
Using Heterogeneous Mappings for Rewriting
SPARQL Queries

Fernanda Lígia Rodrigues Lopes
Federal Institute of Education,

Science and Technology of Ceará
Fortaleza, CE, Brazil

nandaligia@gmail.com

Eveline Russo Sacramento
Department of Informatics

PUC-Rio
Rio de Janeiro, RJ, Brazil

esacramento@inf.puc-rio.br

Bernadette Farias Lóscio
Informatics Center

Federal University of Pernambuco
Recife, PE, Brazil

bfl@cin.ufpe.br

Abstract—In this paper we present an approach for rewriting
queries between heterogeneous ontologies. In our query rewrit-
ing solution, we combine the semantics and expressiveness of
SPARQL with notions of logic programming and adopt a rule-
based formalism for representing mappings between ontologies.
We also deal with some relevant questions, including: structural
heterogeneities and pruning of irrelevant parts of a rewritten
query.

Keywords—query rewriting; SPARQL; schema mappings;
rules.

I. INTRODUCTION

In the Semantic Web, the definition of resources and rela-
tionships between them are described by ontologies, which are,
in general, independently developed, even for a same domain.
Under such an environment, there is often the need to access
distinct ontologies without regard to their heterogeneities [1].
In some cases, query answers can be obtained using ontologies
different from those initially used to express the query, for
example. Thus, in this context, if an application requires
querying different ontologies or data sources without formu-
lating a new query for each ontology, it may be necessary
to deal with the problem of query rewriting between distinct
ontologies. This problem occurs, for example, when a query
submitted to a source ontology OS needs to be reformulated
in terms of a target ontology OT . In this case, we have to
answer the following question: how to describe and explore
mappings between OS and OT in order to rewrite a SPARQL
query expressed over OS into a semantically equivalent query
in terms of OT , considering that the query results must be
restructured and presented according to OS?

In this paper, we address the problem described above and
present an approach for rewriting SPARQL queries between
heterogeneous ontologies. The main distinguishing features of
our proposal are: (i) it can deal with ontologies with distinct
structures, through the manipulation of heterogeneous map-
pings between their concepts; (ii) it implements an approach
that combines the semantics and expressiveness of SPARQL
with notions of annotated logic programming; (iii) it works
with some SPARQL operators that were not addressed in
previous works; (iv) it allows the pruning of some nodes of the
rewritten query, which do not contribute towards its answering;
and (v) it allows the representation of query results in terms of

the source ontology. The remainder of this paper is organized
as follows. Section II presents our approach for dealing with
mappings between heterogeneous ontologies. Section III con-
tains the query rewriting proposal, while Section IV describes
implementation issues and the validation of our approach.
Section V discusses some related work and finally, Section
VI presents our main conclusions.

II. DEALING WITH HETEROGENEOUS ONTOLOGIES

Ontologies have been extensively adopted to provide a com-
mon understanding for terms of specific domains. However,
since such ontologies can be independently developed, it is
common to find ontologies overlapping with each other and
also providing distinct views for a same domain. For example,
two ontologies can describe similar information using different
levels of granularity, concepts or restrictions. In this work,
we classify the heterogeneities between ontologies into two
main groups, as detailed in the following. To illustrate our
explanation, we use excerpts of OWL ontologies describing
data about virtual sales of products (Figures 1 and 2) adapted
from the Amazon virtual store. The namespace prefixes “s:”
and “a:” refer to the vocabulary of Sales (Figure 1) and
Amazon (Figure 2) ontologies, respectively.

Concept-Based Heterogeneity. Occurs when two ontologies
represent the same information through entities of distinct
natures. By entity nature, we mean the type of ontology
element, e.g., a class, a datatype property, an object property
(relationship) or an instance. For example, two ontologies
are named heterogeneous by concept if a given information,
expressed as a class in the former, is represented as a property
in the later, or vice versa. Figure 1 and Figure 2 exemplify this
kind of heterogeneity. We may observe that the information
about publishers in ontology O2 is modeled using a datatype
property (a:publisher), while in ontology O1 it is depicted by
a relationship (an object property s:publishedBy) and a class
(s:Publisher).

