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Abstract 
In most manufacturing settings scheduling is a difficult task due to the complexity of the system. Hence 
powerful tools that can handle both modeling and optimization are required. Most of the research in this area 
focuses in either developing optimization algorithms, or in modeling complex production systems. However, 
few tools are aimed to the integration of both of them. In this paper, a Petri Net-based integrated approach, 
for simultaneously modeling and scheduling manufacturing systems, is proposed. A prototype that simulates 
the execution of the production plan, and implements priority dispatching rules to solve the eventual 
conflicts, is presented. Such an application was tested in a printing company in Colombia (South America) 
that has complex flexible job shop-type system. Experiments on the real system were conducted, and results 
show interesting benefits when comparing with the current scheduling policies. 
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1 INTRODUCTION 
Performance in most manufacturing settings is affected by 
operative decisions related to job scheduling such as: a) 
selection of jobs in queue, b) priority when choosing a 
machine for a job processing (among parallel machines), 
and c) assignment of resources in the execution of a 
production plan. Such decisions have significant impact on 
systems efficiency, operational costs and service promise 
fulfillment, and are frequently taken intuitively by the 
operators, based on their experience. 
In order to support this decision process and guarantee the 
system efficiency, computational applications need to be 
developed. Such applications should be able to (i) provide 
modeling aids, (ii) apply scheduling techniques and (iii) 
define a production plan. This paper presents a Petri Net-
based prototype application which is tested on a 
Colombian printing company. 
Petri Nets are well known for their modeling potential, and 
for their ability to implement optimization techniques. Karl 
Petri developed this technique in 1962 for communication 
system analysis. Its use has been extended to other 
application fields, like manufacturing [1]. 
In the industry, Petri Nets were mainly used for modeling 
manufacturing plants as discrete event systems. In the 
seventies the GRAFCET tool (Petri Net-based) was 
introduced in order to specify, validate and implement logic 
controllers in production systems. GRAFCET has been 
recognized all over Europe and implemented in many 
countries [2]. Petri Nets have also been used in system 
design, and modeling, at companies like Microsoft 
Corporation, AT&T, Digital Equipment Corporation and 
Applied Materials Inc. [3]. 
When Petri Nets were introduced, many papers were 
published: Topics included resource utilization, 
bottlenecks, throughput, cycle times and capacity 
estimations [4] [5]. In order to validate the use of Petri 
Nets, manufacturing systems were evaluated using 
different techniques like simulation, queuing theory, 
probability and stochastic Petri Nets [6]. 
On the other hand, the Petri Net potential for analyzing and 
modeling complex systems has encouraged its use on 
scheduling problems. A Beam Search algorithm was 
implemented on Petri Nets in order to find an optimal 
production schedule [7]. Later, the Branch and Bound 
method was used in robot task programming, truncating 
the net in smaller sub-nets. This technique was 
complemented with dispatching rules for selecting the firing 

transition [8] [9]. A heuristic that only generates part of the 
Petri Net reachability graph (the graph deploying all the net 
possible states) was suggested, presenting three searching 
types: depth search, bread search and a mixture of both 
[10]. In 1994, an A* Search type heuristic was tested in the 
selection of a schedule for a flexible job shop. This 
approach reduced the computational effort, but sacrificed 
the solution quality [11]. Further on, an algorithm that 
combines the A*Search with a node selection strategy was 
suggested for generation scheduling programs, conducting 
to near optimal results with moderated computational 
efforts [12]. 
Literature surveys show that research in this area focuses 
either in developing algorithms for solving scheduling 
problems, or in designing and using tools to model complex 
production systems. Few projects are aimed for the 
integration of both. However, an approach of a scheduling 
software using Petri Nets was recently presented, in which 
the modeling platform is separated from the scheduler. In 
this case an interface between the engine and the Petri 
Net-based sequencer is suggested [13].  
This document describes how the modeling approach 
proposed in [12] was translated into a real-life printing 
plant. First production plans are modeled using Petri Nets. 
Then a number of dispatching rules were implemented for 
solving eventual scheduling conflicts (selection of jobs in 
queue, machine priorities). When running the application a 
detailed resource schedule is obtained, describing both the 
resource occupation during simulation time (Gantt Chart), 
and several general system performance measures. The 
user should compare results using different dispatching 
rules, and determine which schedule suits her better. 
This scheduler’s prototype was tested in a printing 
company in Colombia which has a complex flexible job 
shop-like configuration. Most workstations have parallel 
machines, and as jobs are exclusive for each customer, 
many different processing routes are handled. Experiments 
on different production plans were conducted, comparing 
the actual scheduling policy with the results of the 
application, finding interesting benefits for the company. 
2 SIMULATION WITH PETRI NETS 

