Time-Space Efficient Regression Testing for Configurable Systems

Sabrina Soutoa, Marcelo d’Amorimb

aUniversidade Estadual da Paraíba, Campina Grande, PB, Brazil
bUniversidade Federal de Pernambuco, Recife, PE, Brazil

Abstract

Configurable systems are those that can be adapted from a set of input options, reflected in code in form of variations. Testing these systems is challenging because of the vast array of configuration possibilities where bugs can hide. In the context of evolution, testing becomes even more challenging — not only code but also the set of plausible configurations can change across versions.

This paper proposes EvoSPLat, a regression testing technique for configurable systems that explores all dynamically reachable configurations from a test. EvoSPLat supports two important application scenarios of regression testing. In the RCS scenario, EvoSPLat prunes configurations (not tests) that are not impacted by changes. In the RTS scenario, EvoSPLat prunes tests (not configurations) which are not impacted by changes.

To evaluate EvoSPLat under the RCS scenario, we used a selection of configurable Java programs. Results indicate that EvoSPLat reduced time-to-market by \textasciitilde22\% and reduced the number of configurations tested by \textasciitilde45\%. To evaluate EvoSPLat under the RTS scenario, we used GCC. Results indicate that EvoSPLat reduced time to run tests by \textasciitilde35\%. Overall, results suggest that EvoSPLat is a promising technique to test configurable systems in the prevalent scenario of evolution.

1. Introduction

Configurable systems are those that can be adapted through input options, reflected in code in form of variations. Large software systems often provide some level of configurability to users or to developers. The intuition is that the ability to reason about these variations facilitates maintainability and reduces time-to-market [1]. Configurable systems are prevalent and the amount of variation they offer can be very high [2, 3]. Examples of configurable systems include the Firefox web browser [4], the Linux kernel [5], the GCC compiler infrastructure [6], and the deals-recommendation web service Groupon [7].

Testing configurable systems is an important problem that continues to attract a lot of attention from the research community [8]. Conceptually, the large space of possible configurations makes the introduction of errors easier and testing for those errors more challenging. For the sake of cost, it is not uncommon practice to test the system against a single configuration1 [9, 10]. For instance, Groupon [11] and GCC [9] follow this practice. At another extreme, exhaustively testing all configurations is unacceptably expensive. Large software systems typically offer hundreds of configuration options, leading to a combinatorial blowup in the number of possible configurations to test.

This work focuses on the problem of regression testing configurable systems. Regression testing is an important quality-assurance activity realized during software evolution to reduce the chances of defects escaping to production. It consists of repeatedly executing a test suite and monitoring its effects with the goal of anticipating the observation of errors. Regression testing is notoriously expensive and continues to receive huge attention from researchers and practitioners [12]. In the context of configurable systems, regression testing becomes even more expensive as each test needs to be executed against several different configurations. Despite the interest in regression testing from the research community and the prevalence of configurable systems in practice, research on this problem, which intersects two very-active areas, is surprisingly scarce.

To optimize regression testing, a technique intuitively needs to identify the impact of evolutionary changes on the execution of each test. Unfortunately, statically finding a sound yet small set of relevant configurations for each test is challenging – computing accurate static approximations of dynamic impact sets precisely and efficiently for non-configurable system is already a challenging problem [13, 14]; adding the configuration dimension does not make the problem any simpler [15, 16, 17]. Most previous research on this problem focused on the proposal of heuristics to find configurations seemingly-related to changes [18, 19, 20, 21]. The strategy scales but can lead to error misses as relevant configurations can be ignored.

This paper proposes EvoSPLat, a lightweight dynamic technique for efficient regression testing of configurable systems. EvoSPLat builds on our previously-developed technique, SPLat [11], which explores all configurations of a system that are dynamically reachable from an input test. EvoSPLat optimizes both time and space to explore change-impacted configurations and tests. Our approach is tuned for two scenarios of use: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for

Email addresses: sfs@cin.ufpe.br (Sabrina Souto), damorim@cin.ufpe.br (Marcelo d’Amorim)

1Such configuration is often referred to as the “default” configuration and includes the features which are more typical to build the system.
we use the terms variables and options indistinctly as if the map-
level documents the variables of a configurable system and their rela-
tionship to the test. A feature model (FM) helps represent a configuration as an additional input. A test for a configurable system takes a configuration as input.

Such pattern is frequently observed when system tests are im-
plemented by calling an executable through command-line pa-

ters [22, 10]. The contributions of this paper are:

- A lightweight technique to alleviate cost of systematic testing in two important scenarios of use: RCS and RTS.
- An implementation of our technique that is publicly available at https://sites.google.com/site/evosplat/.
- An empirical evaluation, including software product lines (SPLs) and one large program (GCC). We evaluated EvoSPLat for RCS on twelve SPLs and observed significant reduction in time and space. We also evaluated EvoSPLat for RTS on GCC. Results show that EvoSPLat reduces time by 35%, on average, compared to SPLat. Compared to sampling techniques, namely t-wise [23] with t=2 and t=6, we observed that EvoSPLat retained the ability to detect faults as 6-wise but required much less configurations (time) to achieve that. Pairwise, in contrast, was significantly faster compared to EvoSPLat (and 6-wise) but missed 2 out of 5 real GCC bugs we analyzed.

2. Finding configurations for testing with SPLat

This section illustrates EvoSPLat on a small running example. We call configuration variables (aka feature variables) those program variables whose purpose in code is to adapt behavior through variation. A configurable system is one that uses configuration variables to manage variability in code. A configuration is an assignment of values to configuration variables. In many cases, a default configuration exists (e.g., Groupon [11] and GCC [9]). Intuitively, the default configuration denotes typical behavior of the software. Variations are often controlled by users (not developers) from the command-line, through configuration options. These options are mapped to configuration variables in code. To simplify presentation, throughout the text we use the terms variables and options indistinctly as if the mapping was one-to-one. A test for a configurable system takes a configuration as an additional input. A feature model (FM) documents the variables of a configurable system and their relationships [24, 25], also called constraints. A SAT solver checks if a configuration is legal or not according to the FM constraints. The following two propositional constraints are part of the FM of SPLat [26], a library of graph algorithms previously used in the evaluation of prior related work.

\[(\text{MSTKRUSKAL} \lor \text{MSTPRIM}) \rightarrow (\text{UNDIR} \land \text{WEIGHTED})\]
\[(\text{SHORTEST}) \rightarrow (\text{DIRECTED} \land \text{WEIGHTED})\]

The first rule indicates that minimum spanning trees work on undirected weighted graphs. The second rule indicates that an algorithm for computing the shortest path between two nodes requires directed and weighted edges. FMs are optional in our framework as, in practice, they are not always available.

