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Abstract—A test is said to be flaky when it non-
deterministically passes or fails. Test flakiness negatively affects
the effectiveness of regression testing and, consequently, impacts
software evolution. Detecting test flakiness is an important and
challenging problem. ReRun is the most popular approach in
industry to detect test flakiness. It re-executes a test suite on a
fixed code version multiple times, looking for inconsistent outputs
across executions. Unfortunately, ReRun is costly and unreliable.
This paper proposes SHAKER, a lightweight technique to improve
the ability of ReRun to detect flaky tests. SHAKER adds noise in
the execution environment (e.g., it adds stressor tasks to compete
for the CPU or memory). It builds on the observations that
concurrency is an important source of flakiness and that adding
noise in the environment can interfere in the ordering of events
and, consequently, influence on the test outputs. We conducted
experiments on a data set with 11 Android apps. Results are
very encouraging. SHAKER discovered many more flaky tests
than ReRun (95% and 37.5% of the total, respectively) and
discovered these flaky tests much faster. In addition, SHAKER

was able to reveal 61 new flaky tests that went undetected in 50
re-executions with ReRun.
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I. INTRODUCTION

A test is said to be flaky when it non-deterministically

passes or fails depending on the running environment [1]. For

example, a test may fail or pass depending on the availability

of a server that the test itself has spawned—the test passes

if the server is up-and-running at the point the test makes a

request to the server and it fails, otherwise.

Test flakiness hurts software testing practice in multiple

ways. For example, Thorve et al. [2] found that, because of

test flakiness, developers lost trust in test results, choosing

to ignore test failures altogether sometimes. Even ignoring

failures of known flaky tests or ignoring previously classified

flaky tests (i.e., not executing those tests) can be danger-

ous as those tests could reveal bugs in code. Furthermore,

ignoring flakiness can produce the effect of observing even

more failures to be analyzed during software evolution. For

example, Rahman and Rigby [3] found that when developers

ignored flaky test failures during a build, the deployed build

experienced more crashes than builds that did not contain

any flaky test failures. Test flakiness is a huge problem in

industry. Most test failures at Google are due to flaky tests [1],

[4]. At Microsoft, the presence of flaky tests also imposes

a significant burden on developers. Wing et al. [5] reported

that 58 Microsoft developers involved in a survey considered

flaky tests to be the second most important reason, out of

10 reasons, for slowing down software deployments. Finally,

Facebook considers flakiness detection a priority [6].

ReRun is the most popular approach in industry to detect

test flakiness [1], [7]. It reruns tests multiple times. A test

that failed and then passed is considered flaky, and vice-versa.

The status of a test that persistently failed is unknown, but

developers typically treat this scenario as a problem in appli-

cation code as opposed to a bug in test code. Unfortunately,

ReRun is unreliable and expensive. It is unreliable because it

is hard to determine the number of reruns to find discrepancy

in outputs. It is expensive because rerunning tests consumes

a lot of computing power. Google, for example, uses 2-16%

of its testing budget just to rerun flaky test [1]. Researchers

have proposed various techniques to identify flaky tests. Bell et

al. [8] proposed DeFlaker, a technique that determines that a

test is flaky if the output of a test has changed even though

there was no change in the code reachable from the execution

trace. Note that DeFlaker cannot capture flakiness in test cases

not impacted by changes and that change-impacted flaky tests

do not reveal flakiness necessarily. Pinto et al. [9] proposed the

use of text processing and classification to statically identify

likely flaky test cases from the keywords they use.

This paper proposes SHAKER, a lightweight technique to

improve the ability of ReRun to detect flaky tests. SHAKER

adds noise in the execution environment with the goal of pro-

voking failures in time-constrained tests. For example, it adds

stressor tasks to compete with the test execution for the CPU or

memory. SHAKER builds on the observations that concurrency

is an important source of flakiness [10], [11] and that adding

noise in the environment can interfere in the ordering of events

related to test execution and, consequently, influence on the

test outputs. The process of detecting flaky tests consists of

two steps. In the first offline step, SHAKER uses a sample of

tests known to be flaky to search for configurations of a noise

generator to be used for revealing flakiness in new tests. To

that end, SHAKER first builds a probability matrix encoding

the relation between flaky tests and noise configurations. The

matrix shows the probability of a test failing when executed

with a given noise configuration. Then, SHAKER uses that

matrix to search for sets of configurations that reveals the

highest number of flaky tests. In the second online step,

SHAKER uses those configurations to find time-constrained

flaky tests in the project of interest.

We conducted experiments on a data set with 75 flaky tests

of 11 open source Android apps. Preliminary results provide



Listing 1: AntennaPod Test

1 @Test

2 public void testReplayEpisodeContinuousPlaybackOff() throws Exception {

3 setContinuousPlaybackPreference(false);

4 uiTestUtils.addLocalFeedData(true);

5 activityTestRule.launchActivity(new Intent());

6 //Navigate to the first episode in the list of episodes and click

7 openNavDrawer();

8 onDrawerItem(withText(R.string.episodes_label)).perform(click());

9 onView(isRoot()).perform(waitForView(withText(R.string.all_episodes_short_label), 1000));

10 onView(withText(R.string.all_episodes_short_label)).perform(click());

11 final List<FeedItem> episodes = DBReader.getRecentlyPublishedEpisodes(0, 10);

12 Matcher<View> allEpisodesMatcher = allOf(withId(android.R.id.list), isDisplayed(), hasMinimumChildCount(2));

13 onView(isRoot()).perform(waitForView(allEpisodesMatcher, 1000));

14 onView(allEpisodesMatcher).perform(actionOnItemAtPosition(0, clickChildViewWithId(R.id.secondaryActionButton)));

15 FeedMedia media = episodes.get(0).getMedia();

16 Awaitility.await().atMost(1, TimeUnit.SECONDS).until( () -> media.getId() == PlaybackPreferences.

getCurrentlyPlayingFeedMediaId()); ... }

early evidence that SHAKER is promising. SHAKER discovered

many more flaky tests than ReRun (95% and 37.5% of the total

from our data set, respectively) and discovered these flaky

tests much faster than ReRun. SHAKER discovered 85% of

the total number of possible flakies in 10% of the average

time ReRun took to find its maximum number of flakies. In

addition, SHAKER was able to reveal 61 new flaky tests that

went undetected in 50 re-executions with ReRun. This paper

makes the following contributions:

⋆ Approach. We proposed a simple lightweight approach to

find time-constrained flaky tests by introducing noise in the

test environment where tests will be executed.

