
Shaker: a Tool for Detecting More Flaky Tests
Faster

Marcello Cordeiro
Universidade Federal de Pernambuco

Recife, Brazil

msc3@cin.ufpe.br

Denini Silva
Universidade Federal de Pernambuco

Recife, Brazil

dgs@cin.ufpe.br

Leopoldo Teixeira
Universidade Federal de Pernambuco

Recife, Brazil

lmt@cin.ufpe.br

Breno Miranda
Universidade Federal de Pernambuco

Recife, Brazil

bafm@cin.ufpe.br

Marcelo d’Amorim
Universidade Federal de Pernambuco

Recife, Brazil

damorim@cin.ufpe.br

Abstract—A test case that intermittently passes or fails when
performed under the same version of source code and test
code is said to be flaky. The presence of flaky tests wastes
testing time and effort. The most popular approach in industry
to detect flakiness is ReRun. The idea behind ReRun is very
simple: failing test cases are re-executed many times looking
for inconsistencies in the output. Despite its simplicity, the
ReRun strategy is very expensive both in terms of time and
in terms of computational resources. This is particularly true
for contexts where thousands of test cases are performed on a
daily basis. Reducing the rerunning overhead is, thus, of utmost
importance. This paper presents SHAKER, an open-source tool
for detecting flakiness in time-constrained tests by adding noise
in the execution environment. The main idea behind SHAKER is
to add stressing tasks that compete with the test execution for
the use of resources (CPU or memory). SHAKER is available as a
GitHub Actions workflow that can be seamlessly integrated with
any GitHub project. Alternatively, SHAKER can also be used
via its provided Command Line Interface. In our evaluation,
SHAKER was able to discover more flaky tests than ReRun and in
a faster way (less re-executions); besides, our approach revealed
tens of new flaky tests that went undetected by ReRun even
after 50 re-executions. Thanks to its flexibility and ease of use,
we believe that SHAKER can be useful for both practitioners and
researchers.
Demo video: https://youtu.be/7-aiQwOb4rA
Shaker website: https://star-rg.github.io/shaker

Index Terms—software testing, regression testing, continuous
integration

I. INTRODUCTION

A test case that intermittently passes or fails when per-

formed under the same version of source code and test code

is said to be flaky. The presence of such tests negatively

affect regression testing for many reasons: Flaky tests waste

developer’s time in case they need to debug a failing test

that is related to flakiness rather than an actual regression in

the system under test. In addition to that, if the presence of

flaky tests is recurrent, developers’ confidence in test results

is affected and they can even choose to ignore test failures

sometimes [1]. This problem is worsened in a Continuous

Integration environment, where, ideally, all tests must pass

before a change can be integrated.

In recent years, many approaches and tools have been

proposed to address the test flakiness problem [2]–[7]. Bell

et al. [2] proposed DeFlaker, a technique that identifies flaky

tests by monitoring the coverage of latest code changes. The

technique proposed in [2] is dynamic because it relies on the

test execution results. In addition to the dynamic techniques,

researchers have also proposed approaches to statically predict

the likelihood of a test being flaky during execution. For exam-

ple, Pinto et al. [3] proposed a classification-based approach

to statically analyze the test code and identify tests that are

likely flaky. ReRun, which is the most popular approach in

industry to detect test flakiness [8], [9], identifies flaky tests

by repeating them a number of times: a failed test that passes

in a subsequent run is considered flaky, and vice-versa.

Despite its simplicity, the ReRun strategy is very expensive:

rerunning tests multiple times can be very costly both in

terms of time and in terms of computational resources. This

is particularly true for contexts where thousands of test cases

are performed on a daily basis. At Microsoft, for example,

4.6% of the tests were identified as flaky after monitoring five

projects over a one-month period [10]. Google reports that

between 2-16% of its testing budget is consumed just to rerun

flaky tests [8]. Reducing the rerunning overhead is, thus, of

utmost importance.

In our prior work [11] we used a prototype tool for evalu-

ating how the addition of noise in the execution environment

would influence the detection of flakiness in time-constrained

tests. The results were encouraging: our approach was able

to discover more flaky tests than ReRun and in a faster way

(less re-executions); besides, our approach revealed tens of

new flaky tests that went undetected by ReRun even after

50 re-executions. Motivated by these results, we then made

several changes to our initial prototype [11] to make it robust

and usable on real, large software projects, as well as extending

it for using it in different contexts.