Figure 1 shows the test addEdgeWt from GPL. This test builds a graph with 3 connected vertices and checks some properties on the graph. For example, the first assertion checks if the weight 1 can be found through the vertex v3. This should be the case if the weight list associated with v3 was correctly updated with the call to v3.adjustAdorns(v1, 0). In the following, we will refer to three configuration options of GPL: WEIGHTED, SEARCH, and UNDIR. For the sake of illustration, let us assume that the tester uses a default configuration that has the option WEIGHTED set and all other options unset. Considering a single configuration, test execution will cover one distinct path in code where only branches associated with options which are set will be traversed. For this pair of test and configuration execution passes.

Given a test for a configurable system, SPLat [11] determines a set of configurations on which the test should be run. SPLat finds configurations as follows. It executes the test on one configuration, observes the values of configuration variables, and uses these values to determine the next configuration that the test should be run against. It repeats this process until it explores all relevant configurations or until it reaches a specified bound on the number of configurations. This exploration effectively produces a decision tree with nodes corresponding to configuration variables and edges corresponding to the different values these variables can hold. Leaf nodes indicate complete paths traversed by the test. Figure 1 shows the decision tree obtained with a complete run of SPLat on test addEdgeWt.

Considering the decision tree for test test_addEdgeWt, a path where variable WEIGHTED is set indicates that graph edges have weights and a path where variable UNDIR is set indicates that the graph is undirected. SPLat accepts categorical types. Discretization methods (e.g., domain partitioning [27]) can be used to handle non-categorical domains. SPLat starts execution without assigning concrete values to variables; it assigns values on demand, when variables are covered. SPLat finds a sound set of configurations to execute the test. This means that, provided that no bounds on time or number of configurations exist, SPLat cannot miss fault-revealing configurations on a given input test. Alternative selection strategies exist (e.g., combinatorial interaction testing [23]) but they do not provide soundness guarantees, in contrast to SPLat.

When the user provides on input a feature model constraining the set of legal configurations, SPLat can safely prune illegal configurations with the help of a SAT solver. We emphasize that this model is optional for SPLat. Back to the example, the configuration \((\text{WEIGHTED}, 0), (\text{SEARCH}, 0)\) is the first one that SPLat explores. Note that the Vertex constructor covers variables WEIGHTED and SEARCH, however variable UNDIR is not covered in this example. SPLat discards this configuration as it is illegal (\(X\)) according to the GPL configuration constraints, provided on input for this case. The cross under the leftmost path in the decision tree indicates that. Then SPLat re-executes the test on a new configuration. It assigns another value to
Variable `SEARCH` and re-runs the test against the configuration `[(WEIGHTED, 0), (SEARCH, 1)]`, which is legal (√). This process continues until all reachable configurations are explored.

3. EvoSPLat in a nutshell

SPLat showed that there are scenarios where exploring all reachable configurations is feasible. For example, SPLat was able to explore all dynamically reachable configurations in Groupon PWA² for several test cases [11]. Unfortunately, there are important scenarios where the number of configurations to explore is still very high. EvoSPLat addresses this inherent scalability issue of SPLat. In summary, EvoSPLat leverages information from previous runs to optimize time and space.

EvoSPLat provides two modes of execution: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). In RCS mode (Section 3.1), EvoSPLat restricts the set of configurations to run on each test; no restrictions apply to the test set. In contrast, in RTS mode (Section 3.2), EvoSPLat restricts the set of tests that will be executed; no restrictions apply to the configurations associated to each test. EvoSPLat for RCS benefits the most in a scenario where, for a given test, distinct configurations cover highly-different sets of functions. In that scenario, if a function changes, only few configurations would be impacted and only few re-executions would be necessary for a given test. If, on the contrary, most functions were covered across reachable configurations, RCS would have little effect as the test would need to be re-executed in all those configurations. EvoSPLat for RTS is a better fit for the later scenario. Although it does not prune test-reachable configurations, it is more lightweight compared to RCS. The decision on when to apply RCS or RTS depends on the kinds of tests of the application. Typically, unit and integration test suites are better fit for RCS whereas system tests are better fit for RTS.

3.1. EvoSPLat for RCS

EvoSPLat for RCS proceeds as follows. Initially, Splat is used to bootstrap the process of discovering configurations to run on a given test. As result, it produces the entire decision tree for that test. When there is a change, a lightweight static analysis is used to detect which subtrees of the decision tree have been affected. Then, a separate execution of Splat runs on each of these subtrees, potentially inducing changes in the tree structure. Ideally, when code changes, only a small number of subtrees and paths will be affected. To sum, EvoSPLat for RCS saves space by reducing the number of configurations to explore and it saves time by optimizing constraint solving time.

Back to the example, let us consider the scenario where the developer changes the function `addAnEdge`. In this case, EvoSPLat first detects that only the right subtree of the decision tree was affected by the change and then it spawns a new execution of Splat, rooted in the subtree associated with configuration `[(WEIGHTED, 1)]`. The value of variable WEIGHTED is fixed in that execution. Hence, EvoSPLat will only explore four of the six paths. The right subtree in the tree from Figure 1 shows those paths. The reduction can be higher or lower depending on the amount of code changes made during evolution and the size of the decision tree.

EvoSPLat also accelerates test execution by caching results of SAT solver calls. The hypothesis is that more often than not the execution of a test on (Evo)Splat will produce highly-similar subtrees in consecutive runs and make similar SAT calls. Note that it is not possible to completely avoid SAT calls as code changes can result in changes in the tree structure, leading to new constraints. However, to account for different orderings of accessed variables, EvoSPLat stores the constraints in canonical form, which exists for the language of propositions we used.

²Groupon PWA is the name of the codebase that powers the groupon.com website. See Section 4.2 from [11].
3.2. EvoSPLat for RTS

Unfortunately, SPLat for RCS will not scale for systems where most tests reach most configurations; a scenario that occurs often when testing is performed mostly against a single function, typically the main function of the system. In that case, the entire code under testing is reachable through that function. This is what happens, for example, with GCC, where a test consists of a source file augmented with testing directives indicating what “features” of the compiler should be executed (see Figure 5). In GCC the tests execute the same codebase modulo the variations induced from these input directives. As result, most functions are called in most configurations. For cases like GCC, re-running SPLat upon evolutionary changes is prohibitively expensive. In a nutshell, EvoSPLat for RTS identifies which tests have been impacted by changes and only re-runs SPLat on those tests. EvoSPLat maintains a map from tests to functions covered by those tests to identify impacted tests. At a high-level, this approach to test selection is similar to that used in Ekstazi [28].

Note that RCS generalizes RTS. With RCS one can model a test that should be ignored by associating an empty set of configurations with that test. RTS, however, does not generalize RCS as it is unable to partially restrict configurations of tests as RCS does. Despite this subsumption relationship, in practice, RTS remains important as it enables optimizations to EvoSPLat.

