaluation is used in C. The assembly language code for the previous

logical expression, produced by the Turbo C compiler, is shown in Figure 9.3. The code

does not use any logical instructions. Instead, the conditional jump instructions are used to

implement the logical expression. Partial evaluation clearly results in efficient code.

Partial evaluation also has an important advantage beyond the obvious reduction in evalu-

ation time. Suppose X and Y are inputs to the program. A statement such as

if ((X > 0) AND (Y/X > 100))

. . .

can cause a divide-by-zero error if X = 0 when full evaluation is used. However, with partial

evaluation, when X is zero, (X > 0) is false, and the second term (Y/X > 100) is not

evaluated at all. This is used frequently in C programs to test if a pointer is NULL before

manipulating the data to which it points.

Of course, when full evaluation is used, we can rewrite the last condition to avoid the

divide-by-zero error as

if (X > 0)

if (Y/X > 100)

. . .

9.5 Bit Instructions
The instruction set has bit test and modification instructions as well as bit scan instructions.

This section discusses these two groups of instructions. An example that uses these instruc-

tions is given later (see Example 9.12).

Section 9.6 Illustrative Examples 291

9.5.1 Bit Test and Modify Instructions

There are four bit test instructions. Each instruction takes the position of the bit to be tested.

The least significant bit is considered as bit position zero. A summary of the four instructions

is given below:

Instruction Effect on Selected Bit

bt (Bit Test) No effect

bts (Bit Test and Set) Selected bit← 1

btr (Bit Test and Reset) Selected bit← 0

btc (Bit Test and Complement) Selected bit← NOT(Selected bit)

All four instructions copy the selected bit into the carry flag. The format of all four

instructions is the same. We use the bt instruction to illustrate the format of these instructions.

bt operand,bit_pos

where operand can be a word or doubleword located either in a register or in memory. The

bit_pos specifies the bit position to be tested. It can be specified as an immediate value or

in a 16- or 32-bit register. Instructions in this group affect only the carry flag. The other five

status flags are undefined following a bit test instruction.

9.5.2 Bit Scan Instructions

Bit scan instructions scan the operand for a 1 bit and return the bit position in a register. There

are two instructions—one to scan forward and the other to scan backward. The format is

bsf dest_reg,operand ;bit scan forward

bsr dest_reg,operand ;bit scan reverse

where operand can be a word or doubleword located either in a register or in memory. The

dest_reg receives the bit position. It must be a 16- or 32-bit register. The zero flag is set if

all bits of operand are 0; otherwise, the ZF is cleared and the dest_reg is loaded with the

bit position of the first 1 bit while scanning forward (for bsf), or reverse (for bsr). These

two instructions affect only the zero flag. The other five status flags are undefined following a

bit scan instruction.

9.6 Illustrative Examples
This section presents three examples that use the shift and rotate family of instructions.

Example 9.11 Multiplication using only shifts and adds.

The objective of this example is to show how multiplication can be done entirely by using the

shift and add operations. We consider multiplication of two unsigned 8-bit numbers. In order

to use the shift operation, we have to express the multiplier as a power of 2. For example,

292 Chapter 9 Logical and Bit Operations

if the multiplier is 64, the result can be obtained by shifting the multiplicand left by six bit

positions because 26 = 64.

What if the multiplier is not a power of 2? In this case, we have to express this number as

a sum of powers of 2. For example, if the multiplier is 10, it can be expressed as 8+2, where

each term is a power of 2. Then the required multiplication can be done by two shifts and one

addition.

The question now is: How do we express the multiplier in this form? If we look at the

binary representation of the multiplicand (10D = 00001010B), there is a 1 in bit positions

with weights 8 and 2. Thus, for each 1 bit in the multiplier, the multiplicand should be shifted

left by a number of positions equal to the bit position number. In the above example, the

multiplicand should be shifted left by 3 and 1 bit positions and then added. This procedure is

formalized in the following algorithm.

mult8 (number1, number2)

result := 0

for (i = 7 downto 0)

if (bit(number2, i) = 1)

result := result + number1 * 2i

end if

end for

end mult8

The function bit returns the ith bit of number2. The program listing is given below:

Program 9.1 Multiplication of two 8-bit numbers using only shifts and adds

1: ;8-bit multiplication using shifts SHL_MLT.ASM

2: ;

3: ; Objective: To multiply two 8-bit unsigned numbers

4: ; using SHL rather than MUL instruction.

5: ; Input: Requests two unsigned numbers from user.

6: ; Output: Prints the multiplication result.

7: %include "io.mac"

8: .DATA

9: input_prompt db ’Please input two short numbers: ’,0

10: out_msg1 db ’The multiplication result is: ’,0

11: query_msg db ’Do you want to quit (Y/N): ’,0

12:

13: .CODE

14: .STARTUP

15: read_input:

16: PutStr input_prompt ; request two numbers

17: GetInt AX ; read the first number

18: GetInt BX ; read the second number

Section 9.6 Illustrative Examples 293

19: call mult8 ; mult8 uses SHL instruction

20: PutStr out_msg1

21: PutInt AX ; mult8 leaves result in AX

22: nwln

23: PutStr query_msg ; query user whether to terminate

24: GetCh AL ; read response

25: cmp AL,’Y’ ; if response is not ’Y’

26: jne read_input ; repeat the loop

27: done: ; otherwise, terminate program

28: .EXIT

29:

30: ;---

31: ; mult8 multiplies two 8-bit unsigned numbers passed on to

32: ; it in registers AL and BL. The 16-bit result is returned

33: ; in AX. This procedure uses only the SHL instruction to do

34: ; the multiplication. All registers, except AX, are preserved.

35: ;---

36: mult8:

37: push CX ; save registers

38: push DX

39: push SI

40: xor DX,DX ; DX = 0 (keeps mult. result)

41: mov CX,7 ; CX = # of shifts required

42: mov SI,AX ; save original number in SI

43: repeat1: ; multiply loop - iterates 7 times

44: rol BL,1 ; test bits of number2 from left

45: jnc skip1 ; if 0, do nothing

46: mov AX,SI ; else, AX = number1*bit weight

47: shl AX,CL

48: add DX,AX ; update running total in DX

49: skip1:

50: dec CX

51: jnz repeat1

52: rol BL,1 ; test the rightmost bit of AL

53: jnc skip2 ; if 0, do nothing

54: add DX,SI ; else, add number1

55: skip2:

56: mov AX,DX ; move final result into AX

57: pop SI ; restore registers

58: pop DX

59: pop CX

60: ret

294 Chapter 9 Logical and Bit Operations

The main program requests two numbers from the user and calls the procedure mult8
and displays the result. The main program then queries the user whether to quit and proceeds

according to the response.

The mult8 procedure multiplies two 8-bit unsigned numbers and returns the result in

AX. It follows the algorithm discussed on page 292. The multiply loop (lines 43–51) tests the

most significant 7 bits of the multiplier. The least significant bit is tested on lines 52 and 53.

Notice that the procedure uses rol rather than shl to test each bit (lines 44 and 52). The use

of rol automatically restores the BL register after 8 rotates. �

Example 9.12 Multiplication using only shifts and adds—version 2.

In this example, we rewrite the mult8 procedure of the last example by using the bit test and

scan instructions. In the previous version, we used a loop (see lines 43–51) to test each bit.

Since we are interested only in 1 bits, we can use a bit scan instruction to do this job. The

modified mult8 procedure is shown below.

1: ;--

2: ; mult8 multiplies two 8-bit unsigned numbers passed on to

3: ; it in registers AL and BL. The 16-bit result is returned

4: ; in AX. This procedure uses only the SHL instruction to do the

5: ; multiplication. All registers, except AX, are preserved.

6: ; Demonstrates the use of bit instructions BSF and BTC.

7: ;--

8: mult8:

9: push CX ; save registers

10: push DX

11: push SI

12: xor DX,DX ; DX = 0 (keeps mult. result)

13: mov SI,AX ; save original number in SI

14: repeat1:

15: bsf CX,BX ; returns first 1 bit position in CX

16: jz skip1 ; if ZF=1, no 1 bit in BX - done

17: mov AX,SI ; else, AX = number1*bit weight

18: shl AX,CL

19: add DX,AX ; update running total in DX

20: btc BX,CX ; complement the bit found by BSF

21: jmp repeat1

22: skip1:

23: mov AX,DX ; move final result into AX

24: pop SI ; restore registers

25: pop DX

26: pop CX

27: ret

Section 9.6 Illustrative Examples 295

The modified loop (lines 14–21) replaces the loop in the previous version. This code is

more efficient because the number of times the loop iterates is equal to the number of 1’s in

BX. The previous version, on the other hand, always iterates seven times. Also note that we

can replace the btc instruction on line 20 by a btr instruction. Similarly, the bsf instruction

on line 15 can be replaced by a bsr instruction. �

Example 9.13 Conversion from octal to binary.

An algorithm for converting octal numbers to binary is given in Appendix A. The main pro-

gram is similar to that in the last example. The procedure to_binary receives an octal

number as a character string via BX and the 8-bit binary value is returned in AL. The pseu-

docode of this procedure is as follows:

to_binary (octal string)

binary value := 0

for (i = 0 to 3)

if (octal string[i] = NULL)

goto finished
end if

digit := numeric(octal string[i])

binary value := binary value * 8 + digit

end for

finished:
end to_binary

The function numeric converts a digit character to its numeric equivalent. The program

is shown in Program 9.2. Note that we use the shl instruction to multiply by 8 (line 54). The

rest of the code follows the pseudocode.

Program 9.2 Octal-to-binary conversion

1: ;Octal-to-binary conversion using shifts OCT_BIN.ASM

2: ;

3: ; Objective: To convert an 8-bit octal number to the

4: ; binary equivalent using shift instruction.

5: ; Input: Requests an 8-bit octal number from user.

6: ; Output: Prints the decimal equivalent of the input

7: ; octal number.

8: %include "io.mac"

9:

10: .DATA

11: input_prompt db ’Please input an octal number: ’,0

12: out_msg1 db ’The decimal value is: ’,0

296 Chapter 9 Logical and Bit Operations

13: query_msg db ’Do you want to quit (Y/N): ’,0

14:

15: .UDATA

16: octal_number resb 4 ; to store octal number

17:

18: .CODE

19: .STARTUP

20: read_input:

21: PutStr input_prompt ; request an octal number

22: GetStr octal_number,4 ; read input number

23: mov EBX,octal_number ; pass octal # pointer

24: call to_binary ; returns binary value in AX

25: PutStr out_msg1

26: PutInt AX ; display the result

27: nwln

28: PutStr query_msg ; query user whether to terminate

29: GetCh AL ; read response

30: cmp AL,’Y’ ; if response is not ’Y’

31: jne read_input ; read another number

32: done: ; otherwise, terminate program

33: .EXIT

34:

35: ;---

36: ; to_binary receives a pointer to an octal number string in

37: ; EBX register and returns the binary equivalent in AL (AH is

38: ; set to zero). Uses SHL for multiplication by 8. Preserves

39: ; all registers, except AX.

40: ;---

41: to_binary:

42: push EBX ; save registers

43: push CX

44: push DX

45: xor EAX,EAX ; result = 0

46: mov CX,3 ; max. number of octal digits

47: repeat1:

48: ; loop iterates a maximum of 3 times;

49: ; but a NULL can terminate it early

50: mov DL,[EBX] ; read the octal digit

51: cmp DL,0 ; is it NULL?

52: je finished ; if so, terminate loop

53: and DL,0FH ; else, convert char. to numeric

54: shl AL,3 ; multiply by 8 and add to binary

55: add AL,DL

56: inc EBX ; move to next octal digit

Section 9.7 Summary 297

57: dec CX ; and repeat

58: jnz repeat1

59: finished:

60: pop DX ; restore registers

61: pop CX

62: pop EBX

63: ret

9.7 Summary
We discussed logical, shift, and rotate instructions available in the assembly language. Log-

ical instructions are useful to implement bitwise logical operators and Boolean expressions.

However, in some instances Boolean expressions can also be implemented by using condi-

tional jump instructions without using the logical instructions.

Shift and rotate instructions provide flexibility to bit manipulation operations. There are

two types of shift instructions: one type works on logical and unsigned data, and the other

type is meant for signed data. There are also two types of rotate instructions: rotate without,

or rotate through carry. Rotate through carry is useful in shifting multiword data.

There are also two doubleshift instructions that work on either word or doubleword operands.

In addition, four instructions for testing and modifying bits and two instructions to scan for a

bit are available.

We discussed how the logical and shift instructions are used to implement logical ex-

pressions and bitwise logical operations in high-level languages. Logical expressions can be

evaluated in one of two ways: partial evaluation or full evaluation. In partial evaluation, eval-

uation of a logical expression is stopped as soon as the final result of the complete logical

expression is known. In full evaluation, the complete logical expression is evaluated. Partial

evaluation has the obvious advantage of reduced evaluation time. Partial evaluation also has

an important advantage of avoiding error conditions in some expressions.

Shift instructions can be used to multiply or divide by a number that is a power of 2.

Shifts for such arithmetic operations are more efficient than the corresponding arithmetic

instructions.

9.8 Exercises
9–1 What is the difference between or and xor logical operators?

9–2 The logical and operation can be implemented by using only or and not operations.

Show how this can be done. You can use as many or and not operations as you want.

But see if you can implement by using only three not and one or operation.

9–3 Logical or operation can be implemented by using only and and not operations.

Show how this can be done. You can use as many and and not operations as you

want. But see if you can implement by using only three not and one and operation.

298 Chapter 9 Logical and Bit Operations

9–4 Explain how and and or logical operations can be used to “cut and paste” a specific

set of bits.

9–5 Suppose the instruction set did not include the not instruction. How do you implement

it using only and and or instructions?

9–6 Can we use the logical shift instructions shl and shr on signed data?

9–7 Can we use the arithmetic shift instructions sal and sar on unsigned data?

9–8 Give an assembly language program fragment to copy low-order 4 bits from the AL

register and higher-order 4 bits from the AH register into the DL register. You should

accomplish this using only the logical instructions.

9–9 Repeat the above exercise using only the shift/rotate instructions.

9–10 Show an assembly language program fragment to complement only the odd bits of the

AL register using only the logical operations.

9–11 Repeat the above exercise using only the shift/rotate instructions.

9–12 Explain the difference between bitwise and and logical and operations. Use an exam-

ple to illustrate your point.

9–13 Repeat the above exercise for the or operation.

9–14 Describe the two methods of evaluating logical expressions.

9–15 Discuss the advantages of partial evaluation over full evaluation of logical expressions.

9–16 Consider the following statement:

if ((X > 0) AND (X−Y > 0) AND ((X/Y)+(Z/(X−Y)) < 2))

then

...

Suppose your compiler uses only full evaluation of logical expressions. Modify the

if statement so that it works without a problem for all values of X and Y.

9–17 Fill in the blanks in the following table:

Before execution After execution

Instruction AL BL AL ZF SF PF

and AL,BL 79H 86H

or AL,BL 79H 86H

xor AL,BL 79H 86H

test AL,BL 79H 86H

and AL,BL 36H 24H

or AL,BL 36H 24H

xor AL,BL 36H 24H

test AL,BL 36H 24H

9–18 Assuming that the contents of the AL register is treated as a signed number, fill in the

blanks in the following table:

Section 9.9 Programming Exercises 299

Before execution After execution

Instruction AL CF AL CF

shl AL,1 −1 ?

rol AL,1 −1 ?

shr AL,1 50 ?

ror AL,1 50 ?

sal AL,1 −20 ?

sar AL,1 −20 ?

rcl AL,1 −20 1

rcr AL,1 −20 1

9–19 Assuming that the CL register is initialized to 3, fill in the blanks in the following table:

Before execution After execution

Instruction AL CF AL CF

shl AL,CL 76H ?

sal AL,CL 76H ?

rcl AL,CL 76H 1

rcr AL,CL 76H 1

ror AL,CL 76H ?

rol AL,CL 76H ?

9.9 Programming Exercises
9–P1 Write a procedure to perform hexadecimal-to-binary conversion. Use only shift in-

structions for multiplication. Assume that signed 32-bit numbers are used. Test your

procedure by writing a main program that reads a hexadecimal number as a character

string and converts it to an equivalent binary number by calling the procedure. Finally,

the main program should display the decimal value of the input by using PutLInt.

9–P2 Modify the octal-to-binary conversion program shown in Program 9.2 to include error

checking for nonoctal input. For example, digit 8 in the input should be flagged as an

error. In case of error, terminate the program.

9–P3 In Appendix A, we discuss the format of short floating-point numbers. Write a program

that reads the floating-point internal representation from a user as a string of eight hex-

adecimal digits and displays the three components—mantissa, exponent, and sign—in

binary. For example, if the input to the program is 429DA000, the output should be

sign = 0

mantissa = 1.0011101101

exponent = 110

9–P4 Modify the program for the last exercise to work with the long floating-point represen-

tation.

300 Chapter 9 Logical and Bit Operations

9–P5 Suppose you are given an integer that requires 16 bits to store. You are asked to find

whether its binary representation has an odd or even number of 1’s. Write a program to

read an integer (should accept both positive and negative numbers) from the user and

outputs whether it contains an odd or even number 1’s. Your program should also print

the number of 1’s in the binary representation.

9–P6 Write a procedure abs that receives an 8-bit signed number in the AL register and

returns its absolute value back in the same register. Remember that negative numbers

are stored in 2’s complement representation. It is simple to write such a procedure using

arithmetic instructions. In this exercise, however, you are asked to write this procedure

using only the logical instructions.

9–P7 Repeat the last exercise by using only the shift and rotate instructions.

9–P8 Display the status of the flags register. In particular, display the status of the carry,

parity, zero, and sign flags. (See Chapters 3 and 7 for details on the flags register.) For

each flag, use the format “flag = value”. For example, if carry flag is set, your program

should display “CF = 1”. Each flag status should be displayed on a separate line. Before

terminating your program, the four flag bits should be complemented and stored back

in the flags register.

9–P9 Repeat the last exercise using the lahf and sahf instructions. The details of these

instructions are as follows: the lahf (Load AH from Flags register) copies the lower-

order byte of the flags register into the AH register. The sahf (Store AH to Flags

register) stores the contents of the AH register in the lower-order byte of the flags reg-

ister.

Chapter 10

String Processing

Objectives
• To discuss string representation schemes

• To describe string manipulation instructions

• To illustrate the use of indirect procedure calls

• To demonstrate the performance advantage of string instructions

A string is a sequence of characters. String manipulation is an important aspect of any pro-

gramming task. Text processing applications, for example, heavily use string manipulation

functions. Several high-level languages provide procedures or routines for string processing.

This is the focus of this chapter.

Strings are represented in a variety of ways. Section 10.1 discusses some of the repre-

sentation schemes used to store strings. The instruction set supports string processing by a

special set of instructions. These instructions are described in Section 10.2. Several examples

are presented in Section 10.3. The purpose of these examples is to illustrate the use of string

instructions in developing procedures for string processing. Section 10.4 describes a program

to test the procedures developed in the previous section. A novelty of this program is that it

demonstrates the use of indirect procedure calls.

String processing procedures can be developed without using the string instructions. How-

ever, using the string instructions can result in more efficient code. The efficacy of the string

instructions is demonstrated in Section 10.5. The chapter concludes with a summary.

10.1 String Representation
A string can be represented either as a fixed-length string or as a variable-length string. In

the fixed-length representation, each string occupies exactly the same number of character

301

302 Chapter 10 String Processing

positions. That is, each string has the same length, where the length of a string refers to the

number of characters in the string. In this representation, if a string has fewer characters, it is

extended by padding, for example, with blank characters. On the other hand, if a string has

more characters, it is usually truncated to fit the storage space available.

Clearly, if we want to avoid truncation of larger strings, we need to fix the string length

carefully so that it can accommodate the largest string that the program will ever handle. A

potential problem with this representation is that we should anticipate this value, which may

cause difficulties with program maintenance. A further disadvantage of using fixed-length

representation is that memory space is wasted if majority of the strings are shorter than the

length used.

The variable-length representation avoids these problems. In this scheme, a string can

have as many characters as required (usually, within some system-imposed limit). Associated

with each string, there is a string length attribute giving the number of characters in the string.

This length attribute is given in one of two ways:

1. Explicitly storing string length, or

2. Using a sentinel character.

These two methods are discussed next.

10.1.1 Explicitly Storing String Length

In this method, string length attribute is explicitly stored along with the string, as shown in

the following example:

string DB ’Error message’

str_len DW $ - string

where $ is the location counter symbol that represents the current value of the location counter.

In this example, $ points to the byte after the last character of string. Therefore,

$ - string

gives the length of the string. Of course, we could also write

string DB ’Error message’

str_len DW 13

However, if we modify the contents of string later, we have to update the string length

value as well. On the other hand, by using $ - string, we let the assembler do the job for

us at assembly time.

Section 10.2 String Instructions 303

Table 10.1 String Instructions

Mnemonic Meaning Operand(s) required

LODS LOaD String source

STOS STOre String destination

MOVS MOVe String source & destination

CMPS CoMPare Strings source & destination

SCAS SCAn String destination

10.1.2 Using a Sentinel Character

In this method, strings are stored with a trailing sentinel character to delimit a string. There-

fore, there is no need to store the string length explicitly. The assumption here is that the

sentinel character is a special character that does not appear within a string. We normally

use a special, nonprintable character that does not appear in strings. We have been using the

ASCII NULL-character (00H) to terminate strings. Such NULL-terminated strings are called

ASCIIZ strings. Here are some examples:

string1 DB ’This is OK’,0

string2 DB ’Price = $9.99’,0

The C language, for example, uses this representation to store strings. In the remainder of this

chapter, we use this representation for strings.

10.2 String Instructions
There are five main string-processing instructions. These can be used to copy a string, to

compare two strings, and so on. It is important to note that these instructions are not just

for copying strings. We can use them to perform memory-to-memory copy of data. For

example, we could use them to copy arrays of integers. The five basic instructions are shown

in Table 10.1.

Specifying Operands

As indicated, each string instruction may require a source operand, a destination operand, or

both. For 32-bit segments, string instructions use ESI and EDI registers to point to the source

and destination operands, respectively. The source operand is assumed to be at DS:ESI in

memory, and the destination operand at ES:EDI in memory. For 16-bit segments, SI and DI

registers are used instead of ESI and EDI registers. If both the operands are in the same data

segment, we can let both DS and ES point to the data segment to use the string instructions.

304 Chapter 10 String Processing

Table 10.2 Repetition Prefixes

unconditional repeat

rep REPeat

conditional repeat

repe/repz REPeat while Equal

REPeat while Zero

repne/repnz REPeat while Not Equal

REPeat while Not Zero

Variations

Each string instruction can operate on 8-, 16-, or 32-bit operands. As part of execution, string

instructions automatically update (i.e., increment or decrement) the index register(s) used by

them. For byte operands, source and destination index registers are updated by 1. These

registers are updated by 2 and 4 for word and doubleword operands, respectively. In this

chapter, we focus on byte operand strings.

String instructions derive much of their power from the fact that they can accept a rep-

etition prefix to repeatedly execute the operation. These prefixes are discussed next. The

direction of string processing—forward or backward—is controlled by the direction flag (dis-

cussed in Section 10.2.2).

10.2.1 Repetition Prefixes

String instructions can be repeated by using a repetition prefix. As shown in Table 10.2, the

three prefixes are divided into two categories: unconditional or conditional repetition. None

of the flags is affected by these instructions.

rep

This is an unconditional repeat prefix and causes the instruction to repeat according to the

value in the ECX register. Note that for 16-bit addresses, CX register is used. The semantics

of rep are

while (ECX �= 0)

execute the string instruction;

ECX := ECX–1;

end while

The ECX register is first checked and if it is not 0, only then is the string instruction

executed. Thus, if ECX is 0 to start with, the string instruction is not executed at all. This is

in contrast to the loop instruction, which first decrements and then tests if ECX is 0. Thus,

Section 10.2 String Instructions 305

with loop, ECX = 0 results in a maximum number of iterations, and usually a jecxz check

is needed.

repe/repz

This is one of the two conditional repeat prefixes. Its operation is similar to that of rep except

that repetition is also conditional on the zero flag (ZF), as shown below:

while (ECX �= 0)

execute the string instruction;

ECX := ECX–1;

if (ZF = 0)

then

exit loop

end if

end while

The maximum number of times the string instruction is executed is determined by the

contents of ECX, as in the rep prefix. But the actual number of times the instruction is

repeated is determined by the status of ZF. Conditional repeat prefixes are useful with cmps
and scas string instructions.

repne/repnz

This prefix is similar to the repe/repz prefix except that the condition tested is ZF = 1 as

shown below:

while (ECX �= 0)

execute the string instruction;

ECX := ECX–1;

if (ZF = 1)

then

exit loop

end if

end while

10.2.2 Direction Flag

The direction of string operations depends on the value of the direction flag. Recall that this

is one of the bits of the flag’s register. If the direction flag (DF) is clear (i.e., DF = 0), string

operations proceed in the forward direction (from head to tail of a string); otherwise, string

processing is done in the opposite direction.

Two instructions are available to explicitly manipulate the direction flag:

std set direction flag (DF = 1)

cld clear direction flag (DF = 0)

306 Chapter 10 String Processing

Both of these instructions do not require any operands. Each instruction is encoded using a

single byte and takes two clock cycles to execute.

Usually, it does not matter whether a string is processed in the forward or backward direc-

tion. For sentinel character-terminated strings, forward direction is preferred. However, there

are situations where one particular direction is mandatory. For example, if we want to shift a

string right by one position, we have to start with the tail and proceed toward the head (i.e.,

move backward) as in the following example.

Initial string →

After one shift →

After two shifts →

After three shifts→

Final string →

a b c 0 ?

a b c 0 0

a b c c 0

a b b c 0

a a b c 0

If we proceed from the head and in the forward direction, only the first character is copied

through the string, as shown below:

Initial string →

After one shift →

After two shifts →

After three shifts→

Final string →

a b c 0 ?

a a c 0 ?

a a a 0 ?

a a a a ?

a a a a a

10.2.3 String Move Instructions

There are three basic instructions in this group—movs, lods, and stos. Each instruction

can take one of four forms. We start our discussion with the first instruction.

Move a String (movs)

The format of the movs instruction is:

movs dest_string,source_string

movsb

movsw

movsd

Section 10.2 String Instructions 307

Using the first form, we can specify the source and destination strings. This specification will

be sufficient to determine whether it is a byte, word, or doubleword operand. However, this

form is not used frequently.

In the other three forms, the suffix b, w, or d is used to indicate byte, word, or doubleword

operands. This format applies to all the string instructions of this chapter.

The movs instruction is used to copy a value (byte, word, or doubleword) from the source

string to the destination string. As mentioned earlier, the source string value is pointed to by

DS:ESI and the destination string location is indicated by ES:EDI in memory. After copying,

the ESI and EDI registers are updated according to the value of the direction flag and the

operand size. Thus, before executing the movs instruction, all four registers should be set up

appropriately. (This is necessary even if you use the first format.) Note that our focus is on

32-bit segments. For 16-bit segments, we use the SI and DI registers.

movsb — move a byte string

ES:EDI := (DS:ESI) ; copy a byte

if (DF = 0) ; forward direction

then

ESI := ESI+1

EDI := EDI+1

else ; backward direction

ESI := ESI–1

EDI := EDI–1

end if

Flags affected: none

For word and doubleword operands, the index registers are updated by 2 and 4, respec-

tively. This instruction, along with the rep prefix, is useful to copy a string. More generally,

we can use them to perform memory-to-memory block transfers. Here is an example that

copies string1 to string2.

.DATA

string1 db ’The original string’,0

strLen EQU $ - string1

.UDATA

string2 resb 80

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov ECX,strLen ; strLen includes NULL

mov ESI,string1

mov EDI,string2

cld ; forward direction

rep movsb

308 Chapter 10 String Processing

Since the movs instruction does not change any of the flags, conditional repeat (repe or

repne) should not be used with this instruction.

Load a String (lods)

This instruction copies the value from the source string (pointed to by DS:ESI) in memory to

AL (for byte operands—lodsb), AX (for word operands—lodsw), or EAX (for doubleword

operands—lodsd).

lodsb — load a byte string

AL := (DS:ESI) ; copy a byte

if (DF = 0) ; forward direction

then

ESI := ESI+1

else ; backward direction

ESI := ESI−1

end if

Flags affected: none

Use of the rep prefix does not make sense, as it will leave only the last value in AL,

AX, or EAX. This instruction, along with the stos instruction, is often used when process-

ing is required while copying a string. This point is elaborated after we describe the stos
instruction.

Store a String (stos)

This instruction performs the complementary operation. It copies the value in AL (forstosb),

AX (for stosw), or EAX (for stosd) to the destination string (pointed to by ES:EDI) in

memory.

stosb — store a byte string

ES:EDI := AL ; copy a byte

if (DF = 0) ; forward direction

then

EDI := EDI+1

else ; backward direction

EDI := EDI−1

end if

Flags affected: none

We can use the rep prefix with the stos instruction if our intention is to initialize a block

of memory with a specific character, word, or doubleword value. For example, the following

code initializes array1 with −1.

Section 10.2 String Instructions 309

.UDATA

array1 resw 100

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov ECX,100

mov EDI,array1

mov AX,-1

cld ; forward direction

rep stosw

In general, the rep prefix is not useful with lods and stos instructions. These two instruc-

tions are often used in a loop to do value conversions while copying data. For example, if

string1 only contains letters and blanks, the following code

mov ECX,strLen

mov ESI,string1

mov EDI,string2

cld ; forward direction

loop1:

lodsb

or AL,20H

stosb

loop loop1

done:

. . .

can convert it to a lowercase string. Note that blank characters are not affected because 20H

represents blank in ASCII, and the

or AL,20H

instruction does not have any effect on it. The advantage of lods and stos is that they

automatically increment ESI and EDI registers.

10.2.4 String Compare Instruction

The cmps instruction can be used to compare two strings.

cmpsb — compare two byte strings

Compare the two bytes at DS:ESI and ES:EDI and set flags

if (DF = 0) ; forward direction

then

ESI := ESI+1

310 Chapter 10 String Processing

EDI := EDI+1

else ; backward direction

ESI := ESI−1

EDI := EDI−1

end if

Flags affected: As per cmp instruction

The cmps instruction compares the two bytes, words, or doublewords at DS:ESI and

ES:EDI and sets the flags just like the cmp instruction. Like the cmp instruction, cmps
performs

(DS:ESI)− (ES:EDI)

and sets the flags according to the result. The result itself is not stored. We can use conditional

jumps like ja, jg, jc, etc. to test the relationship of the two values. As usual, the ESI and

EDI registers are updated according to the value of the direction flag and the operand size.

The cmps instruction is typically used with the repe/repz or repne/repnz prefix.

The following code

.DATA

string1 db ’abcdfghi’,0

strLen EQU $ - string1

string2 db ’abcdefgh’,0

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov ECX,strLen

mov ESI,string1

mov EDI,string2

cld ; forward direction

repe cmpsb

leaves ESI pointing to g in string1 and EDI to f in string2. Therefore, adding

dec ESI

dec EDI

leaves ESI and EDI pointing to the last character that differs. Then we can use, for example,

ja str1Above

to test if string1 is greater (in the collating sequence) than string2. This, of course,

is true in this example. A more concrete example is given later (see the string comparison

procedure on page 317).

The repne/repnz prefix can be used to continue comparison as long as the comparison

fails and the loop terminates when a matching value is found. For example,

Section 10.2 String Instructions 311

.DATA

string1 db ’abcdfghi’,0

strLen EQU $ - string1 - 1

string2 db ’abcdefgh’,0

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov ECX,strLen

mov ESI,string1 + strLen - 1

mov EDI,string2 + strLen - 1

std ; backward direction

repne cmpsb

inc ESI

inc EDI

leaves ESI and EDI pointing to the first character that matches in the backward direction.

10.2.5 Scanning a String

The scas (scanning a string) instruction is useful in searching for a particular value or char-

acter in a string. The value should be in AL (for scasb), AX (for scasw), or EAX (for

scasd), and ES:EDI should point to the string to be searched.

scasb — scan a byte string

Compare AL to the byte at ES:EDI and set flags

if (DF = 0) ; forward direction

then

EDI := EDI+1

else ; backward direction

EDI := EDI−1

end if

Flags affected: As per cmp instruction

Like with the cmps instruction, the repe/repz or repne/repnz prefix can be used.

.DATA

string1 db ’abcdefgh’,0

strLen EQU $ - string1

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov ECX,strLen

mov EDI,string1

312 Chapter 10 String Processing

mov AL,’e’ ; character to be searched

cld ; forward direction

repne scasb

dec EDI

This program leaves EDI pointing to e in string1. The following example can be used

to skip the initial blanks.

.DATA

string1 db ’ abc’,0

strLen EQU $ - string1

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov ECX,strLen

mov EDI,string1

mov AL,’ ’ ; character to be searched

cld ; forward direction

repe scasb

dec EDI

This program leaves EDI pointing to the first nonblank character in string1, which is a in

our example.

10.3 Illustrative Examples
We now give some examples to illustrate the use of the string instructions discussed in this

chapter. All these procedures are available in the string.asm file. These procedures re-

ceive the parameters via the stack. The pointer to a string is received in segment:offset
form (i.e., two words from the stack). A string pointer is loaded into either DS and ESI or ES

and EDI using the lds or les instructions, the details of which are discussed next.

LDS and LES Instructions

The syntax of these instructions is

lds register,source

les register,source

where register is a 32-bit general-purpose register, and source is a pointer to a 48-bit

memory operand. The instructions perform the following actions:

Section 10.3 Illustrative Examples 313

lds
register := (source)

DS := (source + 4)

les
register := (source)

ES := (source + 4)

The 32-bit value at source in memory is copied to register and the next 16-bit value

(i.e., at source+4) is copied to the DS or ES register. Both instructions affect none of the

flags. By specifying ESI as the register operand, lds can be conveniently used to set up a

source string. Similarly, a destination string can be set up by specifying EDI with les. For

completeness, you should note that lfs, lgs, and lss instructions are available to load the

other segment registers.

Examples

We will next present seven simple string processing procedures. Most of these are available in

high-level languages such as C. All procedures use the carry flag (CF) to report input error—

not a string. This error results if the input passed is not a string whose length is less than the

STR_MAX constant defined in string.asm. The carry flag is set (i.e., CF = 1) if there is an

input error; otherwise, the carry flag is cleared.

The following constants are defined in string.asm:

STR_MAX EQU 128

%define STRING1 [EBP+8]

%define STRING2 [EBP+16]

Example 10.1 String length procedure to return the length of string1.

String length is the number of characters in a string, excluding the NULL character. We will

use the scasb instruction and search for the NULL character. Since scasb works on the

destination string, les is used to load the string pointer to the ES and EDI registers from

the stack. STR_MAX, the maximum length of a string, is moved into ECX, and the NULL

character (i.e., 0) is moved into the AL register. The direction flag is cleared to initiate a

forward search. The string length is obtained by taking the difference between the end of the

string (pointed to by EDI) and the start of the string available at [EBP+8]. The EAX register

is used to return the string length value. This procedure is similar to the C function strlen.

;---

;String length procedure. Receives a string pointer

;(seg:offset) via the stack. If not a string, CF is set;

;otherwise, string length is returned in EAX with CF = 0.

;Preserves all registers.

;---

str_len:

314 Chapter 10 String Processing

enter 0,0

push ECX

push EDI

push ES

les EDI,STRING1 ; copy string pointer to ES:EDI

mov ECX,STR_MAX ; need to terminate loop if EDI

; is not pointing to a string

cld ; forward search

mov AL,0 ; NULL character

repne scasb

jcxz sl_no_string ; if ECX = 0, not a string

dec EDI ; back up to point to NULL

mov EAX,EDI

sub EAX,[EBP+8] ; string length in EAX

clc ; no error

jmp SHORT sl_done

sl_no_string:

stc ; carry set => no string

sl_done:

pop ES

pop EDI

pop ECX

leave

ret 8 ; clear stack and return

Example 10.2 String copy procedure to copy string2 to string1.

To copy a string, the movsb instruction is used. We use string2 as the source string

and string1 as the destination string. The str_len procedure is used to find the length

of the source string string2, which is used to set up repeat count in ECX. This value is

incremented by 1 to include the NULL character to properly terminate the destination string.

C provides a similar function, which can be called as strcpy(string1,string2). The

direction of copy is from string2 to string1, as in our assembly language procedure.

;---

;String copy procedure. Receives two string pointers

;(seg:offset) via the stack - string1 and string2.

;If string2 is not a string, CF is set;

;otherwise, string2 is copied to string1 and the

;offeset of string1 is returned in EAX with CF = 0.

;Preserves all registers.

;---

str_cpy:

enter 0,0

push ECX

Section 10.3 Illustrative Examples 315

push EDI

push ESI

push DS

push ES

; find string length first

lds ESI,STRING2 ; src string pointer

push DS

push ESI

call str_len

jc sc_no_string

mov ECX,EAX ; src string length in ECX

inc ECX ; add 1 to include NULL

les EDI,STRING1 ; dest string pointer

cld ; forward search

rep movsb

mov EAX,[EBP+8] ; return dest string pointer

clc ; no error

jmp SHORT sc_done

sc_no_string:

stc ; carry set => no string

sc_done:

pop ES

pop DS

pop ESI

pop EDI

pop ECX

leave

ret 16 ; clear stack and return

Example 10.3 String concatenate procedure to concatenate string2 to string1.

This procedure is similar to the str_cpy procedure except that copying of string2 starts

from the end of string1. To do this, we first move EDI to point to the NULL charac-

ter of string1. This procedure is analogous to the C procedure strcat, which can be

called as strcat(string1,string2). It concatenates string2 to string1, as in

our assembly language procedure.

;---

;String concatenate procedure. Receives two string pointers

;(seg:offset) via the stack - string1 and string2.

;If string1 and/or string2 are not strings, CF is set;

;otherwise, string2 is concatenated to the end of string1

;and the offset of string1 is returned in EAX with CF = 0.

;Preserves all registers.

;---

316 Chapter 10 String Processing

str_cat:

enter 0,0

push ECX

push EDI

push ESI

push DS

push ES

; find string length first

les EDI,STRING1 ; dest string pointer

mov ECX,STR_MAX ; max string length

cld ; forward search

mov AL,0 ; NULL character

repne scasb

jcxz st_no_string

dec EDI ; back up to point to NULL

lds ESI,STRING2 ; src string pointer

push DS

push ESI

call str_len

jc st_no_string

mov ECX,EAX ; src string length in ECX

inc ECX ; add 1 to include NULL

cld ; forward search

rep movsb

mov EAX,[EBP+8] ; return dest string pointer

clc ; no error

jmp SHORT st_done

st_no_string:

stc ; carry set => no string

st_done:

pop ES

pop DS

pop ESI

pop EDI

pop ECX

leave

ret 16 ; clear stack and return

Example 10.4 String compare procedure to compare two strings.

This function uses the cmpsb instruction to compare two strings. It returns in EAX a neg-

ative value if string1 is lexicographically less than string2, 0 if string1 is equal to

string2, and a positive value if string1 is lexicographically greater than string2.

To implement this procedure, we have to find the first occurrence of a character mismatch

between the corresponding characters in the two strings (when scanning strings from left to

Section 10.3 Illustrative Examples 317

right). The relationship between the strings is the same as that between the two differing

characters. When we include the NULL character in this comparison, this algorithm works

correctly even when the two strings are of different length.

The str_cmp instruction finds the length of string2 using the str_len procedure.

It does not really matter whether we find the length of string2 or string1. We use this

value (plus one to include NULL) to control the number of times the cmpsb instruction is

repeated. Conditional jump instructions are used to test the relationship between the differing

characters to return an appropriate value in the EAX register. The corresponding function in

C is strcmp, which can be invoked by strcmp(sting1,string2). This function also

returns the same values (negative, 0, or positive value) depending on the comparison.

;---

;String compare procedure. Receives two string pointers

;(seg:offset) via the stack - string1 and string2.

;If string2 is not a string, CF is set;

;otherwise, string1 and string2 are compared and returns a

;a value in EAX with CF = 0 as shown below:

; EAX = negative value if string1 < string2

; EAX = zero if string1 = string2

; EAX = positive value if string1 > string2

;Preserves all registers.

;---

str_cmp:

enter 0,0

push ECX

push EDI

push ESI

push DS

push ES

; find string length first

les EDI,STRING2 ; string2 pointer

push ES

push EDI

call str_len

jc sm_no_string

mov ECX,EAX ; string1 length in ECX

inc ECX ; add 1 to include NULL

lds ESI,STRING1 ; string1 pointer

cld ; forward search

repe cmpsb

je same

ja above

below:

318 Chapter 10 String Processing

mov EAX,-1 ; EAX = -1 => string1 < string2

clc

jmp SHORT sm_done

same:

xor EAX,EAX ; EAX = 0 => string match

clc

jmp SHORT sm_done

above:

mov EAX,1 ; EAX = 1 => string1 > string2

clc

jmp SHORT sm_done

sm_no_string:

stc ; carry set => no string

sm_done:

pop ES

pop DS

pop ESI

pop EDI

pop ECX

leave

ret 16 ; clear and return

Example 10.5 Character locate procedure to locate chr in string1.

This is another function that uses scasb and is very similar in nature to the str_len pro-

cedure. The only difference is that, instead of looking for the NULL character, we will search

for the given character chr. It returns a pointer to the position of the first match of chr in

string1; if no match is found, a NULL (i.e., 0 value) is returned in EAX. Note that chr is

passed as a 16-bit value, even though only the lower byte is used in searching. In C, the cor-

responding function is strchr, which can be called as strchr(string1,int_char).

As in our program, the character to be located is passed as an int, which will be converted

to a char. Our return values are compatible to the values returned by the C function.

;---

;String locate a character procedure. Receives a character

;and a string pointer (seg:offset) via the stack.

;char should be passed as a 16-bit word.

;If string1 is not a string, CF is set;

;otherwise, locates the first occurrence of char in string1

;and returns a pointer to the located char in EAX (if the

;search is successful; otherwise EAX = NULL) with CF = 0.

;Preserves all registers.

;---

str_chr:

enter 0,0

Section 10.3 Illustrative Examples 319

push ECX

push EDI

push ES

; find string length first

les EDI,STRING1 ; src string pointer

push ES

push EDI

call str_len

jc sh_no_string

mov ECX,EAX ; src string length in ECX

inc ECX

mov AX,[EBP+16] ; read char. into AL

cld ; forward search

repne scasb

dec EDI ; back up to match char.

xor EAX,EAX ; assume no char. match (EAX=NULL)

jcxz sh_skip

mov EAX,EDI ; return pointer to char.

sh_skip:

clc ; no error

jmp SHORT sh_done

sh_no_string:

stc ; carry set => no string

sh_done:

pop ES

pop EDI

pop ECX

leave

ret 10 ; clear stack and return

Example 10.6 String convert procedure to convert string2 to string1 in which all low-

ercase letters are converted to the corresponding uppercase letters.

The main purpose of this example is to illustrate the use of lodsb and stosb instructions.

We move the string length (plus one to include NULL) of string2 into ECX, which will be

used as the count register for the loop instruction. The loop body consists of

loop1: lodsb
if (lowercase letter)

then convert to uppercase

stosb
loop loop1

The string convert procedure is shown below:

320 Chapter 10 String Processing

;---

;String convert procedure. Receives two string pointers

;(seg:offset) via the stack - string1 and string2.

;If string2 is not a string, CF is set;

;otherwise, string2 is copied to string1 and lowercase

;letters are converted to corresponding uppercase letters.

;string2 is not modified in any way.

;It returns a pointer to string1 in EAX with CF = 0.

;Preserves all registers.

;---

str_cnv:

enter 0,0

push ECX

push EDI

push ESI

push DS

push ES

; find string length first

lds ESI,STRING2 ; src string pointer

push DS

push ESI

call str_len

jc sn_no_string

mov ECX,EAX ; src string length in ECX

inc ECX ; add 1 to include NULL

les EDI,STRING1 ; dest string pointer

cld ; forward search

loop1:

lodsb

cmp AL,’a’ ; lowercase letter?

jb sn_skip

cmp AL,’z’

ja sn_skip ; if no, skip conversion

sub AL,20H ; if yes, convert to uppercase

sn_skip:

stosb

loop loop1

rep movsb

mov EAX,[EBP+8] ; return dest string pointer

clc ; no error

jmp SHORT sn_done

sn_no_string:

stc ; carry set => no string

Section 10.4 Testing String Procedures 321

sn_done:

pop ES

pop DS

pop ESI

pop EDI

pop ECX

leave

ret 16 ; clear stack and return

10.4 Testing String Procedures
Now let us turn our attention to testing the string procedures developed in the last section. A

partial listing of this program is given in Program 10.1. The full program can be found in the

str_test.asm file.

Our main interest in this section is to show how using an indirect procedure call would

substantially simplify calling the appropriate procedure according to the user request. Let us

first look at the indirect call instruction for 32-bit segments.

Indirect Procedure Call

In our discussions so far, we have been using only the direct near procedure calls, where the

offset of the target procedure is provided directly. Recall that, even though we write only the

procedure name, the assembler will generate the appropriate offset value at assembly time.

In indirect near procedure calls, this offset is given with one level of indirection. That

is, the call instruction contains either a memory word address (through a label) or a 32-bit

general-purpose register. The actual offset of the target procedure is obtained from the mem-

ory word or the register referenced in the call instruction. For example, we could use

call EBX

if EBX contains the offset of the target procedure. As part of executing this call instruction,

the contents of the EBX register are used to load EIP to transfer control to the target procedure.

Similarly, we can use

call [target_proc_ptr]

if the memory at target_proc_ptr contains the offset of the target procedure. As we

have seen in Chapter 8, the jmp is another instruction that can be used for indirect jumps in

exactly the same way as the indirect call.

Back to the Example

We maintain a procedure pointer table proc_ptr_table to facilitate calling the appropri-

ate procedure. The user query response is used as an index into this table to get the target

procedure offset. The EBX register is used as the index into this table. The instruction

322 Chapter 10 String Processing

call [proc_ptr_table+EBX]

causes the indirect procedure call. The rest of the program is straightforward to follow.

Program 10.1 Part of string test program str test.asm

. . .

.DATA

proc_ptr_table dd str_len_fun,str_cpy_fun,str_cat_fun

dd str_cmp_fun,str_chr_fun,str_cnv_fun

MAX_FUNCTIONS EQU ($ - proc_ptr_table)/4

choice_prompt db ’You can test several functions.’,CR,LF

db ’ To test enter’,CR,LF

db ’String length 1’,CR,LF

db ’String copy 2’,CR,LF

db ’String concatenate 3’,CR,LF

db ’String compare 4’,CR,LF

db ’Locate character 5’,CR,LF

db ’Convert string 6’,CR,LF

db ’Invalid response terminates program.’,CR,LF

db ’Please enter your choice: ’,0

. . .

.UDATA

string1 resb STR_MAX

string2 resb STR_MAX

.CODE

. . .

.STARTUP

mov AX,DS

mov ES,AX

query_choice:

xor EBX,EBX

PutStr choice_prompt ; display menu

GetCh BL ; read response

sub BL,’1’

cmp BL,0

jb invalid_response

cmp BL,MAX_FUNCTIONS

jb response_ok

invalid_response:

PutStr invalid_choice

nwln

jmp SHORT done

Section 10.5 Performance: Advantage of String Instructions 323

response_ok:

shl EBX,2 ; multiply EBX by 4

call [proc_ptr_table+EBX]; indirect call

jmp query_choice

done:

.EXIT

. . .

10.5 Performance: Advantage of String Instructions
A question that naturally arises is: How beneficial are these string instructions? We an-

swer this question by looking at the movs instruction in performing memory-to-memory data

transfer.

We should note here that even though these instructions are called string instructions,

these are not restricted to strings alone. This group of instructions can work on any data—not

just on bytes. To reinforce this notion and to study the performance advantages of the string

instructions, we use the movsd instruction, which copies 32-bit data from one memory buffer

to another.

There are two chief advantages in using the string instructions:

1. The index registers are automatically updated (either incremented or decremented de-

pending on the direction flag);

2. They are capable of operating on two operands that are located in the memory. Recall

that nonstring instructions do not allow memory-to-memory data transfer.

For example, copying of data from array1 to array2 can be done by

cld

rep movsd

provided DS:ESI and ES:EDI point to the source and destination arrays and ECX keeps the

size of the arrays. Such memory-to-memory transfer is not possible with the mov instruction,

which requires an intermediate register to achieve the same, as indicated below:

repeat:

mov EAX,[DS:ESI]

mov [ES:EDI],EAX

add ESI,4

add EDI,4

dec ECX

jnz repeat

324 Chapter 10 String Processing

0

1

2

3

4

10 20 30 40 50 60

Number of calls (in thousands)

T
im

e
(s

ec
o

n
d

s)

Using string

instructions

No string

instructions

Figure 10.1 Performance advantage of string instructions for memory-to-memory data transfer.

Figure 10.1 shows the performance of these two versions on a 2.4-GHZ Pentium 4 system.

The x-axis gives the number of times each procedure is called, and the y-axis gives the cor-

responding execution time in seconds. For this experiment, we fixed the array size as 50,000

elements. The version that uses the string instruction performs more than twice as fast as the

nonstring version! The point to take away from this discussion is that the string instructions

provide not only a simple and elegant solution but also a very efficient one.

10.6 Summary
We started this chapter with a brief discussion of various string representation schemes.

Strings can be represented as either fixed-length or variable-length. Each representation has

advantages and disadvantages. Variable-length strings can be stored either by explicitly stor-

ing the string length or by using a sentinel character to terminate the string. High-level pro-

gramming languages like C use NULL-terminated storage representation for strings. We have

also used the same representation to store strings.

There are five basic string instructions—movs, lods, stos, cmps, and scas. Each

of these instructions can work on byte, word, or doubleword operands. These instructions do

not require the specification of any operands. Instead, the required operands are assumed to

be at DS:ESI and/or ES:EDI for 32-bit segments. For 16-bit segments, SI and DI registers

are used instead of ESI and EDI registers, respectively. In addition, the direction flag is used

to control the direction of string processing (forward or backward). Efficient code can be

generated by combining string instructions with repeat prefixes. Three repeat prefixes—rep,

repe/repz, and repne/repnz—are provided.

Section 10.7 Exercises 325

We also demonstrated, by means of an example, how indirect procedure calls can be used.

Indirect procedure calls give us a powerful mechanism by which, for example, we can pass a

procedure to be executed as a parameter using the standard parameter passing mechanisms.

The results presented in the last section indicate that using the string instructions results in

significant performance advantages for memory-to-memory data transfers. We conclude from

this discussion that string instructions are useful for memory-to-memory data copy operations.

10.7 Exercises
10–1 What are the advantages and disadvantages of the fixed-length string representation?

10–2 What are the advantages and disadvantages of the variable-length string representation?

10–3 Discuss the pros and cons of storing the string length explicitly versus using a sentinel

character for storing variable-length strings.

10–4 We can write procedures to perform string operations without using the string instruc-

tions. What is the advantage of using the string instructions? Explain why?

10–5 Why doesn’t it make sense to use the rep prefix with the lods instruction?

10–6 Explain why it does not make sense to use conditional repeat prefixes with the lods,

stos, or movs string instructions.

10–7 Both loop and repeat prefixes use the ECX register to indicate the repetition count.

Yet there is one significant difference between them in how they use the ECX register

value. What is this difference?

10–8 Identify a situation in which the direction of string processing is important.

10–9 Identify a situation in which a particular direction of string processing is mandatory.

10–10 Suppose that the lds instruction is not supported by Pentium. Write a piece of code

that implements the semantics of the lds instruction. Make sure that your code does

not disturb any other registers.

10–11 What is the difference between the direct procedure call and the indirect procedure call?

10–12 Explain how you can use the indirect procedure call to pass a procedure to be executed

as a parameter.

10–13 Figure 10.1 shows that the string version performs better. Explain intuitively why this

is so.

10–14 Discuss the advantages and disadvantages of the following two ways of declaring a

message. The first version

msg1 db ’Test message’
msg1Len dw $-msg1

uses the $ to compute the length, while the second version

msg1 db ’Test message’
msg1Len dw 12

uses a constant.

326 Chapter 10 String Processing

10.8 Programming Exercises
10–P1 Write a procedure str_ncpy to mimic the strncpy function provided by the C li-

brary. The function str_ncpy receives two strings, string1 and string2, and a

positive integer num via the stack. Of course, the procedure receives only the string

pointers, not the actual strings. It should copy at most the first num characters of

string2 to string1.

10–P2 Write a procedure str_ncmp to mimic the C function strncmp. The parameters

passed to this function are the same as those of str_ncpy. It should compare at most

the first num characters of the two strings and return a positive, negative, or 0 value like

the str_cmp procedure does.

10–P3 A palindrome is a word, verse, sentence, or number that reads the same backward or

forward. Blanks, punctuation marks, and capitalization do not count in determining

palindromes. Here are some examples:

1991

Able was I ere I saw Elba

Madam! I’m Adam

Write a procedure to determine if a given string is a palindrome. The string is passed

via the stack (i.e., the string pointer is passed to the procedure). The procedure returns

1 in EAX if the string is a palindrome; otherwise, it returns 0. The carry flag is used to

indicate the Not a string error message, as we did in our examples in this chapter.

10–P4 Write a procedure that receives a string via the stack (i.e., the string pointer is passed to

the procedure) and removes all leading blank characters in the string. For example, if

the input string passed is (⊔ indicates a blank character)

⊔ ⊔ ⊔ ⊔ ⊔Read⊔⊔my⊔lips.

it will be modified by removing all leading blanks as

Read⊔⊔my⊔lips.

10–P5 Write a procedure that receives a string via the stack (i.e., the string pointer is passed to

the procedure) and removes all leading and duplicate blank characters in the string. For

example, if the input string passed is (⊔ indicates a blank character)

⊔ ⊔ ⊔ ⊔ ⊔Read⊔ ⊔ ⊔my⊔ ⊔ ⊔ ⊔ ⊔lips.

it will be modified by removing all leading and duplicate blanks as

Read⊔my⊔lips.

10–P6 Write a procedure str_str that receives two pointers to strings string and sub-
string via the stack and searches for substring in string. If a match is found,

it returns in EAX the starting position of the first match. Matching should be case-

sensitive. A negative value is returned in EAX if no match is found. For example,

if

Section 10.8 Programming Exercises 327

string = Good things come in small packages.

and

substring = in

the procedure should return 8 in EAX, indicating a match of in in things.

10–P7 Write a procedure to read a string representing a person’s name from the user in the

format

first-name⊔MI⊔last-name

and displays the name in the format

last-name,⊔first-name⊔MI

where ⊔ indicates a blank character. As indicated, you can assume that the three

names—first name, middle initial, and last name—are separated by single spaces.

10–P8 Modify the last exercise to work on an input that can contain multiple spaces between

the names. Also, display the name as in the last exercise but with the last name in

capital letters.

10–P9 Write a procedure to match two strings that are received via the stack. The match should

be case-insensitive, i.e., uppercase and lowercase letters are considered a match. For

example, Veda Anita and VeDa ANIta are considered matching strings.

10–P10 Write a procedure to reverse the words in a string. It receives the string via the stack

and modifies the string by reversing the words. Here is an example:

input string: Politics in Science
modified string: Science in Politics

10–P11 Write a main program using indirect procedure calls to test the procedures written in

the previous exercises. You can simplify your job by modifying the str_test.asm
program appropriately.

Chapter 11

ASCII and BCD

Arithmetic

Objectives
• To introduce ASCII and BCD number representations

• To explain arithmetic operations in ASCII and BCD representations

• To describe the instructions that support arithmetic in ASCII and BCD representations

• To discuss the tradeoffs among the binary, ASCII, and BCD representations

In the previous chapters, we used binary representation and discussed several instructions that

operate on binary data. When we enter numbers from the keyboard, they are entered as an

ASCII string of digit characters. Therefore, a procedure like GetInt is needed to convert the

input ASCII string into the equivalent binary number. Similarly, output should be converted

from binary to ASCII. This conversion overhead cannot be ignored for some applications.

In this chapter, we present two alternative representations—ASCII and BCD—that avoid

or reduce the conversion overhead. Section 11.1 provides a brief introduction to these two

representations. The next two sections discuss how arithmetic operations can be done in these

two representations.

While the ASCII and BCD representations avoid/reduce the conversion overhead, pro-

cessing numbers in these two representations is slower than in the binary representation. This

inherent tradeoff between conversion overhead and processing overhead among the three rep-

resentations is explored in Section 11.4. The chapter ends with a summary.

329

330 Chapter 11 ASCII and BCD Arithmetic

11.1 ASCII and BCD Representations of Numbers
In previous chapters, the numeric data has been represented in the binary system. We dis-

cussed several arithmetic instructions that operate on such data. The binary representation is

used internally for manipulation (e.g., arithmetic and logical operations).

When numbers are entered from the keyboard or displayed, they are in the ASCII form.

Thus, it is necessary to convert numbers from ASCII to binary at the input end; we have to

convert from binary to ASCII to output results as shown below:

ASCII to

binary

conversion

Binary to

ASCII

conversion

Process

in binary

Input data

(in ASCII)

Output data

(in ASCII)

We used GetInt/GetLint and PutInt/PutLint to perform these two conversions,

respectively. These conversions represent an overhead, but we can process numbers much

more efficiently in the binary form.

In some applications where processing of numbers is quite simple (for example, a single

addition), the overhead associated with the two conversions might not be justified. In this

case, it is probably more efficient to process numbers in the decimal form.

Another reason for processing numbers in decimal form is that we can use as many digits

as necessary, and we can control rounding-off errors. This is important when representing

dollars and cents for financial records.

Decimal numbers can be represented in one of two forms: ASCII or binary-coded-decimal

(BCD). These two representations are discussed next.

11.1.1 ASCII Representation

In this representation, numbers are stored as strings of ASCII characters. For example, 1234

is represented as

31 32 33 34H

where 31H is the ASCII code for 1, 32H for 2, etc. As you can see, arithmetic on decimal

numbers represented in ASCII form requires special care. There are two instructions to handle

these numbers:

aaa — ASCII adjust after addition

aas — ASCII adjust after subtraction

We discuss these two instructions in Section 11.2.

11.1.2 BCD Representation

There are two types of BCD representation: unpacked BCD and packed BCD. In unpacked

BCD representation, each digit is stored in a byte, while two digits are packed into a byte in

the packed representation.

Section 11.2 Processing in ASCII Representation 331

Unpacked BCD

This representation is similar to the ASCII representation except that each byte stores the bi-

nary equivalent of a decimal digit. Note that the ASCII codes for digits 0 through 9 are 30H

through 39H. Thus, if we mask off the upper four bits, we get the unpacked BCD representa-

tion. For example, 1234 is stored in this representation as

01 02 03 04H

We deal with only positive numbers in this chapter. Thus, there is no need to represent the

sign. But if a sign representation is needed, an additional byte can be used for the sign. The

number is positive if this byte is 00H and negative if 80H.

There are two instructions to handle these numbers:

aam — ASCII adjust after multiplication

aad — ASCII adjust before division

Since this representation is similar to the ASCII representation, the four instructions—aaa,

aas, aam, and aad—can be used with ASCII as well as unpacked BCD representations.

Packed BCD

In the last two representations, each digit of a decimal number is stored in a byte. The upper

four bits of each byte contain redundant information. In packed BCD representation, each

digit is stored using only four bits. Thus, two decimal digits can be packed into a byte. This

reduces the memory requirement by half compared to the other two representations. For

example, the decimal number 1234 is stored in packed BCD as

12 34H

which requires only two bytes as opposed to four in the other two representations. There are

only two instructions that support addition and subtraction of packed BCD numbers:

daa — decimal adjust after addition

das — decimal adjust after subtraction

There is no support for multiplication or division operations. These two instructions are

discussed in Section 11.3.

11.2 Processing in ASCII Representation
As mentioned before, four instructions are available to process numbers in the ASCII repre-

sentation:

332 Chapter 11 ASCII and BCD Arithmetic

aaa — ASCII adjust after addition

aas — ASCII adjust after subtraction

aam — ASCII adjust after multiplication

aad — ASCII adjust before division

These instructions do not take any operands. They assume that the required operand is in the

AL register.

11.2.1 ASCII Addition

To understand the need for the aaa instruction, look at the next two examples.

Example 11.1 An ASCII addition example.

Consider adding two ASCII numbers 4 (34H) and 5 (35H).

34H = 00110100B
35H = 00110101B

69H = 01101001B

The sum 69H is not correct. The correct value should be 09H in unpacked BCD representa-

tion. In this example, we get the right answer by setting the upper four bits to 0. This scheme,

however, does not work in cases where the result digit is greater than 9, as shown in the next

example. �

Example 11.2 Another ASCII addition example.

In this example, consider the addition of two ASCII numbers, 6 (36H) and 7 (37H).

36H = 00110110B
37H = 00110111B

6DH = 01101101B

Again, the sum 6DH is incorrect. We would expect the sum to be 13 (01 03H). In this case,

ignore 6 as in the last example. But we have to add 6 to D to get 13. We add 6 because that is

the difference between the bases of hex and decimal numbers. �

The aaa instruction performs these adjustments. This instruction is used after performing

an addition operation by using either an add or adc instruction. The resulting sum in AL is

adjusted to unpacked BCD representation. The aaa instruction works as follows.

1. If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it

adds 6 to AL and 1 to AH. Both CF and AF are set.

2. In all cases, the most significant four bits of AL are cleared (i.e., zeroed).

Here is an example that illustrates the use of the aaa instruction.

Section 11.2 Processing in ASCII Representation 333

Example 11.3 A typical use of the aaa instruction.
sub AH,AH ; clear AH

mov AL,’6’ ; AL = 36H

add AL,’7’ ; AL = 36H+37H = 6DH

aaa ; AX = 0103H

or AL,30H ; AL = 33H

To convert the result in AL to an ASCII result, we have to insert 3 into the upper four bits of

AL. �

To add multidigit decimal numbers, we have to use a loop that adds one digit at a time

starting from the rightmost digit. Program 11.1 shows how the addition of two 10-digit deci-

mal numbers is done in ASCII representation.

11.2.2 ASCII Subtraction

The aas instruction is used to adjust the result of a subtraction operation (sub or sbb) and

works like aaa. The actions taken by aas are

1. If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it

subtracts 6 from AL and 1 from AH. Both CF and AF are set.

2. In all cases, the most significant four bits of AL are cleared (i.e., zeroed).

It is straightforward to see that the adjustment is needed only when the result is negative, as

shown in the following examples.

Example 11.4 ASCII subtraction (positive result).

sub AH,AH ; clear AH

mov AL,’9’ ; AL = 39H

sub AL,’3’ ; AL = 39H-33H = 6H

aas ; AX = 0006H

or AL,30H ; AL = 36H

Notice that aas does not change the contents of the AL register, as the result is a positive

number. �

Example 11.5 ASCII subtraction (negative result).

sub AH,AH ; clear AH

mov AL,’3’ ; AL = 33H

sub AL,’9’ ; AL = 33H-39H = FAH

aas ; AX = FF04H

or AL,30H ; AL = 34H

The AL result indicates the magnitude; the aas instruction sets the carry flag to indicate that

a borrow has been generated. �

334 Chapter 11 ASCII and BCD Arithmetic

Is the last result FF04H generated by aas useful? It is when you consider multidigit

subtraction. For example, if we are subtracting 29 from 53 (i.e., 53−29), the first loop iteration

performs 3−9 as in the last example. This gives us the result 4 in AL and the carry flag is set.

Next we perform 5−2 using sbb to include the borrow generated by the previous subtraction.

This leaves 2 as the result. After ORing with 30H, we will have 32 34H, which is the correct

answer (24).

11.2.3 ASCII Multiplication

The aam instruction is used to adjust the result of a mul instruction. Unlike addition and

subtraction, multiplication should not be performed on ASCII numbers but on unpacked BCD

numbers. The aam works as follows: AL is divided by 10 and the quotient is stored in AH

and the remainder in AL.

Example 11.6 ASCII multiplication.

mov AL,3 ; multiplier in unpacked BCD form

mov BL,9 ; multiplicand in unpacked BCD form

mul BL ; result 001BH is in AX

aam ; AX = 0207H

or AX,3030H ; AX = 3237H

Notice that the multiplication should be done using unpacked BCD numbers—not on ASCII

numbers! If the digits in AL and BL are in ASCII as in the following code, we have to mask

off the upper four bits.

mov AL,’3’ ; multiplier in ASCII

mov BL,’9’ ; multiplicand in ASCII

and AL,0FH ; multiplier in unpacked BCD form

and BL,0FH ; multiplicand in unpacked BCD form

mul BL ; result 001BH is in AX

aam ; AX = 0207H

or AL,30H ; AL = 37H

The aam works only with the mul instruction but not with the imul instruction. �

11.2.4 ASCII Division

The aad instruction adjusts the numerator in AX before dividing two unpacked decimal num-

bers. The denominator has to be a single byte unpacked decimal number. The aad instruction

multiplies AH by 10 and adds it to AL and sets AH to zero. For example, if AX = 0207H be-

fore aad, AX changes to 001BH after executing aad. As you can see from the last example,

aad reverses the operation of aam.

Section 11.2 Processing in ASCII Representation 335

Example 11.7 ASCII division.

Consider dividing 27 by 5.

mov AX,0207H ; dividend in unpacked BCD form

mov BL,05H ; divisor in unpacked BCD form

aad ; AX = 001BH

div BL ; AX = 0205H

The aad instruction converts the unpacked BCD number in AX to binary form so that div
can be used. The div instruction leaves the quotient in AL (05H) and the remainder in AH

(02H). �

11.2.5 Example: Multidigit ASCII Addition

Addition of multidigit numbers in ASCII representation is done one digit at a time starting

with the rightmost digit. To illustrate the process involved, we discuss how addition of two

10-digit numbers is done (see the program listing below).

Program 11.1 ASCII addition of two 10-digit numbers

1: ;Addition of two integers in ASCII form ASCIIADD.ASM

2: ;

3: ; Objective: To demonstrate addition of two integers

4: ; in the ASCII representation.

5: ; Input: None.

6: ; Output: Displays the sum.

7: %include "io.mac"

8:

9: .DATA

10: sum_msg db ’The sum is: ’,0

11: number1 db ’1234567890’

12: number2 db ’1098765432’

13: sum db ’ ’,0 ; add NULL char. to use PutStr

14:

15: .CODE

16: .STARTUP

17: ; ESI is used as index into number1, number2, and sum

18: mov ESI,9 ; ESI points to rightmost digit

19: mov ECX,10 ; iteration count (# of digits)

20: clc ; clear carry (we use ADC not ADD)

21: add_loop:

22: mov AL,[number1+ESI]

23: adc AL,[number2+ESI]

24: aaa ; ASCII adjust

25: pushf ; save flags because OR

336 Chapter 11 ASCII and BCD Arithmetic

26: or AL,30H ; changes CF that we need

27: popf ; in the next iteration

28: mov [sum+ESI],AL ; store the sum byte

29: dec ESI ; update ESI

30: loop add_loop

31: PutStr sum_msg ; display sum

32: PutStr sum

33: nwln

34: .EXIT

The program adds two numbers number1 and number2 and displays the sum. We use

ESI as an index into the input numbers, which are in the ASCII representation. The ESI

register is initialized to point to the rightmost digit (line 18). The loop count 10 is set up in

ECX (line 19). The addition loop (lines 21–30) adds one digit by taking any carry generated

by the previous iteration into account. This is done by using the adc rather than the add
instruction. Since the adc instruction is used, we have to make sure that the carry is clear

initially. This is done on line 20 using the clc (clear carry) instruction.

Note that the aaa instruction produces the result in unpacked BCD form. To convert to

the ASCII form, we have to or the result with 30H (line 26). This ORing, however, destroys

the carry generated by the adc instruction that we need in the next iteration. Therefore, it is

necessary to save (line 25) and restore (line 27) the flags.

The overhead in performing the addition is obvious. If the input numbers were in binary,

only a single add instruction would have performed the required addition. This conversion-

overhead versus processing-overhead tradeoff is discussed in Section 11.4.

11.3 Processing Packed BCD Numbers
In this representation, as indicated earlier, two decimal numbers are packed into a byte. There

are two instructions to process packed BCD numbers:

daa — Decimal adjust after addition

das — Decimal adjust after subtraction

There is no support for multiplication or division. For these operations, we will have to unpack

the numbers, perform the operation, and repack them.

11.3.1 Packed BCD Addition

The daa instruction can be used to adjust the result of an addition operation to conform to

the packed BCD representation. To understand the sort of adjustments required, let us look at

some examples next.

Section 11.3 Processing Packed BCD Numbers 337

Example 11.8 A packed BCD addition example.

Consider adding two packed BCD numbers 29 and 69.

29H = 00101001B
69H = 01101001B

92H = 10010010B

The sum 92 is not the correct value. The result should be 98. We get the correct answer

by adding 6 to 92. We add 6 because the carry generated from bit 3 (i.e., auxiliary carry)

represents an overflow above 16, not 10, as is required in BCD. �

Example 11.9 Another packed BCD addition example.

Consider adding two packed BCD numbers 27 and 34.

27H = 00100111B
34H = 00110100B

5BH = 01011011B

Again, the result is incorrect. The sum should be 61. The result 5B requires correction, as the

first digit is greater than 9. To correct the result add 6, which gives us 61. �

Example 11.10 A final packed BCD addition example.

Consider adding two packed BCD numbers 52 and 61.

52H = 01010010B
61H = 01100001B

B3H = 10110011B

This result also requires correction. The first digit is correct, but the second digit requires a

correction. The solution is the same as that used in the last example—add 6 to the second

digit (i.e., add 60H to the result). This gives us 13 as the result with a carry (effectively equal

to 113). �

The daa instruction exactly performs adjustments like these to the result of add or adc
instructions. More specifically, the following actions are taken by daa:

• If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it

adds 6 to AL and sets AF;

• If the most significant four bits of AL are greater than 9 or if the carry flag is set, it adds

60H to AL and sets CF.

Example 11.11 Code for packed BCD addition.

Consider adding two packed BCD numbers 71 and 43.

338 Chapter 11 ASCII and BCD Arithmetic

mov AL,71H

add AL,43H ; AL = B4H

daa ; AL = 14H and CF = 1

As indicated, the daa instruction restores the result in AL to the packed BCD representation.

The result including the carry (i.e., 114H) is the correct answer in packed BCD. �

As in the ASCII addition, multibyte BCD addition requires a loop. After discussing the

packed BCD subtraction, we present an example to add two 10-byte packed BCD numbers.