Restriction-Based Heterogeneity. Occurs when restrictions
are applied to the source or the target ontology, or even to
both ontologies. We deal with two types of restrictions:

(i) Class restriction [2]: occurs when a restriction is used
to delimit a subset of a specific class. We consider that a re-
striction is a triple (prop, op, const), where: prop is a datatype

property, op is a comparison operation and const is a constant
value assigned to the property prop. In this work, we deal
with the following comparison operators: equal-to (=), greater-
than (>), greater-than-or-equal (≥), less-than (<), less-than-
or-equal (≤) and different-from (6=). A built-in predicate is a
predicate that allows us expressing the mentioned restrictions.
Note that class restriction helps us when at least one of the
ontologies being mapped has little or no specialization of some
top level classes. Figure 1 and Figure 2 illustrate an example
where a class a:Book in ontology O2 corresponds to a class
s:Publication in ontology O1, whose property s:type has the
value “book”.

(ii) Subsumption restriction: occurs when the same informa-
tion is represented in different ontologies using distinct levels
of granularity with respect to a class hierarchy (subsumption
of concepts).

Finally, it is important to mention that the heterogeneities
explained before may appear in a combined way.

Figure 1. Sales ontology (O1)

Figure 2. Amazon ontology (O2)

A. Ontology Mapping Classification

Considering that ontologies need to interoperate with each
other, we adopt a formalism for describing ontology mappings,
which allows representing the association between ontologies,
while deals with the different types of heterogeneities previ-
ously described. Our mappings can be:

(i) Homogeneous or heterogeneous. A mapping is called
homogeneous when it maps elements of a same type, e.g.,
concepts to concepts, roles to roles and individuals to individ-
uals. By contrast, heterogeneous mappings relate elements of
different natures [3], [4]. Note that heterogeneous mappings
allow dealing with concept-based heterogeneities.

(ii) Simple or complex. A mapping is called simple when
it specifies a direct relationship between ontology elements of
two distinct ontologies. On the other hand, when a mapping
involves a complex expression, in at least one side of the
mapping, it is called a complex mapping [4]. Class restriction’s
heterogeneities can be supported by such complex mappings.
We point out that both homogeneous and heterogeneous map-
pings can be simple or complex.

Table I presents some examples of mappings. Note that
the left side of a mapping contains concepts of the source
ontology, while the right side shows concepts of the target
ontology. In our example, we consider that Sales ontology
(O1) is the source ontology, while Amazon ontology (O2) is
the target ontology. For the sake of simplicity and space, we
do not show all mappings that can be obtained between those
ontologies, but only the most relevant ones.

TABLE I
MAPPINGS BETWEEN SALES ONTOLOGY AND AMAZON ONTOLOGY

#1: s:Music(x) ⇐ a:Music(x)
#2: s:Video(x) ⇐ a:DVD(x)
#3: s:Publication(x) ⇐ a:Book(x)
#4: s:type(x,k) ⇐ a:Book(x), k = “book”
#5: s:Product(x) ⇐ a:Book(x); a:DVD(x);

a:Music(x)
#6: s:Publisher(fPublisher(y)) ⇐ a:publisher(x,y), a:Book(x)
#7: s:RecordLabel(fRLabel(y)) ⇐ a:producedBy(x,z),

a:recLabel(z,y), a:Music(x)
#8: s:edition(x,y) ⇐ a:bookEdition(x,y), a:Book(x)
#9: s:author(x,y) ⇐ a:author(x,y), a:Book(x)

#10: s:price(x,y) ⇐ a:price(x,y), a:Book(x);
a:price(x,y), a:DVD(x);
a:price(x,y), a:Music(x)

#11: s:genre(x,y) ⇐ a:category(x,y), a:DVD(x)
#12: s:director(x,y) ⇐ a:hasDirector(x,z),

a:directorName(z,y), a:DVD(x)
#13: s:pubName(fPublisher(y),y) ⇐ a:publisher(x,y), a:Book(x)
#14: s:pubAddress(fPublisher(y),z) ⇐ a:publisherAddress(x,z),

a:publisher(x,y), a:Book(x)
#15: s:publishedBy(x,fPublisher(y)) ⇐ a:publisher(x,y), a:Book(x)
#16: s:recName(fRLabel(y),y) ⇐ a:recLabel(z,y), a:Music(x)
#17: s:rec(x,fRLabel(y)) ⇐ a:producedBy(x,z),

a:recLabel(z,y), a:Music(x)
#18: s:title(x,y) ⇐ a:description(x,y), a:Book(x);

a:description(x,y), a:DVD(x);
a:description(x,y), a:Music(x)

