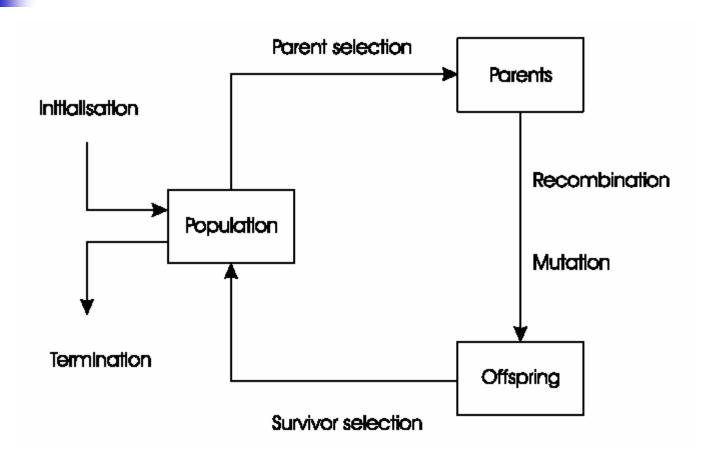
Computação Evolutiva

Aula 3 – O que é um Algoritmo Evolutivo? Prof. Paulo Salgado

Hoje vamos ver...

- Complemento da Metáfora Evolutiva
- Esquema Básico de um Algoritmo Evolutivo (AE)
- Conceitos Básicos:
 - Reprodução; Evolução;
 - População; Seleção;
 - Recombinação; Mutação;
 - Seleção por Sobrevivência;
 - Terminação


- Uma população de indivíduos existe em um ambiente com fontes limitadas
- A competição por estas fontes causa a seleção dos indivíduos que melhor se adaptam ao ambiente
- Estes indivíduos atuam como sementes para as novas gerações através de recombinação e mutação
- Os novos indivíduos têm seus fitness avaliados e competem (inclusive com seus pais) pela sobrevivência
- A Seleção Natural causa um aumento no fitness da população.

Complementação

- Os AEs estão na categoria dos algoritmos de geração e teste
- Os AEs são estocásticos e baseados em população
- Os Operadores de Variação (ou operadores genéticos recombinação e mutação) criam a diversidade da população
- A Seleção reduz a diversidade e atua com a força propulsora para a qualidade

Esquema Geral dos AEs

Pseudo-código Típico dos AEs

```
BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END
```

Tipos de AEs

- Historicamente, diferentes representações de soluções têm sido associadas com vários AEs
 - String Binárias: Algoritmos Genéticos
 - Vetores de Reais: Estratégias Evolutivas
 - Máquina de Estados Finitos: Programação Evolutiva
 - Árvores: Programação Genética

Diferenças entre os tipos de AEs

- Dos tipos de AEs apresentados no slide passado
 - Conceitualmente, as diferenças são bastante irrelevantes
 - Já para a técnica de implementação, as diferenças são bem relevantes
 - Cada uma das técnicas tem uma representação distinta que deve se adequar ao problema
 - A escolha dos operadores de variação deve se adequar as representações escolhidas
- Os operadores de seleção em todos os casos usam apenas informações do fitness e são independentes das representações.

Representações

- Dado um problema que será abordado por um AE
 - Uma solução candidata (indivíduo) existe em um espaço fenotípico (ou espaço de indivíduos)
 - Os indivíduos são codificados em cromossomos, os quais geram um espaço genotípico
 - Codificação: fenótipo → genótipo (não necessariamente 1 para 1)
 - Decodificação: genótipo → fenótipo (necessariamente 1 para 1)
 - Os cromossomos contêm genes, os quais são posições (usualmente fixadas) chamadas de locus, tendo um determinado valor
 - De forma a garantir um ótimo global, toda possível solução dever ser representada no espaço genótipo

Função de Avaliação - Fitness

- Representa as condições as quais a população deve se adaptar
- Representa a função qualidade ou função objetivo
- Assinala um valor real para o fitness (ou adaptação) de cada fenótipo, formando o critério base para a seleção
 - Quanto maior o poder de discriminação melhor