4. EvoSPLat in detail

This section describes in detail EvoSPLat, a technique to reduce cost of testing for configurable systems in the dominant scenario of evolution. EvoSPLat offers two execution modes, reflecting important scenarios of evolution. In the following, we describe these two modes.

4.1. EvoSPLat for RCS

EvoSPLat takes on input a feature model, a test, and a list of methods of interest denoting changes. It explores relevant configurations and reports test verdicts on output. EvoSPLat executes differently depending on whether it is executing for the first time or not. We call by “First Run” the initial execution and by “Next Runs” the subsequent runs of EvoSPLat. In the following, we present the interface EvoSPLat uses to check satisfiability of configurations and then detail the algorithm.

Figure 2 shows the classes and interfaces that EvoSPLat uses to access the feature model to check legality of configurations. The type FeatureVar denotes a feature variable. A VarAssign object encodes an assignment of boolean values to feature variables. An assignment can be complete, assigning values to all the features, or partial, assigning values to a subset of the features. A complete assignment is valid if it satisfies the constraints of the feature model. A partial assignment is satisfiable if it can be extended to a valid complete assignment.

The FeatureModel interface provides queries for determining the validity of feature assignments, obtaining valid configurations, and checking if particular informed features are mandatory. Given an assignment α, the method getValid() returns the set of all complete assignments that (1) agree with α on the values of feature variables in α and (2) assign the values of the remaining feature variables to make the complete assignment valid. If the set is not empty for α, we say that α is satisfiable; the method isSatisfiable() checks this. The method isMandatory() checks if a feature is mandatory according to the feature model and the method getMandatoryValue() returns the mandatory value for the informed feature. We use the SAT4J [29] SAT solver to implement these feature model operations.

First Run

Figure 3 shows the pseudo-code of SPLat, modified to support evolution. SPLat takes on input a feature model, a test, and a stack denoting what decision subtree should be explored (line 9 from Figure 3). Figure 4 shows the pseudo-code of EvoSPLat, which calls SPLat. EvoSPLat takes as input a feature model, a test, and a method list, empty on the first run, denoting those methods that have been impacted by evolutionary changes (line 10 from Figure 4). The first run of EvoSPLat invokes SPLat passing an empty stack on input (line 23 from Figure 4). In fact, this initial call is equivalent to invoking the non-evolutionary version of SPLat.

The statements modified in the original version of the SPLat algorithm [11] appear underlined in Figure 3. SPLat maintains a state (line 5) that stores the values of feature variables, and a stack (line 4) of Entry objects (line 1), representing methods and feature variables accessed during the test run. For each read of an optional feature variable, SPLat calls notifyFeatureRead() (line 55) to update both the stack with the new feature variable read and the state with a satisfiable value. For each method read, the algorithm calls notifyMethodVisited() (line 64) to update the stack with the new invoked method. At line 16, SPLat executes the test on a valid partial assignment. After finishing execution, SPLat determines the next partial configuration to execute (lines 21–36). If the last read feature holds true, then SPLat has explored both values of that feature, and it is popped off the stack (lines 24–29). If the size of the stack becomes smaller than the size of the stack passed on input st, it means the subtree of interest has been fully explored and SPLat should terminate. If the last read feature holds false, then SPLat has explored only the false value, and the feature should be set to true (lines 29–35). Another important step occurs now (line 32). While backtracking over the stack found a partial configuration to explore, it can be the case that this configuration is not satisfiable for the feature model. In that case, SPLat keeps searching for the next satisfiable assignment to run. If no such assignment is found, the stack becomes empty, and SPLat terminates.

Assuming that the subject under test provides a feature model

The statements modified in the original version of the SPLat algorithm [11] appear underlined in Figure 3. SPLat maintains a state (line 5) that stores the values of feature variables, and a stack (line 4) of Entry objects (line 1), representing methods and feature variables accessed during the test run. For each read of an optional feature variable, SPLat calls notifyFeatureRead() (line 55) to update both the stack with the new feature variable read and the state with a satisfiable value. For each method read, the algorithm calls notifyMethodVisited() (line 64) to update the stack with the new invoked method. At line 16, SPLat executes the test on a valid partial assignment. After finishing execution, SPLat determines the next partial configuration to execute (lines 21–36). If the last read feature holds true, then SPLat has explored both values of that feature, and it is popped off the stack (lines 24–29). If the size of the stack becomes smaller than the size of the stack passed on input st, it means the subtree of interest has been fully explored and SPLat should terminate. If the last read feature holds false, then SPLat has explored only the false value, and the feature should be set to true (lines 29–35). Another important step occurs now (line 32). While backtracking over the stack found a partial configuration to explore, it can be the case that this configuration is not satisfiable for the feature model. In that case, SPLat keeps searching for the next satisfiable assignment to run. If no such assignment is found, the stack becomes empty, and SPLat terminates.

Assuming that the subject under test provides a feature model

```java
class FeatureVar {...}
class VarAssign {... Map<FeatureVar, boolean> map; }
interface FeatureModel {
    Set<VarAssign> getValid(VarAssign a);
    boolean isSatisfiable(VarAssign a);
    boolean isMandatory(FeatureVar v);
    boolean getMandatoryValue(FeatureVar v);
}
```

Figure 2: Feature Model Interface
that constraints the set of legal configurations, EvoSPLat reduces execution cost by caching the results of SAT solver calls (see lines 32 and 59). This caching is the simplest memoization mechanism offered by EvoSPLat; it focuses on time reduction. To implement this mechanism EvoSPLat uses a map, where keys correspond to partial variable assignments and values correspond to booleans indicating whether or not the corresponding assignment is satisfiable. Given that these keys are potentially highly similar by construction, EvoSPLat uses a trie (aka prefix trees) [30] for faster storage and lookup of key-value pairs. Given the fact that generated constraints are of the form $\bigwedge_i a_i$, with $a_i = v$ or $a_i = \neg v$ for a symbolic variable v, canonicalization is obtained by pre-determining an ordering on symbolic variables. For example, EvoSPLat will represent the constraint $y \land x$ as $x \land y$, given the name order $x < y$.

Next Runs

Subsequent runs of EvoSPLat invoke SPLat passing non-empty stacks corresponding to subtrees of the exploration tree that need to be explored upon changes. In the following, we elaborate how EvoSPLat works on the first run and subsequent runs. Our current version of EvoSPLat for RCS assumes that potentially fault-revealing changes occur inside method bodies. Considering that all tests passed in the previous evolution cycle, a call to a changed method is a necessary condition to activate potential failures. Under this assumption, EvoSPLat for RCS

Figure 3: SPLat algorithm modified. Changes to the original SPLat algorithm [11] appear underlined.
applies a lightweight change-impact analysis that monitors calls to changed methods to decide what configurations need to be re-executed on each test.

