
19th International Conference on Production Research

SCHEDULING APPLICATION USING PETRI NETS :
A CASE STUDY: INTERGRÁFICAS S.A.

Gonzalo Mejía Delgadillo, Ph.D., Sebastián Poensgen Llano, M.Sc.

Department of Industrial Engineering, Universidad de los Andes, Bogotá, Colombia

Abstract
In most manufacturing settings scheduling is a difficult task due to the complexity of the system. Hence
powerful tools that can handle both modeling and optimization are required. Most of the research in this area
focuses in either developing optimization algorithms, or in modeling complex production systems. However,
few tools are aimed to the integration of both of them. In this paper, a Petri Net-based integrated approach,
for simultaneously modeling and scheduling manufacturing systems, is proposed. A prototype that simulates
the execution of the production plan, and implements priority dispatching rules to solve the eventual
conflicts, is presented. Such an application was tested in a printing company in Colombia (South America)
that has complex flexible job shop-type system. Experiments on the real system were conducted, and results
show interesting benefits when comparing with the current scheduling policies.

Keywords:
Scheduling, Petri Nets, Dispatching Rules. Printing

1 INTRODUCTION
Performance in most manufacturing settings is affected by
operative decisions related to job scheduling such as: a)
selection of jobs in queue, b) priority when choosing a
machine for a job processing (among parallel machines),
and c) assignment of resources in the execution of a
production plan. Such decisions have significant impact on
systems efficiency, operational costs and service promise
fulfillment, and are frequently taken intuitively by the
operators, based on their experience.
In order to support this decision process and guarantee the
system efficiency, computational applications need to be
developed. Such applications should be able to (i) provide
modeling aids, (ii) apply scheduling techniques and (iii)
define a production plan. This paper presents a Petri Net-
based prototype application which is tested on a
Colombian printing company.
Petri Nets are well known for their modeling potential, and
for their ability to implement optimization techniques. Karl
Petri developed this technique in 1962 for communication
system analysis. Its use has been extended to other
application fields, like manufacturing [1].
In the industry, Petri Nets were mainly used for modeling
manufacturing plants as discrete event systems. In the
seventies the GRAFCET tool (Petri Net-based) was
introduced in order to specify, validate and implement logic
controllers in production systems. GRAFCET has been
recognized all over Europe and implemented in many
countries [2]. Petri Nets have also been used in system
design, and modeling, at companies like Microsoft
Corporation, AT&T, Digital Equipment Corporation and
Applied Materials Inc. [3].
When Petri Nets were introduced, many papers were
published: Topics included resource utilization,
bottlenecks, throughput, cycle times and capacity
estimations [4] [5]. In order to validate the use of Petri
Nets, manufacturing systems were evaluated using
different techniques like simulation, queuing theory,
probability and stochastic Petri Nets [6].
On the other hand, the Petri Net potential for analyzing and
modeling complex systems has encouraged its use on
scheduling problems. A Beam Search algorithm was
implemented on Petri Nets in order to find an optimal
production schedule [7]. Later, the Branch and Bound
method was used in robot task programming, truncating
the net in smaller sub-nets. This technique was
complemented with dispatching rules for selecting the firing

transition [8] [9]. A heuristic that only generates part of the
Petri Net reachability graph (the graph deploying all the net
possible states) was suggested, presenting three searching
types: depth search, bread search and a mixture of both
[10]. In 1994, an A* Search type heuristic was tested in the
selection of a schedule for a flexible job shop. This
approach reduced the computational effort, but sacrificed
the solution quality [11]. Further on, an algorithm that
combines the A*Search with a node selection strategy was
suggested for generation scheduling programs, conducting
to near optimal results with moderated computational
efforts [12].
Literature surveys show that research in this area focuses
either in developing algorithms for solving scheduling
problems, or in designing and using tools to model complex
production systems. Few projects are aimed for the
integration of both. However, an approach of a scheduling
software using Petri Nets was recently presented, in which
the modeling platform is separated from the scheduler. In
this case an interface between the engine and the Petri
Net-based sequencer is suggested [13].
This document describes how the modeling approach
proposed in [12] was translated into a real-life printing
plant. First production plans are modeled using Petri Nets.
Then a number of dispatching rules were implemented for
solving eventual scheduling conflicts (selection of jobs in
queue, machine priorities). When running the application a
detailed resource schedule is obtained, describing both the
resource occupation during simulation time (Gantt Chart),
and several general system performance measures. The
user should compare results using different dispatching
rules, and determine which schedule suits her better.
This scheduler’s prototype was tested in a printing
company in Colombia which has a complex flexible job
shop-like configuration. Most workstations have parallel
machines, and as jobs are exclusive for each customer,
many different processing routes are handled. Experiments
on different production plans were conducted, comparing
the actual scheduling policy with the results of the
application, finding interesting benefits for the company.
2 SIMULATION WITH PETRI NETS