In summary, mappings like #1 and #2 are simple and
homogeneous, once a simple expression maps a class to
another class. Similarly, we have a property mapping in #8.
On the other hand, #6 and #7 are examples of heterogeneous
mappings. About the semantics of the presented mappings, we
can do some remarks:
• Mapping #5, for example, deals with subsumption re-

striction, once a:Book, a:DVD and a:Music are s:Product
(semicolon represents union).

• Mappings #3 and #4 reflect a class restriction over the
source ontology O1. It is important to say that two
rules are used for this representation, as the proposed
formalism enables just atomic elements on the left side.

• Mappings #6, #13, #14 and #15 deal with information
restructuration about Books. In O1, this book informa-
tion is represented through two classes (s:Publication,
s:Publisher) and a relationship (s:publishedBy) , while in

O2 there is a single class (a:Book). For this reason, map-
pings with Skolem Functions are used to correctly relate
the entities, i.e., to return as an object, corresponding to
an instance of the class s:Publisher, an information that
was originally expressed as a string (datatype property
a:publisher).

B. Ontology Mapping Representation

In some previous works, ontology mappings were described
using DL (Description Logic)[8], [11] or an extension of DL
(DDL - Distributed Description Logic)[3]. Although DL is
useful for expressing semantic relationships between ontology
concepts, such language has limitations in some important
aspects of our work. For example, regarding the object restruc-
turation, DL does not allow the explicit definition of object
identifiers (OIDs). To overcome these limitations, we adopt an
extended rule-based formalism that is able to represent objects
and includes a suitable mechanism for building object iden-
tifiers. Hence, we can describe heterogeneous mappings and
also properly deal with the restriction-based heterogeneities,
when the restriction appears in any one of the two ontologies.
Next, we describe how our ontology mappings can be specified
according to the adopted formalism.

Let F be a set of function symbols, B be a set of atomic
concepts and atomic roles, and V be a set of variables. A
constant is a 0-ary function symbol. The set of terms over F
and V is recursively defined as follows: (i) each variable v
in V is a term; (ii) each constant c in F is a term; (iii) if
t1, ..., tn are terms, and f is an n-ary function symbol in F ,
then f(t1, ..., tn) is a term. An atom over F , B and V is an
expression of the form c(t), where c is an atomic concept and
t is a term, or of the form p(t, u), where p is an atomic role
or a built-in predicate and t and u are terms.

Let OS and OT be two ontologies and OR be a rule
language. The set of mappings between OS and OT are
specified through a set of mapping rules of the form β1(w1)⇐
α1(v1), ..., αm(vm), where: (i) α1(v1), ..., αm(vm), called the
body of the mapping rule, is an atom or an atom conjunction,
where αi(vi) is an atom whose atomic concept or atomic role
occurs in the target ontology OT , or a built-in operation; (ii)
β1(w1), called the head of the mapping, is an atom whose
atomic concept or atomic role occurs in the source ontology
OS . This rule-based formalism (a datalog extension) supports
Skolem functions for the creation of new object identifiers
of classes in OS from one or more properties of OT . So,
these mapping rules allow the construction of URIrefs for new
objects in OS as terms of the form f(t1, ..., tn), where f is an
n-ary function symbol and t1, ..., tn is a sequence of terms of
OS . We refer the reader to [5] for further information about
our initial strategy to obtain these mappings. It is worth to
mention that, to deal with a large ontology, this strategy may
be applied to parts of such ontology, in order to incrementally
generate the mappings.

III. THE QUERY REWRITING APPROACH

In this section, we present our approach for rewriting
SPARQL queries between heterogeneous ontologies. To help
the manipulation of heterogeneous mappings, expressed by
rules, our solution was inspired on some notions of annotated
logic programming [6]. The input of the query rewriting
process is a SPARQL query formulated in terms of a source
ontology and a set of mapping rules between the source and
the target ontology. In order to rewrite the input query into a
semantically equivalent query described in terms of the target
ontology, the following activities are executed:

1) Query Normalization. Extracts the basic blocks of con-
struction of a SPARQL query and expresses such query in
a homogeneous format, eliminating syntactic divergences and
considering implicit rules of precedence and association of
operators. This activity turns easy the manipulation of a query
and eliminates any ambiguity found during the query analysis.