EvoSPLat explores configurations as follows. It first initializes the values of feature variables (lines 12–16). The algorithm then instruments (line 19) the code under test to observe both feature variables read and methods calls. Next, it reads the list of traces (line 21) observed during the previous run of EvoSPLat for that test. If the list is empty, it means no history is available and SPLat is called for a full-run (line 23). Otherwise, EvoSPLat calls SPLat to explore all impacted configurations (lines 26–48). Each iteration of this loop calls SPLat on one decision subtree that has been affected by changes. The parameter st in the call at line 45 denotes such subtree; the object st encapsulates a partial assignment of feature variables to values. For example, the assignment \[(\text{WEIGHTED,1})\] denotes the right subtree from the example in Section 3.1.

4.2. EvoSPLat for RTS

In contrast to RCS, RTS does not restrict configurations for execution in each test. Instead, RTS restricts the tests that will be executed in each evolution cycle. For those tests, all reachable configurations should be executed. Note that RTS is a particular case of RCS – one could model the effects of RTS with RCS by assigning an empty set of configurations to those tests that should be ignored and retaining the original set of configurations for selected (non-ignored) tests. Despite the generality of RCS, there are scenarios where configuration selection has limited effectiveness. RTS comes as an alternative for those cases. More precisely, reduction in number of configurations with RCS is limited when most configurations explored in tests cover most functions. In those cases, it is possible that the changed function(s), if covered by the test at all, will likely be covered by any of its reachable configurations. Situations like this arise more frequently in systems whose tests exercise a single main function. GCC is a case in point (see Section 5.2).

To support RTS, EvoSPLat first identifies what tests have been impacted by changes and then performs a full execution with SPLat on those tests. EvoSPLat maintains a map from tests to set of functions that have been covered by any configuration reachable from that test. Recall that, in this scenario, most configurations of a given test cover most functions. At test selection time, a test will be considered for testing if a changed function is included in the function set associated to that test.

4.2.1. Implementation for GCC

Figure 5 shows an example of GCC test written in the DejaGnu [31] testing framework. A GCC test runs against a single configuration and is comprised of the following parts. The DejaGnu directive \texttt{dg-do} specifies the type of action to run against the test. For a compiler such as GCC, possible options are: pre-process, compile, assemble, link, and run. For example, the directive \texttt{dg-do compile} at line 1 instructs DejaGnu to only compile functions \texttt{g} and \texttt{f}. No other operations (e.g., assemble, link, run, etc.) will be executed in this case. The DejaGnu directive \texttt{dg-options} specifies a subset of options that must be present to run the test. For this example, the directive at line 2 indicates that this test must be executed with at least the options \texttt{"O2"} and \texttt{"-fdump-tree-optimized"} enabled. The body of the test (lines 3 to 10) corresponds to C/C++ code. Finally, the instruction at line 10 describes the oracle to determine whether the test should pass or fail.

![Figure 5: An example of test (complex-4.c from GCC test suite).](image)

Figure 6 illustrates the test execution workflow for GCC. The input of the workflow is a test (as in Figure 5) and the output is the report of test results. After reading the test (1), the Test Driver calls the GCC Driver passing the commands interpreted from the test file (2). Based on the test input, the GCC Driver calls the main function of the compiler (e.g., CC1 for C, CC1Plus for C++) passing compilation parameters (3). Different compiler stages (scan, parse, etc.) will be triggered depending on the “Actions” of the test (4). The compiler sends results back to the GCC Driver when compilation finishes (5) and the GCC Driver forwards the output to the Test Driver (6), which checks these outputs (7) and elaborates a test report (8).

Other configurable systems use primarily system tests [10] for testing, similarly to GCC. This is important as to decide which reduction strategy to use in regression testing (see Section 5).

5. Evaluation

Table 1 details the structure of this section, which is organized in two parts to reflect our different scenarios of evaluation. Section 5.1 evaluates EvoSPLat under the RCS scenario on twelve Software Product Lines (SPLs) written in Java. Section 5.2 evaluates EvoSPLat under the scenario of RTS on GCC, a large configurable system built over the course of 3 decades. Recall that in Regression Configuration Selection (RCS) mode EvoSPLat aims to reduce the number of configurations reachable by each test but with the test set fixed (see Section 4.1) whereas in Regression Test Selection (RTS) mode EvoSPLat aims to reduce...
the number of tests executed but with configurations of tests fixed (see Section 4.2).

Table 1: Organization of Section 5.

<table>
<thead>
<tr>
<th>Section</th>
<th>Scenario</th>
<th>RQs</th>
<th>Programs</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>RCS</td>
<td>R1, R2</td>
<td>SPLs</td>
<td>Unit/System/Integration</td>
</tr>
<tr>
<td>5.2</td>
<td>RTS</td>
<td>R3, R4, R5</td>
<td>GCC</td>
<td>System</td>
</tr>
</tbody>
</table>

Although both SPLs and configurable systems use variability as key principle, the characteristics of the tests in these programs are different. As observed in recent empirical studies [22, 10], most tests in configurable systems are system tests, which often cover large portions of the code. This limits the ability of RCS to prune configurations. The intuition is that EvoSPLat for RCS would benefit the most in a scenario where, for a given test, distinct configurations cover highly-different sets of functions. In that scenario, if a function changes, only few configurations would be impacted and only few re-executions would be necessary for a given test. If, on the contrary, most functions were covered across most configurations, RCS would have little effect as the test would need to be re-executed in all those configurations. In this later scenario, EvoSPLat for RTS is preferable. It is unable to prune configuration but is more lightweight.

Figure 7: Distribution of common functions across configurations for each test.

Prior to evaluating our proposed techniques, we conducted a preliminary limitation study to understand how successful RCS would be in a configurable system like GCC. To that end, we studied the variance in the distribution of functions covered across configurations of each test in GCC. Figure 7 illustrates the distribution of functions that are common across all reachable configurations. The average amount of functions per configuration lies between one and two thousand. A closer inspection reveals that most configurations of a given test cover about the same set of functions. This happens because the test in GCC exercises a main function, which dynamically reaches most functions of the compiler (see Section 4.2.1). This is common practice in configurable systems where configuration options are passed on the command line. We also observed a high percentage of common functions across configurations and across tests, 72% of functions are called by all tests. These observations substantiate our decision to evaluate EvoSPLat for RTS with GCC and evaluate EvoSPLat for RCS with SPLs.

5.1 Regression Configuration Selection (RCS)

Considering the scenario of RCS we posed the following research questions:

RQ1. What are the time savings obtained with the caching of constraint solver calls?

RQ2. What are the space savings obtained with the recording of decision trees?