2.1 Introducing Petri Nets 
Most of the development of Petri Nets emerged by the 
need of specifying synchronization situations, asymmetric 
systems (alternative routes) and shared resource conflicts; 
essential events in the representation of a manufacturing 
setting. 



A Petri Net is a set of nodes and arcs. There are two types 
of nodes: places and transitions, which represent the state 
of the system and the occurrence of events, respectively. 
In manufacturing systems, places would represent 
operations (e.g., process, transportation, reparation), and 
transitions symbolize events, such as termination of a job 
processing or a machine breakdown. Arcs are directed, 
and connect places with transitions (or transitions with 
places). Tokens reside in places and represent the truth of 
the condition associated with such a place. The firing 
process induces a token’s flow among places; when a 
transition fires, tokens from all its input places are removed 
and put into the transition output places. A transition can 
only be fired if it has been enabled (i.e. there are sufficient 
tokens at its input places). 
There are many different types of Petri Nets, though in this 
project only Marked Timed-Place Petri Nets (TPPNs) are of 
concern. Timed-Places are useful for modeling processing 
times, flow times or breakdowns, meaning that an amount 
of time may elapse until tokens enable their output 
transitions. 
A formal definition of Timed Petri Nets [12] is:  
G = (P, T, I, O, Mo, Mr0, τ), where: 
 • P is a set of places graphically represented by circles. 
 • T is a set of transitions graphically represented by bars, 

with P ∪ T ≠ 0 and P ∩ T = 0. 
 •  I is a function that specifies arcs going from transition to 

places P x T  {0,1}. 
 • O is a function that specifies arcs going from places to 

transitions P x T  {0,1}. 
 •  M0 is the initial marking where values at each position 

represent the number of tokens at the ith place 
(graphically represented by dots). 

 •  Mr0 is the initial remaining time vector, which contains 
the time left for tokens to enable the corresponding 
output transition. 

 • τ is the set of time delays associated with places. 
Token flow among places describes the dynamic behavior 
of the net, conducting to its analysis and study. This 
behavior is regulated by transition enabling and firing rules. 
For this type of Petri Net, a transition t ∈ T is enabled, if 
every input place from has at least 1 token. Every enabled 
transition may be fired. When a transition fires, the net 
changes its state inducing a new marking M’. In such 
cases it is said that M’ is reachable from M [14]. 
An example (Example 1), of two jobs being processed by 
the same machine, is presented, to show how Petri Nets 
work (Figure 1). When tokens are in P0 and P3, job 1 and 
job 2 are ready to be processed. P1 symbolizes the 
processing of job 1 and P4 the processing of job 2. Note 
that these processes share the same resource (machine 1) 
identified as P6. The number of tokens at P6 represents the 
resource capacity. If no tokens are in P6, it means that the 
resource has no remaining capacity and arriving jobs must 
wait in queue. If this is the case, the resource is being used 
on some job and either P1 or P4 would have a token, 
meaning that the corresponding job is being processed. 
Tokens in places P2 and P5 represent the termination of job 
1 and job 2, respectively. 
Changes in the system depend on the sequence of fired 
transitions. At the initial state, transitions T0 and T2 are 
enabled. When executing the net, one of them must be 
selected and fired. If T1 is selected the machine will 
process job 1 first, otherwise job 2 goes first. Firing one of 
these transitions will change the state of the system, and a 
new set of transitions will be enabled. Illustration of each 
step of the execution of this example is shown below. 