2) Generation of a SPARQLD tree. In our approach, a
SPARQL query is represented by a tree that reflects, through
a set of rules and annotations, the semantics of the query’s
graph pattern. This tree, called SPARQLD, has its construction
based on the SLD tree [6], which is a special tree representing
possible derivations of a goal G, related to a program P.
In PROLOG systems, a SLD tree represents the search and
resolution space that reflects a queue of goals built during the
computation of G. As a result, it is provided an answer that,
in general, consists of an affirmation (or a negation). In this
work, we are not interested in receiving an answer, but in
generating a set of rules that represents the rewritten query. It
is important to say that a SPARQLD tree has its nodes enriched
by annotations with the objective of properly representing the
semantics of the SPARQL constructors, and the information
necessary to the rewriting process. These annotations store,
for example, the reference identifier of the node, information
about the graph pattern and about the filters (internal and
external) applied in such node.

3) Query Rewriting and Results Restructuring. Receives a
SPARQLD tree that represents the query and a set of mapping
rules. The objective of this activity is to update the SPARQLD
tree with the derivations obtained by the rules, so the tree can
reflect the rewritten query. Furthermore, the query rewriting
algorithm produces two additional artifacts: (i) a set of updates,
referring to the format of the query result, which turns possible
to present the query answer according to the target ontology;
and (ii) a set of subtrees that must be discarded from the
rewritten query, as they would return empty or redundant
results.

In the following, we present an example to illustrate our
query rewriting approach. Consider that query Q = “Return
the title and the author of books whose price is greater than
30 dollars. Optionally, return information about the publisher
of these books. Order the results by title”, presented in Figure
3, is submitted over the Sales ontology and should be rewritten
in terms of the Amazon ontology. In order to obtain the
corresponding rewritten query, the set of mappings presented

in Table I are used.

SELECT ?tl ?au ?e ?ne ?ee
FROM <Sales.owl>
WHERE{

{?l s:title ?tl .
?l s:type ?b .
?l s:author ?au
OPTIONAL{

?e s:pubName ?ne .
?e s:pubAddress ?ee.
?l s:publishedBy ?e}

?l s:price ?p .
FILTER (?b = ‘book’ && ?p > 30)}

}ORDER BY ?tl

Figure 3. SPARQL query Q

Figure 4 presents the SPARQLD tree built for Q, where:
nodes 1 (node identifier is repeated due to the OPTIONAL
semantics) and 2 represent the original query, while the other
nodes are constructed or updated during the query rewriting
process; each filter expression in the query is symbolized by
a syntax tree that has an identifier. Table II shows the node
predicates, which are updated in every call. In this figure, the
predicates being resolved are underlined, while the resolved
predicates are in italics.

Figure 4. SPARQLD tree for Q

For each leave of the initial SPARQLD, deep-first search is
applied. For example, in node 1 (call #1), the first predicate
to be rewritten is s:title(l,tl). Using rule #18, this node is
expanded to three new nodes (3, 4 and 5), once the mapping
expresses a disjunction. Then, in second call (#2), mapping
rule #4 is used to resolve the predicate s:type(l,k). We may
observe that rule #4 contains a restriction over the source
ontology. So, the algorithm verifies if the restriction k = ‘book’

(from such rule) is compatible with the value presented in
Q. In this case, it is true. However, if instead of ‘book’ it
was ‘magazine’, for example, the node execution would be
discontinued. As indicated by the elliptical node of the Filter
tree (Figure 4), the operation’s subtree corresponding to such
restriction should also be removed. This is done because this
restriction does not appear in the target ontology. Through
Figure 4, it is possible to see that from call #2 to call #3
there are no new nodes because there are no new disjunctions.
However, as showed in Table II, the list of predicates is still
updated. In call #3, mapping rule #9 is used to resolve the
predicate s:author(l,au).