11.3.2 Packed BCD Subtraction

The das instruction can be used to adjust the result of a subtraction (i.e., the result of sub or

sbb). It works similar to daa and performs the following actions:

• If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it

subtracts 6 from AL and sets AF;

• If the most significant four bits of AL are greater than 9 or if the carry flag is set, it

subtracts 60H from AL and sets CF.

Here is an example illustrating the use of the das instruction.

Example 11.12 Code for packed BCD subtraction.

Consider subtracting 43 from 71 (i.e., 71 − 43).

mov AL,71H

sub AL,43H ; AL = 2EH

das ; AL = 28H

The das instruction restores the result in AL to the packed BCD representation. �

11.3.3 Example: Multibyte Packed BCD Addition

As in the ASCII representation, when adding two multibyte packed BCD numbers, we have to

use a loop that adds a pair of decimal digits in each iteration starting from the rightmost pair.

An example program that adds two 10-byte packed BCD numbers, number1 and number2,

is shown in Program 11.2.

Program 11.2 Packed BCD addition of two 10-digit numbers

1: ;Addition of integers in packed BCD form BCDADD.ASM

2: ;

3: ; Objective: To demonstrate addition of two integers

4: ; in the packed BCD representation.

5: ; Input: None.

Section 11.3 Processing Packed BCD Numbers 339

6: ; Output: Displays the sum.

7:

8: %define SUM_LENGTH 10

9:

10: %include "io.mac"

11:

12: .DATA

13: sum_msg db ’The sum is: ’,0

14: number1 db 12H,34H,56H,78H,90H

15: number2 db 10H,98H,76H,54H,32H

16: ASCIIsum db ’ ’,0 ; add NULL char.

17:

18: .UDATA

19: BCDsum resb 5

20:

21: .CODE

22: .STARTUP

23: mov ESI,4

24: mov ECX,5 ; loop iteration count

25: clc ; clear carry (we use ADC)

26: add_loop:

27: mov AL,[number1+ESI]

28: adc AL,[number2+ESI]

29: daa ; ASCII adjust

30: mov [BCDsum+ESI],AL ; store the sum byte

31: dec ESI ; update index

32: loop add_loop

33: call ASCII_convert

34: PutStr sum_msg ; display sum

35: PutStr ASCIIsum

36: nwln

37: .EXIT

38:

39: ;---

40: ; Converts the packed decimal number (5 digits) in BCDsum

41: ; to ASCII represenation and stores it in ASCIIsum.

42: ; All registers are preserved.

43: ;---

44: ASCII_convert:

45: pushad ; save registers

46: ; ESI is used as index into ASCIIsum

47: mov ESI,SUM_LENGTH-1

48: ; EDI is used as index into BCDsum

49: mov EDI,4

340 Chapter 11 ASCII and BCD Arithmetic

50: mov ECX,5 ; loop count (# of BCD digits)

51: cnv_loop:

52: mov AL,[BCDsum+EDI] ; AL = BCD digit

53: mov AH,AL ; save the BCD digit

54: ; convert right digit to ASCII & store in ASCIIsum

55: and AL,0FH

56: or AL,30H

57: mov [ASCIIsum+ESI],AL

58: dec ESI

59: mov AL,AH ; restore the BCD digit

60: ; convert left digit to ASCII & store in ASCIIsum

61: shr AL,4 ; right-shift by 4 positions

62: or AL,30H

63: mov [ASCIIsum+ESI],AL

64: dec ESI

65: dec EDI ; update EDI

66: loop cnv_loop

67: popad ; restore registers

68: ret

The two numbers to be added are initialized on lines 14 and 15. The space for the sum

(BCDsum) is reserved using resb on line 19.

The code is similar to that given in Program 11.1. However, since we add two decimal

digits during each loop iteration, only five iterations are needed to add the 10-digit numbers.

Therefore, processing numbers in packed BCD representation is faster than in ASCII repre-

sentation. In any case, both representations are considerably slower in processing numbers

than the binary representation.

At the end of the loop, the sum is stored in BCDsum as a packed BCD number. To display

this number, we have to convert it to the ASCII form (an overhead that is not present in the

ASCII version).

The procedure ASCII_convert takes BCDsum and converts it to equivalent ASCII

string and stores it in ASCIIsum. For each byte read from BCDsum, two ASCII digits are

generated. Note that the conversion from packed BCD to ASCII can be done by using only

logical and shift operations. On the other hand, conversion from binary to ASCII requires a

more expensive divide operation (thus increasing the conversion overhead).

11.4 Performance: Decimal Versus Binary Arithmetic
Now you know three representations to perform arithmetic operations: binary, ASCII, and

BCD. The majority of operations are done in binary. However, there are tradeoffs associated

with these three representations.

Section 11.5 Summary 341

Table 11.1 Tradeoffs Associated with the Three Representations

Representation Storage Conversion Processing

overhead overhead overhead

Binary Nil High Nil

Packed BCD Medium Medium Medium

ASCII High Nil High

First we will look at the storage overhead. The binary representation is compact and

the most efficient one. The ASCII and unpacked BCD representations incur high overhead as

each decimal digit is stored in a byte (see Table 11.1). The packed BCD representation, which

stores two decimal digits per byte, reduces this overhead by approximately half. For example,

using two bytes, we can represent numbers from 0 to 65,535 in binary representation and from

0 to 9999 in packed BCD representation, but only from 0 to 99 in ASCII and unpacked BCD

representations.

In applications where the input data is in ASCII form and the output is required to be in

ASCII, binary arithmetic may not always be the best choice. This is because there are over-

heads associated with the conversion between ASCII and binary representations. However,

processing numbers in binary can be done much more efficiently than in either ASCII or BCD

representations. Table 11.1 shows the tradeoffs associated with these three representations.

When the input and output use the ASCII form and there is little processing, processing

numbers in ASCII is better. This is so because ASCII version does not incur any conversion

overhead. On the other hand, due to high overhead in converting numbers between ASCII

and binary, the binary version takes more time than the ASCII version. The BCD version

also takes substantially more time than the ASCII version but performs better than the binary

version mainly because conversions between BCD and ASCII are simpler.

When there is significant processing of numbers, the binary version tends to perform better

than the ASCII and BCD versions. In this scenario, the ASCII version provides the worst

performance as its processing overhead is high (see Table 11.1). The BCD version, while

slower than the binary version, performs much better than the ASCII version.

The moral of the story is that a careful analysis of the application should be done before

deciding on the choice of representation for arithmetic in some applications. This is particu-

larly true for business applications, where the data might come in the ASCII form.

11.5 Summary
In previous chapters we converted decimal data into binary for storing internally as well as for

manipulation. This chapter introduced two alternative representations for storing the decimal

data—ASCII and BCD. The BCD representation can be either unpacked or packed.

342 Chapter 11 ASCII and BCD Arithmetic

In ASCII and unpacked BCD representations, one decimal digit is stored per byte, whereas

the packed BCD representation stores two digits per byte. Thus, the storage overhead is

substantial in ASCII and unpacked BCD. Packed BCD representation uses the storage space

more efficiently (typically requiring half as much space). Binary representation, on the other

hand, does not introduce any overhead.

There are two main overheads that affect the execution time of a program: conversion

overhead and processing overhead. When the ASCII form is used for data input and output,

the data should be converted between ASCII and binary/BCD. This conversion overhead for

binary representation can be substantial, as multiplication and division are required. There

is much less overhead for the BCD representations, as only logical and shift operations are

needed.

On the other hand, number processing in binary is much faster than in ASCII or BCD

representations. Packed BCD representation is better than ASCII representation, as each byte

stores two decimal digits. We discussed these tradeoffs in the last section.

11.6 Exercises
11–1 Briefly give the reasons for using either ASCII or BCD representations.

11–2 How is a sign represented in ASCII and BCD representations?

11–3 What is the difference between packed and unpacked BCD representations? Discuss

the tradeoffs between the two BCD representations.

11–4 How are the following numbers represented in (i) binary, (ii) ASCII, (iii) unpacked

BCD, and (iv) packed BCD?

(a) 500

(b) 32,025

(c) 2491

(d) 4385

11–5 Explain why pushf and popf instructions are needed in Program 11.1.

11–6 For each code fragment given, find the contents of AX after executing the aaa instruc-

tion.

(a) (b)

sub AH,AH sub AH,AH

mov AL,’5’ mov AL,’7’

add AL,’3’ add AL,’8’

aaa aaa

(c) (d)

sub AH,AH sub AH,AH

mov AL,’9’ mov AL,’9’

add AL,’7’ add AL,’9’

aaa aaa

Section 11.6 Exercises 343

11–7 For each code fragment given, find the contents of AX after executing the aas instruc-

tion.

(a) (b)

sub AH,AH sub AH,AH

mov AL,’9’ mov AL,’4’

sub AL,’4’ sub AL,’9’

aas aas

(c) (d)

sub AH,AH sub AH,AH

mov AL,’3’ mov AL,’4’

sub AL,’7’ sub AL,’5’

aas aas

11–8 For each code fragment given, find the contents of AX after executing the daa instruc-

tion.

(a) (b)

mov AL,21H mov AL,37H

add AL,57H add AL,45H

daa daa

(c) (d)

mov AL,21H mov AL,55H

add AL,96H add AL,66H

daa daa

11–9 For each code fragment given, find the contents of AX after executing the das instruc-

tion.

(a) (b)

mov AL,66H mov AL,64H

sub AL,45H sub AL,37H

das das

(c) (d)

mov AL,34H mov AL,45H

sub AL,51H sub AL,57H

das das

11–10 For each code fragment given, find the contents of AX after executing the aam instruc-

tion.

(a) (b)

mov AL,’3’ mov AL,’9’

mov BL,’2’ mov BL,’9’

mul BL mul BL

aam aam

(c) (d)

mov AL,’4’ mov AL,’7’

344 Chapter 11 ASCII and BCD Arithmetic

mov BL,’4’ mov BL,’3’

mul BL mul BL

aam aam

11–11 Discuss the conversion versus processing overhead tradeoffs associated with the binary,

ASCII, and BCD (both packed and unpacked) representations.

11.7 Programming Exercises
11–P1 Assuming that an ASCII digit is in the AL register, write an assembly language code

fragment to convert it to unpacked BCD representation.

11–P2 Assuming that the digit in the AL register is in unpacked BCD representation, write an

assembly language code fragment to convert it to ASCII representation.

11–P3 Suppose that two ASCII digits are in AH and AL, with the least significant digit in AL.

Write an assembly language code fragment to convert it to packed BCD representation

and store it in AL.

11–P4 Modify asciiadd.asm (Program 11.1) to read two decimal numbers from the user

instead of taking them from memory. The two numbers from the user should be read as

strings. You can use GetStr to read the input numbers.

11–P5 Modify asciiadd.asm (Program 11.1) to read two decimal numbers from the user

instead of taking them from memory (as in the last exercise). It should then subtract the

second number from the first and display the result using PutStr. The two numbers

from the user should be read as strings using GetStr.

11–P6 Modify bcdadd.asm (Program 11.2) to receive two decimal numbers from the user

instead of taking them from memory. The two numbers from the user should be read

as ASCII strings using GetStr. The input numbers should be converted to the packed

BCD representation for performing the addition as in Program 11.2. The result should

be converted back to ASCII so that it can be displayed by PutStr.

11–P7 Modify the program for the last exercise to perform subtraction.

11–P8 Write an assembly language program to perform multiplication in ASCII representa-

tion. In this exercise, assume that the multiplier is a single digit. The two numbers

to be multiplied are given as input in the ASCII form (your program reads them using

GerStr). The result should be displayed by using PutStr.

Hint: You need to use a loop that mimics the behavior of the longhand multiplication

(i.e., multiply one digit at a time).

11–P9 Write an assembly language program to perform multiplication in ASCII representa-

tion. Unlike in the last exercise, both numbers can be multidigit (up to 5 digits) num-

bers. The two numbers to be multiplied are given as input in the ASCII form (your

program reads them using GerStr). The result should be displayed by using PutStr.

Hint: You need two (nested) loops, where the inner loop is similar to that in the last

exercise.

PART III

MIPS Assembly Language

This part focuses on the MIPS assembly language. It consists of two chapters: Chapters 12

and 13. The first chapter describes the RISC design principles. It also covers the MIPS

processor details.

MIPS assembly language is presented in Chapter 13. This chapter also gives details on

the SPIM simulator. All the programming examples given in this chapter can be run on a

Pentium-based PC using the SPIM simulator. It helps if you are familiar with the material

in Appendix D before attempting to run the programs given in this chapter. This appendix

gives details on the SPIM simulator and on how you can assemble and debug MIPS assem-

bly language programs.

Chapter 12

MIPS Processor

Objectives
• To discuss the motivation for RISC processors

• To present RISC design principles

• To give details on MIPS processors

We start the chapter with an introduction to RISC processors. Section 12.2 describes the

historical reasons for designing CISC processors. In this section, we also identify the reasons

for the popularity of RISC designs. The next section discusses the principal characteristics of

RISC processors. These characteristics include simple instructions and few addressing modes.

RISC processors use a load/store architecture in which only the load and store instructions

access memory. All other instructions get their operands from registers and write their results

into registers. Section 12.4 gives details on the MIPS processor. We conclude the chapter

with a summary.

12.1 Introduction
One of the important abstractions that a programmer uses is the instruction set architecture

(ISA). The ISA defines the personality of a processor and specifies how a processor functions:

what instructions it executes, what interpretation is given to these instructions, and so on. The

ISA, in a sense, defines a logical processor.

If these specifications are precise, it gives freedom to various chip manufacturers to im-

plement physical designs that look functionally the same at the ISA level. Thus, if we run the

same program on these implementations, we get the same results. Different implementations,

however, may differ in performance and price. For example, the Intel 32-bit processors like

Celeron, Pentium 4, and Xeon are implementations of their 32-bit architecture known as the

347

348 Chapter 12 MIPS Processor

IA-32 architecture. The Celeron is the cheaper version targeted for low-end PC market. The

Xeon, on the other hand, is designed for high-performance workstations and multiprocessor

server systems.

Two popular examples of ISA specifications are the SPARC and JVM. The rationale be-

hind having a precise ISA-level specification for the SPARC is to let multiple vendors design

chips that look the same at the ISA level. The JVM, on the other hand, takes a different

approach. Its ISA-level specifications can be used to create a software layer so that the pro-

cessor looks like a Java processor. Thus, in this case, we do not use a set of hardware chips to

implement the specifications, but rather use a software layer to simulate the virtual processor.

The IA-32 architecture, discussed in the previous chapters, belongs to what is known as

the Complex Instruction Set Computer (CISC) design. The obvious reason for this classi-

fication is the “complex” nature of the instructions set architecture. We define in the next

couple of sections what we mean by complex ISA. For now, it is sufficient to know that IA-

32 provides a lot of support for higher-level languages (HLLs) at the expense of increased

instruction set complexity. Two examples of complexity are the large number of addressing

modes provided and wide range of operations—from simple to complex—supported. The

motivation for designing such a complex instruction set is to provide an instruction set that

supports closely the operations and data structures used by HLLs. However, the side effects

of this design effort are far too serious to ignore.

The decision of CISC designers to provide a variety of addressing modes leads to variable-

length instructions. For example, instruction length increases if an operand is in memory as

opposed to in a register. This is because we have to specify the memory address as part of

instruction encoding, which takes many more bits. This complicates instruction decoding and

scheduling. The side effect of providing a wide range of instruction types is that the number

of clocks required to execute instructions also varies widely. This again leads to problems in

instruction scheduling and pipelining.

For these and other reasons, in the early 1980s, designers started looking at simple ISAs.

Since these ISAs tend to produce instruction sets with far fewer instructions, they coined

the term Reduced Instruction Set Computers (RISC). Even though the main goal was not to

reduce the number of instructions, but rather the complexity, the term has stuck. SPARC,

PowerPC, MIPS, and Itanium are all examples of RISC designs.

There is no precise definition of what constitutes a RISC design. However, we can identify

certain characteristics that are present in most RISC systems. We identify these RISC design

principles after looking at why the designers took the CISC route in the first place. Since

CISC and RISC have their advantages and disadvantages, some designs take features from

both classes. For example PowerPC, which follows the RISC philosophy, has quite a few

complex instructions.

We look at the MIPS architecture in this chapter. The next chapter describes its assembly

language in detail.

Section 12.2 Evolution of CISC Processors 349

12.2 Evolution of CISC Processors
The evolution of CISC designs can be attributed to the desire of early designers to efficiently

use two of the most expensive resources—memory and processor—in a computer system. In

the early days of computing, memory was very expensive and small in capacity. Even in the

mid-1970s, the cost of 16-KB RAM was about $500. This forced the designers to devise

high-density code. That is, each instruction should do more work so that the total program

size can be reduced. Since instructions are implemented in hardware, this goal could not be

achieved until the late 1950s due to implementation complexity.

The introduction of microprogramming facilitated cost-effective implementation of com-

plex instructions by using microcode. Microprogramming has not only aided in implementing

complex instructions, it also provided some additional advantages. Since microprogrammed

control units use small, faster memories to hold the microcode, the impact of memory access

latency on performance could be reduced. Microprogramming also facilitates development of

low-cost members of a processor family by simply changing the microcode.

Another advantage of implementing complex instructions in microcode is that the instruc-

tions can be tailored to high-level language constructs such as while loops. For example,

the loop instruction of the IA-32 architecture can be used to implement for loops. Simi-

larly, memory block copying can be implemented by its string instructions. Thus, by using

these complex instructions, we are closing the “semantic gap” that exists between HLLs and

machine languages.

So far we have concentrated on the memory resource. In the early days, effective processor

utilization was also important. High code density also helps improve execution efficiency. As

an example, consider the IA-32 string instructions, which auto-increment the index registers.

Each string instruction typically requires two instructions on a RISC processor. As another

example, consider VAX-11/780, the ultimate CISC processor. It was introduced in 1978 and

supported 22 addressing modes as opposed to 11 on the Intel 486 that was introduced more

than a decade later. The VAX instruction size can range from 2 to 57 bytes, as shown in the

following table:

CISC RISC

Characteristic VAX 11/780 Intel 486 MIPS R4000

Number of instructions 303 235 94

Addressing modes 22 11 1

Instructions size (bytes) 2–57 1–12 4

Number of general-purpose registers 16 8 32

To illustrate how code density affects execution efficiency, consider the auto-increment

addressing mode of the VAX processor. In this addressing mode, a single instruction can read

data from memory, add contents of a register to it, and write back the result to the memory

and increment the memory pointer. Actions of this instruction are summarized below:

350 Chapter 12 MIPS Processor

(R2) = (R2)+ R3; R2 = R2+1

In this example, R2 register holds the memory pointer. To implement this CISC instruction,

we need four RISC instructions:

R4 = (R2) ; load memory contents

R4 = R4+R3 ; add contents of R3

(R2) = R4 ; store the result

R2 = R2+1 ; increment memory address

The CISC instruction, in general, executes faster than the four RISC instructions. That, of

course, was the reason for designing complex instructions in the first place. However, execu-

tion of a single instruction is not the only measure of performance. In fact, we should consider

the overall system performance.

Why RISC?

Designers make choices based on the available technology. As the technology—both hard-

ware and software—evolves, design choices also evolve. Furthermore, as we get more expe-

rience in designing processors, we can design better systems. RISC proposal is a response to

the changing technology and the accumulation of knowledge from the CISC designs. CISC

processors were designed to simplify compilers and to improve performance under constraints

such as small and slower memories. The rest of the section identifies some of the important

observations that motivated designers to consider alternatives to CISC designs.

Simple Instructions

The designers of CISC architectures anticipated extensive use of the complex instructions

because they close the semantic gap. In reality, it turns out that compilers mostly ignore these

instructions. Several empirical studies have shown that this is the case. One reason for this is

that different high-level languages use different semantics. For example, the semantics of the

C for loop are not exactly the same as that in Pascal. Thus, compilers tend to synthesize the

code using simpler instructions.

Few Data Types

CISC ISA tends to support a variety of data structures—simple data types such as integers

and characters to complex data structures such as records/structures. Empirical data suggest

that complex data structures are used relatively infrequently. Thus, it is beneficial to design a

system that supports a few, simple data types efficiently. The missing complex data types can

be synthesized using the simple data types.

Simple Addressing Modes

CISC designs provide a large number of addressing modes. The main motivation is (1) to

support complex data structures, and (2) to provide flexibility to access operands. For exam-

Section 12.3 RISC Design Principles 351

ple, the IA-32 architecture provides “Based-Indexed addressing with Scale-factor” to access

complex data structures like multidimensional arrays (see Chapter 6 for details). It also al-

lows one of the source operands to be in memory or register. While this allows flexibility, it

also introduces problems. First, it causes variable instruction execution times, depending on

the location of the operands. Second, it leads to variable-length instructions. For example,

instruction length in IA-32 can range from 1 byte to 12 bytes. Variable instruction lengths

lead to inefficient instruction decoding and scheduling.

Large Register Set

Several researchers have studied the characteristics of procedure calls in HLLs. We quote

two studies—one by Patterson and the other by Tanenbaum—in this section. Several other

studies, in fact, support the findings of these two studies.

Patterson’s study of C and Pascal programs found that procedure call/return constitutes

about 12–15% of HLL statements. As a percentage of the total machine language instruc-

tions, call/return instructions are about 31–33%. More interesting is the fact that call/return

generate nearly half (about 45%) of all memory references. This is understandable as pro-

cedure call/return instructions use memory to store activation records. An activation record

consists of parameters, local variables, and return values (see our discussion on page 151). In

Pentium, for example, stack is extensively used for these activities. This explains why proce-

dure call/return activities account for a large number of memory references. Thus, it is worth

providing efficient support for procedure calls and returns.

In another study, Tanenbaum found that only 1.25% of the called procedures had more

than six arguments. Furthermore, more than 93% of them had less then six local scalar vari-

ables. These figures, supported by other studies, suggest that activation record is not large.

If we provide a large register set, we can avoid memory references for most procedure calls

and returns. In this context, we note that the eight general-purpose registers in the Intel 32-bit

processors are a limiting factor in providing such support. Itanium, which is the Intel’s 64-bit

processor, provides a large register set (128 registers), and most procedure calls on Itanium

can completely avoid accessing memory.

12.3 RISC Design Principles
The best way to understand RISC is to treat it as a concept to design processors. While

initial RISC processors had fewer instructions compared to their CISC counterparts, the new

generation of RISC processors have hundreds of instructions, some of which are as complex

as the CISC instructions. It could be argued that such systems are really hybrids of CISC and

RISC. In any case, there are certain principles most RISC designs follow. We identify the

important ones in this section. Note that some of these characteristics are intertwined. For

example, designing an instruction set in which each instruction execution takes only one clock

cycle demands register-based operands, which in turn suggests that we need a large number

of registers.

352 Chapter 12 MIPS Processor

Hardware

Microprogram control

ISA level

Hardware

ISA level

(a) CISC implementation (b) RISC implementation

Figure 12.1 The instruction set architecture (ISA) is implemented directly in RISC processors whereas

CISC processors implement through a microprogrammed control.

Simple Operations

The objective is to design simple instructions so that each can execute in one cycle. This

property simplifies processor design. Note that a cycle is defined as the time required to fetch

two operands from registers, perform an ALU operation, and store the result in a register. The

advantage of simple instructions is that there is no need for microcode and operations can be

hardwired (see Figure 12.1). In terms of efficiency, these instructions should execute with the

same efficiency as microinstructions of a CISC machine. If we design the cache subsystem

properly to capture these instructions, the overall execution efficiency can be as good as a

microcoded CISC machine.

Register-to-Register Operations

A typical CISC instruction set includes not only register-to-register operations, but also

register-to-memory and memory-to-memory operations. The IA-32 architecture, for instance,

allows register-to-register as well as register-to-memory operations; it does not allow memory-

to-memory operations. It, however, supports memory-to-memory operations with the string

instructions (see Chapter 10).

RISC processors allow only special load and store operations to access memory. The

rest of the operations work on a register-to-register basis. This feature simplifies instruction

set design as it allows execution of instructions at one-instruction-per-cycle rate. Restricting

most instruction operands to registers also simplifies the control unit. RISC processors—

SPARC, PowerPC, Itanium, and MIPS—use this load/store architecture.

Section 12.3 RISC Design Principles 353

Simple Addressing Modes

Simple addressing modes allow fast address computation of operands. Since RISC processors

employ register-to-register instructions, most instructions use register-based addressing. Only

the load and store instructions need a memory addressing mode. RISC processors provide

very few addressing modes—often just one or two. They provide the basic register indirect

addressing mode, often allowing a small displacement that is either relative or absolute. For

example, MIPS supports simple register-indirect addressing modes as described in the next

section.

Large Number of Registers

Since RISC processors use register-to-register operations, we need to have a large number of

registers. A large register set can provide ample opportunities for the compiler to optimize

their usage. Another advantage with a large register set is that we can minimize the overhead

associated with procedure calls and returns. To speed up procedure calls, we can use registers

to store local variables as well as for passing arguments.

Fixed-Length, Simple Instruction Format

RISC processors use fixed-length instructions. Variable-length instructions can cause imple-

mentation and execution inefficiencies. For example, we may not know if there is another

word that needs to be fetched until we decode the first word. Along with fixed-length instruc-

tion size, RISC processors also use a simple instruction format. The boundaries of various

fields in an instruction such as opcode and source operands are fixed. This allows for efficient

decoding and scheduling of instructions. For example, the MIPS processors use six bits for

opcode specification.

Other Features

Most RISC implementations use the Harvard architecture, which allows independent paths

for data and instructions. The Harvard architecture, thus, doubles the memory bandwidth.

However, processors typically use the Harvard architecture only at the CPU–cache interface.

This requires two cache memories—one for data and the other for instructions.

RISC processors, like their CISC counterparts, use pipelining to speed up instruction unit.

Since RISC architectures use fixed-length instructions, the pipelines tend to have fewer stages

than the comparable CISC processors. Since RISC processors use simple instructions, there

will be more instructions in a program than their CISC counterparts. This increase in the num-

ber of instructions tends to increase dependencies—data as well as control dependencies. A

unique feature of RISC instruction pipelines is that their implementation is visible at the archi-

tecture level. Due to this visibility, pipeline dependencies can be resolved by software, rather

than in hardware. In addition, prefetching and speculative execution can also be employed

easily due to features like fixed-size instructions and simple addressing modes.

354 Chapter 12 MIPS Processor

12.4 MIPS Architecture
Our focus in this chapter is on the MIPS R2000 RISC processor. The main reason for selecting

this specific MIPS processor is that the SPIM simulator is written for this processor. This is

a 32-bit processor. Later processors (R4000 and above) are very similar to R2000 except that

they are 64-bit processors. From a pedagogical perspective, the R2000 processor is sufficient

to explain the RISC features.

MIPS follows the load/store architecture, which means that most instructions operate on

registers. It has two instruction types to move data between registers and memory. As we shall

see later, the R2000 provides several load and store instructions to transfer different sizes of

data—byte, halfword, word, and doubleword.

Like most recent processors, R2000 supports both little-endian and big-endian formats.

Recall that IA-32 processors use the little-endian format to store multibyte data. RISC pro-

cessors typically have a large number of registers. For example, Itanium has 128 registers

while PowerPC provides 32 registers. We start our discussion with the registers of R2000.

Registers

R2000 provides 32 general-purpose registers, a program counter (PC), and two special-purpose

registers. All registers are 32 bits wide as shown in Figure 12.2.

Unlike in Pentium, numbers are used to identify the general-purpose registers. In the as-

sembly language, these registers are identified as $0, $1,...,$31. Two of the general-purpose

registers—the first and the last—are reserved for a specific function.

• Register $0 is hardwired to the zero value. This register is often used as a source register

when a zero value is needed. You can use this register as the destination register of an

instruction if you want the result to be discarded.

• The last register $31 is used as a link register by the jump and link (jal) instruction

(discussed in Section 13.4 on page 386). This instruction is equivalent to the call
instruction in the IA-32 architecture. Register $31 is used to store the return address

of a procedure call. We discuss this issue in detail in Section 13.4.

The PC register serves the same purpose as the instruction pointer (EIP) register in IA-

32 processors. The two special-purpose registers—called HI and LO—are used to hold the

results of integer multiply and divide instructions.

• In an integer multiply operation, HI and LO registers hold the 64-bit result, with the

higher-order 32 bits in HI and the lower-order 32-bits in the LO register.

• In integer divide operations, the 32-bit quotient is stored in LO and the remainder in the

HI register.

General-Purpose Register Usage Convention

Although there is no requirement from the processor hardware, MIPS has established a con-

vention on how the general-purpose registers should be used. Table 12.1 shows the suggested

Section 12.4 MIPS Architecture 355

PC

Program counter

031

LO

HI

Multiply and divide registers

031

zero

at

v0

v1

a1

a0

a2

a3

t0

t1

t2

t3

t4

t5

t6

t7

s0

s1

s2

s3

s4

s5

s6

s7

t8

t9

k0

k1

gp

sp

fp

ra

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

31 0

General-purpose registers

Figure 12.2 MIPS R2000 processor registers. All registers are 32 bits long.

356 Chapter 12 MIPS Processor

Table 12.1 MIPS Registers and Their Conventional Usage

Register name Number Intended usage

zero 0 Constant 0

at 1 Reserved for assembler

v0, v1 2, 3 Results of a procedure

a0, a1, a2, a3 4–7 Arguments 1–4

t0–t7 8–15 Temporary (not preserved across call)

s0–s7 16–23 Saved temporary (preserved across call)

t8, t9 24, 25 Temporary (not preserved across call)

k0, k1 26, 27 Reserved for OS kernel

gp 28 Pointer to global area

sp 29 Stack pointer

fp 30 Frame pointer (if needed);

otherwise, a saved register $s8

ra 31 Return address (used by a procedure call)

use of each register. Since these suggestions are not enforced by the hardware, we can use

the general-purpose registers in an unconventional manner. However, such programs are not

likely to work with other programs.

Registers $v0 and $v1 are used to return results from a procedure. Registers $a0–$a3
are used to pass the first four arguments to procedures. The remaining arguments are passed

via the stack.

Registers $t0–$t9 are temporary registers that need not be preserved across a procedure

call. These registers are assumed to be saved by the caller. On the other hand, registers

$s0–$s7 are callee-saved registers that should be preserved across procedure calls.

Register $sp is the stack pointer and serves the same purpose as the esp register in the

IA-32 architecture. It points to the last location in use on the stack. The MIPS compiler does

not use a frame pointer. As a result, the frame pointer register $fp is used as a callee-saved

register $s8. The $ra is used to store the return address in a procedure call. We will discuss

these registers in Section 13.4.

Register $gp points to the memory area that holds constants and global variables. The

$at register is reserved for the assembler. The assembler often uses this register to translate

pseudo-instructions. We will see some examples of this later (see page 367).

Section 12.4 MIPS Architecture 357

Addressing Modes

The IA-32 architecture provides several addressing modes, which is a characteristic of CISC

designs. Since MIPS uses the load/store architecture, only the load and store instructions

access memory. Thus, addressing mode mainly refers to how these two instructions access

memory. All other instructions use registers. The bare machine provides only a single memory

addressing mode: disp(Rx), where displacementdisp is a signed, 16-bit immediate value.

The address is computed as

Effective address = Contents of base register Rx + disp.

Thus, compared to the IA-32 architecture, MIPS provides only based/indexed addressing

mode. In MIPS, we can use any register as the base register.

The virtual machine supported by the assembler provides additional addressing modes

for load and store instructions to help in assembly language programming. The table below

shows the addressing modes supported by the virtual machine.

Format Address computed as

(Rx) Contents of register Rx

imm Immediate value imm

imm(Rx) imm + contents of Rx

symbol Address of symbol

symbol± imm Address of symbol ±imm
symbol± imm(Rx) Address of symbol ±(imm + contents of Rx)

Note that most load and store instructions operate only on aligned data. MIPS, however,

provides some instructions for manipulating unaligned data. For more details on alignment of

data and its impact on performance, see our discussion on page 41.

Memory Usage

MIPS uses a conventional memory layout. A program’s address space consists of three parts:

code, data, and stack. The memory layout of these three components is shown in Figure 12.3.

The text segment, which stores the instructions, is placed at the bottom of the user address

space (at 4000000H).

The data segment is placed above the text segment and starts at 10000000H. The data

segment is divided into static and dynamic areas. The dynamic area grows as memory is

allocated to dynamic data structures.

The stack segment is placed at the end of the user address space at 7FFFFFFFH. It grows

downward toward lower memory address. This placement of segments allows sharing of

unused memory by both data and stack segments.

358 Chapter 12 MIPS Processor

Stack segment

Dynamic area

Static area

Reserved

Text segment

0

4000000H

10000000H

7FFFFFFFH

Memory addresses

Data segment

Figure 12.3 MIPS memory layout.

12.5 Summary
We have introduced important characteristics that differentiate RISC designs from their CISC

counterparts. CISC designs provide complex instructions and a large number of addressing

modes compared to RISC designs. The rationale for this complexity is the desire to close

the semantic gap that exists between high-level languages and machine languages. In the

early days, effective usage of processor and memory resources was important. Complex

instructions tend to minimize the memory requirements. However, implementing complex

instructions in hardware caused problems until the advent of microcode. With microcoded

implementations, designers were carried away and started making instruction sets very com-

plex to reduce the previously mentioned semantic gap. The VAX 11/780 is a classic example

of such complex processors.

Empirical data, however, suggested that compilers do not use these complex instructions;

instead, they use simple instructions to synthesize complex instructions. Such observations

Section 12.6 Exercises 359

led designers to take a fresh look at the processor design philosophy. RISC principles, based

on empirical studies on CISC processors, have been proposed as an alternative to CISC de-

signs. Most of the current processor designs are based on these RISC principles.

Like all RISC processors, MIPS uses the load/store architecture. Thus, only the load

and store instructions can access memory. All other instructions expect their operands in

registers. As a result, RISC processors provide many more registers than CISC processors.

For example, MIPS provides 32 general-purpose registers. In addition, two special registers—

HI and LO—are used to store the output of Multiply and Divide instructions. In addition, a

program counter register serves the purpose of the instruction pointer. All these registers are

32 bits wide.

The MIPS architecture does not provide as many addressing modes as the IA-32 archi-

tecture does. This is one of the differences between CISC and RISC designs. In fact, MIPS

supports only one addressing mode. However, the assembler augments this by a few other

addressing modes. The MIPS assembly language is discussed in the next chapter.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Load/store architecture

• MIPS addressing modes

• MIPS architecture

• MIPS registers

• RISC characteristics

• RISC design principles

12.6 Exercises
12–1 We have seen that CISC designs typically use variable-length instructions. Discuss the

reasons for this.

12–2 A typical CISC processor supports several addressing modes. For example, VAX

11/780 provides 22 addressing modes. What is the motivation for supporting a large

number of addressing modes?

12–3 We have stated that RISC is a design philosophy. Discuss the main RISC characteristics.

12–4 Recent processors tend to follow the RISC design philosophy. For example, Intel moved

from CISC to RISC designs for its 64-bit processors. Explain why.

12–5 The MIPS processor we discussed in this chapter uses the load/store architecture. Ex-

plain why RISC processors use the load/store architecture.

12–6 RISC processors provide a large number of registers compared to CISC processors.

What is the rationale for this?

12–7 Describe the addressing modes supported by MIPS processor.

360 Chapter 12 MIPS Processor

12–8 In the MIPS processor, the general-purpose register $zero is hardwired to zero. What

is the reason for this?

12–9 What is the purpose of HI and LO registers?

12–10 What is the difference between registers t0–t9 and S0–S7?

12–11 What is a typical use of registers v0 and v1?

12–12 What is a typical use of registers a0–a3?

Chapter 13

MIPS Assembly Language

Objectives
• To present MIPS instruction set details

• To describe SPIM simulator systems calls and directives

• To illustrate how MIPS assembly language programs are written

• To discuss MIPS stack implementation and procedures

We start this chapter with a description of the MIPS instruction set. SPIM provides several

system calls to facilitate input/output from the assembly language programs. These calls are

given in Section 13.2.1. Like the Pentium assemblers, SPIM also provides several directives,

which are described in Section 13.2.2. Some example MIPS assembly programs are given in

Section 13.3.

Simple procedures in MIPS do not have to use the stack. Section 13.4 explains how

procedures are written in the MIPS assembly language. This section also gives examples to

illustrate the principles involved in writing procedures. Although the stack is not needed to

write simple procedures, nested or recursive procedures need to use the stack. Stack imple-

mentation is described in Section 13.5 with some examples. We conclude the chapter with a

summary.

13.1 MIPS Instruction Set
MIPS instruction set consists of instructions and pseudoinstructions. MIPS processor sup-

ports only the instructions. Pseudoinstructions are provided by the assembler for convenience

in programming. The assembler translates pseudoinstructions into a sequence of one or more

processor instructions. We use a † to indicate the pseudoinstructions.

361

362 Chapter 13 MIPS Assembly Language

2031 2526 21 16 0

0

0

31 26 25

31 26 25 21 20 1516 10 11 6 5

op 26-bit target

J-Type (Jump)

op rtrs rd sa function

R-Type (Register)

rt 16-bit immediate valuersop

I-Type (Immediate)

15

Figure 13.1 Three MIPS instruction formats.

13.1.1 Instruction Format

MIPS, being a RISC processor, uses a fixed-length instruction format. Each instruction is 32

bits long as shown in Figure 13.1. It uses only three different instruction formats:

• Immediate (I-type): All load and store instructions use this instruction format. Immedi-

ate value is a signed, 16-bit integer. In addition, arithmetic and logical instructions that

use an immediate value also use this format. Branch instructions use a 16-bit signed

offset relative to the program counter and are encoded in I-type format.

• Jump (J-type): Jump instructions that specify a 26-bit target address use this instruction

format. These 26 bits are combined with the higher-order bits of the program counter

to get the absolute address.

• Register (R-type): Arithmetic and logical instructions use this instruction format. In

addition, the jump instruction in which the target address is specified indirectly via a

register also uses this instruction format.

The use of a limited number of instruction formats simplifies instruction decoding. How-

ever, three instruction formats and a single addressing mode means that complicated opera-

tions and addressing modes will have to be synthesized by the compiler. If these operations

and addressing modes are less frequently used, we may not pay much penalty. This is the

motivation behind the RISC processors.

Section 13.1 MIPS Instruction Set 363

13.1.2 Data Transfer Instructions

MIPS provides load and store instructions to move data between memory and registers. Load

instructions move data from memory into registers while the store instructions move data

in the opposite direction. Load and store instructions have a similar format. Therefore, we

discuss the load instructions in more detail.

Moving Data

Several load and store instructions are available to move data of different sizes. The load byte

(lb) instruction moves a byte of data from memory to a register. The format is

lb Rdest,address

lb loads the least significant byte of Rdest with the byte at the specified memory address.

The byte is treated as a signed number. Consequently, sign bit is extended to the remaining

three bytes of Rdest. To load an unsigned number, use Load Byte Unsigned (lbu) instead

of lb. In this case, the remaining three bytes are filled with zeros.

Other load instructions facilitate movement of larger data items. These instructions are

summarized in Table 13.1.

The assembler provides two pseudoinstructions to load an address or an immediate value

into a register. For example,

la $a0,marks

loads the address of marks array into the $a0 register.

The li instruction shown in Table 13.1 is implemented as

ori Rdest,$0,imm

The ori (OR immediate) instruction is discussed in Section 13.1.4.

The store byte (SB) instruction

sb Rsrc,address

stores the least significant byte of Rsrc at the specified memory address. Since the data

transfer does not involve sign extension, there is no need for separate instructions to handle

signed and unsigned byte transfers. Store instructions to handle 16-, 32-, and 64-bit data are

also available as shown in Table 13.2.

To move data between registers, we can use the move pseudoinstruction. The format is

move† Rdest,Rsrc

It copies contents of Rsrc to Rdest. Four additional data movement instructions are avail-

able for transferring data between a general register and two special registers HI and LO.

These instructions are described on page 366.

364 Chapter 13 MIPS Assembly Language

Table 13.1 Sample MIPS Load Instructions

Instruction Description

lb Rdest,address Load Byte. Loads the byte at address in memory into the least significant

byte of Rdest. The byte is treated as a signed number; sign extends to the

remaining three bytes of Rdest.

lbu Rdest,address Load Byte Unsigned. This instruction is similar to lb except that the byte is

treated as an unsigned number. The upper three bytes of Rdest are filled with

zeros.

lh Rdest,address Load Halfword. Loads the half-word (two bytes) at address in memory into

the least significant two bytes of Rdest. The 16-bit data is treated as a signed

number; sign extends to the remaining two bytes of Rdest.

lhu Rdest,address Load Halfword Unsigned. Same as lh except that the 16-bit half-word is

treated as an unsigned number.

lw Rdest,address Load Word. Loads the word (four bytes) at address in memory into Rdest.

Assembler pseudoinstructions

la† Rdest,var Load Address. Loads the address of var into Rdest.

li† Rdest,imm Load Immediate. Loads the immediate value imm into Rdest.

13.1.3 Arithmetic Instructions

MIPS supports the four basic arithmetic operations—addition, subtraction, multiplication, and

division.

Addition Instructions

The basic addition instruction

add Rdest,Rsrc1,Rsrc2

adds contents of Rsrc1 and Rsrc2 and stores the result in Rdest. The numbers are treated

as signed integers. In case of an overflow, an overflow exception is generated. We can use

addu if no overflow exception is needed. Except for this, there is no difference between the

add and addu instructions.

The second operand can be specified as an immediate 16-bit number. The format is

addi Rdest,Rsrc1,imm

The 16-bit value is sign-extended to 32 bits and added to the contents of Rsrc1. As in the

add instruction, as overflow exception is generated; use addiu if overflow exception is not

needed.

Section 13.1 MIPS Instruction Set 365

Table 13.2 Sample MIPS Store Instructions

Instruction Description

sb Rsrc,address Store Byte. Stores the least significant byte of Rsrc at the specified address

in memory.

sh Rsrc,address Store Halfword. Stores the least significant two bytes (halfword) of Rsrc at the

specified address in memory.

sw Rsrc,address Store Word. Stores the four-byte word from Rsrc at the specified address in

memory.

For convenience, assembler provides a pseudoinstruction that can take a register or an

immediate value as the second source operand. The format is

add† Rdest,Rsrc1,Src2

where Src2 can be a 16-bit immediate value or a register. We can use addu† if overflow

exception is not needed.

Subtract Instructions

The subtract instruction

sub Rdest,Rsrc1,Rsrc2

subtracts the contents of Rsrc2 from Rsrc1 (i.e., Rsrc1− Rsrc2). The result is stored in

Rdest. The contents of the two source registers are treated as signed numbers and an integer

overflow exception is generated. We use subu if this exception is not required.

There is no immediate version of the subtract instruction. It is not really needed as we

can treat subtraction as an addition of a negative number. However, we can use the assembler

pseudoinstruction to operate on immediate values. The format is

sub† Rdest,Rsrc1,Src2

where Src2 can be a 16-bit immediate value or a register.

To negate a value, we can use the assembler pseudoinstruction neg for signed numbers.

The instruction

neg† Rdest,Rsrc

negates the contents of Rsrc and stores the result in Rdest. An overflow exception is

generated if the value is −231. Negation without the overflow exception (negu†) is also

available.

As noted, neg is not a processor instruction; SPIM assembler translates the negate in-

struction using sub as

366 Chapter 13 MIPS Assembly Language

sub Rdest,$0,Rsrc

abs is another pseudoinstruction that is useful to get the absolute value. The format is

abs† Rdest,Rsrc

This pseudoinstruction is implemented as

bgez Rsrc,skip

sub Rdest,$0,Rsrc

skip:

In the translation, the bgez instruction actually uses an offset of 8 to affect the jump as shown

below:

bgez Rsrc,8

We discuss the branch instruction on page 371.

Multiply Instructions

MIPS provides two multiply instructions—one for signed numbers (mult) and the other for

unsigned numbers (multu). The instruction

mult Rsrc1,Rsrc2

multiplies the contents of Rsrc1 with the contents of Rsrc2. The numbers are treated as

signed numbers. The 64-bit result is placed in two special registers, LO and HI. The LO

register receives the lower-order word, and the higher-order word is placed in the HI register.

No integer overflow exception is generated. The multu instruction has the same format but

treats the source operands as unsigned numbers.

There are instructions to move data between these special LO/HI registers and general-

purpose registers. The instruction mfhi (Move From HI)

mfhi Rdest

moves contents of HI register to the general register Rdest. Use mflo to move data from

the LO register. For movement of data into these special registers, use mthi (Move To HI)

or mtlo (Move To LO).

Assembler multiply pseudoinstruction can be used to place the result directly in a desti-

nation register. A limitation of the pseudoinstruction is that it stores only the 32-bit result, not

the 64-bit value. Note that multiplication of two 32-numbers can produce a 64-bit result. We

can use these pseudoinstructions if we know that the result can fit in 32 bits. The instruction

mul† Rdest,Rsrc1,Src2

Section 13.1 MIPS Instruction Set 367

places the 32-bit result of the product of Rsrc1 and Src2 in Rdest. Src2 can be a reg-

ister or an immediate value. This instruction does not generate an overflow exception. If an

overflow exception is required, use the mulo instruction. Both these instructions treat the

numbers as signed. To multiply two unsigned numbers, use the mulou instruction (Multiply

with Overflow Unsigned).

The mul pseudoinstruction is translated as

mult Rsrc1,Src2

mflo Rdest

when Src2 is a register. If Src2 is an immediate value, it uses an additional ori instruction.

For example, the pseudoinstruction

mul $a0,$a1,32

is translated into

ori $1,$0,32

mult $5,$1

mflo $4

Remember that a0 maps to $4, a1 to $5, and at to $1. This example shows how the

assembler uses the at register to translate pseudoinstructions.

Divide Instructions

As with the multiply instructions, we can use div and divu instructions to divide signed and

unsigned numbers, respectively. The instruction

div Rsrc1,Rsrc2

divides contents of Rsrc1 by the contents of Rsrc2 (i.e., Rsrc1/Rsrc2). The contents

of both source registers are treated as signed numbers. The result of the division is placed in

LO and HI registers. The LO register receives the quotient and the HI register receives the

remainder. No integer overflow exception is generated.

The result of the operation is undefined if the divisor is zero. Thus, checks for a zero

divisor should precede this instruction.

Assembler provides three-operand divide pseudoinstructions similar to the multiply in-

structions. The instruction

div† Rdest,Rsrc1,Src2

places the quotient of two signed number division Rsrc1/Src2 in Rdest. As in the other

instructions, Src2 can be a register or an immediate value. For unsigned numbers, use the

divu† pseudoinstruction. The quotient is rounded toward zero. Overflow is signaled when

dividing −231 by −1 as the quotient is greater than 231 − 1. Assembler generates the real

div instruction if we use

368 Chapter 13 MIPS Assembly Language

Table 13.3 MIPS Logical Instructions

Instruction Description

and Rdest,Rsrc1,Rsrc2 Bit-wise AND of Rsrc1 and Rsrc2 is stored in Rdest.

andi Rdest,Rsrc1,imm16 Bit-wise AND of Rsrc1 and 16-bit imm16 is stored in Rdest. The

16-bit imm16 is zero-extended.

or Rdest,Rsrc1,Rsrc2 Bit-wise OR of Rsrc1 and Rsrc2 is stored in Rdest.

ori Rdest,Rsrc1,imm16 Bit-wise OR of Rsrc1 and 16-bit imm16 is stored in Rdest. The

16-bit imm16 is zero-extended.

not† Rdest,Rsrc Bit-wise NOT of Rsrc is stored in Rdest.

xor Rdest,Rsrc1,Rsrc2 Bit-wise XOR of Rsrc1 and Rsrc2 is stored in Rdest.

xori Rdest,Rsrc1,imm16 Bit-wise XOR of Rsrc1 and 16-bit imm16 is stored in Rdest. The

16-bit imm16 is zero-extended.

nor Rdest,Rsrc1,Rsrc2 Bit-wise NOR of Rsrc1 and Rsrc2 is stored in Rdest.

div $0,Rsrc1,Src2.

To get the remainder instead of quotient, use

rem† Rdest,Rsrc1,Src2

for signed numbers.

13.1.4 Logical Instructions

MIPS supports the logical instructions and, or, nor (OR followed by NOT), and xor
(exclusive-OR). The missing not operation is supported by a pseudoinstruction. All oper-

ations, except not, take two source operands and a destination operand. The not instruction

takes one source and one destination operands. As with most instructions, all operands must

be registers. However, and, or, and xor instructions can take one immediate operand.

A summary of these instructions is given in Table 13.3. Assembler pseudoinstructions

use the same mnemonics for the logical operations AND, OR, and XOR but allow the second

source operand to be either a register or a 16-bit immediate value.

The not pseudoinstruction can be implemented by the nor instruction as

nor Rdest,Rsrc,$0

Section 13.1 MIPS Instruction Set 369

Table 13.4 MIPS Shift Instructions

Instruction Description

sll Rdest,Rsrc,count Left-shifts Rsrc by count bit positions and stores the result in

Rdest. Vacated bits are filled with zeros. count is an immediate

value between 0 and 31. If count is outside this range, it uses count

MOD 32 as the number of bit positions to be shifted, i.e., takes only the

least significant five bits of count.

sllv Rdest,Rsrc1,Rsrc2 Similar to sll except that the count is taken from the least significant

five bits of Rsrc2.

srl Rdest,Rsrc,count Right-shifts Rsrc by count bit positions and stores the result in

Rdest. This is a logical right shift (i.e., vacated bits are filled with

zeros). count is an immediate value between 0 and 31.

srlv Rdest,Rsrc1,Rsrc2 Similar to srl except that the count is taken from the least significant

five bits of Rsrc2.

sra Rdest,Rsrc,count Right-shifts Rsrc by count bit positions and stores the result in

Rdest. This is an arithmetic right shift (i.e., vacated bits are filled

with the sign bit). count is an immediate value between 0 and 31.

srav Rdest,Rsrc1,Rsrc2 Similar to sra except that the count is taken from the least significant

five bits of Rsrc2.

13.1.5 Shift Instructions

Both left-shift and right-shift instructions are available to facilitate bit operations. The number

of bit positions to be shifted (i.e., shift count) can be specified as an immediate 5-bit value or

via a register. If a register is used, only the least significant five bits are used as the shift count.

The basic left-shift instruction sll (Left Shift Logical)

sll Rdest,Rsrc,count

shifts the contents of Rsrc left by count bit positions and stores the result in Rdest. When

shifting left, vacated bits on the right are filled with zeros. These are called logical shifts. We

will see arithmetic shifts when dealing with right shifts.

The sllv (Shift Left Logical Variable) instruction

sllv Rdest,Rsrc1,Rsrc2

is similar to the sll instruction except that the shift count is in the Rsrc2 register.

There are two types of right-shift operations: logical or arithmetic. The reason for this is

that when we shift right, we have the option of filling the vacated left bits by zeros (called

370 Chapter 13 MIPS Assembly Language

Table 13.5 MIPS Rotate Instructions

Instruction Description

rol† Rdest,Rsrc,Src2 Rotates contents of Rsrc left by Src2 bit positions and stores the result

in Rdest. Src2 can be a register or an immediate value. Bits shifted

out on the left are inserted on the right-hand side. Src2 should be a

value between 0 and 31. If this value is outside this range, only the least

significant five bits of Src2 are used as in the shift instructions.

ror† Rdest,Rsrc,Src2 Rotates contents of Rsrc right by Src2 bit positions and stores the

result in Rdest. Bits shifted out on the right are inserted on the left-

hand side. Src2 operand is similar to that in the rol instruction.

logical shift) or copying the sign bit (arithmetic shift). The difference between the logical and

arithmetic shifts is explained in detail in Section 9.2 on page 278.

The logical right-shift instructions—Shift Right Logical (srl) and Shift Right Logical

Variable (srlv)—have a format similar to their left-shift cousins. As mentioned, the vacated

bits on the left are filled with zeros.

The arithmetic shift right instructions follow similar format; however, shifted bit posi-

tions on the left are filled with the sign bit (i.e., sign-extended). The shift instructions are

summarized in Table 13.4.

13.1.6 Rotate Instructions

A problem with the shift instructions is that the shifted out bits are lost. Rotate instructions

allow us to capture these bits. The processor does not support rotate instructions. However,

assembler provides two rotate pseudoinstructions—rotate left (rol) and rotate right (ror).

In Rotate Left, the bits shifted out at the left (i.e., the sign-bit side) are inserted on the

right-hand side. In Rotate Right, bits falling of the right side are inserted on the sign-bit side.

Table 13.5 summarizes the two rotate instructions. Both rotate instructions are pseudoin-

structions. For example, the rotate instruction

ror† $t2,$t2,1

is translated as

sll $1,$10,31

srl $10,$10,1

or $10,$10,$1

Note that $t2 maps to the $10 register.

Section 13.1 MIPS Instruction Set 371

13.1.7 Comparison Instructions

Several comparison pseudoinstructions are available. The instruction slt (Set on Less Than)

slt† Rdest,Rsrc1,Rsrc2

sets Rdest to one if the contents of Rsrc1 are less than the contents of Rsrc2; otherwise,

Rdest is set to zero. This instruction treats the contents of Rsrc1 and Rsrc2 as signed

numbers. To test for the “less than” relationship, slt subtracts contents of Rsrc2 from the

contents of Rsrc1.

The second operand can be a 16-bit immediate value. In this case, use slti (Set on Less

Than Immediate) as shown below:

slti† Rdest,Rsrc1,imm

For unsigned numbers, use sltu for the register version and sltiu for the immediate-

operand version.

As a convenience, the assembler allows us to use slt and sltu for both register and

immediate-operand versions. In addition, the assembler provides more comparison instruc-

tions. These pseudoinstructions can be used to test for equal, not equal, greater than, greater

than or equal, and less than or equal relationships. Table 13.6 summarizes the comparison

instructions provided by the assembler.

All comparison instructions in Table 13.6 are pseudoinstructions. For example, the in-

struction

seq $a0,$a1,$a2

is translated as

beq $6,$5,skip1

ori $4,$0,0

beq $0,$0,skip2

skip1:

ori $4,$0,1

skip2:

. . .

Note that $a0, $a1, and $a2 represent registers $4, $5, $6, respectively. The branch in-

structions are discussed next.

13.1.8 Branch and Jump Instructions

Conditional execution is implemented by jump and branch instructions. We will first look at

the jump instructions. The basic jump instruction

j target

372 Chapter 13 MIPS Assembly Language

Table 13.6 MIPS Comparison Instructions

Instruction Description

seq† Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 and Src2 are equal; other-

wise, Rdest is set to zero.

sgt† Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are greater than Src2; oth-

erwise, Rdest is set to zero. Source operands are treated as signed

numbers.

sgtu† Rdest,Rsrc1,Src2 Same as sgt except that the source operands are treated as unsigned

numbers.

sge† Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are greater than or equal to

Src2; otherwise, Rdest is set to zero. Source operands are treated as

signed numbers.

sgeu† Rdest,Rsrc1,Src2 Same as sge except that the source operands are treated as unsigned

numbers.

slt† Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are less than Src2; otherwise,

Rdest is set to zero. Source operands are treated as signed numbers.

sltu† Rdest,Rsrc1,Src2 Same as slt except that the source operands are treated as unsigned

numbers.

sle† Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are less than or equal to Src2;

otherwise, Rdest is set to zero. Source operands are treated as signed

numbers.

sleu† Rdest,Rsrc1, Src2 Same as sle except that the source operands are treated as unsigned

numbers.

sne† Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 and Src2 are not equal;

otherwise, Rdest is set to zero.

transfers control to the target address. There are other jump instructions that are useful in

procedure calls. There instructions are discussed in Section 13.4.

Branch instructions provide a more flexible test and jump execution. MIPS supports sev-

eral branch instructions. We describe some of these instructions in this section.

The unconditional branch instruction

b† target

transfers control to target unconditionally. Semantically, it is very similar to the jump

instruction. The main difference is that the b instruction uses a 16-bit relative address whereas

Section 13.2 SPIM Simulator 373

the j instruction uses a 26-bit absolute address. Thus, the jump instruction has a larger range

than the branch instruction. But the branch is more convenient because it uses a relative

address.

Next we look at the conditional branch instructions. The branch instruction

beq Rsrc1,Rsrc2,target

compares the contents of Rsrc1 and Rsrc2 and transfers control to target if they are

equal.

To compare with zero, we can use beqz instruction. The format is

beqz Rsrc,target

This instruction transfers control to target if the value of Rsrc is equal to zero.

As noted, b is a pseudoinstruction that is implemented as

bgez $0,target

where target is the relative offset.

Branch instructions to test “less than” and “greater than” are also supported. As an exam-

ple, the instruction

bgt Rsrc1,Rsrc2,target

branches to the target location when the contents ofRsrc1 are greater than Rsrc2. When

comparing, the contents of Rsrc1 and Rsrc2 are treated as signed numbers. For unsigned

numbers, we have to use the bgtu instruction.

Branch instructions to test combinations such as “greater than or equal to” are also avail-

able. Table 13.7 summarizes some of the branch instructions provided by the MIPS assembler.

13.2 SPIM Simulator
This section presents the SPIM system calls and the directives provided by it. Other details

on this simulator are given in Appendix D.

13.2.1 SPIM System Calls

SPIM provides I/O support through the system call (syscall) instruction. Eight of these

calls facilitate input and output of the four basic data types: string, integer, float, and double.

A notable service missing in this list is the character input and output. For character I/O, we

have to use the string system calls.

To invoke a service, the system call service code should be placed in the $v0 register.

Any required arguments are placed in $a0 and $a1 registers (use $f12 for floating-point

values). Any value returned by a system call is placed in $v0 ($f0 for floating-point values).

374 Chapter 13 MIPS Assembly Language

Table 13.7 MIPS Branch Instructions

Instruction Description

b† target Branches unconditionally to target.

beq Rsrc1,Rsrc2,target Branches to target if the contents of Rsrc1 and Rsrc2 are equal.

bne Rsrc1,Rsrc2,target Branches to target if the contents of Rsrc1 and Rsrc2 are not

equal.

blt Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is less than the value of

Rsrc2. The source operands are considered as signed numbers.

bltu Rsrc1,Rsrc2,target Same as blt except that the source operands are treated as unsigned

numbers.

bgt Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is greater than the value of

Rsrc2. The source operands are treated as signed numbers.

bgtu Rsrc1,Rsrc2,target Same as bgt except that the source operands are treated as unsigned

numbers.

ble Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is less than or equal to the

value of Rsrc2. The source operands are treated as signed numbers.

bleu Rsrc1,Rsrc2,target Same as ble except that the source operands are treated as unsigned

numbers.

bge Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is greater than or equal to

the value of Rsrc2. The source operands are treated as signed num-

bers.

bgeu Rsrc1,Rsrc2,target Same as bge except that the source operands are considered as unsigned

numbers.

Comparison with zero

beqz Rsrc,target Branches to target if the value of Rsrc is equal to zero.

bnez Rsrc,target Branches to target if the value of Rsrc is not equal to zero.

bltz Rsrc,target Branches to target if the value of Rsrc is less than zero.

bgtz Rsrc,target Branches to target if the value of Rsrc is greater than zero.

blez Rsrc,target Branches to target if the value of Rsrc is less than or equal to zero.

bgez Rsrc,target Branches to target if the value of Rsrc is greater than or equal to

zero.

Section 13.2 SPIM Simulator 375

Table 13.8 SPIM Assembler System Calls

Service System call code (in $v0) Arguments Result

print_int 1 $a0 = integer

print_float 2 $f12 = float

print_double 3 $f12 = double

print_string 4 $a0 = string address

read_int 5 integer in $v0

read_float 6 float in $f0

read_double 7 double in $f0

read_string 8 $a0 = buffer address

$a1 = buffer size

sbrk 9 address in $v0

exit 10

All 10 system calls are summarized in Table 13.8. The first three calls are self-explanatory.

The print_string system call takes a pointer to a NULL-terminated string and prints the

string. The read_int, read_float, and read_double system calls read input up to

and including newline. Characters following the number are ignored. The read_string
call takes the pointer to a buffer where the input string is to be placed and the buffer size n

in $a1. The buffer size should be expressed in bytes. It reads at most n − 1 characters into

the buffer and terminates the string by the NULL character. The read_string call has the

same semantics as the fgets function in the C library.

The sbrk call returns a pointer to a block of memory containing n additional bytes. The

final system call exit stops execution of a program.

13.2.2 SPIM Assembler Directives

SPIM supports a subset of the assembler directives provided by the MIPS assembler. This

section presents some of the most common SPIM directives. SPIM reference manual provides

a complete list of directives supported by the simulator. All assembler directives begin with a

period.

Segment Declaration

Two segments of an assembly program—code and data—can be declared by using .TEXT
and .DATA directives. The statement

376 Chapter 13 MIPS Assembly Language

.TEXT <address>

directs the assembler to map the following statements to the user text segment. The argument

address is optional; if present, the statements are stored beginning at address. SPIM

allows only instructions or words (using .WORD) in the text segment.

The data directive has a similar format as .TEXT except that the statement following it

must refer to data items.

String Directives

SPIM provides two directives to allocate storage for strings: .ASCII and .ASCIIZ. The

.ASCII directive can be used to allocate space for a string that is not terminated by the

NULL character. The statement

.ASCII string

allocates a number of bytes equal to the number of characters in string. For example,

.ASCII "Toy Story"

allocates nine bytes of contiguous storage and initializes it to “Toy Story”.

Strings are normally NULL-terminated as in C. For example, to display a string using

print string service, the string must be NULL-terminated. Using .ASCIIZ instead of

ASCII stores the specified string in the NULL-terminated format. The .ASCII directive is

useful to break a long string into multiple string statements as shown in the following example.

.ASCII "Toy Story is a good computer-animated movie. \n"

.ASCII "This reviewer recommends it to all kids \n"

.ASCIIZ "and their parents."

An associated assembler directive

.SPACE n

can be used to allocate n bytes of uninitialized space in the current segment.

Data Directives

SPIM provides four directives to store both integers and floating-point numbers. The assem-

bler directive

.HALF h1,h2, . . .,hn

stores the n 16-bit numbers in successive memory halfwords. For 32-bit numbers, use the

.WORD directive. Although we refer to these 16- and 32-bit values as numbers, they can be

any 16- and 32-bit quantities.

Floating-point values can be stored as single-precision or double-precision numbers. To

store n single-precision floating-point numbers, use

Section 13.2 SPIM Simulator 377

.FLOAT f1,f2, . . .,fn

To store double-precision numbers, use the .DOUBLE directive instead.

Miscellaneous Directives

We discuss two directives that deal with data alignment and global symbol declaration. The

data directives .HALF, .WORD, .FLOAT, and .DOUBLE automatically align the data. We

can explicitly control data alignment using the .ALIGN directive. The statement

.ALIGN n

aligns the next datum on a 2n byte boundary. Use

.ALIGN 0

to turn off the automatic alignment feature of the data directives until the next .DATA direc-

tive.

Before closing this section, we discuss one last directive—.GLOBL. It declares a symbol

as global so that it can be referenced from other files. We normally use this directive to declare

main as a global symbol so that it can be referenced by SPIM’s trap file (see Appendix D for

details on the trap file). The program template given next shows how the global directive is

used.

13.2.3 MIPS Program Template

Our MIPS programs follow the template shown in Figure 13.2.

Here is an example code fragment that prompts the user for a name and reads the name.

.data

prompt:

.ASCIIZ "Enter your name: "

in_name:

.space 31

.text

. . .

la $a0,prompt ; prompt user

li $v0,4

syscall

la $a0,in_name ; read name

li $a1,31

li $v0,8

syscall

. . .

378 Chapter 13 MIPS Assembly Language

Title of the program Filename

#

Objective:

Input:

Output:

#

Register usage

#

###################### Data segment ##########################

.data

. . .

data goes here

. . .

###################### Code segment ##########################

.text

.globl main

main:

. . .

code goes here

. . .

Figure 13.2 MIPS assembly language program template.

13.3 Illustrative Examples
We use four example programs to illustrate the MIPS assembly language features. On pur-

pose, we have selected the examples from Chapter 4 so that you can see the difference between

the assembly languages of Pentium and MIPS processors. If you have gone through those ex-

amples in Section 4.8 starting on page 98, understanding the MIPS versions becomes easier,

as the underlying algorithms are the same. These examples can be run on the MIPS simulator

SPIM. Appendix D gives details about downloading and using the SPIM simulator.

Example 13.1 Displays the ASCII value of the input character in binary representation.

This is the MIPS version of the example discussed on page 98. It takes a character as input

and displays its ASCII value in binary. Since SPIM does not support character I/O, we use

the string read system call to read the input character. We allocate two bytes of storage space

to read a single character (ch on lines 21 and 22). For the same reason, we have to construct

the output binary number as a character string. We use ascii_string on lines 23 and 24

for this purpose.

Section 13.3 Illustrative Examples 379

The conversion to binary can be done in several ways. The logic of the program follows

the algorithm given in Example 4.6 on page 98. We use the t2 register to hold the mask byte,

which is initialized to 80H to test the most significant bit of the input character in t0. After

testing the bit, the mask byte is shifted right by one bit position to test the next bit (line 58). We

get the binary value after iterating eight times. We do not have a special counter to terminate

the loop after eight iterations. Instead, we use the condition that mask byte will have zero

when shifted eight times. The statement on line 60 detects this condition and terminates the

loop. Once the loop is exited, we just need to append a NULL character to the output string

and display it.
Within the loop body, we use the and and beqz instructions to find if the tested bit is 0

or 1. We load characters 0 and 1 in registers t4 and t5 (lines 47 and 48) so that we can use
sb on lines 53 and 56 to store the correct value. We have to resort to this because sb does
not allow immediate values.

Program 13.1 Conversion of an ASCII value into binary representation

1: # Convert a character to ASCII BINCH.ASM

2: #

3: # Objective: To convert a character to its binary equivalent.

4: # The character is read as a string.

5: # Input: Requests a character from keyboard.

6: # Output: Outputs the ASCII value.

7: #

8: # t0 - holds the input character

9: # t1 - points to output ASCII string

10: # t2 - holds the mask byte

11: #

12: ###################### Data segment ##########################

13:

14: .data

15: ch_prompt:

16: .asciiz "Please enter a character: \n"

17: out_msg:

18: .asciiz "\nThe ASCII value is: "

19: newline:

20: .asciiz "\n"

21: ch:

22: .space 2

23: ascii_string:

24: .space 9

25:

26: ###################### Code segment ##########################

27:

380 Chapter 13 MIPS Assembly Language

28: .text

29: .globl main

30: main:

31: la $a0,ch_prompt # prompt user for a character

32: li $v0,4

33: syscall

34:

35: la $a0,ch # read the input character

36: li $a1,2

37: li $v0,8

38: syscall

39:

40: la $a0,out_msg # write output message

41: li $v0,4

42: syscall

43:

44: lb $t0,ch # t0 holds the character

45: la $t1,ascii_string # t1 points to output string

46: li $t2,0x80 # t2 holds the mask byte

47: li $t4,’0’

48: li $t5,’1’

49:

50: loop:

51: and $t3,$t0,$t2

52: beqz $t3,zero

53: sb $t5,($t1) # store 1

54: b rotate

55: zero:

56: sb $t4,($t1) # store 0

57: rotate:

58: srl $t2,$t2,1 # shift mask byte

59: addu $t1,$t1,1

60: bnez $t2,loop # exit loop if mask byte is 0

61:

62: sb $0,($t1) # append NULL

63: la $a0,ascii_string # output ASCII value

64: li $v0,4

65: syscall

66:

67: la $a0,newline # output newline

68: li $v0,4

69: syscall

Section 13.3 Illustrative Examples 381

Example 13.2 Conversion of lowercase letters to uppercase.

This example converts lowercase letters in a string to the corresponding uppercase letters.

All other characters are not affected. We have done the same example on page 105, which

presents the pseudocode that describes the program’s logic.

The input string is limited to 30 characters as we allocate 31 bytes of space (see line 19).

The program enforces this restriction as we use 31 as a parameter to the string input system

call on line 31.

The loop terminates when a NULL character is encountered. Remember that the ASCII

value for the NULL is zero. We use the beqz instruction on line 42 to detect the end of

the string. We will go to line 45 only if the character is a lowercase letter. Since the SPIM

assembler does not allow writing constants of the form ’A’-’a’, we use −32 on line 45.

The rest of the program is straightforward to follow.

Program 13.2 String conversion from lowercase to uppercase

1: # Uppercase conversion of characters TOUPPER.ASM

2: #

3: # Objective: To convert lowercase letters to

4: # corresponding uppercase letters.

5: # Input: Requests a character string from keyboard.

6: # Output: Prints the input string in uppercase.

7: #

8: # t0 - points to character string

9: # t1 - used for character conversion

10: #

11: ################### Data segment #####################

12:

13: .data

14: name_prompt:

15: .asciiz "Please type your name: \n"

16: out_msg:

17: .asciiz "Your name in capitals is: "

18: in_name:

19: .space 31

20:

21: ################### Code segment #####################

22:

23: .text

24: .globl main

25: main:

26: la $a0,name_prompt # prompt user for input

27: li $v0,4

28: syscall

382 Chapter 13 MIPS Assembly Language

29:

30: la $a0,in_name # read user input string

31: li $a1,31

32: li $v0,8

33: syscall

34:

35: la $a0,out_msg # write output message

36: li $v0,4

37: syscall

38:

39: la $t0,in_name

40: loop:

41: lb $t1,($t0)

42: beqz $t1,exit_loop # if NULL, we are done

43: blt $t1,’a’,no_change

44: bgt $t1,’z’,no_change

45: addu $t1,$t1,-32 # convert to uppercase

46: # ’A’-’a’ = -32

47: no_change:

48: sb $t1,($t0)

49: addu $t0,$t0,1 # increment pointer

50: j loop

51: exit_loop:

52: la $a0,in_name

53: li $v0,4

54: syscall

Example 13.3 Addition of individual digits of an integer—string version.

We have done the Pentium version of this example on page 107. Here, we present two versions

of this program. In the first version (this example), we read the input integer as a string. In

the next example, we read the number as an integer. Both versions take an integer input and

print the sum of the individual digits. For example, giving 12345 as the input produces 15 as

the output.

We use t0 to point to the digit that is to be processed. The running total is maintained in

t2. We convert each digit in the input number into its decimal equivalent by stripping off the

upper four bits. For example, the character 5 is represented in ASCII as 00110101 when

expressed in binary. To convert this to the number 5, we force the upper four bits to zero. This

is what the loop body (lines 42–50) does in the following program.

The loop iterates until it encounters either a NULL character (line 45) or a newline char-

acter (line 44). The reason for using two conditions, rather than just NULL-testing, is that the

string input system call actually copies the newline character when the ENTER key is pressed.