In this work we present SHAKER, a tool for detecting

1281

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00153

GitHub
Marketplace Developer GitHub

CI service

1 2
3

4 5

Fig. 1. SHAKER’s GitHub Actions workflow. At step 1, the developer copies
the template of the Shaker GitHub action, available on the GitHub Marketplace
or from our web site, to update her .github/workflow/main.yml file. At step
2, the developer makes a push or pull request (configurable) to her GitHub
repository. At step 3, GitHub notifies its CI service about that event. At step 4,
the CI service pulls the changes from the corresponding commit from GitHub
and runs the SHAKER action within a Linux container that is prepared with
a tool for stressing the resources of the machine (stress-ng). Finally, at
step 5, SHAKER notifies a web service, hosted in Heroku (could be any PaaS
host), to store telemetry data about the execution.

flakiness in time-constrained tests by adding noise in the

execution environment. The main idea behind SHAKER is to

add stressor tasks that compete with the test execution for

the use of resources — CPU or memory. Such idea derives

from the observations that i) concurrency is an important

source of flakiness [12], [13]; and ii) adding noise in the

execution environment can change the ordering of events and,

consequently, influence the test outputs.

SHAKER is available as a GitHub Actions workflow that

can be seamlessly integrated with any GitHub project. Alter-

natively, SHAKER can also be used via its provided command

line interface, similar to our original prototype tool. We

envision two main use cases for SHAKER:

• developers concerned with flaky tests can integrate the

GitHub Action into their project repositories and be

notified when new flaky tests are identified by our tool.

• researchers can use SHAKER for building data sets of

flaky tests for conducting research.

SHAKER source code is publicly available on GitHub at

https://star-rg.github.io/shaker.

II. USAGE

SHAKER can be used in two ways, via the GitHub Action

that can be integrated directly into a GitHub repository or via

its provided command line interface.

a) GitHub Action: Figure 1 illustrates the workflow

associated with the execution of SHAKER’s GitHub Action. To

use SHAKER’s GitHub Action in a repository, the developer

needs to include the code from Listing 1 in a repository’s

workflow file as a new job. The effect of that inclusion

is to create a new job, shaker, that is executed when a

specified workflow is triggered. The three arguments declared

on the listing —tool, no_stress_runs, and runs– are the

configurable inputs from the user, and are further described

in subsection III-B.

After finishing the workflow run, the results are displayed

in the Actions tab on the GitHub repository. If no test failures

have been detected, the job is marked as successful. If test

shaker:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Shaker
uses: STAR-RG/shaker@main
with:
tool: maven
runs: 3
no_stress_runs: 1

Listing 1: SHAKER GitHub Actions configuration

failures have been detected, the job is marked as unsuccessful,

and SHAKER reports the failing tests.

b) CLI: For using SHAKER via its provided

CLI the user needs to clone the source code via

git clone https://github.com/STAR-RG/shaker.

After that, SHAKER can be invoked with the following

command shaker/shaker.py --no-stress-runs 1

--stress-runs 4 {pytest,maven} directory, where

<directory> refers to the path of the project to be tested.

The number of stressless and stressful runs can also be

configured by the user. After the execution is complete,

SHAKER reports whether flaky tests were found.

In what follows, we provide further details over the tech-

nique and implementation.

III. TECHNIQUE AND IMPLEMENTATION

We describe the technique implemented in SHAKER, and

the corresponding GitHub Action.

A. Technique

The goal of SHAKER is to detect flaky tests. It receives, as

input, the path to a target Java or Python project and outputs

a report listing the tests identified as flaky.

SHAKER builds on the observation that flakiness very often

occurs because of concurrency issues, including asynchronous

wait [1], [12], [13]. One example scenario of flakiness due

to asynchronous wait occurs when a test attempts to access a

server —that it itself spawned— before that server is available

to receive requests. The test fails in a non-deterministic way,

depending on speed of the threads that execute the test code

and the server. The test fails if the thread that executes

the test runs faster compared to the thread that runs the

server. Our insight for SHAKER is that adding noise in the

execution environment could exercise different thread inter-

leaving associated with test runs and, consequently, manifest

failures. Our hypothesis, validated in a previous study [11],

was that SHAKER reveals flaky tests more promptly, with less

(re)executions, as compared with rerunning tests without noise.

Detecting flakiness not caused by concurrent behavior is not

the intent of SHAKER.

SHAKER runs a project test suite under a noisy environment,

i.e., it imposes a load on the CPU or memory (Section III-B).

In our previous study [11], we have evaluated different noise

1282

configurations and found four such configurations that showed

better performance on revealing flaky tests when compared

to ReRun. SHAKER runs the entire test suite four times,

each time with a different noise configuration. At the end

of those executions, SHAKER reports to the developer the

tests that manifested flaky behavior (i.e., discrepant pass-fail

outcomes), the amount of times that the test failed, and the

stack trace. Moreover, SHAKER can also be optionally used

to perform ReRun (in a noiseless environment). SHAKER

provides different configuration knobs. For instance, the users

can indicate how many times the four selected configurations

will be executed.