2.1 Introducing Petri Nets
Most of the development of Petri Nets emerged by the
need of specifying synchronization situations, asymmetric
systems (alternative routes) and shared resource conflicts;
essential events in the representation of a manufacturing
setting.

A Petri Net is a set of nodes and arcs. There are two types
of nodes: places and transitions, which represent the state
of the system and the occurrence of events, respectively.
In manufacturing systems, places would represent
operations (e.g., process, transportation, reparation), and
transitions symbolize events, such as termination of a job
processing or a machine breakdown. Arcs are directed,
and connect places with transitions (or transitions with
places). Tokens reside in places and represent the truth of
the condition associated with such a place. The firing
process induces a token’s flow among places; when a
transition fires, tokens from all its input places are removed
and put into the transition output places. A transition can
only be fired if it has been enabled (i.e. there are sufficient
tokens at its input places).
There are many different types of Petri Nets, though in this
project only Marked Timed-Place Petri Nets (TPPNs) are of
concern. Timed-Places are useful for modeling processing
times, flow times or breakdowns, meaning that an amount
of time may elapse until tokens enable their output
transitions.
A formal definition of Timed Petri Nets [12] is:
G = (P, T, I, O, Mo, Mr0, τ), where:
 • P is a set of places graphically represented by circles.
 • T is a set of transitions graphically represented by bars,

with P ∪ T ≠ 0 and P ∩ T = 0.
 • I is a function that specifies arcs going from transition to

places P x T {0,1}.
 • O is a function that specifies arcs going from places to

transitions P x T {0,1}.
 • M0 is the initial marking where values at each position

represent the number of tokens at the ith place
(graphically represented by dots).

 • Mr0 is the initial remaining time vector, which contains
the time left for tokens to enable the corresponding
output transition.

 • τ is the set of time delays associated with places.
Token flow among places describes the dynamic behavior
of the net, conducting to its analysis and study. This
behavior is regulated by transition enabling and firing rules.
For this type of Petri Net, a transition t ∈ T is enabled, if
every input place from has at least 1 token. Every enabled
transition may be fired. When a transition fires, the net
changes its state inducing a new marking M’. In such
cases it is said that M’ is reachable from M [14].
An example (Example 1), of two jobs being processed by
the same machine, is presented, to show how Petri Nets
work (Figure 1). When tokens are in P0 and P3, job 1 and
job 2 are ready to be processed. P1 symbolizes the
processing of job 1 and P4 the processing of job 2. Note
that these processes share the same resource (machine 1)
identified as P6. The number of tokens at P6 represents the
resource capacity. If no tokens are in P6, it means that the
resource has no remaining capacity and arriving jobs must
wait in queue. If this is the case, the resource is being used
on some job and either P1 or P4 would have a token,
meaning that the corresponding job is being processed.
Tokens in places P2 and P5 represent the termination of job
1 and job 2, respectively.
Changes in the system depend on the sequence of fired
transitions. At the initial state, transitions T0 and T2 are
enabled. When executing the net, one of them must be
selected and fired. If T1 is selected the machine will
process job 1 first, otherwise job 2 goes first. Firing one of
these transitions will change the state of the system, and a
new set of transitions will be enabled. Illustration of each
step of the execution of this example is shown below.