At the initial state (Figure 1a.), tokens at P0 and P3 means 
that both jobs are ready to be processed by machine 1. 
Transitions T0 and T2 are enabled. T0 is arbitrarily selected. 
When T0 is fired (Figure 1b.), the system state changes, 
meaning that job 1 is being processed. P1 has an associate 
processing time. Once this time is exhausted T1 is enabled. 
As T2 is no longer enabled, T1 is the only next enabled 
transition. 
Firing T1 (Figure 1c.). This new state enables T2 and 
means that job 1 is finished. T2 will be fired. 
Firing T2 (Figure 1d.). Machine 1 processes job 2 during P4 
associated time. Transition T3 is enabled and is the next 
and last transition to be fired. 
Firing T3 (Figure 1e.). Job 2 is finished and machine 1 is 
idle again. No more transitions are enabled, and the 
simulation is over. 
 
 
 
 
 
           (a)    (b)           (c)  
 
 
 
 
 
           (d)            (e)  

Figure 1: Machine processing two jobs. 

If transition T2 is fired first, the processing sequence would 
change. This fact could for example impact the due date 
fulfillment. 

2.2 Executing (Simulating) the net 
The execution algorithm corresponds to the firing of 
transitions until the final state is reached. 
The execution algorithm follows the next steps: 
1. Define the initial state marking M0. 
2. Identify the enabled transitions (u). 
3. Select a transition, say uj, from vector (u), using some 

selection criteria. 
4. Fire the transition. 

4.4. Remove tokens from input places of transition uj. 
4.5. Calculate the time elapse for firing transition uj. 
4.6. Put tokens into the output places of transition uj. 

5 Update the marking Mi and remaining process time Mr 
vectors. 

6 Advance the system clock. 
7 If Mi is equal to Mf (final state) then stop, otherwise go 

to step 2. 
As each fired transition defines a new array of enabled 
transitions (vector u), the firing sequence for reaching Mf 
may change considerably. Scheduling concepts may be 
involved in the selection criteria (step 3) in order to decide 
which transition fires. 
The existence of several enabled transitions could 
represent operational conflicts. A typical conflict occurs 
when two or more jobs are competing to use the same 
resource (as in Example 1) or when a single job must 
select between two or more machines (flexible systems). In 
this approach dispatching rules are proposed for solving 
these conflicts. The dispatching rules implemented in this 
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model are well known in the scheduling literature [15] and 
are listed bellow: 
1. SPT (shortest processing time).  
2. LPT (longest processing time).  
3. WSPT (weighted shortest processing time).  
4. EDD (earliest due date).  
5. CR (critical ratio).  
6. MS (minimum slack).  
7. ATC (apparent tardiness cost). The expression I(t) 

must be calculated for each job in queue.  
_

*/)0;max(exp()/()( pKtpddwtI iiiii −−−=  (1) 

Where K is an empiric factor, which is assumed to be 5, 

value suggested by some authors. 
_

p  is the average 
of the processing times pi of every job in the queue. 
The job in the queue with the greatest Ii(t) has priority 
[16].  

3 SCHEDULING APPROACH 

3.1 Program structure 
The scheduler prototype was developed in JAVA®. The 
program reads the information of the Petri Net-model of the 
respective production plan and creates a Gantt graph for 
visualizing the job sequences in the respective machines. 
The dispatching rule must be specified by the user. 
The program executes the following steps: 
1.  Creates an instance of a Petri Net object  
2.  Creates an instance of the object Scheduler and 

selects the firing transition rule. 
3.  Performs the Petri Net execution algorithm until it 

reaches the final state. 
4.  Generates the system indicators, the Gantt graph and 

prints the output file. 
The system performance measures are: 
 • Late jobs: Register the jobs that finish late. 
 • Total Weighted tardiness: Sum of tardiness weighted 

by jobs priorities. 
 • Makespan: Maximum difference between the start and 

the finish time of every job. 

 • System total time: Elapsed time between the start of 
the first job and the finish of the last. 

 • Resource utilization: % utilization time of each machine 
during the total system time. 

The first two indicators measure the service quality and the 
last three describe the system’s efficiency. 