⋆ Implementation. We developed a tool implementing

SHAKER (available per request due to double blindness).

⋆ Evaluation. We evaluated SHAKER on 11 Android apps with

encouraging results.

⋆ Artifacts. Our scripts, data sets, and list of issues submitted

to GitHub projects, are publicly available at the following

link https://github.com/shaker-project/shaker.

II. EXAMPLES

This section presents two examples of flaky tests in Android

applications (apps) to motivate and illustrate SHAKER. Before

introducing the examples, it is important to briefly explain

concepts related to the Android OS. The execution of an

Android app creates a separate process including an execution

thread, typically called the main thread, or the UI thread. This

thread is responsible for handling events such as callbacks

from UI interactions, callbacks associated with the lifecycle

of components, etc. Any costly operation, such as network

operations, should be offloaded to separate threads to avoid

blocking the main thread, and consequently freezing the UI.

Blocking the main thread for more than 5 seconds results in an

Application Not Responding (ANR) error, which crashes the

app. Consequently, asynchronous operations are common in

Android apps. Separate worker threads, responsible for these

operations, are not allowed to manipulate the UI directly,

which is responsibility of the main (UI) thread. Consequently,

there must be coordination among worker threads and the

main thread. Testing frameworks, such as Espresso [12],

provide means to handle asynchronous operations. However,

developers may fail to properly coordinate tasks from tests.

A. AntennaPod

AntennaPod [13] is an open source podcast manager for

Android supporting episode download and streaming. The

AntennaPod app is implemented in Java in ∼50KLOC. As

of the date of submission,1 the app had 250 GUI tests written

in Espresso [12] and UIAutomator [14].

Listing 1 shows a simplified version of a test that checks

whether a podcast episode can be played twice. It uses the

Awaitility library [15] to handle asynchronous events, such

as I/O events related to notifications of media playback.

Executing the statement at line 3 turns off the continuous

playback option. This stops the app from automatically playing

the next episode in queue after it finishes the current one. The

statement at line 4 then adds local data (e.g., podcast feeds,

images, and episodes) to the app whereas the execution of the

statements at lines 7–14 navigate through the GUI objects with

the effect of playing the first episode in the queue. Line 16

shows an assertion based on the Awaitibility library. The

assertion checks if the episode is being played and indicates

that test execution should wait for at most one second to verify

this (line 16). When the play button is pressed (line 14), the

app runs a custom service in the background2—to load the

media file from the file system and, subsequently, play the

media to the user. These are typically expensive I/O operations.

If the machine running the test is heavy-loaded, the 1 second

limit may not be reached. Consequently, the execution of the

test will fail with a ConditionTimeoutException exception

raised by the Awaitibility library.

We ran this test case 50 times and found failures in 11

runs, i.e., 22% of the cases. Considering this example, one

would need to execute the test for more than four times to

detect the failure with high probability. When configured to

execute the test suite using only the most effective noisy

SHAKER configuration, we were able to detect failure in the

first execution of the test suite. Furthermore, we re-executed

the test case for 50 times with this configuration and were able

1Revision SHA dd5234c as per the time of submission.
2Look for “Thread” in the PlaybackService.java file [16].
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Listing 2: Paintroid Test

1 @Test

2 public void testFullscreenPortraitOrientationChangeWithShape() {

3 onToolBarView().performSelectTool(ToolType.SHAPE);

4 setOrientation(SCREEN_ORIENTATION_PORTRAIT);

5 onTopBarView().performOpenMoreOptions();

6 onView(withText(R.string.menu_hide_menu)).perform(click());

7 setOrientation(SCREEN_ORIENTATION_LANDSCAPE); pressBack();

8 onToolBarView().performOpenToolOptionsView().performCloseToolOptionsView(); }

to detect flakiness in all of them. Although each individual

execution of the test suite is more expensive with SHAKER, it

requires fewer re-executions of the test suite to detect flakiness.

For comparison, one non-noisy execution of this test case

takes 11.08s whereas one execution of the test case under

SHAKER’s noisy environment takes 20.2s, i.e., the execution

without noise is ∼2x faster in this particular case. However,

comparing the total execution time, we observed that SHAKER

enabled the discovery of flakiness 2.49x (=50.3/20.2) faster

and, more importantly, it required a single execution for that.

B. Paintroid

Paintdroid is a graphical paint editor application for An-

droid implemented in Java in ∼25KLOC. As of its latest

version,3 it had 250 Espresso tests. One of such tests checks

whether some buttons can be clicked after changing the

screen orientation. Listing 2 shows the test. It first selects

the Shape drawing option (line 3), and then sets the screen

orientation to portrait (line 4). Then, it opens a menu that

shows a list of options (line 5) (e.g., option to save an image,

option to export image to a file, etc). The test clicks on

the full screen option (line 6), then it changes orientation to

landscape (line 7), exits full screen mode (line 7), and clicks

on the tool options to again open a menu, and then close

it (line 8). Note that there are no assertions in the test. The

intention is to validate that the options remain clickable as the

orientation changes from portrait to landscape.

Like the previous example, this test can produce different

results depending on the efficiency of the machine. More

precisely, the click on the menu item (line 6) can be performed

before or after the menu is rendered on the screen (line 5).

As expected, the test fails, throwing the PerformException,

if the click is performed before the menu is shown. Changing

screen orientation corresponds to a configuration change in

Android.4 When a configuration change happens, Android

destroys and recreates the current screen (represented by an

Activity object). This happens because changing orientation

might result in a different screen layout.