At the initial state (Figure 1a.), tokens at P0 and P3 means
that both jobs are ready to be processed by machine 1.
Transitions T0 and T2 are enabled. T0 is arbitrarily selected.
When T0 is fired (Figure 1b.), the system state changes,
meaning that job 1 is being processed. P1 has an associate
processing time. Once this time is exhausted T1 is enabled.
As T2 is no longer enabled, T1 is the only next enabled
transition.
Firing T1 (Figure 1c.). This new state enables T2 and
means that job 1 is finished. T2 will be fired.
Firing T2 (Figure 1d.). Machine 1 processes job 2 during P4
associated time. Transition T3 is enabled and is the next
and last transition to be fired.
Firing T3 (Figure 1e.). Job 2 is finished and machine 1 is
idle again. No more transitions are enabled, and the
simulation is over.

 (a) (b) (c)

 (d) (e)

Figure 1: Machine processing two jobs.

If transition T2 is fired first, the processing sequence would
change. This fact could for example impact the due date
fulfillment.

2.2 Executing (Simulating) the net
The execution algorithm corresponds to the firing of
transitions until the final state is reached.
The execution algorithm follows the next steps:
1. Define the initial state marking M0.
2. Identify the enabled transitions (u).
3. Select a transition, say uj, from vector (u), using some

selection criteria.
4. Fire the transition.

4.4. Remove tokens from input places of transition uj.
4.5. Calculate the time elapse for firing transition uj.
4.6. Put tokens into the output places of transition uj.

5 Update the marking Mi and remaining process time Mr
vectors.

6 Advance the system clock.
7 If Mi is equal to Mf (final state) then stop, otherwise go

to step 2.
As each fired transition defines a new array of enabled
transitions (vector u), the firing sequence for reaching Mf
may change considerably. Scheduling concepts may be
involved in the selection criteria (step 3) in order to decide
which transition fires.
The existence of several enabled transitions could
represent operational conflicts. A typical conflict occurs
when two or more jobs are competing to use the same
resource (as in Example 1) or when a single job must
select between two or more machines (flexible systems). In
this approach dispatching rules are proposed for solving
these conflicts. The dispatching rules implemented in this

P0 T0 P1 P2

P3

P4

P5
P6T2

T1

T3

P0 T0 P1 P2

P3

P4

P5
P6 T2

T1

T3

P0 T0 P1 P2

P3

P4

P5
P6T2

T1

T3

P0 T0 P1 P2

P3

P4

P5
P6T2

T1

T3

P0 T0 P1 P2

P3

P4

P5
P6T2

T1

T3

19th International Conference on Production Research

model are well known in the scheduling literature [15] and
are listed bellow:
1. SPT (shortest processing time).
2. LPT (longest processing time).
3. WSPT (weighted shortest processing time).
4. EDD (earliest due date).
5. CR (critical ratio).
6. MS (minimum slack).
7. ATC (apparent tardiness cost). The expression I(t)

must be calculated for each job in queue.
_

*/)0;max(exp()/()(pKtpddwtI iiiii −−−= (1)

Where K is an empiric factor, which is assumed to be 5,

value suggested by some authors.
_

p is the average
of the processing times pi of every job in the queue.
The job in the queue with the greatest Ii(t) has priority
[16].

3 SCHEDULING APPROACH

3.1 Program structure
The scheduler prototype was developed in JAVA®. The
program reads the information of the Petri Net-model of the
respective production plan and creates a Gantt graph for
visualizing the job sequences in the respective machines.
The dispatching rule must be specified by the user.
The program executes the following steps:
1. Creates an instance of a Petri Net object
2. Creates an instance of the object Scheduler and

selects the firing transition rule.
3. Performs the Petri Net execution algorithm until it

reaches the final state.
4. Generates the system indicators, the Gantt graph and

prints the output file.
The system performance measures are:
 • Late jobs: Register the jobs that finish late.
 • Total Weighted tardiness: Sum of tardiness weighted

by jobs priorities.
 • Makespan: Maximum difference between the start and

the finish time of every job.