Section 13.3 Illustrative Examples 383

Thus, when the user enters less than 11 digits, a newline character is present in the string. On

the other hand, when an 11-digit number is entered, we do not see the newline character. In

this case, we have to use the NULL character to terminate the loop.

Program 13.3 Addition of individual digits—string version

1: # Add individual digits of a number ADDIGITS.ASM

2: #

3: # Objective: To add individual digits of an integer.

4: # The number is read as a string.

5: # Input: Requests a number from keyboard.

6: # Output: Outputs the sum.

7: #

8: # t0 - points to character string (i.e., input number)

9: # t1 - holds a digit for processing

10: # t2 - maintains the running total

11: #

12: ###################### Data segment ##########################

13:

14: .data

15: number_prompt:

16: .asciiz "Please enter a number (<11 digits): \n"

17: out_msg:

18: .asciiz "The sum of individual digits is: "

19: number:

20: .space 12

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,number_prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: la $a0,number # read the input number

32: li $a1,12

33: li $v0,8

34: syscall

35:

36: la $a0,out_msg # write output message

37: li $v0,4

38: syscall

384 Chapter 13 MIPS Assembly Language

39:

40: la $t0,number # pointer to number

41: li $t2,0 # init sum to zero

42: loop:

43: lb $t1,($t0)

44: beq $t1,0xA,exit_loop # if CR, we are done, or

45: beqz $t1,exit_loop # if NULL, we are done

46: and $t1,$t1,0x0F # strip off upper 4 bits

47: addu $t2,$t2,$t1 # add to running total

48:

49: addu $t0,$t0,1 # increment pointer

50: j loop

51: exit_loop:

52: move $a0,$t2 # output sum

53: li $v0,1

54: syscall

Example 13.4 Addition of individual digits of an integer—number version.

In this program we read the input as an integer using the read_int system call (lines 30

and 31). Since read_int call accepts signed integers, we convert any negative value to a

positive integer by using the abs instruction on line 33.

To separate individual digits, we divide the number by 10. The remainder of this division

gives us the rightmost digit. We repeat this process on the quotient of the division until the

quotient is zero. For example, dividing the number 12345 by 10 gives us 5 as the remainder

and 1234 as the quotient. Now dividing the quotient by 10 gives us 4 as the remainder and

123 as the quotient and so on. For this division, we use the unsigned divide instruction divu
(line 42). This instruction places the remainder and quotient in the HI and LO special registers.

Special move instructions mflo and mfhi are used to copy these two values into the t0 and

t3 registers (lines 44 and 45). The loop terminates if the quotient (in t0) is zero.

Program 13.4 Conversion to upper case

1: # Add individual digits of a number ADDIGITS2.ASM

2: #

3: # Objective: To add individual digits of an integer.

4: # To demonstrate DIV instruction.

5: # Input: Requests a number from keyboard.

6: # Output: Outputs the sum.

7: #

8: # t0 - holds the quotient

9: # t1 - holds constant 10

Section 13.3 Illustrative Examples 385

10: # t2 - maintains the running sum

11: # t3 - holds the remainder

12: #

13: ################### Data segment #####################

14:

15: .data

16: number_prompt:

17: .asciiz "Please enter an integer: \n"

18: out_msg:

19: .asciiz "The sum of individual digits is: "

20:

21: ################### Code segment #####################

22:

23: .text

24: .globl main

25: main:

26: la $a0,number_prompt # prompt user for input

27: li $v0,4

28: syscall

29:

30: li $v0,5 # read the input number

31: syscall # input number in $v0

32: move $t0,$v0

33: abs $t0,$t0 # get absolute value

34:

35: la $a0,out_msg # write output message

36: li $v0,4

37: syscall

38:

39: li $t1,10 # $t1 holds divisor 10

40: li $t2,0 # init sum to zero

41: loop:

42: divu $t0,$t1 # $t0/$t1

43: # leaves quotient in LO and remainder in HI

44: mflo $t0 # move quotient to $t0

45: mfhi $t3 # move remainder to $t3

46: addu $t2,$t2,$t3 # add to running total

47: beqz $t0,exit_loop # exit loop if quotient is 0

48: j loop

49: exit_loop:

50: move $a0,$t2 # output sum

51: li $v0,1

52: syscall

386 Chapter 13 MIPS Assembly Language

13.4 Procedures
MIPS provides two instructions to support procedures—jal and jr. These correspond to the

call and ret instructions of the IA-32 architecture. The jal (jump and link) instruction

jal proc_name

transfers control to proc name just like a jump instruction. Since we need the return address,

it also stores the address of the instruction following jal in ra register.

To return from a procedure, we use

jr $ra

which reads the return address from the ra register and transfers control to this address.

In the IA-32 architecture, procedures require the stack. The call instruction places the

return address on the stack and the ret instruction retrieves it from the stack to return from

a procedure. Thus, two memory accesses are involved to execute a procedure. In contrast,

procedures in MIPS can be implemented without using the stack. It uses the ra register for

this purpose, which makes procedure invocation and return faster than in an IA-32 processor.

However, this advantage is lost when we use recursive or nested procedures. This point will

become clear when we discuss recursive procedure examples in Chapter 16.

Parameter passing can be done via the registers or the stack. It is a good time to review our

discussion of parameter passing mechanisms in Chapter 4. In the IA-32 architecture, register-

based parameter passing is fairly restrictive due to the small number of registers available.

However, the large number of registers in MIPS makes this method attractive. We now use

two examples to illustrate how procedures are written in the MIPS assembly language.

Example 13.5 Finds minimum and maximum of three numbers.

This is a simple program to explain the basics of procedures in MIPS assembly language. The

main program requests three integers and passes them to two procedures—find min and

find max. Each procedure returns a value—minimum or maximum. Registers are used for

parameter passing as well as to return the result. Registers a1, a2, and a3 are used to pass

the three integers. Each procedure returns its result in v0.

To invoke a procedure, we use jal as shown on lines 42 and 45. The body of these

procedures is simple and straightforward to understand. When the procedure is done, a jr
instruction returns control back to the main program (see lines 83 and 97).

Program 13.5 A simple procedure example

1: # Find min and max of three numbers MIN_MAX.ASM

2: #

3: # Objective: Finds min and max of three integers.

4: # To demonstrate register-based parameter passing.

Section 13.4 Procedures 387

5: # Input: Requests three numbers from keyboard.

6: # Output: Outputs the minimum and maximum.

7: #

8: # a1, a2, a3 - three numbers are passed via these registers

9: #

10: ###################### Data segment ##########################

11: .data

12: prompt:

13: .asciiz "Please enter three numbers: \n"

14: min_msg:

15: .asciiz "The minimun is: "

16: max_msg:

17: .asciiz "\nThe maximum is: "

18: newline:

19: .asciiz "\n"

20:

21: ###################### Code segment ##########################

22:

23: .text

24: .globl main

25: main:

26: la $a0,prompt # prompt user for input

27: li $v0,4

28: syscall

29:

30: li $v0,5 # read the first number into $a1

31: syscall

32: move $a1,$v0

33:

34: li $v0,5 # read the second number into $a2

35: syscall

36: move $a2,$v0

37:

38: li $v0,5 # read the third number into $a3

39: syscall

40: move $a3,$v0

41:

42: jal find_min

43: move $s0,$v0

44:

45: jal find_max

46: move $s1,$v0

47:

48: la $a0,min_msg # write minimum message

388 Chapter 13 MIPS Assembly Language

49: li $v0,4

50: syscall

51:

52: move $a0,$s0 # output minimum

53: li $v0,1

54: syscall

55:

56: la $a0,max_msg # write maximum message

57: li $v0,4

58: syscall

59:

60: move $a0,$s1 # output maximum

61: li $v0,1

62: syscall

63:

64: la $a0,newline # write newline

65: li $v0,4

66: syscall

67:

68: li $v0,10 # exit

69: syscall

70:

71: #---

72: # FIND_MIN receives three integers in $a0, $a1, and $a2 and

73: # returns the minimum of the three in $v0

74: #---

75: find_min:

76: move $v0,$a1

77: ble $v0,$a2,min_skip_a2

78: move $v0,$a2

79: min_skip_a2:

80: ble $v0,$a3,min_skip_a3

81: move $v0,$a3

82: min_skip_a3:

83: jr $ra

84:

85: #---

86: # FIND_MAX receives three integers in $a0, $a1, and $a2 and

87: # returns the maximum of the three in $v0

88: #---

89: find_max:

90: move $v0,$a1

91: bge $v0,$a2,max_skip_a2

92: move $v0,$a2

Section 13.4 Procedures 389

93: max_skip_a2:

94: bge $v0,$a3,max_skip_a3

95: move $v0,$a3

96: max_skip_a3:

97: jr $ra

Example 13.6 Finds string length.

The previous example used the call-by-value mechanism to pass parameters via the registers.

In this example, we use the call-by-reference method to pass a string pointer via a0 (line 36).

The procedure finds the length of the string and returns it via v0 register.

The string length procedure scans the string until it encounters either a newline or a NULL

character (for the same reasons discussed in Example 13.3). These two termination conditions

are detected on lines 63 and 64.

Program 13.6 String length example

1: # Finds string length STR_LEN.ASM

2: #

3: # Objective: Finds length of a string.

4: # To demonstrate register-based pointer passing.

5: # Input: Requests a string from keyboard.

6: # Output: Outputs the string length.

7: #

8: # a0 - string pointer

9: # v0 - procedure returns string length

10: #

11: ###################### Data segment ##########################

12: .data

13: prompt:

14: .asciiz "Please enter a string: \n"

15: out_msg:

16: .asciiz "\nString length is: "

17: newline:

18: .asciiz "\n"

19: in_string:

20: .space 31

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

390 Chapter 13 MIPS Assembly Language

27: la $a0,prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: la $a0,in_string # read input string

32: li $a1,31 # buffer length in $a1

33: li $v0,8

34: syscall

35:

36: la $a0,in_string # call string length proc.

37: jal string_len

38: move $t0,$v0 # string length in $v0

39:

40: la $a0,out_msg # write output message

41: li $v0,4

42: syscall

43:

44: move $a0,$t0 # output string length

45: li $v0,1

46: syscall

47:

48: la $a0,newline # write newline

49: li $v0,4

50: syscall

51:

52: li $v0,10 # exit

53: syscall

54:

55: #---

56: # STRING_LEN receives a pointer to a string in $a0 and

57: # returns the string length in $v0

58: #---

59: string_len:

60: li $v0,0 # init $v0 (string length)

61: loop:

62: lb $t0,($a0)

63: beq $t0,0xA,done # if CR

64: beqz $t0,done # or NULL, we are done

65: addu $a0,$a0,1

66: addu $v0,$v0,1

67: b loop

68: done:

69: jr $ra

Section 13.5 Stack Implementation 391

13.5 Stack Implementation
MIPS does not explicitly support stack operations. In contrast, recall that the IA-32 architec-

ture provides instructions such as push and pop to facilitate stack operations. In addition,

a special stack pointer register (ESP) keeps the top-of-stack information. In MIPS, a register

plays the role of the stack pointer. We have to manipulate this register to implement the stack.

MIPS stack implementation has some similarities to the IA-32 implementation. For ex-

ample, stack grows downward, i.e., as we push items onto the stack, the address decreases.

Thus when reserving space on the stack for pushing values, we have to decrease the sp value.

For example, to push registers a0 and ra, we have to reserve eight bytes of stack space and

use sw to push the values as shown below:

sub $sp,$sp,8 # reserve 8 bytes of stack

sw $a0,0($sp) # save registers

sw $ra,4($sp)

This sequence is typically used at the beginning of a procedure to save registers. To restore

these registers before returning from the procedure, we can use the following sequence:

lw $a0,0($sp) # restore the two registers

lw $ra,4($sp)

addu $sp,$sp,8 # clear 8 bytes of stack

Example 13.7 Passing a variable number of parameters via the stack.

We use the variable parameter example discussed on page 146 to illustrate how the stack can

be used to pass parameters. The procedure sum receives a variable number of integers via

the stack. The parameter count is passed via a0. The main program reads a sequence of

integers from the input. Entering zero terminates the input. Each number read from the input

is directly placed on the stack (lines 36 and 37). Since sp always points to the last item

pushed onto the stack, we can pass this value to the procedure. Thus, a simple procedure call

(line 41) is sufficient to pass the parameter count and the actual values.

The procedure sum reads the numbers from the stack. As it reads, it decreases the stack

size (i.e., sp increases). The loop in the sum procedure terminates when a0 is zero (line 66).

When the loop is exited, the stack is also cleared of all the arguments.

Compared to the Pentium version, MIPS allows a more flexible access to parameters. In

Pentium, because the return address is pushed onto the stack, we had to use the EBP register

to access the parameters. In addition, we could not remove the numbers from the stack. The

stack had to be cleared in the main program by manipulating the SP register. We do not have

that problem in the MIPS implementation.

392 Chapter 13 MIPS Assembly Language

Program 13.7 Passing variable number of parameters to a procedure

1: # Sum of variable number of integers VAR_PARA.ASM

2: #

3: # Objective: Finds sum of variable number of integers.

4: # Stack is used to pass variable number of integers.

5: # To demonstrate stack-based parameter passing.

6: # Input: Requests integers from the user;

7: # terminated by entering a zero.

8: # Output: Outputs the sum of input numbers.

9: #

10: # a0 - number of integers passed via the stack

11: #

12: ###################### Data segment ##########################

13: .data

14: prompt:

15: .ascii "Please enter integers. \n"

16: .asciiz "Entering zero terminates the input. \n"

17: sum_msg:

18: .asciiz "The sum is: "

19: newline:

20: .asciiz "\n"

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: li $a0,0

32: read_more:

33: li $v0,5 # read a number

34: syscall

35: beqz $v0,exit_read

36: subu $sp,$sp,4 # reserve 4 bytes on stack

37: sw $v0,($sp) # store the number on stack

38: addu $a0,$a0,1

39: b read_more

40: exit_read:

41: jal sum # sum is returned in $v0

42: move $s0,$v0

Section 13.6 Summary 393

43:

44: la $a0,sum_msg # write output message

45: li $v0,4

46: syscall

47:

48: move $a0,$s0 # output sum

49: li $v0,1

50: syscall

51:

52: la $a0,newline # write newline

53: li $v0,4

54: syscall

55:

56: li $v0,10 # exit

57: syscall

58:

59: #---

60: # SUM receives the number of integers passed in $a0 and the

61: # actual numbers via the stack. It returns the sum in $v0.

62: #---

63: sum:

64: li $v0,0

65: sum_loop:

66: beqz $a0,done

67: lw $t0,($sp)

68: addu $sp,$sp,4

69: addu $v0,$v0,$t0

70: subu $a0,$a0,1

71: b sum_loop

72: done:

73: jr $ra

13.6 Summary
We have discussed the MIPS assembly language in detail. MIPS provides several basic in-

structions; the assembler supplements these instructions by several useful pseudoinstructions.

Unlike the IA-32 architecture, all instructions take 32 bits to encode. MIPS uses only three

different types of instruction formats.

MIPS architecture does not impose many restrictions on how the registers are used. Except

for a couple of registers, the programmer is fairly free to use these register as she wishes.

However, certain convention has been developed to make programs portable.

394 Chapter 13 MIPS Assembly Language

We have used several examples to illustrate the features of the MIPS assembly language.

We have done most of these examples in the Pentium assembly language. The idea in redoing

the same example set is to bring out the differences between the two assembly languages.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Absolute address

• Call-by-reference

• Call-by-value

• Instruction format

• MIPS stack implementation

• Procedure call

• SPIM assembler directives

• SPIM segments

• SPIM system calls

• Relative address

13.7 Exercises
13–1 What is the difference between a pseudoinstruction and an instruction?

13–2 What is the difference between .ASCII and .ASCIIZ assembler directives?

13–3 The IA-32 architecture provides instructions and registers to implement the stack. In

the MIPS architecture there is no such support for stack implementation. Describe how

the stack is implemented in MIPS.

13–4 Discuss the differences between the multiply instructions of the IA-32 and MIPS archi-

tectures.

13–5 Discuss the differences between the divide instructions of the IA-32 and MIPS archi-

tectures.

13–6 Describe the procedure invocation and return mechanisms in MIPS.

13–7 Write a simple assembly language program to see how the branch (b) and jump (j)

instructions are translated. Use SPIM to do the translation. You can use the “Text

Segment” display window of SPIM to check the translation (see Appendix D for details

on SPIM windows).

13–8 Use the SPIM simulator to find how the following pseudoinstructions are translated:

(a) rol $t1,$t1,3 (b) li $t0,5

rol $t1,$t1,$t0

(c) mul $t0,$v0,9 (d) div $t0,$t0,5

(e) rem $t0,$t0,5 (f) sle $a0,$a1,$a2

(g) sge $a0,$a1,$a2 (h) sgeu $a0,$a1,$a2

Section 13.8 Programming Exercises 395

(i) slt $a0,$a1,$a2 (j) sltu $a0,$a1,$a2

(k) move $a0,$t0

13–9 Discuss the differences between IA-32 and MIPS architectures to pass a variable num-

ber of parameters to procedures.

13–10 In the IA-32 architecture, register-based parameter passing mechanism is not pragmatic.

Why does it make sense to use this method in MIPS architecture?

13–11 Why are simple procedure calls and returns faster in MIPS than in IA-32?

13–12 Discuss the differences between IA-32 and MIPS architectures in accessing multidi-

mensional arrays.

13.8 Programming Exercises
13–P1 Modify the addigits.asm program such that it accepts a string from the keyboard

consisting of digit and nondigit characters. The program should display the sum of

the digits present in the input string. All nondigit characters should be ignored. For

example, if the input string is

ABC1?5wy76:˜2

the output of the program should be

sum of individual digits is: 21

13–P2 Write an assembly language program to encrypt digits as shown below:

input digit: 0 1 2 3 4 5 6 7 8 9

encrypted digit: 4 6 9 5 0 3 1 8 7 2

Your program should accept a string consisting of digit and nondigit characters. The

encrypted string should be displayed in which only the digits are affected. Then the user

should be queried whether he or she wants to terminate the program. If the response

is either ‘y’ or ‘Y’ you should terminate the program; otherwise, you should request

another input string from the keyboard.

The encryption scheme given here has the property that when you encrypt an already

encrypted string, you get back the original string. Use this property to verify your

program.

13–P3 Write a program that reads an input number (given in decimal) between 0 and 65,535

and displays the hexadecimal equivalent. You can read the input using the read_int
system call. As in the last exercise, you should query the user for program termination.

13–P4 Modify the above program to display the octal equivalent instead of the hexadecimal

equivalent of the input number.

396 Chapter 13 MIPS Assembly Language

13–P5 Write a procedure to perform string reversal. The procedure reverse receives a

pointer to a character string (terminated by a NULL character) and reverses the string.

For example, if the original string is

slap

the reversed string should read

pals

The main procedure should request the string from the user. It should also display the

reversed string as output of the program.

13–P6 Write a procedure locate to locate a character in a given string. The procedure re-

ceives a pointer to a NULL-terminated character string and the character to be located.

When the first occurrence of the character is located, its position is returned to main. If

no match is found, a negative value is returned. The main procedure requests a charac-

ter string and a character to be located and displays the position of the first occurrence

of the character returned by the locate procedure. If there is no match, a message

should be displayed to that effect.

13–P7 Write a procedure that receives a string (i.e., string pointer is passed to the procedure)

and removes all leading blank characters in the string. For example, if the input string

is (⊔ indicates a blank character)

⊔ ⊔ ⊔ ⊔ ⊔Read⊔⊔my⊔lips.

it will be modified by removing all leading blanks as

Read⊔⊔my⊔lips.

13–P8 Write a procedure that receives a string (i.e., string pointer is passed to the procedure)

and removes all leading and duplicate blank characters in the string. For example, if the

input string is (⊔ indicates a blank character)

⊔ ⊔ ⊔ ⊔ ⊔Read⊔ ⊔ ⊔my⊔ ⊔ ⊔ ⊔ ⊔lips.

it will be modified by removing all leading and duplicate blanks as

Read⊔my⊔lips.

13–P9 Write a complete assembly language program to read two matrices A and B and display

the result matrix C, which is the sum of A and B. Note that the elements of C can be

obtained as

C[i, j] = A[i, j] + B[i, j].

Your program should consist of a main procedure that calls the read_matrix proce-

dure twice to read data for A and B. It should then call the matrix_add procedure,

which receives pointers to A, B, C, and size of the matrices. Note that both A and B

should have the same size. The main procedure calls another procedure to display C.

Section 13.8 Programming Exercises 397

13–P10 Write a procedure to perform matrix multiplication of matrices A and B. The procedure

should receive pointers to the two input matrices A of size l × m, B of size m × n, the

product matrix C, and values l, m, and n. Also, the data for the two matrices should be

obtained from the user. Devise a suitable user interface to input these numbers.

13–P11 We have discussed merge sort in Programming Exercise 8–P7 (page 269). Write a

MIPS assembly language program to implement the merge sort.

13–P12 Write a procedure str_ncpy to mimic the strncpy function provided by the C

library. The function str_ncpy receives two strings, string1 and string2, and

a positive integer num. Of course, the procedure receives only the string pointers but

not the actual strings. It should copy at most the first num characters of string2 to

string1.

PART IV

Interrupt Processing

This part is dedicated to Pentium’s interrupt processing mechanism. We cover both

protected-mode and real-mode interrupt processing. It consists of two chapters: Chap-

ters 14 and 15.

Chapter 14 gives details on protected-mode interrupt processing. This chapter uses the

Linux system calls to facilitate our discussion of software interrupts.

Chapter 15 discusses the real-mode interrupt processing. This is the only chapter in this

book that uses DOS to explore programmed I/O and interrupt-driven I/O. The programs

given in Chapter 15 have been tested in the DOS window (Command Prompt) under Win-

dows XP. To run these programs, you have to copy the DOS versions of the I/O files—

io.mac and io.obj.

Chapter 14

Protected-Mode Interrupt

Processing

Objectives
• To describe the protected-mode interrupt mechanism of Pentium

• To explain software and hardware interrupts

• To introduce Pentium exceptions

• To illustrate how Linux system calls can be used to interface with system I/O devices

Interrupts, like procedures, can be used to alter a program’s control flow to a procedure called

an interrupt service routine. Unlike procedures, which can be invoked by a call instruction,

interrupt service routines can be invoked either in software (called software interrupts) or

by hardware (called hardware interrupts). After introducing interrupts in Section 14.1 we

discuss a taxonomy of interrupts in Section 14.2. This chapter looks at the protected-mode

interrupt mechanism. The real-mode interrupts are discussed in the next chapter. The interrupt

invocation mechanism in the protected mode is described in Section 14.3. Pentium exceptions

are discussed in Section 14.4. The next two sections deal with software interrupts and file I/O.

We use Linux system calls to illustrate how we can access I/O devices like the keyboard and

the display (Section 14.7). Hardware interrupts are introduced in Section 14.8. The last

section summarizes the chapter.

14.1 Introduction
Interrupt is a mechanism by which a program’s flow control can be altered. We have seen two

other mechanisms to do the same: procedures and jumps. While jumps provide a one-way

401

402 Chapter 14 Protected-Mode Interrupt Processing

transfer of control, procedures provide a mechanism to return control to the point of calling

when the called procedure is completed.

Interrupts provide a mechanism similar to that of a procedure call. Causing an interrupt

transfers control to a procedure, which is referred to as an interrupt service routine (ISR). An

ISR is also called a handler. When the ISR is completed, the interrupted program resumes

execution as if it were not interrupted. This behavior is analogous to a procedure call. There

are, however, some basic differences between procedures and interrupts that make interrupts

almost indispensable.

One of the main differences is that interrupts can be initiated by both software and hard-

ware. In contrast, procedures are purely software-initiated. The fact that interrupts can be

initiated by hardware is the principal factor behind much of the power of interrupts. This

capability gives us an efficient way by which external devices (outside the processor) can get

the processor’s attention.

Software-initiated interrupts—called simply software interrupts—are caused by executing

the int instruction. Thus these interrupts, like procedure calls, are anticipated or planned

events. For example, when you are expecting a response from the user (e.g., Y or N), you can

initiate an interrupt to read a character from the keyboard. What if an unexpected situation

arises that requires immediate attention of the processor? Suppose that you have written a

program to display the first 90 Fibonacci numbers on the screen. While running the program,

however, you realized that your program never terminates because of a simple programming

mistake (e.g., you forgot to increment the index variable controlling the loop). Obviously, you

want to abort the program and return control to the operating system. As you know, this can

be done by ctrl-c in Linux (ctrl-break on Windows). The important point is that this

is not an anticipated event—so cannot be effectively programmed into the code.

The interrupt mechanism provides an efficient way to handle unanticipated events. Re-

ferring to the previous example, the ctrl-c could cause an interrupt to draw the attention

of the processor away from the user program. The interrupt service routine associated with

ctrl-c can terminate the program and return control to the operating system.

Another difference between procedures and interrupts is that ISRs are normally memory-

resident. In contrast, procedures are loaded into memory along with application programs.

Some other differences—such as using numbers to identify interrupts rather than names, using

an invocation mechanism that automatically pushes the flags register onto the stack, and so

on—are pointed out in later sections.

14.2 A Taxonomy of Interrupts
We have already identified two basic categories of interrupts—software-initiated and

hardware-initiated (see Figure 14.1). The third category is called exceptions. Exceptions

handle instruction faults. An example of an exception is the divide error fault, which is gener-

ated whenever divide by 0 is attempted. This error condition occurs during the div or idiv
instruction execution if the divisor is 0. We discuss exceptions in Section 14.4.

Section 14.3 Interrupt Processing in the Protected Mode 403

Maskable

Software Interrupts

TrapsAborts Faults

Interrupts

Hardware InterruptsExceptions

Nonmaskable

Figure 14.1 A taxonomy of Pentium interrupts.

Software interrupts are written into a program by using the int instruction. The main

use of software interrupts is in accessing I/O devices such as a keyboard, printer, display

screen, disk drive, etc. Software interrupts can be further classified into system-defined and

user-defined.

Hardware interrupts are generated by hardware devices to get the attention of the pro-

cessor. For example, when you strike a key, the keyboard hardware generates an external

interrupt, causing the processor to suspend its present activity and execute the keyboard in-

terrupt service routine to process the key. After completing the keyboard ISR, the processor

resumes what it was doing before the interruption.

Hardware interrupts can be either maskable or nonmaskable. The processor always attends

the nonmaskable interrupt (NMI) immediately. One example of NMI is the RAM parity error

indicating memory malfunction.

Maskable interrupts can be delayed until execution reaches a convenient point. As an ex-

ample, let us assume that the processor is executing a main program. An interrupt occurs.

As a result, the processor suspends main as soon as it finishes the current instruction and

transfers control to the ISR1. If ISR1 has to be executed without any interruption, the pro-

cessor can mask further interrupts until it is completed. Suppose that, while executing ISR1,

another maskable interrupt occurs. Service to this interrupt would have to wait until ISR1 is

completed. We discuss hardware interrupts in a later section.

14.3 Interrupt Processing in the Protected Mode
Let’s look at interrupt processing in the protected mode. Unlike procedures, where a name is

given to identify a procedure, interrupts are identified by a type number. Pentium supports 256

different interrupt types. The interrupt type ranges from 0 to 255. The interrupt type number,

which is also called a vector, is used as an index into a table that stores the addresses of ISRs.

This table is called the interrupt descriptor table (IDT). Like the global and local descriptor

tables GDT and LDT (discussed in Chapter 3), each descriptor is essentially a pointer to an

ISR and requires eight bytes. The interrupt type number is scaled by 8 to form an index into

the IDT.

404 Chapter 14 Protected-Mode Interrupt Processing

ADD

Gate for

interrupt 1

Segment
selector

Segment
selector

Segment
selector

16 bits32 bits

4 bytes

047 1516

Gate for

interrupt 0

Gate for

interrupt N

Offset

Offset

Offset

IDT limitIDT base address

IDTR

Figure 14.2 Organization of the IDT. The IDTR register stores the 32-bit IDT base address and a 16-bit

value indicating the IDT size.

The IDT may reside anywhere in physical memory. The location of the IDT is maintained

in an IDT register IDTR. The IDTR is a 48-bit register that stores the 32-bit IDT base address

and a 16-bit IDT limit value as shown in Figure 14.2. However, the IDT does not require

more than 2048 bytes, as there can be at most 256 descriptors. In a system, the number of

descriptors could be much smaller than the maximum allowed. In this case, the IDT limit

can be set to the required size. If the referenced descriptor is outside the IDT limit, the

processor enters the shutdown mode. In this mode, instruction execution is stopped until

either a nonmaskable interrupt or a reset signal is received.

There are two special instructions to load (lidt) and store (sidt) the contents of the

IDTR register. Both instructions take the address of a 6-byte memory as the operand.

The IDT can have three types of descriptors: interrupt gate, trap gate, and task gate. We

will not discuss task gates, as they are not directly related to the interrupt mechanism that we

are interested in. The format of the other two gates is shown in Figure 14.3. Both gates store

identical information: a 16-bit segment selector, a 32-bit offset, a descriptor privilege level

(DPL), and a P bit to indicate whether the segment is present or not.

When an interrupt occurs, the segment selector is used to select a segment descriptor that

is in either the GDT or the current LDT. Recall from our discussion in Chapter 3 that the TI bit

of the segment descriptor identifies whether the GDT or the current LDT should be used. The

segment descriptor provides the base address of segment that contains the interrupt service

routine as shown in Figure 14.4. The offset part comes from the interrupt gate.

Section 14.3 Interrupt Processing in the Protected Mode 405

P
D

L

P
D

L

Trap gate

01532

15 016 5 4781232

16

POffset 31−16

Offset 15−0Segment selector

Not used0 1 1 1 1 0 0 0

Interrupt gate

01532

15 016 5 4781232

16

POffset 31−16

Offset 15−0Segment selector

Not used0 0 00 1 1 1 0

Figure 14.3 Pentium interrupt descriptors.

What happens when an interrupt occurs depends on whether there is a privilege change or

not. In the remainder of the chapter, we look at the simple case of no privilege change. In this

case, the following actions are taken on an interrupt:

1. Push the EFLAGS register onto the stack;

2. Clear the interrupt and trap flags;

3. Push CS and EIP registers onto the stack;

4. Load CS with the 16-bit segment selector from the interrupt gate;

5. Load EIP with the 32-bit offset values from the interrupt gate.

On receiving an interrupt, the flags register is automatically saved on the stack. The interrupt

and trap flags are cleared to disable further interrupts. Usually, this flag is set in ISRs unless

there is a special reason to disable other interrupts. The interrupt flag can be set by sti
and cleared by cli assembly language instructions. Both of these instructions require no

operands. There are no special instructions to manipulate the trap flag. We have to use popf
and pushf to modify the trap flag. We give an example of this in the next chapter (see

page 441).

The current CS and EIP values are pushed onto the stack. The CS and EIP registers are

loaded with the segment selector and offset from the interrupt gate, respectively. Note that

406 Chapter 14 Protected-Mode Interrupt Processing

GDT or LDT

segment

selector

ADD

ISR

Code segment

IDT

Base

address

Interrupt type

Offset

Figure 14.4 Protected-mode Pentium interrupt invocation.

when we load the CS register with the 16-bit segment selector, the invisible part consisting of

the base address, segment limit, access rights, and so on is also loaded. The stack state after

an interrupt is shown in Figure 14.5a.

Interrupt processing through a trap gate is similar to that through an interrupt gate except

for the fact that trap gates do not modify the IF flag.

While the previous discussion holds for all interrupts and traps, some types of exceptions

also push an error code onto the stack as shown Figure 14.5b. The exception handler can use

this error code in identifying the cause for the exception.

Section 14.4 Exceptions 407

(a) (b)

? ?

EFLAGS

EIPESP

CS

ESP

? ?

EFLAGS

EIP

CS

Error code

Figure 14.5 Stack state after an interrupt invocation.

Returning from an interrupt handler Just like procedures, ISRs should end with a return

statement to send control back to the interrupted program. The interrupt return (iret) is used

for this purpose. The last instruction of an ISR should be the iret instruction. It serves the

same purpose as ret for procedures. The actions taken on iret are

1. Pop the 32-bit value on top of the stack into the EIP register;

2. Pop the 16-bit value on top of the stack into the CS register;

3. Pop the 32-bit value on top of the stack into the EFLAGS register.

14.4 Exceptions
The exceptions are classified into faults, traps, and aborts depending on the way they are re-

ported and whether the instruction that is interrupted is restarted. Faults and traps are reported

at instruction boundaries. Faults use the boundary before the instruction during which the

exception was detected. When a fault occurs, the system state is restored to the state before

the current instruction so that the instruction can be restarted. The divide error, for instance,

is a fault detected during the div or idiv instruction. The processor, therefore, restores the

state to correspond to the one before the divide instruction that caused the fault. Furthermore,

the instruction pointer is adjusted to point to the divide instruction so that, after returning from

the exception handler, the divide instruction is reexecuted.

Another example of a fault is the segment-not-present fault. This exception is caused by

a reference to data in a segment that is not in memory. Then, the exception handler must load

the missing segment from the disk and resume program execution starting with the instruction

that caused the exception. In this example, it clearly makes sense to restart the instruction that

caused the exception.

408 Chapter 14 Protected-Mode Interrupt Processing

Table 14.1 The First Five Dedicated Interrupts

Interrupt type Purpose

0 Divide error

1 Single-step

2 Nonmaskable interrupt (NMI)

3 Breakpoint

4 Overflow

Traps, on the other hand, are reported at the instruction boundary immediately following

the instruction during which the exception was detected. For instance, the overflow exception

(interrupt 4) is a trap. Therefore, no instruction restart is done. User-defined interrupts are

also examples of traps.

Aborts are exceptions that report severe errors. Examples include hardware errors and

inconsistent values in system tables.

There are several predefined interrupts. These are called dedicated interrupts. These

include the first five interrupts as shown in Table 14.1. The NMI is a hardware interrupt and is

discussed in Section 14.8. A brief description of the remaining four interrupts is given here.

Divide Error Interrupt: The processor generates a type 0 interrupt whenever executing a

divide instruction—either div (divide) or idiv (integer divide)—results in a quotient that

is larger than the destination specified. The default interrupt handler on Linux displays a

Floating point exception message and terminates the program.

Single-Step Interrupt: Single-stepping is a useful debugging tool to observe the behavior of

a program instruction by instruction. To start single-stepping, the trap flag (TF) bit in the flags

register should be set (i.e., TF = 1). When TF is set, the CPU automatically generates a type

1 interrupt after executing each instruction. Some exceptions do exist, but we do not worry

about them here.

The interrupt handler for the type 1 interrupt can be used to display relevant information

about the state of the program. For example, the contents of all registers could be displayed.

In the next chapter, we present an example program that initiates and stops single-stepping

(see Section 15.5 on page 441).

To end single stepping, the TF should be cleared. The instruction set, however, does not

have instructions to directly manipulate the TF bit. Instead, we have to resort to indirect

means. This is illustrated in the next chapter by means of an example (see page 441).

Breakpoint Interrupt: If you have used a debugger, which you should have by now, you

already know the usefulness of inserting breakpoints while debugging a program. The type

Section 14.5 Software Interrupts 409

3 interrupt is dedicated to the breakpoint processing. This type of interrupt can be generated

by using the special single-byte form of int 3 (opcode CCH). Using the int 3 instruction

automatically causes the assembler to encode the instruction into the single-byte version. Note

that the standard encoding for the int instruction is two bytes long.

Inserting a breakpoint in a program involves replacing the program code byte by CCH

while saving the program byte for later restoration to remove the breakpoint. The standard

2-byte version of int 3 can cause problems in certain situations, as there are instructions

that require only a single byte to encode.

Overflow Interrupt: The type 4 interrupt is dedicated to handling overflow conditions. There

are two ways by which a type 4 interrupt can be generated: either by int 4 or by into.

Like the breakpoint interrupt, into requires only one byte to encode, as it does not require

the specification of the interrupt type number as part of the instruction. Unlike int 4, which

unconditionally generates a type 4 interrupt, into generates a type 4 interrupt only if the

overflow flag is set. We do not normally use into, as the overflow condition is usually

detected and processed by using the conditional jump instructions jo and jno.

14.5 Software Interrupts
Software interrupts are initiated by executing an interrupt instruction. The format of this

instruction is

int interrupt-type

where interrupt-type is an integer in the range 0 through 255 (both inclusive). Thus a

total of 256 different types is possible. This is a sufficiently large number, as each interrupt

type can be parameterized to provide several services. For example, Linux provides a large

number of services via int 0x80. In fact, it provides more than 180 different system calls!

All these system calls are invoked by int 0x80. The required service is identified by plac-

ing the system call number in the EAX register. If the number of arguments required for a

systems call is less than six, these are placed in other registers. Usually, the system call also

returns values in registers. We give details on some of the file access services provided by

int 0x80 in the next section.

Linux System Calls

Of the 256 interrupt vectors supported by Pentium, Linux uses the first 32 vectors (i.e., from

0 to 31) for exceptions and nonmaskable interrupts. The next 16 vectors (from 32 to 47) are

used for hardware interrupts generated through interrupt request lines (IRQs) (discussed in

the next chapter). It uses one vector (128 or 0x80) for software interrupt to provide system

services. Even though only one interrupt vector is used for system services, Linux provides

several services using this interrupt.

410 Chapter 14 Protected-Mode Interrupt Processing

14.6 File I/O
In this section we give several examples to perform file I/O operations. In Linux as in UNIX,

the keyboard and display are treated as stream files. So reading from the keyboard is not any

different from reading a file from the disk. If you have done some file I/O in C, it is relatively

easy to understand the following examples. Don’t worry if you are not familiar with the file

I/O; we give enough details here.

The system sees the input and output data as a stream of bytes. It does not make any

logical distinction whether the byte stream is coming from a disk file or the keyboard. This

makes it easy to interface with the I/O devices like keyboard and display. Three standard file

streams are defined: standard input (stdin), standard output (stdout), and standard error

(stderr). The default association for the standard input is the keyboard; for the other two,

it is the display.

14.6.1 File Descriptor

For each open file, a small 16-bit integer is assigned as a file id. These magic numbers are

called the file descriptors. Before accessing a file, it must first be opened or created. To open

or create a file, we need the file name, mode in which it should be opened or created, and so

on. The file descriptor is returned by the file open or create system calls. Once a file is

open or created, we use the file descriptor to access the file.

We don’t have to open the three standard files mentioned above. They are automatically

opened for us. These files are assigned the lowest three integers: stdin (0), stdout (1),

and stderr (2).

14.6.2 File Pointer

A file pointer is associated with each open file. The file pointer specifies an offset in bytes

into the file relative to the beginning of the file. A file itself is viewed as a sequence of bytes

or characters. The file pointer specifies the location in the file for the subsequent read or write

operation.

When a file is opened, the file pointer of that file is set to zero. In other words, the file

pointer points to the first byte of the file. Sequential access to the file is provided by updating

the file pointer to move past the data read or written. Direct access, or opposed to sequential

access, to a file is provided by simply manipulating the file pointer.

14.6.3 File System Calls

System calls described in this section provide access to the data in disk files. As discussed

previously, before accessing the data stored in a file, we have to open the file. We can only

open a file if it already exists. Otherwise, we have to create a new file, in which case there

is no data and our intent should be to write something into the file. Linux provides two

separate functions—one to open an existing file (system call 5) and the other to create a new

Section 14.6 File I/O 411

file (system call 8).

Once a file is opened or created, the data from that file can be read or data can be written

into the file. We can use system call 3 to read data from a file and data can be written to

a file by using system call 4. In addition, since disks allow direct access to the data stored,

data contained in a disk file can be accessed directly or randomly. To provide direct access

to the data stored in a file, the file pointer should be moved to the desired position in the file.

The system call 19 facilitates this process. Finally, when processing of data is completed we

should close the file. We use system call number 6 to close an open file.

A file name (you can include the path if you wish) is needed only to open or create file.

Once a file is opened or created, a file descriptor is returned and all subsequent accesses to the

file should use this file descriptor.

The remainder of this section describes some of the file system calls.

System call 8 — Create and open a file

Inputs: EAX = 8

EBX = file name

ECX = file permissions

Returns: EAX = file descriptor

Error: EAX = error code

This system call can be used to create a new file. The EBX should point to the file name string,

which can include the path. The ECX should be loaded with file permissions for owner, group

and others as you would in the Linux (using chmod command) to set the file permissions. File

permissions are represented by three groups of three bits as shown below:

R W X R W X R W X

345 012678

User Group Other

For each group, you can specify read (R), write (W), and execute (X) permissions. For

example, if you want to give read, write, and execute for the owner but no access to anyone

else, set the three owner permission bits to 1 and other bits to 0. Using the octal number

system, we represent this number as 0700. If you want to give read, write, and execute for the

owner, read permission to the group, and no access to others, you can set the permissions as

0740. (Note that octal numbers are indicated by prefixing them with a zero as in the examples

here.)

The file is opened in read/write access mode and a file descriptor (a positive integer) is

returned in EAX if there is no error. In case of an error, the error code (a negative integer)

is placed in EAX. For example, a create error may occur due to nonexistent directory in the

specified path, specified file already exists, or if there are device access problems, and so on.

As we see next, we can also use file open to create a file.

412 Chapter 14 Protected-Mode Interrupt Processing

System call 5 — Open a file

Inputs: EAX = 5

EBX = file name

ECX = file access mode

EDX = file permissions

Returns: EAX = file descriptor

Error: EAX = error code

This function can be used to open an existing file. It takes the file name and file mode in-

formation as in the file-create system call. In addition, it takes the file access mode in ECX

register. This field gives information on how the file can be accessed. Some interesting values

are read-only (0), write-only (1), and read-write (2). Why is access mode specification impor-

tant? The simple answer is to provide security. A file that is used as an input file to a program

can be opened as a read-only file. Similarly, an output file can be opened as a write-only file.

This eliminates accidental writes or reads. This specification facilitates, for example, access

to files for which you have read-only access permission.

We can use this system call to create a file by specifying 0100 for file access mode. This

is equivalent to the file-create system call we discussed before. We can erase contents of a

file by specifying 01000 for the access mode. This leaves the file pointer at the beginning of

the file. If we want to append to the existing contents, we can specify 02000 to leave the file

pointer at the end.

As with the create system call, file descriptor and error code are returned in the EAX

register.

System call 3 — Read from a file

Inputs: EAX = 3

EBX = file descriptor

ECX = pointer to input buffer

EDX = buffer size

(maximum number of bytes to read)

Returns: EAX = number of bytes read

Error: EAX = error code

Before calling this function to read data from a previously opened or created file, the number

of bytes to read should be specified in EDX and ECX should point to a data buffer into which

the data read from the file is placed. The file is identified by giving its descriptor in EBX.

The system attempts to read EDX bytes from the file starting from the current file pointer

location. Thus, by manipulating the file pointer (see lseek system call discussed later), we

can use this function to read data from a random location in a file.

After the read is complete, the file pointer is updated to point to the byte after the last byte

read. Thus, successive calls would give us sequential access to the file.

Section 14.6 File I/O 413

Upon completion, if there is no error, EAX contains the actual number of bytes read

from the file. If this number is less than that specified in EDX, the only reasonable expla-

nation is that the end of file has been reached. Thus, we can use this condition to detect

end-of-file.

System call 4 — Write to a file

Inputs: EAX = 4

EBX = file descriptor

ECX = pointer to output buffer

EDX = buffer size (number bytes to write)

Returns: EAX = number of bytes written

Error: EAX = error code

This function can be used to write to a file that is open in write or read/write access mode.

Of course, if a file created, it is automatically opened in read/write access mode. The input

parameters have similar meaning as in the read system call. On return, if there is no error,

EAX contains the actual number of bytes written to the file. This number should normally be

equal to that specified in EDX. If not, there was an error—possibly due to disk full condition.

System call 6 — Close a file

Inputs: EAX = 6

EBX = file descriptor

Returns: EAX = —

Error: EAX = error code

This function can be used to close an open file. It is not usually necessary to check for errors

after closing a file. The only reasonable error scenario is when EBX contains an invalid file

descriptor.

System call 19 — lseek (Updates file pointer)

Inputs: EAX = 19

EBX = file descriptor

ECX = offset

EDX = whence

Returns: EAX = byte offset from the beginning of file

Error: EAX = error code

Thus far, we processed files sequentially. The file pointer remembers the position in the file.

As we read from or write to the file, the file pointer is advanced accordingly. If we want to

have random access to a file rather than accessing sequentially, we need to manipulate the file

pointer.

414 Chapter 14 Protected-Mode Interrupt Processing

This system call allows us to reposition the file pointer. As usual, the file descriptor is

loaded into EBX. The offset to be added to the file pointer is given in ECX. This offset can

added relative to the beginning of file, end of file, or current position. The whence value in

EDX specifies this reference point:

Reference position whence value

Beginning of file 0

Current position 1

End of file 2

These system calls allow us to write file I/O programs. Since keyboard and display are

treated as files as well, we can write assembly language programs to access these I/O devices.

14.7 Illustrative Examples
We present three examples that use the file I/O system calls described in the last section. The

first two are taken from the I/O routines we have used (see Appendix B for details).

Example 14.1 Procedure to write a character.

In this example we look at the PutCh procedure we used to write a character to the display.

This is done by using the write system call. We specify stdout as the file to be written. The

procedure is shown in Program 14.1. Since the character to be displayed is received in the AL

register, we store it in temp_char before loading EAX with system call number 4. We load

the temp_char pointer in ECX. Since we want to read just one character, we load 1 into

EDX (line 10). We preserve the registers by using pusha and popa on lines 5 and 12.

Program 14.1 Procedure to write a character to the display

1: ;--

2: ; Put character procedure receives the character in AL.

3: ;--

4: putch:

5: pusha

6: mov [temp_char],AL

7: mov EAX,4 ; 4 = write

8: mov EBX,1 ; 1 = std output (display)

9: mov ECX,temp_char ; pointer to char buffer

10: mov EDX,1 ; # bytes = 1

11: int 0x80

12: popa

13: ret

Section 14.7 Illustrative Examples 415

Example 14.2 Procedure to read a string.

In this example, we look at the string read function getstr. We can read a string by using

a single file read system call as shown in Program 14.2. Since we use the dec instruction,

which modifies the flags register, we preserve its contents by saving and restoring the flags

register using pushf (line 7) and popf (line 16). Since the file read system call returns the

number of characters read in EAX, we can add this value (after decrementing) to the buffer

pointer to append a NULL character (line 15). This returns the string in the NULL-terminated

format.

Program 14.2 Procedure to read a string from the keyboard

1: ;--

2: ; Get string procedure receives input buffer pointer in EDI

3: ; and the buffer size in ESI.

4: ;--

5: getstr:

6: pusha

7: pushf

8: mov EAX,3 ; file read service

9: mov EBX,0 ; 0 = std input (keyboard)

10: mov ECX,EDI ; pointer to input buffer

11: mov EDX,ESI ; input buffer size

12: int 0x80

13: dec EAX

14: done_getstr:

15: mov byte[EDI+EAX],0 ; append NULL character

16: popf

17: popa

18: ret

Example 14.3 A file copy program.

This example uses file copy to show how disk files can be manipulated using the file I/O

system calls. The program requests the input and output file names (lines 27–31). It opens

the input file in read-only mode using the open file system call (lines 33–39). If the call is

successful, it returns the file descriptor (a positive integer) in EAX. In case of an error, a

negative value is returned in EAX. This error check is done on line 41. If there is an error in

opening the file, the program displays the error message and quits. Otherwise, it creates the

output file (lines 47–53). A similar error check is done for the output file (lines 55–59).

File copy is done by reading a block of data from the input file and writing it to the output

file. The block size is determined by the buffer size allocated for this purpose (see line 23).

416 Chapter 14 Protected-Mode Interrupt Processing

The copy loop on lines 61–79 consists of three parts:

• Read a block of BUF_SIZE bytes from the input file (lines 62–67);

• Write the block to the output file (lines 69–74);

• Check to see if the end of file has been reached. As discussed before, this check is done

by comparing the number of bytes read by the file-read system call (which is copied to

EDX) to BUF_SIZE. If the number of bytes read is less than BUF_SIZE, we know we

have reached the end of file (lines 76 and 77).

After completing the copying process, we close the two open files (lines 81–85).

Program 14.3 File copy program using the file I/O services

1: ; A file copy program file_copy.asm

2: ;

3: ; Objective: To copy a file using the int 0x80 services.

4: ; Input: Requests names of the input and output files.

5: ; Output: Creates a new output file and copies contents

6: ; of the input file.

7:

8: %include "io.mac"

9:

10: %define BUF_SIZE 256

11:

12: .DATA

13: in_fn_prompt db ’Please enter the input file name: ’,0

14: out_fn_prompt db ’Please enter the output file name: ’,0

15: in_file_err_msg db ’Input file open error.’,0

16: out_file_err_msg db ’Cannot create output file.’,0

17:

18: .UDATA

19: in_file_name resb 30

20: out_file_name resb 30

21: fd_in resd 1

22: fd_out resd 1

23: in_buf resb BUF_SIZE

24:

25: .CODE

26: .STARTUP

27: PutStr in_fn_prompt ; request input file name

28: GetStr in_file_name,30 ; read input file name

29:

30: PutStr out_fn_prompt ; request output file name

31: GetStr out_file_name,30 ; read output file name

Section 14.7 Illustrative Examples 417

32:

33: ;open the input file

34: mov EAX,5 ; file open

35: mov EBX,in_file_name ; pointer to input file name

36: mov ECX,0 ; file access bits (0 = read only)

37: mov EDX,0700 ; file permissions

38: int 0x80

39: mov [fd_in],EAX ; store fd for use in read routine

40:

41: cmp EAX,0 ; open error if fd < 0

42: jge create_file

43: PutStr in_file_err_msg

44: nwln

45: jmp done

46:

47: create_file:

48: ;create output file

49: mov EAX,8 ; file create

50: mov EBX,out_file_name; pointer to output file name

51: mov ECX,0700 ; read/write/exe by owner only

52: int 0x80

53: mov [fd_out],EAX ; store fd for use in write routine

54:

55: cmp EAX,0 ; create error if fd < 0

56: jge repeat_read

57: PutStr out_file_err_msg

58: nwln

59: jmp close_exit ; close the input file & exit

60:

61: repeat_read:

62: ; read input file

63: mov EAX,3 ; file read

64: mov EBX,[fd_in] ; file descriptor

65: mov ECX,in_buf ; input buffer

66: mov EDX,BUF_SIZE ; size

67: int 0x80

68:

69: ; write to output file

70: mov EDX,EAX ; byte count

71: mov EAX,4 ; file write

72: mov EBX,[fd_out] ; file descriptor

73: mov ECX,in_buf ; input buffer

74: int 0x80

75:

418 Chapter 14 Protected-Mode Interrupt Processing

76: cmp EDX,BUF_SIZE ; EDX = # bytes read

77: jl copy_done ; EDX < BUF_SIZE

78: ; indicates end-of-file

79: jmp repeat_read

80: copy_done:

81: mov EAX,6 ; close output file

82: mov EBX,[fd_out]

83: close_exit:

84: mov EAX,6 ; close input file

85: mov EBX,[fd_in]

86: done:

87: .EXIT

14.8 Hardware Interrupts
We have seen how interrupts can be caused by the software instruction int. Since these

instructions are placed in a program, software interrupts are called synchronous events. Hard-

ware interrupts, on the other hand, are of hardware origin and asynchronous in nature. These

interrupts are used by I/O devices such as the keyboard to get the processor’s attention.

As discussed before, hardware interrupts can be further divided into either maskable or

nonmaskable interrupts (see Figure 14.1). A nonmaskable interrupt (NMI) can be triggered by

applying an electrical signal on the NMI pin of Pentium. This interrupt is called nonmaskable

because the CPU always responds to this signal. In other words, this interrupt cannot be

disabled under program control. The NMI causes a type 2 interrupt.

Most hardware interrupts are of maskable type. To cause this type of interrupt, an elec-

trical signal should be applied to the INTR (INTerrupt Request) input of Pentium. Pentium

recognizes the INTR interrupt only if the interrupt enable flag (IF) bit of the flags register is

set to 1. Thus, these interrupts can be masked or disabled by clearing the IF bit. Note that we

can use sti and cli to set and clear this bit in the flags register, respectively.

How Does the CPU Know the Interrupt Type?

Recall that every interrupt should be identified by a vector (a number between 0 and 255),

which is used as an index into the interrupt vector table to obtain the corresponding ISR

address. This interrupt invocation procedure is common to all interrupts, whether caused by

software or hardware.

In response to a hardware interrupt request on the INTR pin, the processor initiates an

interrupt acknowledge sequence. As part of this sequence, the processor sends out an interrupt

acknowledge (INTA) signal, and the interrupting device is expected to place the interrupt

vector on the data bus (see Figure 15.4 on page 447). The processor reads this value and uses

it as the interrupt vector.

Section 14.9 Summary 419

How Can More Than One Device Interrupt?

From the above description, it is clear that all interrupt requests from external devices should

be input via the INTR pin of Pentium. While it is straightforward to connect a single device,

computers typically have more than one I/O device requesting interrupt service. For example,

the keyboard, hard disk, and floppy disk all generate interrupts when they require the attention

of the processor.

When more than one device interrupts, we have to have a mechanism to prioritize these

interrupts (if they come simultaneously) and forward only one interrupt request at a time to

the processor while keeping the other interrupt requests pending for their turn. This mech-

anism can be implemented by using a special chip—the Intel 8259 Programmable Interrupt

Controller. We give details of this chip in the next chapter (see Section 15.7.1 on page 446).

14.9 Summary
Interrupts provide a mechanism to transfer control to an interrupt service routine. The mech-

anism is similar to that of a procedure call. However, while procedures can be invoked only

by a procedure call in software, interrupts can be invoked by both hardware and software.

Software interrupts are generated using the int instruction. Hardware interrupts are gen-

erated by I/O devices. These interrupts are used by I/O devices to interrupt the processor to

service their requests.

Software interrupts are often used to support access to the system I/O devices. Linux

provides a high-level interface to the hardware with software interrupts. We introduced Linux

system calls and discussed how these calls can be used to access I/O devices. The system

calls are invoked using int 0x80. We used several examples to illustrate the utility of

these calls in reading from the keyboard, writing to the screen, and accessing files.

All interrupts, whether hardware-initiated or software-initiated, are identified by an in-

terrupt type number that is between 0 and 255. This interrupt number is used to access the

interrupt vector table to get the associated interrupt vector. We briefly introduced hardware

interrupts here; a more detailed discussion is provided in the next chapter.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Exceptions

• File descriptor

• File I/O

• File pointer

• Hardware interrupts

• Interrupt descriptors

• Linux system calls

• Protected-mode interrupt processing

• Software interrupts

• Taxonomy of interrupts

420 Chapter 14 Protected-Mode Interrupt Processing

14.10 Exercises
14–1 What is the difference between a procedure and an interrupt service routine?

14–2 In invoking an interrupt service routine, the flags register is automatically saved on the

stack. However, a procedure call does not automatically save the flags register. Explain

the rationale for this difference.

14–3 How would you categorize the interrupts generated by the keyboard?

14–4 Explain how one can disable all maskable hardware interrupts.

14–5 We have stated that the into instruction generates a type 4 interrupt. As you know, we

can also generate this type of interrupt using the

int 4

instruction. What is the difference between these two instructions?

14–6 Is there any difference between how an ISR is invoked if the interrupt is caused by a

software int instruction or hardware interrupt or exception?

14–7 What is a file descriptor?

14–8 What is the file pointer? How is it used to facilitate random access to a file?

14–9 How do you detect the end-of-file condition in a file read operation?

14.11 Programming Exercises
14–P1 Write a procedure using Linux system calls to write a string with semantics similar

to the PutStr procedure we used to output a string. You should also write a main

program to test this procedure.

14–P2 Write a procedure using Linux system calls to read a 16-bit integer with semantics

similar to the GetInt procedure we used to read a number. You should also write a

main program to test this procedure.

14–P3 Write a procedure to concatenate two files. This procedure takes two files names (i.e.,

pointers to files names strings) as parameters and appends contents of the second file to

the first. You should also write a main program to test this procedure.

14–P4 Linux provides a system call to change the current working directory. Details about this

system call are given below:

System call 12 — Change directory

Inputs: EAX = 12

EBX = path

Returns: EAX = 0 if no error

Error: EAX = error code

Section 14.11 Programming Exercises 421

This function changes the current working directory to that given in path (a pointer to

a character string like the file names). If the call is successful, it returns 0 in EAX.

Otherwise, it returns an error code as in other system calls.

Write a procedure that takes a pointer to a path and changes the current directory to that

path. You should also write a main program to test the procedure. The main program

should output an OK message (something like “Directory exists.” is fine) if the system

call is successful. Otherwise, it should display an error message.

14–P5 Linux provides two system calls to create and remove a directory. Details about these

system calls are given below:

System call 39 — Creates a directory

Inputs: EAX = 39

EBX = path

ECX = permissions

Returns: EAX = 0 if no error

Error: EAX = error code

This function creates the directory given in the path (a pointer to a character string like

the filenames). For details on permissions, see our discussion for the file-create system

call. If the call is successful, it returns 0 in EAX. Otherwise, it returns an error code as

in other system calls.

The system call to remove a directory is similar (it does not require permissions):

System call 40 — Removes a directory

Inputs: EAX = 40

EBX = path

Returns: EAX = 0 if no error

Error: EAX = error code

Write two procedures: one to create and the other to remove a directory. Each procedure

takes a pointer to a path and creates the directory. (The create directory procedure uses

default permissions.) You should also write a main program to test the procedure.

Devise suitable error reporting mechanism (see the last exercise).

Chapter 15

Real-Mode Interrupts

Objectives
• To describe the real-mode interrupt processing by Pentium

• To discuss DOS and BIOS interrupt services

• To illustrate writing user defined interrupt service routines

• To provide an understanding of some peripheral support chips

• To discuss how programmed I/O is done using in and out instructions

• To give an example of interrupt-driven I/O

We discussed protected-mode interrupt processing in the last chapter. In this chapter, we use

DOS to explore the real-mode interrupt processing. We begin the chapter with a description

of the real-mode interrupt processing. Both DOS and BIOS provide several software interrupt

services. Section 15.3 discusses the keyboard services of DOS and BIOS. The next section

discusses the DOS services for text output on the display screen. Section 15.5 gives an exam-

ple that explores single-stepping, a technique often used to debug programs. This section also

gives details on how we can manipulate the trap flag.

I/O devices can be accessed in three ways. DOS and BIOS provide two ways of interacting

with the system I/O devices. The third method involves direct I/O access. This method is low-

level in nature and more complicated than the high-level access provided by DOS and BIOS.

Direct access of I/O devices is supported by in and out instructions. Sections 15.6 through

15.8 discuss this topic. Section 15.8 gives details on programmed I/O and interrupt-driven

I/O. The last section summarizes the chapter.

423

424 Chapter 15 Real-Mode Interrupts

15.1 Interrupt Processing in the Real Mode
In the last chapter, we described the protected-mode interrupt processing. Briefly, there can

be up to 256 different types of interrupts. Each interrupt type is identified by a number called

a vector. This vector is used as an index into the Interrupt Descriptor Table (IDT). The IDT

stores a descriptor for each interrupt type. Each descriptor, which is eight bytes long, is

essentially a pointer to the interrupt service routine (ISR). Each descriptor stores a 16-bit

segment selector, a 32-bit offset to the ISR, and so on.

In the real mode, the Pentium follows the interrupt mechanism used by the 8086 processor.

In this mode, the IDT is located at base address 0. Each vector takes only four bytes as

opposed to eight bytes in the protected mode. Each vector consists of a CS:IP pointer to

the associated ISR: two bytes for specifying the code segment (CS), and two bytes for the

offset (IP) within the code segment. Figure 15.1 shows the interrupt vector table layout in the

memory.

Since each entry in the interrupt vector table is four bytes long, the interrupt type is mul-

tiplied by 4 to get the corresponding ISR pointer in the table. For example, int 2 can find

its ISR pointer at memory address 2×4 = 00008H. The first two bytes at the specified address

are taken as the offset value and the next two bytes as the CS value.

When a real-mode interrupt occurs, the following actions are taken:

1. Push flags register onto the stack;

2. Clear interrupt and trap flags to disable further interrupts;

3. Push CS and IP registers onto the stack;

4. Load CS with the 16-bit data at memory address (interrupt-type * 4 + 2);

5. Load IP with the 16-bit data at memory address (interrupt-type * 4).

From our discussion in the last chapter, it is clear that these actions are similar to the steps

taken in the protected mode with appropriate adjustment for the 16-bit mode. Likewise, the

actions taken on iret are very similar and are given below:

1. Pop the 16-bit value on top of the stack into IP register;

2. Pop the 16-bit value on top of the stack into CS register;

3. Pop the 16-bit value on top of the stack into the flags register.

A typical ISR structure is shown below.

<save the registers used in the ISR>

sti ; enable further interrupts

. . .

<ISR body>

. . .

<restore the saved registers>

iret ; return to the interrupted program

Section 15.2 Software Interrupts 425

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

int type 255

003FF

003FE

003FD

003FC

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

int type 2

int type 1

00000

00001

00002

00003

00004

00005

00006

00007

00008

00009

0000A

0000B

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

int type 0

Memory address (in Hex)

Figure 15.1 Real-mode interrupt vector table.

15.2 Software Interrupts
As discussed in Section 14.5, software interrupts are initiated by executing the interrupt in-

struction. All DOS services are provided by int 21H. DOS provides more than 80 different

services (called functions). We discuss some of these services in the next couple of sections.

Both DOS and BIOS provide several interrupt service routines to access I/O devices. The

following sections consider a select few of these services and explain by means of examples

how they can be used. We organize our discussion around the two I/O devices: the keyboard

and the display.

426 Chapter 15 Real-Mode Interrupts

Application Program

Input/Output Devices

DOS Support

BIOS Support

Figure 15.2 Various ways of interacting with I/O devices.

The interrupt services provided by DOS and BIOS are not mutually exclusive. Some

services, such as reading a character from the keyboard, are provided by both DOS and BIOS.

In fact, DOS uses BIOS-supported routines to provide some services that control the system

hardware (see Figure 15.2). We can also access I/O devices directly using input and output

instructions. We discuss this topic in Sections 15.6 through 15.8.

15.3 Keyboard Services
This section starts with a brief description of the keyboard interface. Then we discuss how

the DOS and BIOS services can be used to read input from the keyboard.

15.3.1 Keyboard Description

Associated with each I/O device is a device controller or I/O controller that acts as hardware

interface between the processor and the I/O device. The device controller performs many of

the low-level tasks specific to the I/O device. This allows the processor to interact with the

device at a higher level. For each device controller, there is a software interface that provides

a clean interface to access the device. This interface is called the device driver.

For the keyboard, there is a keyboard controller (a chip dedicated to servicing the key-

board) that scans the keyboard and reports key depressions and releases. This reporting is

done via the 8259 interrupt controller, which in turn interrupts the processor to service the

keyboard. We provide details on this interrupt controller later (see Section 15.7.1).

Section 15.3 Keyboard Services 427

On your PC, every time a key is depressed or released, the 8259 interrupt controller gen-

erates a hardware interrupt (int 9). This interrupt is serviced by BIOS. The ISR for the

keyboard interrupt reads the identity of the key and stores it in the type-ahead keyboard buffer.

In addition, it also identifies special key combinations such as ctrl-break.

The keyboard controller supplies the key identity by means of a scan code. The scan

code of a key is simply an identification number given to the key based on its location on the

keyboard. The counting for the scan code starts at the top righthand side of the main keyboard

(i.e., with the Esc key) and proceeds left to right and top to bottom. Thus, the scan code for

the Esc key is 1, the next key (!/1) is 2, and so on. Table 15.1 shows the scan codes for the

PC keyboard.

The scan code of a key does not have any relation to the ASCII code of the corresponding

character. The int 9 ISR receives the scan code and generates the equivalent ASCII code,

if there is one. The code is placed in the keyboard buffer. This buffer is organized as a

queue, which is a first-in–first-out (FIFO) data structure. When a request is received to read a

keyboard character, the oldest key in the buffer (the earliest key in the buffer) is supplied and

it is removed from the buffer.

15.3.2 DOS Keyboard Services

DOS provides several interrupt services to interact with the keyboard. All DOS interrupt

services are invoked by int 21H after setting up registers appropriately. The AH register

should always be loaded with the desired function number. DOS provides the following

seven functions to interact with the keyboard—reading a character or getting the status of

the keyboard buffer.

Function 01H — Keyboard input with echo

Input: AH = 01H

Returns: AL = ASCII code of the key

This function can be used to read a character from the keyboard buffer. If the keyboard buffer

is empty, this function waits until a character is typed. The received character is echoed to the

display screen. If the character is a ctrl-break, an interrupt 23H is invoked, which aborts

the program.

Function 06H — Direct console I/O

There are two subfunctions associated with this function—keyboard input or character dis-

play. The DL register is used to specify the desired subfunction.

428 Chapter 15 Real-Mode Interrupts

Table 15.1 Keyboard Scan Codes

key scan code key scan code key scan code

dec hex dec hex dec hex

Alphanumeric keys

A 30 1E M 50 32 Y 21 15

B 48 30 N 49 31 Z 44 2C

C 46 2E O 24 18 1 02 02

D 32 20 P 25 19 2 03 03

E 18 12 Q 16 10 3 04 04

F 33 21 R 19 13 4 05 05

G 34 22 S 31 1F 5 06 06

H 35 23 T 20 14 6 07 07

I 23 17 U 22 16 7 08 08

J 36 24 V 47 2F 8 09 09

K 37 25 W 17 11 9 10 0A

L 38 26 X 45 2D 0 11 0B

Punctuation keys

‘ 41 29 [26 1A , 51 33

- 12 0C] 27 1B . 52 34

= 13 0D ; 39 27 / 53 35

\ 43 2B ’ 40 28 space 57 39

Control keys

Esc 01 01 Caps Lock 58 3A Right Shift 54 36

Backspace 14 0E Enter 28 1C Ctrl 29 1D

Tab 15 0F Left Shift 42 2A Alt 56 38

Function keys

F1 59 3B F5 63 3F F9 67 43

F2 60 3C F6 64 40 F10 68 44

F3 61 3D F7 65 41 F11 133 85

F4 62 3E F8 66 42 F12 134 86

Numeric keypad and other keys

1/End 79 4F 6/→ 77 4D Del/. 83 53

2/↓ 80 50 7/Home 71 47 Num Lock 69 45

3/Pg Dn 81 51 8/↑ 72 48 - 74 4A

4/← 75 4B 9/Pg Up 73 49 + 78 4E

5 76 4C 0/Ins 82 52

Print Screen 55 37 Scroll Lock 70 46

Section 15.3 Keyboard Services 429

Subfunction — Keyboard input

Inputs: AH = 06H

DL = FFH

Returns: ZF = 0 if a character is available

In this case, the key ASCII code is in AL

ZF = 1 if no character is available

If a character is available, the zero flag (ZF) is cleared (i.e., ZF = 0) and the character is

returned in the AL register. If no character is available, this function does not wait for a

character to be typed. Instead, control is returned immediately to the program and the zero

flag is set (i.e., ZF = 1). The input character is not echoed. No ctrl-break check is done

by this function.

Subfunction — Character display

Inputs: AH = 06H

DL = character to be displayed

(it should not be FFH)

Returns: nothing

The character in the DL register is displayed on the screen.

Function 07H — Keyboard input without echo or ctrl-break check

Input: AH = 07H

Returns: AL = ASCII code of the key entered

This function waits for a character from the keyboard and returns it in AL as described in

function 01H. The difference between this function and function 01H is that this function

does not echo the character, and no ctrl-break service is provided. This function is

usually used to read the second byte of an extended-keyboard character (see Section 15.3.3).

Function 08H — Keyboard input without echo

Input: AH = 08H

Returns: AL = ASCII code of the key entered

This function provides similar services as function 07H except that it performs a ctrl-
break check. As a result, this function is normally used to read a character from the keyboard

when echoing is not needed.

430 Chapter 15 Real-Mode Interrupts

Function 0AH — Buffered keyboard input

Inputs: AH = 0AH

DS:DX = pointer to the input buffer

(First byte of the input buffer

should have the buffer size.)

Returns: character string in the input buffer

This function can be used to input a character string (terminated by carriage return) into a

buffer within the calling program. Before calling this function, DS:DX should be loaded with

a pointer to the input buffer and the first byte of this buffer must contain a nonzero value

representing the string length to be read including the carriage return.

The input character string is placed in the buffer starting at the third byte of the buffer.

Characters are read until either the Enter key is pressed or the buffer is filled to one less than

its length. When the Enter key is pressed to terminate the input, 0DH is stored in the buffer

and the number of characters in the buffer (excluding the carriage return character) is placed

in the second byte of the input buffer.

When the input buffer is filled to one less than its length before encountering the Enter

key, all keys except Enter and Backspace are rejected, and this is indicated by a beep.

Input buffer for character string

l m

0 1 2 3 4 5 6 l l +1_l 1

l = maximum number of characters (given as input)

m = indicates the actual number of characters in the input buffer ex-

cluding the carriage return (returned by the function)

Function 0BH — Check keyboard buffer

Input: AH = 0BH

Returns: AL = 00H — if the keyboard buffer is empty

AL = FFH — if the keyboard buffer is not empty

This function can be used to check the status of the keyboard buffer. It returns 00H in AL if

the keyboard buffer is empty and returns FFH in AL if the buffer has at least one character.

A ctrl-break check is done by this function. The keyboard buffer is not modified in any

way.

Section 15.3 Keyboard Services 431

Function 0CH — Clear keyboard buffer

Inputs: AH = 0CH

AL = 01H, 06H, 07H, 08H, or 0AH

Returns: Depends on the AL contents (see below)

This function can be used to clear the keyboard buffer to discard any type-ahead input entered

by the user. If AL is 01H, 06H, 07H, 08H, or 0AH, then an appropriate DOS function is

performed following the buffer flush. If AL contains any other value, nothing is done after

clearing the buffer.

15.3.3 Extended Keyboard Keys

The PC keyboard has several keys that are not part of the standard ASCII character set. These

keys include the function keys, cursor arrows, Home, End, etc. These keys are called extended

keys. When an extended key is pressed, the first byte placed in the keyboard buffer is 00H and

the second byte is the keyboard scan code for the key.

Table 15.1 lists the keyboard scan codes for the extended keys. In contrast, when an

ASCII key is pressed, the first byte in the keyboard buffer is the ASCII code of the key, and

the second byte is the scan code of the key.