We ran this test case for 50 times with ReRun and found

failures in 4 runs (8% of the cases). This example shows

that, albeit practical and widely adopted in industry [1], [6],

[10], ReRun can be (1) ineffective or (2) costly to proactively

detect flaky tests. Given that it takes 12.5 (=50/4) executions

on average to find flakiness and each regular execution takes

5.54s, the aggregate cost to detect this flaky test with ReRun

3Revision SHA 1f302a2 as per the time of submission
4https://developer.android.com/guide/topics/resources/runtime-changes

is 69.25s (=12.5*5.54). We also ran the test case for 50 times

with SHAKER and found failures in 18 runs (26% of the

cases). As the test fails in every 2.78 (=50/18) executions

and each execution with SHAKER takes 7.08s, the aggregate

cost of SHAKER to find this flaky test is 19.68s (=2.78x7.08).

Overall, SHAKER reveals the flaky test 3.52x faster than

ReRun (=69.25/19.68) despite having the execution of the test

case itself 1.28x (=7.08/5.54) slower.

III. SHAKER

The goal of SHAKER is to detect flaky tests. The observation

that motivates SHAKER is that many tests are flaky because

of timing constraints in test executions [2], [10], [11], such as

those from the examples. Our hypotheses are that 1) such tests

can be detected by adding noise in the environment where test

cases will run and 2) rerunning tests in a noisy environment

will more promptly reveal flaky tests compared with rerunning

tests without noise.

Fig. 1: SHAKER’s workflow.

Figure 1 shows SHAKER’s workflow. SHAKER has an offline

step and an online step. In the first offline step, SHAKER uses a

sample of tests known to be flaky to search for configurations

of a noise generator. In the second online step, SHAKER uses

those configurations to find flaky tests in the test suite of a

project provided as input.

The following sections detail SHAKER. Section III-A de-

scribes how an off-the-shelf tool can be used to generate

noise in the execution environment. Section III-B describes

the offline step of generating configurations for a noise gener-

ator. Finally, Section III-C describes how SHAKER optimizes

ReRun to find flaky tests efficiently.

A. Noise Generation

A noise generator is a tool to create load. For example,

a noise generator can spawn “stressor” tasks that can influ-

ence the execution environment where tests will be executed.

Existing tools provide different choices of target for noise

generation. We focused on CPU and memory options as we

empirically found that they influence detection of test flakiness
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(see Section V-A). We used the stress-ng [17] tool to create

CPU and memory load. We used the following options:

• –cpu n. Starts n stressors to exercise the CPU by work-

ing sequentially through different CPU stress methods like

Ackermann function or Fibonacci sequence.

• –cpu-load p. Sets the load percentage p for the –cpu

command.

• –vm n. Starts n stressors to allocate and deallocate contin-

uously in memory.

• –vm-bytes p. Sets the percentage p of the total memory

available to use by the tasks created with option –vm.

For example, the command stress-ng --cpu 2

--cpu-load 50% --vm 1 --vm-bytes 30% configures stress-

ng to run two CPU stressors with 50% load each and one

virtual memory stressor using 30% of the available memory.

The documentation of stress-ng can be found elsewhere.5

In addition to the options listed above, SHAKER uses an

option that we found important for finding flaky Android

tests—the number of cores available for use by an Android

emulator. This option can be used to restrict an Android

emulator to run on a specified number of cores.

B. Step 1: Discovering Configurations

The goal of this step is to identify configurations of the

noise generator that are more likely to reveal flakiness in a

test suite. We search for configurations as a heavy-load could

crash the emulator. It takes as input a set of tests TR, known

to be flaky, and reports on output a list of configurations

ck = [v1, ..., vn]. A noise generator is configured from a

list of options [o1, ..., on], with each option oi ranging over

the interval loi-hii. Section III-A describes which options are

currently used. The flaky tests in TR can be obtained with

ReRun, i.e., by rerunning test sets of several applications for

multiple times. Section IV explains how we obtained the train-

ing set to evaluate SHAKER. To identify “good” configurations,

it is necessary to define a metric for configuration quality.

We use the symbol fit(ck ,TR) to denote the fitness value of

configuration ck for the test set TR. Fitness value is obtained

by computing the average probability of detecting flakiness on

TR when the configuration ck is used for noise generation.

Example. Consider that the set TR contains three tests.

A given configuration c that detects flakiness in TR with

probabilities {0, 2, 0.5, 0.0} has fit(c,TR)=(0.2+0.5)/3=0.23.

These probabilities are obtained by running the test suite

multiple times and computing the average number of failures.

In this case, one test failed in 20% of the reruns, another test

failed in 50% of the reruns, and another did not fail at all.

The search for noise configuration is realized in two

stages. First, SHAKER samples configurations and generates

a probability matrix characterizing the probability of each

configuration to find flakiness in TR. Second, SHAKER uses

that matrix to search for sets of configurations. The following

sections elaborate each of these steps in detail.

5https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html

1) Generation of probability matrix: This step takes as

input a set of flaky tests TR and reports on output a probability

matrix M , relating the tests in TR and randomly-sampled

configurations in K by their corresponding probabilities. The

symbol M [t][c] denotes the probability of configuration c ∈ K
detecting flakiness in t ∈ TR. To obtain approximate prob-

ability measurements, SHAKER runs each test several times

on each sampled configuration. The probability measurement

M [t, c] is obtained by dividing the number of failures (of t on

c) found by the total number of reruns (of t on c).

2) Search for sets of configurations: SHAKER offers two

strategies to search for configurations.

The Greedy strategy sorts configurations according to their

fitness value and reports the top-n configurations in the sorted

list. The value n is provided by the user. Note that this strategy

does not offer guarantees that every flaky test will be detected.

The Minimum Hitting Set (MHS) strategy takes that prob-

lem into account. MHS [18] is a well-known intractable

problem with efficient polynomial-time approximations [19].