 • System total time: Elapsed time between the start of
the first job and the finish of the last.

 • Resource utilization: % utilization time of each machine
during the total system time.

The first two indicators measure the service quality and the
last three describe the system’s efficiency.

3.2 Example
Model construction and application’s prototype are
described in Example 2 (Figure 2.), where two jobs with
alternative routes (flexible system), synchronization and
shared resource utilization are processed,
For selecting jobs in queues, it is necessary to specify job
due dates and priorities, and for the machine priority
problem, information related to machines is needed, such
as processing quality and functional reliability. See table 1.
In this example, machine quality and reliability are equal for
all machines.

Table 1: Due dates and priorities.

Job Due date Priority
job 1 13 time units 1
job 2 15 time units 2

The processing of the two jobs can be described as
follows: Job 1 is printed (10 min), cut (8 min) and packed (3
min). Job 2 has two parts, sheets and cover. Sheets are
printed (5 min), cover is folded (3 min) and after
assembling, the product is packed (4 min). A detailed
description of each place of the net is shown in table 2. At
initial state tokens are placed at both the start places and
resource places, meaning that the system is ready to begin
processing. When tokens reach the termination places P7
and P15 after a sequence of fired transitions, the simulation
is finished. In this example, conflicts appear at the printing
process (jobs in queue) and cutting process (alternative
routes).

Figure 2: Production system with alternative routes, synchronization and shared resources.

p18

p16

p19

P3

P0 P1 P2 P5

P8

P9

P10

P14

P15

P4

T0 T1

T2 T3

T4 T5

T8 T9

T12 T13

p17

P11

P12

P13 T10 T11

P20

P6 P7 T6 T7

Table 2: Places description for Example 2.

P0 Job 1 in queue at printing WS P7 Job 1 is finished P14 Packaging WS
processing job 2

P1 Printing WS processing job 1 P8 Job 2-Sheets in queue at printing WS P15 Job 2 is finished
P2 Job 1 in queue at cutting WS P9 Printing WS processing Job 2-Sheets P16 Printing WS
P3 Cutter A processing job 1 P10 Job 2-Sheets in queue at packaging WS P17 Folding WS
P4 Cutter B processing job 1 P11 Job 2-Cover in queue at folding WS P18 Cutter A
P5 Job 1 in queue at packaging WS P12 Folding WS processing Job 2-Cover P19 Cutter B
P6 Packaging WS processing Job 1 P13 Job 2-Cover in queue at packaging WS P20 Packaging WS

The user selects a dispatching rule, and after running the
program, a Gantt graph and the system measures are
generated. Running this example for dispatching rules
EDD and SPT provide the results presented in Table 3.

The SPT rule requires a longer total time compared to the
EDD rule but the SPT rule shows just 1 late job while the
EDD rule shows 2 late jobs. On the other hand, EDD only
uses Cutter B and SPT only uses Cutter A. These results
show that the use of different dispatching rules has a
significant impact on the system performance.

Time (time units) 0 3 10 15 18 19 22
Printing Job-2(Sheets) - - - -
Folding Job-2(Cover) - - - - - -
Cutting (A) - - - - -
Cutting (B) - - - - - - -
Packing - - - Job-1 -

Job-1

Job-1

Job-2

Figure 3: Results for Example 2 using EDD.

Time (time units) 0 3 5 9 15 23 26
Printing - - -
Folding Job-2(Cover) - - - - - -
Cutting (A) - - - - - - -
Cutting (B) - - - - Job-1 - -
Packing - - Job-2 - - Job-1 -

Job-1Job-2(Sheets)

Figure 4: Results for Example 2 using SPT.

Table 3: Compared results for example 2.