To read a character from the keyboard using the DOS functions, extended keys require

two function calls, as shown in the following procedure.

Read the next character code into AL using function 08H

if (AL �= 0)

then

AL = ASCII code (ASCII character)

else {extended key}
read the scan code of the extended key into AL using

function 07H

AL = scan code (extended key character)

end if

Example 15.1 A get string example.

In this example, we look at the DOS version of the GetStr procedure to read a string from

the keyboard. The program listing is given in Program 15.1. The main program prompts the

user for maximum string length and reads this value into CX (lines 22 and 23). This value

should be at least 1; if not, read_string procedure reports an error. After prompting for

the input string, it calls the read_string procedure to read the string.

The read_string procedure is loosely based on the Linux getstr procedure dis-

cussed in the last chapter (see page 415). This procedure expects a pointer to a buffer to store

432 Chapter 15 Real-Mode Interrupts

the input string in BX and the buffer length in CX. This procedure reads a string from the key-

board using the buffered keyboard input function 0AH. The procedure, given in Program 15.1,

follows the pseudocode shown below:

read_string()
save registers used in the procedure

if (CX < 2)

then

Display error message

return

end if

if (CX > 81)

then

CX := 81

end if

use function 0AH to read input string into

temporary buffer temp_buf
copy input string from temp_buf to

user buffer and append NULL

restore registers

return

end read_string

Note that the actual string buffer size is 81 bytes. The temp_buf uses two more bytes as we

use the services of function 0AH. These two additional bytes are used for l and m values as

shown on page 430.

Program 15.1 Procedure to read a string from the keyboard

1: ;A string read program GETSTR.ASM

2: ; Objective: To demonstrate the use of DOS keyboard

3: ; functions.

4: ; Input: Prompts for a string.

5: ; Output: Displays the input string.

6:

7: STR_LENGTH EQU 81

8: %include "io.mac"

9: .STACK 100H

10: .DATA

11: prompt_msg1 db "Please enter maximum string length: ",0

12: prompt_msg2 db "Please enter a string: ",0

13: string_msg db "The string entered is: ",0

14: error_msg db "No string read. Buffer size must be at least 1.",0

Section 15.3 Keyboard Services 433

15:

16: .UDATA

17: temp_buf resb STR_LENGTH+2

18: in_string resb STR_LENGTH

19:

20: .CODE

21: .STARTUP

22: PutStr prompt_msg1

23: GetInt CX ; max. string length

24: nwln

25: PutStr prompt_msg2

26: mov BX,in_string ; BX = pinter to input buffer

27: call read_string ; to call read_string procedure

28: nwln

29: PutStr string_msg

30: PutStr in_string

31: nwln

32: .EXIT

33:

34: ;---

35: ; Get string (of maximum length 80) from keyboard.

36: ; BX <-- pointer to a buffer to store the input string

37: ; CX <-- buffer size = string length + 1 for NULL

38: ; If CX <2, reports error and terminates.

39: ; If CX > 81, CX = 81 is used to read at most 80 characters.

40: ;---

41: read_string:

42: pusha

43: ; ES = DS for use by the string instruction--movsb

44: mov DX,DS

45: mov ES,DX

46: mov DI,BX ; DI = buffer pointer

47: inc CX ; space for NULL

48: ; check CX value

49: cmp CX,2

50: jl bailout

51: cmp CX,81

52: jle read_str

53: mov CX,81

54: read_str:

55: ; use temporary buffer temp_buf to read the string

56: ; using functin 0AH of int 21H

57: mov DX,temp_buf

58: mov SI,DX

434 Chapter 15 Real-Mode Interrupts

59: mov [SI],CL ; first byte = # chars. to read

60: mov AH,0AH

61: int 21H

62: inc SI ; second byte = # chars. read

63: mov CL,[SI] ; CX = # bytes to copy

64: inc SI ; SI = input string first char.

65: cld ; forward direction for copy

66: rep movsb

67: mov byte[DI],0 ; append NULL

68: jmp done

69: bailout:

70: nwln

71: PutStr error_msg

72: done:

73: popa

74: ret

15.3.4 BIOS Keyboard Services

BIOS provides keyboard service routines under int 16H. Here we describe three common

routines that are useful in accessing the keyboard. As with the DOS functions, the AH register

should contain the function code before executing int 16H. One difference between DOS

and BIOS functions is that if you use the DOS services, the keyboard input can be redirected.

Function 00H — Read a character from the keyboard

Input: AH = 00H

Returns: if AL �= 0 then

AL = ASCII code of the key entered

AH = Scan code of the key entered

if AL = 0

AH = Scan code of the extended key entered

This BIOS function can be used to read a character from the keyboard. If the keyboard buffer

is empty, it waits for a character to be entered. As with the DOS keyboard function, the

value returned in AL determines if the key represents an ASCII character or an extended key

character. In both cases, the scan code is placed in the AH register and the ASCII and scan

codes are removed from the keyboard buffer.

A Problem

Since 00H represents NULL in ASCII, returning the NULL ASCII code is interpreted as

reading an extended key. Then how will you recognize the NULL key? This is a special case

Section 15.3 Keyboard Services 435

and the only ASCII key that is returned as an extended key character. Thus, if AL = 0 and AH

= 3 (the scan code for the 2 key), then the contents of AL should be treated as the ASCII code

for the NULL key.

Here is a simple routine to read a character from the keyboard, which is a modified version

of the routine given on page 431.

Read the next character code using function 00H of int 16H
if (AL �= 0)

then

AL = ASCII code of the key entered

else {AL = 0 which implies extended key with one exception}
if (AH = 3)

then

AL = ASCII code of NULL

else

AH = scan code of an extended key

end if

end if

Function 01H — Check keyboard buffer

Input: AH = 01H

Returns: ZF = 1 if the keyboard buffer is empty.

ZF = 0 if there is at least one character available.

Returns ASCII in AL and scan code in AH.

Does not remove them from the keyboard buffer.

This function can be used to take a peek at the next character without actually removing it

from the buffer. It provides similar functionality as the DOS function 0BH (see page 430).

Unlike the DOS function, the zero flag (ZF) is used to indicate whether or not the keyboard

buffer is empty. If a character is available in the buffer, its ASCII and scan codes are copied to

the AL and AH registers as if we performed the function 00H. One major difference is that it

does not actually remove the key codes from the keyboard buffer. Thus, it allows you to look

ahead at the next character without actually reading it from the buffer.

Function 02H — Check keyboard status

Input: AH = 02H

Returns: AL = status of the shift and toggle keys

The bit assignment is shown in the following table. In this table, a bit with a value of 1

indicates the presence of the condition.

This function can be used to test the status of the four shift keys (Right shift, Left shift,

Ctrl, Alt) and four toggle switches (Scroll lock, Number lock, Caps lock, and Ins).

436 Chapter 15 Real-Mode Interrupts

Table 15.2 Bit Assignment for Shift and Toggle Keys

Bit number Key assignment

0 Right shift key depressed

1 Left shift key depressed

2 Control key depressed

3 Alt key depressed

4 Scroll lock switch is on

5 Number lock switch is on

6 Caps lock switch is on

7 Ins lock switch is on

Example 15.2 A special string read example.

In this example, we write a program that reads a character string from the keyboard and

displays the input string along with its length. The string input could be terminated either by

pressing both the shift keys simultaneously, or by entering 80 characters, whichever occurs

first. This is a strange termination condition (requiring the depression of both shift keys), but

it is useful to illustrate the flexibility of the BIOS keyboard functions.

As the main procedure is straightforward to understand, we focus on the mechanics of

the read_string procedure. On first attempt, we might write this procedure as

read_string()
get maximum string length STRING_LENGTH and

string pointer from the stack

repeat

read keyboard status (use int 16H function 2)

if (both shift keys depressed)

then

goto end_read
else

read keyboard key (use int 16H function 0)

copy the character into the string buffer

increment buffer pointer

display the character on the screen

end if

until (string length = STRING_LENGTH)

end_read:

Section 15.3 Keyboard Services 437

append NULL character to string input

compute and return the string length

return

end read_string

Unfortunately, this procedure will not work properly. In most cases, the only way to

terminate the string input is by actually entering 80 characters. Pressing both shift keys will

not terminate the string input unless a key is entered while holding both shift keys down.

Why? The problem with the above code is that the repeat loop briefly checks the keyboard

status (takes only a few microseconds). It then waits for you to type a key. When you enter

a key, it reads the ASCII code of the key and initiates another repeat loop iteration. Thus,

every time you enter a key, the program checks the status of the two shift keys within a few

microseconds after a key has been typed. Therefore, read_string almost never detects

the condition that both shift keys are depressed (with the exception noted before).

To correct this problem, we have to modify the procedure as follows:

read_string()
get maximum string length STRING_LENGTH and

string pointer from the stack

read_loop:
repeat

read keyboard status (use int 16H function 2)

if (both shift keys depressed)

then

goto end_read
else

check keyboard buffer status (use int 16H function 1)

if (a key is available)

then

read keyboard key (use int 16H function 0)

copy the character into the string buffer

increment buffer pointer

display the character on screen

end if

end if

until (string length = STRING_LENGTH)

end_read:
append NULL character to string input

find and return the string length

return

end read_string

438 Chapter 15 Real-Mode Interrupts

With the modification, the procedure’s repeat loop spends most of the time performing the

following two actions:

1. Read the keyboard status (using int 16H function 2);

2. Check if a key has been pressed (using int 16H function 1).

Since function 1 does not wait for a key to be entered, the procedure properly detects the

string termination condition (i.e., depression of both shift keys simultaneously).

Program 15.2 A program to read a string from the keyboard using the BIOS services

1: ;A string read program FUNNYSTR.ASM

2: ; Objective: To demonstrate the use of BIOS keyboard

3: ; functions 0, 1, and 2.

4: ; Input: Prompts for a string.

5: ; Output: Displays the input string and its length.

6:

7: STR_LENGTH EQU 81

8: %include "io.mac"

9: .STACK 100H

10: .DATA

11: prompt_msg db "Please enter a string (< 81 chars): ",0

12: string_msg db "The string entered is ",0

13: length_msg db " with a length of ",0

14: end_msg db " characters.",0

15:

16: .UDATA

17: string resb STR_LENGTH

18:

19: .CODE

20: .STARTUP

21: PutStr prompt_msg

22: mov AX,STR_LENGTH-1

23: push AX ; push max. string length

24: mov AX,string

25: push AX ; and string pointer parameters

26: call read_string ; to call read_string procedure

27: nwln

28: PutStr string_msg

29: PutStr string

30: PutStr length_msg

31: PutInt AX

32: PutStr end_msg

33: nwln

Section 15.3 Keyboard Services 439

34: .EXIT

35:

36: ;---

37: ; String read procedure using BIOS int 16H. Receives string

38: ; pointer and the length via the stack. Length of the string

39: ; is returned in AX.

40: ;---

41: .CODE

42: read_string:

43: push BP

44: mov BP,SP

45: push BX

46: push CX

47: mov CX,[BP+6] ; CX = length

48: mov BX,[BP+4] ; BX = string pointer

49: read_loop:

50: mov AH,2 ; read keyboard status

51: int 16H ; status returned in AL

52: and AL,3 ; mask off most significant 6 bits

53: cmp AL,3 ; if equal both shift keys depressed

54: jz end_read

55: mov AH,1 ; otherwise, see if a key has been

56: int 16H ; struck

57: jnz read_key ; if so, read the key

58: jmp read_loop

59: read_key:

60: mov AH,0 ; read the next key from keyboard

61: int 16H ; key returned in AL

62: mov [BX],AL ; copy to buffer and increment

63: inc BX ; buffer pointer

64: PutCh AL ; display the character

65: loop read_loop

66: end_read:

67: mov [BX],byte 0 ; append NULL

68: sub BX,[BP+4] ; find the input string length

69: mov AX,BX ; return string length in AX

70: pop CX

71: pop BX

72: pop BP

73: ret 4

440 Chapter 15 Real-Mode Interrupts

15.4 Text Output to Display Screen
DOS provides three functions to display characters on the screen. BIOS provides many more

services to interact with the screen. Here we discuss the three DOS functions to display text

on the screen. Two of these functions display a single character, while the third function

displays a string terminated by $.

Function 02H — Display a character on the screen

Inputs: AH = 02H

DL = ASCII code of the character to be displayed

Returns: Nothing

This service displays the character in DL on the screen at the current cursor position and

advances the cursor. Special ASCII characters such as Backspace (08H), Carriage return

(0DH), Line feed (0AH), Bell (07H), etc. are recognized as control characters and properly

processed. A pending ctrl-break will be processed after the character is displayed.

Function 06H — Direct console I/O

This function, discussed on page 427, provides both keyboard input and display output ser-

vices. A character code other than FFH in DL causes the character in DL to be displayed.

Function 09H — Display a string of characters

Inputs: AH = 09H

DS:DX = pointer to a character string to be displayed.

The string must be terminated by $.

This function is useful in displaying a $-terminated character string. The dollar sign is used

to indicate the end of the string and is not displayed.

Example 15.3 A procedure to display newline.

The nwln macro defined in io.mac can be used to send a carriage-return (CR) and line feed

(LF) pair to the screen. The macro simply calls the proc_nwln procedure, which uses DOS

function 2 to display CR and LF. The code for this procedure is shown in Program 15.3. It

uses the following constants:

CR EQU 13 ; carriage return

LF EQU 10 ; linefeed

It uses the DOScall macro, which is defined as follows:

%macro DOScall 1

mov AH,%1

int 0x21

%endmacro

Section 15.5 Exceptions: An Example 441

Program 15.3 A procedure to send a newline to the screen

1: ;---

2: ; Sends CR and LF to the screen. Uses display function 2.

3: ;---

4: proc_nwln:

5: push AX

6: push DX

7: mov DL,CR ; carriage return

8: DOScall 2

9: mov DL,LF ; line feed

10: DOScall 2

11: pop DX

12: pop AX

13: ret

15.5 Exceptions: An Example
We discussed exceptions in Section 14.4 on page 407. As an example of an exception, we

write an ISR to single-step a piece of code (let us call it single-step code). Recall that we enter

the single-step mode when the trap flag is set to 1. In this example, during single-stepping,

we display the contents of the AX and BX registers after the execution of each instruction of

the single-step code. The objectives in writing this program are to demonstrate how ISRs can

be defined and installed and to show how TF can be manipulated.

To put the processor in the single-step mode, we have to set TF. Since there are no instruc-

tions to manipulate TF directly, we have to use an indirect means: first use pushf to push

flags onto the stack; then manipulate the TF bit; and finally, use popf to restore the modi-

fied flags word from the stack to the flags register. The code on lines 41–45 of Program 15.4

essentially performs this manipulation to set TF. The TF bit can be set by

or AX,100H

Of course, we can also manipulate this bit directly on the stack itself. To clear the TF bit, we

follow the same procedure and instead of oring, we use

and AX,0FEFFH

as shown on line 56. We use two services of int 21H to get and set interrupt vectors.

Function 35H — Get interrupt vector

Inputs: AH = 35H

AL = interrupt type number

Returns: ES:BX = address of the specified ISR

442 Chapter 15 Real-Mode Interrupts

Function 25H — Set interrupt vector

Inputs: AH = 25H

AL = interrupt type number

DS:DX = address of the ISR

Returns: Nothing

The remainder of the code is straightforward:

Lines 26–29: We use function 35H of DOS interrupt (int 21H) to get the current vector

value of int 1. This vector value is restored before exiting the program.

Lines 32–38: The vector of our ISR is installed by using function 25H of int 21H.

Lines 61–67: The original int 1 vector is restored using function 25H of int 21H.

Program 15.4 An example to illustrate the installation of a user-defined ISR

1: ;Single-step program STEPINTR.ASM

2: ;

3: ; Objective: To demonstrate how ISRs can be defined

4: ; and installed.

5: ; Input: None.

6: ; Output: Displays AX and BX values for

7: ; the single-step code.

8:

9: %include "io.mac"

10: .STACK 100H

11: .DATA

12: start_msg db "Starts single-stepping process.",0

13: AXequ db "AX = ",0

14: BXequ db " BX = ",0

15:

16: .UDATA

17: old_offset resw 1 ; for old ISR offset

18: old_seg resw 1 ; and segment values

19:

20: .CODE

21: .STARTUP

22: PutStr start_msg

23: nwln

24:

25: ; get current interrupt vector for int 1H

26: mov AX,3501H ; AH = 35H and AL = 01H

27: int 21H ; returns the offset in BX

28: mov [old_offset],BX ; and the segment in ES

29: mov [old_seg],ES

Section 15.5 Exceptions: An Example 443

30:

31: ;set up interrupt vector to our ISR

32: push DS ; DS is used by function 25H

33: mov AX,CS ; copy current segment to DS

34: mov DS,AX

35: mov DX,sstep_ISR ; ISR offset in DX

36: mov AX,2501H ; AH = 25H and AL = 1H

37: int 21H

38: pop DS ; restore DS

39:

40: ; set trap flag to start single-stepping

41: pushf

42: pop AX ; copy flags into AX

43: or AX,100H ; set trap flag bit (TF = 1)

44: push AX ; copy modified flag bits

45: popf ; back to flags register

46:

47: ; from now on int 1 is generated after executing

48: ; each instruction. Some test instructions follow.

49: mov AX,100

50: mov BX,20

51: add AX,BX

52:

53: ; clear trap flag to end single-stepping

54: pushf

55: pop AX ; copy flags into AX

56: and AX,0FEFFH ; clear trap flag bit (TF = 0)

57: push AX ; copy modified flag bits

58: popf ; back to flags register

59:

60: ; restore the original ISR

61: mov DX,[old_offset]

62: push DS

63: mov AX,[old_seg]

64: mov DS,AX

65: mov AX,2501H

66: int 21H

67: pop DS

68:

69: .EXIT

70: ;---

71: ;Single-step interrupt service routine replaces int 01H.

72: ;---

73: .CODE

444 Chapter 15 Real-Mode Interrupts

74: sstep_ISR:

75: sti ; enable interrupt

76: PutStr AXequ ; display AX contents

77: PutInt AX

78: PutStr BXequ ; display BX contents

79: PutInt BX

80: nwln

81: iret

15.6 Direct Control of I/O Devices
Figure 15.2 on page 426 shows three ways an application program can interact with I/O de-

vices. Our emphasis thus far has been on using either DOS or BIOS support routines to access

I/O devices. When we want to access an I/O device for which there is no such support avail-

able from either DOS or BIOS, or when we want a nonstandard access, we have to access

these devices directly—the third method shown in Figure 15.2.

At this point, it is useful to review the material presented in Chapter 2. As described in

Chapter 2, Pentium uses a separate I/O address space of 64K. This address space can be used

for 8-bit, 16-bit, or 32-bit I/O ports. However, the combination cannot be more than the total

I/O space. For example, we can have 64K 8-bit ports, 32K 16-bit ports, 16K 32-bit ports, or

a combination of these that fits the 64K I/O address space. Devices that transfer data 8 bits

at a time can use 8-bit ports. These devices are called 8-bit devices. An 8-bit device can be

located anywhere in the I/O space without any restrictions. On the other hand, a 16-bit port

should be aligned to an even address so that 16 bits can be simultaneously transferred in a

single bus cycle. Similarly, 32-bit ports should be aligned at addresses that are multiples of

four. Pentium, however, supports unaligned I/O ports, but there is a performance penalty (see

Section 2.7 on page 41 for a related discussion).

15.6.1 Accessing I/O Ports

To facilitate access to the I/O ports, the instruction set provides two types of instructions:

register I/O instructions and block I/O instructions. Register I/O instructions are used to

transfer data between a register and an I/O port. Block I/O instructions are used for block

transfer of data between memory and I/O ports.

Register I/O Instructions

There are two register I/O instructions: in and out. The in instruction is used to read data

from an I/O port, and the out instruction to write data to an I/O port. A port address can be

any value in the range 0 to FFFFH. The first 256 ports are directly addressable—address is

given as part of the instruction.

Section 15.6 Direct Control of I/O Devices 445

Both instructions can be used to operate on 8-, 16-, or 32-bit data. Each instruction can

take one of two forms, depending on whether a port is directly addressable or not. The general

format of the in instruction is

in accumulator,port8 — direct addressing format

in accumulator,DX — indirect addressing format

The first form uses the direct addressing mode and can only be used to access the first 256

ports. In this case, the I/O port address, which is in the range 0 to FFH, is given by the port8
operand. In the second form, the I/O port address is given indirectly via the DX register. The

contents of the DX register are treated as the port address.

In either form, the first operand accumulator must be AL, AX, or EAX. This choice

determines whether a byte, word, or doubleword is read from the specified port.

The format for the out instruction is

out port8,accumulator — direct addressing format

out DX,accumulator — indirect addressing format

Notice the placement of the port address. In the in instruction, it is the source operand and in

the out instruction, it is the destination operand signifying the direction of data movement.

Block I/O Instructions

The instruction set has two block I/O instructions: ins and outs. These instructions can

be used to move blocks of data between I/O ports and memory. These I/O instructions are,

in some sense, similar to the string instructions discussed in Chapter 10. For this reason,

block I/O instructions are also called string I/O instructions. Like the string instructions, ins
and outs do not take any operands. Also, we can use the repeat prefix rep as in the string

instructions.

For the ins instruction, the port address should be placed in DX and the memory address

should be pointed to by ES:(E)DI. The address size determines whether the DI or EDI register

is used (see Chapter 2 for details). Block I/O instructions do not allow the direct addressing

format.

For the outs instruction, the memory address should be pointed by DS:(E)SI, and the I/O

port should be specified in DX. You can see the similarity between the block I/O instructions

and the string instructions.

You can use the rep prefix with ins and outs instructions. However, you cannot use

the other two prefixes—repe and repne—with the block I/O instructions. The semantics

of rep are the same as those in the string instructions. The directions flag (DF) determines

whether the index register in the block I/O instruction is decremented (DF is 1) or incremented

(DF is 0). The increment or decrement value depends on the size of the data unit transferred.

For byte transfers, the index register is updated by 1. For word and doubleword transfers, the

corresponding values are 2 and 4, respectively. The size of the data unit involved in the trans-

fers can be specified as in the string instructions. Use insb and outsb for byte transfers,

insw and outsw for word transfers, and insd and outsd for doubleword transfers.

446 Chapter 15 Real-Mode Interrupts

S
y
st

em
 b

u
s

Data bus

Address bus

Control bus

Status

Command

Data

I/O Device

I/O Controller

Figure 15.3 Input/output device interface to the system.

15.7 Peripheral Support Chips
Recall from Chapter 2 that I/O devices are not interfaced directly to the processor. Rather,

each device has a peripheral controller that acts as an intermediary between the device and the

processor, as shown in Figure 15.3.

In this section, we start our discussion by explaining how multiple devices can interrupt

the processor using the 8259 programmable interrupt controller chip. Then, we proceed to

describe the 8255 programmable peripheral interface chip.

15.7.1 8259 Programmable Interrupt Controller

We can use the 8259 programmable interrupt controller (PIC) to accommodate more than

one interrupting device in the system. The 8259 PIC can service interrupts from up to eight

hardware devices. These interrupts are received on lines IRQ0 through IRQ7, as shown in

Figure 15.4.

Internally, 8259 has an 8-bit interrupt command register (ICR) and another 8-bit interrupt

mask register (IMR). The ICR is used to program the 8259, and the IMR is used to enable or

disable specific interrupt requests. The 8259 can be programmed to assign priorities to IRQ0–

IRQ7 requests in several ways. The BIOS initializes the 8259 to assign fixed priorities—

the default mode called fully nested mode. In this mode, the incoming interrupt requests

IRQ0 through IRQ7 are prioritized with the IRQ0 receiving the highest priority and the IRQ7

receiving the lowest priority. Table 15.3 shows the mapping of the 8259 IRQ inputs to various

devices in the system.

Also part of this initialization is the assignment of interrupt type numbers. To do this,

only the lowest type number should be specified. BIOS uses 08H as the lowest interrupt

type (for the request coming on the IRQ0 line). The 8259 automatically assigns the next

Section 15.7 Peripheral Support Chips 447

Table 15.3 Mapping of I/O Devices to External Interrupt Levels

IRQ # Interrupt type Device

0 08H System timer

1 09H Keyboard

2 0AH Reserved

3 0BH Serial port (COM1)

4 0CH Serial port (COM2)

5 0DH Hard disk

6 0EH Floppy disk

7 0FH Printer

8259

PIC

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

INTR

INTA

8-bit data bus

CPU

Figure 15.4 Intel 8259 programmable interrupt controller.

seven numbers to the remaining seven IRQ lines in increasing order, with IRQ7 generating an

interrupt of type 0FH.

As discussed in Section 14.8, the interrupt controller raises the interrupt signal on the

INTR input of the processor to cause a hardware interrupt. In response to this signal, the

processor sends out an interrupt acknowledge signal on INTA line. When the 8259 receives

this signal, it places the interrupt vector on the 8-bit data bus. The processor reads this value

and uses it as the interrupt vector.

All communication between the processor and the 8259 occurs via the data bus. The 8259

PIC is an 8-bit device requiring two ports for ICR and IMR. These are mapped to the I/O

address space, as shown in Table 15.4.

448 Chapter 15 Real-Mode Interrupts

Table 15.4 8259 Port Address Mapping

8259 register Port address

ICR 20H

IMR 21H

Note that the processor recognizes external interrupt requests generated by 8259 only if

the IF flag is set. Thus, by clearing the IF flag, we can mask or disable all eight external

interrupts as a group. However, to selectively disable external interrupts, we have to use IMR.

Each bit in IMR enables (if the bit is 0) or disables (if the bit is 1) its associated interrupt. Bit

0 is associated with IRQ0, bit 1 with IRQ1, and so on. For example, we can use

mov AL,0FEH
out 21H,AL

to disable all external interrupts except the system timer interrupt request on the IRQ0 line.

When several interrupt requests are received by the 8259, it serializes these requests ac-

cording to their priority levels. For example, if a timer interrupt (IRQ0) and a keyboard

interrupt (IRQ1) arrive simultaneously, the 8259 forwards the timer interrupt to the processor,

as it has a higher priority than the keyboard interrupt. Once the timer ISR is completed, the

8259 forwards the keyboard interrupt to the processor for processing. To facilitate this, the

8259 should know when an ISR is completed. The end of an ISR execution is signalled to the

8259 by writing 20H into the ICR. Thus the code fragment

mov AL,20H
out 20H,AL

can be used to indicate end-of-interrupt (EOI) to the 8259 PIC. This code fragment appears

before the iret instruction of an ISR.

15.7.2 8255 Programmable Peripheral Interface Chip

The 8255 programmable peripheral interface (PPI) chip provides three 8-bit general-purpose

registers that can be used to interface with I/O devices. These three registers—called PA, PB,

and PC—are mapped to the I/O space as shown in Table 15.5.

The BIOS configures these three ports as shown in the above table. Here input and output

are from the processor viewpoint. For our discussion, we need to know details only about PA

and PB ports. These details are given in Table 15.6.

The keyboard interface is provided by port PA and PB7. The keyboard sends an interrupt

to 8259 (on the IRQ1 line) whenever there is a change in the state of a key. The scan code of

the key whose state has changed (i.e., depressed or released) is provided by the keyboard at

PA. The keyboard then waits for an acknowledge signal to know that the scan code has been

Section 15.8 I/O Data Transfer 449

Table 15.5 8255 Port Address Mapping

8255 register port address

PA (input port) 60H

PB (output port) 61H

PC (input port) 62H

Command register 63H

Table 15.6 I/O Bit Map of Ports PA and PB of 8255

PA

Keyboard scan code if PB7 = 0

PA7 = 0 if a key is depressed

PA7 = 1 if a key is released

PA0–PA6 = key scan code

Configuration switch 1 if PB7 = 1

PB

PB7 — selects source for PA input

0 — keyboard scan code

1 — configuration switch 1

Also, 1 is used as keyboard acknowledge

read by the processor. This acknowledgment can be signalled by setting and clearing PB7

momentarily. The normal state of PB7 is 0.

The scan code of the key can be read from PA. Bits PA0–PA6 give the scan code of the

key whose state has changed. PA7 is used to indicate the current state of the key.

PA7 = 0 — key is depressed

PA7 = 1 — key is released

For example, if the Esc is pressed, PA supplies 01H as 1 is the scan code for the Esc
key. When Esc is released, PA supplies 81H. In the next section, we write our own keyboard

driver to illustrate the keyboard interface.

15.8 I/O Data Transfer
We discussed various ways of accessing the I/O devices. Let’s now look at how we can trans-

fer data between the system and an I/O device. There are three basic techniques: programmed

I/O, interrupt-driven I/O, and direct memory access (DMA).

450 Chapter 15 Real-Mode Interrupts

Programmed I/O involves the processor in the I/O data transfer. The processor repeatedly

checks to see if a particular condition is true. Typically, it busy-waits until the condition is

true. For example, if we are interested in reading a key, the processor repeatedly checks to see

if a key pressed. Once a key is pressed, it gets the ASCII value of the key and busy-waits for

another key. This process is called polling. From this brief description, it should be clear that

the programmed I/O mechanism wastes processor time.

In interrupt-driven I/O, the processor will be interrupted when the specific event (key

depression in our example) occurs. Obviously, this is a better way of using the processor.

However, interrupt-driven mechanism requires hardware support, which is provided by all

processors.

The last technique, DMA, relieves the processor of the low-level data transfer chore. We

use DMA for bulk data transfers. Typically, a DMA controller oversees the data transfers.

When the specified transfer is complete, the processor is notified by an interrupt signal. More

details on this technique are available in computer architecture books. In the remainder of this

section, we give examples for the other two techniques.

15.8.1 Programmed I/O

The heart of programmed I/O is a busy-wait loop. We use the keyboard to illustrate how

the programmed I/O works. We have already presented most of the details we need to write

the keyboard program. Program 15.5 shows the program to read keys from the keyboard.

Pressing the esc key terminates the program.

The logic of the program is simple. To read a key, all we have to do is to wait for the PA7

bit to go low to indicate that a key is depressed (lines 34 to 36). Once we know that a key is

down, we read the key scan code from PA6 to PA0. The and statement on line 38 masks off

the most significant bit. Next we have to translate the scan code into the corresponding ASCII

value. This translation is done by the xlat instruction on line 41. The xlat instruction uses

the translation table (lcase_table) given on lines 17 to 23.

After the key’s ASCII value is displayed (line 47), we wait until the key is released. This

loop is implemented by instructions on lines 50 to 53. Once the key is up, we clear the

keyboard buffer using an interrupt service 0CH (lines 56 to 57). The rest of the program is

straightforward to follow.

Program 15.5 Programmed I/O example to read input from the keyboard

1: TITLE Keyboard programmed I/O program KBRD_PIO.ASM

2: COMMENT |

3: Objective: To demonstrate programmed I/O using keyboard.

4: Input: Key strokes from the keyboard.

5: ESC key terminates the program.

6: | Output: Displays the key on the screen.

7:

Section 15.8 I/O Data Transfer 451

8: ESC_KEY EQU 1BH ; ASCII code for ESC key

9: KB_DATA EQU 60H ; 8255 port PA

10:

11: .MODEL SMALL

12: .STACK 100H

13: .DATA

14: prompt_msg db ’Press a key. ESC key terminates the program.’,0

15: ; lowercase scan code to ASCII conversion table.

16: ; ASCII code 0 is used for scan codes in which we are not interested.

17: lcase_table db 01BH,’1234567890-=’,08H,09H

18: db ’qwertyuiop[]’,0DH,0

19: db ’asdfghjkl;’,27H,60H,0,’\’

20: db ’zxcvbnm,./’,0,’*’,0,’ ’,0

21: db 0,0,0,0,0,0,0,0,0,0

22: db 0,0,0,0,0,0,0,0,0,0

23: db 0,0,0,0,0,0,0,0,0,0

24: .CODE

25: INCLUDE io.mac

26:

27: main PROC

28: .STARTUP

29: PutStr prompt_msg

30: nwln

31: key_up_loop:

32: ; Loops until a key is pressed i.e., until PA7 = 0.

33: ; PA7 = 1 if a key is up.

34: in AL,KB_DATA ; read keyboard status & scan code

35: test AL,80H ; PA7 = 0?

36: jnz key_up_loop ; if not, loop back

37:

38: and AL,7FH ; isolate the scan code

39: mov BX,OFFSET lcase_table

40: dec AL ; index is one less than scan code

41: xlat

42: cmp AL,0 ; ASCII code of 0 => uninterested key

43: je key_down_loop

44: cmp AL,ESC_KEY ; ESC key---terminate program

45: je done

46: display_ch:

47: putch AL

48: putch ’ ’

49:

50: key_down_loop:

51: in AL,KB_DATA ; read keyboard status & scan code

452 Chapter 15 Real-Mode Interrupts

52: test AL,80H ; PA7 = 1?

53: jz key_down_loop ; if not, loop back

54:

55: ; clear keyboard buffer

56: mov AX,0C00H

57: int 21H

58:

59: jmp key_up_loop

60: Done:

61: ; clear keyboard buffer

62: mov AX,0C00H

63: int 21H

64:

65: .EXIT

66: main ENDP

67: END main

15.8.2 Interrupt-driven I/O

We discussed hardware interrupts in Chapter 14. In this section, we illustrate how a hardware

interrupt mechanism can be used to perform interrupt-driven I/O. For our example, we write a

type 9 interrupt routine that replaces the BIOS supplied routine. Recall that a type 9 interrupt

is generated via the IRQ1 line by the keyboard every time a key is depressed or released.

The logic of the main procedure can be described as follows:

main()
save the current int 9 vector

install our keyboard ISR

display “ISR installed” message

repeat

read_kb_key()
{this procedure waits until a key is pressed

and returns the ASCII code of the key in AL}
if (key �= Esc key)

then

if (key = return key)

then

display newline

else

display the key

end if

Section 15.8 I/O Data Transfer 453

else

goto done {If Esc key, we are done}
end if

until (FALSE)

done:
restore the original int 09H vector

return to DOS

end main

The read_kb_key procedure waits until a value is deposited in the keyboard buffer

keyboard_data. The pseudocode is

read_kb_key()
while (keyboard_data = –1)

end while

AL := keyboard_data
keyboard_data := –1

return

end read_kb_key

The keyboard ISR kbrd_ISR is invoked whenever a key is pressed or released. The scan

code of the key can be read from PA0–PA6, while the key state can be read from PA7. PA7

is 0 if the key is depressed; PA7 is 1 if the key is released. The program listing is given in

Program 15.6.

After reading the key scan code (lines 107 and 108), the keyboard should be acknowl-

edged. This is done by momentarily setting and clearing the PB7 bit (lines 111–116). If the

key is the left-shift or right-shift key, bit 0 of keyboard_flag is updated. If it is a normal

key, its ASCII code is obtained. The code on lines 154 and 155 sends an end-of-interrupt

(EOI) notification to the 8259 to indicate that the interrupt service is completed. The pseu-

docode of the ISR is given below:

kbrd_ISR()
read key scan code from KB_DATA (port 60H)

set PB7 bit to acknowledge using KB_CTRL (port 61H)

clear PB7 to reset acknowledge

process the key

send end-of-interrupt (EOI) to 8259

iret
end kbrd_ISR

454 Chapter 15 Real-Mode Interrupts

Program 15.6 A keyboard ISR to replace the BIOS keyboard handler

1: ;Keyboard interrupt service program KEYBOARD.ASM

2: ;

3: ; Objective: To demonstrate how the keyboard works.

4: ; Input: Key strokes from the keyboard. Only left- and

5: ; right-shift keys are recognized.

6: ; ESC key restores the original keyboard ISR

7: ; and terminates the program.

8: ; Output: Displays the key on the screen.

9:

10: ESC_KEY EQU 1BH ; ASCII code for ESC key

11: CR EQU 0DH ; ASCII code for carriage return

12: KB_DATA EQU 60H ; 8255 port PA

13: KB_CTRL EQU 61H ; 8255 port PB

14: LEFT_SHIFT EQU 2AH ; left-shift scan code

15: RIGHT_SHIFT EQU 36H ; right-shift scan code

16: EOI EQU 20H ; end-of-interrupt byte for 8259 PIC

17: PIC_CMD_PORT EQU 20H ; 8259 PIC command port

18:

19: %include "io.mac"

20: .STACK 100H

21: .DATA

22: install_msg db "New keyboard ISR installed.",0

23: keyboard_data db -1 ; keyboard buffer

24: keyboard_flag db 0 ; keyboard shift status

25: ; lowercase scan code to ASCII conversion table.

26: ; ASCII code 0 is used for unnecessary scan codes.

27: lcase_table db 01BH,"1234567890-=",08H,09H

28: db "qwertyuiop[]",CR,0

29: db "asdfghjkl;",27H,60H,0,’\’

30: db "zxcvbnm,./",0,’*’,0,’ ’,0

31: db 0,0,0,0,0,0,0,0,0,0

32: db 0,0,0,0,0,0,0,0,0,0

33: db 0,0,0,0,0,0,0,0,0,0

34: ; uppercase scan code to ASCII conversion table.

35: ucase_table db 01BH,"!@#$%ˆ&*()_+",08H,09H

36: db "QWERTYUIOP{}",0DH,0

37: db "ASDFGHJKL:",’"’,’˜’,0,’|’

38: db "ZXCVBNM<>?",0,’*’,0,’ ’

39: db 0,0,0,0,0,0,0,0,0,0

40: db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

41:

42: .UDATA

43: old_offset resw 1 ; storage for old int 09H vector

Section 15.8 I/O Data Transfer 455

44: old_segment resw 1

45:

46: .CODE

47: .STARTUP

48: PutStr install_msg

49: nwln

50:

51: ; save int 09H vector for later restoration

52: mov AX,3509H ; AH = 35H and AL = 09H

53: int 21H ; DOS function 35H returns

54: mov [old_offset],BX ; offset in BX and

55: mov [old_segment],ES ; segment in ES

56:

57: ;set up interrupt vector to our keyboard ISR

58: push DS ; DS is used by function 25H

59: mov AX,CS ; copy current segment to DS

60: mov DS,AX

61: mov DX,kbrd_ISR ; ISR offset in DX

62: mov AX,2509H ; AH = 25H and AL = 09H

63: int 21H

64: pop DS ; restore DS

65:

66: repeat1:

67: call read_kb_key ; read a key

68: cmp AL,ESC_KEY ; if ESC key

69: je done ; then done

70: cmp AL,CR ; if carriage return

71: je newline ; then display new line

72: PutCh AL ; else display character

73: jmp repeat1

74: newline:

75: nwln

76: jmp repeat1

77: done:

78: ; restore original keyboard interrupt int 09H vector

79: mov DX,old_offset

80: push DS

81: mov AX,old_segment

82: mov DS,AX

83: mov AX,2509H

84: int 21H

85: pop DS

86:

87: .EXIT

456 Chapter 15 Real-Mode Interrupts

88: ;---

89: ;This procedure waits until a valid key is entered at the

90: ; keyboard. The ASCII value of the key is returned in AL.

91: ;---

92: .CODE

93: read_kb_key:

94: cmp byte [keyboard_data],-1 ; -1 is an invalid entry

95: je read_kb_key

96: mov AL,[keyboard_data]

97: mov byte [keyboard_data],-1

98: ret

99: ;---

100: ;This keyboard ISR replaces the original int 09H ISR.

101: ;---

102: .CODE

103: kbrd_ISR:

104: sti ; enable interrupt

105: push AX ; save registers used by ISR

106: push BX

107: in AL,KB_DATA ; read keyboard scan code and the

108: mov BL,AL ; key status (down or released)

109: ; send keyboard acknowledge signal by momentarily

110: ; setting and clearing PB7 bit

111: in AL,KB_CTRL

112: mov AH,AL

113: or AL,80H

114: out KB_CTRL,AL ; set PB7 bit

115: xchg AL,AH

116: out KB_CTRL,AL ; clear PB7 bit

117:

118: mov AL,BL ; AL = scan code + key status

119: and BL,7FH ; isolate scan code

120: cmp BL,LEFT_SHIFT ; left- or right-shift key

121: je left_shift_key ; changed status?

122: cmp BL,RIGHT_SHIFT

123: je right_shift_key

124: test AL,80H ; if not, check status bit

125: jnz EOI_to_8259 ; if key released, do nothing

126: mov AH,[keyboard_flag] ; AH = shift key status

127: and AH,1 ; AH = 1 if left/right shift is ON

128: jnz shift_key_on

129: ; no shift key is pressed

130: mov BX,lcase_table ; shift OFF, use lowercase

131: jmp SHORT get_ASCII ; conversion table

Section 15.9 Summary 457

132: shift_key_on:

133: mov BX,ucase_table ; shift key ON, use uppercase

134: get_ASCII: ; conversion table

135: dec AL ; index is one less than scan code

136: xlat

137: cmp AL,0 ; ASCII code of 0 => uninterested key

138: je EOI_to_8259

139: mov [keyboard_data],AL ; save ASCII code in keyboard buffer

140: jmp SHORT EOI_to_8259

141:

142: left_shift_key:

143: right_shift_key:

144: test AL,80H ; test key status bit (0=down, 1=up)

145: jnz shift_off

146: shift_on:

147: or byte [keyboard_flag],1 ; shift bit (i.e., LSB) := 1

148: jmp SHORT EOI_to_8259

149: shift_off:

150: and byte [keyboard_flag],0FEH ; shift bit (i.e., LSB) := 0

151: jmp SHORT EOI_to_8259

152:

153: EOI_to_8259:

154: mov AL,EOI ; send EOI to 8259 PIC

155: out PIC_CMD_PORT,AL ; indicating end of ISR

156: pop BX ; restore registers

157: pop AX

158: iret

15.9 Summary
We presented details about the interrupt processing mechanism in the real mode. It is similar

to the protected-mode mechanism discussed in the last chapter. The operational differences

between the two mechanisms are due to the fact that the real mode works with 16-bit segments.

Software interrupts are often used to support access to the system I/O devices. Both BIOS

and DOS provide a high-level interface to the hardware with software interrupts. Hardware

interrupts are used by I/O devices to interrupt the processor to service their requests.

There are three ways an application program can access I/O devices. DOS and BIOS

provide software interrupt support routines to access I/O devices. In the third method, an

application program accesses the I/O devices directly via I/O ports. This involves low-level

programming using in and out instructions. Such direct control of I/O devices requires

detailed knowledge about the I/O device. We used several examples to illustrate how this

can be done. Specifically, we looked at programmed I/O and interrupt-driven I/O using the

keyboard as our example device.

458 Chapter 15 Real-Mode Interrupts

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• 8255 PPI chip

• BIOS services

• Block I/O instructions

• DOS services

• Exceptions

• Hardware interrupts

• I/O data transfer

• Interrupt-driven I/O

• Programmable interrupt controller

• Programmed I/O

• Real-mode interrupt processing

• Register I/O instructions

• Scan code

• Software interrupts

15.10 Exercises
15–1 Describe how extended keyboard keys are handled.

15–2 Explain how one can disable all maskable hardware interrupts efficiently. Efficiency

here refers to both time and space efficiency of the code.

15–3 In the last question, you looked at a solution to disable all the hardware interrupts.

Describe another way to disable all maskable hardware interrupts.

15–4 Write a piece of code to disable all maskable hardware interrupts except the timer and

keyboard interrupts. Refer to the interrupt table on page 447.

15–5 Discuss the advantages and disadvantages of the three ways an application program can

interact with I/O devices (see Figure 15.2).

15–6 Describe the actions taken (until the beginning of the execution of ISR) by the processor

in response to an interrupt int 10H. You can assume real mode of operation.

15–7 What is the difference between the DOS keyboard function 0BH and the BIOS keyboard

function 01H?

15–8 Discuss the tradeoffs between programmed I/O and interrupt-driven I/O.

15.11 Programming Exercises
15–P1 Write a divide error exception handler to replace the system supplied one. This handler

should display a message “A divide error has occurred” and then replace the result with

the dividend. You can use registers for the dividend and divisor of the div instruction.

Test your divide error ISR by making the divisor zero. Also, experiment with the ISR

code so that you see that the div instruction is restarted because divide error is con-

sidered a fault. For example, if your ISR does not change the value of the divisor (i.e.,

leave it as 0), your program will not terminate, as it repeatedly calls the divide error

exception handler by restarting the divide instruction. After observing this behavior,

Section 15.11 Programming Exercises 459

modify the ISR to change the divisor to a value other than 0 in order to proceed with

your test program.

15–P2 The into instruction generates overflow interrupt (interrupt 4) if the overflow flag is

set. Overflow interrupt is a trap, and therefore the interrupt instruction is not restarted.

Write an ISR to replace the system supplied one. Your ISR should display a message

“An overflow has occurred” and then replace the result with zero. As a part of the

exercise, test that into does not generate an interrupt unless the overflow flag is set.

15–P3 Convert toupper.asm given in Chapter 4 into an ISR for interrupt 100. You can

assume that DS:BX points to a null-terminated string. Write a simple program to test

your ISR.

15–P4 Write a program to display the date in the format dd-mmm-yyyy, where mmm is the

three-letter abbreviation for the month (e.g., JAN, FEB, etc.). To get the current date,

you can use the function 2AH of interrupt 21H. Details are given below:

Function 2AH — Get date

Input: AH = 2AH

Returns: AL = day of the week (0 = Sun, 1 = Mon, etc.)

CX = year (1980–2099)

DH = month (1= Jan, 2 = Feb, etc.)

DL = day of the month (1–31)

15–P5 Write a program to display the time in the format hh:mm:ss. To get the current time,

you can use the function 2CH of interrupt 21H. Details are given below:

Function 2CH — Get time

Input: AH = 2CH

Returns: CH = hours (0–23)

CL = minutes (0–59)

DH = seconds (0–59)

DL = hundredths of a second (0–99)

PART V

Advanced Topics

This part consists of the last three chapters: Chapters 16 to 18. These chapters deal with

advanced topics such as recursion, high-level language interface, and floating-point opera-

tions.

Chapter 16 discusses how recursive procedures are implemented in Pentium and MIPS

assembly languages. The next chapter deals with high-level language interface, which

allows mixed-mode programming. We use C and Pentium assembly language to cover the

principles involved in mixed-mode programming.

The last chapter discusses Pentium’s floating-point instructions. To follow the program-

ming examples of this chapter, you need to understand the high-level language interface

details presented in Chapter 17.

Chapter 16

Recursion

Objectives
• To introduce principles of recursion

• To show how recursive procedures are written in the Pentium and MIPS assembly lan-

guages

• To discuss pros and cons of recursion over iteration

We can use recursion as an alternative to iteration. We introduce the basics of recursion in

Section 16.1. The next two sections give some example recursive procedures in the Pentium

and MIPS assembly languages. The advantages and pitfalls associated with a recursive solu-

tion as opposed to an iterative solution are discussed in Section 16.4. The last section gives a

summary.

16.1 Introduction
A recursive procedure calls itself, either directly or indirectly. In direct recursion, a procedure

calls itself directly. In indirect recursion, procedure P makes a call to procedure Q, which in

turn calls procedure P. The sequence of calls could be longer before a call is made to procedure

P.

Recursion is a powerful tool that allows us to express our solution elegantly. Some solu-

tions can be naturally expressed using recursion. Computing a factorial is a classic example.

Factorial n, denoted n!, is the product of positive integers from 1 to n. For example,

5! = 1 × 2 × 3 × 4 × 5.

463

464 Chapter 16 Recursion

The factorial can be formally defined as

factorial(0) = 1

factorial(n) = n * factorial(n− 1) for n > 0.

Recursion shows up in this definition as we define factorial(n) in terms of factorial(n − 1).

Every recursive function should have a termination condition to end the recursion. In this

example, when n = 0, recursion stops. How do we express such recursive functions in

programming languages? Let us first look at how this function is written in C:

int fact(int n)

{

if (n == 0)

return(1);

return(n * fact(n-1));

}

This is an example of direct recursion. How is this function implemented? At the conceptual

level, its implementation is not any different from implementing other procedures. Once you

understand that each procedure call instance is distinct from the others, the fact that a recursive

procedure calls itself does not make a big difference.

Each active procedure maintains an activation record, which is stored on the stack. The

activation record, as explained on page 151, consists of the arguments, return address, and

local variables. The activation record comes into existence when a procedure is invoked and

disappears after the procedure is terminated. Thus, for each procedure that is not terminated,

an activation record that contains the state of that procedure is stored. The number of activa-

tion records, and hence the amount of stack space required to run the program, depends on

the depth of recursion.

Figure 16.1 shows the stack activation records for factorial(3). As you can see from this

figure, each call to the factorial function creates an activation record. Stack is used to keep

these activation records. In the next two sections we look at some example recursive proce-

dures in the Pentium and MIPS assembly languages.

16.2 Recursion in Pentium Assembly Language
To illustrate the principles of recursion, we give two examples in the Pentium assembly lan-

guage. The first example computes the factorial function while the second one implements

the popular quicksort algorithm. In the next section we redo these two examples in the MIPS

assembly language.

Example 16.1 Recursive procedure to compute the factorial function.

An implementation of the factorial function is shown in Program 16.1. The main function

provides the user interface. It requests a positive number from the user. If a negative number

Section 16.2 Recursion in Pentium Assembly Language 465

Activation

record for A

Activation

record for B

Activation

record for C

Activation

record for D

(b)(a)

A

B

C

D

factorial(0) = 1

factorial(1) = 1

factorial(2) = 2

factorial(3) = 6n = 3

n = 1

n = 0

n = 2

Call Return

Recursion termination

factorial(0) = 1

factorial(2) = 2 factorial(1)

*factorial(1) = 1 factorial(0)

*

factorial(3) = 3 factorial(2)*

Figure 16.1 Recursive computation of factorial(3).

is given as input, the user is prompted to try again. The positive number, which is read into

the BX, is passed on to procedure fact.

The fact procedure receives the number n in the BL register. It essentially implements

the C code given before. One minor difference is that this procedure terminates when n ≤ 1.

This termination would save us one recursive call. When the value in BL is less than or equal

to 1, the AX register is set to 1 to terminate recursion. The activation record in this example

consists of the return address pushed onto the stack by the call instruction. Since we are

using the BL register to pass n, it is decremented before the call (line 48) and restored after

the call (line 50). The multiply instruction

mul BL

multiplies the contents of the BL and AL registers and places the 16-bit result in the AX

register.

Program 16.1 Recursive computation of factorial(N)

1: ;Factorial - Recursive version FACT_PENTIUM.ASM

2: ;

3: ; Objective: To demonstrate principles of recursion.

4: ; Input: Requests an integer N from the user.

466 Chapter 16 Recursion

5: ; Output: Outputs N!

6:

7: %include "io.mac"

8:

9: .DATA

10: prompt_msg db "Please enter a positive integer: ",0

11: output_msg db "The factorial is: ",0

12: error_msg db "Sorry! Not a positive number. Try again.",0

13:

14: .CODE

15: .STARTUP

16: PutStr prompt_msg ; request the number

17:

18: try_again:

19: GetInt BX ; read number into BX

20: cmp BX,0 ; test for positive number

21: jge num_ok

22: PutStr error_msg

23: nwln

24: jmp try_again

25:

26: num_ok:

27: call fact

28:

29: PutStr output_msg ; output result

30: PutInt AX

31: nwln

32:

33: done:

34: .EXIT

35:

36: ;--

37: ;Procedure fact receives a positive integer N in BX register.

38: ;It returns N! in AX register.

39: ;--

40: .CODE

41: fact:

42: cmp BL,1 ; if N > 1, recurse

43: jg one_up

44: mov AX,1 ; return 1 for N < 2

45: ret ; terminate recursion

46:

47: one_up:

48: dec BL ; recurse with (N-1)

Section 16.2 Recursion in Pentium Assembly Language 467

49: call fact

50: inc BL

51: mul BL ; AX = AL * BL

52:

53: ret

Example 16.2 Sorting an array of integers using the quicksort algorithm.

Quicksort is one of the most popular sorting algorithms; it was proposed by C.A.R. Hoare in

1960. Once you understand the basic principle of the quicksort, you will see why recursion

naturally expresses it.

At its heart, quicksort uses a divide-and-conquer strategy. The original sort problem is

reduced to two smaller sort problems. This is done by selecting a partition element x and

partitioning the array into two subarrays: all elements less than x are placed in one subarray

and all elements greater than x are in the other. Now, we have to sort these two subarrays,

which are smaller than the original array. We apply the same procedure to sort these two

subarrays. This is where the recursive nature of the algorithm shows up. The quicksort

procedure to sort an N -element array is summarized below:

1. Select a partition element x.

2. Assume that we know where this element x should be in the final sorted array. Let it be

at array[i]. We give details of this step shortly.

3. Move all elements that are less than x into positions array[0] · · · array[i-1].

Similarly, move those elements that are greater than x into positions array[i+1] · · ·
array[N-1]. Note that these two subarrays are not sorted.

4. Now apply the quicksort procedure recursively to sort these two subarrays until the

array is sorted.

How do we know the final position of the partition element x without sorting the array? We

don’t have to sort the array; we just need to know the number of elements either before or

after it. To clarify the working of the quicksort algorithm, let us look at an example. In this

example, and in our quicksort implementation, we pick the last element as the partition value.

Obviously, the selection of the partition element influences performance of the quicksort.

There are several better ways of selecting the partition value; you can get these details in any

textbook on sorting.

Initial state: 2 9 8 1 3 4 7 6 ←− Partition element;

After 1st pass: 2 1 3 4 6 7 9 8 Partition element 6 is in its final place.

The second pass works on the following two subarrays.

468 Chapter 16 Recursion

1st subarray: 2 1 3 4;

2nd subarray: 7 9 8.

To move the partition element to its final place, we use two pointers i and j. Initially, i

points to the first element and j points to the second-to-the-last element. Note that we are

using the last element as the partition element. The index i is advanced until it points to an

element that is greater than or equal to x. Similarly, j is moved backward until it points to

an element that is less than or equal to x. Then we exchange the two values at i and j. We

continue this process until i is greater than or equal to j. The quicksort pseudocode is shown

below:

quick_sort (array, lo, hi)

if (hi > lo)

x := array[hi]

i := lo

j := hi

while (i < j)

while (array[i] < x)

i := i + 1

end while

while (array[j] > x)

j := j − 1

end while

if (i < j)

array[i] ⇐⇒ array[j] /* exchange values */

end if

end while

array[i] ⇐⇒ array[hi] /* exchange values */

quick_sort (array, lo, i−1)

quick_sort (array, i+1, hi)

end if

end quick_sort

The quicksort program is shown in Program 16.2. The input values are read by the read

loop (lines 25 to 31). This loop terminates if the input is zero. As written, this program

can cause problems if the user enters more than 200 integers. You can easily remedy this

problem by initializing the ECX with 200 and using the loop instruction on line 31. The three

arguments are placed in the EBX (array pointer), ESI (lo), and EDI (hi) registers (lines 35 to

37). After the quicksort call on line 38, the program outputs the sorted array (lines 41 to 50).
The quicksort procedure follows the pseudocode. Since we are not returning any values,

we use pushad to preserve all registers (line 62). The two inner while loops are implemented
by the LO_LOOP and HI_LOOP. The exchange of elements is done by using three xchg

Section 16.2 Recursion in Pentium Assembly Language 469

instructions (lines 89 to 91 and 95 to 97). The rest of the program follows the pseudocode in
a straightforward manner.

Program 16.2 Sorting integers using the recursive quicksort algorithm

1: ;Sorting integers using quicksort QSORT_PENTIUM.ASM

2: ;

3: ; Objective: Sorts an array of integers using

4: ; quick sort. Uses recursion.

5: ; Input: Requests integers from the user.

6: ; Terminated by entering zero.

7: ; Output: Outputs the sorted arrray.

8:

9: %include "io.mac"

10:

11: .DATA

12: prompt_msg db "Please enter integers. ",0DH,0AH

13: db "Entering zero terminates the input.",0

14: output_msg db "The sorted array is: ",0

15:

16: .UDATA

17: array1 resw 200

18:

19: .CODE

20: .STARTUP

21: PutStr prompt_msg ; request the number

22: nwln

23: mov EBX,array1

24: xor EDI,EDI ; EDI keeps a count of input numbers

25: read_more:

26: GetInt AX ; read a number

27: mov [EBX+EDI*2],AX ; store it in array

28: cmp AX,0 ; test if it is zero

29: je exit_read

30: inc EDI

31: jmp read_more

32:

33: exit_read:

34: ; prepare arguments for procedure call

35: mov EBX,array1

36: xor ESI,ESI ; ESI = lo index

37: dec EDI ; EDI = hi index

38: call qsort

39:

470 Chapter 16 Recursion

40: PutStr output_msg ; output sorted array

41: write_more:

42: ; since qsort preserves all registers, we will

43: ; have valid EBX and ESI values.

44: mov AX,[EBX+ESI*2]

45: cmp AX,0

46: je done

47: PutInt AX

48: nwln

49: inc ESI

50: jmp write_more

51:

52: done:

53: .EXIT

54:

55: ;--

56: ;Procedure qsort receives a pointer to the array in BX.

57: ;LO and HI are received in ESI and EDI, respectively.

58: ;It preserves all the registers.

59: ;--

60: .CODE

61: qsort:

62: pushad

63: cmp EDI,ESI

64: jle qsort_done ; end recursion if hi <= lo

65:

66: ; save hi and lo for later use

67: mov ECX,ESI

68: mov EDX,EDI

69:

70: mov AX,[EBX+EDI*2] ; AX = xsep

71:

72: lo_loop: ;

73: cmp [EBX+ESI*2],AX ;

74: jge lo_loop_done ; LO while loop

75: inc ESI ;

76: jmp lo_loop ;

77: lo_loop_done:

78:

79: dec EDI ; hi = hi-1

80: hi_loop:

81: cmp EDI,ESI ;

82: jle sep_done ;

83: cmp [EBX+EDI*2],AX ; HI while loop

Section 16.3 Recursion in MIPS Assembly Language 471

84: jle hi_loop_done ;

85: dec EDI ;

86: jmp hi_loop ;

87: hi_loop_done:

88:

89: xchg AX,[EBX+ESI*2] ;

90: xchg AX,[EBX+EDI*2] ; x[i] <=> x[j]

91: xchg AX,[EBX+ESI*2] ;

92: jmp lo_loop

93:

94: sep_done:

95: xchg AX,[EBX+ESI*2] ;

96: xchg AX,[EBX+EDX*2] ; x[i] <=> x[hi]

97: xchg AX,[EBX+ESI*2] ;

98:

99: dec ESI

100: mov EDI,ESI ; hi = i-1

101: ; We will modify the ESI value in the next statement.

102: ; Since the original ESI value is in EDI, we will use

103: ; EDI value to get i+1 value for the second qsort call.

104: mov ESI,ECX

105: call qsort

106:

107: ; EDI has the i value

108: inc EDI

109: inc EDI

110: mov ESI,EDI ; lo = i+1

111: mov EDI,EDX

112: call qsort

113:

114: qsort_done:

115: popad

116: ret

16.3 Recursion in MIPS Assembly Language
In MIPS, we could write procedures without using the stack. For most normal procedures, we

do not have to use the stack. The availability of a large number of registers allows us to use

register-based parameter passing. However, when we write recursive procedures, we have to

use the stack.

We introduced principles of recursion in Section 16.1. In the last section, we presented

two example programs, factorial and quicksort, in the Pentium assembly language. Now, we

472 Chapter 16 Recursion

do these two examples in the MIPS assembly language to illustrate how recursion is imple-

mented in MIPS. It also gives you an opportunity to compare the two assembly language

implementations.

Example 16.3 A recursion example—factorial.

Recall that the factorial function is defined as

0! = 1

N! = N * (N−1)!

Program 16.3 requests an integer N from the input and prints N !. This value is passed onto

the factorial procedure (fact) via the a0 register. First we have to determine the state in-

formation that needs to be saved (i.e., our activation record). In all procedures, we need to

store the return address. In the previous examples, this is automatically done by the call
instruction. In addition, in our factorial example, we need to keep track of the current value

in a0. However, we don’t have to save a0 on the stack as we can restore its value by adding

1, as shown on line 76. Thus, we save just the return address (line 67) and restore it back on

line 80. The body of the procedure can be divided into two parts: recursion termination and

recursive call. Since 1! is also 1, we use this to terminate recursion (lines 69–71).
If the value is more than 1, a recursive call is made with (N − 1) (lines 74 and 75). After

the call is returned, a0 is incremented to make it N before multiplying it with the values
returned for (N − 1)! in v0 (lines 76 and 77).

Program 16.3 Computing factorial—an example recursive function

1: # Finds factorial of a number FACT_MIPS.ASM

2: #

3: # Objective: Computes factorial of an integer.

4: # To demonstrate recursive procedures.

5: # Input: Requests an integer N from keyboard.

6: # Output: Outputs N!

7: #

8: # a0 - used to pass N

9: # v0 - used to return result

10: #

11: ###################### Data segment ##########################

12: .data

13: prompt:

14: .asciiz "Please enter a positive integer: \n"

15: out_msg:

16: .asciiz "The factorial is: "

17: error_msg:

18: .asciiz "Sorry! Not a positive number.\nTry again.\n "

19: newline:

Section 16.3 Recursion in MIPS Assembly Language 473

20: .asciiz "\n"

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: try_again:

32: li $v0,5 # read the input number into $a0

33: syscall

34: move $a0,$v0

35:

36: bgez $a0,num_OK

37: la $a0,error_msg # write error message

38: li $v0,4

39: syscall

40: b try_again

41:

42: num_OK:

43: jal fact

44: move $s0,$v0

45:

46: la $a0,out_msg # write output message

47: li $v0,4

48: syscall

49:

50: move $a0,$s0 # output factorial

51: li $v0,1

52: syscall

53:

54: la $a0,newline # write newline

55: li $v0,4

56: syscall

57:

58: li $v0,10 # exit

59: syscall

60:

61: #---

62: # FACT receives N in $a0 and returns the result in $v0

63: # It uses recursion to find N!

474 Chapter 16 Recursion

64: #---

65: fact:

66: subu $sp,$sp,4 # allocate stack space

67: sw $ra,0($sp) # save return address

68:

69: bgt $a0,1,one_up # recursion termination

70: li $v0,1

71: b return

72:

73: one_up:

74: subu $a0,$a0,1 # recurse with (N-1)

75: jal fact

76: addu $a0,$a0,1

77: mulou $v0,$a0,$v0 # $v0 = $a0*$v0

78:

79: return:

80: lw $ra,0($sp) # restore return address

81: addu $sp,$sp,4 # clear stack space

82: jr $ra

Example 16.4 A recursion example—quicksort.

As a second example, we implement the quicksort algorithm using recursion. A detailed de-

scription of the quicksort algorithm is given on page 467. Program 16.4 gives an implementa-

tion of the quicksort algorithm in the MIPS assembly language. The corresponding Pentium

assembly language implementation is given on page 469. One main difference you will notice

between these two programs is the addressing modes used to access the array elements. Since

MIPS does not support based-indexed addressing, the qsort procedure receives two pointers

(as opposed to array indexes). Furthermore, Pentium’s xchg instruction comes in handy to

exchange values between two registers.

The main program reads integers from input until terminated by a zero. We store the zero

in the array, as we will use it as the sentinel to output the sorted array (see lines 55 and 56).

Lines 43–46 prepare the two arguments for the qsort procedure.

The qsort recursive procedure stores a3 in addition to a1, a2, and ra registers. This

is because we store the end-of-subarray pointer in a3, which is required for the second re-

cursive call (line 122). As pointed out, due to lack of addressing mode support to access

arrays, we have to use byte pointers to access individual elements. This means updating index

involves adding or subtracting 4 (see lines 94, 99, and 116). The rest of the procedure fol-

lows the quicksort algorithm described on page 468. You may find it interesting to compare

this program with the Pentium version presented in Example 16.2 to see the similarities and

differences between the two assembly languages in implementing recursion.

Section 16.3 Recursion in MIPS Assembly Language 475

Program 16.4 Quicksort—another example recursive program

1: # Sorting numbers using quick sort QSORT_MIPS.ASM

2: #

3: # Objective: Sorts an array of integers using quick sort.

4: # Uses recursion.

5: # Input: Requests integers from the user;

6: # terminated by entering a zero.

7: # Output: Outputs the sorted integer array.

8: #

9: # a0 - start of array

10: # a1 - beginning of (sub)array

11: # a2 - end of (sub)array

12: #

13: ###################### Data segment ##########################

14: .data

15: prompt:

16: .ascii "Please enter integers. \n"

17: .asciiz "Entering zero terminates the input. \n"

18: output_msg:

19: .asciiz "The sorted array is: \n"

20: newline:

21: .asciiz "\n"

22: array:

23: .word 200

24:

25: ###################### Code segment ##########################

26:

27: .text

28: .globl main

29: main:

30: la $a0,prompt # prompt user for input

31: li $v0,4

32: syscall

33:

34: la $t0,array

35: read_more:

36: li $v0,5 # read a number

37: syscall

38: sw $v0,($t0) # store it in the array

39: beqz $v0,exit_read

40: addu $t0,$t0,4

41: b read_more

42: exit_read:

43: # prepare arguments for procedure call

476 Chapter 16 Recursion

44: la $a1,array # a1 = lo pointer

45: move $a2,$t0

46: subu $a2,$a2,4 # a2 = hi pointer

47: jal qsort

48:

49: la $a0,output_msg # write output message

50: li $v0,4

51: syscall

52:

53: la $t0,array

54: write_more:

55: lw $a0,($t0) # output sorted array

56: beqz $a0,exit_write

57: li $v0,1

58: syscall

59: la $a0,newline # write newline message

60: li $v0,4

61: syscall

62: addu $t0,$t0,4

63: b write_more

64: exit_write:

65:

66: li $v0,10 # exit

67: syscall

68:

69: #--

70: # QSORT receives pointer to the start of (sub)array in a1 and

71: # end of (sub)array in a2.

72: #--

73: qsort:

74: subu $sp,$sp,16 # save registers

75: sw $a1,0($sp)

76: sw $a2,4($sp)

77: sw $a3,8($sp)

78: sw $ra,12($sp)

79:

80: ble $a2,$a1,done # end recursion if hi <= lo

81:

82: move $t0,$a1

83: move $t1,$a2

84:

85: lw $t5,($t1) # t5 = xsep

86:

87: lo_loop: #

Section 16.3 Recursion in MIPS Assembly Language 477

88: lw $t2,($t0) #

89: bge $t2,$t5,lo_loop_done # LO while loop

90: addu $t0,$t0,4 #

91: b lo_loop #

92: lo_loop_done:

93:

94: subu $t1,$t1,4 # hi = hi-1

95: hi_loop:

96: ble $t1,$t0,sep_done #

97: lw $t3,($t1) #

98: blt $t3,$t5,hi_loop_done # HI while loop

99: subu $t1,$t1,4 #

100: b hi_loop #

101: hi_loop_done:

102:

103: sw $t2,($t1) #

104: sw $t3,($t0) # x[i]<=>x[j]

105: b lo_loop #

106:

107: sep_done:

108: move $t1,$a2 #

109: lw $t4,($t0) #

110: lw $t5,($t1) # x[i] <=>x[hi]

111: sw $t5,($t0) #

112: sw $t4,($t1) #

113:

114: move $a3,$a2 # save HI for the second call

115: move $a2,$t0 #

116: subu $a2,$a2,4 # set hi as i-1

117: jal qsort

118:

119: move $a1,$a2 #

120: addu $a1,$a1,8 # set lo as i+1

121: move $a2,$a3

122: jal qsort

123: done:

124: lw $a1,0($sp) # restore registers

125: lw $a2,4($sp)

126: lw $a3,8($sp)

127: lw $ra,12($sp)

128: addu $sp,$sp,16

129:

130: jr $ra

478 Chapter 16 Recursion

16.4 Recursion Versus Iteration
In theory, every recursive function has an iterative counterpart. To see this, let us write the

iterative version to compute the factorial function.

int fact_iterative(int n)

{

int i, result;

if (n == 0)

return (1);

result = 1;

for(i = 1; i <= n; i++)

result = result * i;

return(result);

}

From this example, it is obvious that the recursive version is concise and reflects the mathe-

matical definition of the factorial function. Once you get through the initial learning problems

with recursion, recursive code is easier to understand for those functions that are defined re-

cursively. Some such examples are the factorial function, Fibonacci number computation,

binary search, and quicksort.

This leads us to the question of when to use recursion. To answer this question, we need

to look at the potential problems recursion can cause. There are two main problems with

recursion:

• Inefficiency: In most cases, recursive versions tend to be inefficient. You can see this

point by comparing the recursive and iterative versions of the factorial function. The

recursive version induces more overheads to invoke and return from procedure calls.

To compute N !, we need to call the factorial function about N times. In the iterative

version, the loop iterates about N times.

Recursion could also introduce duplicate computation. For example, to compute the

Fibonacci number (see Programming Exercise 1 for the definition of this function)

fib(5) = fib(4) + fib(3)

a recursive procedure computes fib(3) two times, fib(2) two times, and so on.

• Increased memory requirement: Recursion tends to demand more memory. This can be

seen from the simple factorial example. For large N , the demand for stack memory can

be excessive. In some cases, the limit on the available memory may make the recursive

version unusable.

On the positive side, however, note that recursion leads to better understanding of the code for

those naturally recursive problems. In this case, recursion aids in program maintenance.

Section 16.5 Summary 479

16.5 Summary
We can use recursive procedures as an alternative to iterative ones. A procedure that calls

itself, whether directly or indirectly, is called a recursive procedure. In direct recursion, a

procedure calls itself, as in our factorial example. In indirect recursion, a procedure may

initiate a sequence of calls that eventually results in calling the procedure itself.

For some applications, we can write an elegant solution because recursion is a natural fit.

We illustrated the principles of recursion using two examples: factorial and quicksort. We

presented recursive versions of these functions in the Pentium and MIPS assembly languages.

In the last section we identified the tradeoffs associated with recursion as opposed to iteration.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Activation record

• Direct recurion

• Factorial function

• Indirect recursion

• Quicksort

• Recursion

16.6 Exercises
16–1 What is direct recursion?

16–2 What is indirect recursion?

16–3 We know that MIPS procedures can be written without using the stack. However, we

need to use the stack with recursion. Explain why.

16–4 What are the differences between iteration and recursion?

16–5 Explain why the stack size imposes a restriction on recursion depth.

16–6 What are the potential problems with recursion compared to iteration?

16–7 In Section 16.4 we talked about duplicate computation as one of the problems with

recursion. Do we have this problem with the factorial and quicksort solutions presented

in this chapter?

16.7 Programming Exercises
16–P1 The Fibonacci function is defined as

fib(1) = 1,

fib(2) = 1,

fib(n) = fib(n− 1) + fib(n − 2) for n > 2.