To sum up, it enables SHAKER to obtain minimum sets of

configurations (columns of the matrix) that detect the maxi-

mum number of flaky tests (rows in the matrix). Variations

of the MHS problem exist considering weights and returning

complete or partial (sub-optimal) solutions [20]. SHAKER

builds on the unweighted and complete MHS version, which

takes a boolean matrix as an input and produces a minimum

hitting set encoding configurations as an output. We abstracted

the probability matrix M to only encode low or high likelihood

of configurations detecting flaky tests. Intuitively, we are only

interested in a configuration c to detect flakiness of a certain

test t if the observed probability M [t][c] is above a certain

threshold. More precisely, SHAKER computes an abstract ma-

trix A defined as A[t][c]=1 if M [t][c] >= threshold , otherwise

0. SHAKER runs MHS on the boolean matrix A. The goal is to

find a set of configurations (columns in the matrix) that detects

flakiness in tests (rows in the matrix). Note that, although MHS

assures that all flaky tests are covered (i.e., a test would be

detected with some configuration in the MHS), there is no

guarantee that these tests are uniformly covered.

Example. Figure 2 shows an illustrative example of the MHS

procedure to discover configurations for detecting flakiness.

The left-hand side of the figure shows the probability matrix

M . The abstract matrix A appears on the right-hand side.

For space, we used a 3x4 matrix, i.e., the test suite contains

three test cases and SHAKER sampled four configurations. In

practice, these matrices are much bigger. The matrix on the

left shows the probabilities of each configuration detecting

flakiness on TR. The matrix on the right-hand side is obtained

using the abstraction function described above with a threshold

value of 0.5. There are five hitting sets associated with the

abstract matrix, namely {c1, c2, c4}, {c1, c3, c4}, {c2, c3, c4},

{c2, c4}, {c1, c2, c3, c4}. The MHS algorithm is able to iden-

tify that the set {c2, c4} is a minimal set that hits (i.e., covers)

the tests in TR. In this case, it is also the minimum.
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c1 c2 c3 c4
t1 0.1 0.6 0.5 0.2

t2 0.6 0.6 0.1 0.2

t3 0.1 0.1 0.1 0.5

c1 c2 c3 c4
t1 0 1 1 0

t2 1 1 0 0

t3 0 0 0 1

Fig. 2: Original probability matrix (M ) and its abstracted

version (A) using a threshold of 0.5. MHS(A)={c2, c4}.

C. Step 2: Discovering Flakies

Finally, SHAKER uses the configurations obtained on Step 1

to determine which of the tests the user provides are flaky.

Figure 1 illustrates the inputs and output of this step in the

box named “Flakies Discovery”. SHAKER reruns the test suite

on each configuration for a specified number of times and

reports divergences on the test outputs.

Note the tension between cost and effectiveness of SHAKER.

The execution of a test suite under a loaded environment

should be slower compared to a regular (noiseless) execution

as different tasks are competing for the machine resources.

Compared to ReRun, however, SHAKER may require less

executions to detect flakiness. As result, the aggregate cost

of detecting flakiness would be lower.

IV. OBJECTS OF ANALYSES AND SETUP

This section describes the methodology we used to build a

data set of flaky tests (Section IV-A) and the setup of SHAKER

that we used to run the experiments (Section IV-B).

A. Objects

We mined flaky tests from various GitHub projects to build

a dataset to evaluate SHAKER. We used the following search

criteria to select projects:

1) the project must be written in Java or Kotlin;

2) the project must have at least 100 stars;

3) the project must include tests in Espresso or UIAutomator;

4) the project needs to be built without errors.

We sampled a total of 11 projects that satisfied this criteria

and used ReRun to find test flakiness. More precisely, we

executed the test suite of these projects for 50 times using

a generic Android Emulator (AVD) with Android API version

28. As usual, we consider a test to be flaky if there was a

disagreement in the outcomes (i.e., pass, fail, or error) across

those runs. For example, we considered as flaky a test that

passes in all but one run. To confirm that we could reproduce

flakiness, we repeated the execution of each flaky test for

100 times. Section V-E shows results of running SHAKER to

find other flaky tests on this same set of projects, i.e., flakies

that went undetected with the aforementioned procedure and

only SHAKER could detect. Table I shows the 11 projects we

used. The column “App” shows the name of the Android app,

the column “#Tests” shows the number of Espresso or UIAu-

tomator tests in that application, the column “#Flakies” shows

the number of flaky tests detected, column “@FlakyTest(+/-)

shows numbers x/y with x indicating the number of flaky tests

Fig. 3: Histogram of test failures.

we found that do not contain the @FlakyTest annotation,6

whereas y indicates the number of tests from the test suite

containing the annotation @FlakyTest that we missed. Column

”#Stars” shows the number of stars that the project received

on GitHub. Finally, columns “GitHub...” and “SHA” show the

GitHub address and corresponding SHA prefix of the revision.

We found flakiness in 75 of the 1,298 tests we analyzed

(=5.78% of the total). We found flaky tests in 7 of the 11 apps.

In two of these apps, namely Espresso and Flexbox-layout,

we found only 1 flaky test. We highlighted the apps with-

out flaky tests in gray color. Results also show that the

AntennaPod, FirefoxLite, and Orgzly were the apps with the

highest number of flaky tests, with 12, 15, and 38 flaky tests,

respectively. These projects are among those with the highest

number of test cases too, with 250, 70, and 266 tests, respec-

tively. Curiously, we found that Flexbox-layout is one of the

apps with the highest number of tests (232) and lowest number

of flakies detected (1). Despite this evidence of determinism on

the test suite, developers of this app chose to use the annotation

@FlakyTest in all tests. We inspected the code and it appears

that developers used the annotation only for documentation—

all tests in that app have that annotation and filtering test cases

in that state would result in no test executed. Flexbox-layout

consists in a library for implementing widgets that adhere to

the CSS Flexible Box Layout module using the RecyclerView

widget, which allows displaying lists and grids in Android

applications. Tests rely heavily on checking list/grid elements,

which are typically computed in worker threads, that require

synchronization to be posted to the Main Thread.

Figure 3 shows a histogram of number of failures for the

75 flaky tests we discovered using ReRun. Nearly 52.1% of

the flaky tests revealed failure in 10 or less executions. This

number is reflected in the leftmost bar from the histogram.