For this experiment, we selected 12 subjects of various sizes that have been previously used in other studies. Table 2 provides details about these subjects, including number of features, number of valid configurations that can be generated combining these features, number of methods, and code size.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Source</th>
<th>#Features</th>
<th>#Valid Confs.</th>
<th>#Methods</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>101Companies</td>
<td>[32]</td>
<td>10</td>
<td>192</td>
<td>307</td>
<td>2,059</td>
</tr>
<tr>
<td>DesktopSearcher</td>
<td>[33]</td>
<td>16</td>
<td>462</td>
<td>113</td>
<td>3,779</td>
</tr>
<tr>
<td>Elevator</td>
<td>[34]</td>
<td>5</td>
<td>20</td>
<td>121</td>
<td>1,046</td>
</tr>
<tr>
<td>Email</td>
<td>[35]</td>
<td>8</td>
<td>40</td>
<td>227</td>
<td>1,233</td>
</tr>
<tr>
<td>GPL</td>
<td>[26]</td>
<td>13</td>
<td>73</td>
<td>95</td>
<td>1,713</td>
</tr>
<tr>
<td>JTopas</td>
<td>[36]</td>
<td>5</td>
<td>32</td>
<td>578</td>
<td>2,031</td>
</tr>
<tr>
<td>MinePump</td>
<td>[37]</td>
<td>6</td>
<td>64</td>
<td>99</td>
<td>580</td>
</tr>
<tr>
<td>Notepad</td>
<td>[38]</td>
<td>17</td>
<td>256</td>
<td>136</td>
<td>2,074</td>
</tr>
<tr>
<td>Prevayler</td>
<td>[39]</td>
<td>5</td>
<td>32</td>
<td>523</td>
<td>2,844</td>
</tr>
<tr>
<td>Sudoku</td>
<td>[40]</td>
<td>6</td>
<td>20</td>
<td>99</td>
<td>853</td>
</tr>
<tr>
<td>XStream</td>
<td>[41]</td>
<td>7</td>
<td>128</td>
<td>2,318</td>
<td>14,480</td>
</tr>
<tr>
<td>ZipMe</td>
<td>[42]</td>
<td>13</td>
<td>24</td>
<td>338</td>
<td>3,650</td>
</tr>
</tbody>
</table>

Table 2: SPLs used.

We classify execution of EvoSPLat in one of three categories. In one limit, a complete execution is necessary to bootstrap EvoSPLat. In this case, all tests and configurations have to be executed. A partial execution is necessary when evolutionary changes affect some tests (and configurations) making it necessary to re-execute tests (against some configurations). In another limit, it is possible that no test execution is necessary because no impact was detected. Our evaluation on SPLs considers the first two scenarios of regression testing — complete execution and partial execution. In principle, there is no cost associated with running EvoSPLat under the “no impact” scenario.

5.1.1 Answering RQ1 — Complete execution (Time Reduction)

A complete re-execution may be necessary during evolution. Consider, for example, the first run of the test suite using EvoSPLat or the scenario where all tests and configurations have been impacted by changes. This experiment evaluates whether EvoSPLat can help even in those cases. EvoSPLat optimizes the cost of SAT solving. Recall that SPL can use a SAT solver to discard invalid configurations. On the one hand, this is important because often only a small fraction of the #Features configurations are valid. See columns “#Features” and “#Valid Confs.” in Table 2. This indicates that using a SAT solver conceptually pays off. On the other hand, the cost of SAT solving can be substantial. This indicates that caching results of SAT solver calls may be important.
This experiment evaluates the distinct benefit of caching the calls to the SAT solver (lines 44–53 from Figure 3). Recall that EvoSPLat uses a trie, shared across all tests, to store the outcomes of feasibility checks and that trie keys correspond to feature constraints. To reduce noise in measurements, we discarded subjects from Table 2 whose test suite takes less than five seconds to run.

To isolate cost of SAT solving, this experiment simulates the scenario where code changes would not influence feature decisions. Under these circumstances the decision trees generated in consecutive runs of EvoSPLat on the same test would be the same. This means that only one, potentially expensive, SPLat run is necessary until the point where a change in the decision tree is observed. Until that point, it suffices to execute a test against each of the configurations obtained with the first execution of SPLat on that test. In this setup, it is possible to isolate the benefits of an optimal cache hit ratio. Although we did not measure how prevalent this scenario is to the practice, we conjecture that it happens often. If, on the contrary, decision trees were to always change during evolution, that would certainly mean a lack of understanding about the purpose of options.

We considered three techniques for comparison:
- “SPLat” corresponds to the baseline technique.
- “FirstRun” corresponds to the technique that runs EvoSPLat for the first time, with an empty cache, as described in Section 4.1.
- “NextRuns” corresponds to the technique that runs EvoSPLat with a filled cache, as described in Section 4.1, but assuming the decision tree does not change.

<table>
<thead>
<tr>
<th>Subject</th>
<th>SPLat</th>
<th>EvoSPLat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#SAT</td>
<td>#UNSAT</td>
</tr>
<tr>
<td>101Companies</td>
<td>10,187</td>
<td>642</td>
</tr>
<tr>
<td>DesktopSearcher</td>
<td>4,942</td>
<td>272</td>
</tr>
<tr>
<td>Email</td>
<td>5,446</td>
<td>432</td>
</tr>
<tr>
<td>GPL</td>
<td>4,652</td>
<td>420</td>
</tr>
<tr>
<td>JTopas</td>
<td>788</td>
<td>0</td>
</tr>
<tr>
<td>Notepad</td>
<td>168,549</td>
<td>18,695</td>
</tr>
<tr>
<td>XStream</td>
<td>486</td>
<td>0</td>
</tr>
<tr>
<td>AVG</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Savings in SAT calls.

Table 3 summarizes results for this experiment. Recall that EvoSPLat stores constraints in a trie and that, to maximize cache hit ratio, the keys in the trie are stored in a canonical form (Section 4.1). This figure shows the breakdown of SAT queries that the baseline technique – SPLat – generates and land in SAT or UNSAT. Note that the number of SAT calls can be very high in some cases. That happens because (Evo)SPLat checks consistency of partial configurations incrementally. Exploration backtracks only when the solver answers UNSAT to a query, which means it is no longer possible to reach a valid configuration. The other solver calls will result in a SAT answer.

Column “TotalTime (CS%)” shows the overall time in seconds. This comprehends time spent running all tests on all (valid) configurations, and the time spent with constraint solving. The percentage of time spent with constraint solving alone “(CS%)” appears in parentheses. Column “FirstRun” reports the reduction in time obtained with the initial execution of EvoSPLat. Saving of time happens even in this case because EvoSPLat starts using the trie as it is filled. Column “NextRuns” reports the reduction in time obtained with the subsequent executions of EvoSPLat. Recall that, in this case, EvoSPLat makes no calls to the SAT solver. Note from the table the difference between the savings obtained and the maximum possible savings (column “%CS”). For instance, considering XStream, the savings of both “FirstRun” and “NextRuns”, albeit significant (10% and 12%, respectively), are still below the maximum possible (15%).