3.2 Example 
Model construction and application’s prototype are 
described in Example 2 (Figure 2.), where two jobs with 
alternative routes (flexible system), synchronization and 
shared resource utilization are processed,  
For selecting jobs in queues, it is necessary to specify job 
due dates and priorities, and for the machine priority 
problem, information related to machines is needed, such 
as processing quality and functional reliability. See table 1. 
In this example, machine quality and reliability are equal for 
all machines. 

Table 1: Due dates and priorities. 

Job Due date Priority 
job 1 13 time units 1 
job 2 15 time units 2 

 
The processing of the two jobs can be described as 
follows: Job 1 is printed (10 min), cut (8 min) and packed (3 
min). Job 2 has two parts, sheets and cover. Sheets are 
printed (5 min), cover is folded (3 min) and after 
assembling, the product is packed (4 min). A detailed 
description of each place of the net is shown in table 2. At 
initial state tokens are placed at both the start places and 
resource places, meaning that the system is ready to begin 
processing. When tokens reach the termination places P7 
and P15 after a sequence of fired transitions, the simulation 
is finished. In this example, conflicts appear at the printing 
process (jobs in queue) and cutting process (alternative 
routes).  
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2: Production system with alternative routes, synchronization and shared resources. 
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Table 2: Places description for Example 2. 

P0 Job 1 in queue at printing WS P7 Job 1 is finished P14 Packaging WS 
processing job 2 

P1 Printing WS processing job 1 P8 Job 2-Sheets in queue at printing WS P15 Job 2 is finished 
P2 Job 1 in queue at cutting WS P9 Printing WS processing Job 2-Sheets P16 Printing WS 
P3 Cutter A processing job 1 P10 Job 2-Sheets in queue at packaging WS P17 Folding WS 
P4 Cutter B processing job 1 P11 Job 2-Cover in queue at folding WS P18 Cutter A 
P5 Job 1 in queue at packaging WS P12 Folding WS processing Job 2-Cover P19 Cutter B 
P6 Packaging WS processing Job 1 P13 Job 2-Cover in queue at packaging WS P20 Packaging WS 

 
The user selects a dispatching rule, and after running the 
program, a Gantt graph and the system measures are 
generated. Running this example for dispatching rules 
EDD and SPT provide the results presented in Table 3. 

The SPT rule requires a longer total time compared to the 
EDD rule but the SPT rule shows just 1 late job while the 
EDD rule shows 2 late jobs. On the other hand, EDD only 
uses Cutter B and SPT only uses Cutter A. These results 
show that the use of different dispatching rules has a 
significant impact on the system performance. 

Time (time units) 0 3 10 15 18 19 22
Printing Job-2(Sheets) - - - -
Folding Job-2(Cover) - - - - - -
Cutting (A) - - - - -
Cutting (B) - - - - - - -
Packing - - - Job-1 -

Job-1

Job-1

Job-2  
 

Figure 3: Results for Example 2 using EDD. 

Time (time units) 0 3 5 9 15 23 26
Printing - - -
Folding Job-2(Cover) - - - - - -
Cutting (A) - - - - - - -
Cutting (B) - - - - Job-1 - -
Packing - - Job-2 - - Job-1 -

Job-1Job-2(Sheets)

 

Figure 4: Results for Example 2 using SPT. 

Table 3: Compared results for example 2. 

Performance measures EDD SPT Resource utilization EDD SPT 
Late jobs 2 1 Printing WS 68.2% 57.7% 
Total weighted tardiness 13 11 Folding WS 13.6% 11.5% 
Makespan (time units) 22 21 Cutter A 36.4% 0.0% 
System total time (time units) 22 26 Cutter B 0.0% 30.8% 
   Packaging WS 31.8% 26.9% 