Intuitively, to capture those cases, one would need to rerun

the test suite for five times given that the failure probability

for that group of tests is 20% (=10/50).

B. Setup

To evaluate SHAKER, we need to define (1) the training set

of test cases TR that will be used to discover configurations

(step 1) and (2) the testing set of test cases TS that will be

used to discover the flaky tests (step 2). For that, we divided

6The @FlakyTest annotation is a JUnit test filter. It is used on test
declarations to indicate JUnit to exclude those tests from execution (if a
corresponding command is provided on input).

5



TABLE I: Apps and tests.

# App #Tests #Flakies @FlakyTest(+/-) #Stars GitHub URL (https://github.com/URL) SHA

1 AntennaPod 250 12 12/0 2.8k /AntennaPod/AntennaPod dd5234c
2 AnyMemo 150 0 0/0 117 /helloworld1/AnyMemo 7e674fb
3 Espresso 14 1 1/0 1.1k /TonnyL/Espresso 043d028
4 FirefoxLite 70 15 15/3 220 /mozilla-tw/FirefoxLite 048d605
5 Flexbox-layout 232 1 0/231 15.5k /google/flexbox-layout 611c755
6 Kiss 16 3 3/0 1.5k /Neamar/KISS 00011ce
7 Omni-Notes 10 0 0/0 2.1k /federicoiosue/Omni-Notes b7f9396
8 Orgzly 266 38 38/0 1.5k /orgzly/orgzly-android d74235e
9 Paintroid 270 5 5/0 101 /Catrobat/Paintroid 1f302a2

10 Susi 17 0 0/0 2k /fossasia/susi android 17a7031
11 WiFiAnalyzer 3 0 0/0 1k /VREMSoftwareDevelopment/WiFiAnalyzer 80e0b5d

Total - 1,298 75 (5.78%) 74/234 - - -

our dataset containing 75 flaky tests as follows. We randomly

sampled 35 tests and added them to the training set. The

remaining 40 tests were added to the testing set.

The configuration discovery step of SHAKER also requires

a sample of random configurations that will constitute the

columns of the concrete and abstract matrices. For that, we

sampled 50 configurations uniformly distributed across the do-

mains of the five parameters we analyzed (see Section III-A):

four parameters from stress-ng and one parameter from the

AVD. To obtain probabilities for the concrete matrix M , we

ran each test on each of these configurations for 3 times. The

result of this execution is a probability matrix with failure

probability values 0, 0.33, 0.66, 1.0. To construct the abstract

matrix A, we used a probability threshold of 0.66, i.e., values

equal or above that level are set to 1 (true) and values below

that level are set to 0 (false).

V. EVALUATION

The goal of this section is to evaluate the effectiveness of

SHAKER. We pose the following research questions.

RQ1. Do tests fail more often in noisy environments than in

regular (non noisy) environments?

The purpose of this question is to evaluate if executing

tests in noisy environments has the effect of making tests fail

more often. This is an important question because SHAKER

builds on that assumption to detect flaky tests, so if results are

positive, than SHAKER is likely to be useful.

RQ2. How repeatable is the discovery of flaky tests with a

given noise configuration?

This question analyzes the variance of results obtained

with a given configuration of the noise generator. If results

are very non-deterministic then selecting configurations, as

described on Section III-B2, is helpless as results would be

unpredictable.

RQ3. How effective is the search for configurations of the

noise generator (e.g., Greedy and MHS) that SHAKER uses?

This question evaluates the effect of the (configuration)

search strategies proposed by SHAKER in their ability to detect

flaky tests. More precisely, this question compares Greedy

MHS, and Random search in their effect to detect flakiness.

RQ4. How effective is SHAKER to find flaky tests?

This question evaluates how SHAKER compares with ReRun

to find the flaky tests in our data set. To answer this question,

we measured how long SHAKER and ReRun took to discover

all flaky tests and how quickly each technique finds most tests.

RQ5. How effective is SHAKER to find new flaky tests?

For fairness with ReRun, the previous question restricted the

evaluation of SHAKER to the set of flaky tests that ReRun itself

was able to discover within 50 re-executions (see Section IV).

This question evaluates the ability of SHAKER to discover

flaky tests not detected by ReRun in the same set of projects.

The following sections elaborate the answers to each of

these questions.

A. Answering RQ1: Do tests fail more often in noisy environ-

ments than in regular (non noisy) environments?

The purpose of this question is to evaluate the effect of

introducing noise in the environment where tests are executed.

This question is important as SHAKER assumes there is such

effect. To answer the question, we ran statistical tests to

evaluate if there are differences in the rate of failures observed

in noisy executions versus standard executions.

As we evaluated the effect of noise on the same data set,

we used a statistical test that takes two paired distributions

on input–one distribution associated with regular executions

and one distribution associated with noisy executions. Each

number in the distribution corresponds to the rate of failures

in one execution of the test suite, i.e., the fraction of the 75

tests from our data set that fails. We ran each test suite on

each treatment for 30 times. Consequently, each distribution

contains 30 samples. First, we ran a Shapiro-Wilk test to check

if the data is normally distributed. The p-values of this test

are higher than the traditional threshold of α = 0.05. As

such, we cannot reject the null hypothesis that the data is

normally distributed with 95% confidence. Given that both

data sets are normally distributed, we used the paired t-

test parametric statistical hypothesis test to check if there is

difference in the measurements. The null hypothesis (H0) is

that the measurements are the same, that is, introducing noise

does not impact rate of failure. The test indicated that we could
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Fig. 4: Histograms of ratio of failures for execution with and

without noise. Vertical lines show average value.

reject H0 with 99% confidence as the p-value is less than

0.01. Since the distributions were different, we proceeded to

evaluate the effect size. For that, we used Cohen’s d to measure

the difference in group means in terms of standard deviation

units. This is given by d = (µ1-µ2)/σ, where µ1-µ2 is the

difference over the two means from the sample data and σ is

the standard deviation of the data. The magnitude of the effect

varies with the value of d, ranging from very small (<0.01)

to huge (>2.0) [21]. We obtained a value of d = 2.52, which

indicates that the effect of introducing noise was huge.