Next, call #4 uses the rule #10 (s:price). This case would
generate three new nodes, however just the node referring to
book is created, unlike the other two (DVD and Music). It
occurs because we have the condition a:Book in predicate
a:author. So, since Book, DVD and Music do not share com-
mon instances, the last two nodes may be discarded. On the
other hand, if they share instances, then they will be returned
by the branch referring to book. Hence, the generation of two
new branches is avoided. In #6 and #7, the initiated subtrees
are discarded by similar reasons explained in call #4. However,
note that in this case the predicate is s:type(l,b). Regarding call
#8, the predicate s:pubName(e,ne), uses mapping rule #13.
This rule reflects a concept-based heterogeneity. Observe that
the rule head has a function. This case happens because the
target ontology does not have a class representing Publisher.
Then, the variable e (corresponding to the object identifier,
namely, URI) cannot be obtained. For that reason, such URI
should be constructed using the function fPublisher(y), from
the value that will be obtained through the query execution.

TABLE II
PREDICATES OF THE SPARQLD TREE FOR Q

idRef Predicates
- 1 q1(au,e,ee,k,l,ne,p,tl)
1 1 s:title(l,tl), s:type(l,b), s:author(l,au), s:price(l,p)
2 3 s:type(l,b), s:author(l,au), s:price(l,p),

a:description(l,tl), a:Book(l)
3 3 s:author(l,au), s:price(l,p),

a:description(l,tl),a:Book(l)
4 3 s:price(l,p), a:description(l,tl), a:Book(l), a:author(l,au)
5 3 a:description(l,tl), a:Book(l), a:author(l,au), a:price(l,p)
6 4 s:type(l,b), s:author(l,au), s:price(l,p),

a:description(l,tl), a:DVD(l)
7 5 s:type(l,b), s:author(l,au), s:price(l,p),

a:description(l,tl), a:Music(l)
8 2 s:pubName(e,ne), s:pubAddress(e,ee), s:publishedBy(l,e)
9 2 s:pubAddress(e,ee), s:publishedBy(l,e),

a:publisher(_p13,ne), a:Book(_p13)
10 2 s:publishedBy(l,e), a:publisher(_p13,ne),

a:Book(_p13), a:publisherAddress(_p14,ee)
11 2 a:publisher(l,ne), a:Book(l), a:publisherAddress(l,ee)

The remainder of the rewriting process occurs in a similar
way. Besides its output, the rewriting algorithm may produce
the query answer in a tabular form, as well as RDF triples
(to this case, CONSTRUCT may be used). Figure 5 shows
the rewritten query for Q. To obtain this query through the
tree exhibited in Figure 4, such tree should be traversed,

reconstructing the operators and filters and removing discarded
branches, filters or any unnecessary information. Moreover, the
functions for building the URIs are created and associated to
their respective variables. We emphasize that these functions
could be implemented in a procedure outside the query.

SELECT ?tl ?au ?e ?ne ?ee
FROM <Amazon.owl>
WHERE{

{?l a:description ?tl .
?l rdf:type a:Book .
?l a:autor ?au .
?l a:price ?p
OPTIONAL{

?l a:publisher ?ne .
?l rdf:type a:Book .
?l a:publisherAddress ?ee}

FILTER (?p > 30)}
LET (?e := IRI(fn:concat(a:,?ne)))

}ORDER BY ?tl

Figure 5. Rewritten query for Q

IV. IMPLEMENTATION ISSUES AND VALIDATION

To validate our approach, we developed a tool, named
SQuOL, and we performed some experiments. SQuOL has
been implemented in Java and Jena API1 was used to manip-
ulate both ontologies and SPARQL queries. More specifically,
queries were manipulated through ARQ API2. Both the map-
ping model and ontology mappings were described in XML.
SQuOL also offers a user-friendly interface where users can
easily formulate and rewrite queries, and manipulate ontology
mappings. Concerning the experiments, we considered the
following:
• Five (5) OWL ontologies, divided in two groups: sales

and education. The first set was based on the ontologies
adopted by [5], while the second one represents ontolo-
gies available on the Web.

• A set of mappings between the mentioned ontologies. In
each group, for every pair of ontologies, each one was
tested as both source and target ontology, as the mappings
are unidirectional.