 
4 CASE STUDY 

4.1 Model construction 
In order to test this prototype application, several 
experiments were conducted at Intergráficas S.A., a small 
printing company in Bogotá, Colombia. The manufacturing 
setting consists of 17 workstations, some of them with 
parallel machines. Manufactured items follow a make to 
order scheme, and many different processing sequences 
are handled. Such a system implies many operative 
decisions making job status visibility and finish date 
estimation a difficult task. For the company, maintaining 
service levels is a priority factor.  
Jobs go through the system, following pre-defined 
processing sequences. Processing times depend normally 
on both the complexity and the size of the job order. For 
example, a two-side lamination of 1000 greeting cards 
takes longer than the lamination of 1.000 posters.  
Experiments were conducted over three real production 
plans. Each plan fed the system for 3 days and includes 
ready to process and already-in-process jobs. PP-1 

(production plan 1) has 18 jobs, PP-2 has 14 and PP-3 has 
9 jobs. Different production plan sizes were chosen in 
order to analyze if this factor has an effect on the results. 
For each PP two models were built: one for representing 
the actual policy (with some routes restrictions), and other 
for using the Petri net approach. The current scheduling 
policy includes the following criteria: 
 •  Jobs ready to be processed are ordered according to 

their due dates. 
 • Top-client jobs have been identified and have priority 

for processing. 
 • A printer is pre-assigned for each job according to the 

job requirements (printing quality, speed) and 
availability of printers. In addition the shop scheduler 
attempts to balance the machine utilization at the 
printer workstation. This assignment is also done for 
other workstations like stamping or cutting. 

The assignment process is done intuitively, and represents 
alternative route restrictions. Other decisions taken by the 
operators include the following criteria: 
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 • Top-clients have priority for job selection and in 
general, the job with nearest due date is preferred. Ties 
are broken by selecting the job with the shortest 
processing time. 

 • Idle machines are preferred for selection. If many 
machines are idle, the one with higher processing 
reliability has priority. Ties are broken by choosing the 
machine with better processing quality. If the conflict is 
not solved, fastest machines (depending on machine 
speeds) are selected. 

For this approach, model construction follow S3PR (simple 
sequential process resources) rules, structure that 
guarantees no net-blocking [12] [17]. Buffers are used to 
prevent the occurrence of deadlocks. Under this structure 
there is no net-bounding when executing the simulation 
[18] [19]. 

In addition, the following assumptions were considered: 
1. Material and other processing resources (personal, 

tools) are available 100%. 
2.  Machine breakdowns, and unexpected events, are not 

being considered in the simulation. 
3.  Transfer times between workstations are negligible. 
4.  A resource can only process one job at a time, and 

processing interruptions are not allowed. 

4.2 Experimental results 
For each PP, 8 experiments were run: 1 for the actual 
policy and 7 using dispatching rules. Running any of these 
models in a computer with Intel® Pentium® 4, 512 MB of 
RAM and Microsoft Windows XP, takes less than 4 
seconds. Results are shown for the three PP’s. 

Table 4: Experimental results. 

Results PP-1 PP-2 PP-3 

Rule L.J. TWT Cmax S.T. L.J. TWT Cmax S.T. L.J. TWT Cmax S.T. 

Actual 3 2704 6393 6475 4 4846 1606 1886 0 0 2738 2738 
WSPT 3 2611 6393 6539 4 3822 1569 1849 0 0 2718 2718 
SPT 3 2614 6393 6605 4 4626 1593 1758 0 0 2696 2718 
MS 3 2440 6393 6539 4 3894 1642 1922 0 0 2738 2738 
LPT 5 4210 6393 6393 4 5022 1642 1757 0 0 2623 2738 
EDD 3 2599 6393 6539 4 3894 1642 1922 0 0 2738 2738 
CR 4 2680 6393 6393 4 3984 1642 1922 0 0 2692 2738 