Figure 4 shows histograms for the distributions of values

associated with noisy and noiseless runs. Note that, although

some configurations manifest a relative small number of

failures (0.15-0.2 range), most executions with noisy configu-

rations raise more failures in tests. The average rate of failures

in a noisy execution is 0.37. In contrast, regular executions

have average failure rate of 0.09, which is substantially smaller

compared with that of noisy runs. To sum up:

Summary: Results indicate that introducing noise in

the environment increases the ratio of failures in

test suites with time-constrained test cases.

B. Answering RQ2: How repeatable is the discovery of flaky

tests with a given noise configuration?

The goal of this question is to evaluate how repeatable

are the results obtained with a given configuration. If results

obtained with two runs of the test suite with the same

configuration are very different, then choosing configurations

randomly would be no worse than systematically searching for

configurations as described on Section III-B.

To answer this question, we randomly selected 15 noise

configurations and run the test suite on each one of them for

10 times, measuring the percentage of failures detected on each

execution. For each one of the 15 configurations, we generated

a distribution with 10 samples, where each sample indicates

the percentages of failures detected on a given configuration.

Figure 5 shows a boxplot associated with the standard

deviations of these 15 distributions. Results indicate that the

Fig. 5: Standard deviations of distributions of 10 reruns on

each of the 15 randomly-selected configurations.

average and median standard deviation is ∼.04, indicating that

the average difference in measurements is not superior to 8%

(avg±σ for a 95% confidence interval) of the total number of

flaky tests found. We conclude that:

Summary: Despite the non-deterministic nature of

the noise generation process, we observed relatively

similar rates of failures across multiple executions

of the same noise configuration.

C. Answering RQ3: How effective is the search for configu-

rations of the noise generator (e.g., Greedy and MHS) that

SHAKER uses?

Recall that SHAKER selects configurations in two steps (see

Section III-B). First, it generates a probability matrix and then

it selects configurations from that matrix. This research ques-

tion evaluates the effectiveness of the configuration selection

strategies SHAKER uses. More precisely, it evaluates the ability

of different techniques to select configurations.

We evaluated three strategies for selecting configurations,

namely, (i) MHS, (ii) Greedy, and (iii) Random. Recall that

MHS is the technique that finds the smallest set of configura-

tions whose execution of the test suite is capable of detecting

all flaky tests from the training set (as per their associated

probabilities in the abstract matrix). Greedy is the technique

that selects configurations with maximum individual fitness

scores (see Section III-B). Random serves as our control in

this experiment. It is the technique that randomly selects

configurations regardless of their scores. Both Greedy and

Random select the same number of configurations as MHS.

The metric we used to compare techniques is the ratio of

flaky tests detected when re-running the test suite against all

configurations in the set associated with a technique. For ex-

ample, let us consider that MHS produced four configurations.

To obtain the score for that set, we execute the test suite

four times, once for each configuration. Let us assume, we

observe discrepancy in the outputs of 30 of the 40 flaky tests

from the testing set. In that case, the score associated with the

configuration set will be 0.75 (=30/40).

We ran a statistical test to evaluate if there are differences

in the measurements obtained by MHS, Greedy, and Random.

The metric used was the fitness score, as described above, i.e.,

we measured the ratio of flaky tests detected when using each

selection strategy. We ran each technique for 10 times, so each

distribution of measurements contain 10 samples.
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As for RQ1, we ran a Shapiro-Wilk test to check if the

data is normally distributed. We found that the p-values are

above α = 0.05, therefore we concluded that the data is

normally distributed. We then used Bartlett’s test to check

the homogeneity of variances, which reveals that the samples

come from populations with the same variance. As such, we

chose to use the one-way ANOVA (ANalysis Of VAriance)

parametric test to check statistical significance of the sample

means by examining the variance of the samples. The null

hypothesis (H0) is that there is no variation in the means of

sample measurements, which would indicate that there is no

impact on changing selection strategies. The test reveals that

there are statistically significant differences among treatments

at the p < 0.01 level (ANOVA F(2,27)=66.83, p < 0.01).

TABLE II: Post-hoc analysis for RQ3 — Multiple Comparison

of Means using Tukey HSD

Group 1 Group 2 Mean Diff. p adj. Lower Upper Reject

Greedy MHS 0.008 0.8352 -0.0279 0.0439 False

Greedy Random -0.141 0.001 -0.1769 -0.1051 True

MHS Random -0.149 0.001 -0.1849 -0.1131 True

We performed a post-hoc paired comparison to evaluate

which of the techniques differ. For that, we used the Tukey

HSD test to execute multiple pairwise comparisons. Table II

shows the difference in means, the adjusted p-values, and

confidence levels for all possible pairs. Columns p-values

and confidence levels show that between-group differences

are significant only when comparing Random to MHS and

Greedy. However, statistically, results do reject the hypothesis

that Greedy and MHS are significantly different.

To sum up:

Summary: Results indicate that there is advantage

in selecting noise configurations based on their

fitness scores as opposed to randomly picking them.

However, there is no statistical support to claim

significant differences between MHS and Greedy.

D. Answering RQ4: How effective is SHAKER to find flaky

tests?

The goal of this research question is to evaluate SHAKER’s

performance. To that end, we analyzed two dimensions: (i) ef-

ficiency, i.e., how fast it finds flaky tests, and (ii) completeness,

i.e., what is the fraction of the set of known flaky tests

the technique detects. The set of flaky tests to be detected

corresponds to the test set, as defined on Section IV-B.

Figure 6 shows the progress of SHAKER and ReRun in

detecting flaky tests over time. The x-axis denotes time in

minutes whereas the y-axis denotes the number of flaky tests

detected. The steep increase in the number of flaky tests

detected by SHAKER indicates that it quickly discovers many

flaky tests. For example, 26 of the 40 flaky tests failed (i.e.,

65% of the total) in the first execution of the test suite with

SHAKER. Recall that the test set involves test cases of multiple

Fig. 6: Progress over time of SHAKER and ReRun in detecting

flaky tests.

projects. ReRun detected flakiness at a much slower pace,

as reflected by the growth of its plot. ReRun needed 43 re-

executions of the test suite and 316m (=5h16m) to reach

saturation with 15 flaky tests detected (i.e., 37.5% of the

total) whereas SHAKER needed 14 re-executions and 106m

(=1h46m) to reach saturation with 38 flaky tests detected (i.e.,

95% of the total). The vertical dotted line on Figure 6 marks

the 32m point in time corresponding to 10% of the time

required by ReRun to saturate, which is the limit of the x-

axis. In contrast, at that point, SHAKER had already found 34

of the flaky tests (i.e., 85% of the total).