• A set of twenty six (26) queries was chosen consid-
ering: the main SPARQL constructs, different types of
heterogeneous mappings and different types of queries
(conjunctive queries, disjunctive queries and queries with
negation, in particular, negation as failure).

In all experiments, the queries were correctly rewritten
and the irrelevant parts of the output query were pruned as
expected. The obtained results shown that SQuOL is able to
correctly handle with heterogeneous and complex mappings
during the rewriting of SPARQL queries.

V. RELATED WORK

In this section, we briefly present some of the research
literature related to our work. In [7], the authors focus on
accessing relational data using DL-LiteA ontologies. They

1http://jena.sourceforge.net/
2http://jena.sourceforge.net/ARQ/app_api.html

expand a query using ontology terminological components
(TBox) before applying the obtained mappings. In our work,
the query expansion phase occurs during mappings generation.
This way, we avoid expansions each time a query is submitted
to an ontology and we prevent unnecessary expansions of
class hierarchies. Fernandes [8] proposes a semantic query
reformulation process in order to obtain approximate query
answers instead of exact ones. However, such queries, ex-
pressed in DL or SPARQL, can be constructed just over
classes and cannot be freely formulated, as they are based
on existing templates. The approaches presented in [9] and
[11] directly deal with SPARQL queries. However, they do
not treat filter expressions in the queries and only consider
homogenous mappings expressed in RDF ([9]) and DL ([11]).
In [10] the authors propose a method to deal with native
query rewriting in SPARQL. However, they do not address
heterogeneity questions mentioned in our work.

VI. CONCLUSION

In this work, we presented an approach for query rewriting
between heterogeneous ontologies. One of the main dis-
tinguishing issues of our solution is that it can deal with
ontologies with distinct structures through the manipulation
of heterogeneous mappings between their concepts. We also
presented the formalism for representing such mappings and
we described how they could be used during the query
rewriting process. As a future work, we plan to develop new
experiments considering larger ontologies and known datasets.

REFERENCES

[1] Y. Li and J. Heflin, “Using Reformulation Trees to Optimize Queries
over Distributed Heterogeneous Sources”, Proc. International Semantic
Web Conference (ISWC 2010), Springer, pp.502-517.

[2] R. Parundekar, C. Knoblock and J. Ambite, “Linking and Building On-
tologies of Linked Data”, Proc. International Semantic Web Conference
(ISWC 2010), Springer, pp.598-614.

[3] C. Ghidini and L. Serafini, “Reconciling concepts and relations in
heterogeneous ontologies”, Proc. 3rd European Semantic Web Conference
(ESWC 2006), Springer, pp.50-64.

[4] R. De Virgilio, F. Giunchiglia and L. Tanca, Semantic Web Information
Management: A Model-Based Perspective, 1st ed. Springer-Verlag New
York Inc, 2010.

[5] E. Sacramento, V. Vidal, J. Macêdo, B. Lóscio, F. Lopes and M. Casanova,
“Towards automatic generation of application ontologies”, Journal of
Information and Data Management (JIDM), SBC, 2010, pp.535-551.

[6] J. Lloyd, Foundations of Logic Programming. Berlin: Springer-Verlag,
1987.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro. “Ontologies and databases: The DL-lite approach”,
Reasoning Web, Springer, 2009, pp.255-356.

[8] D. Fernandes, Using Semantics to Enhance Query Reformulation in
Dynamic Distributed Environments. PhD thesis, Federal University of
Pernambuco, Brazil, 2009.

[9] G. Correndo, M. Salvadores, I. Millard, H. Glaser and N. Shadbolt,
“Sparql query rewriting for implementing data integration over linked
data”, In Proceedings of the International Workshop on Data Semantics,
13th EDBT, 2010, pp.1-11.

[10] W. Le, S. Duan, A. Kementsietsidis, F. Li and M. Wang, “Rewriting
queries on SPARQL views”, Proc. 20th International Conference on
World Wide Web, ACM, 2011, pp.655-664.

[11] K. Makris, N. Bikakis, N. Gioldasis and S. Christodoulakis, “SPARQL–
RW: Transparent Query Access over Mapped RDF Data Sources”, Proc.
EDBT Demo Session, Springer, 2012, pp.1108-1117.