B. Implementation

The core application of SHAKER is developed in Python.

For the integration with GitHub projects, SHAKER relies on

GitHub Actions, a GitHub service that allows developers to

automate tasks within the software development life cycle [14].

It offers free CI/CD services and can be seamlessly integrated

into any repository in GitHub.

Shaker is configurable in three ways:

• Testing tool: the tool used for running the test cases.

Currently, SHAKER supports Java (maven-based) and

Python projects (pytest-based);

• Number of no-stress runs: the number of runs without

any stressing in the execution environment. This is an

optional parameter and if the user does not provide a

value, no stressless runs are performed;

• Number of stressing runs: the number of runs for each

stress-ng configuration. For example, if the user inputs 3,

since there are four different stress-ng configurations, the

tests will run 12 times in total.

SHAKER relies on stress-ng [15] for creating the noisy

environment for the stressing runs. In particular, SHAKER

makes use of the following options:

• –cpu n. Starts n stressors to exercise the CPU by working

sequentially through different CPU stress methods like

Ackermann function or Fibonacci sequence.

• –cpu-load p. Sets the load percentage p for the –cpu
command.

• –vm n. Starts n stressors to allocate and deallocate

continuously in memory.

• –vm-bytes p. Sets the percentage p of the total memory

available to use by the tasks created with option –vm.

The SHAKER GitHub Action is implemented as a Docker

image containing the core application and it is configured to

support repository integration in GitHub. The Docker image

is based on Ubuntu 20.04 and it contains all of the tools and

dependencies required by SHAKER. As required for all GitHub

Actions, a YAML file specifies the Action inputs and how to

execute it.

IV. EVALUATION

The prototype tool from which we implemented SHAKER

was evaluated on a sample of 11 Android apps [11]. SHAKER

discovered more flaky tests than ReRun and discovered these

flaky tests much faster. In addition, SHAKER was able to reveal

61 new flaky tests that went undetected in 50 re-executions

with ReRun.

We have also performed a preliminary evaluation of the

GitHub Actions integration. To conduct this evaluation, we

have used 11 projects as objects of analysis based on the

following criteria:

• The project is written in Java and uses Maven as its

project management tool;

• The project has more than 1000 test cases or the reposi-

tory has more than 1000 stars.

The list of repositories, followed by the ref used for analysis

(release tag or commit SHA-1 hash), number of tests, and

number of stars is presented in Table I.

TABLE I
OBJECTS OF ANALYSIS

Repository Ref Tests Stars

Azure/azure-iot-sdk-java a9226a5 4563 153
CorfuDB/CorfuDB b99ecff 954 541
OpenHFT/Chronicle-Queue bec195b 408 2.3k
soabase/exhibitor d345d2d 52 1.7k
vaadin/flow 6.0.6 4679 304
apache/hbase d50816f 6024 4k
intuit/karate 09bc49e 529 4.7k
killbill/killbill killbill-0.22.21 1828 2.3k
mock-server/mockserver b1093ef 3532 3.2k
apache/ozone dfd2aaf 1900 359
RipMeApp/ripme 19ea20d 247 2.4k

To perform the experiment with all projects in parallel,

a workflow file containing 11 jobs, one for each repository,

was created. We have configured a specific action, named

actions/checkout, to clone each repository with a given

commit hash or release tag, and allow the subsequent actions

to use the given repository. Listing 2 shows a code snippet

illustrating how a job can be created to perform such task.

azure-iot-sdk-java:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
repository: Azure/azure-iot-sdk-java
ref: a9226a5...

...

Listing 2: Using SHAKER in other repositories

After a workflow run was finished, results for each run

were displayed in the workflow logs for each job. If all tests

always fail, the module containing these tests was discarded

because they show defective tests, broken modules or broken

dependencies, and thus are not classified as flaky tests.

We configured SHAKER to perform 4 stressing runs for

each noiseless run. The only exception was apache/hbase,

because more than one no-stress run and one set of stressing

1283

runs caused the job to take longer than 6 hours, triggering a

timeout from GitHub Actions, and cancelling the job.

Table II shows the test failures discovered. We can observe

that stress runs result in more failures observed. On average,

a workflow configured to run 1 no-stress run and 4 sets

of stress runs took 4 hours. Table III shows the ratio of

failures discovered per run, which highlights the effect of using

SHAKER. The numbers show that stress runs are 1.13 to 6.25

times more likely to find flaky tests than standard ReRun.