We used the Area Under the Curve (AUC) as a proxy

of effectiveness. Rothermel et al. [22] pioneered the use of

this metric to assess performance of test case prioritization

techniques. The larger the area under the curve the better. For

these progress plots, a higher area indicates higher ability to

detect flaky tests and to detect them quickly. Intuitively, an

optimal technique would detect all flaky tests in one execution

and would have the AUC of a big trapezoid. Considering the

plot from Figure 6, the ReRun curve has an AUC of 3,491

where as the SHAKER curve has an AUC of 11,628, i.e., the

area of SHAKER is 3.33x (=11,628/3,491) higher than that of

ReRun. We used the auc function of the MESS library in R to

compute the AUCs of these plots. That implementation uses

the traditional trapezoidal integration method7 to obtain AUCs.

It is worth noting that, because of the increased load in the

environment, one execution of the test suite with SHAKER is

slower than one execution of the test suite with ReRun. The

average cost of one execution of the test suite with SHAKER

is 8m55s whereas the average cost of one execution of the test

suite with ReRun is 7m38s. Also note that SHAKER has the

additional cost of finding configurations. However, this phase

does not need to be executed as software evolves. Although

the configurations that SHAKER finds can be calibrated with

the inclusion of new projects and test suites for training, the

proposal is to use the set of configurations found in test runs

of any Android test suite. To sum up:

7https://www.lexjansen.com/nesug/nesug02/ps/ps017.pdf
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Summary: Results show that (1) SHAKER

discovered many more flaky tests than ReRun (95%

versus 37.5%) and (2) it discovered these flaky tests

much faster. SHAKER discovered 85% of the total

number of possible flakies in 10% of the time

ReRun took to find its maximum number of flakies.

E. Answering RQ5: How effective is SHAKER to find new

flaky tests?
TABLE III: Number of new flaky

tests found with SHAKER.

App
# flaky tests
All First 3

AntennaPod 27 20
FirefoxLite 5 3
Omni-Notes 4 3
Orgzly 14 10
Paintroid 10 8
WiFiAnalyzer 1 1

Total: 61 45

We ran SHAKER on

each project for 5h with

the goal of finding ad-

ditional flaky tests. Ta-

ble III shows the new

flaky tests we found. We

discarded tests with the

@FlakyTest annotation

from our search to avoid

the risk of inflating our

results given that devel-

opers already signaled a

potential issue on those tests. As such, we needed to discard

the project Flexbox-layout as all tests from that project contain

that annotation.

Overall, we found new flaky tests in 6 of the 11 projects (10

if we exclude Flexbox-layout) and a total of 61 new flaky tests

across these projects. SHAKER detected a total of 45 of these

flaky tests in the first three runs of the test suite, confirming

the behavior observed in the previous experiment when we

showed that SHAKER could reveal most flaky tests very early

during the search. We did not find any flaky tests on projects

AnyMemo, Espresso, Kiss, and Susi. As per Table I, note that

the previous experiment we ran could not reveal any flaky tests

on AnyMemo and Susi either. In contrast, we found one flaky

test in Omni-Notes and WifiAnalyzer, projects that previously

did not manifest test flakiness. It is important to recall that

95% of the 75 flaky tests found by ReRun are also found by

SHAKER (see Section V-D). To sum up:

Summary: SHAKER revealed 61 new flaky tests that

went undetected in 50 re-executions with ReRun.

For each project where we found flaky tests, we opened

issues on Github informing the detected flaky tests, explaining

how we detected flakiness, and pointing to a shell script with

instructions for reproducing our steps.8 AntennaPod develop-

ers confirmed they are aware of flakiness for some of their

tests, due to emulator performance when testing the Playback

functionality. This is consistent with our discussion in Sec-

tion II. Some of those tests are ignored on their Continuous

Integration systems. Nevertheless, we still detected flakiness

in other tests, that developers considered as important to fix.9

8See https://bit.ly/3dbqCZe for a script for AntennaPod
9https://github.com/AntennaPod/AntennaPod/issues/4194

Omni-Notes developers also modified their test suite to include

the @FlakyTest annotation in the tests we reported as flaky.10

F. Threats to validity

Threats to the construct validity are related to the appropri-

ateness of the evaluation metrics we used. We used popular

metrics previously used. For example, we used the ratio of

detected flakiness, the number of flaky tests detected, and the

Area Under the Curve (AUC) to evaluate the techniques.

Threats to the internal validity compromise our confidence

in establishing a relationship between the independent and

dependent variables. To mitigate this threat, we carefully

inspected the results of our evaluation. In addition, we ran

our experiments in different machines to confirm the impact

of noise in detecting flakiness.

Threats to the external validity relate to the ability to gener-

alize our results. We cannot claim generalization of our results

beyond the particular set of projects studied. In particular, our

findings are intrinsically limited by projects studied, as well

as their domains. The problems we found are related to task

coordination. Nevertheless, future work will have to investigate

to what extent our findings generalize to software written

in other programming languages and frameworks (beyond

Android and UI tests).

VI. RELATED WORK

We describe in the following recently related papers to ours.