Performance measures EDD SPT Resource utilization EDD SPT
Late jobs 2 1 Printing WS 68.2% 57.7%
Total weighted tardiness 13 11 Folding WS 13.6% 11.5%
Makespan (time units) 22 21 Cutter A 36.4% 0.0%
System total time (time units) 22 26 Cutter B 0.0% 30.8%
 Packaging WS 31.8% 26.9%

4 CASE STUDY

4.1 Model construction
In order to test this prototype application, several
experiments were conducted at Intergráficas S.A., a small
printing company in Bogotá, Colombia. The manufacturing
setting consists of 17 workstations, some of them with
parallel machines. Manufactured items follow a make to
order scheme, and many different processing sequences
are handled. Such a system implies many operative
decisions making job status visibility and finish date
estimation a difficult task. For the company, maintaining
service levels is a priority factor.
Jobs go through the system, following pre-defined
processing sequences. Processing times depend normally
on both the complexity and the size of the job order. For
example, a two-side lamination of 1000 greeting cards
takes longer than the lamination of 1.000 posters.
Experiments were conducted over three real production
plans. Each plan fed the system for 3 days and includes
ready to process and already-in-process jobs. PP-1

(production plan 1) has 18 jobs, PP-2 has 14 and PP-3 has
9 jobs. Different production plan sizes were chosen in
order to analyze if this factor has an effect on the results.
For each PP two models were built: one for representing
the actual policy (with some routes restrictions), and other
for using the Petri net approach. The current scheduling
policy includes the following criteria:
 • Jobs ready to be processed are ordered according to

their due dates.
 • Top-client jobs have been identified and have priority

for processing.
 • A printer is pre-assigned for each job according to the

job requirements (printing quality, speed) and
availability of printers. In addition the shop scheduler
attempts to balance the machine utilization at the
printer workstation. This assignment is also done for
other workstations like stamping or cutting.

The assignment process is done intuitively, and represents
alternative route restrictions. Other decisions taken by the
operators include the following criteria:

19th International Conference on Production Research

 • Top-clients have priority for job selection and in
general, the job with nearest due date is preferred. Ties
are broken by selecting the job with the shortest
processing time.

 • Idle machines are preferred for selection. If many
machines are idle, the one with higher processing
reliability has priority. Ties are broken by choosing the
machine with better processing quality. If the conflict is
not solved, fastest machines (depending on machine
speeds) are selected.

For this approach, model construction follow S3PR (simple
sequential process resources) rules, structure that
guarantees no net-blocking [12] [17]. Buffers are used to
prevent the occurrence of deadlocks. Under this structure
there is no net-bounding when executing the simulation
[18] [19].

In addition, the following assumptions were considered:
1. Material and other processing resources (personal,

tools) are available 100%.
2. Machine breakdowns, and unexpected events, are not

being considered in the simulation.
3. Transfer times between workstations are negligible.
4. A resource can only process one job at a time, and

processing interruptions are not allowed.

4.2 Experimental results
For each PP, 8 experiments were run: 1 for the actual
policy and 7 using dispatching rules. Running any of these
models in a computer with Intel® Pentium® 4, 512 MB of
RAM and Microsoft Windows XP, takes less than 4
seconds. Results are shown for the three PP’s.

Table 4: Experimental results.

Results PP-1 PP-2 PP-3

Rule L.J. TWT Cmax S.T. L.J. TWT Cmax S.T. L.J. TWT Cmax S.T.

Actual 3 2704 6393 6475 4 4846 1606 1886 0 0 2738 2738
WSPT 3 2611 6393 6539 4 3822 1569 1849 0 0 2718 2718
SPT 3 2614 6393 6605 4 4626 1593 1758 0 0 2696 2718
MS 3 2440 6393 6539 4 3894 1642 1922 0 0 2738 2738
LPT 5 4210 6393 6393 4 5022 1642 1757 0 0 2623 2738
EDD 3 2599 6393 6539 4 3894 1642 1922 0 0 2738 2738
CR 4 2680 6393 6393 4 3984 1642 1922 0 0 2692 2738