TABLE II
FAILURES

Repository flakies no-stress stress

OpenHFT/Chronicle-Queue 6 4 38
soabase/exhibitor 3 1 34
apache/hbase 2 1 19
RipMeApp/ripme 9 2 55

TABLE III
FAILURE RATIO

Repository flakies no-stress stress

OpenHFT/Chronicle-Queue 6 0.15 0.17
soabase/exhibitor 3 0.04 0.15
apache/hbase 2 0.04 0.25
RipMeApp/ripme 9 0.07 0.25

V. LIMITATIONS AND FUTURE WORK

Currently, SHAKER only supports Java projects using maven

or Python projects using pytest. However, SHAKER is easily

extendable and we plan to support other build automation tools

and test frameworks in future releases.

Another current limitation of SHAKER refers to the stressing

configurations used. SHAKER comes with a set of predefined

stressing configurations that have proven to be effective in

identifying flakiness in time-constrained tests. These con-

figurations were selected after a large empirical evaluation

conducted in our previous study [11]. Nevertheless, we ac-

knowledge that different projects or different contexts might

require a different set of stressing configurations. To address

this limitation we plan to release a self-adaptive version of

SHAKER that customizes the stressing configurations for the

particular project using it, based on previous results.

VI. CONCLUSION

In this paper we introduced SHAKER, an open-source tool

for detecting flakiness in time-constrained tests by adding

noise in the execution environment. SHAKER is available as a

CLI and as a GitHub Action that can be seamlessly integrated

with any GitHub project. We discussed the noise technique on

which SHAKER relies, and we presented the usage, design, and

implementation of SHAKER. We also discussed current limi-

tations and highlighted some future research and development

directions. Our evaluation of SHAKER showed encouraging

results. In the evaluation using the CLI, SHAKER was able

to discover more flaky tests than ReRun and in a faster way

(less re-executions); besides, our approach revealed tens of

new flaky tests that went undetected by ReRun even after

50 re-executions. An additional evaluation of the SHAKER

Action reported similar results and the noisy runs conducted

by SHAKER were up to 6.25 times more likely to find flaky

tests than the standard ReRun strategy. Thanks to its flexibility

and ease of use, we believe that SHAKER can be useful

for practitioners and researchers. As future work, we intend

to explore other ways of introducing noise in the execution

environment, such as running tests in parallel, which might

even reveal flakiness due to test order dependency, for instance.

We also intend to perform qualitative assessments of SHAKER

with developers.

ACKNOWLEDGMENT

This work is partially supported by INES

(www.ines.org.br), CNPq grant 465614/2014-0, CAPES

grant 88887.136410/2017-00, and FACEPE grants APQ-

0399-1.03/17 and PRONEX APQ/0388-1.03/14. Denini was

supported by a FACEPE fellowship number IBPG-1279-

1.03/19.

REFERENCES

[1] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 534–538.

[2] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: automatically detecting flaky tests,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 433–444.

[3] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the vocabulary of flaky tests?” in Proceedings
of the 17th International Conference on Mining Software Repositories,
2020, pp. 492–502.

[4] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies: A
framework for automatically fixing order-dependent flaky tests,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 545–555.

[5] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “idflakies: A framework
for detecting and partially classifying flaky tests,” in 2019 12th ieee
conference on software testing, validation and verification (icst). IEEE,
2019, pp. 312–322.

[6] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
bayesian network model for predicting flaky automated tests,” in 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C). IEEE, 2018, pp. 100–107.

[7] R. Verdecchia, E. Cruciani, B. Miranda, and A. Bertolino, “Know you
neighbor: Fast static prediction of test flakiness,” IEEE Access, vol. 9,
pp. 76 119–76 134, 2021.

[8] J. Micco, “Flaky tests at google and how we mitigate them,”
2016, https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-
come-from.html.

[9] J. Palmer, “Test flakiness – methods for identifying and deal-
ing with flaky tests,” 2019, https://labs.spotify.com/2019/11/18/test-
flakiness-methods-for-identifying-and-dealing-with-flaky-tests/.

[10] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in
Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2019. New York,
NY, USA: ACM, 2019, pp. 101–111. [Online]. Available: http:
//doi.acm.org/10.1145/3293882.3330570

1284

[11] D. Silva, L. Teixeira, and M. d’Amorim, “Shake it! detecting flaky
tests caused by concurrency with shaker,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 301–311.

[12] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proc. FSE’14, 2014.

[13] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Concurrency-
related flaky test detection in android apps,” ArXiv, vol. abs/2005.10762,
2020.

[14] GitHub, “GitHub Actions,” https://github.com/features/actions.
[15] C. King and A. Waterland, “stress-ng,”

https://manpages.ubuntu.com/manpages/artful/man1/stress-
ng.1.html#description, 2020, [Online; accessed April-2020].

1285