Considering all subjects, tests, and configurations that we analyzed, results show an average time reduction of 21.96%. Results also show that this value represents 66.2% (21.96/33.17) of the maximum possible reduction, which is the total time spent with constraint solving in SPLat. It should be possible to reduce this gap further by using more efficient canonicalizations and trie implementations.

Time savings seem to depend on several factors such as complexity of constraints, number of paths, and length and complexity of tests. As expected, we noted smaller improvements for the cases where relatively more time is spent executing test code as opposed to calling the SAT solver. For example, the tests for the subjects 101Companies, DesktopSearcher, and Notepad, spend a considerable time accessing the graphical user interface and the tests for the subjects JTopas and XStream spend a significant amount of time accessing files.

Answering RQ1: Results indicate that caching results of SAT solver calls should be done, although performance of caching depends on the characteristics of the application.

5.1.2. Answering RQ2 — Partial Execution (Space Reduction)

A partial execution is necessary when changes affect only some configurations reachable from given tests. In this case, EvoSPLat reconstructs only the parts of the decision tree that may have been affected by changes. This experiment evaluates how much EvoSPLat can reduce space required to explore configurations. More specifically, we want to find out how much less configurations, compared to a complete run (as in Section 5.1.1), one would need to re-run in a scenario of change.

This experiment assumes that changes occur only in methods and, within method bodies, changes occur in application code, not in feature decisions, and that feature variables are not re-assigned within code (as in the SPLs we analyzed). Under these circumstances, the decision tree, obtained in previous runs, is not affected. Intuitively, this setup enables one to filter subtrees — inducing a set of configurations — affected by changes. Furthermore, to limit the scope of the experiment, we are assuming changes in only one method per evolution cycle. The rationale for that is that the size of the SPL subjects we analyzed is small (see Table 2). Note that, albeit small, these are subjects typically used to study SPL testing. Section 5.2 reports results of EvoSPLat on a much larger software system.

We used the following procedure to measure configuration reduction. We run SPLat once on each test and measure, for each method that appears in the trace, the fraction of configurations whose test execution trace does not contain that method.
The intuition is that it is not necessary to run the test on a configuration that does not call the changed method. For a given test case, we save the average saving across all methods. For the sake of illustration, let us assume that a test explores only two configurations, c_1 and c_2, that the code contains only three methods m_1, m_2, and m_3, and that configuration c_1 covers m_1 and m_2 whereas configuration c_2 covers m_1 and m_3. For this setup, a change (only) in method m_1 results in no reduction as it is always referred in the traces while a change in either m_2 or m_3 results in 50% reduction (in both cases a single configuration is eliminated). An average reduction of 33% will be observed considering the three methods.

Table 4 presents the distribution of tests per subject over different intervals of configuration reduction. The higher the interval a test is allocated the better. We omitted columns where configuration reduction is eliminated. An average reduction of 33% will be observed. For that, we considered five bugs we previously found in GCC version 4.8 [9].

To bootstrap RTS one needs to first map the functions covered by each test on any reachable configuration. In a subsequent iteration, if any of the functions covered by a given test changes, EvoSPLat re-runs that test against all its configurations. Otherwise, EvoSPLat skips the test. For example, SPLat reaches 192 configurations for the test gcc-dg.pr58145-2.c. Executing this test against these configurations covers 4,129 functions. Analyzing the evolution cycle the day after August 21, 2015 (our day of reference), we observed that the changes impacted all the 192 configurations. More precisely, for any given reachable configuration of the test, at least one of the 31 modified functions in this evolution cycle appeared in its corresponding execution trace. As result, EvoSPLat re-executed the test on all 192 configurations.

5.2. Regression Test Selection (RTS)

The goal of this study is to assess how EvoSPLat performs on a scenario of RTS using a highly-configurable real system. We pose the following research questions:

RQ3. How efficient EvoSPLat is compared to SPLat?

RQ4. How efficient EvoSPLat is compared to sampling techniques?

RQ5. How effective EvoSPLat is (w.r.t. bug finding) compared to alternative techniques?

In this experiment, we used the GNU Compiler Collection (GCC) [43], a large system with more than 7 million lines of code, more than 17k tests, with hundreds of configuration options [1], and 2,015 feature variables. GCC has been developed for almost three decades, receiving contribution from over 500 developers [44].

5.2.1. Techniques, Metrics, and Methodology

We evaluated EvoSPLat against SPLat and sampling techniques, namely t-wise sampling for $t=2$ and $t=6$. These values of t have been recently used by Medeiros et al. [10] to evaluate the impact of these interaction degrees in testing configurable systems. The metrics we used to evaluate efficiency of techniques are number of tests selected for re-execution upon an evolution cycle and time reduction. The metric used to evaluate efficacy is fault detection. For that, we considered five bugs we previously found in GCC version 4.8 [9].

5.2.2. Experimental Setup

Test execution in GCC is time-consuming. Considering one configuration per test and our running environment, it takes roughly 2s to run each test. In this experiment, we focused on the gcc-dg test suite, which contains 3,343 tests. The rationale for choosing this test suite was that we observed from bug reports a higher incidence of bugs revealed with this suite.

In contrast to the simulated scenario of evolution from Section 5.1, this experiment evaluates EvoSPLat under real evolution scenarios. To that end, we needed to make some simplifications. We considered daily changes of GCC as it represents an important scenario of evolution. We analyzed the build files that the GCC team posts to their web site every day. Due to a relatively high cost to prepare the execution environment (e.g., download, instrument code, and build), we considered only seven evolution cycles, the period of a week. Table 5 shows the amount of functions that change over that period, starting on August 21, 2015. We use the notation “+n” to indicate an evolution cycle from day n to day $n+1$. For example, “+1” denotes the period between the starting date and next day. Note that the amount of changed functions is very small relative to the total number of functions in GCC (as per Figure 7). The stability of GCC justifies that. To further reduce exploration time, we restricted the number of configuration options that SPLat con-

<table>
<thead>
<tr>
<th>Subject</th>
<th>[0.0-0.1]</th>
<th>[0.1-0.2]</th>
<th>[0.2-0.3]</th>
<th>[0.3-0.4]</th>
<th>[0.4-0.5]</th>
<th>[0.5-0.6]</th>
<th>[0.6-0.7]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>101Companies</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>DesktopSearcher</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Elevator</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Email</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>GPL</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Flipper</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>MinePump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Notepad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Preloader</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Sudoku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>XStream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ZipMe</td>
<td>14</td>
<td>18</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>29</td>
<td>70</td>
<td>26</td>
<td>52</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: Distribution of tests per subject over increasing intervals of configuration reduction. A configuration reduction for a given test is a measure of how much EvoSPLat reduces the number of configurations explored (and hence cost of exploration) compared to running the test again with SPLat. For example, of the 25 tests of GPL, 7 tests lie in the [0.4-0.5] interval. This means that the number of configurations EvoSPLat explores would be reduced by a factor of $\sim 45\%$ for those tests. The rightmost interval clusters the worst-performing cases. Note that this setup ignores changes that could affect the decision tree (and produce less/more traces).