480 Chapter 16 Recursion

We have written iterative versions of this function in Chapter 5 (see page 152). Write a

program to recursively compute fib(N). Your main program should request a positive

integer N from the user and output fib(N). If the user enters a negative number, prompt

her to try again.

16–P2 Ackermann’s function A(m, n) is defined for m ≥ 0 and n ≥ 0 as

A(0, n) = N + 1 for n ≥ 0,

A(m, 0) = A(m − 1, 1) for m ≥ 1,

A(m, n) = A(m − 1, A(m, n − 1)) for m ≥ 1, n ≥ 1.

Write a recursive procedure to compute this function. Your main program should handle

the user interface to request m and n and display the final result.

16–P3 Write an assembly language program to solve the Towers of Hanoi puzzle. The puzzle

consists of three pegs and N disks. Disk 1 is smaller than disk 2, which is smaller than

disk 3, and so on. Disk N is the largest. Initially, all N disks are on peg 1 such that the

largest disk is at the bottom and the smallest at the top (i.e., in the order N , N − 1, . . .,

3, 2, 1 from bottom to top). The problem is to move these N disks from peg 1 to peg 2

under two constraints: you can move only one disk at a time and you must not place a

larger disk on top of a smaller one. We can express a solution to this problem by using

recursion. The function

move(N, 1, 2, 3)

moves N disks from peg 1 to peg 2 using peg 3 as the extra peg. There is a simple solu-

tion if you concentrate on moving the bottom disk on peg 1. The task move(N,1,2,3)
is equivalent to

move(N-1, 1, 3, 2)

move the remaining disk from peg 1 to 2

move(N-1, 3, 2, 1)

Even though the task appears to be complex, we write a very elegant and simple solution

to solve this puzzle. Here is a version in C.

void move (int n, int x, int y, int z)

{

if (n == 1)

printf("Move the top disk from peg %d to %d\n",x,y};

else

move(n-1, x, z, y)

printf("Move the top disk from peg %d to %d\n",x,y};

move(n-1, z, y, x)

}

Section 16.7 Programming Exercises 481

int main (void)

{

int disks;

scanf("%d", &disks);

move(disks, 1, 2, 3);

}

Test your program for a very small number of disks (say, less than 6). Even for 64 disks,

it takes years on whatever PC you have!

Chapter 17

High-Level Language

Interface

Objectives
• To review motivation for writing mixed-mode programs

• To discuss the principles of mixed-mode programming

• To describe how assembly language procedures are called from C

• To illustrate how C functions are called from assembly language procedures

• To explain how inline assembly language code is written

Thus far, we have written standalone assembly language programs. This chapter considers

mixed-mode programming, which refers to writing parts of a program in different program-

ming languages. We use C and Pentium assembly languages to illustrate how such mixed-

mode programs are written. The motivation for mixed-mode programming is discussed in

Section 17.1. Section 17.2 gives an overview of mixed-mode programming, which can be

done either by inline assembly code or by separate assembly modules. The inline assembly

method is discussed in Section 17.5. Other sections focus on the separate assembly module

method.

Section 17.3 describes the mechanics involved in calling assembly language procedures

from a C program. This section presents details about parameter passing, returning values of

C functions, and so on. Section 17.4 shows how a C function can be called from an assembly

language procedure. The last section summarizes the chapter.

483

484 Chapter 17 High-Level Language Interface

17.1 Why Program in Mixed Mode?
In this chapter we focus on mixed-mode programming that involves C and assembly lan-

guages. Thus, we write part of the program in C and the other part in the Pentium assembly

language. We use the gcc compiler and NASM assembler to explain the principles involved

in mixed-mode programming. This discussion can be easily extended to a different set of

languages and compilers/assemblers.

In Chapter 1 we discussed several reasons why one would want to program in the assembly

language. Although it is possible to write a program entirely in the assembly language, there

are several disadvantages in doing so. These include

• Low productivity

• High maintenance cost

• Lack of portability

Low productivity is due to the fact that assembly language is a low-level language. As

a result, a single high-level language instruction may require several assembly language in-

structions. It has been observed that programmers tend to produce the same number of lines

of debugged and tested source code per unit time irrespective of the level of the language

used. As the assembly language requires more lines of source code, programmer productivity

tends to be low.

Programs written in the assembly language are difficult to maintain. This is a direct con-

sequence of it’s being a low-level language. In addition, assembly language programs are

not portable. On the other hand, the assembly language provides low-level access to system

hardware. In addition, the assembly language may help us reduce the execution time.

As a result of these pros and cons, some programs are written in mixed mode using both

high-level and low-level languages. System software often requires mixed-mode program-

ming. In such programs, it is possible for a high-level procedure to call a low-level procedure,

and vice versa. The remainder of the chapter discusses how mixed-mode programming is

done in C and assembly languages. Our goal is to illustrate only the principles involved. Once

these principles are understood, the discussion can be generalized to any type of mixed-mode

programming.

17.2 Overview
There are two ways of writing mixed-mode C and assembly programs: inline assembly code

or separate assembly modules. In the inline assembly method, the C program module contains

assembly language instructions. Most C compilers including gcc allow embedding assembly

language instructions within a C program by prefixing them with asm to let the compiler know

that it is an assembly language instruction. This method is useful if you have only a small

amount of assembly code to embed. Otherwise, separate assembly modules are preferred. We

discuss the inline assembly method in Section 17.5.

Section 17.2 Overview 485

COMPILER ASSEMBLER

LINKER

Object file

C source file Assembly source file

Object file

Executable file

sample1.c sample2.asm

sample1.o sample2.o

sample1.out

Figure 17.1 Steps involved in compiling mixed-mode programs.

When separate modules are used for C and assembly languages, each module can be

translated into the corresponding object file. To do this translation, we use a C compiler for

the C modules and an assembler for the assembly modules, as shown in Figure 17.1. Then the

linker can be used to produce the executable file from these object files.

Suppose our mixed-mode program consists of two modules:

• One C module, file sample1.c, and

• One assembly module, file sample2.asm.

The process involved in producing the executable file is shown in Figure 17.1. We can invoke

the NASM assembler as

nasm -f elf sample2.asm

This creates the sample2.o object file. We can compile and link the files with the following

command:

486 Chapter 17 High-Level Language Interface

TOS, ESP EIP

. . .

ESP, TOS

d

c

b

a

Right−pusherLeft−pusher

a

b

c

d

EIP

. . .

Figure 17.2 Two ways of pushing arguments onto the stack.

gcc -o sample1.out sample1.c sample2.o

This command instructs the compiler to first compile sample1.c to sample1.o. The

linker is automatically invoked to link sample1.o and sample2.o to produce the exe-

cutable file sample1.out.

17.3 Calling Assembly Procedures from C
Let us now discuss how we can call an assembly language procedure from a C program.

The first thing we have to know is what communication medium is used between the C and

assembly language procedures, as the two procedures may exchange parameters and results.

You are right if you guessed it to be the stack.

Given that the stack is used for communication purposes, we still need to know a few

more details as to how the C function places the parameters on the stack, and where it expects

the assembly language procedure to return the result. In addition, we should also know which

registers we can use freely without worrying about preserving their values. Next we discuss

these issues in detail.

Parameter Passing

There are two ways in which arguments (i.e., parameter values) are pushed onto the stack:

from left to right or from right to left. Most high-level languages push the arguments from

left to right. These are called left-pusher languages. C, on the other hand, pushes arguments

from right to left. Thus, C is a right-pusher language. The stack state after executing

sum(a,b,c,d)

is shown in Figure 17.2. From now on, we consider only right-pushing of arguments, as we

focus on the C language.

To see how gcc pushes arguments onto the stack, take a look at the following C program

(this is a partial listing of Example 17.1):

Section 17.3 Calling Assembly Procedures from C 487

int main(void)

{

int x=25, y=70;

int value;

extern int test(int, int, int);

value = test (x, y, 5);

. . .

}

The assembly language translation of the procedure call (use -S option to generate the as-

sembly source code) is shown below:1

push 5

push 70

push 25

call test

add ESP,12

mov [EBP-12],EAX

This program is compiled with -O2 optimization. This optimization is the reason for pushing

constants 70 and 25 instead of variables x and y. If you don’t use this optimization, gcc
produces the following code:

push 5

push [EBP-8]

push [EBP-4]

call test

add ESP,12

mov [EBP-12],EAX

It is obvious from this code fragment that the compiler assigns space for variables x, y, and

value on the stack at EBP−4, EBP−8, and EBP−12, respectively. When the test function

is called, the arguments are pushed from right to left, starting with the constant 5. Also notice

that the stack is cleared of the arguments by the C program after the call by the following

statement:

add ESP,12

So, when we write our assembly procedures, we should not bother clearing the arguments

from the stack as we did in our programs in the previous chapters. This convention is used

because C allows a variable number of arguments to be passed in a function call (see our

discussion in Section 5.8 on page 146).

1Note that gcc uses AT&T syntax for the assembly language—not the Intel syntax we have been using in this book. To

avoid any confusion, the contents are reported in our syntax. The AT&T syntax is introduced in Section 17.5.

488 Chapter 17 High-Level Language Interface

Returning Values

We can see from the assembly language code given in the last subsection that the EAX register

is used to return the function value. In fact, the EAX is used to return 8-, 16-, and 32-bit values.

To return a 64-bit value, use the EDX:EAX pair with the EDX holding the upper 32 bits.

We have not discussed how floating-point values are returned. For example, if a C function

returns a double value, how do we return this value? We discuss this issue in Chapter 18.

Preserving Registers

In general, the called assembly language procedure can use the registers as needed, except

that the following registers should be preserved:

EBP, EBX, ESI, EDI

The other registers, if needed, must be preserved by the calling function.

Globals and Externals

Mixed-mode programming involves at least two program modules: a C module and an as-

sembly module. Thus, we have to declare those functions and procedures that are not defined

in the same module as external. Similarly, those procedures that are accessed by another

module should be declared as global, as discussed in Chapter 5. Before proceeding further,

you may want to review the material on multimodule programs presented in Chapter 5 (see

Section 5.10 on page 156). Here we mention only those details that are specific to the mixed-

mode programming involving C and assembly language.

In most C compilers, external labels should start with an underscore character (_). The

C and C++ compilers automatically append the required underscore character to all external

functions and variables. A consequence of this characteristic is that when we write an as-

sembly procedure that is called from a C program, we have to make sure that we prefix an

underscore character to its name. However, gcc does not follow this convention by default.

Thus, we don’t have to worry about the underscore.

17.3.1 Illustrative Examples

We now look at three examples to illustrate the interface between C and assembly language

programs. We start with a simple example, whose C part has been dissected before.

Example 17.1 Our first mixed-mode example.

This example passes three parameters to the assembly language function test1. The C code

is shown in Program 17.1 and the assembly code in Program 17.2. The function test1 is

declared as external in the C program (line 12) and global in the assembly program (line 8).

Since C clears the arguments from the stack, the assembly procedure uses a simple ret to

transfer control back to the C program. Other than these differences, the assembly procedure

is similar to several others we have written before.

Section 17.3 Calling Assembly Procedures from C 489

Program 17.1 An example illustrating assembly calls from C: C code (in file hll ex1c.c)

1: /***

2: * A simple program to illustrate how mixed-mode programs are

3: * written in C and assembly languages. The main C program calls

4: * the assembly language procedure test1.

5: ***/

6: #include <stdio.h>

7:

8: int main(void)

9: {

10: int x = 25, y = 70;

11: int value;

12: extern int test1 (int, int, int);

13:

14: value = test1(x, y, 5);

15: printf("Result = %d\n", value);

16:

17: return 0;

18: }

Program 17.2 An example illustrating assembly calls from C: assembly language code (in file

hll test.asm)

1: ;---

2: ; This procedure receives three integers via the stack.

3: ; It adds the first two arguments and subtracts the third one.

4: ; It is called from the C program.

5: ;---

6: segment .text

7:

8: global test1

9:

10: test1:

11: enter 0,0

12: mov EAX,[EBP+8] ; get argument1 (x)

13: add EAX,[EBP+12] ; add argument 2 (y)

14: sub EAX,[EBP+16] ; subtract argument3 (5)

15: leave

16: ret

490 Chapter 17 High-Level Language Interface

Example 17.2 An example to show parameter passing by call-by-value as well as call-by-

reference.

This example shows how pointer parameters are handled. The C main function requests three

integers and passes them to the assembly procedure. The C program is given in Program 17.3.

The assembly procedure min_max, shown in Program 17.4, receives the three integer values

and two pointers to variables minimum and maximum. It finds the minimum and maximum

of the three integers and returns them to the main C function via these two pointers. The

minimum value is kept in EAX and the maximum in EDX. The code given on lines 27 to 30

in Program 17.4 stores the return values by using the EBX register in the indirect addressing

mode.

Program 17.3 An example with the C program passing pointers to the assembly program: C code (in

file hll minmaxc.c)

1: /**

2: * An example to illustrate call-by-value and *

3: * call-by-reference parameter passing between C and *

4: * assembly language modules. The min_max function is *

5: * written in assembly language (in the file hll_minmaxa.asm). *

6: **/

7: #include <stdio.h>

8: int main(void)

9: {

10: int value1, value2, value3;

11: int minimum, maximum;

12: extern void min_max (int, int, int, int*, int*);

13:

14: printf("Enter number 1 = ");

15: scanf("%d", &value1);

16: printf("Enter number 2 = ");

17: scanf("%d", &value2);

18: printf("Enter number 3 = ");

19: scanf("%d", &value3);

20:

21: min_max(value1, value2, value3, &minimum, &maximum);

22: printf("Minimum = %d, Maximum = %d\n", minimum, maximum);

23: return 0;

24: }

Section 17.3 Calling Assembly Procedures from C 491

Program 17.4 An example with the C program passing pointers to the assembly program: assembly

language code (in file hll minmax a.asm)

1: ;---

2: ; Assembly program for the min_max function - called from the

3: ; C program in the file hll_minmaxc.c. This function finds

4: ; the minimum and maximum of the three integers it receives.

5: ;---

6: global min_max

7:

8: min_max:

9: enter 0,0

10: ; EAX keeps minimum number and EDX maximum

11: mov EAX,[EBP+8] ; get value 1

12: mov EDX,[EBP+12] ; get value 2

13: cmp EAX,EDX ; value 1 < value 2?

14: jl skip1 ; if so, do nothing

15: xchg EAX,EDX ; else, exchange

16: skip1:

17: mov ECX,[EBP+16] ; get value 3

18: cmp ECX,EAX ; value 3 < min in EAX?

19: jl new_min

20: cmp ECX,EDX ; value 3 < max in EDX?

21: jl store_result

22: mov EDX,ECX

23: jmp store_result

24: new_min:

25: mov EAX,ECX

26: store_result:

27: mov EBX,[EBP+20] ; EBX = &minimum

28: mov [EBX],EAX

29: mov EBX,[EBP+24] ; EBX = &maximum

30: mov [EBX],EDX

31: leave

32: ret

Example 17.3 Array sum example.

This example illustrates how arrays, declared in C, are accessed by assembly language pro-

cedures. The array value is declared in the C program, as shown in Program 17.5 (line 12).

The assembly language procedure computes the sum as shown in Program 17.6. As in the

other programs in this chapter, the C program clears the parameters off the stack. We will

redo this example using inline assembly in Section 17.5.

492 Chapter 17 High-Level Language Interface

Program 17.5 An array sum example: C code (in file hll arraysumc.c)

1: /**

2: * This program reads 10 integers into an array and calls an

3: * assembly language program to compute the array sum.

4: * The assembly program is in the file "hll_arraysuma.asm".

5: **/

6: #include <stdio.h>

7:

8: #define SIZE 10

9:

10: int main(void)

11: {

12: int value[SIZE], sum, i;

13: extern int array_sum(int*, int);

14:

15: printf("Input %d array values:\n", SIZE);

16: for (i = 0; i < SIZE; i++)

17: scanf("%d",&value[i]);

18:

19: sum = array_sum(value,SIZE);

20: printf("Array sum = %d\n", sum);

21:

22: return 0;

23: }

Program 17.6 An array sum example: assembly language code (in file hll arraysuma.asm)

1: ;---

2: ; This procedure receives an array pointer and its size via

3: ; the stack. It computes the array sum and returns it.

4: ;---

5: segment .text

6:

7: global array_sum

8:

9: array_sum:

10: enter 0,0

11: mov EDX,[EBP+8] ; copy array pointer to EDX

12: mov ECX,[EBP+12] ; copy array size to ECX

13: sub EBX,EBX ; array index = 0

14: sub EAX,EAX ; sum = 0 (EAX keeps the sum)

Section 17.4 Calling C Functions from Assembly 493

15: add_loop:

16: add EAX,[EDX+EBX*4]

17: inc EBX ; increment array index

18: cmp EBX,ECX

19: jl add_loop

20: leave

21: ret

17.4 Calling C Functions from Assembly
So far, we have considered how a C function can call an assembler procedure. Sometimes it

is desirable to call a C function from an assembler procedure. This scenario often arises when

we want to avoid writing assembly language code for a complex task. Instead, a C function

could be written for those tasks. This section illustrates how we can access C functions

from assembly procedures. Essentially, the mechanism is the same: we use the stack as

the communication medium, as shown in the next example.

Example 17.4 An example to illustrate a C function call from an assembly procedure.

In previous chapters, we used simple I/O routines to facilitate input and output in our assembly

language programs. If we want to use the C functions like printf() and scanf(), we

have to pass the arguments as required by the function. In this example, we show how we can

use these two C functions to facilitate input and output of integers. This discussion can be

generalized to other types of data.

Here we compute the sum of an array passed onto the assembly language procedure

array_sum. This example is similar to Example 17.3, except that the C program does

not read the array values; instead, the assembly program does this by calling the printf()
and scanf() functions as shown in Program 17.8. In this program, the prompt message is

declared as a string on line 9 (including the newline). The assembly language version imple-

ments the equivalent of the following printf statement we used in Program 17.5:

printf("Input %d array values:\n", SIZE);

Before calling the printf function on line 21, we push the array size (which is in ECX) and

the string onto the stack. The stack is cleared on line 22.

The array values are read using the read loop on lines 26 to 36. It uses the scanf function,

the equivalent of the following statement:

scanf("%d",&value[i]);

The required arguments (array and format string pointers) are pushed onto the stack on lines 28

and 29 before calling the scanf function on line 30. The array sum is computed using the

add loop on lines 41 to 45 as in Program 17.6.

494 Chapter 17 High-Level Language Interface

Program 17.7 An example to illustrate C calls from assembly programs: C code (in file

hll arraysum2c.c)

1: /**

2: * This program calls an assembly program to read the array

3: * input and compute its sum. This program prints the sum.

4: * The assembly program is in the file "hll_arraysum2a.asm".

5: **/

6: #include <stdio.h>

7:

8: #define SIZE 10

9:

10: int main(void)

11: {

12: int value[SIZE];

13: extern int array_sum(int*, int);

14:

15: printf("sum = %d\n",array_sum(value,SIZE));

16:

17: return 0;

18: }

Program 17.8 An example to illustrate C calls from assembly programs: assembly language code (in

file hll arraysum2a.asm)

1: ;---

2: ; This procedure receives an array pointer and its size

3: ; via the stack. It first reads the array input from the

4: ; user and then computes the array sum.

5: ; The sum is returned to the C program.

6: ;---

7: segment .data

8: scan_format db "%d",0

9: printf_format db "Input %d array values:",10,13,0

10:

11: segment .text

12:

13: global array_sum

14: extern printf,scanf

15:

16: array_sum:

17: enter 0,0

Section 17.5 Inline Assembly 495

18: mov ECX,[EBP+12] ; copy array size to ECX

19: push ECX ; push array size

20: push dword printf_format

21: call printf

22: add ESP,8 ; clear the stack

23:

24: mov EDX,[EBP+8] ; copy array pointer to EDX

25: mov ECX,[EBP+12] ; copy array size to ECX

26: read_loop:

27: push ECX ; save loop count

28: push EDX ; push array pointer

29: push dword scan_format

30: call scanf

31: add ESP,4 ; clear stack of one argument

32: pop EDX ; restore array pointer in EDX

33: pop ECX ; restore loop count

34: add EDX,4 ; update array pointer

35: dec ECX

36: jnz read_loop

37:

38: mov EDX,[EBP+8] ; copy array pointer to EDX

39: mov ECX,[EBP+12] ; copy array size to ECX

40: sub EAX,EAX ; EAX = 0 (EAX keeps the sum)

41: add_loop:

42: add EAX,[EDX]

43: add EDX,4 ; update array pointer

44: dec ECX

45: jnz add_loop

46: leave

47: ret

17.5 Inline Assembly
In this section we look at writing inline assembly code. In this method, we embed assem-

bly language statements within the C code. We identify assembly language statements by

using the asm construct. (You can use __asm__ if asm causes a conflict, e.g., for ANSI C

compatibility.)

We now have a serious problem: the syntax that the gcc compiler uses for assembly

language statements is different from the syntax we have been using so far. We have been

using the Intel syntax (NASM, TASM, and MASM use this syntax). The gcc compiler uses

the AT&T syntax, which is used by GNU assemblers. It is different in several aspects from

the Intel syntax. But don’t worry! We give an executive summary of the differences so that

you can understand the syntactical differences without spending too much time.

496 Chapter 17 High-Level Language Interface

17.5.1 The AT&T Syntax

This section gives a summary of some of the key differences from the Intel syntax.

Register Naming In the AT&T syntax, we have to prefix register names with %. For exam-

ple, the EAX register is specified as %eax.

Source and Destination Order The source and destination operands order is reversed in

the AT&T syntax. In this format, source operand is on the left-hand side. For example, the

instruction

mov eax,ebx

is written as

movl %ebx,%eax

Operand Size As demonstrated by the last example, the instructions specify the operand

size. The instructions are suffixed with b, w, and l for byte, word, and longword operands,

respectively. With this specification, we don’t have to use byte, word, and dword to clarify

the operand size (see our discussion in Section 4.4.2 on page 79).

The operand size specification is not strictly necessary. You can let the compiler guess the

size of the operand. However, if you specify, it takes the guesswork out and we don’t have to

worry about the compiler making an incorrect guess. Here are some examples:

movb %bl,%al ; moves contents of bl to al

movw %bx,%ax ; moves contents of bx to ax

movl %ebx,%eax ; moves contents of ebx to eax

Immediate and Constant Operands In the AT&T syntax, immediate and constant operands

are specified by prefixing with $. Here are some examples:

movb $255,%al

movl $0xFFFFFFFF,%eax

The following statement loads the address of the C global variable total into the EAX

register:

movl $total,%eax

This works only if total is declared as a global variable. Otherwise, we have to use the

extended asm construct that we discuss later.

Section 17.5 Inline Assembly 497

Addressing To specify indirect addressing, the AT&T syntax uses brackets (not square

brackets). For example, the instruction

mov eax,[ebx]

is written in AT&T syntax as

movl (%ebx),%eax

The full 32-bit protected-mode addressing format is shown below:

imm32(base,index,scale)

The address is computed as

imm32 + base + index * scale

If we declaredmarks as a global array of integers, we can load marks[5] into EAX register

using

movl $5,%ebx

movl marks(,%ebx,4),%eax

For example, if the pointer to marks is in the EAX register, we can load marks[5] into the

EAX register using

movl $5,%ebx

movl (%eax,%ebx,4),%eax

We use a similar technique in the array sum example discussed later. We have covered enough

details to work with the AT&T syntax.

17.5.2 Simple Inline Statements

At the basic level, introducing assembly statements is not difficult. Here is an example that

increments the EAX register contents:

asm("incl %eax");

Multiple assembly statements like these

asm("pushl %eax");

asm("incl %eax");

asm("popl %eax");

can be grouped into a single compound asm statement as shown below:

asm("pushl %eax; incl %eax; popl %eax");

498 Chapter 17 High-Level Language Interface

If you want to add structure to this compound statement, you can write the above statement

as follows:

asm("pushl %eax;"

"incl %eax;"

"popl %eax");

We have one major problem in accessing the registers as we did here: How do we know if

gcc is not keeping something useful in the register that we are using? More importantly, how

do we get access to C variables that are not global to manipulate in our inline assembly code?

The answers are provided by the extended asm statement. This is where we are going next.

17.5.3 Extended Inline Statements

The format of the asm statement consists of four components as shown below:

asm(assembly code

:outputs

:inputs

:clobber list);

Each component is separated by a colon (:). The last three components are optional. These

four components are described next.

Assembly Code This component consists of the assembly language statements to be in-

serted into the C code. This may have a single instruction or a sequence of instructions, as

discussed in the last subsection. If no compiler optimization should be done to this code, add

the keyword volatile after asm (i.e., use asm volatile). The instructions typically

use the operands specified in the next two components.

Outputs This component specifies the output operands for the assembly code. The format

for specifying each operand is shown below:

"=op-constraint" (C-expression)

The first part specifies an operand constraint, and the part in brackets is a C expression. The

= identifies that it is an output constraint. For some strange reason we have to specify = even

though we separate inputs and outputs with a colon. The following example

"=r" (sum)

specifies that the C variable sum should be mapped to a register as indicated by r in the

constraint. Multiple operands can be specified by separating them with commas. We give

some examples later.

Section 17.5 Inline Assembly 499

Depending on the processor, several other choices are allowed including m (memory), i
(immediate), rm (register or memory), ri (register or immediate), or g (general). The last

one is typically equivalent to rim. You can also specify a particular register by using a, b,

and so on. The following table summarizes the register letters used to specify which registers

that gcc may use:

Letter Register set

a EAX register

b EBX register

c ECX register

d EDX register

S ESI register

D EDI register

r Any of the eight general registers

(EAX, EBX, ECX, EDX, ESI, EDI, EBP,

ESP)

q Any of the four data registers

(EAX, EBX, ECX, EDX)

A A 64-bit value in EAX and EDX

f Floating-point registers

t Top floating-point register

u Second top floating-point register

The last three letters are used to specify floating-point registers. We discuss floating-point

operations in Chapter 18.

Inputs The inputs are also specified in the same way (except for the = sign). The operands

specified in the output and input parts are assigned sequence numbers 0, 1, 2, . . . starting

with the leftmost output operand. There can be a total of 10 operands, inputs and outputs

combined. Thus, 9 is the maximum sequence number allowed.

In the assembly code, we can refer to the output and input operands by their sequence

number prefixed with %. In the following example

asm("movl %1,%0"

:"=r"(sum) /* output */

:"r"(number1) /* input */

);

the C variables sum and number1 are both mapped to registers. In the assembly code state-

ment, sum is identified by %0 and number1 by %1. Thus, this statement copies the value of

number1 to sum.

500 Chapter 17 High-Level Language Interface

Sometimes, an operand provides input and receives the result as well (e.g., x in x = x+ y).

In this case, the operand should be in both lists. In addition, you should use its output sequence

number as its input constraint specifier. The following example clarifies what we mean.

asm("addl %1,%0"

:"=r"(sum) /* output */

:"r"(number1), "0"(sum) /* inputs */

);

In this example, we want to perform sum = sum + number1. In this expression, the

variable sum provides one of the inputs and also receives the result. Thus, sum is in both

lists. However, note that the constraint specifier for it in the input list is "0", not "r".

The assembly code can use specific registers prefixing the register with %. Since the AT&T

syntax prefixes registers with %, we end up using %% as in %%eax to refer to the EAX register.

Clobber List This last component specifies the list of registers modified by the assembly

instructions in the asm statement. This lets gcc know that it cannot assume that the contents

of these registers are valid after the asm statement. The compiler may use this information to

reload their values after executing the asm statement.

In case the assembly code modifies the memory, use the keyword "memory" to indicate

this fact. Even though it may not be needed, you may want to specify "cc" in the clobber

list if the flags register is modified (e.g., by an arithmetic instruction). Here is an example that

includes the clobber list:

asm("movl %0,%%eax"

: /* no output */

:"r"(number1) /* inputs */

:"%eax" /* clobber list */

);

In this example, there is no output list; thus, the input operand (number1) is referred by %0.

Since we copy the value of number1 into EAX register, we specify EAX in the clobber list

so that gcc knows that our asm statement modifies this register.

17.5.4 Inline Examples

We now give some examples to illustrate how we can write mixed-mode programs using the

inline assembly method.

Example 17.5 Our first inline assembly example.

As our first example, we rewrite the code for Example 17.1 using inline assembly (see Pro-

gram 17.9). The procedure test1 is written using inline assembly code. We use the EAX

register to compute the sum as in Program 17.2 (see lines 22–24). Since there are no output

operands, we explicitly state this by the comment on line 25. The three input operands x, y,

Section 17.5 Inline Assembly 501

and z, specified on line 26, are referred in the assembly code as %0, %1, and %2, respectively.

The clobbered list consists of EAX register and the flags register ("cc") as the add and sub
instructions modify the flags register. Since the result is available in the EAX register, we

simply return from the function.

Program 17.9 Our first inline assembly code example (in file hll ex1 inline.c)

1: /***

2: * A simple program to illustrate how mixed-mode programs are

3: * written in C and assembly languages. This program uses inline

4: * assembly code in the test1 function.

5: ***/

6: #include <stdio.h>

7:

8: int main(void)

9: {

10: int x = 25, y = 70;

11: int value;

12: extern int test1 (int, int, int);

13:

14: value = test1(x, y, 5);

15: printf("Result = %d\n", value);

16:

17: return 0;

18: }

19:

20: int test1(int x, int y, int z)

21: {

22: asm("movl %0,%%eax;"

23: "addl %1,%%eax;"

24: "subl %2,%%eax;"

25: :/* no outputs */ /* outputs */

26: : "r"(x), "r"(y), "r"(z) /* inputs */

27: :"cc","%eax"); /* clobber list */

28: }

Example 17.6 Array sum example—inline version.

This is the inline assembly version of the array sum example we did in Example 17.3. The

program is given in Program 17.10. In the array_sum procedure, we replace the C state-

ment

502 Chapter 17 High-Level Language Interface

sum += value[i];

by the inline assembly code. The output operand specifies sum. The input operand list con-

sists of the array value, array index variable i, and sum. Since sum is also in the output

list, we use "0" as explained before. Since we use the add instruction, we specify "cc" in

the clobber list as in the last example.

The assembly code consists of a single addl instruction. The source operand of this add

instruction is given as (%1,%2,4). From our discussion on page 497 it is clear that this

operand refers to value[i]. The rest of the code is straightforward to follow.

Program 17.10 Inline assembly version of the array sum example (in file hll arraysum inline.c)

1: /**

2: * This program reads 10 integers into an array and calls an

3: * assembly language program to compute the array sum.

4: * It uses inline assembly code in array_sum function.

5: **/

6: #include <stdio.h>

7:

8: #define SIZE 10

9:

10: int main(void)

11: {

12: int value[SIZE], sum, i;

13: int array_sum(int*, int);

14:

15: printf("Input %d array values:\n", SIZE);

16: for (i = 0; i < SIZE; i++)

17: scanf("%d",&value[i]);

18:

19: sum = array_sum(value,SIZE);

20: printf("Array sum = %d\n", sum);

21:

22: return 0;

23: }

24:

25: int array_sum(int* value, int size)

26: {

27: int i, sum=0;

28: for (i = 0; i < size; i++)

29: asm("addl (%1,%2,4),%0"

30: :"=r"(sum) /* output */

31: :"r"(value),"r"(i),"0"(sum) /* inputs */

32: :"cc"); /* clobber list */

Section 17.5 Inline Assembly 503

33: return(sum);

34: }

Example 17.7 Array sum example—inline version 2.

In the last example, we just replaced the statement

sum += value[i];

of the array_sum function by the assembly language statement. In this example, we rewrite

the array_sum function completely in the assembly language. The rewritten function is

shown in Program 17.11. This code illustrates some of the features we have not used in the

previous examples.

As you can see from line 10, we receive the two input parameters (value and size) in

specific registers (value in EBX and size in ECX). We compute the sum directly in the

EAX register, so there are no outputs in the asm statement (see line 9). We don’t use "%0"
and "%1" to refer to the input operands. Since these are mapped to specific registers, we can

use the register names in our assembly language code (see lines 5 and 6).

We use the EAX register to keep the sum. This register is initialized to zero on line 3. We

use jecxz to test if ECX is zero. This is the termination condition for the loop. This code

also shows how we can use jump instructions and labels.

Program 17.11 Another inline assembly version of the array sum function (This function is in file

hll arraysum inline2.c)

1: int array_sum(int* value, int size)

2: {

3: asm(" xorl %%eax,%%eax;" /* sum = 0 */

4: "rep1: jecxz done; "

5: " decl %%ecx; "

6: " addl (%%ebx,%%ecx,4),%%eax;"

7: " jmp rep1; "

8: "done: "

9: : /* no outputs */

10: :"b"(value),"c"(size) /* inputs */

11: :"%eax","cc"); /* clobber list */

12: }

504 Chapter 17 High-Level Language Interface

17.6 Summary
We introduced the principles involved in mixed-mode programming. We discussed the main

motivation for writing mixed-mode programs. This chapter focused on mixed-mode program-

ming involving C and the assembly language. Using the gcc compiler and NASM assembler,

we demonstrated how assembly language procedures are called from C, and vice versa. Once

you understand the principles discussed in this chapter, you can easily handle any type of

mixed-mode programming activity.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• asm directive

• Inline assembly

• Left-pusher language

• Mixed-mode programs

• Parameter passing

• Right-pusher language

17.7 Exercises
17–1 Why do we need to write mixed-mode programs?

17–2 Describe how parameters are passed from a C function to an assembly language proce-

dure.

17–3 What is the difference between right-pusher and left-pusher languages (as far as param-

eter passing is concerned)?

17–4 Explain why, in C, the calling function is responsible for clearing the stack.

17–5 What are the pros and cons of inline assembly as opposed to separate assembly mod-

ules?

17–6 What is the purpose of the clobber list in the extended asm statement?

17–7 Describe how we can access C variables (that are not global) in inline assembly code.

17.8 Programming Exercises
17–P1 Write a program that requests a string and a substring from the user and reports the

location of the first occurrence of the substring in the string. Write a C main program to

receive the two strings from the user. Have the C main program then call an assembly

language procedure to find the location of the substring. This procedure should re-

ceive two pointers to strings string and substring and search for substring in

string. If a match is found, it returns the starting position of the first match. Match-

ing should be case-sensitive. A negative value should be returned if no match is found.

For example, if

Section 17.8 Programming Exercises 505

string = Good things come in small packages.

and

substring = in

the procedure should return 8, indicating a match of in in things.

17–P2 Write a program to read a matrix (maximum size 10 × 10) from the user and display

the transpose of the matrix. To obtain the transpose of matrix A, write rows of A as

columns. Here is an example:

If the input matrix is
⎡

⎢
⎢
⎣

12 34 56 78

23 45 67 89

34 56 78 90

45 67 89 10

⎤

⎥
⎥
⎦

,

the transpose of the matrix is
⎡

⎢
⎢
⎣

12 23 34 45

34 45 56 67

56 67 78 89

78 89 90 10

⎤

⎥
⎥
⎦

.

The C part of your program is responsible for getting the matrix and for displaying the

result. The transpose should be done by an assembly procedure. Devise an appropriate

interface between the two procedures.

17–P3 Write a mixed-mode program that reads a string of characters as input and displays the

number of alphabetic characters (i.e., A to Z and a to z) and number of digit characters

(i.e., 0 to 9). The C main function prompts the user for a string and passes this string to

an assembly procedure (say, count), along with two pointers for the two counts to be

returned. The assembly procedure count calls the C library functions isalpha and

isdigit to determine if a character is an alpha or digit character, respectively.

17–P4 We know that

1 + 2 + 3 + · · · + N =
N × (N + 1)

2
.

Write a program that requests N as input and computes the left-hand and the right-hand

sides of the equation, verifies that they are equal, and displays the value. Organize your

program as follows. The C main function should request the N value and also display

the output. It should call an assembly procedure that verifies the equation and returns

the value to the C main function.

The assembly program computes the left-hand side and calls a C function to compute

the right-hand side (it passes the N value to the C function). If the left-hand side is

equal to the right-hand side, the assembly procedure returns the result of the calculation.

Otherwise, a negative value is returned to the main C function.

Chapter 18

Floating-Point Operations

Objectives
• To introduce the floating-point unit details

• To describe the floating-point instructions

• To give example programs that use the floating-point instructions

This chapter gives an introduction to the floating-point instructions of the Pentium processor.

After giving a brief introduction to floating-point numbers, we describe the floating-point

registers in Section 18.2. The Pentium’s floating-point unit supports several floating-point

instructions. Some of these instructions are described in the next section. We give some

examples illustrating the application of the floating-point instructions in Section 18.4. We

conclude the chapter with a summary.

18.1 Introduction
In the previous chapters, we represented numbers using integers. As you know, these numbers

cannot be used to represent fractions. We use floating-point numbers to represent fractions.

For example, in C, we use the float and double data types for the floating-point numbers.

One key characteristic of integers is that operations on these numbers are always precise.

For example, when we add two integers, we always get the exact result. In contrast, operations

on floating-point numbers are subjected to rounding-off errors. This tends to make the result

approximate, rather than precise. However, floating-point numbers have several advantages.

Floating-point numbers can used to represent both very small numbers and very large

numbers. To achieve this, these numbers use the scientific notation to represent numbers. The

number is divided into three parts: the sign, the mantissa, and the exponent. The sign bit

507

508 Chapter 18 Floating-Point Operations

identifies whether the number is positive (0) or negative (1). The magnitude is given by

magnitude = mantissa × 2exponent

Implementation of floating-point numbers on computer systems vary from this generic

format—usually for efficiency reasons or to conform to a standard. Pentium, like most other

processors, follows the IEEE 754 floating-point standard. Such standards are useful, for ex-

ample, to exchange data among several different computer systems and to write efficient nu-

merical software libraries.

The Pentium floating-point unit (FPU) supports three formats for floating-point numbers.

Two of these are for external use and one for internal use. The external format defines two

precision types: single-precision format uses 32 bits while the double-precision format uses

64 bits. In C, we use float for single-precision and double for double-precision floating-

point numbers. The internal format uses 80 bits and is referred to as the extended format. As

we see in the next section, all internal registers of the floating-point unit are 80 bits so that they

can store floating-point numbers in the extended format. More details on the floating-point

numbers are given in Appendix A.

The number-crunching capability of a processor can be enhanced by using a special hard-

ware to perform floating-point operations. The 80X87 numeric coprocessors were designed to

work with the 80X86 family of processors. The 8087 coprocessor was designed for the 8086

and 8088 processors to provide extensive high-speed numeric processing capabilities. The

8087, for example, provided about a hundredfold improvement in execution time compared

to that of an equivalent software function on the 8086 processor. The 80287 and 80387 co-

processors were designed for use with the 80286 and 80386 processors, respectively. Starting

with the 80486 processor, the floating-point unit has been integrated into the processor itself,

avoiding the need for external numeric processors.

In the remainder of this chapter, we discuss the floating-point unit organization and its

instructions. Toward the end of the chapter, we give several example programs that use the

floating-point instructions.

18.2 Floating-Point Unit Organization
The floating-point unit provides several registers, as shown in Figure 18.1. These registers

are divided into three groups: data registers, control and status registers, and pointer registers.

The last group consists of the instruction and data pointer registers, as shown in Figure 18.1.

These pointers provide support for programmed exception handlers. Since this topic is beyond

the scope of this book, we do not discuss details of these registers.

18.2.1 Data Registers

The FPU has eight floating-point registers to hold the floating-point operands. These regis-

ters supply the necessary operands to the floating-point instructions. Unlike the processor’s

general-purpose registers like the EAX and EBX registers, these registers are organized as a

Section 18.2 Floating-Point Unit Organization 509

mantissasign exponent

ST1

ST0

ST2

ST3

ST4

ST5

ST6

ST7

Instruction pointer

Data pointer

047

Control register

Status register

Tag register

015

063647879

FPU data registers

Figure 18.1 FPU registers.

register stack. In addition, we can access these registers individually using ST0, ST1, and so

on.

Since these registers are organized as a register stack, these names are not statically as-

signed. That is, ST0 does not refer to a specific register. It refers to whichever register is

acting as the top-of-stack (TOS) register. The next register is referred to as ST1, and so on;

the last register as ST7. There is a 3-bit top-of-stack pointer in the status register to identify

the TOS register.

Each data register can hold an extended-precision floating-point number. This format

uses 80 bits as opposed single-precision (32 bits) or double-precision (64 bits) formats. The

rationale is that these registers typically hold intermediate results and using the extended

format improves the accuracy of the final result.

The status and contents of each register is indicated by a 2-bit tag field. Since we have

eight registers, we need a total of 16 tag bits. These 16 bits are stored in the tag register (see

Figure 18.1). We discuss the tag register details a little later.

510 Chapter 18 Floating-Point Operations

Precision
control

015

Exception masks

PM = Precision

UM = Underflow

OM = Overflow

ZM = Divide−by−zero

DM = Denormalized operand

IM = Invalid operation

D

M

O

M

Z

M

U

M

P

M

I

MPCRC

Rounding
control

Figure 18.2 FPU control register details (the shaded bits are not used).

18.2.2 Control and Status Registers

This group consists of three 16-bit registers: the control register, the status register, and the

tag register, as shown in Figure 18.1.

FPU Control Register This register is used to provide control to the programmer on several

processing options. Details about the control word are given in Figure 18.2. The least signifi-

cant six bits contain masks for the six floating-point exceptions. The PC and RC bits control

precision and rounding. Each uses two bits to specify four possible controls. The options for

the rounding control are

• 00 — Round to nearest

• 01 — Round down

• 10 — Round up

• 11 — Truncate

The precision control can used to set the internal operating precision to less than the

default precision. These bits are provided for compatibility to earlier FPUs with less precision.

The options for precision are

• 00 — 24 bits (single precision)

• 01 — Not used

• 10 — 53 bits (double precision)

• 11 — 64 bits (extended precision)

Section 18.2 Floating-Point Unit Organization 511

I

E

C

3

C

2

C

1

C

0

D

E

O

E

Z

E

U

E

P

E

S

FB TOS
E

S

015

Exception flags

PE = Precision

UE = Underflow

OE = Overflow

ZE = Divide−by−zero

DE = Denormalized operand

IE = Invalid operation

Top−of−stack

Stack faultCondition code

Busy Error status

Figure 18.3 FPU status register details. The busy bit is included for 8087 compatibility only.

FPU Status Register This 16-bit register keeps the status of the FPU (see Figure 18.3).

The four condition code bits (C0 − C3) are updated to reflect the result of the floating-point

arithmetic operations. These bits are similar to the flags register. The correspondence between

three of these four bits and the flag register is shown below:

FPU flag CPU flag

C0 CF

C2 PF

C3 ZF

The missing C1 bit is used to indicate stack underflow/overflow (discussed below). These bits

are used for conditional branching just like the corresponding CPU flag bits.

To facilitate this branching, the status word should be copied into the CPU flags register.

This copying is a two-step process. First, we use the fstsw instruction to store the status

word in the AX register. We can then load these values into the flags register by using the

sahf instruction. Once loaded, we can use conditional jump instructions. We demonstrate

an application of this in Example 18.2.

The status register uses three bits to maintain the top-of-stack (TOS) information. The

eight floating-point registers are organized as a circular buffer. The TOS identifies the register

that is at the top. Like the CPU stack, this value is updated as we push and pop from the stack.

The least significant six bits give the status of the six exceptions shown in Figure 18.3.

The invalid operation exception may occur due to either a stack operation or an arithmetic

operation. The stack fault bit gives information as to the cause of the invalid operation. If

this bit is 1, the stack fault is caused by a stack operation that resulted in a stack overflow or

underflow condition; otherwise, the stack fault is due to an arithmetic instruction encountering

512 Chapter 18 Floating-Point Operations

ST0
Tag

ST7
Tag

ST6
Tag

ST5
Tag

ST4
Tag

ST3
Tag

ST2
Tag

ST1
Tag

015 1234567891011121314

Figure 18.4 FPU tag register details.

an invalid operand. We can use the C1 bit to further distinguish between the stack underflow

(C1 = 0) and overflow (C1 = 1).

The overflow and underflow exceptions occur if the number is too big or too small. These

exceptions usually occur when we execute floating-point arithmetic instructions.

The precision exception indicates that the result of an operation could not be represented

exactly. This, for example, would be the case when we want to represent a fraction like 1/3.

This exception indicates that we lost some accuracy in representing the result. In most cases,

this loss of accuracy is acceptable.

The divide-by-zero exception is similar to the divide error exception generated by the

processor (see our discussion on page 408). The denormal exception is generated when an

arithmetic instruction attempts to operate on a denormal operand (denormals are explained

later—see page 518).

Tag Register This register stores information on the status and content of the data registers.

The tag register details are shown in Figure 18.4. For each register, two bits are used to give

the following information:

• 00 — valid

• 01 — zero

• 10 — special (invalid, infinity, or denormal)

• 11 — empty

The least significant two bits are used for the ST0 register, and the next two bits for the ST1

register, and so on. This tag field identifies whether the associated register is empty or not. If

not empty, it identifies the contents: valid number, zero, or some special value like infinity.

18.3 Floating-Point Instructions
The FPU provides several floating-point instructions for data movement, arithmetic, compar-

ison, and transcendental operations. In addition, there are instructions for loading frequently

used constants like π as well as processor control words. In this section we look at some of

these instructions.

Unless otherwise specified, these instructions affect the four FPU flag bits as follows:

the flag bits C0, C2, and C3 are undefined; the C1 flag is updated as described before to

Section 18.3 Floating-Point Instructions 513

indicate the stack overflow/underflow condition. Most instructions we discuss next, except

the compare instructions, affect the flags this way.

18.3.1 Data Movement

Data movement is supported by two types of instructions: load and store. We start our discus-

sion with the load instructions. The general load instruction has the following format:

fld src

This instruction pushes src onto the FPU stack. That is, it decrements the TOS pointer and

stores src at ST0. The src operand can be in a register or in memory. If the source operand

is in memory, it can be a single-precision (32-bit), double-precision (64-bit), or extended (80-

bit) floating-point number. Since the registers hold the numbers in the extended format, a

single- or double-precision number is converted to the extended format before storing it in

ST0.

There are also instructions to push constants onto the stack. These instructions do not take

any operands. Here is a list of these instructions:

Instruction Description

fldz Push +0.0 onto the stack

fld1 Push +1.0 onto the stack

fldpi Push π onto the stack

fldl2t Push log210 onto the stack

fldl2e Push log2e onto the stack

fldlg2 Push log102 onto the stack

fldln2 Push loge2 onto the stack

To load an integer, we can use

fild src

The src operand must be a 16- or 32-bit integer located in memory. The instruction converts

the integer to the extended format and pushes onto the stack (i.e., loads in ST0).

The store instruction has the following format:

fst dest

It stores the top-of-stack values at dest. The destination can be one of the FPU registers or

memory. Like the load instruction, the memory operand can be single-precision, double-

precision, or extended floating-point number. As usual, if the destination is a single- or

double-precision operand, the register value is converted to the destination format. It is im-

portant to note this instruction does not remove the value from the stack; it simply copies its

514 Chapter 18 Floating-Point Operations

value. If you want the value to be copied as well as pop it off the stack, use the following

instruction (i.e., use the suffix p):

fstp dest

There is an integer version of the store instruction. The instruction

fist dest

converts the value in ST0 to a signed integer and stores it at dest in memory. It uses the RC

(rounding control) field in the conversion (see the available rounding options on page 510).

The pop version of this instruction

fistp dest

performs similar conversion as the fist instruction; the difference is that it also pops the

value from the stack.

18.3.2 Addition

The basic add instruction has the following format:

fadd src

It adds the floating-point number in memory (at src) to that in ST0 and stores the result back

in ST0. The value at src can be a single- or double-precision number. This instruction does

not pop the stack.

The two-operand version of the instruction allows us to specify the destination register:

fadd dest,src

In this instruction, both src and dest must be FPU registers. Like the last add instruction,

it does not pop the stack. For this, you have to use the pop version:

faddp dest,src

We can add integers using the following instruction:

fiadd src

Here src is a memory operand that is either a 16- or 32-bit integer.

18.3.3 Subtraction

The subtract instruction has a similar instruction format as the add instruction. The subtract

instruction

Section 18.3 Floating-Point Instructions 515

fsub src

performs the following operation:

ST0 = ST0−src

Like the add instruction, we can use the two-operand version to specify two registers. The

instruction

fsub dest,src

performs dest=dest−src. We can also have a pop version of this instruction:

fsubp dest,src

Since subtraction is not commutative (i.e., A−B is not the same as B−A), there is a reverse

subtract operation. It is reverse in the sense that operands of this instruction are reversed from

the previous subtract instructions. The instruction

fsubr src

performs the operation ST0=src−ST0. Note that the fsub performs ST0−src. Now

you know why this instruction is called the reverse subtract! Like the fsub instruction, there

is a two-operand version as well as a pop version (for the pop version, use fsubrp opcode).

If you want to subtract an integer, you can use fisub for the standard subtraction, or

fisubr for reverse subtraction. As in the fiadd instruction, the 16- or 32-bit integer must

be in memory.

18.3.4 Multiplication

The multiplication instruction has several versions similar to the fadd instruction. We start

with the memory operand version:

fmul src

where the source (src) can a 32- or 64-bit floating-point number in memory. It multiplies

this value with that in ST0 and stores the result in ST0.

As in the add and subtract instructions, we can use the two-operand version to specify two

registers. The instruction

fmul dest,src

performs dest=dest *src. The pop version of this instruction is also available:

fmulp dest,src

516 Chapter 18 Floating-Point Operations

There is also a special pop version that does not take any operands. The operands are assumed

to be the top two values on the stack. The instruction

fmulp

is similar to the last one except that it multiplies ST0 and ST1.

To multiply the contents of ST0 by an integer stored in memory, we can use

fimul src

The value at src can be a 32- or 64-bit integer.

18.3.5 Division

The division instruction has several versions like the subtract instruction. The memory version

of the divide instruction is

fdiv src

It divides the contents of ST0 by src and stores the result in ST0:

ST0 = ST0/src

The src operand can be a single- or double-precision floating-point value in memory.

The two-operand version

fdiv dest,src

performs dest=dest/src. As in the previous instructions, both operands must be in the

floating-point registers. The pop version uses fdivp instead of fdiv. To divide ST0 by an

integer, use the fidiv instruction.

Like the subtract instruction, there is a reverse variation for each of these divide instruc-

tions. The rationale is simple: A/B is not the same as B/A. For example, the reverse divide

instruction

fdivr src

performs

ST0 = src/ST0

As shown in this instruction, we get the reverse version by suffixing r to the opcode.

Section 18.3 Floating-Point Instructions 517

18.3.6 Comparison

This instruction can be used to compare two floating-point numbers. The format is

fcom src

It compares the value in ST0 with src and sets the FPU flags. The src operand can be

in memory or in a register. As mentioned before, the C1 bit is used to indicate stack over-

flow/underflow condition. The other three flags—C0, C2, and C3—are used to indicate the

relationship as follows:

ST0 > src C3 C2 C0 = 0 0 0

ST0 = src C3 C2 C0 = 1 0 0

ST0 < src C3 C2 C0 = 0 0 1

Not comparable C3 C2 C0 = 1 1 1

If no operand is given in the instruction, the top two values are compared (i.e., ST0 is

compared with ST1). The pop version is also available (fcomp).

The compare instruction also comes in a double-pop flavor. The instruction

fcompp

takes no operands. It compares ST0 with ST1 and updates the FPU flags as discussed before.

In addition, it pops the two values off the stack, effectively removing the two numbers it just

compared.

To compare the top of stack with an integer value in memory, we can use

ficom src

The src can be a 16- or 32-bit integer. There is also the pop version of this instruction

(ficomp).

A special case of comparison that is often required is the comparison with zero. The

instruction

ftst

can used for this purpose. It takes no operands and compares the stack top value to 0.0 and

updates the FPU flags as in the fcmp instruction.

The last instruction we discuss here allows us to examine the type of number. The instruc-

tion

fxam

examines the number in ST0 and returns its sign in C1 flag bit (0 for positive and 1 for

negative). In addition, it returns the following information in the remaining three flag bits

(C0, C2, and C3):

518 Chapter 18 Floating-Point Operations

Type C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal 1 1 0

The unsupported type is a format that is not part of the IEEE 754 standard. The NaN represents

Not-a-Number, as discussed in Appendix A. The meaning of Normal, Infinity, and Zero does

not require an explanation. A register that does not have a number is identified as Empty.

Denormals are used for numbers that are very close to zero. Recall that normalized num-

bers have 1.XX...XX as the mantissa. In single- and double-precision numbers, the integer 1

is not explicitly stored (it is implied to save a bit). Thus, we store only XX...XX in mantissa.

This integer bit is explicitly stored in the extended format.

When the number is very close to zero, we may underflow the exponent when we try to

normalize it. Therefore, in this case, we leave the integer bit as zero. Thus, a denormal has

the following two properties:

• The exponent is zero;

• The integer bit of the mantissa is also a zero.

18.3.7 Miscellaneous

We now give details on some of the remaining floating-point instructions. Note that there

are several other instructions that are not covered in our discussion here. The NASM manual

gives a complete list of the floating-point instructions implemented in NASM.

The instruction

fchs

changes the sign of the number in ST0. We use this instruction in our quadratic roots example

to invert the sign. A related instruction

fabs

replaces the value in ST0 with its absolute value.

Two instructions are available for loading and storing the control word. The instruction

fldcw src

loads the 16-bit value in memory at src into the FPU control word register. To store the

control word, we use

Section 18.4 Illustrative Examples 519

fstcw dest

Following this instruction, all four flag bits (C0 – C3) are undefined.

To store the status word, we can use the instruction

fstsw dest

It stores the status word at dest. Note that the dest can be a 16-bit memory location or

the AX register. Combining this instruction with sahf, which copies AH into the processor

flags register, gives us the ability to use the conditional jump instructions. We use these two

instructions in the quadratic roots example given in the next section. After executing this

instruction, all four flag bits (C0 – C3) are undefined.

18.4 Illustrative Examples
To illustrate the application of the floating-point instructions, we give some examples here.

We use mixed-mode programs in our examples. To follow these examples, you need to under-

stand the material presented in the last chapter. The first two examples use separate assembly

language modules. The last example uses inline assembly code.

Example 18.1 Array sum example.

This example computes the sum of an array of doubles. The C program, shown in Pro-

gram 18.1, takes care of the user interface. It requests values to fill the array and then calls

the assembly language procedure array_fsum to compute the sum.

The array_fsum procedure is given in Program 18.2. It copies the array pointer to EDX

(line 10) and the array size to ECX (line 11). We initialize ST0 to zero by using the fldz
instruction on line 12. The add loop consists of the code on lines 13–17. We use the jecxz
instruction to exit the loop if the index is zero at the start of the loop.

We use the fadd instruction to compute the sum in ST0. Also note that the based-indexed

addressing mode with a scale factor of 8 is used to read the array elements (line 16). Since C

programs expect floating-point return values in ST0, we simply return from the procedure as

the result is already in ST0.

Program 18.1 Array sum program—C program

1: /**

2: * This program reads SIZE values into an array and calls

3: * an assembly language program to compute the array sum.

4: * The assembly program is in the file "arrayfsuma.asm".

5: **/

6: #include <stdio.h>

7:

520 Chapter 18 Floating-Point Operations

8: #define SIZE 10

9:

10: int main(void)

11: {

12: double value[SIZE];

13: int i;

14: extern double array_fsum(double*, int);

15:

16: printf("Input %d array values:\n", SIZE);

17: for (i = 0; i < SIZE; i++)

18: scanf("%lf",&value[i]);

19:

20: printf("Array sum = %lf\n", array_fsum(value,SIZE));

21:

22: return 0;

23: }

Program 18.2 Array sum program—assembly language procedure

1: ;---

2: ; This procedure receives an array pointer and its size via

3: ; the stack. It computes the array sum and returns it via ST0.

4: ;---

5: segment .text

6: global array_fsum

7:

8: array_fsum:

9: enter 0,0

10: mov EDX,[EBP+8] ; copy array pointer to EDX

11: mov ECX,[EBP+12] ; copy array size to ECX

12: fldz ; ST0 = 0 (ST0 keeps the sum)

13: add_loop:

14: jecxz done

15: dec ECX ; update array index

16: fadd qword[EDX+ECX*8] ; ST0 = ST0 + arrary_element

17: jmp add_loop

18: done:

19: leave

20: ret

Section 18.4 Illustrative Examples 521

Example 18.2 Quadratic equation solution.

In this example, we find roots of the quadratic equation

ax2 + bx + c = 0 .

The two roots are defined as follows:

root1 =
−b +

√
b2 − 4ac

2a
,

root2 =
−b −

√
b2 − 4ac

2a
.

The roots are real if b2 ≥ 4ac, and imaginary otherwise.

As in the last example, our C program takes care of the user interface (see Program 18.3).

It requests the user to input constants a, b, and c. It then passes these three values to the

quad_roots assembly language procedure along with two pointers to root1 and root2.

This procedure returns 0 if the roots are not real; otherwise it returns 1. If the roots are real,

the two roots are returned in root1 and root2.

The assembly language procedure, shown in Program 18.4, receives five arguments: three

constants and two pointers to return the two roots. These five arguments are assigned con-

venient labels on lines 7–11. The comments included in the code make it easy to follow the

body of the procedure. On each line, we indicate the contents on the stack with the leftmost

value being at the top of the stack.

We use the ftst instruction to see if (b2 − 4ac) is negative (line 30). We move the FPU

flag bits to AX and then to the processor flags register using the fstsw and sahf instructions

on lines 31 and 32. Once these bits are copied into the flags register, we can use the conditional

jump instruction jb (line 33). The rest of the procedure body is straightforward to follow.

Program 18.3 Quadratic equation solution—C program

1: /**

2: * This program reads three constants (a, b, c) and calls an

3: * assembly language program to compute the roots of the

4: * quadratic equation.

5: * The assembly program is in the file "quada.asm".

6: **/

7: #include <stdio.h>

8:

9: int main(void)

10: {

11: double a, b, c, root1, root2;

12: extern int quad_roots(double, double, double, double*, double*);

522 Chapter 18 Floating-Point Operations

13:

14: printf("Enter quad constants a, b, c: ");

15: scanf("%lf %lf %lf",&a, &b, &c);

16:

17: if (quad_roots(a, b, c, &root1, &root2))

18: printf("Root1 = %lf and root2 = %lf\n", root1, root2);

19: else

20: printf("There are no real roots.\n");

21:

22: return 0;

23: }

Program 18.4 Quadratic equation solution—assembly language procedure

1: ;---

2: ; This procedure receives three constants a, b, c and

3: ; pointers to two roots via the stack. It computes the two

4: ; real roots if they exist and returns them in root1 & root2.

5: ; In this case, EAX = 1. If no real roots exist, EAX = 0.

6: ;---

7: %define a qword[EBP+8]

8: %define b qword[EBP+16]

9: %define c qword[EBP+24]

10: %define root1 dword[EBP+32]

11: %define root2 dword[EBP+36]

12:

13: segment .text

14: global quad_roots

15:

16: quad_roots:

17: enter 0,0

18: fld a ; a

19: fadd ST0 ; 2a

20: fld a ; a,2a

21: fld c ; c,a,2a

22: fmulp ST1 ; ac,2a

23: fadd ST0 ; 2ac,2a

24: fadd ST0 ; 4ac,2a

25: fchs ; -4ac,2a

26: fld b ; b,-4ac,2a

27: fld b ; b,b,-4ac,2a

28: fmulp ST1 ; b*b,-4ac,2a

Section 18.4 Illustrative Examples 523

29: faddp ST1 ; b*b-4ac,2a

30: ftst ; compare (b*b-4ac) with 0

31: fstsw AX ; store status word in AX

32: sahf

33: jb no_real_roots

34: fsqrt ; sqrt(b*b-4ac),2a

35: fld b ; b,sqrt(b*b-4ac),2a

36: fchs ; -b,sqrt(b*b-4ac),2a

37: fadd ST1 ; -b+sqrt(b*b-4ac),sqrt(b*b-4ac),2a

38: fdiv ST2 ; -b+sqrt(b*b-4ac)/2a,sqrt(b*b-4ac),2a

39: mov EAX,root1

40: fstp qword[EAX] ; store root1

41: fchs ; -sqrt(b*b-4ac),2a

42: fld b ; b,sqrt(b*b-4ac),2a

43: fsubp ST1 ; -b-sqrt(b*b-4ac),2a

44: fdivrp ST1 ; -b-sqrt(b*b-4ac)/2a

45: mov EAX,root2

46: fstp qword[EAX] ; store root2

47: mov EAX,1 ; real roots exist

48: jmp short done

49: no_real_roots:

50: sub EAX,EAX ; EAX = 0 (no real roots)

51: done:

52: leave

53: ret

Example 18.3 Array sum example—inline version.

In this example we rewrite the code for the array_fsum procedure using the inline assembly

method. Remember that when we use this method, we have to use AT&T syntax. In this

syntax, the operand size is explicitly indicated by suffixing a letter to the opcode. For the

floating-point instructions, the following suffixes are used:

s Single-precision

l Double-precision

t Extended-precision

The inline assembly code, shown in Program 18.5, is similar to that in Program 18.2. You

will notice that on line 10 we use =t output specifier to indicate that variable sum is mapped

to a floating-point register (see page 499 for a discussion of these specifiers). Since we map

value to EBX and size to ECX (line 11), we use these registers in the assembly language

code to access the array elements (see line 7).

524 Chapter 18 Floating-Point Operations

Program 18.5 Array sum example—inline version

1: double array_fsum(double* value, int size)

2: {

3: double sum;

4: asm(" fldz; " /* sum = 0 */

5: "add_loop: jecxz done; "

6: " decl %%ecx; "

7: " faddl (%%ebx,%%ecx,8);"

8: " jmp add_loop; "

9: "done: "

10: :"=t"(sum) /* output */

11: :"b"(value),"c"(size) /* inputs */

12: :"cc"); /* clobber list */

13: return(sum);

14: }

18.5 Summary
We presented a brief description of the floating-point unit organization. Specifically, we con-

centrated on the registers provided by the FPU. It provides eight floating-point data registers

that are organized as a stack. The floating-point instructions include several arithmetic and

nonarithmetic instructions. We discussed some of these instructions. Finally, we presented

some examples that used the floating-point instructions discussed.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Control register

• Data registers

• Denormals

• Floating-point instructions

• Precision control

• Rounding control

• Status register

• Tag register

18.6 Exercises
18–1 What is the purpose of the TOS field in the status register?

18–2 What is the purpose of the condition code bits in the status register?

18–3 Why do we need to keep the tag field information on each data register?

Section 18.7 Programming Exercises 525

18–4 We stated that the floating-point data registers use the extended format. What is the

motivation for this selection?

18–5 What is a denormal floating-point number? Why do we need it?

18–6 Explain how we can control the program flow based on the result of the fcom instruc-

tion.

18.7 Programming Exercises
18–P1 Write a mixed-mode program that reads a set of marks and computes the average mark.

The main procedure (written in C) handles the user interface. It reads the input marks

(as double values) into an array and passes the array and its size to the assembly

language procedure favg. This procedure computes the average mark and returns it to

the main procedure. The main procedure prints the average value.

18–P2 Modify the last program to return minimum and maximum marks as well. The assembly

language procedure receives a pointer to the marks array, its size, and three pointers to

return the average, minimum, and maximum marks.

18–P3 In Programming Exercise 18–P1, you were asked to write the assembly language pro-

cedure (favg) as a separate module. Rewrite this function in inline assembly.

18–P4 Write a mixed-mode program that reads the radius (r) of a circle and computes its area.

The main procedure (written in C) handles the user interface. It reads the radius (as

a double) and passes it to the assembly language procedure farea. This procedure

computes the area (πr2) and returns it to the main procedure. The main procedure prints

the area.

18–P5 Rewrite the function farea in inline assembly.

Appendices

This part consists of seven appendices, which provide a wealth of reference material. Ap-

pendix A primarily discusses the number systems and their internal representation. Ap-

pendix B gives information on the use of I/O routines provided with this book and the as-

sembler software. The debugging aspect of assembly language programming is discussed

in Appendix C. The SPIM simulator details are given in Appendix D. Selected Pentium

and MIPS instructions are given in Appendices E and F, respectively. Finally, Appendix G

gives the standard ASCII table.

Appendix A

Internal Data

Representation

Objectives
• To present various number systems and conversions among them

• To introduce signed and unsigned number representations

• To discuss floating-point number representation

• To describe IEEE 754 floating-point representation

• To describe character representation

This appendix examines how data are represented internally in a computer system. Repre-

senting numbers is a two-step process: we have to select a number system to use, and then

we have to decide how numbers in the selected number system can be represented for internal

storage.

To facilitate our discussion, we first introduce several number systems, including the deci-

mal system that we use in everyday life. Section A.2 discusses conversion of numbers among

the number systems. We then proceed to discuss how integers—both unsigned (Section A.3)

and signed (Section A.4)—and floating-point numbers (Section A.5) are represented. Char-

acter representation is discussed in the next appendix. We conclude with a summary.

A.1 Positional Number Systems
The number systems that we discuss here are based on positional number systems. The dec-

imal number system that we are already familiar with is an example of a positional number

system. In contrast, the Roman numeral system is not a positional number system.

529

530 Appendix A Internal Data Representation

Every positional number system has a radix, or base, and an alphabet. The base is a

positive number. For example, the decimal system is a base-10 system. The number of

symbols in the alphabet is equal to the base of the number system. The alphabet of the

decimal system is 0 through 9, a total of 10 symbols or digits.

In this appendix, we discuss four number systems that are relevant in the context of com-

puter systems and programming. These are the decimal (base-10), binary (base-2), octal

(base-8), and hexadecimal (base-16) number systems. Our intention in including the famil-

iar decimal system is to use it to explain some fundamental concepts of positional number

systems.

Computers internally use the binary system. The remaining two number systems—octal

and hexadecimal—are used mainly for convenience to write a binary number even though

they are number systems on their own. We would have ended up using these number systems

if we had 8 or 16 fingers instead of 10.

In a positional number system, a sequence of digits is used to represent a number. Each

digit in this sequence should be a symbol in the alphabet. There is a weight associated with

each position. If we count position numbers from right to left starting with zero, the weight

of position n in a base b number system is bn. For example, the number 579 in the decimal

system is actually interpreted as

5 × (102) + 7 × (101) + 9 × (100) .

(Of course, 100 = 1.) In other words, 9 is in unit’s place, 7 in 10’s place, and 5 in 100’s place.

More generally, a number in the base b number system is written as

dndn−1 . . . d1d0 ,

where d0 represents the least significant digit (LSD) and dn represents the most significant

digit (MSD). This sequence represents the value

dnbn + dn−1b
n−1 + · · · + d1b

1 + d0b
0 . (A.1)

Each digit di in the string can be in the range 0 ≤ di ≤ (b − 1). When we are using

a number system with b ≤ 10, we use the first b decimal digits. For example, the binary

system uses 0 and 1 as its alphabet. For number systems with b > 10, the initial letters of the

English alphabet are used to represent digits greater than 9. For example, the alphabet of the

hexadecimal system, whose base is 16, is 0 through 9 and A through F, a total of 16 symbols

representing the digits of the hexadecimal system. We treat lowercase and uppercase letters

used in a number system such as the hexadecimal system as equivalent.

The number of different values that can be represented using n digits in a base b system is

bn. Consequently, since we start counting from 0, the largest number that can be represented

using n digits is (bn − 1). This number is written as

(b − 1)(b − 1) . . . (b − 1)(b − 1)
︸ ︷︷ ︸

total of n digits

.

Section A.1 Positional Number Systems 531

The minimum number of digits (i.e., the length of a number) required to represent X

different values is given by ⌈logb X⌉, where ⌈ ⌉ represents the ceiling function. Note that

⌈m⌉ represents the smallest integer that is greater than or equal to m.

A.1.1 Notation

The commonality in the alphabet of several number systems gives rise to confusion. For

example, if we write 100 without specifying the number system in which it is expressed,

different interpretations can lead to assigning different values, as shown below:

Number Decimal value

100
binary−→ 4

100
decimal−→ 100

100
octal−→ 64

100
hexadecimal−→ 256

Thus, it is important to specify the number system (i.e., specify the base). We use the follow-

ing notation in this text: a single letter—uppercase or lowercase—is appended to the number

to specify the number system. We use D for decimal, B for binary, Q for octal, and H for

hexadecimal number systems. When we write a number without one of these letters, the deci-

mal system is the default number system. Using this notation, 10110111B is a binary number

and 2BA9H is a hexadecimal number.

Decimal Number System

We use the decimal number system in everyday life. This is a base-10 system presumably

because we have 10 fingers and toes to count. The alphabet consists of 10 symbols, digits 0

through 9.

Binary Number System

The binary system is a base-2 number system that is used by computers for internal represen-

tation. The alphabet consists of two digits, 0 and 1. Each binary digit is called a bit (standing

for binary digit). Thus, 1021 is not a valid binary number.

In the binary system, using n bits, we can represent numbers from 0 through (2n − 1) for

a total of 2n different values. We need m bits to represent X different values, where

m = ⌈log2 X⌉ .

For example, 150 different values can be represented by using

⌈log2 150⌉ = ⌈7.229⌉ = 8 bits .

In fact, using 8 bits, we can represent 28 = 256 different values (i.e., from 0 through 255D).

532 Appendix A Internal Data Representation

Octal Number System

This is a base-8 number system with the alphabet consisting of digits 0 through 7. Thus, 181

is not a valid octal number. The octal numbers are often used to express binary numbers in a

compact way. For example, we need 8 bits to represent 256 different values. The same range

of numbers can be represented in the octal system by using only

⌈log8 256⌉ = ⌈2.667⌉ = 3 digits .

For example, the number 230Q is written in the binary system as 10011000B, which is dif-

ficult to read and error-prone. In general, we can reduce the length by a factor of 3. As we

show in the next section, it is straightforward to go back to the binary equivalent, which is not

the case with the decimal system.

Hexadecimal Number System

This is a base-16 number system. The alphabet consists of digits 0 through 9 and letters A

through F. In this text, we use capital letters consistently, even though lowercase and uppercase

letters can be used interchangeably. For example, FEED is a valid hexadecimal number,

whereas GEFF is not.

The main use of this number system is to conveniently represent long binary numbers.

The length of a binary number expressed in the hexadecimal system can be reduced by a

factor of 4. Consider the previous example again. The binary number 10011000B can be

represented as 98H. Debuggers, for example, display information—addresses, data, and so

on—in hexadecimal representation.

A.2 Number Systems Conversion
When we are dealing with several number systems, there is often a need to convert numbers

from one system to another. In the following, we look at how we can perform these conver-

sions.