A. Empirical studies about bugs in test code

Different empirical studies [10], [23]–[25] have attempted

to characterize the causes and symptoms of buggy tests, i.e.,

problematic tests that can fail raising a false alarm when there

is no indication of a bug in the application code. This paper

focuses on test flakiness, which is one of several possible types

of test code issues. For example, Vahabzadeh et al. [23] mined

the JIRA bug repository and the version control systems of

Apache Software Foundation and found that 5,556 unique bug

fixes exclusively affected test code. They manually examined

a sample of 499 buggy tests and found that 21% of these false

alarms were related to flaky tests, which they further classified

into Asynchronous Wait, Race Condition, and Concurrency

Bugs. In principle all such problems can result in timing

constraints that SHAKER could capture. Note, however, that

we focused on Android, the diagnosis of defect is out of scope,

and that SHAKER is a technique to find these issues whereas

the aforementioned works manually analyze test artifacts.

Luo et al. [10] analyzed the commit history of the Apache

Software Foundation central repository looking specifically

for flakiness. They analyzed 1,129 commits including the

keyword “flak” or “intermit”, and then manually inspected

each commit. They proposed 10 categories of flakiness root

causes and summarized the most common strategies to repair

them. Many of the problems reported are related to timing

constraints that could, in principle, be captured by SHAKER.

We remain to investigate how SHAKER performs for software

10https://github.com/federicoiosue/Omni-Notes/issues/761
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of different domains. Thorve et al. [2] conducted a study in

Android apps and observed that the causes of test flakiness in

Android apps are similar to those identified by Luo et al. [10].

They also found two new causes as Program Logic and UI.

Altogether, these studies show that test flakiness is prevalent

and a potential deterrent to software productivity.

B. Detection of test smells

Code smells are syntactical symptoms of poor design that

could result in a variety of problems. Test smells manifest

in test code as opposed to application code. Van Deursen et

al. [26] described 11 sources of test smells and suggested

corresponding refactorings to circumvent them. More recent

studies have been conducted on the same topic. Bavota et

al. [27] and Tufano et al. [28] separately studied the sources

of test smells as defined by Van Deursen et al. [26]. They

used simple syntactical patterns to detect these smells in code

and then manually inspected them for validation. Bavota et al.

found that up to 82% of the 637 test classes they analyzed

contains at least one test smell. In related work, Tufano et

al. studied the life cycle of test smells and concluded that

they are introduced since test creation—instead of during

evolution—and they survive through thousands of commits.

Waterloo et al. [24] developed a set of (anti-)patterns to

pinpoint problematic test code. They performed a study using

12 open source projects to assess the validity of those patterns.

Garousi et al. [29] prepared a comprehensive catalogue of test

smells and a summary of guidelines and tools to deal with

them. Test flakiness may relate to test smells. For example,

the use of sleeps are good predictors of flakiness [9], [30];

they induce time constraints that could be violated. We remain

to investigate whether the extent to which static methods

of flakiness prediction can improve the detection ability of

SHAKER. For example, in principle, it is possible to instrument

particular tests to initiate and terminate noise generation.

C. Detection of flaky tests

In principle, a test case should produce the same results

regardless of the order it is executed in a test suite [31].

Unfortunately, this is not always the case as the application

code that is reached by the test cases can inadvertently modify

static area and resetting the static area after the execution of

a given test is impractical. Test dependency is one particular

source of flakiness [10]. Gambi et al. [32] proposed a practical

approach, based on flow analysis and iterative testing, to

detect flakiness due to broken test dependencies. SHAKER

is complementary to techniques for capturing broken test

dependencies. It remains to investigate how a technique that

forcefully modifies the test orderings (e.g., discarding tests

from test runs and modifying orderings of test execution)

compares with the approach proposed by Gambi et al..

Bell et al. proposed DeFlaker [8], a dynamic technique

that uses test coverage to detect flakiness during software

evolution. DeFlaker observes the latest code changes and

marks any new failing test that did not execute changed code

as flaky tests. The expectation is that a test that passed in the

previous execution and did not execute changed code should

still pass. When that does not happen, DeFlaker assumes that

the changes in the coverage profile must have been caused by

non-determinism. Note that DeFlaker is unable to determine

flakiness if the coverage profile was impacted by change and

the ability of DeFlaker to detect flakiness is bound by the

ability of ReRun itself. Shi et al. [33] proposed iFixFlakies to

find and fix flaky tests caused by broken test dependencies.

SHAKER focuses on a different source of flakiness, which

often relates to time-constraints, such as those brought by

concurrency. Recently, Dong et al. [11] proposed FlakeShovel,

a tool to detect flakiness in Android apps by monitoring and

manipulating thread executions to change event orderings.

It directly interacts with the Android runtime, instead of

generating stress loads, as we did. We remain to evaluate how

SHAKER compares with FlakeShovel.

Purely static approaches have also been proposed to iden-

tify flaky tests [9], [34]–[36]. An important benefit of these

approaches is scalability. For example, it is possible to build

services to proactively search for suspicious tests in open

source repositories. On the downside, they only offer estimates

of flakiness; re-execution is still necessary to confirm the

issue. Herzig and Nagappan [34] developed a machine learning

approach that mines association rules among individual test

steps in tens of millions of false test alarms. Lam et al. [35]

used Bayesian networks for flakiness classification. Pinto et

al. [9] used binary text classification (e.g., Random Forests)

to predict test flakiness. They used typical NLP techniques to

classify flaky test cases—they tokenized the body of test cases,

discarded stop words, put words in camel case, and built lan-

guage models from the words associated with flaky and non-

flaky tests. SHAKER is complementary to static techniques. We

remain to evaluate how static classification techniques could

be used to selectively run tests in a noisy environment.

VII. CONCLUSIONS

Flaky tests are a huge problem in industry. Their presence

makes it difficult for developers to unambiguously interpret

the results of a regression testing cycle. This paper proposes

SHAKER, a lightweight approach to detect flakiness in time-

constrained tests by adding noise in the execution environment.

For example, SHAKER adds stressor tasks to create load in

the CPU and memory. We evaluated SHAKER on a sample

of 11 Android apps. Results are very encouraging. SHAKER

discovered many more flaky tests than ReRun (95% and

37.5% of the total, respectively) and discovered these flaky

tests much faster. In addition, SHAKER was able to reveal

61 new flaky tests that went undetected in 50 re-executions

with ReRun. Our data sets and results are publicly available

at https://github.com/shaker-project/shaker.
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