Answering RQ2: Considering all subjects in this experimental setup, results indicate that it is possible to obtain a significant reduction in number of configurations explored. However, this highly depends on the functions changes and the impact set associated to those functions.
Table 5: RTS Results. #Tests Exec. (%): the percentage of tests executed; #Confs/Test: the average on the number of configurations executed per test; Time (h): the time spent to run the tests and configurations. (Evo)Pair-wise generated 13 Confs/Test; (Evo)Six-wise generated 553 Confs/Test.

5.2.3. Answering RQ3

Considering a single configuration per test, it takes ~1h18m to run only the gcc-dg test suite. To reduce overall time for running our experiments, we specified an upper bound of 100 configurations to explore per test. Of the 3,343 tests from gcc-dg, 290 tests do not reach this bound. We considered only those tests as to enable EvoSPLat to explore the entire decision tree on a re-run. Without this scheme, it would be possible to bias the search by narrowing the configuration space in the tree. The purpose of this restriction is to facilitate analysis of results; EvoSPLat does support cases that reach configuration bounds.

Table 6 reports efficiency results. Column Evolution shows the evolution cycle id. An evolution cycle refers to the changes between two consecutive daily builds. Column Functions Changed shows the number of functions that changed in an evolution cycle and that function is called by every test for every configuration. Time (h) show the runtime cost of running each of the techniques. For pair-wise and six-wise show results for each of the techniques. Across different cycles: it takes nearly 6.5h to execute all tests against all reachable configurations. For example, the function compile_file from the file toplev.c was modified in the first evolution cycle and that function is called by every test for every configuration.

Table 6: SPLat vs. EvoSPLat.

Table 6 shows results comparing EvoSPLat with our baseline, SPLat. Results show that EvoSPLat is either very beneficial or not at all. In 4 out of 7 cases EvoSPLat obtained no reduction. For the rest of the cases, a significant reduction was obtained. On average, results indicate a reduction of ~35% in the number of tests required for re-execution and of running time. The cases were all tests required re-execution (see 100% under column “Tests Exec. %”) reveal that during the week under consideration, a “basic” function was changed. This function is shared across all tests and configurations. For example, the function compile_file from the file toplev.c was modified in the first evolution cycle and that function is called by every test for every configuration.

5.2.4. Answering RQ4

In contrast to the previous experiment, this experiment does not restrict the number of configurations that EvoSPLat explores. The rationale is that limiting the number of configurations would obviously favor EvoSPLat compared to high values of \(t\) (with \(t\) denoting the width of configuration vectors in \(t\)-wise testing) and disfavor EvoSPLat compared to low values of \(t\). For that, SPLat is not restricted to configuration bounds in this experiment. However, to reduce experimentation time to a reasonable figure, we limited the number of tests to 100. We randomly selected those from the 3,343 tests of gcc-dg.

Table 5 reports efficiency results. Column Evolution shows the evolution cycle id. An evolution cycle refers to the changes between two consecutive daily builds. Column Functions Changed shows the number of functions that changed in a cycle. We omitted results for the baseline as it is virtually constant. The average reduction of time considering this scenario was nearly 35%.
of configurations they consider is fixed. As EvoSPLat, they initially map the functions covered by each test on any reachable configuration (we used SPLat to obtain this information). Then, if any of the functions covered by a given test change, (Evo)Pair-wise and (Evo)Six-wise re-run that test against all precomputed configurations. Otherwise, they discard the test.

Answering RQ4: Perhaps as expected, results indicate that (Evo)Pair-wise and (Evo)Six-wise offer, respectively, lower and upper bounds of comparison – EvoSPLat performed in between these two extremes. It ran four times faster than (Evo)Six-wise and ten times slower than (Evo)Pair-wise. Relative performance of techniques with respect to the number of configurations is similar.

5.2.5. Answering RQ5

The goal of this experiment is to evaluate the effectiveness, by comparing EvoSPLat with alternative techniques on the ability to detect real bugs. For that, we used the release 4.8.2 of GCC where the authors of this paper already found bugs\(^3\)\[9\], and one next release with bugs fixed. We simulated regression by “inverting” the version history: we considered the fixed release and (Evo)Pair-wise while (Evo)Six-wise served that, although (Evo)Pair-wise was by far the most efficient technique, it missed two bugs. In contrast, both EvoSPLat and (Evo)Six-wise caught all bugs but required significantly more time. EvoSPLat, however, detected all bugs four times faster than (Evo)Six-wise, on average.

Although performance largely depends on the code under analysis and code changes, overall, results indicate that our approach is lightweight and effective. EvoSPLat addresses an important gap that exists between two important fields of research and practice: configurable system’s testing and regression testing.

Table 7: Bugs detected in GCC version 4.8.2.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Bug Id</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EvoSPLat</td>
<td>✓</td>
</tr>
<tr>
<td>(Evo)Pair-wise</td>
<td>✓</td>
</tr>
<tr>
<td>(Evo)Six-wise</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 7 reports the effectiveness results. Overall, we observed that EvoSPLat and (Evo)Six-wise detected all bugs while (Evo)Pair-wise could only reveal three bugs. The reason is that the two non-detected bugs are only manifested when a single buggy feature is enabled (and the others are disabled), and the configurations generated for pair-wise did not explore this kind of combination with this specific feature variable.

Answering RQ5: Results indicate that (Evo)Pair-wise missed two bugs that alternative techniques found. EvoSPLat was as effective as (Evo)Six-wise but it could find bugs much faster.

\(^3\)All bugs were confirmed by the GCC team: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=x, where x=601980, 62069, 62070, 62140, 62141.

6. Discussion

We evaluated EvoSPLat in two scenarios: RCS (Regression Configuration Selection) and RTS (Regression Test Selection). The goals of RCS and RTS are the same: to reduce execution cost. However, the mechanisms to achieve the goal as well as the contexts of application vary. RCS focuses on reduction of configurations explored by each test (with test set fixed) whereas RTS focuses on reduction of the test set (with configurations reached in each test fixed).