Função de Avaliação - Fitness

- Tipicamente, quando se fala em fitness deseja-se uma maximização
 - Ex.: Imagine que deseja-se medir a qualidade de uma solução através de um ERRO. Assim,

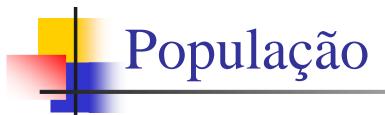
$$fitness = \frac{1}{1 + ERRO}$$

quanto maior a função fitness, melhor a solução

4

Função de Avaliação - Fitness

Porém, pode-se ter,


$$fitness = ERRO$$

em que quanto menor a função de fitness, melhor é a solução

 Contudo a primeira forma é bem mais intuitiva, já que a função de fitness é associada com a qualidade da solução

- É um conjunto de possíveis soluções
- Usualmente tem um tamanho fixado e é um multiconjunto de genótipos
- Alguns AEs sofisticados também consideram estruturas espaciais sobre a população, e.g., uma grade
 - Este tipo de característica é muito comum quando o AE está sobre uma arquitetura paralela de processamento.

- Os operadores de seleção usualmente utilizam unicamente informações da população
 - As probabilidades de seleção são referentes à geração atual
- A diversidade de uma população refere-se ao diferente número de fitness, fenótipos e genótipos presentes

Mecanismo de Seleção dos Pais

- Assinala a probabilidade dos indivíduos atuarem como pais, o que depende dos seus respectivos valores de Fitness
 - Quanto mais apto, maior o poder de reprodução
- O mecanismo de seleção é usualmente probabilístico
 - As melhores soluções tem maiores chance de se tornarem pais do que as soluções de baixa qualidade
 - Porém, nenhum indivíduo tem probabilidade zero de seleção!
- A natureza estocástica deste processo auxilia na fuga de máximos locais

Operadores de Variação

- Função: Gerar novas soluções candidatas
- Usualmente dividido em dois tipos quanto a aridade (no. de entrada de indivíduos):
 - **Aridade = 1:** Operadores de mutação
 - Aridade > 1: Operadores de Recombinação
 - **Aridade** = **2:** Tipicamente chamados de operadores de cruzamento ou *crossover*

Operadores de Variação

- Há um grande debate a respeito da importância relativa da recombinação e mutação
 - Atualmente, a grande maioria esmagadora dos AEs usam ambos operadores
 - A escolha de uma variação particular desses operadores é dependente da representação

Mutação

- Atua sobre um genótipo e gera outro genótipo
- Elemento essencial de aleatoriedade (diversidade)
- A importância atribuída a mutação depende da representação e dialeto
 - AG Binário: operador responsável pela introdução e preservação da diversidade
 - PG: fortemente utilizado
- Garante conectividade ao espaço de busca, garantindo uma prova de convergência (Teorema dos esquemas)

Recombinação

- Mistura informações: Pais → Prole
- O processo de mistura é estocástico
- A maior parte da prole é esperada ser pior, ou de mesma qualidade dos pais
- Entretanto, este processo também garante que alguns filhos serão melhores que os pais devido a combinação de elementos de genótipos que conduzam a boas características
- Este princípio tem sido utilizado pela **Natureza** por milhões de anos

Seleção por Sobrevivência

- O mesmo que recolocação
- A maior parte dos AEs usam uma população de tamanho fixo, necessitando de uma forma para garantir as novas gerações
- Geralmente determinística
 - Baseada em **fitness**: e.g., descartar o menos apto
 - Baseado em Geração: extingue os pais para a sobrevivência dos filhos
- Algumas vezes realiza combinação (elitismo)

Inicialização

- A inicialização do AE geralmente é aleatória
 - Necessita que seja garantido a possibilidade da varredura e mistura de todos os possíveis valores dos genes
 - É possível a utilização e inclusão de soluções existentes, ou heurísticas específicas ao problemas para "semear" a população

Condição de Término

- A condição de término deve ser checada a cada geração
 - Busca por um fitness mínimo
 - Quantidade máxima de gerações permitida
 - Alcance de um nível mínimo de diversidade
 - Quantidade máxima de gerações sem aumento do fitness
 - Busca por alguma característica específica do problema