A.2.1 Conversion to Decimal

To convert a number expressed in the base-b system to the decimal system, we merely perform

the arithmetic calculations of Equation (A.1) given on page 530; that is, multiply each digit by

its weight, and add the results. Note that these arithmetic calculations are done in the decimal

system. Let’s look at a few examples next.

Example A.1 Conversion from binary to decimal.

Convert the binary number 10100111B into its equivalent in the decimal system.

10100111B = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24

+ 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

= 167D.

Section A.2 Number Systems Conversion 533

Example A.2 Conversion from octal to decimal.

Convert the octal number 247Q into its equivalent in the decimal system.

247Q = 2 · 82 + 4 · 81 + 7 · 80

= 167D.

Example A.3 Conversion from hexadecimal to decimal.

Convert the hexadecimal number A7H into its equivalent in the decimal system.

A7H = A · 161 + 7 · 160

= 10 · 161 + 7 · 160

= 167D.

We can obtain an iterative algorithm to convert a number to its decimal equivalent by

observing that a number in base b can be written as

d1d0 = d1 × b1 + d0 × b0

= (d1 × b) + d0,

d2d1d0 = d2 × b2 + d1 × b1 + d0 × b0

= ((d2 × b) + d1)b + d0,

d3d2d1d0 = d3 × b3 + d2 × b2 + d1 × b1 + d0 × b0

= (((d3 × b) + d2)b + d1)b + d0.

The following algorithm summarizes this process.

Algorithm: Conversion from base b to the decimal system

Input: A number dn−1dn−2 . . . d1d0 in base b

Output: Equivalent decimal number

Procedure: The digits of the input number are processed from left to right one digit at a time.
Result = 0;

for (i = n − 1 downto 0)

Result = (Result × b) + di

end for

We now show the workings of this algorithm by converting 247Q into decimal.

Initial value: Result = 0

After iteration 1: Result = (0 × 8) + 2 = 2D;

After iteration 2: Result = (2 × 8) + 4 = 20D;

After iteration 3: Result = (20 × 8) + 7 = 167D.

This is the correct answer, as shown in Example A.2.

534 Appendix A Internal Data Representation

A.2.2 Conversion from Decimal

Theoretically, we could use the same procedure to convert a number from the decimal sys-

tem into a target number system. However, the arithmetic calculations (multiplications and

additions) should be done in the target system base. For example, to convert from decimal

to hexadecimal, the multiplications and additions involved should be done in base 16, not in

base 10. Since we are not used to performing arithmetic operations in nondecimal systems,

this is not a pragmatic approach.

Luckily, there is a simple method that allows such base conversions while performing the

arithmetic in the decimal system. The procedure is as follows:

Divide the decimal number by the base of the target number system and keep

track of the quotient and remainder. Repeatedly divide the successive quotients

while keeping track of the remainders generated until the quotient is zero. The

remainders generated during the process, written in reverse order of generation

from left to right, form the equivalent number in the target system.

This conversion process is shown in the following algorithm:

Algorithm: Decimal to base-b conversion

Input: A number dn−1dn−2 · · · d1d0 in decimal

Output: Equivalent number in the target base-b number system

Procedure: Result digits are obtained from left to right. In the following, MOD represents

the modulo operator and DIV the integer divide operator.

Quotient = decimal number to be converted

while (Quotient �= 0)

next most significant digit of result = Quotient MOD b

Quotient = Quotient DIV b

end while

Example A.4 Conversion from decimal to binary.

Convert the decimal number 167 into its equivalent binary number.

Quotient Remainder

167/2 = 83 1

83/2 = 41 1

41/2 = 20 1

20/2 = 10 0

10/2 = 5 0

5/2 = 2 1

2/2 = 1 0

1/2 = 0 1

Section A.2 Number Systems Conversion 535

The desired binary number can be obtained by writing the remainders generated in the reverse

order from left to right. For this example, the binary number is 10100111B. This agrees with

the result of Example A.1 on page 532. �

To understand why this algorithm works, let M be the decimal number that we want to

convert into its equivalent representation in the base-b target number system. Let dndn−1 . . . d0

be the equivalent number in the target system. Then

M = dndn−1 . . . d1d0

= dn · bn + dn−1 · bn−1 + · · · + d1 · b1 + d0 · b0.

Now, to get d0, divide M by b.

M

b
= (dn · bn−1 + dn−1 · bn−2 + · · · + d1) +

d0

b

= Q1 +
d0

b
.

Since d0 is less than b, it represents the remainder of M/b division. To obtain the d1 digit,

divide Q1 by b. Our algorithm merely formalizes this procedure.

Example A.5 Conversion from decimal to octal.

Convert the decimal number 167 into its equivalent in octal.

Quotient Remainder

167/8 = 20 7

20/8 = 2 4

2/8 = 0 2

Therefore, 167D is equivalent to 247Q. From Example A.2 on page 533, we know that this is

the correct answer. �

Example A.6 Conversion from decimal to hexadecimal.

Convert the decimal number 167 into its equivalent in hexadecimal.

Quotient Remainder

167/16 = 10 7

10/16 = 0 A

Therefore, 167D = A7H, which is the correct answer (see Example A.3 on page 533). �

536 Appendix A Internal Data Representation

Table A.1 Three-Bit Binary to Octal Conversion

3-bit binary Octal digit

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

A.2.3 Conversion Among Binary, Octal, and Hexadecimal

Conversion among binary, octal, and hexadecimal number systems is relatively easier and

more straightforward. Conversion from binary to octal involves converting three bits at a

time, whereas binary to hexadecimal conversion requires converting four bits at a time.

Binary/Octal Conversion

To convert a binary number into its equivalent octal number, form 3-bit groups starting from

the right. Add extra 0s at the left-hand side of the binary number if the number of bits is not a

multiple of 3. Then replace each group of 3 bits by its equivalent octal digit using Table A.1.

With practice, you don’t need to refer to the table, as you can easily remember the replacement

octal digit. Why three bit groups? Simply because 23 = 8.

Example A.7 Conversion from binary to octal.

Convert the binary number 10100111 to its equivalent in octal.

10100111B =

2
︷︸︸︷

010

4
︷︸︸︷

100

7
︷︸︸︷

111 B

= 247Q .

Notice that we have added a leftmost 0 (shown in bold) so that the number of bits is 9. Adding

0s on the left-hand side does not change the value of a number. For example, in the decimal

system, 35 and 0035 represent the same value. �

We can use the reverse process to convert numbers from octal to binary. For each octal

digit, write the equivalent 3-bit group from Table A.1. You should write exactly 3 bits for

each octal digit even if there are leading 0s. For example, for octal digit 0, write the three bits

000.

Section A.2 Number Systems Conversion 537

Table A.2 Four-Bit Binary to Hexadecimal Conversion

4-bit binary Hex digit 4-bit binary Hex digit

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Example A.8 Conversion from octal to binary.

The following two examples illustrate conversion from octal to binary:

105Q =

1
︷︸︸︷

001

0
︷︸︸︷

000

5
︷︸︸︷

101B,

247Q =

2
︷︸︸︷

010

4
︷︸︸︷

100

7
︷︸︸︷

111B.

If you want an 8-bit binary number, throw away the leading 0 in the binary number. �

Binary/Hexadecimal Conversion

The process for conversion from binary to hexadecimal is similar except that we use 4-bit

groups instead of 3-bit groups because 24 = 16. For each group of 4 bits, replace it by the

equivalent hexadecimal digit from Table A.2. If the number of bits is not a multiple of 4, pad

0s at the left.

Example A.9 Binary to hexadecimal conversion.

Convert the binary number 1101011111 into its equivalent hexadecimal number.

1101011111B =

3
︷ ︸︸ ︷

0011

5
︷︸︸︷

0101

F
︷︸︸︷

1111B

= 35FH .

As in the octal to binary example, we have added two 0s on the left to make the total number

of bits a multiple of 4 (i.e., 12). �

The process can be reversed to convert from hexadecimal to binary. Each hex digit should

be replaced by exactly four binary bits that represent its value (see Table A.2). An example

follows:

538 Appendix A Internal Data Representation

Example A.10 Hex to binary conversion.

Convert the hexadecimal number B01D into its equivalent binary number.

B01DH =

B
︷︸︸︷

1011

0
︷︸︸︷

0000

1
︷︸︸︷

0001

D
︷︸︸︷

1101B .
�

As you can see from these examples, the conversion process is simple if we are working

among binary, octal, and hexadecimal number systems. With practice, you will be able to do

conversions among these number systems almost instantly.

If you don’t use a calculator, division by 2 is easier to perform. Since conversion from

binary to hex or octal is straightforward, an alternative approach to converting a decimal

number to either hex or octal is to first convert the decimal number to binary and then from

binary to hex or octal.

Decimal =⇒ Binary =⇒ Hex or Octal.

The disadvantage, of course, is that for large numbers, division by 2 tends to be long and thus

may lead to simple errors. In such a case, for binary conversion you may want to convert the

decimal number to hex or the octal number first and then to binary.

Decimal =⇒ Hex or Octal =⇒ Binary.

A final note: You don’t normally require conversion between hex and octal numbers. If you

have to do this as an academic exercise, use binary as the intermediate form, as shown below:

Hex =⇒ Binary =⇒ Octal,

Octal =⇒ Binary =⇒ Hex.

A.3 Unsigned Integer Representation
Now that you are familiar with different number systems, let us turn our attention to how

integers (numbers with no fractional part) are represented internally in computers. Of course,

we know that the binary number system is used internally. Still, there are a number of other

details that need to be sorted out before we have a workable internal number representation

scheme.

We begin our discussion by considering how unsigned numbers are represented using a

fixed number of bits. We then proceed to discuss the representation for signed numbers in the

next section.

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equiv-

alent binary representation. As discussed in Section A.1.1, a binary number with n bits can

represent 2n different values, and the range of the numbers is from 0 to (2n − 1). Padding of

0s on the left can be used to make the binary conversion of a decimal number equal exactly

N bits. For example, to represent 16D we need ⌈log2 16⌉ = 5 bits. Therefore, 16D = 10000B.

Section A.3 Unsigned Integer Representation 539

However, this can be extended to a byte (i.e., N = 8) as

00010000B

or to the word size (i.e., N = 16) as

00000000 00010000B

A problem arises if the number of bits required to represent an integer in binary is more

than the N bits we have. Clearly, such numbers are outside the range of numbers that can be

represented using N bits. Recall that using N bits, we can represent any integer X such that

0 ≤ X ≤ 2N − 1 .

A.3.1 Arithmetic on Unsigned Integers

In this section, the four basic arithmetic operations—addition, subtraction, multiplication, and

division—are discussed.

Addition

Since the internal representation of unsigned integers is the binary equivalent, binary addition

should be performed on these numbers. Binary addition is similar to decimal addition except

that we are using the base-2 number system.

When you are adding two bits xi and yi, you generate a result bit zi and a possible carry

bit Cout. For example, in the decimal system when you add 6 and 7, the result digit is 3, and

there is a carry. The following table, called a truth table, covers all possible bit combinations

that xi and yi can assume.

Input bits Output bits

xi yi zi Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

This truth table describes the functionality of what is called a half-adder to add just two input

bits. Such an adder is sufficient only to add the least significant two bits of a binary number.

For other bits, there may be a third bit: carry-out generated by adding the bits just right of the

current bit position.

This addition involves three bits: two input bits xi and yi, as in the half-adder, and a carry-

in bit Cin from bit position (i − 1). The required functionality is shown in Table A.3, which

corresponds to that of the full-adder.

540 Appendix A Internal Data Representation

Table A.3 Truth Table for Binary Addition

Input bits Output bits

xi yi Cin zi Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Given this truth table, it is straightforward to perform binary addition. For each three bits

involved, use the truth table to see what the output bit value is and if a carry bit is generated.

The carry bit Cout generated at bit position i will go as the carry-in Cin to bit position (i+1).

Here is an example:

Example A.11 Binary addition of two eight-bit numbers.

001110← Cin

174D = 10101110B
75D = 01001011B

249D = 11111001B

In this example, there is no overflow. �

An overflow is said to have occurred if there is a carry-out of the leftmost bit position, as

shown in the following example:

Example A.12 Binary addition with overflow.

Addition of 174D and 91D results in an overflow, as the result is outside the range of the

numbers that can be represented by using eight bits.

indicates
overflow

↓
11111110← Cin

174D = 10101110B
91D = 01011011B

265D �= 00001001B

Section A.3 Unsigned Integer Representation 541

Table A.4 Truth Table of Binary Subtraction

Input bits Output bits

xi yi Bin zi Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

The overflow condition implies that the sum is not in the range of numbers that can be repre-

sented using eight bits, which is 0 through 255D. To represent 265D, we need nine bits. You

can verify that 100001001B is the binary equivalent of 265D. �

Subtraction

The subtraction operation is similar to the addition operation. The truth table for binary

subtraction is shown in Table A.4. The inputs are two input bits xi and yi, and a borrow-in

Bin. The subtraction operation generates a result bit zi and a borrow-out Bout. Table A.4

shows the two output bits when xi − yi is performed.

Example A.13 Binary subtraction of two eight-bit numbers.

Perform binary subtraction of 110D from 201D.

1111110← Bin

201D = 11001001B
110D = 01101110B

91D = 01011011B �

If borrow is produced out of the leftmost bit position, an underflow is said to have occurred

indicating that the result is too small to be represented. Since we are considering only non-

negative integers, any negative result causes an underflow, as shown in the following example:

Example A.14 Binary subtraction with underflow.

Subtracting 202D from 201D results in an underflow, as the result is negative.

542 Appendix A Internal Data Representation

indicates
underflow

↓
11111110← Bin

201D = 11001001B
202D = 11001010B

-1D �= 11111111B (= 255D)

Since the result −1 is too small, it cannot be represented. In fact, the result 111111111B
represents −1D in the 2’s complement representation of signed numbers, as we show in Sec-

tion A.4.4. �

In practice, the subtract operation is treated as the addition of the negated second operand.

That is, 50D − 40D is treated as 50D + (−40D). Then, of course, we need to discuss how the

signed numbers are represented. This is the topic of the next section. Now, however, let us

look at how multiplication and division operations are done on unsigned binary numbers. This

information is useful if you want to write multiplication/division routines in assembly lan-

guage. For example, the Pentium does not support multiplying two 64-bit numbers. Although

it is unlikely that you will write such a routine, discussion of multiplication and division gives

the basic concepts involved.

Multiplication

Let us now consider unsigned integer multiplication. Multiplication is more complicated than

either addition or subtraction operations. Multiplying two n-bit numbers could result in a

number that requires 2n bits to represent. For example, multiplying two 16-bit numbers could

produce a 32-bit result.

To understand how binary multiplication is done, it is useful to recall decimal multiplica-

tion from when you first learned multiplication. Here is an example:

Example A.15 Decimal multiplication.

123 ← multiplicand

× 456 ← multiplier

123 × 6 ⇒ 738
123 × 5 ⇒ 615
123 × 4 ⇒ 492

Product ⇒ 56088

We started with the least significant digit of the multiplier, and the partial product 123 × 6 =

738 is computed. The next higher digit (5) of the multiplier is used to generate the next partial

product 123 × 5 = 615. But since digit 5 has a positional weight of 10, we should actually do

123 × 50 = 6150. This is implicitly done by left-shifting the partial product 615 by one digit

position. The process is repeated until all digits of the multiplier are processed. �

Section A.3 Unsigned Integer Representation 543

Example A.16 Binary multiplication of unsigned integers.

Binary multiplication follows exactly the same procedure except that the base-2 arithmetic is

performed, as shown in the next example.

14D ⇒ 1110B ← multiplicand

11D ⇒ × 1011B ← multiplier

1110 × 1 ⇒ 1110
1110 × 1 ⇒ 1110
1110 × 0 ⇒ 0000
1110 × 1 ⇒ 1110

Product ⇒ 10011010B = 154D

As you can see, the final product generated is the correct result. �

The following algorithm formalizes this procedure with a slight modification:

Algorithm: Multiplication of unsigned binary numbers

Input: Two n-bit numbers—a multiplicand and a multiplier

Output: A 2n-bit result that represents the product

Procedure:

product = 0

for (i = 1 to n)

if (least significant bit of the multiplier = 1)

then

product = product + multiplicand

end if

shift left multiplicand by one bit position

{Equivalent to multiplying by 2}
shift right the multiplier by one bit position

{This will move the next higher bit into

the least significant bit position for testing}
end for

Here is how the algorithm works on the data of Example A.16.

Iteration Product Multiplicand Multiplier

Initial values 00000000 1110 1011

After iteration 1 00001110 11100 101

After iteration 2 00101010 111000 10

After iteration 3 00101010 1110000 1

After iteration 4 10011010 11100000 0

544 Appendix A Internal Data Representation

Division

The division operation is complicated as well. It generates two results: a quotient and a

remainder. If we are dividing two n-bit numbers, division could produce an n-bit quotient

and another n-bit remainder. As in the case of multiplication, let us first look at a decimal

longhand division example:

Example A.17 Decimal division.

Use longhand division to divide 247861D by 123D.

2015 ← quotient

divisor → 123
)
247861

123 × 2 ⇒ -246

18
123 × 0⇒ -00

186
123 × 1⇒ -123

631
123 × 5⇒ -615

16 ← remainder

This division produces a quotient of 2015 and a remainder of 16. �

Binary division is simpler than decimal division because binary numbers are restricted to

0s and 1s: either subtract the divisor or do nothing. Here is an example of binary division.

Example A.18 Binary division of unsigned numbers.

Divide two 4-bit binary numbers: the dividend is 1011B (11D), and the divisor is 0010B
(2D). The dividend is extended to 8 bits by padding 0s at the left-hand side.

00101 ← quotient

divisor → 0010
)
00001011

0010 × 0 ⇒ -0000

0001
0010 × 0 ⇒ -0000

0010
0010 × 1 ⇒ -0010

0001
0010 × 0 ⇒ -0000

0011
0010 × 1 ⇒ -0010

001 ← remainder

Section A.4 Signed Integer Representation 545

The quotient is 00101B (5D) and the remainder is 001B (1D). �

The following binary division algorithm is based on this longhand division method:

Algorithm: Division of two n-bit unsigned integers

Inputs: A 2n-bit dividend and n-bit divisor

Outputs: An n-bit quotient and an n-bit remainder replace the 2n-bit dividend. Higher-order n

bits of the dividend (dividend_Hi) will have the n-bit remainder, and the lower-order

n bits (dividend_Lo) will have the n-bit quotient.

Procedure:

for (i = 1 to n)

shift the 2n-bit dividend left by one bit position

{vacated right bit is replaced by a 0.}
if (dividend_Hi ≥ divisor)

then

dividend_Hi = dividend_Hi − divisor

dividend = dividend + 1 {set the rightmost bit to 1}
end if

end for

The following table shows how the algorithm works on the data of Example A.18:

Iteration Dividend Divisor

Initial values 00001011 0010

After iteration 1 00010110 0010

After iteration 2 00001101 0010

After iteration 3 00011010 0010

After iteration 4 00010101 0010

The dividend after iteration 4 is interpreted as

0001
︸︷︷︸

remainder

0101
︸︷︷︸

quotient

.

The lower four bits of the dividend (0101B = 5D) represent the quotient, and the upper four

bits (0001B = 1D) represent the remainder.

A.4 Signed Integer Representation
There are several ways in which signed numbers can be represented. These include

• Signed magnitude

546 Appendix A Internal Data Representation

Table A.5 Number Representation Using 4-Bit Binary (All numbers except Binary column in decimal)

Unsigned Binary Signed

representation pattern magnitude Excess-7 1’s Complement 2’s Complement

0 0000 0 −7 0 0

1 0001 1 −6 1 1

2 0010 2 −5 2 2

3 0011 3 −4 3 3

4 0100 4 −3 4 4

5 0101 5 −2 5 5

6 0110 6 −1 6 6

7 0111 7 0 7 7

8 1000 −0 1 −7 −8

9 1001 −1 2 −6 −7

10 1010 −2 3 −5 −6

11 1011 −3 4 −4 −5

12 1100 −4 5 −3 −4

13 1101 −5 6 −2 −3

14 1110 −6 7 −1 −2

15 1111 −7 8 −0 −1

• Excess-M

• 1’s complement

• 2’s complement

The following subsections discuss each of these methods. However, most modern computer

systems, including Pentium-based systems, use the 2’s complement representation, which is

closely related to the 1’s complement representation. Therefore, our discussion of the other

two representations is rather brief.

A.4.1 Signed Magnitude Representation

In signed magnitude representation, one bit is reserved to represent the sign of a number. The

most significant bit is used as the sign bit. Conventionally, a sign bit value of 0 is used to

represent a positive number and 1 for a negative number. Thus, if we have N bits to represent

a number, (N − 1) bits are available to represent the magnitude of the number. For example,

when N is 4, Table A.5 shows the range of numbers that can be represented. For comparison,

the unsigned representation is also included in this table. The range of n-bit signed magnitude

representation is −2n−1+1 to +2n−1−1. Note that in this method, 0 has two representations:

+0 and −0.

Section A.4 Signed Integer Representation 547

A.4.2 Excess-M Representation

In this method, a number is mapped to a nonnegative integer so that its binary representation

can be used. This transformation is done by adding a value called bias to the number to be

represented. For an n-bit representation, the bias should be such that the mapped number is

less than 2n.

To find out the binary representation of a number in this method, simply add the bias M

to the number and find the corresponding binary representation. That is, the representation

for number X is the binary representation for the number X + M , where M is the bias. For

example, in the excess-7 system, −3D is represented as

−3 + 7 = + 4 = 0100B .

Numbers represented in excess-M are called biased integers for obvious reasons. Ta-

ble A.5 gives examples of biased integers using 4-bit binary numbers. This representation, for

example, is used to store the exponent values in the floating-point representation (discussed

in Section A.5).

A.4.3 1’s Complement Representation

As in the excess-M representation, negative values are biased in 1’s complement and 2’s com-

plement representations. For positive numbers, the standard binary representation is used. As

in the signed magnitude representation, the most significant bit indicates the sign (0 = positive

and 1 = negative). In 1’s complement representation, negative values are biased by bn − 1,

where b is the base or radix of the number system. For the binary case that we are interested

in here, the bias is 2n − 1. For the negative value −X , the representation used is the binary

representation for (2n − 1) − X . For example, if n is 4, we can represent −5 as

24 − 1 = 1111B

−5 = −0101B

1010B

As you can see from this example, the 1’s complement of a number can be obtained by

simply complementing individual bits (converting 0s to 1s and vice versa) of the number.

Table A.5 shows 1’s complement representation using 4 bits. In this method also, 0 has two

representations. The most significant bit is used to indicate the sign. To find the magnitude of

a negative number in this representation, apply the process used to obtain the 1’s complement

(i.e., complement individual bits) again.

Example A.19 Finding magnitude of a negative number in 1’s complement representation.

Find the magnitude of 1010B that is in 1’s complement representation. Since the most signif-

icant bit is 1, we know that it is a negative number.

548 Appendix A Internal Data Representation

1010B −→complement bits−→ 0101 = 5D.

Therefore, 1010B = −5D. �

Addition

Standard binary addition (discussed in Section A.3.1) can be used to add two numbers in

1’s complement form with one exception: any carry-out from the leftmost bit (i.e., sign bit)

should be added to the result. Since the carry-out can be 0 or 1, this additional step is needed

only when a carry is generated out of the sign bit position.

Example A.20 Addition in 1’s complement representation.

The first example shows addition of two positive numbers. The second example illustrates

how subtracting 5− 2 can be done by adding −2 to 5. Notice that the carry-out from the sign

bit position is added to the result to get the final answer.

+5D = 0101B
+2D = 0010B

+7D = 0111B

+5D = 0101B
-2D = 1101B

10010B

→ 1

+3D = 0011B

The next two examples cover the remaining two combinations of the input operands.

-5D = 1010B
+2D = 0010B

-3D = 1100B

-5D = 1010B
-2D = 1101B

10111B

→ 1

-7D = 1000B

Recall that, from Example A.12, a carry-out from the most significant bit position indicates

an overflow condition for unsigned numbers. This, however, is not true here. �

Overflow: With unsigned numbers, we have stated that the overflow condition can be detected

when there is a carry-out from the leftmost bit position. Since this no longer holds here, how

do we know if an overflow has occurred? Let us see what happens when we create an overflow

condition.

Example A.21 Overflow examples.

Here are two overflow examples that use 1’s complement representation for signed numbers:

Section A.4 Signed Integer Representation 549

+5D = 0101B
+3D = 0011B

+8D �= 1000B (= − 7D)

-5D = 1010B
-4D = 1011B

10101B

→ 1

-9D �= 0110B (= +6D)

Clearly, +8 and −9 are outside the range. Remembering that the leftmost bit is the sign bit,

1000B represents −7 and 0110B represents +6. Both answers are incorrect. �

If you observe these two examples closely, you will notice that in both cases the sign bit of

the result is reversed. In fact, this is the condition to detect overflow when signed numbers are

added. Also note that overflow can only occur with addition if both operands have the same

sign.

Subtraction

Subtraction can be treated as the addition of a negative number. We have already seen this in

Example A.20.

Example A.22 Subtraction in 1’s complement representation.

To subtract 7 from 4 (i.e., to perform 4−7), get the 1’s complement representation of −7, and

add this to 4.

+4D = 0100B−→−→−→−→0100B

-7D = 0111B
1′s complement−→−→−→−→1000B

-3D = 1100B

The result is 1100B = −3, which is the correct answer. �

Overflow: The overflow condition cannot arise with subtraction if the operands involved are

of the same sign. The overflow condition can be detected here if the sign of the result is the

same as that of the subtrahend (i.e., second operand).

Example A.23 A subtraction example with overflow.

Subtract −3 from 5, i.e., perform 5 − (−3).

+5D = 0101B−→−→−→−→0101B

-(-3D)= 1100B
1′s complement−→−→−→−→0011B

+8D �= 1000B

Overflow has occurred here because the subtrahend is negative and the result is negative. �

550 Appendix A Internal Data Representation

Example A.24 Another subtraction example with underflow.

Subtract 3 from −5, i.e., perform −5 − (3).

-5D = 1010B−→−→−→−→ 1010B

-(+3D)= 0011B
1′s complement−→−→−→−→ 1100B

10110B

→ 1

-8D �= 0111B

An underflow has occurred in this example, as the sign of the subtrahend is the same as that

of the result (both are positive). �

Representation of signed numbers in 1’s complement representation allows the use of

simpler circuits for performing addition and subtraction than the other two representations we

have seen so far (signed magnitude and excess-M). Some older computer systems used this

representation for integers. An irritant with this representation is that 0 has two representa-

tions. Furthermore, the carry bit generated out of the sign bit will have to be added to the

result. The 2’s complement representation avoids these pitfalls. As a result, 2’s complement

representation is the choice of current computer systems.

A.4.4 2’s Complement Representation

In 2’s complement representation, positive numbers are represented the same way as in the

signed magnitude and 1’s complement representations. The negative numbers are biased by

2n, where n is the number of bits used for number representation. Thus, the negative value

−A is represented by (2n − A) using n bits. Since the bias value is one more than that

in the 1’s complement representation, we have to add 1 after complementing to obtain the

2’s complement representation of a negative number. We can, however, discard any carry

generated out of the sign bit.

Example A.25 2’s complement representation.

Find the 2’s complement representation of −6, assuming that 4 bits are used to store numbers.

6D = 0110B−→ complement −→1001B
add 1 1B

1010B

Therefore, 1010B represents −6D in 2’s complement representation. �

Table A.5 shows the 2’s complement representation of numbers using 4 bits. Notice that there

is only one representation for 0. The range of an n-bit 2’s complement integer is −2n−1 to

+2n−1 − 1. For example, using 8 bits, the range is −128 to +127.

To find the magnitude of a negative number in the 2’s complement representation, as in

the 1’s complement representation, simply reverse the sign of the number. That is, use the

Section A.5 Floating-Point Representation 551

same conversion process (i.e., complement and add 1 and discard any carry generated out of

the leftmost bit).

Example A.26 Finding the magnitude of a negative number in 2’s complement representa-

tion.

Find the magnitude of the 2’s complement integer 1010B. Since the most significant bit is 1,

we know that it is a negative number.

1010B−→ complement −→0101B
add 1 1B

0110B (= 6D)

The magnitude is 6. That is, 1010B = −6D. �

Addition and Subtraction

Both of these operations work in the same manner as in the case of 1’s complement repre-

sentation except that any carry-out from the leftmost bit (i.e., sign bit) is discarded. Here are

some examples:

Example A.27 Examples of addition operation.

+5D = 0101B
+2D = 0010B

+7D = 0111B

+5D = 0101B
-2D = 1110B

+3D 10011B
Discarding the carry leaves

the result 0011B = +3D.

-5D = 1011B
+2D = 0010B

-3D = 1101B

-5D = 1011B
-2D = 1110B

-7D 11001B
Discarding the carry leaves

the result 1001B = −7D.

As in the 1’s complement case, subtraction can be done by adding the negative value of the

second operand.

A.5 Floating-Point Representation
So far, we have discussed various ways of representing integers, both unsigned and signed.

Now let us turn our attention to representation of numbers with fractions (called real num-

bers). We start our discussion by looking at how fractions can be represented in the binary

552 Appendix A Internal Data Representation

system. Next we discuss how fractions can be converted from decimal to binary, and vice

versa. Finally, we discuss how real numbers are stored in computers.

A.5.1 Fractions

In the decimal system, which is a positional number system, fractions are represented like the

integers except for different positional weights. For example, when we write in decimal

0.7913

the value it represents is

(7 × 10−1) + (9 × 10−2) + (1 × 10−3) + (3 × 10−4) .

The decimal point is used to identify the fractional part of a number. The position imme-

diately to the right of the decimal point has the weight 10−1, the next position 10−2, and so

on. If we count the digit position from the decimal point (left to right) starting with 1, the

weight of position n is 10−n.

This can be generalized to any number system with base b. The weight should be b−n,

where n is defined as above. Let us apply this to the binary system that is of interest to us. If

we write a fractional binary number

0.11001B

the decimal value it represents is

1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4 + 1 · 2−5 = 0.78125D .

The period in the binary system is referred to as the binary point. Thus, the algorithm to

convert a binary fraction to its equivalent in decimal is straightforward.

Algorithm: Binary fraction to decimal

Input: A fractional binary number 0.d1d2 . . . dn−1dn with n bits

(trailing 0s can be ignored)

Output: Equivalent decimal value

Procedure: Bits in the input fraction are processed from right to left starting with bit dn.

decimal_value = 0.0

for (i = n downto 1)

decimal_value = (decimal_value + di)/b

end for

Here is an example showing how the algorithm works on the binary fraction 0.11001B:

Section A.5 Floating-Point Representation 553

Iteration Decimal_value

Initial value 0.0

Iteration 1 (0.0 + 1)/2 = 0.5

Iteration 2 (0.5 + 0)/2 = 0.25

Iteration 3 (0.25 + 0)/2 = 0.125

Iteration 4 (0.125 + 1)/2 = 0.5625

Iteration 5 (0.5625 + 1)/2 = 0.78125

Now that we know how to convert a binary fraction into its decimal equivalent, let us look

at how we can do the reverse conversion: from decimal fraction to equivalent binary.

This conversion can be done by repeatedly multiplying the fraction by the base of the

target system, as shown in the following example:

Example A.28 Conversion of a fractional decimal number to binary.

Convert the decimal fraction 0.78125D into its equivalent in binary.

0.78125 × 2 = 1.5625 −→ 1

0.5625 × 2 = 1.125 −→ 1

0.125 × 2 = 0.25 −→ 0

0.25 × 2 = 0.5 −→ 0

0.5 × 2 = 1.0 −→ 1

Terminate.

The binary fraction is 0.11001B, which is obtained by taking numbers from the top and writing

them left to right with a binary point. �

What we have done is to multiply the number by the target base (to convert to binary use

2) and the integer part of the multiplication result is placed as the first digit immediately to the

right of the radix or base point. Take the fractional part of the multiplication result and repeat

the process to produce more digits. The process stops when the fractional part is 0, as in the

above example, or when we have the desired number of digits in the fraction. This is similar

to what we do in the decimal system when dividing 1 by 3. We write the result as 0.33333 if

we want only 5 digits after the decimal point.

Example A.29 Conversion of a fractional decimal number to octal.

Convert 0.78125D into the octal equivalent.

0.78125 × 8 = 6.25 −→ 6

0.25 × 8 = 2.0 −→ 2

Terminate.

Therefore, the octal equivalent of 0.78125D is 0.62Q. �

554 Appendix A Internal Data Representation

Without a calculator, multiplying a fraction by 8 or 16 is not easy. We can avoid this

problem by using the binary as the intermediate form, as in the case of integers. First convert

the decimal number to its binary equivalent and group 3 bits (for octal conversion) or 4 bits

(for hexadecimal conversion) from left to right (pad 0s at the right if the number of bits in the

fraction is not a multiple of 3 or 4).

Example A.30 Conversion of a fractional decimal number to octal.

Convert 0.78125D to octal using the binary intermediate form. From Example A.28, we know

that 0.78125D = 0.11001B. Now convert 0.11001B to octal.

0. 110
︸︷︷︸

6

010
︸︷︷︸

2

= 0.62Q .

Notice that we have added a 0 (shown in bold) on the right. �

Example A.31 Conversion of a fractional decimal number to hexadecimal.

Convert 0.78125D to hexadecimal using the binary intermediate form. From Example A.28,

we know that 0.78125D = 0.11001B. Now convert 0.11001B to hexadecimal.

0. 1100
︸︷︷︸

12=C

1000
︸ ︷︷ ︸

8

= 0.C8H .

We have to add three 0s on the right to make the number of bits equal to 8 (that is, a multiple

of 4). �

The following algorithm gives this conversion process:

Algorithm: Conversion of fractions from decimal to base-b system

Input: Decimal fractional number

Output: Its equivalent in base b with a maximum of F digits

Procedure: The function integer returns the integer part of the argument and the function

fraction returns the fractional part.

value = fraction to be converted

digit_count = 0

repeat

next digit of the result = integer (value × b)

value = fraction (value × b)

digit_count = digit_count + 1

until ((value = 0) OR (digit_count = F))

We leave tracing the steps of this algorithm as an exercise.

If a number consists of both integer and fractional parts, convert each part separately

and put them together with a binary point to get the desired result. This is illustrated in

Example A.33 on page 558.

Section A.5 Floating-Point Representation 555

A.5.2 Representing Floating-Point Numbers

A naive way to represent real numbers is to use direct representation: allocate I bits to store

the integer part and F bits to store the fractional part, giving us the format with N (= I + F)

bits as shown below:

?? · · ·??
︸ ︷︷ ︸

I bits

. ?? · · ·??
︸ ︷︷ ︸

F bits

.

This is called fixed-point representation.

Representation of integers in computers should be done with a view of the range of num-

bers that can be represented. The desired range dictates the number of bits required to store a

number. As discussed earlier,

the number of bits required = ⌈logb R⌉ ,

where R is the number of different values to be represented. For example, to represent 256

different values, we need 8 bits. The range can be 0 to 255D (for unsigned numbers) or

−128D to +127D (for signed numbers). To represent numbers outside this range requires

more bits.

Representation of real numbers introduces one additional factor: once we have decided

to use N bits to represent a real number, the next question is where do we place the binary

point. That is, what is the value of F ? This choice leads to a tradeoff between the range and

precision. Precision refers to how accurately we can represent a given number. For example,

if we use 3 bits to represent the fractional part (F = 3), we have to round the fractional part

of a number to the nearest 0.125 (= 2−3). Thus, we lose precision by introducing rounding

errors. For example, 7.80D may be stored as 7.75D. In general, if we use F bits to store the

fractional part, the rounding error is bound by 1
2
· 1

2F or 1/2F+1.

In summary, range is largely determined by the integer part, and precision is determined

by the fractional part. Thus, given N bits to represent a real number where N = I + F , the

tradeoff between range and precision is obvious. Increasing the number of bits F to represent

the fractional part increases the precision but reduces the range, and vice versa.

Example A.32 Range versus precision tradeoff.

Suppose we have N = 8 bits to represent positive real numbers using fixed-point representa-

tion. Show the range versus precision tradeoff when F is changed from 3 to 4 bits.

When F = 3, the value of I is I = N − F = 5 bits. Using this allocation of bits for F

and I , a real number X can be represented that satisfies 0 ≤ X < 25 (i.e., 0 ≤ X < 32).

The precision (i.e., maximum rounding error) is 1/23+1 = 0.0625.

If we increase F by one bit to four bits, the range decreases approximately by half to

0 ≤ X < 24. The precision, on the other hand, improves to 1/24+1 = 0.03125. �

Fixed-point representation is simple but suffers from the serious disadvantage of limited

range. This may not be acceptable for most applications, in particular, fixed-point’s inability

to represent very small and very large numbers without requiring a large number of bits.

556 Appendix A Internal Data Representation

Using scientific notation, we can make better use of the given number of bits to represent

a real number. The next section discusses floating-point representation, which is based on the

scientific notation.

A.5.3 Floating-Point Representation

Using the decimal system for a moment, we can write very small and very large numbers in

scientific notation as follows:

1.2345× 1045,

9.876543× 10−37.

Expressing such numbers using the positional number notation is difficult to write and under-

stand, is error-prone, and requires more space. In a similar fashion, binary numbers can be

written in scientific notation. For example,

+1101.101× 2+11001 = 13.625× 225

= 4.57179× 108.

As indicated, numbers expressed in this notation have two parts: a mantissa (or significand),

and an exponent. There can be a sign (+ or −) associated with each part.

Numbers expressed in this notation can be written in several equivalent ways, as shown

below:

1.2345 × 1045,

123.45 × 1043,

0.00012345 × 1049.

This causes implementation problems to perform arithmetic operations, comparisons, and

the like. This problem can be avoided by introducing a standard form called normal form.

Reverting to the binary case, a normalized binary form has the format

±1.X1X2 · · ·XM−1XM × 2±YN−1YN−2···Y1Y0 ,

where Xi and Yj represent a bit, 1 ≤ i ≤ M , and 0 ≤ j < N . The normalized form of

+1101.101× 2+11010

is

+1.101101× 2+11101.

We normally write such numbers as

+1.101101E11101.

To represent such normalized numbers, we might use the format shown below:

Section A.5 Floating-Point Representation 557

Long reals

Short reals

bit position

exponent mantissam
S

23 bits8 bits

022233031

bit
1

bit
1

exponent

52 bits

mantissa

11 bits

m
S

051526263bit position

Figure A.1 Floating-point formats.

exponent mantissa

N bits M bits

S
me

S

1
bit bit

1

where Sm and Se represent the sign of mantissa and exponent, respectively.

Implementation of floating-point numbers on computer systems varies from this generic

format, usually for efficiency reasons or to conform to a standard. From here on, we dis-

cuss the specific format used by the Pentium, which conforms to the IEEE 754 floating-point

standard. Such standards are useful, for example, to exchange data among several different

computer systems and to write efficient numerical software libraries.

The Pentium supports three formats for floating-point numbers: two of these are for ex-

ternal use and one for internal use. The internal format is used to store temporary results, and

we do not discuss this format. The remaining two formats are shown in Figure A.1. Certain

points are worth noting about these formats:

1. The mantissa stores only the fractional part of a normalized number. The 1 to the left

of the binary point is not explicitly stored but implied to save a bit. Since this bit is

always 1, there is really no need to store it. However, representing 0.0 requires special

attention, as we show later.

2. There is no sign bit associated with the exponent. Instead, the exponent is converted to

an excess-M form and stored. For short reals, the bias used is 127D (= 7FH), and for

long reals, 1023 (= 3FFH).

We now show how a real number can be converted to its floating-point equivalent:

Algorithm: Conversion to floating-point representation

Input: A real number in decimal

Output: Floating-point equivalent of the decimal number

558 Appendix A Internal Data Representation

Procedure: The procedure consists of four steps.

Step 1: Convert the real number to binary.

1a: Convert the integer part to binary using the procedure

described in Section A.2.2 (page 534).

1b: Convert the fractional part to binary using the procedure

described in Section A.5.1 (page 554).

1c: Put them together with a binary point.

Step 2: Normalize the binary number.

Move the binary point left or right until there is only a

single 1 to the left of the binary point while adjusting the

exponent appropriately. You should increase the exponent

value by 1 if the binary point is moved to the left by one

bit position; decrement by 1 if moving to the right.

Note that 0.0 is treated as a special case; see text for details.

Step 3: Convert the exponent to excess or biased form.

For short reals, use 127 as the bias;

For long reals, use 1023 as the bias.

Step 4: Separate the three components.

Separate mantissa, exponent, and sign

to store in the desired format.

Next we give an example to illustrate the above procedure.

Example A.33 Conversion to floating-point format.

Convert 78.8125D to short floating-point format.

Step 1: Convert 78.8125D to the binary form.

1a: Convert 78 to the binary.

78D = 1001110B.

1b: Convert 0.8125D to the binary form.

0.8125D = 0.1101B.

1c: Put together the two parts.

78.8125D = 1001110.1101B.

Step 2: Normalize the binary number.

1001110.1101 = 1001110.1101E0

= 1.0011101101E110.

Step 3: Convert the exponent to the biased form.

110B + 1111111B = 10000101B (i.e., 6D + 127D = 133D).

Thus, 78.8125D = 1.0011101101E10000101

in the normalized short real form.

Section A.5 Floating-Point Representation 559

Step 4: Separate the three components.

Sign: 0 (positive number)

mantissa: 0011101101

(1 to the left of the binary point is implied)

exponent: 10000101.

Storing the short real in memory requires 4 bytes (32 bits), and the long real requires 8 bytes

(or 64 bits). For example, the short real form of 78.8125D is stored as shown below:

01000010 X+3

10011101 X+2

10100000 X+1

00000000 X

Sign bit

If we lay these four bytes linearly, they look like this:

0

Sign

bit

X+3

0 0 0 0 0 0 0 0

mantissa

XX+2 X+1

1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0

exponent

To find the decimal values of a number that is in one of the floating-point formats, use the

procedure in reverse.

Special Values

The representations of 0 and infinity (∞) require special attention. Table A.6 shows the values

of the three components to represent these values. Zero is represented by a zero exponent and

fraction. We can have a −0 or +0 depending on the sign bit. An exponent of all ones indicates

a special floating-point value. An exponent of all ones with a zero mantissa indicates infinity.

Again, the sign bit indicates the sign of the infinity. An exponent of all ones with a nonzero

mantissa represents a not-a-number (NaN). The NaN values are used to represent operations

like 0/0 and
√
−1.

The last entry in Table A.6 shows how denormalized values are represented. The denor-

mals are used to represent values smaller than the smallest value that can be represented with

normalized floating-point numbers. For denormals, the implicit 1 to the left of the binary

point becomes a 0. The smallest normalized number has a 1 for the exponent (note zero is not

560 Appendix A Internal Data Representation

Table A.6 Representation of Special Values in the Floating-Point Format

Special number Sign Exponent (biased) Mantissa

+0 0 0 0

−0 1 0 0

+∞ 0 FFH 0

−∞ 1 FFH 0

NaN 0/1 FFH �=0

Denormals 0/1 0 �=0

allowed) and 0 for the fraction. Thus, the smallest number is 1×2−126. The largest denormal-

ized number has a zero exponent and all 1s for the fraction. This represents approximately

0.9999999 × 2−127. The smallest denormalized number would have zero as the exponent

and a 1 in the last bit position (i.e., position 23). Thus, it represents 2−23 × 2−127, which

is approximately 10−45. A thorough discussion of floating-point numbers is in the following

reference:

D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point Arith-

metic,” ACM Computing Surveys, Vol. 23, No. 1, March 1991, pp. 5–48.

A.5.4 Floating-Point Addition

Adding two floating-point numbers involves the following four steps:

• Match exponents: This can be done by shifting right the smaller exponent number. As

an example, consider the following two floating-point numbers: 1.10101× 23(13.25D)

and 1.0011 × 22 (4.75D). Since the second number is smaller, it is shifted right by

two positions to match the exponents. Thus, after shifting, the second number becomes

0.10011× 23.

• Add the two mantissas: In our example, we add 1.10101 and 0.10011 to get 10.01.

• Normalize the result: We move the binary point to the right of the leftmost 1 and adjust

the exponent accordingly. In our example, our result 10.01 × 23 is not in the normal

form. After normalization, the final result is 1.001 × 24 (18D), which is correct.

• Test for overflow/underflow: This final step is needed to make sure that the result is

within the bounds. In our example, we don’t have this problem.

Floating-point subtraction can be done in a similar fashion. The following example illus-

trates this.

Section A.6 Character Representation 561

Example A.34 A floating-point subtraction example.

Perform 13.25 − 4.75. In the floating-point notation, we can write this as 1.10101 × 23 −
1.00111× 21.

• Step 1: As in the last example, we shift the second operand to match the exponents.

• Step 2: Subtract the mantissas. For our example, we get 1.10101−0.10011 = 1.00010.

• Step 3: The result 1.00010× 23 is already in the normalized form.

• Step 4: No underflow as the result is within the range. Thus, the final result is 1.00010×
23. In decimal, it is equivalent to 8.50, which is correct. �

This procedure can be applied to the IEEE 754 standard format in a straightforward manner.

A.5.5 Floating-Point Multiplication

Floating-point multiplication is straightforward as shown below:

• Add the two exponents using an integer adder,

• Multiply the two mantissas using an integer multiplier,

• Compute the result sign bit as the XOR of the two input sign bits,

• Normalize the final product,

• Check for underflow/overflow.

Example A.35 A floating-point multiplication example.

Multiply 1.101 × 23 and 1.01 × 22.

• Step 1: We add the two exponents to get 5 as the exponent of the result.

• Step 2: Multiplying two mantissas, we get 1.101 × 1.01 = 10.00001.

• Step 3: The sign of the result is positive.

• Step 4: Our result 10.00001× 25 needs to be normalized.

The final normalized result is 1.000001× 26. �

When we apply this algorithm to the IEEE 754 format, we encounter one problem. Since the

exponents are biased, when we add the two exponents, the bias from both numbers appears in

the result. Thus, we have to subtract the bias value from the result. For short reals, we have

to subtract 127 and, for long reals, subtract 1023.

A.6 Character Representation
As computers have the capability to store and understand the alphabet 0 and 1, characters

should be assigned a sequence over this alphabet (i.e., characters should be encoded using

this alphabet). If you build and use your computer system in isolation and never communicate

or exchange data or programs with others, you can assign arbitrary bit patterns to represent

characters. Even then, you may be forced to follow certain guidelines for efficiency reasons.

Some of these guidelines are

562 Appendix A Internal Data Representation

1. Assigning a contiguous sequence of numbers (if treated as unsigned binary numbers) to

letters in alphabetical order is desired. Upper- and lowercase letters (A through Z and a
through z) can be treated separately, but a contiguous sequence should be assigned to

each case.

2. In a similar fashion, digits should be assigned a contiguous sequence in the numerical

order.

3. A space character should precede all letters and digits.

These guidelines allow for efficient character processing including sorting by names or

character strings. For example, to test if a given character code corresponds to a lowercase

letter, all we have to do is to see if the code of the character is between that of a and z. These

guidelines also aid in applications requiring sorting—for instance, sorting a class list by last

name.

Since computers are rarely used in isolation, exchange of information is an important

concern. This leads to the necessity of having some standard way of representing characters.

Two such standard character codes have been developed: EBCDIC (Extended Binary

Coded Decimal Interchange Code) and ASCII (American Standard Code for Information In-

terchange). EBCDIC is used on IBM mainframe computers. Most modern computer systems,

including the IBM PC, use ASCII for character representation.

The standard ASCII uses 7 bits to encode a character. Thus, 27 = 128 different characters

can be represented. This number is sufficiently large to represent uppercase and lowercase

characters, digits, special characters such as !,ˆ and control characters such as CR (carriage

return), LF (linefeed), etc.

Since we store the bits in units of a power of 2, we end up storing 8 bits for each

character—even though ASCII requires only 7 bits. The eighth bit is put to use for two

purposes.

1. To parity encode for error detection: The eighth bit can be used to represent the parity

bit. This bit is made 0 or 1 such that the total number of 1’s in a byte is even (for

even parity) or odd (for odd parity). This can be used to detect simple errors in data

transmission.

2. To represent an additional 128 characters: By using all eight bits we can represent a

total of 28 = 256 different characters. This is referred to as extended ASCII. On

an IBM PC, special graphics symbols, Greek letters, etc. make up the additional 128

characters. Appendix G shows the standard as well as the extended ASCII character

codes.

You will notice from the table in Appendix G that ASCII encoding satisfies the three

guidelines mentioned earlier. For instance, successive bit patterns are assigned to uppercase

letters, lowercase letters, and digits. This assignment leads to some good properties. For

example, the difference between the uppercase and lowercase characters is constant. That is,

Section A.7 Summary 563

the difference between the character codes of a and A is the same as that between n and N,

which is 32D (20H). This characteristic can be exploited for efficient case conversion.

Another interesting feature of ASCII is that the character codes are assigned to the 10

digits such that the lower-order four bits represent the binary equivalent of the corresponding

digit. For example, digit 5 is encoded as 0110101. If you take the rightmost four bits (0101),

they represent 5 in binary. This feature, again, helps in writing an efficient code for character-

to-numeric conversion. Such conversion, for example, is required when you type a number as

a sequence of digit characters.

A.7 Summary
We discussed how numbers are represented using the positional number system. Positional

number systems are characterized by a base and an alphabet. The familiar decimal system is

a base-10 system with the alphabet 0 through 9. Computer systems use the binary system for

internal storage. This is a base-2 number system with 0 and 1 as the alphabet. The remaining

two number systems—octal (base-8) and hexadecimal (base-16)—are mainly used for con-

venience to write a binary number. For example, debuggers use the hexadecimal numbers to

display address and data information.

When we are using several number systems, there is often a need to convert numbers from

one system to another. Conversion among binary, octal, and hexadecimal systems is simple

and straightforward. We also discussed how numbers are converted from decimal to binary,

and vice versa.

The remainder of the chapter was devoted to internal representation of numbers. The

focus was on the representation of numbers: both integers and real numbers were consid-

ered. Representation of unsigned integers is straightforward and uses binary representation.

There are, however, several ways of representing signed integers. We discussed four methods

to represent signed integers. Of these four methods, current computer systems use the 2’s

complement representation. In this representation, subtraction can be treated as addition by

reversing the sign of the subtrahend.

Floating-point representation on most computers follows the IEEE 754 standard. There

are three components of a floating-point number: mantissa, exponent, and the sign of the

mantissa. There is no sign associated with the exponent. Instead, the exponent is stored as a

biased number. We illustrated how real numbers can be converted from decimal to floating-

point format.

The next version of the IEEE 754 standard, known as the IEEE 784, includes decimal-

base floating-point numbers. Details on this standard are available from the IEEE standards

body.

The last section discussed character representation. We identified some desirable proper-

ties that a character encoding scheme should satisfy in order to facilitate efficient character

processing. While there are two character codes—EBCDIC and ASCII—most computers in-

cluding the IBM PC use ASCII. We noted that ASCII satisfies the requirements of an efficient

character code.

564 Appendix A Internal Data Representation

A.8 Exercises
A–1 How many different values can be represented using four digits in the hexadecimal

system? What is the range of numbers that can be represented?

A–2 Repeat the above exercise for the binary system and the octal system.

A–3 Find the decimal equivalent of the following:

(a) 737Q, (c) AB15H, (e) 1234Q,

(b) 11010011B, (d) 1234H, (f) 100100B.

A–4 To represent numbers 0 through 300 (both inclusive), how many digits are required in

the following number systems?

1. Binary

2. Octal

3. Hexadecimal

A–5 What are the advantages of the octal and hexadecimal number systems over the binary

system?

A–6 Perform the following number conversions:

1. 1011010011B = Q.

2. 1011010011B = H.

3. 1204Q = B.

4. ABCDH = B.

A–7 Perform the following number conversions:

1. 56D = B.

2. 217D = Q.

3. 150D = H.

Verify your answers by converting your answers back to decimal.

A–8 Assume that 16 bits are available to store a number. Specify the range of numbers that

can be represented by the following number systems:

1. Unsigned integer

2. Signed magnitude

3. Excess-1023

4. 1’s complement

5. 2’s complement

A–9 What is the difference between a half-adder and a full-adder?

Section A.8 Exercises 565

A–10 Perform the following operations assuming that the numbers are unsigned integers.

Make sure to identify the presence or absence of the overflow or underflow condition.

1. 01011010B + 10011111B.

2. 10110011B + 01101100B.

3. 11110001B + 00011001B.

4. 10011101B + 11000011B.

5. 01011010B − 10011111B.

6. 10110011B − 01101100B.

7. 11110001B − 00011001B.

8. 10011101B − 11000011B.

A–11 Repeat the above exercise assuming that the numbers are signed integers that use the

2’s complement representation.

A–12 Find the decimal equivalent of the following binary numbers assuming that the numbers

are expressed in

1. Unsigned integer

2. Signed magnitude

3. Excess-1023

4. 1’s complement

5. 2’s complement

(a) 01101110, (b) 11011011, (c) 00111101,

(d) 11010011, (e) 10001111, (f) 01001101.

A–13 Convert the following decimal numbers into signed magnitude, excess-127, 1’s com-

plement, and 2’s complement number systems. Assume that 8 bits are used to store the

numbers:

(a) 60, (b) 0, (c) −120,

(d) −1, (e) 100, (f) −99.

A–14 Find the decimal equivalent of the following binary numbers:

(a) 10101.0101011, (b) 10011.1101, (c) 10011.1010,

(d) 1011.1011, (e) 1101.001101, (f) 110.111001.

A–15 Convert the following decimal numbers into the short floating-point format:

1. 19.3125.

2. −250.53125.

566 Appendix A Internal Data Representation

A–16 Convert the following decimal numbers into the long floating-point format:

1. 19.3125

2. −250.53125

A–17 Find the decimal equivalent of the following numbers, which are in the short floating-

point format:

1. 7B59H

2. A971H

3. BBC1H

A–18 Give a summary of the special values used in the IEEE 754 standard.

A–19 Explain why denormals are introduced in the IEEE 754 standard.

A–20 We gave the smallest and largest values represented by the denormals for single-precision

floating-point numbers. Give the corresponding values for the double precision num-

bers.

A–21 Perform the following floating-point arithmetic operations (as in Example A.34):

1. 22.625 + 7.5

2. 22.625 − 7.5

3. 35.75 + 22.625

4. 35.75 − 22.625

A.9 Programming Exercises
A–P1 Implement the algorithm on page 533 to perform binary-to-decimal conversion in your

favorite high-level language. Use your program to verify the answers of the exercises

that require this conversion.

A–P2 Implement the algorithm on page 534 to perform decimal-to-binary conversion in your

favorite high-level language. Use your program to verify the answers of the exercises

that require this conversion.

A–P3 Implement the algorithm on page 557 to convert real numbers from decimal to short

floating-point format in your favorite high-level language. Use your program to verify

the answers of the exercise that requires this conversion.

A–P4 Implement the algorithm to convert real numbers from the short floating-point format

to decimal in your favorite high-level language. Assume that the input to the program

is given as four hexadecimal digits. Use your program to verify the answers of the

exercise that requires this conversion.

Appendix B

Assembling and Linking

Objectives
• To give details on NASM assembler installation

• To present the structure of the standalone assembly language programs used in this

book

• To describe the input and output routines provided with this book

• To explain the assembly process

In this appendix, we discuss the necessary mechanisms to write and execute Pentium assembly

language programs. We start our discussion with details on the NASM assembler. The next

section looks at the structure of assembly language programs that we use in this book. Unlike

high-level languages, the assembly language does not provide a convenient mechanism to do

input/output. To overcome this deficiency, we developed a set of I/O routines to facilitate

character, string, and numeric input/output. These routines are described in Section B.3.

Once we have written an assembly language program, we have to transform it into its

executable form. Typically, this takes two steps: we use an assembler to translate the source

program into what is called an object program and then use a linker to transform the object

program into an executable version. Section B.4 gives details of these steps. The appendix

concludes with a summary.

B.1 Introduction
NASM, which stands for netwide assembler, is a portable, free public domain, IA-32 as-

sembler that can generate a variety of object file formats. In this appendix, we restrict our

discussion to a Linux system running on an Intel PC.

567

568 Appendix B Assembling and Linking

NASM can be downloaded from several sources (see the book’s Web page for details).

The NASM manual (see Section B.6) has clear instructions on how to install NASM under

Linux. Here is a summary extracted from this manual:

1. Download the Linux source archive nasm-X.XX.tar.gz, where X.XX is the NASM

version number in the archive.

2. Unpack the archive into a directory, which creates a subdirectory nasm-X.XX.

3. cd to nasm-X.XX and type ./configure. This shell script will find the best C

compiler to use and set up Makefiles accordingly.

4. Type make to build the nasm and ndisasm binaries.

5. Type make install to install nasm and ndisasm in /usr/local/bin and to

install man pages.

This should install NASM on your system. Alternatively, you can use an RPM distribution

for the Red Hat Linux. This version is simpler to install—just double-click the RPM file.

NASM can support several object file formats including the ELF (execute and link for-

mat) format used by Linux. The assembling and linking process is simple. For example, to

assemble addigits.asm, we use

nasm -f elf addigits.asm

This generates the addigits.o object file. To generate the executable file addigits, we

have to link this file with our I/O routines. This is done by

ld -s -o addigits addigits.o io.o

Note that nasm requires the io.mac file and ld needs the io.o file. Make sure that you

have these two files in your current directory. We give details about these files in the next

section.

B.2 Structure of Assembly Language Programs
Writing an assembly language program is a complicated task, particularly for a beginner. We

make this daunting task simple by hiding those details that are irrelevant. We achieve this by

(1) providing special I/O routines and (2) defining a basic assembly language template.

Facilitating Input/Output

We rarely write programs that do not input and/or output data. High-level languages provide

facilities to input and output data. For example, C provides scanf and printf functions

to input and output data, respectively. Typically, high-level languages can read numeric data

(integers, floating-point numbers), characters, and strings.

Section B.3 Input/Output Routines 569

The assembly language, however, does not provide a convenient mechanism to input/output

data. The operating system provides some basic services to read and write data, but these are

fairly limited. For example, there is no function to read an integer from the keyboard.

In order to facilitate I/O in assembly language programs, it is necessary to write the re-

quired procedures. We developed a set of I/O routines to read and display signed integers,

characters, and strings. Each I/O routine call looks like an assembly language instruction.

This is achieved by using macros. Each macro call typically expands to several assembly

language statements and includes a call to an appropriate I/O procedure. These two functions

are separated into two I/O files:

• The io.mac file contains the macro definitions for the I/O routines. This file is in-

cluded in our assembly program by using the %include directive (see Figure B.1),

• The io.o contains the I/O procedures that actually perform the operation. This file is

needed by the linker (discussed later).

The next section gives details about these routines.

Assembly Language Template

To simplify writing assembly language programs, we use the template shown in Figure B.1.

As mentioned before, we include the io.mac file by using the %include directive. This

directive allows us to include the contents of io.mac in the assembly language program. If

you had used other assemblers like TASM or MASM, it is important to note that NASM is

case-sensitive.

The data part is split into two: the .DATA macro is used for initialized data and the

.UDATA for uninitialized data. The code part is identified by the .CODE macro. The

.STARTUP macro handles the code for setup. The .EXIT macro returns control to the

operating system.

B.3 Input/Output Routines
The I/O routines facilitate reading and displaying characters, strings, and integers. We now

describe these routines in detail. Table B.1 provides a summary of the I/O routines defined in

io.mac.

Character I/O

Two macros are defined to input and output characters: PutCh and GetCh. The format of

PutCh is

PutCh source

where source can be any general-purpose, 8-bit register, or a byte in memory, or a character

value. Some examples follow:

570 Appendix B Assembling and Linking

;brief title of program file name

;

; Objectives:

; Inputs:

; Outputs:

;

%include "io.mac"

.DATA

(initialized data go here)

.UDATA

(uninitialized data go here)

.CODE

.STARTUP ; setup

. . .

. . .

(code goes here)

. . .

. . .

.EXIT ; returns control

Figure B.1 Template for the assembly language programs used in the book.

PutCh ’A’ ; displays character A

PutCh AL ; displays the character in AL

PutCh [response] ; displays the byte located in

; memory (labeled response)

Note that the memory operands should be in []. The format of GetCh is

GetCh destination

where destination can be either an 8-bit register or a byte in memory. Some examples are

GetCh DH

GetCh [response]

In addition, a nwlnmacro is defined to display a newline (e.g., \n in C). It takes no operands.

String I/O

PutStr and GetStr are defined to display and read strings, respectively. The strings are

assumed to be in NULL-terminated format. That is, the last character of the string must be

Section B.3 Input/Output Routines 571

Table B.1 Summary of I/O Routines Defined in io.mac

Name Operand(s) Operand

location

Size What it does

PutCh source value

register

memory

8 bits Displays the character

located at source

GetCh destination register

memory

8 bits Reads a character into

destination

nwln none — — Displays a carriage return

and line feed

PutStr source memory variable Displays the NULL-terminated

string at source

GetStr destination [,buffer size] memory variable Reads a carriage-return-terminated

string into destination and stores it

as a NULL-terminated string.

Maximum string length is

buffer size−1.

PutInt source register

memory

16 bits Displays the signed 16-bit number

located at source

GetInt destination register

memory

16 bits Reads a signed 16-bit number into

destination

PutLint source register

memory

32 bits Displays the signed 32-bit number

located at source

GetLint destination register

memory

32 bits Reads a signed 32-bit number into

destination

the NULL ASCII character, which signals the end of the string. Strings are discussed in

Chapter 10.

The format of PutStr is

PutStr source

where source is the name of the buffer containing the string to be displayed. For example,

PutStr message

displays the string stored in the buffer message. If the buffer does not contain a NULL-

terminated string, a maximum of 80 characters are displayed.

The format of GetStr is

GetStr destination [,buffer_size]

572 Appendix B Assembling and Linking

where destination is the buffer name in which the string is stored. The input string can be

terminated by return. You can also specify the optional buffer_size value. If not

specified, a buffer size of 81 is assumed. Thus, in the default case, a maximum of 80 characters

is read into the string. If a value is specified, (buffer_size−1) characters are read. The

string is stored as a NULL-terminated string. You can backspace to correct the input. Here

are some examples:

GetStr in_string ; reads at most 80 characters

GetStr TR_title,41 ; reads at most 40 characters

Numeric I/O

There are four macros to perform integer I/O: two are defined for 16-bit integers and the

remaining two for 32-bit integers. First we look at the 16-bit integer I/O routines—PutInt
and GetInt. The formats of these routines are

PutInt source

GetInt destination

where the source and destination can be a 16-bit register or a memory word.

PutInt displays the signed number at the source. It suppresses all leading 0’s. GetInt
reads a 16-bit signed number into destination. You can backspace while entering a number.

The valid range of input numbers is −32,768 to +32,767. If an invalid input (such as typing

a nondigit character) or out-of-range number is given, an error message is displayed and the

user is asked to type a valid number. Some examples are

PutInt AX

PutInt [sum]

GetInt CX

GetInt [count]

Long integer I/O is similar except that the source and destination must be a 32-bit register

or a memory doubleword (i.e., 32 bits). For example, if total is a 32-bit number in memory,

we can display it by

PutLint [total]

and read a long integer from the keyboard into total by

GetLint [total]

Some examples that use registers are

PutLint EAX

GetLint EDX

Section B.3 Input/Output Routines 573

An Example

Program B.1 gives a simple example to demonstrate how some of these I/O routines can be

used to facilitate I/O. The program uses the db (define byte) assembly language directive to

declare several strings (lines 11–15). All these strings are terminated by 0, which is the ASCII

value for the NULL character. Similarly, 16 bytes are allocated for a buffer to store user name,

and another byte is reserved for response (lines 18 and 19). In both cases, we use resb to

reserve space for uninitialized data.

Program B.1 An example assembly program

1: ;An example assembly language program SAMPLE.ASM

2: ;

3: ; Objective: To demonstrate the use of some I/O

4: ; routines and to show the structure

5: ; of assembly language programs.

6: ; Inputs: As prompted.

7: ; Outputs: As per input.

8: %include "io.mac"

9:

10: .DATA

11: name_msg db ’Please enter your name: ’,0

12: query_msg db ’How many times to repeat welcome message? ’,0

13: confirm_msg1 db ’Repeat welcome message ’,0

14: confirm_msg2 db ’ times? (y/n) ’,0

15: welcome_msg db ’Welcome to Assembly Language Programming ’,0

16:

17: .UDATA

18: user_name resb 16 ; buffer for user name

19: response resb 1

20:

21: .CODE

22: .STARTUP

23: PutStr name_msg ; prompt user for his/her name

24: GetStr user_name,16 ; read name (max. 15 characters)

25: ask_count:

26: PutStr query_msg ; prompt for repeat count

27: GetInt CX ; read repeat count

28: PutStr confirm_msg1 ; confirm repeat count

29: PutInt CX ; by displaying its value

30: PutStr confirm_msg2

31: GetCh [response] ; read user response

32: cmp byte [response],’y’ ; if ’y’, display welcome message

574 Appendix B Assembling and Linking

33: jne ask_count ; otherwise, request repeat count

34: display_msg:

35: PutStr welcome_msg ; display welcome message

36: PutStr user_name ; display the user name

37: nwln

38: loop display_msg ; repeat count times

39: .EXIT

The program requests the name of the user and a repeat count. After confirming the repeat

count, it displays a welcome message repeat count times. We use PutStr on line 23 to

prompt for the user name. The name is read as a string using GetStr into the user_name
buffer. Since we have allocated only 16 bytes for the buffer, the name cannot be more than

15 characters. We enforce this by specifying the optional buffer size parameter in GetStr
(line 24). The PutStr on line 26 requests a repeat count, which is read by GetInt on

line 27. The confirmation message is displayed by lines 28–30. The response of the user y/n
is read by GetCh on line 31. If the response is y, the loop (lines 34–38) displays the welcome

message repeat count times. A sample interaction with the program is shown below:

Please enter your name: Veda

How many times to repeat welcome message? 5

Repeat welcome message 5 times? (y/n) y

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

B.4 Assembling and Linking
Figure B.2 shows the steps involved in converting an assembly language program into an

executable code. The source assembly language file (e.g., sample.asm) is given as input

to the assembler. The assembler translates the assembly language program into an object

program (e.g., sample.o). The linker takes one or more object programs (e.g., sample.o
and io.o) and combines them into an executable program (e.g., sample). The following

subsections describe each of these steps in detail.

B.4.1 The Assembly Process

The general format to assemble a program is

nasm -f <format> <source-file> [-o <object-file>][-l <list-file>]

where the specification of fields in [] is optional. If we specify only the source file, NASM

Section B.4 Assembling and Linking 575

ASSEMBLE

LINK

Other object files

EDITEditor language program

Creates an assembly

sample.asm

sample.o

sample.asm

sample.lst

sample

sample.o

Assembles the source program

sample.asm

Links all object programs including

to generate the executable program

sample.o

sample

to generate the object program
Assembler

Linker

Figure B.2 Assembling and linking assembly language programs (optional inputs and outputs are shown

by dashed lines).

produces only the object file. Thus to assemble our example source file sample.asm, we

can use the command

nasm -f elf sample.asm

After successfully assembling the source program, NASM generates an object file with the

same file name as the source file but with .o extension. Thus, in our example, it generates

the sample.o file.

If you want the assembler to generate the listing file, you can use

nasm -f elf sample.asm -l sample.lst

576 Appendix B Assembling and Linking

This command produces two files: sample.o and sample.lst. The list file contains

detailed information as we shall see next.

The List File

Program B.2 gives a simple program that reads two signed integers from the user and displays

their sum if there is no overflow; otherwise, it displays an error message. The input numbers

should be in the range −2,147,483,648 to +2,147,483,647, which is the range of a 32-bit

signed number. The program uses PurStr and GetLInt to prompt and read input numbers

(see lines 22, 23 and 26, 27). The sum of the input numbers is computed on lines 30–32.

If the resulting sum is outside the range of a signed 32-bit integer, the overflow flag is set

by the add instruction. In this case, the program displays the overflow message (line 36). If

there is no overflow, the sum is displayed (lines 42 and 43).

Program B.2 An assembly language program to add two integers sumprog.asm

1: ;Assembly language program to find sum SUMPROG.ASM

2: ;

3: ; Objective: To add two integers.

4: ; Inputs: Two integers.

5: ; Output: Sum of input numbers.

6: %include "io.mac"

7:

8: .DATA

9: prompt1_msg db ’Enter first number: ’,0

10: prompt2_msg db ’Enter second number: ’,0

11: sum_msg db ’Sum is: ’,0

12: error_msg db ’Overflow has occurred!’,0

13:

14: .UDATA

15: number1 resd 1 ; stores first number

16: number2 resd 1 ; stores first number

17: sum resd 1 ; stores sum

18:

19: .CODE

20: .STARTUP

21: ; prompt user for first number

22: PutStr prompt1_msg

23: GetLInt [number1]

24:

25: ; prompt user for second number

26: PutStr prompt2_msg

27: GetLInt [number2]

Section B.4 Assembling and Linking 577

28:

29: ; find sum of two 32-bit numbers

30: mov EAX,[number1]

31: add EAX,[number2]

32: mov [sum],EAX

33:

34: ; check for overflow

35: jno no_overflow

36: PutStr error_msg

37: nwln

38: jmp done

39:

40: ; display sum

41: no_overflow:

42: PutStr sum_msg

43: PutLInt [sum]

44: nwln

45: done:

46: .EXIT

The list file for the source program sumprog.asm is shown in Program B.3. In addition

to the original source code lines, it contains a lot of useful information about the results of

the assembly. This additional information includes the actual machine code generated for the

executable statements and the offset of each statement.

List File Contents

The format of the list file lines is

line# offset machine-code nesting-level source-line

line#: is the number of the listing file line numbers. These numbers are different from the

line numbers in the source file. This can be due to include files, macros, etc., as shown in

Program B.3.

offset: is an 8-digit hexadecimal offset value of the machine code for the source statement.

For example, the offset of the first instruction (line 187) is 00000000H, and that of the add

instruction on line 219 is 00000035H. Source lines such as comments do not generate any

offset.

machine-code: is the hexadecimal representation of the machine code for the assembly

language instruction. For example, the machine language encoding of

578 Appendix B Assembling and Linking

mov EAX,[number1]

is A1[00000000] (line 218) and requires five bytes. The value zero in [] is the offset of

number1 in the data segment (see line 173).