ATC 3 2623 6393 6539 4 4068 1642 1922 0 0 2738 2738

The use of an arbitrary dispatching rule may achieve good
results for some measures, but poor results for others.
Schedule selection depends on the priorities of the
company. As for Intergraficas S.A., on-time delivery is
more important than efficiency. Thus this measure has a
higher priority.
For PP-1, the recommended schedule was obtained with
MS, which has best performance in late jobs, total
weighted tardiness and cycle time. Using the schedule
obtained with LPT would take 146 minutes less (reduction
of 2.23%), but as efficiency is not as important as service,
the MS rule suits better.
For PP-2 the schedule obtained using WSPT seems to be
the best option. This rule produces better comparative
results in terms of late jobs, total weighted tardiness and
cycle time. LPT would reduce total time in 8.92% (165
minutes) comparing to WSPT, but using this rule would
produce a bad performance in the rest of measures.
PP-3 is the smallest plan, having fewer conflicts than the
others. This fact implies that similar results are obtained for
different rules. However, the schedule followed with LPT is
recommended. It presents better results in terms of service
indicators and maximum cycle time. WSPT and SPT would
give a shorter total system time (20 minutes reduction ->
1%), a fact that could be ignored.
Resource utilization, at workstations with parallel
machines, could be an important factor when selecting the
best schedule. At the printing process for example, some
schedules use the least reliable printer intensively, a fact
that could be considered for selecting other schedule. In
PP-1, WSPT, SPT and LPT tend to use tweezers-1 (best
quality), while other rules use tweezers-2. The utilization of
machines within workstations may change, but the busiest
workstation of the system will not vary for the different
schedules. Although the busiest workstation changes
depending on the production plan; for PP-1 the tweezers is

the busiest workstation, for PP-2 is lacquering and for PP-3
is lamination.
The use of different dispatching rules conducts to
schedules with significant differences in the system
measures. No pattern was identified for concluding that the
use of a particular rule is recommended. It will depend on
the company’s preferences. In general, the dispatching
rules that showed better results were MS, WSPT, EDD and
LPT. The user should run each dispatching rule, analyze
results and select the better schedule. The production plan
size has an important impact in the application’s utility.
5 CONCLUSIONS
This paper has presented an application of Petri Nets to a
real life manufacturing setting. The modeling power of Petri
Nets in combination with dispatching rules might bring
significant benefits for this company. For instance:
1. Evaluate and compare different schedules for the same

production plan, according to the company’s
preferences.

2. Visualize job schedules and estimate job termination
times to support service commitments, and offer better
service quality to customers.

3. Visualize the workstation/machine utilization. Identify
and optimize bottlenecks with an efficient resource
assignment. Utilizations might be an important
decision’s criteria for selecting the best schedule.

4. Measure and monitor performance indicators for
implementing continuous improvement.

5. Test different options, changing parameters such as
processing times, production plan sizes, alternative
routes or disable/enable resources for supporting
investments, and operative decisions.

Particularly, for Intergráficas S.A. the implementation of
this computer application (based on the conducted
experiments) would represent the following benefits:

1. Production time reduction of more than 5%. The plant
works 70 shifts per month (18 in extra-time). This
reduction represents at least 3 extra shifts less per
month (U$D 4.500 / month).

2. Better service quality. The estimation of job termination
times allow to inform customers about due dates,
reducing tardiness cost.

3. The programming of maintenance activities during
operational time (saving additional maintenance shifts).

4. The scheduling process doesn’t depend on the intuition
of the production assistant or the operators.

5. Planning decisions as machine investments could be
supported by testing the system at different conditions.

The implementation process of such this application at
Intergráficas S.A. requires the following steps: a)
integration with the current information system, b)
redefinition and redesign of the scheduling process
including the use of the application and c) personal training
for its use.
Further research will be focused on using more complex
optimization scheduling algorithms and on improving user’s
interface. The research agenda includes:
 • Develop the application in terms of computational

efficiency and user’s interface. Modeling using xml
could be an interesting approach.

 • Implementation of optimization algorithms such as
Beam Search, A*Search [12], and Branch and Bound
algorithms is suggested.

 • Test the application at other manufacturing settings as
flow shops, job shops or flexible manufacturing cells.
Explore Petri Nets potential for modeling complex
systems.

 • Lead comparative research between this application
and other scheduling tools.

6 REFERENCES
[1] Zhou M. C., DiCesare F., 1993, Petri Net synthesis

for discrete event control of manufacturing systems,
Kluwer Academic Publisher, (USA), 187 – 188.