Compared to our original technique SPLat, we found that EvoSPLat was beneficial in both scenarios, leading to significant reduction of space or time. Compared to sampling techniques, which are very popular for testing configurable systems [49, 50, 51, 23], EvoSPLat achieved a balance between time and efficiency. It is important to note that it is in general challenging to determine the best interaction degree to use for combinatorial testing. Considering the RTS scenario, we observed that, although (Evo)Pair-wise was by far the most efficient technique, it missed two bugs. In contrast, both EvoSPLat and (Evo)Six-wise caught all bugs but required significantly more time. EvoSPLat, however, detected all bugs four times faster than (Evo)Six-wise, on average.

Considering internal validity, coding errors could invalidate our results. To mitigate this threat, we thoroughly checked our implementation and our experimental results, looking for discrepancies signaling potential errors. The bugs detected in our experiments were validated by other individuals. Considering GCC particularly, we used Bugzilla to report bugs to the GCC team who validated the bugs we found.

Considering external validity, the selection of subjects we used in the experiment with SPLs may not be representative of programs used in industry. These subjects, albeit previously used in prior research, are small and may be tested differently compared to real software. To mitigate this threat we also considered one configurable system that has been under active development for decades: GCC. We found that a system like GCC is indeed tested differently (e.g., test suites include more system tests compared to integration and unit tests) and required adaptation of EvoSPLat. Another threat is related to the setup we used in our GCC experiments. We selected options, tests, code versions, and heuristics according to a specific criteria given that it is impractical to exhaustively consider all combinations of independent variables. We used most frequently cited options from the GCC bug reports (in the week we focused our analysis) and used a test suite with higher incidence of bugs, observed from bug reports. Additionally, we chose well known sampling heuristics that explored configuration vectors of strengths typically considered in the evaluation of prior related work (i.e., pair-wise
and six-wise) and used a mature version of GCC (4.8.2) with bugs confirmed by developers.

It is worth mentioning that EvoSPLat currently only supports configurable systems with dynamically bound variables. Although several systems are implemented this way (e.g., Groupon web [7] and GCC [6]) there is also a number of systems that use pre-processor directives as a mechanism to implement variability (e.g., Linux Kernel [22]). It remains to investigate how EvoSPLat would perform on systems with #ifdef variability. In this work, we assume that only function declarations and function bodies change across versions. Although we noticed that most changes are of this kind, in practice, it is possible that constraints change across versions, changes occur outside functions and tests change across versions. EvoSPLat currently does not support those kinds of changes. We remain to investigate how EvoSPLat would perform under those scenarios.

8. Related Work

This section presents work most related to EvoSPLat.

8.1. Regression Testing for Non-Configurable Systems

Regression testing is a field of research that can directly impact in-house testing. One case that shows such impact in industry is Ekstazi [52], a recently-available Java library for regression testing that is used by Apache Camel, CXF, and Commons Math. Regression testing also continues to attract attention from the research community. Considering regression testing for non-configurable systems, recent research has focused on the following key problems: test selection (e.g., [53, 54, 28, 55]), test-suite prioritization (e.g., [56, 57]), test-suite augmentation (e.g., [58, 59, 60]), and test-suite reduction (e.g., [61, 62]). In the following, we discuss some of these works.

Saha et al. [57] introduce a new approach to address the problem of regression test prioritization by reducing it to a standard Information Retrieval problem, such that it does not require any dynamic profiling or static program analysis to calculate the differences between two program versions. Elbaum et al. [55] present two new techniques for selecting and prioritizing regression tests in the context of continuous integration development environments. They use readily available test suite execution history data to determine what tests are worth executing and the priority of execution. Nanda et al. [54] propose an approach to select regression tests in systems that contain frequent changes in non-code artifacts. This technique focuses on changes to property files and databases, complementing code-centric approaches. Bohme et al. [60] introduce a new regression test generation technique that stress code where change interaction may occur, with the purpose of finding more errors.

None of these works consider the dimension variability to improve regression testing. This dimension is very important in many cases and accounts for many errors in large real software [2, 3, 10]. It remains open to explore how to combine these ideas with EvoSPLat in the context of configurable systems.

8.2. Regression Testing for Configurable Systems

Previous techniques to solve this problem apply heuristics to find configurations related to evolutionary changes [18, 19, 20, 21]. We shortly summarize and related some of these works in the following. Qu et al. [18, 19] focus on regression testing of evolving configurable software systems. They present an empirical study about the impact of configuration selection heuristics used in regression testing on fault-detection capability. Their results highlight that a number of bugs may be missed if certain configurations are not tested and that prioritizing configurations allows for more effective testing. Qu et al. [20] use slicing-based code change impact analysis to assist configuration selection. The technique consists of two steps. First, it looks for a set of variables to be re-tested from a static forward slice of the program. Then, from this set of variables, they use pair-wise CIT (Combinatorial Interaction Testing) to select configurations to be re-tested. The cost of running the impact analysis was high but experimental results showed promise when compared with random and exhaustive selection.

It is important to note that these techniques inherit the limitations of combinatorial testing: relevant configurations can be missed and irrelevant configurations can be captured. EvoSPLat discovers an approximation for the set of configurations that require execution. It is very important to note that if one knew a priori that evolutionary changes would definitely not affect the decision tree as obtained from the previous run of the technique, then it would be possible to safely re-execute the same configurations from the previous run without tooling support (and associated overhead). However, knowing in advance that the structure of the tree would be preserved requires more sophisticated analysis, which is often too expensive in this context [13, 14, 15, 16, 17].

8.3. Other

Zhang and Ernst [2, 3] propose a technique to troubleshoot configuration errors caused by configurable systems’ evolution. They use dynamic profiling, execution trace comparison, and static analysis to link the undesired behavior to its root cause, a configuration option whose value can be changed to produce desired behavior from the new software version. This work starts from failures to find out what changes caused them. Diagnosis and repairing faults in configurable systems is an important problem. It remains to observe how EvoSPLat could assist in better diagnosis of configuration problems (i.e., in finding root causes of configuration problems).

The authors of this paper recently found [63] that SPLat can be combined with sampling to balance cost of exploration with fault-detection ability. As future work, we plan to apply the ideas from that work to improve regression testing of configurable systems even further.

9. Conclusions

Testing configurable systems is important and expensive. This paper presented a technique named EvoSPLat to alleviate cost of systematic testing these systems when evolutionary information
is available. The key insight is that it is possible to use simple lightweight impact analysis to discard configurations and tests during an evolution cycle.

EvoSPlat makes a step forward in closing the gap between research and practice in testing configurable systems. We evaluated our technique on software product lines and on a large configurable system. In both scenarios, results obtained were encouraging. A prototype implementation of our technique is available at https://sites.google.com/site/evosplat/.

Acknowledgments. Sabrina was supported by the FACEPE fellowship BPQ-0675-1/03-09. This material is based upon work partially supported by the Brazilian CNPq research agency under Grant No. 457756/2014-4 and by a Microsoft SEIF’13 award.

References

URL http://dl.acm.org/citation.cfm?id=3097444