Similarly, the machine language encoding of

jmp done

is E91D000000 (line 231), requiring five bytes of memory.

nesting-level: is the level of nesting of “include files” and macros.

source-line: is a copy of the original source code line. As you can see from Program B.3,

the number of bytes required for the machine code depends on the source instruction. When

operands are in memory like number1, their relative address is used in the instruction en-

coding. The actual value is fixed up by the linker after all the object files are combined (for

example, io.o in our example). You also notice that the macro definitions are expanded. For

example, the PutStr on line 186 is expanded on lines 187 through 190.

Program B.3 The list file for the example assembly program sumprog.asm

1 ;Assembly language program to find sum. . .
2 ;
3 ; Objective: To add two integers.
4 ; Inputs: Two integers.
5 ; Output: Sum of input numbers.
6 %include "io.mac"
7 <1> extern proc_nwln, proc_PutCh, proc_PutStr
8 <1> extern proc_GetStr, proc_GetCh
9 <1> extern proc_PutInt, proc_GetInt

10 <1> extern proc_PutLInt, proc_GetLInt
11 <1>
12 <1> ;;------------------------------------
13 <1> %macro .STARTUP 0
14 <1> ;group dgroup .data .bss
15 <1> global _start
16 <1> _start:
17 <1> %endmacro
18 <1> ;;------------------------------------
19 <1>
20 <1>
21 <1> ;;------------------------------------
22 <1> %macro .EXIT 0
23 <1> mov EAX,1
24 <1> xor EBX,EBX
25 <1> int 0x80
26 <1> %endmacro
27 <1> ;;------------------------------------

Section B.4 Assembling and Linking 579

28 <1>
29 <1>
30 <1> ;;------------------------------------
31 <1> %macro .DATA 0
32 <1> segment .data
33 <1> %endmacro
34 <1> ;;------------------------------------
35 <1>
36 <1> ;;------------------------------------
37 <1> %macro .UDATA 0
38 <1> segment .bss
39 <1> %endmacro
40 <1> ;;------------------------------------

158 .DATA
159 <1> segment .data
160 00000000 456E74657220666972- prompt1_msg db ’Enter first number: ’,0
161 00000009 7374206E756D626572-
162 00000012 3A2000
163 00000015 456E74657220736563- prompt2_msg db ’Enter second number: ’,0
164 0000001E 6F6E64206E756D6265-
165 00000027 723A2000
166 0000002B 53756D2069733A2000 sum_msg db ’Sum is: ’,0
167 00000034 4F766572666C6F7720- error_msg db ’Overflow has occurred!’,0
168 0000003D 686173206F63637572-
169 00000046 7265642100
170
171 .UDATA
172 <1> segment .bss
173 00000000 <res 00000004> number1 resd 1 ; stores first number
174 00000004 <res 00000004> number2 resd 1 ; stores first number
175 00000008 <res 00000004> sum resd 1 ; stores sum
176
177 .CODE
178 <1> segment .data
179 <1> segment .bss
180 <1> segment .text
181 .STARTUP
182 <1>
183 <1> global _start
184 <1> _start:
185 ; prompt user for first number
186 PutStr prompt1_msg
187 00000000 51 <1> push ECX
188 00000001 B9[00000000] <1> mov ECX,%1
189 00000006 E8(00000000) <1> call proc_PutStr
190 0000000B 59 <1> pop ECX
191 GetLInt [number1]
192 <1> %ifnidni %1,EAX
193 0000000C 50 <1> push EAX
194 0000000D E8(00000000) <1> call proc_GetLInt

580 Appendix B Assembling and Linking

195 00000012 A3[00000000] <1> mov %1,EAX
196 00000017 58 <1> pop EAX
197 <1> %else
198 <1> call proc_GetLInt
199 <1> %endif
200
201 ; prompt user for second number
202 PutStr prompt2_msg
203 00000018 51 <1> push ECX
204 00000019 B9[15000000] <1> mov ECX,%1
205 0000001E E8(00000000) <1> call proc_PutStr
206 00000023 59 <1> pop ECX
207 GetLInt [number2]
208 <1> %ifnidni %1,EAX
209 00000024 50 <1> push EAX
210 00000025 E8(00000000) <1> call proc_GetLInt
211 0000002A A3[04000000] <1> mov %1,EAX
212 0000002F 58 <1> pop EAX
213 <1> %else
214 <1> call proc_GetLInt
215 <1> %endif
216
217 ; find sum of two 32-bit numbers
218 00000030 A1[00000000] mov EAX,[number1]
219 00000035 0305[04000000] add EAX,[number2]
220 0000003B A3[08000000] mov [sum],EAX
221
222 ; check for overflow
223 00000040 7116 jno no_overflow
224 PutStr error_msg
225 00000042 51 <1> push ECX
226 00000043 B9[34000000] <1> mov ECX,%1
227 00000048 E8(00000000) <1> call proc_PutStr
228 0000004D 59 <1> pop ECX
229 nwln
230 0000004E E8(00000000) <1> call proc_nwln
231 00000053 E91D000000 jmp done
232
233 ; display sum
234 no_overflow:
235 PutStr sum_msg
236 00000058 51 <1> push ECX
237 00000059 B9[2B000000] <1> mov ECX,%1
238 0000005E E8(00000000) <1> call proc_PutStr
239 00000063 59 <1> pop ECX
240 PutLInt [sum]
241 00000064 50 <1> push EAX
242 00000065 A1[08000000] <1> mov EAX,%1
243 0000006A E8(00000000) <1> call proc_PutLInt
244 0000006F 58 <1> pop EAX
245 nwln

Section B.5 Summary 581

246 00000070 E8(00000000) <1> call proc_nwln
247 done:
248 .EXIT
249 00000075 B801000000 <1> mov EAX,1
250 0000007A 31DB <1> xor EBX,EBX
251 0000007C CD80 <1> int 0x80

B.4.2 Linking Object Files

Linker is a program that takes one or more object programs as its input and produces exe-

cutable code. In our example, since I/O routines are defined separately, we need two object

files—sample.o and io.o—to generate the executable file sample (see Figure B.2). To

do this, we use the command

ld -s -o sample sample.o io.o

If you intend to debug your program using gdb, you should use the stabs option during

the assembly in order to export the necessary symbolic information. We discuss this in the

next appendix, as it deals with debugging.

B.5 Summary
We presented details about the NASM assembler. We also presented the template used to

write standalone assembly language programs. Since the assembly language does not provide

a convenient mechanism to do input/output, we defined a set of I/O routines to help us in

performing simple character, string, and numeric input and output. We used simple examples

to illustrate the use of these I/O routines in a typical standalone assembly language program.

To execute an assembly language program, we have to first translate it into an object

program by using an assembler. Then we have to pass this object program, along with any

other object programs needed by the program, to a linker to produce executable code. We used

NASM to assemble the programs. Note that NASM produces additional files that provide

information on the assembly process. The list file is the one we often use to see the machine

code and other details.

B.6 Web Resources
Documentation (including the NASM manual) and download information on NASM are avail-

able from http://sourceforge.net/projects/nasm.

B.7 Exercises
B–1 In the assembly language program structure used in this book, how are the data and

code parts specified?

582 Appendix B Assembling and Linking

B–2 What do we mean by a standalone assembly language program?

B–3 What is an assembler? What is the purpose of it?

B–4 What is the function of the linker? What is the input to the linker?

B–5 Why is it necessary to define our own I/O routines?

B–6 What is a NULL-terminated string?

B–7 Why is a buffer size specification necessary in GerStr but not in PutStr?

B–8 What happens if the buffer size parameter is not specified in GetStr?

B–9 What happens if the buffer specified in PutStr does not contain a NULL-terminated

string?

B–10 What is the range of numbers that GetInt can read from the keyboard? Give an

explanation for the range.

B–11 Repeat the last exercise for GetLint.

B.8 Programming Exercises
B–P1 Write an assembly language program to explore the behavior of the various character

and string I/O routines. In particular, comment on the behavior of the GetStr and

PutStr routines.

B–P2 Write an assembly language program to explore the behavior of the various numeric

I/O routines. In particular, comment on the behavior of the GetInt and GetLint
routines.

B–P3 Modify sample.asm by deliberately introducing errors into the program. Assemble

the program and see the type of errors reported by the assembler. Also, generate the

corresponding list file and briefly explain its contents.

Appendix C

Debugging Assembly

Language Programs

Objectives
• To present basic strategies to debug assembly language programs

• To give information on preparing the assembly language programs for debugging

• To describe the GDB debugger

• To explain the basic features of the DDD

Debugging assembly language programs is more difficult and time-consuming than debugging

high-level language programs. However, the fundamental strategies that work for high-level

languages also work for assembly language programs. Section C.1 gives a discussion of these

strategies. Since you are familiar with debugging high-level language programs, this discus-

sion is rather brief. The next section explains how you can prepare your Pentium assembly

language program for symbolic debugging.

Section C.3 discusses the GNU debugger (GDB). This is a command-line debugger. A

nice visual interface to it is provided by Dynamic Data Display (DDD). We describe it in Sec-

tion C.4. We use a simple example to explain some of the commands of GDB (in Section C.3)

and DDD (in Section C.4). The appendix concludes with a summary.

C.1 Strategies to Debug Assembly Language Programs
Programming is a complicated task. Loosely speaking, a program can be thought of as map-

ping a set of input values to a set of output values. The mapping performed by a program

583

584 Appendix C Debugging Assembly Language Programs

is given as the specification for the programming task. It goes without saying that when the

program is written, it should be verified to meet the specifications. In programming parlance,

this activity is referred to as testing and validating the program.

Testing a program itself is a complicated task. Typically, test cases, selected to validate the

program, should test each possible path in the program, boundary cases, and so on. During this

process, errors (“bugs”) are discovered. Once a bug is found, it is necessary to find the source

code causing the error and fix it. This process is known by its colorful name, debugging.

Debugging is not an exact science. We have to rely on our intuition and experience.

However, there are tools that can help us in this process. Several debuggers are available to

help us in the debugging process. We will look at two such tools in this appendix—GDB and

DDD. Note that our goal here is to introduce the basics of the debugging process, as the best

way to get familiar with debugging is to use a debugger.

Finding bugs in a program is very much dependent on the individual program. Once an

error is detected, there are some general ways of locating the source code lines causing the

error. The basic principle that helps you in writing the source program in the first place—the

divide-and-conquer technique—is also useful in the debugging process. Structured program-

ming methodology facilitates debugging greatly.

A program typically consists of several modules, where each module may have several

procedures. When developing a program, it is best to do incremental development. In this

methodology, a few procedures are added to the program to add some specific functionality.

The program must be tested before adding other functionality to the program. In general, it is

a bad idea to write the whole program and then test it, unless the program is small.

The best strategy is to write code that has as few bugs as possible. This can be achieved

by using pseudocode and verifying the logic of the pseudocode even before you attempt to

translate it into an assembly language program. This is a good way of catching many of the

logical errors and saves a lot of debugging time. Never write an assembly language code with

the pseudocode in your head! Furthermore, don’t be in a hurry to write some assembly code

that appears to work. This is short sighted, as we end up spending more time in the debugging

phase.

To isolate a bug, program execution should be observed in slow motion. Most debug-

gers provide a command to execute a program in single-step mode. In this mode, a program

executes a single statement and pauses. Then we can examine contents of registers, data in

memory, stack contents, and so on. In this mode, a procedure call is treated as a single state-

ment and the entire procedure is executed before pausing the program. This is useful if you

know that the called procedure works correctly. Debuggers also provide another command to

trace even the statements of procedure calls, which is useful in testing procedures.

Often we know that some parts of the program work correctly. In this case, it is a sheer

waste of time to single-step or trace the code. What we would like is to execute this part of the

program and then stop for more careful debugging (perhaps by single-stepping). Debuggers

provide commands to set up breakpoints. The program execution stops at breakpoints, giving

us a chance to look at the state of the program.

Section C.1 Strategies to Debug Assembly Language Programs 585

Another helpful feature that most debuggers provide is the watch facility. By using

watches, it is possible to monitor the state (i.e., values) of the variables in the program as

the execution progresses.

In the following sections, we discuss two debuggers and show how they are useful in

debugging the program procex1.asm discussed in Chapter 5 (this program is reproduced

in Program C.1). We selected this program as it is simple so that we focus our attention on the

debugging process, yet it contains a procedure to facilitate exploration of the stack frames.

Program C.1 The example program used in the debugging sessions

1: ;Parameter passing via registers PROCEX1.ASM

2: ;

3: ; Objective: To show parameter passing via registers.

4: ; Input: Requests two integers from the user.

5: ; Output: Outputs the sum of the input integers.

6: %include "io.mac"

7: .DATA

8: prompt_msg1 db "Please input the first number: ",0

9: prompt_msg2 db "Please input the second number: ",0

10: sum_msg db "The sum is ",0

11:

12: .CODE

13: .STARTUP

14: PutStr prompt_msg1 ; request first number

15: GetInt CX ; CX = first number

16:

17: PutStr prompt_msg2 ; request second number

18: GetInt DX ; DX = second number

19:

20: call sum ; returns sum in AX

21: PutStr sum_msg ; display sum

22: PutInt AX

23: nwln

24: done:

25: .EXIT

26:

27: ;---

28: ;Procedure sum receives two integers in CX and DX.

29: ;The sum of the two integers is returned in AX.

30: ;---

31: sum:

32: mov AX,CX ; sum = first number

586 Appendix C Debugging Assembly Language Programs

33: add AX,DX ; sum = sum + second number

34: ret

C.2 Preparing Your Program
The assembly process described in Appendix B works fine if we just want to assemble and

run our program. However, we need to prepare our program slightly differently to debug

the program. More specifically, we would like to pass the source code and symbol table

information so that we can debug using the source-level statements. This is much better than

debugging using disassembled code.

We use GNU debugger gdb to debug our assembly language programs. This is a

command-line debugger, which is discussed in the next section. Section C.4 describes DDD,

which acts as a nice GUI for gdb. To facilitate debugging at the source code level, we need to

pass the symbolic information (source code, variable names, etc.) to the debugger. The gdb
expects this symbolic information in the stabs format.

Recent versions of NASM support exporting symbolic information in this format. Since

earlier versions did not support this feature, make sure that you have the most recent version of

NASM (0.98.38-1 or a later version). To verify that your version of NASM supports stabs
format, use the command

nasm -f elf -y

and see if stabs is listed as one of the formats supported.

Assuming that you have an NASM version that supports stabs format, we can assemble

the program (say, procex1.asm) as follows:

nasm -f elf -g -F stabs procex1.asm

The -g option specifies that NASM should generate symbolic debug information. The

-F stabs specifies the format for this information. The next step is to make sure that our

linker will pass this information to the executable file. We do this by the following command:

ld -o procex1 procex1.o io.o

Note that we are not using the -s option as this option strips off the debugging information.

The executable program procex1 would have the necessary symbolic information to help

us in the debugging process. As discussed in the last appendix, we need to include the I/O file

io.o because our programs use the I/O routines described in Appendix B.

C.3 GNU Debugger
This section describes the GNU debugger gdb. It is typically invoked by

Section C.3 GNU Debugger 587

gdb file_name

For example, to debug the procex1 program, we can use

gdb procex1

We can also invoke gdb without giving the file name. We can specify the file to be debugged

by using the file command inside the gdb. Details on the file command are available in

the gdb manual (see Section C.6). You know that the gdb is running the show when you see

the (gdb) prompt. At this prompt, it can accept one of several commands. Tables C.1 and

C.3 show some of the gdb commands useful in debugging programs.

C.3.1 Display Group

Displaying Source Code

When debugging, it is handy to keep a printed version of the source code with line numbers.

However, gdb has list commands that allow us to look at the source code. A simple list

command takes no arguments. The command

list

displays the default number of lines, which is 10 lines. If we issue this command again, it

displays the next 10 lines. We can abbreviate this command to l. We can use list − to

print lines just before the last printed lines.

We can specify a line number as an argument. In this case, it displays 10 lines centered

on the specified line number. For example, the command

l 20

displays lines 15 through 24, as shown in Program C.2 on page 596. The list command can

also take other arguments. For example,

l first,last

displays the lines from first to last.

The default number of lines displayed can be changed to n with the following command:

set listsize n

The command show listsize gives the current default value.

Displaying Register Contents

When debugging an assembly language program, we often need to look at the contents of the

registers. The info can be used for this purpose. The

588 Appendix C Debugging Assembly Language Programs

Table C.1 Some of the GDB Display Commands

Display Commands

Source code display commands

list Lists default number of source code lines from the last displayed lines

(default is 10 lines). It can be abbreviated as l.

list - Lists default number of source code lines preceding the last displayed

lines (default is 10 lines).

list linenum Lists default number of lines centered around the specified line number

linenum.

list first,last Lists the source code lines from first to last.

Register display commands

info registers Displays the contents of registers except floating-point registers.

info all-registers Displays the contents of registers.

info register ... Displays contents of the specified registers.

Memory display commands

x address Displays the contents of memory at address (uses defaults).

x/nfu adddress Displays the contents of memory at address.

Stack frame display commands

backtrace Displays backtrace of the entire stack (one line for each stack frame).

It can be abbreviated as bt.

backtrace n Displays backtrace of the innermost n stack frames.

backtrace -n Displays backtrace of the outermost n stack frames.

frame n Select frame n (Frame zero is the innermost frame i.e., currently exe-

cuting frame). It can be abbreviated as f.

info frame Displays a description of the selected stack frame (details include the

frame address, program counter saved in it, addresses of local variable

and arguments, addresses of next and previous frames, and so on).

info registers

displays the contents of the integer registers. To display all registers including the floating-

point registers, use

info all-registers

Section C.3 GNU Debugger 589

Often we are interested in looking at the contents of a select few registers. To avoid cluttering

the display, gdb allows specification of the registers in the command. For example, we can

use

info eax ecx edx

to check the contents of the eax, ecx, and edx registers.

Displaying Memory Contents

We can examine memory contents by using the x command (x stands for examine). It has the

following syntax:

x/nfu address

where n, f, and u are optional parameters that specify the amount of memory to be displayed

starting at address and its format. If the optional parameters are not given, the x command

can be written as

x address

In this case the default values are used for the three optional parameters. Details about these

parameters are given in Table C.2.

Next we look at some examples of the x command. When gdb is invoked with the

program given on page 585, we can examine the contents of the memory at prompt_msg1
by using the following x command:

(gdb) x/1sb &prompt_msg1

0x80493e4 <prompt_msg1>: "Please input the first number: "

This command specifies the three optional parameters as n = 1, f = s, and u = b. We get the

following output when we change the n value to 3:

(gdb) x/3sb &prompt_msg1

0x80493e4 <prompt_msg1>: "Please input the first number: "

0x8049404 <prompt_msg2>: "Please input the second number: "

0x8049425 <sum_msg>: "The sum is "

As you can see from the program listing, it matches the three strings we declared in procex1.
asm program.

Displaying Stack Frame Contents

This group of display commands helps us trace the history of procedure invocations. The

backtrace command gives a list of procedure invocations at that point. It can be abbrevi-

ated as bt. This list consists of one line for each stack frame of the stack. As an example,

consider a program that calls sum procedure that calls compute, which in turn calls another

procedure get_values. If we stop the program in the get_values procedure and issue

a backtrace command, we see the following output:

590 Appendix C Debugging Assembly Language Programs

Table C.2 Details of the x Command Optional Parameters

n Repeat count (decimal integer)

Specifies the number of units (in u) of memory to be displayed

Default value is 1

f Display format

x displays in hexadecimal

d displays in decimal

u displays in unsigned decimal

o displays in octal

t displays in binary (t for two)

a displays address both in hexadecimal and as an offset

from the nearest preceding symbol

c displays as a character

s displays as a NULL-terminated string

t displays as a floating-point number

i displays as a machine instruction

Initial default is x.

u Unit size

b bytes

h halfwords (2 bytes)

w words (4 bytes)

g giant words (8 bytes)

Initial default is w. The default changes when a unit is specified

with an x command.

(gdb) bt

#0 get_values () at testex.asm:50

#1 0x080480bc in compute () at testex.asm:41

#2 0x080480a6 in sum () at testex.asm:27

This output clearly shows the invocation sequence of procedure calls with one line per invo-

cation. The innermost stack frame is labelled #0, the next stack frame as #1, and so on. Each

line gives the source code line that invoked the procedure. For example, the call instruction

on line 27 (in source file testex.asm) invoked the compute procedure. The program

counter value 0x080480a6 gives the return address. As discussed in Chapter 5, this is the

address of the instruction following the

call compute

Section C.3 GNU Debugger 591

instruction in the sum procedure. Similarly, the call instruction on line 41 in compute
procedure invoked the get_values procedure. The return address for the get_values
procedure is 0x080480bc.

We can also restrict the number of stack frames displayed in the backtrace command

by giving an optional argument. Details on this optional argument are given in Table C.1. For

example, bt 2 gives the innermost two stack frames as shown below:

(gdb) bt 2

#0 get_values () at testex.asm:50

#1 0x080480bc in compute () at testex.asm:41

(More stack frames follow...)

The last line clearly indicates that there are more stack frames. To display the outermost two

stack frames, we can issue bt -2. This command produces the following output for our

example program:

(gdb) bt -2

#1 0x080480bc in compute () at testex.asm:41

#2 0x080480a6 in sum () at testex.asm:27

The frame and info frame commands allow us to examine the contents of the frames.

We can select a frame by using the frame command. For our test program, frame 1 gives

the following output:

(gdb) frame 1

#1 0x080480bc in compute () at testex.asm:41

41 call get_values

Once a frame is selected, we can issue the info frame command to look at the contents of

this stack frame. Note that if no frame is selected using the frame command, it defaults to

frame 0. The output produced for our example is shown below:

(gdb) info f

Stack level 1, frame at 0xbffffa00:

eip = 0x80480bc in compute (testex.asm:41); saved eip 0x80480a6

called by frame at 0xbffffa08, caller of frame at 0xbffff9f8

source language unknown.

Arglist at 0xbffffa00, args:

Locals at 0xbffffa00, Previous frame’s sp is 0x0

Saved registers:

ebp at 0xbffffa00, eip at 0xbffffa04

(gdb)

In our example, each stack frame consists of the return address (4 bytes) and the EBP value

stored by enter 0,0 instruction on entering a procedure. The details given here indi-

cate that the current stack frame is at 0xbffffa00 and previous and next frames are at

592 Appendix C Debugging Assembly Language Programs

0xbffffa08 and 0xbffff9f8, respectively. It also shows where the arguments and lo-

cals are located as well as the registers saved on the stack. In our example, only the return

address (EIP) and stack pointer (EBP) are stored on the stack for a total of eight bytes.

C.3.2 Execution Group

Breakpoint Commands

Breakpoints can be inserted using the break commands. As indicated in Table C.3, break-

points can be specified using the source code line number, function name, or the address. For

example, the following commands insert breakpoint at line 20 and function sum on line 32 in

the procex1.asm program:

(gdb) b 20

Breakpoint 1 at 0x80480b0: file procex1.asm, line 20.

(gdb) b sum

Breakpoint 2 at 0x80480db: file procex1.asm, line 32.

(gdb)

Notice that each breakpoint is assigned a sequence number in the order we establish them.

We can use info breakpoints (or simply info b) to get a summary of breakpoints

and their status. For example, after establishing the above two breakpoints, if we issue the

info command, we get the following output:

(gdb) info b

Num Type Disp Enb Address What

1 breakpoint keep y 0x080480b0 procex1.asm:20

2 breakpoint keep y 0x080480db procex1.asm:32

(gdb)

The Disp (Disposition) column indicates the action needed to be taken (keep, disable, or

delete) when hit. By default, all breakpoints are of ‘keep’ type as in our example here. The

enb indicates whether the breakpoint is enabled or disabled. A ‘y’ in this column indicated

that the breakpoint is enabled.

We can use tbreak command to set a breakpoint with ‘delete’ disposition as shown

below:

(gdb) tbreak 22

Breakpoint 3 at 0x80480c1: file procex1.asm, line 22.

(gdb) info b

Num Type Disp Enb Address What

1 breakpoint keep y 0x080480b0 procex1.asm:20

2 breakpoint keep y 0x080480db procex1.asm:32

3 breakpoint del y 0x080480c1 procex1.asm:22

(gdb)

We can use the enable and disable commands to enable or disable the breakpoints. The

following example disables breakpoint 2:

Section C.3 GNU Debugger 593

Table C.3 Some of the GDB Commands

Execution Commands

Breakpoint commands

break linenum Sets a breakpoint at the specified line number in the current source file.

break function Sets a breakpoint at entry to the specified function in the current source

file.

break *address Sets a breakpoint at the specified address. This command is useful if

the debugging information or the source files are not available.

info breakpoints Gives information on the breakpoints set. The information includes

the breakpoint number, where the breakpoint is set in the source code,

address, status (enabled or disabled), and so on.

delete Deletes all breakpoints. By default, GDB runs this in query mode ask-

ing for confirmation for each breakpoint to be deleted. We can also

specify a range as arguments (delete range). This command can

be abbreviated as d.

tbreak arg Sets a breakpoint as in break. The arg can be a line number, function

name, or address as in the break command. However, the breakpoint

is deleted after the first hit.

disable range Disables the specified breakpoints. If no range is given, all breakpoints

are disabled.

enable range Enables the specified breakpoints. If no range is given, all breakpoints

are enabled.

enable once range Enables the specified breakpoints once; i.e., when the breakpoint is hit,

it is disabled. If no range is given, all breakpoints are enabled once.

Program execution commands

run Executes the program under GDB. To be useful, you should set up

appropriate breakpoints before issuing this command. It can be abbre-

viated as r.

continue Continues execution from where the program has last stopped (e.g.,

due to a breakpoint). It can be abbreviated as c.

594 Appendix C Debugging Assembly Language Programs

Table C.3 (continued)

Single-stepping commands

step Single-steps execution of the program (i.e., one source line at a time).

In case of a procedure call, it single-steps into the procedure code. It

can be abbreviated as s.

step count Single-steps program execution count times. If it encounters a break-

point before reaching the count, it stops execution.

next Single-steps like the step command; however, procedure call is treated

as a single statement (does not jump into the procedure code). As in the

step command, we can specify a count value. It can be abbreviated

as n.

next count Single-steps program execution count times. If it encounters a break-

point before reaching the count, it stops execution.

stepi Executes one machine instruction. Like the step command, it single-

steps into the procedure body. For assembly language programs, both

step and stepi tend to behave the same. As in the step command,

we can specify a count value. It can be abbreviated as si.

nexti Executes one machine instruction. Like the next command, it treats a

procedure call as a single machine instruction and executes the whole

procdure. As in the next command, we can specify a count value. It

can be abbreviated as ni.

Miscellaneous Commands

set listsize n Sets the default list size to n lines

show listsize Shows the default list size

q Quits gdb

(gdb) disable 2

(gdb) info b

Num Type Disp Enb Address What

1 breakpoint keep y 0x080480b0 procex1.asm:20

2 breakpoint keep n 0x080480db procex1.asm:32

3 breakpoint del y 0x080480c1 procex1.asm:22

(gdb)

If we want to enable this breakpoint, we do so by the following command:

(gdb) enable 2

Section C.3 GNU Debugger 595

We use the enable once command to set a breakpoint with ‘disable’ disposition as shown

below:

(gdb) enable once 2

(gdb) info b

Num Type Disp Enb Address What

1 breakpoint keep y 0x080480b0 procex1.asm:20

2 breakpoint dis y 0x080480db procex1.asm:32

3 breakpoint del y 0x080480c1 procex1.asm:22

(gdb)

Program Execution Commands

Program execution command run is used to start the execution of the program. To be able to

debug the program, breakpoints must be established before issuing the run command. The

continue command resumes program execution from the last stop point (typically due to a

breakpoint).

Single-Stepping Commands

GDB provides two basic single-stepping commands: step and next. The step command

executes one source line at a time. In case of a procedutre call, it traces procedure execution

in the single-step mode. The next command is similar to the step command except that it

does not single-step the procedure body. Instead, it executes the entire procedure. Both step
and next commands can take a count argument as shown in Table C.3. This table also

gives details on the machine instruction version of these commands (see stepi and nexti
commands).

C.3.3 Miscellaneous Group

The commands in Table C.3 are useful to manipulate the list size and exit the gdb.

C.3.4 An Example

A sample gdb session on procex1.asm is shown in Program C.2. The l 20 command

on line 9 displays the source code centered on the source code line 20. Before issuing the r
command on line 22, we insert a breakpoint at source code line 20 using the break command

on line 20. The run command executes the program until it hits line 20. Then it stops and

prints breakpoint information. Notice that we entered two input numbers (1234 and 5678)

before hitting the breakpoint.

To check that these two input numbers are read into ECX and EDX registers, we can look

at the contents of these two registers by issuing the info registers command specifying

these two registers (see line 28). The output of this command shows that these registers indeed

received the two input numbers.

596 Appendix C Debugging Assembly Language Programs

Program C.2 A sample gdb session

1: GNU gdb Red Hat Linux (5.2.1-4)

2: Copyright 2002 Free Software Foundation, Inc.

3: GDB is free software, covered by the GNU General Public License, and

4: you are welcome to change it and/or distribute copies of it under

5: certain conditions. Type "show copying" to see the conditions.

6: There is absolutely no warranty for GDB.

7: Type "show warranty" for details.

8: This GDB was configured as "i386-redhat-linux"...

9: (gdb) l 20

10: 15 GetInt CX ; CX = first number

11: 16

12: 17 PutStr prompt_msg2 ; request second number

13: 18 GetInt DX ; DX = second number

14: 19

15: 20 call sum ; returns sum in AX

16: 21 PutStr sum_msg ; display sum

17: 22 PutInt AX

18: 23 nwln

19: 24 done:

20: (gdb) break 20

21: Breakpoint 1 at 0x80480b0: file procex1.asm, line 20.

22: (gdb) r

23: Starting program: /mnt/hgfs/winXP_D/temp/gdb_test/procex1

24: Please input the first number: 1234

25: Please input the second number: 5678

26: Breakpoint 1, _start () at procex1.asm:20

27: 20 call sum ; returns sum in AX

28: (gdb) info registers ecx edx

29: ecx 0x4d2 1234

30: edx 0x162e 5678

31: (gdb) si

32: 32 mov AX,CX ; sum = first number

33: (gdb) si

34: 33 add AX,DX ; sum = sum + second number

35: (gdb) si

36: 34 ret

37: (gdb) info registers eax ecx edx

38: eax 0x1b00 6912

39: ecx 0x4d2 1234

40: edx 0x162e 5678

41: (gdb) c

42: Continuing.

Section C.4 Data Display Debugger 597

43: The sum is 6912

44:

45: Program exited normally.

46: (gdb) q

We run the sum procedure in single-step mode (see commands on lines 31, 33, and 35).

To see if the result in EAX is the sum of the two input values, we display the contents of the

three registers (lines 38–40) using the info registers command on line 37. After verifying, we

let the program continue its execution using the continue command on line 41. Finally, on

line 46, we use the quit command to exit gdb.

C.4 Data Display Debugger
The Data Display Debugger (DDD) is front-end to a command-line debugger. DDD supports

several command-line debuggers including gdb, dbx, jdb, and so on. Our interest here is in

using DDD as a front-end to gdb discussed in the last section. Since DDD is a GUI to gdb,

we prepare our program exactly as we do for the gdb (see Section C.2 on page 586).

We can invoke DDD on procex1 by

ddd procex1

Figure C.1 shows the initial screen that appears after invoking DDD. The screen consists

of the Source Window that displays the source program, Debugger Console, Status Line,

Command Tool window, Menu Bar, and Tool Bar. The debugger console acts as the program’s

input/output console to display messages and to receive input and so on.

We can insert a breakpoint using the Tool Bar. For example, to insert a breakpoint on

line 20, place the cursor to the left of line 20 and click the the breakpoint (red stop sign) on

the Tool Bar. This inserts a breakpoint on line 20, which is indicated by a red stop sign on

line 20, as shown in Figure C.2. This figure also shows source code line numbers and the

Machine Code window. Both of these can be selected from the Source pull down menu in

the Menu Bar.

Once this breakpoint is inserted, we can run the program by clicking Run in the Command

Tool. The big arrow next to the stop sign (on line 20) indicates that the program execution

stopped at that line. While executing the program before reaching the breakpoint on line 20,

the program takes two input numbers as shown in the Debugger Console (see Figure C.2). We

can get information on the breakpoints set in the program by selecting Breakpoints...
in the Source pull-down menu. For our example program, it gives details on the single

breakpoint we set on line 20 (see Figure C.3). The details provided in this window are the

same as those discussed in the last section. The breakpoint information also includes the

number of hits as shown in Figure C.3.

All the execution commands of gdb, discussed in the last section, are available in the

Program pull-down menu (see Figure C.4). Figure C.5 shows the screen after single-

598 Appendix C Debugging Assembly Language Programs

Source

window

Debugger

console

Command

tool

Status

line

Tool bar

Menu bar

Figure C.1 DDD window at the start of procex1 program.

stepping through the sum procedure. The program is stopped at the ret instruction on

line 34. To verify the functionality of the procedure, we can display the contents of the

registers. This is done by selecting Registers... in the Status pull-down menu. The

contents of the registers, shown in Figure C.6, clearly indicate that the sum of the two input

numbers (in ECX and EDX registers) is in the EAX register.

The examination commands of gdb are available under Data pull-down menu. A sample

memory examination window is shown in Figure C.7. This window allows us to specify the

memory location, format to be used to display the contents, size of the data, and number of

data items to be examined. In the window of Figure C.7, we specified &prompt_msg1 as

the location and string as the output format. The size is given as bytes and the number

of strings to be examined is set to 1.

Section C.4 Data Display Debugger 599

Figure C.2 DDD window at the breakpoint on line 20. This screenshot also shows the machine code

window and the source code line numbers.

Figure C.3 Breakpoints window.

600 Appendix C Debugging Assembly Language Programs

Figure C.4 Details of the Program pull-down menu.

Figure C.5 DDD window after single stepping from the breakpoint on line 20.

Section C.4 Data Display Debugger 601

Figure C.6 Register Window after the single-stepping shown in Figure C.5.

Figure C.7 Memory Examination Window set to display a string.

By clicking Display, the contents are displayed in the Data Window that appears above

the Source Window as shown in Figure C.8. We can pick the windows we want to see by

selecting them from the View pull-down menu. The View menu gives control to select any

of the four windows: Debuger Console Window, Machine Code Window, Source Window,

and Data Window.

We can also elect to display the contents in the Debugger Console Window using the

Print command. Figure C.9 shows how we can display the three strings in our program in

the Console window. This Examine Memory window is similar to that shown in Figure C.7

except that we set the number of strings to be displayed as 3. The result of executing this x
command is shown in Figure C.10, which shows the three strings in our program.

Both gdb and DDD provide several other features that are useful in debugging programs.

Our intent here is to introduce some of the basic features of these debuggers. More details on

these debuggers are available from their Web sites. We provide pointers to these Web sites at

the end of this appendix.

602 Appendix C Debugging Assembly Language Programs

Figure C.8 Data Window displays the string.

Figure C.9 Memory Examination Window set to display three strings.

C.5 Summary
We started this appendix with a brief discussion of some basic debugging techniques. Since

assembly language is a low-level programming language, debugging tends to be even more

tedious than debugging a high-level language program. It is, therefore, imperative to follow

good programming practices in order to simplify debugging of assembly language programs.

There are several tools available for debugging programs. We discussed two debuggers—

gdb and DDD—in this appendix. While gdb is a command line-oriented debugger, the

DDD provides a nice front-end to the gdb. The best way to learn to use these debuggers is

by hands-on experience.

Figure C.10 Console Window displays the three strings.

Section C.6 Web Resources 603

C.6 Web Resources
Details on gdb are available from http://www.gnu.org/software/gdb.

Details on DDD are available from http://www.gnu.org/software/ddd.

C.7 Exercises
C–1 Discuss some general techniques useful in debugging programs.

C–2 How are window-oriented debuggers like DDD better than line-oriented debuggers like

gdb?

C–3 What is the difference between the step and next commands of gdb?

C–4 Discuss how breakpoints are useful in debugging programs.

C–5 Is the Machine Code Window of DDD more useful in debugging assembly language

programs? If so, explain your reasons.

C.8 Programming Exercises
C–P1 Take a program from Chapter 4 and ask your friend to deliberately introduce some

logical errors into the program. Then use your favorite debugger to locate and fix errors.

Discuss the features of your debugger that you found most useful.

C–P2 Using your debugger’s capability to display flags, verify the values of the flags given in

Table 7.1 on page 210.

Appendix D

SPIM Simulator

and Debugger

Objectives
• To give details about downloading and using the SPIM simulator

• To explain the basic SPIM interface

• To describe the SPIM debugger commands

SPIM is a simulator to run MIPS programs. SPIM supports various platforms and can be

downloaded from the Web. SPIM also contains a simple debugger. In this appendix, we

present details on how to download and use the SPIM simulator. We start with an introduc-

tion to the SPIM simulator. The following section gives details about SPIM settings. These

settings determine how the simulator loads and runs your programs. We specify the setting

you should use in order to run the example MIPS programs given in Chapter 13. Details

about loading and running an MIPS program are discussed in the next section. This sec-

tion also presents debugging facilities provided by SPIM. We conclude the appendix with a

summary.

D.1 Introduction
This appendix describes the SPIM simulator, which was developed by Professor James Larus

when he was at the Computer Science Department of the University of Wisconsin, Madison.

This simulator executes the programs written for the MIPS R2000/R3000 processors. This is

a two-in-one product: it contains a simulator to run the MIPS programs as well as a debugger.

605

606 Appendix D SPIM Simulator and Debugger

Figure D.1 SPIM windows.

SPIM runs on a variety of platforms including UNIX/Linux, Windows (95, 98, NT, 2000),

and DOS. In this appendix, we provide details on the Windows 98 version of SPIM called PC-

Spim. The SPIM simulator can be downloaded from http://www.cs.wisc.edu/˜larus/

spim.html. This page also gives information on SPIM documentation. Although SPIM is

available from this site at the time of this writing, use a good search engine to locate the URL

if it is not available from this URL. Also, you can check this book’s homepage, which has a

link to the SPIM simulator that is updated periodically.

Figure D.1 shows the PCSpim interface. As shown in this figure, PCSpim provides a

menu bar and a toolbar at the top and a status bar at the bottom of the screen. The middle area

displays four windows, as discussed next.

Section D.1 Introduction 607

• Menu Bar: The menu bar provides the following commands for the simulator opera-

tion:

– File: The Filemenu allows you select file operations. You can open an assembly

language source file using open... or save a log file of the current simulator

state. In addition, you can quit PCSpim by selecting the Exit command. Of

course, you can also quit PCSpim by closing the window.

– Simulator: This menu provides several commands to run and debug a program.

We discuss these commands in Section D.3.2. This menu also allows you to select

the simulator settings. When the Settings... command is selected, it opens

a setting window to set the simulator settings, which are discussed in the next

section.

– Windows: This menu allows you to control the presentation and navigation of

windows. For example, in Figure D.1, we have tiled windows to show the four

windows: Text Segment, Data Segment, Register, and Messages. In addition, you

can also elect to hide or display the toolbar and status bar. The Console window

pops up when your program needs to read/write data to the terminal. It disappears

after the program has terminated. When you want to see your program’s input and

output, you can activate this window by selecting the Console window command.

– Help: This menu allows you to obtain online help on PCSpim.

• Toolbar: The toolbar provides mouse buttons to open and close an MIPS assembly

language source file, to run and insert breakpoints, and to get help.

• Window Display Section: This section displays four windows: Data Segment, Text

Segment, Messages, and Register.

– Data Segment Window: This window shows the data and stack contents of your

program. Each line consists of an address (in square brackets) and the corre-

sponding contents in hexadecimal notation. If a block of memory contains the

same constant, an address range is specified as shown on the first line of the Data

Segment in Figure D.1.

– Text Segment Window: This window shows the instructions from your program as

well as the system code loaded by PCSpim. The leftmost hex number in square

brackets is the address of the instruction. The second hex number is the machine

instruction encoding of the instruction. Next to it is the instruction mnemonic,

which is a processor instruction. What you see after the semicolon is the source

code line including any comments you have placed. This display is useful for see-

ing how the pseudoinstructions of the assembler are translated into the processor

instructions. For example, the last line in the Text Segment of Figure D.1 shows

that the pseudoinstruction

li $vi,10

608 Appendix D SPIM Simulator and Debugger

is translated as

ori $2,$0,10

– Registers: This window shows the contents of the general and floating-point reg-

isters. The contents are displayed in either decimal or hex notation, depending on

the settings used (discussed in the next section).

– Messages: This window is used by PCSpim to display error messages.

• Status Bar: The status bar at the bottom of the PCSpim window presents three pieces

of information:

– The left area is used to give information about the menu items and toolbar buttons.

For example, when the mouse arrow is on the open file icon (first button) on the

toolbar, this area displays the “Open an assembly file” message.

– The middle area shows the current simulator settings. Simulator settings are de-

scribed in the next section.

– The right area is used to display if the Caps Lock key (CAP), Num Lock key

(NUM), and Scroll Lock key (SCRL) are latched down.

D.2 Simulator Settings
PCSpim settings can be viewed by selecting the Settings command under theSimulator
menu. This opens a setting window as shown in Figure D.2. PCSpim uses these settings to de-

termine how to load and run your MIPS program. An incorrect setting may cause errors. The

settings are divided into two groups: Display and Execution. The Display settings determine

whether the window positions are saved and how the contents of the registers are displayed.

When Save window positions is selected, PCSpim will remember the position of its windows

when you exit and restore them when you run PCSpim later. If you select the register dis-

play option, contents of the general and floating-point registers are displayed in hexadecimal

notation. Otherwise, register contents are displayed as decimal numbers.

The Execution part of the settings shown in Figure D.2 determines how your program is

executed.

• Bare Machine: If selected, SPIM simulates a bare MIPS machine. This means that

both pseudoinstructions and additional addressing modes, which are provided by the

assembler, are not allowed. See Chapter 13 for details on the assembler-supported

pseudoinstructions and addressing modes. Since the example MIPS programs presented

in Chapter 13 use these additional features of the assembler, this option should not be

selected to run our example programs.

• Allow Pseudoinstructions: This setting determines whether the pseudoinstructions are

allowed in the source code. You should select this option as our example programs use

pseudoinstructions.

Section D.2 Simulator Settings 609

Figure D.2 SPIM settings window.

• Mapped I/O: If this setting is selected, SPIM enables the memory-mapped I/O facility.

Memory-mapped I/O is discussed in Chapter 2. When this setting is selected, you

cannot use SPIM system calls, described in Section 13.2.1 on page 373, to read from

the terminal. Thus, this setting should not be selected to run our example programs

from Chapter 13.

• Quiet: If this setting is selected, PCSpim will print a message when an exception

occurs.

• Load Trap File: Selecting this setting causes PCSpim to load the standard exception

handler and startup code. The trap handler can be selected by using the Browse but-

ton. When loaded, the startup code in the trap file invokes the main routine. In this

case, we can label the first executable statement in our program as main. If the trap

file is not selected, PCSpim starts execution from the statement labeled start. Our

example programs are written with the assumption that the trap file is loaded (we use

the main label). If you decide not to use the trap file, you have to change the label to

start to run the programs. If the trap file is loaded, PCSpim transfers control to lo-

cation 0x80000080 when an exception occurs. This location must contain an exception

handler.

610 Appendix D SPIM Simulator and Debugger

Figure D.3 Run window.

D.3 Running and Debugging a Program

D.3.1 Loading and Running

Before executing a program, you need to load the program you want to run. This can be

done either by selecting the Open File button from the Toolbar or from the File menu. This

command lets you browse for your assembly file by opening a dialog box. After opening the

file, you can issue the Run command either from the Toolbar or from the Simulator menu

to execute the program.

The Run command pops the Run window shown in Figure D.3. It automatically fills the

start address. For our example programs, you don’t have to change this value. If desired, the

command-line options can be entered in this window. Command-line options that you can

specify include the settings we have discussed in the last section. For example, you enter

-bare to simulate a bare MIPS machine, -asm to simulate the virtual MIPS machine pro-

vided by the assembler, and so on. The SPIM documentation contains a full list of acceptable

command-line options. If you have set up the settings as discussed in the last section, you

don’t have to enter any command-line option to run the example programs from Chapter 13.

D.3.2 Debugging

SPIM provides the standard facilities to debug programs. As discussed in Appendix C, single-

stepping and breakpoints are the two most popular techniques used to debug assembly lan-

guage programs. Once you find a problem or as part of debugging, you often need to change

the values in a register set or memory locations. As do the other debuggers discussed in Ap-

pendix C, SPIM also provides commands to alter the value of a register or memory location.

All debug commands are available under the Simulator menu as shown in Figure D.4.

These commands are briefly explained next.

• Clear Registers: This command clears all registers (i.e., the values of all registers are

set to zero).

Section D.3 Running and Debugging a Program 611

Figure D.4 Debug commands available under the Simulator menu.

• Reinitialize: It clears all the registers and memory and restarts the simulator.

• Reload: This command reinitializes the simulator and reloads the current assembler

file for execution.

• Go: You can issue this command to run the current program. Program execution con-

tinues until a breakpoint is encountered. We have discussed the Run command before.

You can also use the F5 key to execute your program.

• Break/Continue: This can be used to toggle between break and continue. If the pro-

gram is running, execution is paused. On the other hand, if the execution is paused, it

continues execution.

• Single Step: This is the single-step command. The simulator executes one instruction

and pauses execution. You can also use the F10 key for single-stepping.

• Multiple Step: This is a debug command we have not discussed in Appendix C. This

is a generalization of single-stepping. In this command, you can specify the number of

instructions each step should execute. When you select this command, SPIM opens a

dialog window to get the number of instructions information.

• Breakpoints...: This command is useful to set up breakpoints. It opens the Breakpoint

dialog box shown in Figure D.5. You can add/delete breakpoints through this dialog

box. As shown in this figure, it also lists the active breakpoints. When the execution

reaches a breakpoint, execution pauses and pops a query dialog box (Figure D.6) to

continue execution. Normally, you enter the address of the instruction to specify a

breakpoint. However, if the instruction has a global label, you can enter this label

instead of its address.

612 Appendix D SPIM Simulator and Debugger

Figure D.5 Breakpoints dialog box.

Figure D.6 Breakpoint query window.

• Set Value...: This command can be used to set the value of a register or a memory loca-

tion. It pops a window to enter the register/memory address and the value as shown in

Figure D.7. In this example, we are setting the value of the $a2 register to 7FFFF000H.

• Display Symbol Table: This command displays the simulator symbol table in the mes-

sage window.

• Settings...: This opens the Settings dialog box shown on page 609. We have dis-

cussed the simulator settings in detail in Section D.2.

Section D.4 Summary 613

Figure D.7 Set value dialog box.

When single-stepping your program, the instructions you see do not exactly correspond to

your source code for two reasons: the system might have introduced some code (e.g., the

startup code mentioned before), or because the pseudoinstructions are translated into proces-

sor instructions. For some pseudoinstructions, there is a single processor instruction. How-

ever, other pseudoinstructions may get translated into more than one processor instruction.

D.4 Summary
We have introduced the MIPS simulator SPIM. SPIM is a convenient tool to experience RISC

assembly language programming. SPIM is available for a variety of platforms. It includes a

simple debugger to facilitate single-stepping and setting breakpoints. In the last section, we

have presented an overview of its debugging facilities.

D.5 Exercises
D–1 Discuss the situations where the Multiple Step command is useful in debugging

programs.

D–2 In our setup, the run command displays the execution start address as 0x00400000.

Explain why.

D–3 SPIM programs can specify the starting address either by start or by main. Our

programs used the main label. Discuss the differences between these two methods of

specifying the execution start address.

D.6 Programming Exercises
D–P1 Take a program from Chapter 13 and ask a friend to deliberately introduce some logical

errors into the program. Then use the SPIM debugger to locate and fix the errors.

Appendix E

IA-32 Instruction Set

Objectives
• To describe the instruction format

• To present selected IA-32 instructions

Instruction format and encoding encompass a variety of factors: addressing modes, number of

operands, number of registers, sources of operands, etc. Instructions can be of fixed length or

variable length. In a fixed-length instruction set, all instructions are of the same length. The

IA-32 instruction set uses variable-length instructions to accommodate the complexity of the

instructions. Section E.1 discusses the IA-32 instruction format. A subset of this instruction

set is given in Section E.2.

E.1 Instruction Format
In the IA-32 architecture, instruction length varies between 1 and 16 bytes. The instruction

format is shown in Figure E.1. The general instruction format is shown in Figure E.1b. In

addition, instructions can have several optional instruction prefixes shown in Figure E.1a. The

next two subsections discuss the instruction format in detail.

E.1.1 Instruction Prefixes

There are four instruction prefixes, as shown in Figure E.1a. These prefixes can appear in any

order. All four prefixes are optional. When a prefix is present, it takes a byte.

• Instruction Prefixes: Instruction prefixes such as rep were discussed in Chapter 10.

This group of prefixes consists of rep, repe/repz, repne/repnz, and lock.

The three repeat prefixes were discussed in detail in Chapter 10. The lock prefix is

useful in multiprocessor systems to ensure exclusive use of shared memory.

615

616 Appendix E IA-32 Instruction Set

OpCode Mod-R/M SIB Displacement Immediate

2 1 0345672 1 034567

Segment

override

Operand-size

prefixprefix

Address-sizeInstruction

prefix

0 or 1 0 or 1 0 or 1 0 or 1Number of Bytes

(a) Optional instruction prefixes

Mod Reg/OpCode R/M

1 or 2 0 or 1 0 or 1 0, 1, 2, or 4 0, 1, 2, or 4

Bits

SS Index Base

Number of Bytes

(b) General instruction format

Figure E.1 The IA-32 instruction format.

• Segment Override Prefixes: These prefixes are used to override the default segment

association. For example, DS is the default segment for accessing data. We can override

this by using a segment prefix. We saw an example of this in Chapter 5 (see Program 5.6

on page 149). The following segment override prefixes are available: CS, SS, DS, ES,

FS, and GS.

• Address-Size Override Prefix: This prefix is useful in overriding the default address

size. As discussed in Chapter 3, the D bit indicates the default address and operand

size. A D bit of 0 indicates the default address and operand sizes of 16 bits and a D bit

of 1 indicates 32 bits. The address size can be either 16 bits or 32 bits long. This prefix

can be used to switch between the two sizes.

• Operand-Size Override Prefix: The use of this prefix allows us to switch from the de-

fault operand size to the other. For example, in the 16-bit operand mode, using a 32-bit

register, for example, is possible by prefixing the instruction with the operand-size over-

ride prefix.

These four prefixes can be used in any combination, and in any order.

Section E.1 Instruction Format 617

E.1.2 General Instruction Format

The general instruction format consists of the Opcode, an optional address specifier consist-

ing of a Mod R/M byte and SIB (scale-index-base) byte, an optional displacement, and an

immediate data field, if required. Next we briefly discuss these five fields.

• Opcode: This field can be 1 or 2 bytes long. This is the only field that must be present

in every instruction. For example, the opcode for the popa instruction is 61H and takes

only one byte. On the other hand, the opcode for the shld instruction with an imme-

diate value for the shift count takes two bytes (the opcode is 0FA4H). The opcode field

also contains other smaller encoding fields. These fields include the register encoding,

direction of operation (to or from memory), the size of displacement, and whether the

immediate data must be sign-extended. For example, the instructions

push EAX

push ECX

push EDX

push EBX

are encoded as 50H, 51H, 52H, and 53H, respectively. Each takes only one byte that

includes the operation code (push) as well as the register encoding (EAX, ECX, EDX,

or EBX).

• Mod R/M: This byte and the SIB byte together provide addressing information. The

Mod R/M byte consists of three fields, as shown in Figure E.1.

– Mod: This field (2 bits) along with the R/M field (3 bits) specify one of 32 possible

choices: 8 registers and 24 indexing modes.

– Reg/Opcode: This field (3 bits) specifies either a register number or three more bits

of opcode information. The first byte of the instruction determines the meaning

of this field.

– R/M: This field (3 bits) either specifies a register as the location of operand or

forms part of the addressing-mode encoding along with the Mod field.

• SIB: The based indexed and scaled indexed modes of 32-bit addressing require the SIB

byte. The presence of the SIB byte is indicated by certain encodings of the Mod R/M

byte. The SIB byte consists of three fields, as shown in Figure E.1. The SS field (2 bits)

specifies the scale factor (1, 2, 4, or 8). The index and base fields (3 bits each) specify

the index and base registers, respectively.

• Displacement: If an addressing mode requires a displacement value, this field provides

the required value. When present, it is an 8-, 16- or 32-bit signed integer. For example

jg SHORT done

pop EBX

done:

618 Appendix E IA-32 Instruction Set

generates the code 7F 01 for the jg conditional jump instruction. The opcode for jg
is 7FH and the displacement is 01 because the pop instruction encoding takes only a

single byte.

• Immediate: The immediate field is the last one in the instruction. It is present in those

instructions that specify an immediate operand. When present, it is an 8-, 16- or 32-bit

operand. For example

mov EAX,256

is encoded as B8 00000100. Note that the first byte B8 not only identifies the instruc-

tion as mov but also specifies the destination register as EAX (by the least significant

three bits of the opcode byte). The following encoding is used for the 32-bit registers:

EAX = 0 ESP = 4

ECX = 1 EBP = 5

EDX = 2 ESI = 6

EBX = 3 EDI = 7

The last four bytes represent the immediate value 256, which is equal to 00000100H. If

we change the register from EAX to EBX, the opcode byte changes from B8 to BB.

E.2 Selected Instructions
This section gives selected instructions in alphabetical order. For each instruction, instruction

mnemonic, flags affected, format, and a description are given. For a more detailed description,

please refer to the Pentium Processor Family Developer’s Manual—Volume 3: Architecture

and Programming Manual. The clock cycles reported are for the Pentium processor. While

most of the components are self explanatory, flags section requires some explanation regard-

ing the notation used. An instruction can affect a flag bit in one of several ways. We use the

following notation to represent the effect of an instruction on a flag bit.

0 — Cleared

1 — Set

– — Unchanged

M — Updated according to the result

* — Undefined

Section E.2 Selected Instructions 619

aaa — ASCII adjust after addition
C O Z S P A

M * * * * M

Format: aaa

Description: ASCII adjusts AL register contents after addition. The AF and CF are set if

there is a decimal carry, cleared otherwise. See Chapter 11 for details. Clock

cycles: 3.

aad — ASCII adjust before division
C O Z S P A

* * M M M *

Format: aad

Description: ASCII adjusts AX register contents before division. See Chapter 11 for details.

Clock cycles: 10.

aam — ASCII adjust after Multiplication
C O Z S P A

* * M M M *

Format: aam

Description: ASCII adjusts AX register contents after multiplication. See Chapter 11 for

details. Clock cycles: 18.

aas — ASCII adjust after subtraction
C O Z S P A

M * * * * M

Format: aas

Description: ASCII adjusts AL register contents after subtraction. The AF and CF are set if

there is a decimal carry, cleared otherwise. See Chapter 11 for details. Clock

cycles: 3.

620 Appendix E IA-32 Instruction Set

adc — Add with carry
C O Z S P A

M M M M M M

Format: adc dest,src

Description: Performs integer addition of src and dest with the carry flag. The result

(dest + src + CF) is assigned to dest. Clock cycles: 1–3.

add — Add without carry
C O Z S P A

M M M M M M

Format: add dest,src

Description: Performs integer addition of src and dest. The result (dest + src) is

assigned to dest. Clock cycles: 1–3.

and — Logical bitwise and
C O Z S P A

0 0 M M M *

Format: and dest,src

Description: Performs logical bitwise and operation. The result src and dest is stored in

dest. Clock cycles: 1–3

bsf — Bit scan forward
C O Z S P A

* * M * * *

Format: bsf dest,src

Description: Scans the bits in src starting with the least significant bit. The ZF flag is set if

all bits are 0; otherwise, ZF is cleared and the dest register is loaded with the

bit index of the first set bit. Note that dest and src must be either both 16- or

32-bit operands. While the src operand can be either in a register or memory,

dest must be a register. Clock cycles: 6–35 for 16-bit operands and 6–43 for

32-bit operands.

Section E.2 Selected Instructions 621

bsr — Bit scan reverse
C O Z S P A

* * M * * *

Format: bsr dest,src

Description: Scans the bits in src starting with the most significant bit. The ZF flag is set if

all bits are 0; otherwise, ZF is is cleared and the dest register is loaded with

the bit index of the first set bit when scanning src in the reverse direction.

Note that dest and src must be either both 16- or 32-bit operands. While the

src operand can be either in a register or memory, dest must be a register.

Clock cycles: 7–40 for 16-bit operands and 7–72 for 32-bit operands.

bswap — Byte swap
C O Z S P A

– – – – – –

Format: bswap src

Description: Reverses the byte order of a 32-bit register src. This effectively converts a

value from little endian to big endian, and vice versa. Note that src must be a

32-bit register. Result is undefined if a 16-bit register is used. Clock cycles: 1.

bt — Bit test
C O Z S P A

M – – – – –

Format: bt src1,src2

Description: The value of the bit in src1, whose position is indicated by src2, is saved in

the carry flag. The first operand src1 can be a 16- or 32-bit value that is either

in a register or in memory. The second operand src2 can be a 16- or 32-bit

value located in a register or an 8-bit immediate value. Clock cycles: 4–9.

622 Appendix E IA-32 Instruction Set

btc — Bit test and complement
C O Z S P A

M – – – – –

Format: btc src1,src2

Description: The value of the bit in src1, whose position is indicated by src2, is saved

in the carry flag and then the bit in src1 is complemented. The first operand

src1 can be a 16- or 32-bit value that is either in a register or in memory. The

second operand src2 can be a 16- or 32-bit value located in a register or an

8-bit immediate value. Clock cycles: 7–13.

btr — Bit test and reset
C O Z S P A

M – – – – –

Format: btr src1,src2

Description: The value of the bit in src1, whose position is indicated by src2, is saved in

the carry flag and then the bit in src1 is reset (i.e., cleared). The first operand

src1 can be a 16- or 32-bit value that is either in a register or in memory. The

second operand src2 can be 16- or 32-bit value located in a register or an 8-bit

immediate value. Clock cycles: 7–13.

bts — Bit test and set
C O Z S P A

M – – – – –

Format: bts src1,src2

Description: The value of the bit in src1, whose position is indicated by src2, is saved in

the carry flag and then the bit in src1 is set (i.e., stores 1). The first operand

src1 can be a 16- or 32-bit value that is either in a register or in memory. The

second operand src2 can be 16- or 32-bit value located in a register or an 8-bit

immediate value. Clock cycles: 7–13.

Section E.2 Selected Instructions 623

call — Call procedure
C O Z S P A

– – – – – –

Format: call dest

Description: The call instruction causes the procedure in the operand to be executed.

There are a variety of call types. We indicated that the flags are not affected

by call. This is true only if there is no task switch. For more details on the

call instruction, see Chapter 5. For details on other forms of call, see the

Pentium data book. Clock cycles: vary depending on the type of call.

cbw — Convert byte to word
C O Z S P A

– – – – – –

Format: cbw

Description: Converts the signed byte in AL to a signed word in AX by copying the sign bit

of AL (the most significant bit) to all bits of AH. Clock cycles: 3.

cdq — Convert doubleword to quadword
C O Z S P A

– – – – – –

Format: cdq

Description: Converts the signed doubleword in EAX to a signed quadword in EDX:EAX

by copying the sign bit of EAX (the most significant bit) to all bits of EDX.

Clock cycles: 2.

clc — Clear carry flag
C O Z S P A

0 – – – – –

Format: clc

Description: Clears the carry flag. Clock cycles: 2.

624 Appendix E IA-32 Instruction Set

cld — Clear direction flag
C O Z S P A

– – – – – –

Format: cld

Description: Clears the direction flag. Clock cycles: 2.

cli — Clear interrupt flag
C O Z S P A

– – – – – –

Format: cli

Description: Clears the interrupt flag. Note that maskable interrupts are disabled when the

interrupt flag is cleared. Clock cycles: 7.

cmc — Complement carry flag
C O Z S P A

M – – – – –

Format: cmc

Description: Complements the carry flag. Clock cycles: 2.

cmp — Compare two operands
C O Z S P A

M M M M M M

Format: cmp dest,src

Description: Compares the two operands specified by performing dest − src. However,

the result of this subtraction is not stored (unlike the sub instruction) but only

the flags are updated to reflect the result of the subtract operation. This in-

struction is typically used in conjunction with conditional jumps. If an operand

greater than 1 byte is compared to an immediate byte, the byte value is first

sign-extended. Clock cycles: 1 if no memory operand is involved; 2 if one of

the operands is in memory.

Section E.2 Selected Instructions 625

cmps — Compare string operands
C O Z S P A

M M M M M M

Format: cmps dest,src
cmpsb
cmpsw
cmpsd

Description: Compares the byte, word, or doubleword pointed by the source index register

(SI or ESI) with an operand of equal size pointed by the destination index reg-

ister (DI or EDI). If the address size is 16 bits, SI and DI registers are used; ESI

and EDI registers are used for 32-bit addresses. The comparison is done by sub-

tracting operand pointed by the DI or EDI register from that by SI or ESI regis-

ter. That is, the cmps instructions performs either [SI]−[DI] or [ESI]−[EDI].

The result is not stored but used to update the flags, as in the cmp instruction.

After the comparison, both source and destination index registers are automat-

ically updated. Whether these two registers are incremented or decremented

depends on the direction flag (DF). The registers are incremented if DF is 0

(see the cld instruction to clear the direction flag); if the DF is 1, both index

registers are decremented (see the std instruction to set the direction flag). The

two registers are incremented or decremented by 1 for byte comparisons, 2 for

word comparisons, and 4 for doubleword comparisons.

Note that the specification of the operands in cmps is not really required as the

two operands are assumed to be pointed by the index registers. The cmpsb,

cmpsw, and cmpsd are synonyms for the byte, word, and doubleword cmps
instructions, respectively.

The repeat prefix instructions (i.e., rep, repe or repne) can precede the

cmps instructions for array or string comparisons. See rep instruction for

details. Clock cycles: 5.

cwd — Convert word to doubleword
C O Z S P A

– – – – – –

Format: cwd

Description: Converts the signed word in AX to a signed doubleword in DX:AX by copying

the sign bit of AX (the most significant bit) to all bits of DX. In fact, cdq and

this instruction use the same opcode (99H). Which one is executed depends on

the default operand size. If the operand size is 16 bits, cwd is performed; cdq
is performed for 32-bit operands. Clock cycles: 2.

626 Appendix E IA-32 Instruction Set

cwde — Convert word to doubleword
C O Z S P A

– – – – – –

Format: cwde

Description: Converts the signed word in AX to a signed doubleword in EAX by copying the

sign bit of AX (the most significant bit) to all bits of the upper word of EAX.

In fact, cbw and cwde are the same instructions (i.e., share the same opcode of

98H). The action performed depends on the operand size. If the operand size

is 16 bits, cbw is performed; cwde is performed for 32-bit operands. Clock

cycles: 3.

daa — Decimal adjust after addition
C O Z S P A

M * M M M M

Format: daa

Description: The daa instruction is useful in BCD arithmetic. It adjusts the AL register to

contain the correct two-digit packed decimal result. This instruction should be

used after an addition instruction, as described in Chapter 11. Both AF and CF

flags are set if there is a decimal carry; these two flags are cleared otherwise.

The ZF, SF, and PF flags are set according to the result. Clock cycles: 3.

das — Decimal adjust after subtraction
C O Z S P A

M * M M M M

Format: das

Description: The das instruction is useful in BCD arithmetic. It adjusts the AL register to

contain the correct two-digit packed decimal result. This instruction should be

used after a subtract instruction, as described in Chapter 11. Both AF and CF

flags are set if there is a decimal borrow; these two flags are cleared otherwise.

The ZF, SF, and PF flags are set according to the result. Clock cycles: 3.

Section E.2 Selected Instructions 627

dec — Decrement by 1
C O Z S P A

– M M M M M

Format: dec dest

Description: The dec instruction decrements the dest operand by 1. The carry flag is not

affected. Clock cycles: 1 if dest is a register; 3 if dest is in memory.

div — Unsigned divide
C O Z S P A

* * * * * *

Format: div divisor

Description: The div instruction performs unsigned division. The divisor can be an 8-, 16-,

or 32-bit operand, located either in a register or in memory. The dividend is as-

sumed to be in AX (for byte divisor), DX:AX (for word divisor), or EDX:EAX

(for doubleword divisor). The quotient is stored in AL, AX, or EAX for 8-,

16-, and 32-bit divisors, respectively. The remainder is stored in AH, DX, or

EDX for 8-, 16-, and 32-bit divisors, respectively. It generates interrupt 0 if

the result cannot fit the quotient register (AL, AX, or EAX), or if the divisor is

zero. See Chapter 7 for details. Clock cycles: 17 for an 8-bit divisor, 25 for a

16-bit divisor, and 41 for a 32-bit divisor.

628 Appendix E IA-32 Instruction Set

enter — Allocate stack frame
C O Z S P A

– – – – – –

Format: enter bytes,level

Description: This instruction creates a stack frame at procedure entry. The first operand

bytes specifies the number of bytes for the local variable storage in the stack

frame. The second operand level gives the nesting level of the procedure. If

we specify a nonzero level, it copies level stack frame pointers into the new

frame from the preceding stack frame. In all our examples, we set the second

operand to zero. Thus the

enter XX,0

statement is equivalent to

push EBP
mov EBP,ESP
sub ESP,XX

See Section 5.7.5 for more details on its usage. Clock cycles: 11 if level is

zero.

hlt — Halt
C O Z S P A

– – – – – –

Format: hlt

Description: This instruction halts instruction execution indefinitely. An interrupt or a reset

will enable instruction execution. Clock cycles: ∞.

Section E.2 Selected Instructions 629

idiv — Signed divide
C O Z S P A

* * * * * *

Format: idiv divisor

Description: Similar to div instruction except that idiv performs signed division. The

divisor can be an 8-, 16-, or 32-bit operand, located either in a register or in

memory. The dividend is assumed to be in AX (for byte divisor), DX:AX (for

word divisor), or EDX:EAX (for doubleword divisor). The quotient is stored in

AL, AX, or EAX for 8-, 16-, and 32-bit divisors, respectively. The remainder

is stored in AH, DX, or EDX for 8-, 16-, and 32-bit divisors, respectively. It

generates interrupt 0 if the result cannot fit the quotient register (AL, AX, or

EAX), or if the divisor is zero. See Chapter 7 for details. Clock cycles: 22 for

an 8-bit divisor, 30 for a 16-bit divisor, and 46 for a 32-bit divisor.

imul — Signed multiplication
C O Z S P A

M M * * * *

Format: imul src
imul dest,src
imul dest,src,constant

Description: This instruction performs signed multiplication. The number of operands for

imul can be between 1 and 3, depending on the format used. In the one-

operand format, the other operand is assumed to be in the AL, AX, or EAX

register depending on whether the src operand is 8, 16, or 32 bits long, re-

spectively. The src operand can be either in a register or in memory. The

result, which is twice as long as the src operand, is placed in AX, DX:AX, or

EDX:EAX for 8-, 16-, or 32-bit src operands, respectively. In the other two

forms, the result is of the same length as the input operands.

The two-operand format specifies both operands required for multiplication. In

this case, src and dest must both be either 16-bit or 32-bit operands. While

src can be either in a register or in memory, dest must be a register.

In the three-operand format, a constant can be specified as an immediate

operand. The result (src × constant) is stored in dest. As in the two-

operand format, the dest operand must be a register. The src can be either

in a register or in memory. The immediate constant can be a 8-, 16-, or 32-bit

value. For additional restrictions, refer to the Pentium data book. Clock cycles:

10 (11 if the one-operand format is used with either 8- or 16-bit operands).

630 Appendix E IA-32 Instruction Set

in — Input from a port
C O Z S P A

– – – – – –

Format: in dest,port
in dest,DX

Description: This instruction has two formats. In both formats, dest must be the AL, AX,

or EAX register. In the first format, it reads a byte, word, or doubleword from

port into the AL, AX, or EAX register, respectively. Note that port is an

8-bit immediate value. This format is restrictive in the sense that only the first

256 ports can be accessed. The other format is more flexible and allows access

to the complete I/O space (i.e., any port between 0 and 65,535). In this format,

the port number is assumed to be in the DX register. Clock cycles: varies—see

Pentium data book.

inc — Increment by 1
C O Z S P A

– M M M M M

Format: inc dest

Description: The inc instruction increments the dest operand by 1. The carry flag is not

affected. Clock cycles: 1 if dest is a register; 3 if dest is in memory.

Section E.2 Selected Instructions 631

ins — Input from a port to string
C O Z S P A

– – – – – –

Format: insb
insw
insd

Description: This instruction transfers an 8-, 16-, or 32-bit data from the input port specified

in the DX register to a location in memory pointed by ES:(E)DI. The DI index

register is used if the address size is 16 bits and EDI index register for 32-bit

addresses. Unlike the in instruction, the ins instruction does not allow the

specification of the port number as an immediate value. After the data transfer,

the index register is updated automatically. The index register is incremented

if DF is 0; it is decremented if DF is 1. The index register is incremented or

decremented by 1, 2, or 4 for byte, word, doubleword operands, respectively.

The repeat prefix can be used along with the ins instruction to transfer a block

of data (the number of data transfers is indicated by the CX register—see the

rep instruction for details). Clock cycles: varies—see Pentium data book.

int — Interrupt
C O Z S P A

– – – – – –

Format: int interrupt-type

Description: The int instruction calls an interrupt service routine or handler associated with

interrupt-type. The interrupt-type is an immediate 8-bit operand.

This value is used as an index into the Interrupt Descriptor Table (IDT). See

Chapter 14 for details on the interrupt invocation mechanism. Clock cycles:

varies—see Pentium data book.

into — Interrupt on overflow
C O Z S P A

– – – – – –

Format: into

Description: The into instruction is a conditional software interrupt identical to int 4
except that the int is implicit and the interrupt handler is invoked conditionally

only when the overflow flag is set. Clock cycles: varies—see Pentium data

book.