[2] Guia A., DiCesare F., 1993, GRAFCET and Petri
Nets in manufacturing systems, Intelligent
Manufacturing: Programming Environments for CIM,
Springer Verlag, London, 153 – 176.

[3] Zhou M. C., Venkatesh M., 1999, Modeling,
simulation and control of flexible manufacturing
systems, Intelligent Control and Intelligent
Automation, Vol 6. World Scientific Publishing Co.,
Singapore, 43 – 44.

[4] Zhou M. C., DiCesare F., 1991, Parallel and
sequential mutual exclusions for Petri Net modeling
for manufacturing systems, IEEE Trans. on Robotics
and Automation, Vol 7, No. 4, 515 – 527.

[5] Dubois D., Stecke K., 1983, Using Petri Nets to
represent production processes, Proc of the 22nd
IEEE Conf. on Decision and Control, San Antonio,
TX, 1062 – 1067.

[6] Watson J.F., Desrochers A. A., 1991, Applying GSPN
to manufacturing systems containing non-exponential
transition functions, IEEE Trans. on System. Man.
and Cyber. Vol 21, No. 5, 1008 – 1017.

[7] Shih J., Sekiguchi T., 1991, A timed Petri Net and
beam search based on-line FMS scheduling system
with routing flexibility, Proc. of the 1991 IEEE Int.
Conf .on Robotics and Automation. Sacramento, CA,
2548 – 2553.

[8] Shen L., Chen Q., Luth J. Y., Zangh Z., 1992,
Truncation of Petri Net models of scheduling
problems for optimum solutions, Proc. of Japan/USA
Symposium on Flexible Automation, 1681 – 1688.

[9] Zhou M. C., Chiu H., Xiong H. H., 1995, Petri Net
scheduling of FMS using branch and bound method,
Proc. of 1995 IEEE Int. Conf on Industrial Electronics,
Control and Instrumentation. Orlando, FL, 211 – 216.

[10] Zhou M. C., Venkatesh M., 1999, Modeling,
simulation and control of flexible manufacturing
systems, Intelligent Control and Intelligent
Automation, Vol 6. World Scientific Publishing Co.,
Singapore, 56.

[11] Sun T. H., Cheng C. W., Fu L. C., 1994, A Petri Net
based approach to modeling and scheduling for an
FMS and a case Study, IEEE Trans. on Industrial
Electronics, Vol 41, No. 6, 593 – 601.

[12] Mejía G., Odrey N., 2005, An approach using Petri
Nets and improved heuristic search for manufacturing
system scheduling, Journal of Manufacturing
Systems, Vol 24, No. 2, 103 – 117.

[13] Mejía G., Medaglia A., Gutierrez E., 2006, A
framework for integrating shop floor modeling and
scheduling applications: an illustrative case, Working
paper, Department of Industrial Engineering,
Uniandes.

[14] Zhou M. C., Venkatesh M., 1999, Modeling,
simulation and control of flexible manufacturing
systems, Intelligent Control and Intelligent
Automation, Vol 6. World Scientific Publishing Co.,
Singapore, 70.

[15] Hahmias S., 1997. Production and Operations
analysis. 3rd. Edition, Irwin/Mc. Graw-Hill, USA, 404.

[16] Pinedo M., 2002, Scheduling: Theory, Algorithms,
and Systems, Prentice Hall, USA, 34 - 55.

[17] Ezpeleta J., Colom J.M., Martínez J., 1995, A Petri
Net based deadlock prevention policy for flexible
manufacturing systems, IEEE Transactions on
Robotics and Automation. Vol. 11, No. 2.

[18] Mu J., 1997, PetriNets for modeling automated
manufacturing systems with error recovery, IEEE
Transactions on Robotics and Automation, Vol. 13,
No. 5.

[19] Mejia G., 2002, An Intelligent Based Architecture for
Flexible Manufacturing Systems Having Error
Recovery Capacity, PhD Thesis. Department of
Industrial Engineering, Leigh University.