ATC 3 2623 6393 6539 4 4068 1642 1922 0 0 2738 2738 
 
The use of an arbitrary dispatching rule may achieve good 
results for some measures, but poor results for others. 
Schedule selection depends on the priorities of the 
company. As for Intergraficas S.A., on-time delivery is 
more important than efficiency. Thus this measure has a 
higher priority. 
For PP-1, the recommended schedule was obtained with 
MS, which has best performance in late jobs, total 
weighted tardiness and cycle time. Using the schedule 
obtained with LPT would take 146 minutes less (reduction 
of 2.23%), but as efficiency is not as important as service, 
the MS rule suits better. 
For PP-2 the schedule obtained using WSPT seems to be 
the best option. This rule produces better comparative 
results in terms of late jobs, total weighted tardiness and 
cycle time. LPT would reduce total time in 8.92% (165 
minutes) comparing to WSPT, but using this rule would 
produce a bad performance in the rest of measures. 
PP-3 is the smallest plan, having fewer conflicts than the 
others. This fact implies that similar results are obtained for 
different rules. However, the schedule followed with LPT is 
recommended. It presents better results in terms of service 
indicators and maximum cycle time. WSPT and SPT would 
give a shorter total system time (20 minutes reduction -> 
1%), a fact that could be ignored. 
Resource utilization, at workstations with parallel 
machines, could be an important factor when selecting the 
best schedule. At the printing process for example, some 
schedules use the least reliable printer intensively, a fact 
that could be considered for selecting other schedule. In 
PP-1, WSPT, SPT and LPT tend to use tweezers-1 (best 
quality), while other rules use tweezers-2. The utilization of 
machines within workstations may change, but the busiest 
workstation of the system will not vary for the different 
schedules. Although the busiest workstation changes 
depending on the production plan; for PP-1 the tweezers is 

the busiest workstation, for PP-2 is lacquering and for PP-3 
is lamination. 
The use of different dispatching rules conducts to 
schedules with significant differences in the system 
measures. No pattern was identified for concluding that the 
use of a particular rule is recommended. It will depend on 
the company’s preferences. In general, the dispatching 
rules that showed better results were MS, WSPT, EDD and 
LPT. The user should run each dispatching rule, analyze 
results and select the better schedule. The production plan 
size has an important impact in the application’s utility.  
5 CONCLUSIONS 
This paper has presented an application of Petri Nets to a 
real life manufacturing setting. The modeling power of Petri 
Nets in combination with dispatching rules might bring 
significant benefits for this company. For instance:  
1. Evaluate and compare different schedules for the same 

production plan, according to the company’s 
preferences. 

2. Visualize job schedules and estimate job termination 
times to support service commitments, and offer better 
service quality to customers. 

3. Visualize the workstation/machine utilization. Identify 
and optimize bottlenecks with an efficient resource 
assignment. Utilizations might be an important 
decision’s criteria for selecting the best schedule. 

4.  Measure and monitor performance indicators for 
implementing continuous improvement. 

5. Test different options, changing parameters such as 
processing times, production plan sizes, alternative 
routes or disable/enable resources for supporting 
investments, and operative decisions.  

Particularly, for Intergráficas S.A. the implementation of 
this computer application (based on the conducted 
experiments) would represent the following benefits: 



1. Production time reduction of more than 5%. The plant 
works 70 shifts per month (18 in extra-time). This 
reduction represents at least 3 extra shifts less per 
month (U$D 4.500 / month). 

2. Better service quality. The estimation of job termination 
times allow to inform customers about due dates, 
reducing tardiness cost. 

3. The programming of maintenance activities during 
operational time (saving additional maintenance shifts). 

4. The scheduling process doesn’t depend on the intuition 
of the production assistant or the operators. 

5. Planning decisions as machine investments could be 
supported by testing the system at different conditions. 

The implementation process of such this application at 
Intergráficas S.A. requires the following steps: a) 
integration with the current information system, b) 
redefinition and redesign of the scheduling process 
including the use of the application and c) personal training 
for its use. 
Further research will be focused on using more complex 
optimization scheduling algorithms and on improving user’s 
interface. The research agenda includes: 
 • Develop the application in terms of computational 

efficiency and user’s interface. Modeling using xml 
could be an interesting approach. 

 • Implementation of optimization algorithms such as 
Beam Search, A*Search [12], and Branch and Bound 
algorithms is suggested. 

 • Test the application at other manufacturing settings as 
flow shops, job shops or flexible manufacturing cells. 
Explore Petri Nets potential for modeling complex 
systems. 

 • Lead comparative research between this application 
and other scheduling tools. 
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