632 Appendix E IA-32 Instruction Set

iret — Interrupt return
C O Z S P A

M M M M M M

Format: iret
iretd

Description: The iret instruction returns control from an interrupt handler. In real address

mode, it loads the instruction pointer and the flags register with values from

the stack and resumes the interrupted routine. Both iret and iretd are

synonymous (and use the opcode CFH). The operand size in effect determines

whether the 16-bit or 32-bit instruction pointer (IP or EIP) and flags (FLAGS or

EFLAGS) are be used. See Chapter 14 for more details. This instruction affects

all flags as the flags register is popped from stack. Clock cycles: varies—see

Pentium data book.

jcc — Jump if condition cc is satisfied
C O Z S P A

– – – – – –

Format: jcc target

Description: The jcc instruction alters program execution by transferring control condi-

tionally to the target location in the same segment. The target operand

is a relative offset (relative to the instruction following the conditional jump

instruction). The relative offset can be a signed 8-, 16-, or 32-bit value. Most

efficient instruction encoding results if 8-bit offsets are used. With 8-bit offsets,

the target should be within −128 to +127 of the first byte of the next instruc-

tion. For 16- and 32-bit offsets, the corresponding values are 215 to 215−1 and

231 to 231 − 1, respectively. When the target is in another segment, test for the

opposite condition and use the unconditional jmp instruction, as explained in

Chapter 8. See Chapter 8 for details on the various conditions tested like ja,

jbe, etc. The jcxz instruction tests the contents of the CX or ECX register

and jumps to the target location only if (E)CX = 0. The default operand size

determines whether CX or ECX is used for comparison. Clock cycles: 1 for all

conditional jumps (except jcxz, which takes 5 or 6 cycles).

Section E.2 Selected Instructions 633

jmp — Unconditional jump
C O Z S P A

– – – – – –

Format: jmp target

Description: The jmp instruction alters program execution by transferring control uncon-

ditionally to the target location. This instruction allows jumps to another

segment. In direct jumps, the target operand is a relative offset (relative to

the instruction following the jmp instruction). The relative offset can be an

8-, 16-, or 32-bit value as in the conditional jump instruction. In addition, the

relative offset can be specified indirectly via a register or memory location. See

Chapter 8 for an example. For other forms of the jmp instruction, see the Pen-

tium data book. Note: Flags are not affected unless there is a task switch, in

which case all flags are affected. Clock cycles: 1 for direct jumps, 2 for indirect

jumps (more clock cycles for other types of jumps).

lahf — Load flags into AH register
C O Z S P A

– – – – – –

Format: lahf

Description: The lahf instruction loads the AH register with the low byte of the flags reg-

ister. AH := SF, ZF, *, AF, *, PF, *, CF where * represent indeterminate value.

Clock cycles: 2.

634 Appendix E IA-32 Instruction Set

lds/les/lfs/lgs/lss — Load full pointer
C O Z S P A

– – – – – –

Format: lds dest,src
les dest,src
lfs dest,src
lgs dest,src
lss dest,src

Description: These instructions read a full pointer from memory (given by the src operand)

and load the corresponding segment register (e.g., DS register for the lds in-

struction, ES register for the les instruction, etc.) and the dest register. The

dest operand must be a 16- or 32-bit register. The first 2 or 4 bytes (depending

on whether the dest is a 16- or 32-bit register) at the effective address given

by the src operand are loaded into the dest register and the next 2 bytes into

the corresponding segment register. Clock cycles: 4 (except lss).

lea — Load effective address
C O Z S P A

– – – – – –

Format: lea dest,src

Description: The lea instruction computes the effective address of a memory operand given

by src and stores it in the dest register. The dest must be either a 16- or

32-bit register. If the dest register is a 16-bit register and the address size is

32, only the lower 16 bits are stored. On the other hand, if a 32-bit register is

specified when the address size 16 bits, the effective address is zero-extended

to 32 bits. Clock cycles: 1.

Section E.2 Selected Instructions 635

leave — Procedure exit
C O Z S P A

– – – – – –

Format: leave

Description: The leave instruction takes no operands. Effectively, it reverses the actions

of the enter instruction. It performs two actions:

• Releases the local variable stack space allocated by the enter
instruction;

• Old frame pointer is popped into (E)BP register.

This instruction is typically used just before the ret instruction. Clock

cycles: 3.

lods — Load string operand
C O Z S P A

– – – – – –

Format: lodsb
lodsw
lodsd

Description: The lods instruction loads the AL, AX, or EAX register with the memory

byte, word, or doubleword at the location pointed by DS:SI or DS:ESI. The

address size attribute determines whether the SI or ESI register is used. The

lodsw and loadsd instructions share the same opcode (ADH). The operand

size is used to load either a word or a doubleword. After loading, the source

index register is updated automatically. The index register is incremented if DF

is 0; it is decremented if DF is 1. The index register is incremented or decre-

mented by 1, 2, or 4 for byte, word, doubleword operands, respectively. The

rep prefix can be used with this instruction but is not useful, as explained in

Chapter 10. This instruction is typically used in a loop (see the loop instruc-

tion). Clock cycles: 2.

636 Appendix E IA-32 Instruction Set

loop/loope/loopne — Loop control
C O Z S P A

– – – – – –

Format: loop target
loope/loopz target
loopne/loopnz target

Description: The loop instruction decrements the count register (CX if the address size

attribute is 16 and ECX if it is 32) and jumps to target if the count register is

not zero. This instruction decrements the (E)CX register without changing any

flags. The operand target is a relative 8-bit offset (i.e., the target must be in

the range −128 to +127 bytes).

The loope instruction is similar to loop except that it also checks the ZF

value to jump to the target. That is, control is transferred to target if,

after decrementing the (E)CX register, the count register is not zero and ZF = 1.

The loopz is a synonym for the loope instruction.

The loopne instruction is similar to loopne except that it transfers control

to target if ZF is 0 (instead of 1 as in the loope instruction). See Chapter 8

for more details on these instructions. Clock cycles: 5 or 6 for loop and 7 or

8 for the other two.

Note that the unconditional loop instruction takes longer to execute than a

functionally equivalent two-instruction sequence that decrements the (E)CX

register and jumps conditionally.

mov — Copy data
C O Z S P A

– – – – – –

Format: mov dest,src

Description: Copies data from src to dest. Clock cycles: 1 for most mov instructions

except when copying into a segment register, which takes more clock cycles.

Section E.2 Selected Instructions 637

movs — Copy string data
C O Z S P A

– – – – – –

Format: movs dest,src
movsb
movsw
movsd

Description: Copies the byte, word, or doubleword pointed by the source index register (SI

or ESI) to the byte, word, or doubleword pointed by the destination index reg-

ister (DI or EDI). If the address size is 16 bits, SI and DI registers are used; ESI

and EDI registers are used for 32-bit addresses. The default segment for the

source is DS and ES for the destination. Segment override prefix can be used

only for the source operand. After the move, both source and destination index

registers are automatically updated as in the cmps instruction.

The rep prefix instruction can precede the movs instruction for block move-

ment of data. See rep instruction for details. Clock cycles: 4.

movsx — Copy with sign extension
C O Z S P A

– – – – – –

Format: movsx reg16,src8
movsx reg32,src8
movsx reg32,src16

Description: Copies the sign-extended source operand src8/src16 into the destination

reg16/reg32. The destination can be either a 16-bit or 32-bit register only.

The source can be a register or memory byte or word operand. Note that reg16
and reg32 represent a 16- and 32-bit register, respectively. Similarly, src8
and src16 represent a byte and word operand, respectively. Clock cycles: 3.

movzx — Copy with zero extension
C O Z S P A

– – – – – –

Format: movzx reg16,src8
movzx reg32,src8
movzx reg32,src16

Description: Similar to movsx instruction except movzx copies the zero-extended source

operand into destination. Clock cycles: 3.

638 Appendix E IA-32 Instruction Set

mul — Unsigned multiplication
C O Z S P A

M M * * * *

Format: mul AL,src8
mul AX,src16
mul EAX,src32

Description: Performs unsigned multiplication of two 8-, 16-, or 32-bit operands. Only one

of the operand needs to be specified; the other operand, matching in size, is

assumed to be in the AL, AX, or EAX register.

• For 8-bit multiplication, the result is in the AX register. CF and

OF are cleared if AH is zero; otherwise, they are set.

• For 16-bit multiplication, the result is in the DX:AX register

pair. The higher-order 16 bits are in DX. CF and OF are cleared

if DX is zero; otherwise, they are set.

• For 32-bit multiplication, the result is in the EDX:EAX regis-

ter pair. The higher-order 32 bits are in EDX. CF and OF are

cleared if EDX is zero; otherwise, they are set.

Clock cycles: 11 for 8- or 16-bit operands and 10 for 32-bit operands.

neg — Negate sign (two’s complement)
C O Z S P A

M M M M M M

Format: neg operand

Description: Performs 2’s complement negation (sign reversal) of the operand specified. The

operand specified can be 8, 16, or 32 bits in size and can be located in a register

or memory. The operand is subtracted from zero and the result is stored back

in the operand. The CF flag is set for nonzero result; cleared otherwise. Other

flags are set according to the result. Clock cycles: 1 for register operands and 3

for memory operands.

Section E.2 Selected Instructions 639

nop — No operation
C O Z S P A

– – – – – –

Format: nop

Description: Performs no operation. Interestingly, the nop instruction is an alias for the

xchg (E)AX,(E)AX instruction. Clock cycles: 1.

not — Logical bitwise not
C O Z S P A

– – – – – –

Format: not operand

Description: Performs 1’s complement bitwise not operation (a 1 becomes 0 and vice versa).

Clock cycles: 1 for register operands and 3 for memory operands.

or — Logical bitwise or
C O Z S P A

0 0 M M M *

Format: or dest,src

Description: Performs bitwise or operation. The result (dest or src) is stored in dest.

Clock cycles: 1 for register and immediate operands and 3 if a memory operand

is involved.

out — Output to a port
C O Z S P A

– – – – – –

Format: out port,src
out DX,src

Description: Like the in instruction, this instruction has two formats. In both formats, src
must be in the AL, AX, or EAX register. In the first format, it outputs a byte,

word, or doubleword from src to the I/O port specified by the first operand

port. Note that port is an 8-bit immediate value. This format limits access

to the first 256 I/O ports in the I/O space. The other format is more general

and allows access to the full I/O space (i.e., any port between 0 and 65,535). In

this format, the port number is assumed to be in the DX register. Clock cycles:

varies—see Pentium data book.

640 Appendix E IA-32 Instruction Set

outs — Output from a string to a port
C O Z S P A

– – – – – –

Format: outsb
outsw
outsd

Description: This instruction transfers an 8-, 16-, or 32-bit data from a string (pointed by the

source index register) to the output port specified in the DX register. Similar

to the ins instruction, it uses the SI index register for 16-bit addresses and the

ESI register if the address size is 32. The (E)SI register is automatically updated

after the transfer of a data item. The index register is incremented if DF is 0; it

is decremented if DF is 1. The index register is incremented or decremented by

1, 2, or 4 for byte, word, doubleword operands, respectively. The repeat prefix

can be used with outs for block transfer of data. Clock cycles: varies—see

Pentium data book.

pop — Pop a word from the stack
C O Z S P A

– – – – – –

Format: pop dest

Description: Pops a word or doubleword from the top of the stack. If the address size at-

tribute is 16 bits, SS:SP is used as the top of the stack pointer; otherwise,

SS:ESP is used. dest can be a register or memory operand. In addition, it

can also be a segment register DS, ES, SS, FS, or GS (e.g., pop DS). The

stack pointer is incremented by 2 (if the operand size is 16 bits) or 4 (if the

operand size is 32 bits). Note that pop CS is not allowed. This can be done

only indirectly by the ret instruction. Clock cycles: 1 if dest is a general

register; 3 if dest is a segment register or memory operand.

Section E.2 Selected Instructions 641

popa — Pop all general registers
C O Z S P A

– – – – – –

Format: popa
popad

Description: Pops all eight 16-bit (popa) or 32-bit (popad) general registers from the top

of the stack. The popa loads the registers in the order DI, SI, BP, discard next

two bytes (to skip loading into SP), BX, DX, CX, and AX. That is, DI is popped

first and AX last. The popad instruction follows the same order on the 32-bit

registers. Clock cycles: 5.

popf — Pop flags register
C O Z S P A

M M M M M M

Format: popf
popfd

Description: Pops the 16-bit (popf) or 32-bit (popfd) flags register (FLAGS or EFLAGS)

from the top of the stack. Bits 16 (VM flag) and 17 (RF flag) of the EFLAGS

register are not affected by this instruction. Clock cycles: 6 in the real mode

and 4 in the protected mode.

push — Push a word onto the stack
C O Z S P A

– – – – – –

Format: push src

Description: Pushes a word or doubleword onto the top of the stack. If the address size

attribute is 16 bits, SS:SP is used as the top of the stack pointer; otherwise,

SS:ESP is used. src can be (i) a register, or (ii) a memory operand, or (iii)

a segment register (CS, SS, DS, ES, FS, or GS), or (iv) an immediate byte,

word, or doubleword operand. The stack pointer is decremented by 2 (if the

operand size is 16 bits) or 4 (if the operand size is 32 bits). The push ESP
instruction pushes the ESP register value before it was decremented by the

push instruction. On the other hand, push SP pushes the decremented SP

value onto the stack. Clock cycles: 1 (except when the operand is in memory,

in which case it takes 2 clock cycles).

642 Appendix E IA-32 Instruction Set

pusha — Push all general registers
C O Z S P A

– – – – – –

Format: pusha
pushad

Description: Pushes all eight 16-bit (pusha) or 32-bit (pushad) general registers onto the

stack. The pusha pushes the registers onto the stack in the order AX, CX, DX,

BX, SP, BP, SI, and DI. That is, AX is pushed first and DI last. The pushad in-

struction follows the same order on the 32-bit registers. It decrements the stack

pointer SP by 16 for word operands; decrements ESP by 32 for doubleword

operands. Clock cycles: 5.

pushf — Push flags register
C O Z S P A

– – – – – –

Format: pushf
pushfd

Description: Pushes the 16-bit (pushf) or 32-bit (pushfd) flags register (FLAGS or

EFLAGS) onto the stack. Decrements SP by 2 (pushf) for word operands

and decrements ESP by 4 (pushfd) for doubleword operands. Clock cycles:

4 in the real mode and 3 in the protected mode.

Section E.2 Selected Instructions 643

rol/ror/rcl/rcr — Rotate instructions
C O Z S P A

M M – – – –

Format: rol/ror/rcl/rcr src,1
rol/ror/rcl/rcr src,count
rol/ror/rcl/rcr src,CL

Description: This group of instructions supports rotation of 8-, 16-, or 32-bit data. The rol
(rotate left) and ror (rotate right) instructions rotate the src data as explained

in Chapter 9. The second operand gives the number of times src is to be

rotated. This operand can be given as an immediate value (a constant 1 or a

byte value count) or preloaded into the CL register. The other two rotate

instructions rcl (rotate left including CF) and rcr (rotate right including CF)

rotate the src data with the carry flag (CF) included in the rotation process, as

explained in Chapter 9. The OF flag is affected only for single bit rotates; it is

undefined for multibit rotates. Clock cycles: rol and ror take 1 (if src is a

register) or 3 (if src is a memory operand) for the immediate mode (constant

1 or count) and 4 for the CL version; for the other two instruction, it can take

as many as 27 clock cycles—see Pentium data book for details.

rep/repe/repz/repne/repnz — Repeat instruction
C O Z S P A

– – M – – –

Format: rep string-inst
repe/repz string-inst
repne/repnz string-inst

Description: These three prefixes repeat the specified string instruction until the conditions

are met. The rep instruction decrements the count register (CX or ECX) each

time the string instruction is executed. The string instruction is repeatedly ex-

ecuted until the count register is zero. The repe (repeat while equal) has an

additional termination condition: ZF = 0. The repz is an alias for the repe
instruction. The repne (repeat while not equal) is similar to repe except that

the additional termination condition is ZF =1. The repnz is an alias for the

repne instruction. The ZF flag is affected by the rep cmps and rep scas
instructions. For more details, see Chapter 10. Clock cycles: varies—see Pen-

tium data book for details.

644 Appendix E IA-32 Instruction Set

ret — Return form a procedure
C O Z S P A

– – – – – –

Format: ret
ret value

Description: Transfers control to the instruction following the corresponding call instruc-

tion. The optional immediate value specifies the number of bytes (for 16-bit

operands) or number of words (for 32-bit operands) that are to be cleared from

the stack after the return. This parameter is usually used to clear the stack of

the input parameters. See Chapter 5 for more details. Clock cycles: 2 for near

return and 3 for far return; if the optional value is specified, add one more

clock cycle. Changing privilege levels takes more clocks—see Pentium data

book.

sahf — Store AH into flags register
C O Z S P A

M – M M M M

Format: sahf

Description: The AH register bits 7, 6, 4, 2, and 0 are loaded into flags SF, ZF, AF, PF, and

CF, respectively. Clock cycles: 2.

Section E.2 Selected Instructions 645

sal/sar/shl/shr — Shift instructions
C O Z S P A

M M M M M –

Format: sal/sar/shl/shr src,1
sal/sar/shl/shr src,count
sal/sar/shl/shr src,CL

Description: This group of instructions supports shifting of 8-, 16-, or 32-bit data. The

format is similar to the rotate instructions. The sal (shift arithmetic left) and

its synonym shl (shift left) instructions shift the src data left. The shifted out

bit goes into CF and the vacated bit is cleared, as explained in Chapter 9. The

second operand gives the number of times src is to be shifted. This operand

can be given as an immediate value (a constant 1 or a byte value count) or

preloaded into the CL register. The shr (shift right) is similar to shl except

for the direction of the shift. The sar (shift arithmetic right) is similar to sal
except for two differences: the shift direction is right and the sign bit is copied

into the vacated bits. If shift count is zero, no flags are affected. The CF flag

contains the last bit shifted out. The OF flag is defined only for single shifts;

it is undefined for multibit shifts. Clock cycles: 1 (if src is a register) or 3 (if

src is a memory operand) for the immediate mode (constant 1 or count) and

4 for the CL version.

sbb — Subtract with borrow
C O Z S P A

M M M M M M

Format: sbb dest,src

Description: Performs integer subtraction with borrow. The dest is assigned the result of

dest − (src+CF). Clock cycles: 1–3.

646 Appendix E IA-32 Instruction Set

scas — Compare string operands
C O Z S P A

M M M M M M

Format: scas operand
scasb
scasw
scasd

Description: Subtracts the memory byte, word, or doubleword pointed by the destination

index register (DI or EDI) from the AL, AX, or EAX register, respectively. The

result is not stored but used to update the flags. The memory operand must

be addressable from the ES register. Segment override is not allowed in this

instruction. If the address size is 16 bits, DI register is used; EDI register is

used for 32-bit addresses. After the subtraction, the destination index register

is updated automatically. Whether the register is incremented or decremented

depends on the direction flag (DF). The register is incremented if DF is 0 (see

the cld instruction to clear the direction flag); if the DF is 1, the index register

is decremented (see the std instruction to set the direction flag). The amount

of increment or decrement is 1 (for byte operands), 2 (for word operands), or 4

(for doubleword operands).

Note that the specification of the operand in scas is not really required as the

memory operand is assumed to be pointed by the index register. The scasb,

scasw, and scasd are synonyms for the byte, word, and doubleword scas
instructions, respectively.

The repeat prefix instructions (i.e., repe or repne) can precede the scas
instructions for array or string comparisons. See the rep instruction for details.

Clock cycles: 4.

setCC — Byte set on condition operands
C O Z S P A

– – – – – –

Format: setCC dest

Description: Sets dest byte to 1 if the condition CC is met; otherwise, sets to zero. The

operand dest must be either an 8-bit register or a memory operand. The con-

ditions tested are similar to the conditional jump instruction (see jcc instruc-

tion). The conditions are A, AE, B, BE, E, NE, G, GE, L, LE, NA, NAE, NB,

NBE, NG, NGE, NL, NLE, C, NC, O, NO, P, PE, PO, NP, O, NO, S, NS, Z,

NZ. The conditions can specify signed and unsigned comparisons as well as

flag values. Clock cycles: 1 for register operand and 2 for memory operand.

Section E.2 Selected Instructions 647

shld/shrd — Double precision shift
C O Z S P A

M M M M M *

Format: shld/shrd dest,src,count

Description: The shld instruction performs left shift of dest by count times. The second

operand src provides the bits to shift in from the right. In other words, the

shld instruction performs a left shift of dest concatenated with src and the

result in the upper half is copied into dest. dest and src operands can both

be either 16- or 32-bit operands. While dest can be a register or memory

operand, src must a register of the same size as dest. The third operand

count can be an immediate byte value or the CL register can be used as in the

shift instructions. The contents of the src register are not altered.

The shrd instruction (double precision shift right) is similar to shld except

for the direction of the shift.

If the shift count is zero, no flags are affected. The CF flag contains the last

bit shifted out. The OF flag is defined only for single shifts; it is undefined for

multibit shifts. The SF, ZF, and PF flags are set according to the result.

Clock cycles: 4 (5 if dest is a memory operand and the CL register is used for

count).

stc — Set carry flag
C O Z S P A

1 – – – – –

Format: stc

Description: Sets the carry flag to 1. Clock cycles: 2.

std — Set direction flag
C O Z S P A

– – – – – –

Format: std

Description: Sets the direction flag to 1. Clock cycles: 2.

648 Appendix E IA-32 Instruction Set

sti — Set interrupt flag
C O Z S P A

– – – – – –

Format: sti

Description: Sets the interrupt flag to 1. Clock cycles: 7.

stos — Store string operand
C O Z S P A

– – – – – –

Format: stosb
stosw
stosd

Description: Stores the contents of the AL, AX, or EAX register at the memory byte, word,

or doubleword pointed by the destination index register (DI or EDI), respec-

tively. If the address size is 16 bits, DI register is used; EDI register is used for

32-bit addresses. After the load, the destination index register is automatically

updated. Whether this register is incremented or decremented depends on the

direction flag (DF). The register is incremented if DF is 0 (see the cld instruc-

tion to clear the direction flag); if the DF is 1, the index register is decremented

(see the std instruction to set the direction flag). The amount of increment

or decrement depends on the operand size (1 for byte operands, 2 for word

operands, and 4 for doubleword operands).

The repeat prefix instruction rep can precede the stos instruction to fill a

block of CX/ECX bytes, words, or doublewords. Clock cycles: 3.

sub — Subtract
C O Z S P A

M M M M M M

Format: sub dest,src

Description: Performs integer subtraction. The dest is assigned the result of dest− src.

Clock cycles: 1–3.

Section E.2 Selected Instructions 649

test — Logical compare
C O Z S P A

0 0 M M M *

Format: test dest,src

Description: Performs logical and operation (dest and src). However, the result of the

and operation is discarded. The dest operand can be either in a register or in

memory. The src operand can be either an immediate value or a register. Both

dest and src operands are not affected. Sets SF, ZF, and PF flags according

to the result. Clock cycles: 1 if dest is a register operand and 2 if it is a

memory operand.

xchg — Exchange data
C O Z S P A

– – – – – –

Format: xchg dest,src

Description: Exchanges the values of the two operands src and dest. Clock cycles: 2 if

both operands are registers or 3 if one of them is a memory operand.

xlat — Translate byte
C O Z S P A

– – – – – –

Format: xlat table-offset
xlatb

Description: Translates the data in the AL register using a table lookup. It changes the AL

register from the table index to the corresponding table contents. The contents

of the BX (for 16-bit addresses) or EBX (for 32-bit addresses) registers are used

as the offset to the the translation table base. The contents of the AL register

are treated as an index into this table. The byte value at this index replaces the

index value in AL. The default segment for the translation table is DS. This is

used in both formats. However, in the operand version, a segment override is

possible. Clock cycles: 4.

650 Appendix E IA-32 Instruction Set

xor — Logical bitwise exclusive-or
C O Z S P A

0 0 M M M *

Format: xor dest,src

Description: Performs logical bitwise exclusive-or (xor) operation (dest xor src) and the

result is stored in dest. Sets the SF, ZF, and PF flags according to the result.

Clock cycles: 1–3.

Appendix F

MIPS/SPIM Instruction

Set

This appendix lists the MIPS instructions implemented by the SPIM simulator. These instruc-

tions can be divided into two groups: instructions and pseudoinstructions. The first group

consists of the instructions supported by the processor. The pseudoinstructions are supported

by the assembler; these are not the processor instructions. These pseudoinstructions are trans-

lated into one or more processor instructions. For example, abs is a pseudoinstruction, which

is translated into the following two-instruction sequence:

bgez Rsrc,8

sub Rdest,$0,Rsrc

In this appendix, as in the main text, the pseudoinstructions are indicated by a †. In the

following, instructions are presented in alphabetical order.

Also note that, in all the instructions, Src2 can be either a register or a 16-bit integer. The

assembler translates the general form of an instruction to its immediate form if Src2 is a con-

stant. For reference, we also include the immediate form instructions. In these instructions,

Imm represents a 16-bit integer.

abs† — Absolute value

Format: abs Rdest,Rsrc

Description: Places the absolute value of Rsrc in Rdest.

651

652 Appendix F MIPS/SPIM Instruction Set

add — Add with overflow

Format: add Rdest,Rsrc1,Src2

Description: Rdest receives the sum of Rsrc1 and Src2. The numbers are treated as signed

integers. In case of an overflow, an overflow exception is generated.

addi — Add immediate with overflow

Format: addi Rdest,Rsrc1,Imm

Description: Rdest receives the sum of Rsrc1 and Imm. The numbers are treated as signed

integers. In case of an overflow, an overflow exception is generated.

addiu — Add immediate with no overflow

Format: addiu Rdest,Rsrc1,Imm

Description: Rdest receives the sum of Rsrc1 and Src2. The numbers are treated as signed

integers. No overflow exception is generated.

addu — Add with no overflow

Format: addu Rdest,Rsrc1,Src2

Description: Rdest receives the sum of Rsrc1 and Src2. The numbers are treated as signed

integers. No overflow exception is generated.

and — Logical AND

Format: and Rdest,Rsrc1,Src2

Description: Bitwise AND of Rsrc1 and Src2 is stored in Rdest.

andi — Logical AND immediate

Format: andi Rdest,Rsrc1,Imm

Description: Bitwise AND of Rsrc1 and Imm is stored in Rdest.

Appendix F MIPS/SPIM Instruction Set 653

b† — Branch

Format: b label

Description: Unconditionally transfer control to the instruction at label. Branch instruction

uses a signed 16-bit offset. This allows jumps to 215 − 1 instructions (not bytes)

forward, or 215 instructions backward.

bczf — Branch if coprocessor Z is false

Format: bczf label

Description: Conditionally transfer control to the instruction at label if coprocessor’s Z flag

is false.

bczt — Branch if coprocessor Z is true

Format: bczt label

Description: Conditionally transfer control to the instruction at label if coprocessor’s Z flag

is true.

beq — Branch if equal

Format: beq Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1 = Src2.

beqz† — Branch if equal to zero

Format: beqz Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc = 0.

654 Appendix F MIPS/SPIM Instruction Set

bge† — Branch if greater or equal (signed)

Format: bge Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1≥ Src2. The

contents are treated as signed numbers.

bgeu† — Branch if greater than or equal (unsigned)

Format: bgeu Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1≥ Src2. The

contents are treated as unsigned numbers.

bgez — Branch if greater than or equal to zero

Format: bgez Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc ≥ 0.

bgezal — Branch if greater than or equal to zero and link

Format: bgezal Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc ≥ 0. Save the

next instruction address in register 31.

bgt† — Branch if greater than (signed)

Format: bgt Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1> Src2. The

contents are treated as signed numbers.

Appendix F MIPS/SPIM Instruction Set 655

bgtu† — Branch if greater than (unsigned)

Format: bgtu Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1> Src2. The

contents are treated as unsigned numbers.

bgtz — Branch if greater than zero (signed)

Format: bgtz Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc > 0. The

contents are treated as signed numbers.

ble† — Branch if less than or equal (signed)

Format: blt Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1≤ Src2. The

contents are treated as signed numbers.

bleu† — Branch if less than or equal (unsigned)

Format: bltu Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1≤ Src2. The

contents are treated as unsigned numbers.

blez — Branch if less than or equal to zero (signed)

Format: bltz Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc ≤ 0. The

contents are treated as signed numbers.

656 Appendix F MIPS/SPIM Instruction Set

blt† — Branch if less than (signed)

Format: blt Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1< Src2. The

contents are treated as signed numbers.

bltu† — Branch if less than (unsigned)

Format: bltu Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1< Src2. The

contents are treated as unsigned numbers.

bltz — Branch if less than zero (signed)

Format: bltz Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc < 0. The

contents are treated as signed numbers.

bltzal — Branch if less than zero and link

Format: bltzal Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc < 0. Save the

next instruction address in register 31.

bne — Branch if not equal

Format: bne Rsrc1,Src2,label

Description: Conditionally transfer control to the instruction at label if Rsrc1 �= Src2.

Appendix F MIPS/SPIM Instruction Set 657

bnez† — Branch if not equal to zero

Format: bnez Rsrc,label

Description: Conditionally transfer control to the instruction at label if Rsrc �= 0.

div — Divide (signed)

Format: div Rsrc1,Rsrc2

Description: Performs division of two signed numbers in Rsrc1 and Rsrc2 (i.e.,

Rsrc1/Rsrc2). The quotient is placed in register lo and the remainder in reg-

ister hi. If an operand is negative, the remainder is unspecified by the MIPS

architecture. The corresponding SPIM value depends on the machine it is run-

ning.

divu — Divide (unsigned)

Format: div Rsrc1,Rsrc2

Description: Same as div above except that the numbers in Rsrc1 and Rsrc2 are treated as

unsigned.

div† — Divide (signed)

Format: div Rdest,Rsrc1,Src2

Description: Performs division of two signed numbers in Rsrc1 and Src2 (i.e.,

Rsrc1/Src2). The quotient is placed in register Rdest. Src2 can be a reg-

ister or a 16-bit immediate value.

divu† — Divide (signed)

Format: divu Rdest,Rsrc1,Src2

Description: Same as the last div pseudoinstruction except that the numbers in Rsrc1 and

Src2 are treated as unsigned.

658 Appendix F MIPS/SPIM Instruction Set

j — Jump

Format: j label

Description: Unconditionally transfer control to the instruction at label. Jump instruction

uses a signed 26-bit offset. This allows jumps to 225 − 1 instructions forward, or

225 instructions backward.

jal — Jump and link

Format: jal label

Description: Unconditionally transfer control to the instruction at label. Save the next in-

struction address in register 31.

jalr — Jump and link register

Format: jalr Rsrc

Description: Unconditionally transfer control to the instruction whose address is in Rsrc. Save

the next instruction address in register 31.

jr — Jump register

Format: jr Rsrc

Description: Unconditionally transfer control to the instruction whose address is in Rsrc. This

instruction is used to return from procedures.

la† — Load address

Format: la Rdest,address

Description: Loads address into register Rdest.

Appendix F MIPS/SPIM Instruction Set 659

lb — Load byte (signed)

Format: lb Rdest,address

Description: Loads the byte at address into register Rdest. The byte is sign-extended.

lbu — Load byte (unsigned)

Format: lbu Rdest,address

Description: Loads the byte at address into register Rdest. The byte is zero-extended.

ld† — Load doubleword

Format: ld Rdest,address

Description: Loads the doubleword (64 bits) at address into registers Rdest and Rdest+1.

lh — Load halfword (signed)

Format: lh Rdest,address

Description: Loads the halfword (16 bits) at address into register Rdest. The halfword is

sign-extended.

lhu — Load halfword (unsigned)

Format: lhu Rdest,address

Description: Loads the halfword (16 bits) at address into register Rdest. The halfword is

zero-extended.

li† — Load immediate

Format: li Rdest,Imm

Description: Loads the immediate value Imm into register Rdest.

660 Appendix F MIPS/SPIM Instruction Set

lui — Load upper immediate

Format: lui Rdest,Imm

Description: Loads the 16-bit immediate Imm into the upper halfword of register Rdest. The

lower halfword of Rdest is set to 0.

lw — Load word

Format: lw Rdest,address

Description: Loads the word (32 bits) at address into register Rdest.

lwcz — Load word from coprocessor z

Format: lwcz Rdest,address

Description: Loads the word (32 bits) at address into register Rdest of coprocessor z.

lwl — Load word left

Format: lwl Rdest,address

Description: Loads the left bytes from the word at address into register Rdest. This in-

struction can be used along with lwr to load an unaligned word from memory.

The lwl instruction starts loading bytes from (possibly unaligned) address un-

til the lower-order byte of the word. These bytes are stored in Rdest from the

left. The number of bytes stored depends on the address. For example, if the ad-

dress is 1, it stores the three bytes at addresses 1, 2, and 3. As another example,

if the address is 2, it stores the two bytes at addresses 2 and 3. See lwr for more

details.

Appendix F MIPS/SPIM Instruction Set 661

lwr — Load word right

Format: lwr Rdest,address

Description: Loads the right bytes from the word at address into register Rdest. This

instruction can be used along with lwl to load an unaligned word from memory.

The lwr instruction starts loading bytes from (possibly unaligned) address
until the higher-order byte of the word. These bytes are stored in Rdest from

the right. As in the lwl instruction, the number of bytes stored depends on the

address. However, the direction is opposite of that used in the lwl instruction.

For example, if the address is 4, it stores just one byte at address 4. As another

example, if the address is 6, it stores the three bytes at addresses 6, 5, and 4. In

contrast, the lwl instruction with address 6 would load the two bytes at addresses

6 and 7.

As an example, let us look at an unaligned word stored at addresses 1, 2, 3, and

4. We could use lwl with address 1 to store the bytes at addresses 1, 2, 3; the

lwr with address 4 can be used to store the byte at address 4. At the end of this

two-instruction sequence, the unaligned word is stored in Rdest.

mfcz — Move from coprocessor z

Format: mfcz Rdest,CPsrc

Description: Move contents of coprocessor z’s register CPsrc to CPU register Rdest.

mfhi — Move from hi

Format: mfhi Rdest

Description: Copy contents of hi register to Rdest.

mflo — Move from lo

Format: mflo Rdest

Description: Copy contents of lo register to Rdest.

662 Appendix F MIPS/SPIM Instruction Set

move† — Move

Format: move Rdest,Rsrc

Description: Copy contents of Rsrc to Rdest.

mtcz — Move to coprocessor z

Format: mtcz Rsrc,CPdest

Description: Move contents of CPU register Rsrc to coprocessor z’s register CPdest.

mthi — Move to hi

Format: mfhi Rsrc

Description: Copy contents of Rdest to hi register.

mtlo — Move to lo

Format: mflo Rsrc

Description: Copy contents of Rdest to lo register.

mul† — Signed Multiply (no overflow)

Format: mul Rdest,Rsrc1,Src2

Description: Performs multiplication of two signed numbers in Rsrc1 and Src2. The result

is placed in register Rdest. Src2 can be a register or a 16-bit immediate value.

No overflow exception is generated.

mulo† — Signed Multiply (with overflow)

Format: mulo Rdest,Rsrc1,Src2

Description: Performs multiplication of two signed numbers in Rsrc1 and Src2. The result

is placed in register Rdest. Src2 can be a register or a 16-bit immediate value.

If there is an overflow, an overflow exception is generated.

Appendix F MIPS/SPIM Instruction Set 663

mulou† — Signed Multiply (with overflow)

Format: mulou Rdest,Rsrc1,Src2

Description: Performs multiplication of two unsigned numbers in Rsrc1 and Src2. The result

is placed in register Rdest. Src2 can be a register or a 16-bit immediate value.

If there is an overflow, an overflow exception is generated.

mult — Multiply (signed)

Format: mult Rsrc1,Rsrc2

Description: Performs multiplication of two signed numbers in Rsrc1 and Rsrc2. The lower-

order word of result is placed in register lo and the higher-order word in register

hi.

multu — Multiply (unsigned)

Format: multu Rsrc1,Rsrc2

Description: Same as mult but treats the numbers as unsigned.

neg† — Negation (with overflow)

Format: neg Rdest,Rsrc

Description: Places the negative value of the integer in Rsrc in Rdest. This pseudo-

instruction generates overflow exception.

negu† — Negation (no overflow)

Format: neg Rdest,Rsrc

Description: Places the negative value of the integer in Rsrc in Rdest. No overflow exception

is generated.

664 Appendix F MIPS/SPIM Instruction Set

nor — Logical NOR

Format: nor Rdest,Rsrc1,Src2

Description: Places the logical NOR of Rsrc1 and Src2 in Rdest.

not† — Logical NOT

Format: not Rdest,Rsrc

Description: Places the logical NOT of Rsrc in Rdest.

or — Logical OR

Format: or Rdest,Rsrc1,Src2

Description: Places the logical OR of Rsrc1 and Src2 in Rdest.

ori — Logical OR immediate

Format: ori Rdest,Rsrc1,Imm

Description: Places the logical OR of Rsrc1 and Imm in Rdest.

rem† — Remainder (signed)

Format: rem Rdest,Rsrc1,Src2

Description: Places the remainder from dividing two signed numbers in Rsrc1 and Src2
(Rsrc1/Src2) in register Rdest. Src2 can be a register or a 16-bit immediate

value. If an operand is negative, the remainder is unspecified by the MIPS archi-

tecture. The corresponding SPIM value depends on the machine it is running.

remu† — Remainder (unsigned)

Format: remu Rdest,Rsrc1,Src2

Description: Same as rem except that the numbers are treated as unsigned.

Appendix F MIPS/SPIM Instruction Set 665

rol† — Rotate left

Format: rol Rdest,Rsrc1,Src2

Description: Rotates the contents of register Rsrc1 left by the number of bit positions indi-

cated by Src2 and places the result in Rdest.

ror† — Rotate left

Format: ror Rdest,Rsrc1,Src2

Description: Rotates the contents of register Rsrc1 right by the number of bit positions indi-

cated by Src2 and places the result in Rdest.

sb — Store byte

Format: sb Rsrc,address

Description: Stores the lowest byte from register Rdest at address.

sd — Store doubleword

Format: sd Rsrc,address

Description: Stores the doubleword (64 bits) from registers Rdest and Rdest+1 at

address.

seq† — Set if equal

Format: seq Rdest,Rsrc1,Src2

Description: Set register Rdest to 1 if Rsrc1 is equal to Src2; otherwise, Rdest is 0.

sge† — Set if greater than or equal (signed)

Format: sge Rdest,Rsrc1,Src2

Description: Set register Rdest to 1 if Rsrc1 is greater than or equal to Src2; otherwise,

Rdest is 0. Rsrc1 and Src2 are treated as signed numbers.

666 Appendix F MIPS/SPIM Instruction Set

sgeu† — Set if greater than or equal (unsigned)

Format: sgeu Rdest,Rsrc1,Src2

Description: Same as sge except that Rsrc1 and Src2 are treated as unsigned numbers.

sgt† — Set if greater than (signed)

Format: sgt Rdest,Rsrc1,Src2

Description: Set register Rdest to 1 if Rsrc1 is greater than Src2; otherwise, Rdest is 0.

Rsrc1 and Src2 are treated as signed numbers.

sgtu† — Set if greater than (unsigned)

Format: sgtu Rdest,Rsrc1,Src2

Description: Same as sgt except that Rsrc1 and Src2 are treated as unsigned numbers.

sh — Store halfword

Format: sh Rsrc,address

Description: Stores the lower halfword (16 bits) from register Rsrc at address.

sle† — Set if less than or equal (signed)

Format: sle Rdest,Rsrc1,Src2

Description: Set registerRdest to 1 if Rsrc1 is less than or equal to Src2; otherwise, Rdest
is 0. Rsrc1 and Src2 are treated as signed numbers.

sleu† — Set if less than or equal (unsigned)

Format: sleu Rdest,Rsrc1,Src2

Description: Same as sle except that Rsrc1 and Src2 are treated as unsigned numbers.

Appendix F MIPS/SPIM Instruction Set 667

sll — Shift left logical

Format: sll Rdest,Rsrc1,count

Description: Shifts the contents of register Rsrc1 left by count bit positions and places the

result in Rdest. Shifted out bits are filled with zeros.

sllv — Shift left logical variable

Format: sllv Rdest,Rsrc1,Rsrc2

Description: Shifts the contents of register Rsrc1 left by the number of bit positions indicated

by Rsrc2 and places the result in Rdest. Shifted out bits are filled with zeros.

slt — Set if less than (signed)

Format: slt Rdest,Rsrc1,Src2

Description: Set register Rdest to 1 if Rsrc1 is less than Src2; otherwise, Rdest is 0.

Rsrc1 and Src2 are treated as signed numbers.

slti — Set if less than immediate (signed)

Format: slti Rdest,Rsrc1,Imm

Description: Set register Rdest to 1 if Rsrc1 is less than Imm; otherwise, Rdest is 0.

Rsrc1 and Imm are treated as signed numbers.

sltiu — Set if less than immediate (unsigned)

Format: sltiu Rdest,Rsrc1,Imm

Description: Same as slti except that Rsrc1 and Imm are treated as unsigned numbers.

sltu — Set if less than (unsigned)

Format: sltu Rdest,Rsrc1,Src2

Description: Same as slt except that Rsrc1 and Src2 are treated as unsigned numbers.

668 Appendix F MIPS/SPIM Instruction Set

sne† — Set if not equal

Format: sne Rdest,Rsrc1,Src2

Description: Set register Rdest to 1 if Rsrc1 is not equal to Src2; otherwise, Rdest is 0.

sra — Shift right arithmetic

Format: sra Rdest,Rsrc1,count

Description: Shifts the contents of register Rsrc1 right by count bit positions and places the

result in Rdest. Shifted out bits are filled with the sign bit.

srav — Shift right arithmetic variable

Format: srav Rdest,Rsrc1,Rsrc2

Description: Shifts the contents of register Rsrc1 right by the number of bit positions indicated

by Rsrc2 and places the result in Rdest. Shifted out bits are filled with the sign

bit.

srl — Shift right arithmetic

Format: srl Rdest,Rsrc1,count

Description: Shifts the contents of register Rsrc1 right by count bit positions and places the

result in Rdest. Shifted out bits are filled with zeros.

srlv — Shift right arithmetic variable

Format: srlv Rdest,Rsrc1,Rsrc2

Description: Shifts the contents of register Rsrc1 right by the number of bit positions indicated

by Rsrc2 and places the result in Rdest. Shifted out bits are filled with zeros.

Appendix F MIPS/SPIM Instruction Set 669

sub — Subtract with overflow

Format: sub Rdest,Rsrc1,Src2

Description: Rdest receives the difference of Rsrc1 and Src2 (i.e., Rsrc1−SRc2). The

numbers are treated as signed integers. In case of an overflow, an overflow excep-

tion is generated.

subu — Subtract with no overflow

Format: subu Rdest,Rsrc1,Src2

Description: Same as sub but no overflow exception is generated.

sw — Store word

Format: sw Rsrc,address

Description: Stores the word from register Rsrc at address.

swcz — Store word coprocessor z

Format: sw Rsrc,address

Description: Stores the word from register Rsrc of coprocessor z at address.

swl — Store word left

Format: swl Rsrc,address

Description: Copies the left bytes from register Rsrc to memory at address. This instruc-

tion can be used along with swr to store a word in memory at an unaligned ad-

dress. The swl instruction starts storing the bytes from the most significant byte

of Rsrc to memory at address until the lower-order byte of the word in mem-

ory is reached. For example, if the address is 1, it stores the three most significant

bytes of Rsrc at addresses 1, 2, and 3. As another example, if the address is 2, it

stores the two most significant bytes of Rsrc at addresses 2 and 3.

670 Appendix F MIPS/SPIM Instruction Set

swr — Store word right

Format: swr Rsrc,address

Description: Copies the right bytes from register Rsrc to memory at address. This in-

struction can be used along with swl to store a word in memory at an unaligned

address. The swr instruction starts storing the bytes from the least significant

byte of Rsrc to memory at address until the higher-order byte of the word in

memory is reached. For example, if the address is 1, it stores the two least signif-

icant bytes of Rsrc at addresses 1 and 0. As another example, if the address is 2,

it stores the three least significant bytes of Rsrc at addresses 2, 1 and 0.

ulh† — Unaligned load halfword (signed)

Format: ulh Rdest,address

Description: Loads the halfword (16 bits) from the word at address into register Rdest.

The address could be unaligned. The halfword is sign-extended.

ulhu† — Unaligned load halfword (unsigned)

Format: ulhu Rdest,address

Description: Loads the halfword (16 bits) from the word at address into register Rdest.

The address could be unaligned. The halfword is zero-extended.

ulw† — Unaligned load word

Format: ulw Rdest,address

Description: Loads the word (32 bits) at address into register Rdest. The address could be

unaligned.

Appendix F MIPS/SPIM Instruction Set 671

ush† — Unaligned store halfword

Format: ush Rsrc,address

Description: Stores the lower halfword (16 bits) from register Rsrc at address. The address

could be unaligned.

usw† — Unaligned store word

Format: usw Rsrc,address

Description: Stores the word (32 bits) from register Rsrc at address. The address could be

unaligned.

xor — Logical XOR

Format: xor Rdest,Rsrc1,Src2

Description: Places the logical XOR of Rsrc1 and Src2 in Rdest.

xori — Logical XOR immediate

Format: xori Rdest,Rsrc1,Imm

Description: Places the logical XOR of Rsrc1 and Imm in Rdest.

Appendix G

ASCII Character Set

The next two pages give the standard ASCII (American Standard Code for Information Interchange)

character set. We divide the character set into control and printable characters. The control character

codes are given on the next page and the printable ASCII characters are on page 675.

673

674 Appendix G ASCII Character Set

Control Codes

Hex Decimal Character Meaning

00 0 NUL NULL

01 1 SOH Start of heading

02 2 STX Start of text

03 3 ETX End of text

04 4 EOT End of transmission

05 5 ENQ Enquiry

06 6 ACK Acknowledgment

07 7 BEL Bell

08 8 BS Backspace

09 9 HT Horizontal tab

0A 10 LF Line feed

0B 11 VT Vertical tab

0C 12 FF Form feed

0D 13 CR Carriage return

0E 14 SO Shift out

0F 15 SI Shift in

10 16 DLE Data link escape

11 17 DC1 Device control 1

12 18 DC2 Device control 2

13 19 DC3 Device control 3

14 20 DC4 Device control 4

15 21 NAK Negative acknowledgment

16 22 SYN Synchronous idle

17 23 ETB End of transmission block

18 24 CAN Cancel

19 25 EM End of medium

1A 26 SUB Substitute

1B 27 ESC Escape

1C 28 FS File separator

1D 29 GS Group separator

1E 30 RS Record separator

1F 31 US Unit separator

7F 127 DEL Delete

Appendix G ASCII Character Set 675

Printable Character Codes

Hex Decimal Character Hex Decimal Character Hex Decimal Character

20 32 Space 40 64 @ 60 96 ‘

21 33 ! 41 65 A 61 97 a

22 34 ” 42 66 B 62 98 b

23 35 # 43 67 C 63 99 c

24 36 $ 44 68 D 64 100 d

25 37 % 45 69 E 65 101 e

26 38 & 46 70 F 66 102 f

27 39 ’ 47 71 G 67 103 g

28 40 (48 72 H 68 104 h

29 41) 49 73 I 69 105 i

2A 42 * 4A 74 J 6A 106 j

2B 43 + 4B 75 K 6B 107 k

2C 44 , 4C 76 L 6C 108 l

2D 45 – 4D 77 M 6D 109 m

2E 46 . 4E 78 N 6E 110 n

2F 47 / 4F 79 O 6F 111 o

30 48 0 50 80 P 70 112 p

31 49 1 51 81 Q 71 113 q

32 50 2 52 82 R 72 114 r

33 51 3 53 83 S 73 115 s

34 52 4 54 84 T 74 116 t

35 53 5 55 85 U 75 117 u

36 54 6 56 86 V 76 118 v

37 55 7 57 87 W 77 119 w

38 56 8 58 88 X 78 120 x

39 57 9 59 89 Y 79 121 y

3A 58 : 5A 90 Z 7A 122 z

3B 59 ; 5B 91 [7B 123 {
3C 60 < 5C 92 \ 7C 124 |
3D 61 = 5D 93] 7D 125 }
3E 62 > 5E 94 ˆ 7E 126 ˜
3F 63 ? 5F 95

Note that 7FH (127 in decimal) is a control character listed on the previous page.

Index

Symbols

.ALIGN, 377

.FLOAT, 377

.GLOBL, 377

.HALF, 376

.SPACE, 376

$, location counter, 185, 302

1’s complement, 547

addition, 548

overflow, 548, 549

subtraction, 549

1-address machines, 26

2’s complement, 550

addition, 551

subtraction, 551

2-address machines, 25

3-address machines, 24

64-bit arithmetic, 224–232

addition, 224

division, 229

multiplication, 225

subtraction, 224

80286 processor, 48

80386 processor, 48

80486 processor, 48

8080 processor, 48

8086 family processors, 47–49

8255 programmable peripheral interface, 448–

449

8259 programmable interrupt controller, 446–

448

A

aborts, 407

absolute address, 29, 373

accumulator machines, 26

Ackermann’s function, 480

activation record, 151, 351, 464, 472

adders

full-adder, 539

half-adder, 539

addition

binary, 539

floating-point, 560

overflow, 541

address

absolute, 373

PC-relative, 372

address bus, 20

address size override prefix, 169

address translation, 60

protected mode, 54, 55

real mode, 60

addresses

0-address machines, 26

1-address machines, 26

2-address machines, 25

3-address machines, 24

accumulator machines, 26

number of, 24–27

stack machines, 26

addressing modes, 74–78, 167–173, 357

16-bit, 168

677

678 Index

32-bit, 169

based addressing mode, 171, 357

based-indexed addressing mode, 173

direct addressing mode, 76

immediate addressing mode, 75

in MIPS, 357

indexed addressing mode, 171, 357

indirect addressing mode, 77

register addressing mode, 75

usefulness, 186

architecture

load/store, 26

RISC, 6, 351

arrays, 180–186

column-major order, 182

multidimensional, 181

one-dimensional, 180

row-major order, 182

ASCII addition, 332

multidigit, 335

ASCII division, 334

ASCII multiplication, 334

ASCII number representation, 330

ASCII string, 376

ASCII subtraction, 333

ASCIIZ string, 303, 376

assembler directives, 68, 375

assembly language

advantages, 9–10

applications, 10–11

performance, 12–14

what is it, 5–8

why learn, 11

assembly process, 574

AT&T syntax, 496

addressing, 497

operand size, 496

register naming, 496

auxiliary flag, 206

B

based addressing mode, 171, 357

based-indexed addressing mode, 173

BCD number representation, 330

packed, 331

unpacked, 331

binary numbers, 531

addition, 539

conversion, 536, 537

division, 544

multiplication, 542

subtraction, 541

underflow, 541

binary search, 177

BIST, 64

bit, 33

bit manipulation, 279, 287

clearing bits, 272

cutting and pasting, 276

isolating bits, 273

toggling, 276

branch

absolute address, 29

conditional, 30

set-then-jump, 30

test-and-jump, 30

overview, 28

PC-relative, 29

unconditional, 29

breakpoint interrupt, 408

bubble sort, 142

built-in-self-test, 64

burst cycle, 21

bus cycle, 21

bus grant, 21

bus protocol, 21

bus request, 21

bus transactions, 20

byte, 33

byte addressable memory, 33

byte ordering, 37

Index 679

big-endian, 38

little-endian, 38

C

call-by-reference, 125, 389

call-by-value, 125, 389

calling assembly procedures from C, 486

calling C from assembly, 493

carry flag, 200

character representation, 561–563

ASCII, 562

EBCDIC, 562

extended ASCII, 562

CISC processors

evolution, 349

microprogramming, 349

VAX-11/780, 349

clobber list, 500

clock cycle, 23

clock frequency, 23

column-major order, 182

conditional branch, 30

control bus, 20

CPUID instruction, 52

CR0 register, 64

D

data alignment, 41–43

2-byte data, 42

4-byte data, 42

8-byte data, 42

hard alignment, 43

soft alignment, 43

data allocation, 69–74

define directives, 70–72

multiple definitions, 72–73

multiple initializations, 74

data bus, 20

data display debugger (DDD), 597–601

DB directive, 70

DD directive, 70

debugging strategies, 583

dedicated interrupts, 408

denormalized values, 559

device driver, 426

direction flag, 305

DQ directive, 70

DT directive, 70

DW directive, 70

E

effective address, 59, 76, 77

end of procedure, 31

EQU directive, 93

even parity, 273, 275

exceptions, 402, 407

aborts, 407

faults, 407

segment-not-present, 57, 407

traps, 407, 408

excess-M number representation, 547

executable instructions, 68

execution cycle, 22

extended keys, 431

EXTERN directive, 157

F

factorial, 463–467, 472–474

recursive procedure, 464, 472

faults, 407

Fibonacci number, 478

file descriptor, 410

file pointer, 410

flags register, 51, 197–210

auxiliary flag, 206

carry flag, 200

CF, 200

direction flag, 305, 445

IF flag, 418

OF, 203

680 Index

overflow flag, 203

parity flag, 208

PF, 208

SF, 205

sign flag, 205

status flags, 197–210

trap flag, 408

zero flag, 198

ZF, 198

flat segmentation model, 58

floating-point, 551–561

addition, 560

conversion, 557

denormals, 518, 559

formats, 508

IEEE 754, 557

IEEE 784, 563

memory layout, 559

multiplication, 561

precision, 555

range, 555

representation, 555, 556

special values, 559

∞, 559

NaN, 559

zero, 559

subtraction, 560

floating-point unit organization, 508

frame pointer, 134, 151

full-adder, 539

G

GDB, 586–597

commands, 588, 593, 594

general-purpose registers, 354

usage in MIPS, 354

GetInt8, 221

GetStr, 431

GLOBAL directive, 156

H

half-adder, 539

hardware interrupt

example, 452

hardware interrupts, 403, 418

INTA signal, 418

INTR input, 418

maskable, 403, 418

NMI, 418

nonmaskable, 403, 418

hexadecimal numbers, 532

high-level language interface, 484–503

assembling, 485

calling assembly procedures from C, 486

calling C from assembly, 493

externals, 488

globals, 488

inline assembly, 495–503

parameter passing, 486

preserving registers, 488

returning values, 488

high-level language structures

conditional, 252

iterative, 255

for, 256

repeat-until, 256

while, 255

switch, 266

hybrid programs, 11

I

I/O address space, 444

I/O controller, 39, 426

I/O device, 38

I/O port, 40

I/O ports, 444

16-bit ports, 444

32-bit ports, 444

8-bit ports, 444

accessing, 444

Index 681

in, 445

ins, 445

out, 445

outs, 445

I/O routines, 569–574

GetCh, 569

GetInt, 572

GetLInt, 572

GetStr, 570

PutCh, 569

PutInt, 572

PutLInt, 572

PutStr, 570

IEEE 754 floating-point standard, 508, 557

indexed addressing mode, 171, 357

indirect procedure call, 321

initial state, 64

inline assembly, 495–503, 523

clobber list, 500

input/output

I/O address space, 40

isolated I/O, 40

memory-mapped I/O, 40

programmed I/O, 450

insertion sort, 173, 187, 189

instruction decoding, 22

instruction execution, 23

instruction fetch, 22, 63

instruction format, 362

instruction pointer, 51

int 16H BIOS services, 434

00H keyboard input, 434

01H check keyboard buffer, 435

02H check keyboard status, 435

int 21H DOS services

01H keyboard input, 427

02H display character, 440

06H Console I/O, 427

06H console I/O, 440

07H keyboard input, 429

08H keyboard input, 429

09H display string, 440

0AH keyboard input, 430

0BH check keyboard buffer, 430

0CH clear keyboard buffer, 431

25H set interrupt vector, 442

2AH get date, 459

2CH get time, 459

35H get interrupt vector, 441

int 3, 409

int 4, 409

int 9, 427

interrupt 1, 408

interrupt 2, 418

interrupt 23H, 427

interrupt 4, 408

interrupt descriptor table, 403

interrupt flag, 418

interrupt handler, 402

interrupt processing

protected mode, 403

real mode, 424

interrupt service routine, 402

interrupts

breakpoint, 408

dedicated, 408

descriptors, 405

divide error, 408

exceptions, 402, 407

handler, 402

hardware, 418

hardware interrupts, 403

IDT organization, 404

ISR, 402

maskable, 403

nonmaskable, 403

overflow, 409

single-step, 408

software interrupts, 402

taxonomy, 402, 403, 406

into, 409

IP register, 424

682 Index

isolated I/O, 40

Itanium processor, 49

J

jump instructions

backward jump, 240

conditional jump, 244–250

far jump, 241

forward jump, 240

indirect jump, 263–266

intersegment jump, 241

intrasegment jump, 241

near jump, 241

SHORT directive, 241

short jump, 241

unconditional jump, 239

direct, 240

K

keyboard scan codes, 428

L

ld, 581

left-pusher language, 486

linear address, 54

linear search, 258

linking, 581

Linux, 567

Linux system calls, 409

change directory, 420

create directory, 421

delete directory, 421

file system calls, 410

file close, 413

file create, 411

file open, 412

file read, 412

file write, 413

lseek, 413

load instructions, 364

load/store architecture, 26

local variables, 150

logical address, 59

logical expressions, 286, 288

full evaluation, 288

partial evaluation, 288

M

machine language, 4

macro directive, 95

macro expansion, 68

macro instructions, 96

macro parameters, 96

macros, 68, 95

instructions, 96

macro directive, 95

parameters, 96

masking bit, 272

MASM, 6

memory

access time, 33

address, 33

address space, 33

address translation, 60

bandwidth, 34

byte addressable, 33

cycle time, 33

DRAM, 36

dynamic, 36

effective address, 59

EPROM, 35

linear address, 54

logical address, 59, 61

nonvolatile, 35

offset, 59

physical address, 59, 61

PROM, 35

RAM, 36

read cycle, 34

Index 683

read-only, 35

read/write, 35

ROM, 35

segmentation models, 58–59

segmented organization, 59

SRAM, 36

static, 36

volatile, 35

wait cycles, 34

write cycle, 34

memory access time, 33

memory address space, 33

memory architecture

Pentium, 59–63

protected mode, 53–54

real mode, 59–62

memory bandwidth, 34

memory cycle time, 33

memory read cycle, 34

memory write cycle, 34

memory-mapped I/O, 40

merge sort, 269

microprogramming, 349

MIPS instructions, 361–373

abs, 366, 651

add, 364, 652

addi, 364, 652

addiu, 652

addu, 365, 652

and, 368, 652

andi, 368, 652

arithmetic instructions, 364

b, 372, 374, 653

bczf, 653

bczt, 653

beq, 373, 374, 653

beqz, 373, 374, 653

bge, 374, 654

bgeu, 374, 654

bgez, 366, 373, 374, 654

bgezal, 654

bgt, 373, 374, 654

bgtu, 373, 374, 655

bgtz, 374, 655

ble, 374, 655

bleu, 374, 655

blez, 374, 655

blt, 374, 656

bltu, 374, 656

bltz, 374, 656

bltzal, 656

bne, 374, 656

bnez, 374, 657

branch instructions, 371

comparison instructions, 371

comparison to zero, 374

data transfer instructions, 363

div, 367, 657

divu, 657

j, 371, 658

jal, 386, 658

jalr, 658

jr, 386, 658

jump instructions, 371

la, 364, 658

lb, 363, 659

lbu, 364, 659

ld, 659

lh, 364, 659

lhu, 364, 659

li, 364, 659

load instructions, 364

logical instructions, 368

lui, 660

lw, 364, 660

lwcz, 660

lwl, 660

lwr, 661

mfcz, 661

mfhi, 366, 661

mflo, 366, 661

move, 363, 662

684 Index

mtcz, 662

mthi, 366, 662

mtlo, 366, 662

mul, 366, 662

mulo, 367, 662

mulou, 367, 663

mult, 366, 663

multu, 663

neg, 365, 663

negu, 663

nor, 368, 664

not, 368, 664

or, 368, 664

ori, 363, 368, 664

rem, 368, 664

remu, 664

rol, 370, 665

ror, 370, 665

rotate instructions, 370

sb, 363, 665

sd, 665

seq, 372, 665

sge, 372, 665

sgeu, 372, 666

sgt, 372, 666

sgtu, 372, 666

sh, 365, 666

shift instructions, 369

sle, 372, 666

sleu, 372, 666

sll, 369, 667

sllv, 369, 667

slt, 371, 372, 667

slti, 371, 667

sltiu, 667

sltu, 371, 372, 667

sne, 372, 668

sra, 369, 668

srav, 369, 668

srl, 369, 668

srlv, 369, 668

sub, 365, 669

subu, 365, 669

sw, 365, 669

swcz, 669

swl, 669

swr, 670

ulh, 670

ulhu, 670

ulw, 670

ush, 671

usw, 671

xor, 368, 671

xori, 368, 671

MIPS processor, 354–478

addressing modes, 357

architecture, 354–357

instruction format, 362

instruction set, 361–373

memory layout, 357

recursion, 471–478

stack implementation, 391

mixed-mode operation, 62

mixed-mode programs, 11, 484

calling assembly code, 486

calling C from assembly, 493

compiling, 485

externals, 488

globals, 488

inline assembly, 495–503

parameter passing, 486

preserving registers, 488

returning values, 488

multibyte data, 37

multidimensional arrays, 181

multisegment segmentation model, 58

N

NASM, 6, 567–569, 574–581

number of addresses, 24–27

number representation

Index 685

conversion, 295, 557

floating-point, 551–561

signed integer, 545

1’s complement, 547

2’s complement, 550

excess-M, 547

signed magnitude, 546

unsigned integer, 538

addition, 539

division, 544

multiplication, 542

subtraction, 541

number systems, 529

base, 530

binary, 530, 531

conversion, 532, 534, 536, 537

decimal, 530, 531

floating-point, 551–561

hexadecimal, 530, 532

notation, 531

octal, 530, 532

radix, 530

O

octal numbers, 532

octal-to-binary conversion, 295

one’s complement, 547

one-dimensional arrays, 180

operand size override prefix, 169

overflow, 560

overflow flag, 203

overflow interrupt, 409

override prefix, 62

address size, 169

operand size, 169

segment override, 147

P

packed BCD numbers

addition, 336

processing, 336

subtraction, 338

paging, 54

parameter passing, 32, 125, 128–146, 486

call-by-reference, 125

call-by-value, 125

register method, 129

stack method, 132

variable number of parameters, 146–150

parity conversion, 276

parity flag, 208

PC-relative, 29

PC-relative address, 372

Pentium alignment check flag, 53

Pentium flags register, 51

Pentium II processor, 49

Pentium instructions

aaa, 330, 332, 619

aad, 331, 334, 619

aam, 331, 334, 619

aas, 330, 333, 619

adc, 620

add, 82, 620

and, 87, 272, 620

arithmetic instructions, 211–217

bit instructions, 290–291

bsf, 291, 620

bsr, 291, 621

bswap, 80, 621

bt, 291, 621

btc, 291, 622

btr, 291, 622

bts, 291, 622

call, 126, 321, 623

cbw, 216, 623

cdq, 216, 623

clc, 623

cld, 305, 624

cli, 405, 418, 624

cmc, 624

cmp, 82, 624

686 Index

cmps, 309, 625

conditional jump, 632

cwd, 216, 625

cwde, 217, 626

daa, 331, 336, 626

das, 331, 338, 626

dec, 80, 202, 627

div, 215, 408, 627

division instructions, 215

doubleshift instructions, 283

enter, 137, 154, 628

hlt, 628

idiv, 215, 408, 629

imul, 213, 629

in, 445, 630

inc, 80, 202, 630

ins, 445, 631

insb, 631

insd, 631

insw, 631

int, 409, 631

into, 631

iret, 424, 632

iretd, 632

ja, 247

jae, 247

jb, 247

jbe, 247

jc, 85, 201, 245

jcc, 632

jcxz, 246, 252, 632

je, 85, 245, 247, 248

jecxz, 245, 251

jg, 85, 248

jge, 85, 248

jl, 85, 248

jle, 85, 248

jmp, 83, 239, 263, 633

jna, 247

jnae, 247

jnb, 247

jnbe, 247

jnc, 201, 245

jnc
jne, 85, 245, 247, 248

jng, 248

jnge, 248

jnl, 248

jnle, 248

jno, 204, 245, 409

jnp, 208, 245

jns, 206, 245

jnz, 85, 199, 245, 247, 248

jo, 204, 245, 409

jp, 208, 245

jpe, 245

jpo, 245

js, 206, 245

jz, 85, 199, 245, 247, 248

lahf, 300, 633

lds, 54, 312, 634

lea, 77, 634

leave, 138, 154, 635

les, 54, 312, 634

lfs, 54, 634

lgdt, 57

lgs, 54, 634

lidt, 404

lldt, 57

lods, 308, 635

lodsb, 308, 635

lodsd, 308, 635

lodsw, 308, 635

logical instructions, 272–278

loop, 86, 250, 252, 636

loop instructions, 250

loope, 250

loope/loopz, 636

loopne, 250

loopne/loopnz, 636

loopnz, 250

loopz, 250

Index 687

lss, 54, 634

mov, 54, 78, 636

movs, 306, 637

movsb, 306, 637

movsd, 306, 637

movsw, 306, 637

movsx, 217, 637

movzx, 217, 637

mul, 212, 638

multiplication instructions, 211

neg, 638

nop, 639

not, 87, 278, 639

or, 87, 275, 639

out, 445, 639

outs, 445, 640

pop, 54, 63, 120, 640

popa, 137, 641

popad, 122

popaw, 123

popf, 122, 441, 641

popfd, 641

procedure template, 138

push, 63, 120, 641

pusha, 137, 642

pushad, 122

pushaw, 123

pushf, 122, 441, 642

rcl, 91, 643

rcr, 91, 643

rep, 304, 445, 643

repe, 305, 445

repe/repz, 643

repne, 305, 445

repne/repnz, 643

repnz, 305

repz, 305

ret, 128, 135, 644

rol, 91, 643

ror, 91, 643

rotate instructions, 284–285

sahf, 300, 644

sal, 281, 645

sar, 281, 645

sbb, 645

scas, 311, 646

scasb, 311, 646

scasd, 311, 646

scasw, 311, 646

setCC, 646

sgdt, 57

shift instructions, 278–284

shl, 89, 645

shld, 283, 647

shr, 89, 645

shrd, 283, 647

sidt, 404

sldt, 57

stc, 647

std, 305, 647

sti, 405, 418, 424, 648

stos, 308, 648

stosb, 308, 648

stosd, 308, 648

stosw, 308, 648

sub, 82, 648

test, 88, 278, 649

xchg, 79, 649

xlat, 80, 108, 649

xor, 87, 276, 650

Pentium interrupt flag, 52

Pentium Pro processor, 48

Pentium procedure template, 138

Pentium processor

CPUID instruction, 52

CR0 register, 64

EIP register, 51

flags register, 51

alignment check flag, 53

control flags, 51

EFLAGS, 51

FLAGS, 51

688 Index

interrupt flag, 52

status flags, 51

system flags, 51

trap flag, 52

VM flag, 53

zero flag, 51

floating-point instructions, 512–519

addition, 514

comparison, 517

data movement, 513

division, 516

miscellaneous, 518

multiplication, 515

subtraction, 514

floating-point registers, 508–512

floating-point unit organization, 508

instruction fetch, 63

IP register, 51

memory architecture, see memory archi-

tecture

protected mode, 53

real mode, 59

stack implementation, 118

stack operations, 120

Pentium registers, 49–53, 508–512

control registers, 51

data registers, 50

floating-point registers, 508–512

index registers, 50

pointer registers, 50

segment registers, see segment registers

Pentium trap flag, 52

peripheral device, 39

peripheral support chips, 446–449

8255 PPI, 448

8259 PIC, 446

physical address, 59

pipelining

superscalar, 48

polling, 450

procedure call, 30, 386

call-by-reference, 389

call-by-value, 389

end, 31

overview, 30

parameter passing, 32

return address, 31

procedures

indirect call, 321

local variables, 150

overheads, 159

processor registers, 27, 354

programmed I/O, 450

programmer productivity, 9

protected mode architecture, 53–54

PutInt8, 218

Q

quicksort, 467

algorithm, 468

MIPS procedure, 474

Pentium procedure, 469

R

real mode architecture, 59–62

real-time applications, 11

recursion, 463–464, 471–478

activation record, 464

factorial, 464, 472

Fibonacci number, 478

in MIPS, 471–478

factorial procedure, 472

quicksort procedure, 474

versus iteration, 478

in Pentium, 464–471

factorial procedure, 464

quicksort procedure, 469

quicksort algorithm, 468, 474

registers, 27

return address, 31

right-pusher language, 486

Index 689

RISC processors, 350–353

characteristics, 350–351

design principles, 351–353

row-major order, 182

S

segment descriptor, 55–57

segment descriptor tables, 57–58

GDT, 57

IDT, 57

LDT, 57

segment override, 147

segment registers, 53–55

CS register, 53

DS register, 53

ES register, 53

FS register, 53

GS register, 53

SS register, 53

segmentation, 54

segmentation models, 58–59

flat, 58

multisegment, 58

segmented memory organization, 59

segment base, 59

segment offset, 59

selection sort, 260

SHORT directive, 241

sign bit, 546

sign extension, 213

sign flag, 205

signed integer, 545

1’s complement, 547

2’s complement, 550

excess-M, 547

signed magnitude representation, 546

signed magnitude representation, 546

single-step interrupt, 408

software interrupts, 402, 409, 425

exceptions, 402

system-defined, 403

user-defined, 403

space efficiency, 9

SPIM, 605–613

assembler directives, 375

data directives, 376

debugging, 610

loading, 610

miscellaneous directives, 377

running, 610

segments, 375

simulator settings, 608

string directives, 376

system calls, 373

stack, 118

activation record, 151

frame pointer, 134, 151

MIPS implementation, 391

operations, 120, 122

operations on flags, 122

overflow, 119, 124

Pentium implementation, 118

stack frame, 134, 151

top-of-stack, 118

underflow, 119, 124

use, 123

what is it, 118

stack frame, 134, 151

stack machines, 26

stack operations, 120, 122

stack overflow, 119, 124

stack underflow, 119, 124

status flags, 197–210

string directives, 376

string processing

string compare, 316

string concatenate, 315

string convert, 319

string copy, 314

string length, 313

string search, 318

690 Index

string representation, 301

fixed-length, 301

variable-length, 301

superscalar, 48

symbol table, 74, 76

system bus, 20

system calls, 373

system clock, 23

cycle, 23

frequency, 23

period, 23

T

TASM, 6

time efficiency, 9

time-critical applications, 11

TIMES directive, 74

top-of-stack, 118

towers of Hanoi, 480

trap flag, 408

traps, 407, 408

two’s complement, 550

type specifier, 79

BYTE, 79

DWORD, 79

QWORD, 79

TBYTE, 79

WORD, 79

types of memory, 35–37

U

unconditional branch, 29

underflow, 541, 560

example, 550

unsigned integer addition, 539

unsigned integer representation, 538

V

variable number of parameters, 146–150

VAX-11/780, 349

W

wait cycles, 34

Z

zero flag, 51, 198

