Computação Evolutiva

Aula 7 – Algoritmos Genéticos (Parte III)

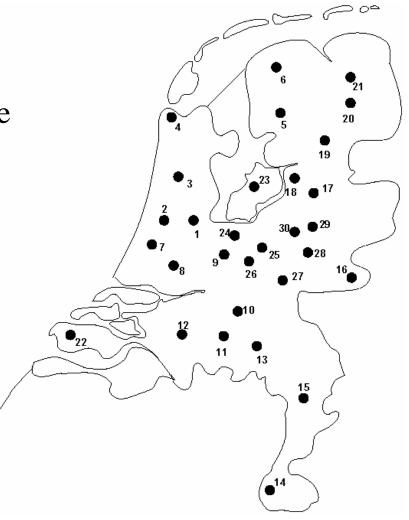
Prof. Paulo Salgado

Roteiro

- Representação por permutação
 - Problema de soluções inadmissíveis
- Operadores de Mutação para representação de permutações
- Operadores de Cruzamento para representações de permutações

Representações por Permutação

- Problemas de Ordenamento e/ou Sequenciamento
- Tarefa de arrumação de objetos em uma certa ordem
 - Exemplo: Algoritmos de ordenamento quais elementos ocorrem antes dos outros
 - Exemplo: Problema do Caixeiro Viajante (PCV): determinar a menor rota para percorrer uma série de cidades (visitando uma única vez cada uma delas), retornando à cidade de origem.
 - Quais elementos ocorrem próximos uns dos outros?
- Este problemas são geralmente expressos como permutações
 - Se existe n variáveis então a representação será uma lista de n valores (Arranjo de n valores)


Representações por Permutação

- Duas formas de codificar a permutação:
 - Dado 4 cidades [A, B, C, D] e a permutação [3, 1, 2, 4] podemos
 - Ver o i-ésimo elemento da representação como o evento que ocorre nesse lugar na sequência (i-ésimo destino visitado)
 - R.: [C, A, B, D]
 - Ver o valor do i-ésimo elemento como a posição na sequência na qual o i-ésimo evento ocorre.
 - R.: [B, C, A, D]

Representação por permutação Caixeiro Viajante

- Problema:
 - Dado n cidades
 - Encontrar um tour completo entre as cidades
- Codificação:
 - Rótulo das cidades 1, 2, ..., n
 - Um tour completo é uma permutação (e.g. para n = 4 [1,2,3,4] ou [3,4,2,1])
- Espaco de Busca é GRANDE:
 para 30 cidades existem 30! ≈
 10³² tours possíveis

Operadores de Mutação para Permutações

- Os operadores de mutação "normais" podem conduzir à soluções inadmissíveis
 - Exemplo: Mutação por bit faz o bit i ter o valor j
 - A execução deste operador pode levar a uma representação sem sentido no problema
- A probabilidade de mutação deve agora refletir as chances de um operador ser aplicado em toda a String do genótipo

Mutação por Inserção para permutações

- Pegue dois genes aleatoriamente
- Mova o segundo gene para próximo do primeiro, e acomode o resto do cromossomo sem alteração
- Note que este preserva a maior parte da ordem da informação adjacente

1 2 3 4 5 6 7 8 9

1 2 5 3 4 6 7 8 9

Mutação por Troca para permutações

- Pegue dois genes aleatoriamente e troque suas posições
- Este operador preserva a maior parte da adjacência da informação

1 2 3 4 5 6 7 8 9

1 5 3 4 2 6 7 8 9

Mutação por Inversão para permutações

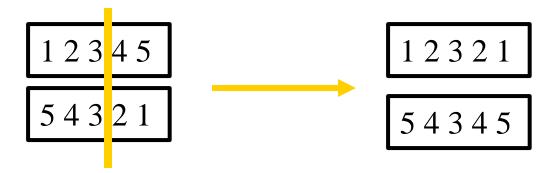
- Pegue dois genes de forma aleatória e inverta a ordem da sub-string entre estes genes
- Preserva a adjacência da informação, porém a modifica ordem da informação

1 2 3 4 5 6 7 8 9

1 5 4 3 2 6 7 8 9

Mutação por Perturbação para permutações

- Pegue um subconjunto de genes de forma aleatória
- Rearrume aleatoriamente o subconjunto selecionado
 - O subconjunto não necessariamente tem que ser contínuo


1 2 3 4 5 6 7 8 9 ---

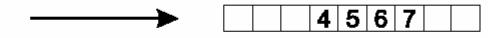
1 3 5 4 2 6 7 8 9

Operadores de Cruzamento para permutação

• Os operadores de cruzamento irão frequentemente conduzir à soluções inadmissíveis

• Muito operadores especializados têm sido desenvolvidos para a combinação da ordem e adjacência da informação contidas em dois pais

Cruzamento de Ordem 1


- A ideia é preservar a ordem relativa a qual os elementos ocorrem
- Procedimento informal:
 - 1. Escolha uma parte arbitrária do primeiro pai
 - 2. Copie esta parte para o primeiro filho
 - 3. Copie os números que nao estao na parte escolhida para o primeiro filho:
 - Começando da direita do ponto de corte
 - Usando a ordem do segundo pai
- Análogo para o segundo filho, com as regras invertidas

Exemplo do Operador de Cruzamento de Ordem 1

• Copie o subconjunto selecionado do pai 1

1 2 3 4 5 6 7 8 9

9 3 7 8 2 6 5 1 4

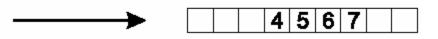
• Copie o resto do pai 2 na ordem 1, 9, 3, 8, 2

1 2 3 4 5 6 7 8 9

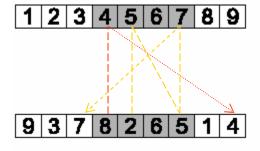
382456719

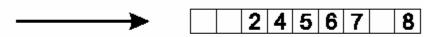
9 3 7 8 2 6 5 1 4

Cruzamento Parcialmente Mapeado (PMX - Partialy-Mapped crossover)

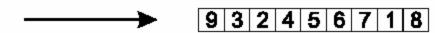

- Procedimento Informal para os pais P1 e P2
- 1. Escolha um segmento aleatório e copie este de P1
- 2. Começando a partir do primeiro ponto de cruzamento, olhe para os elementos no segmento de P2 que ainda não tenham sido copiados
- 3. Para cada posição i, na prole veja qual elemento j já foi copiado em seu lugar a partir P1
- 4. Coloque i na posição ocupada por j em P2
- 5. Se o local ocupado por j em P2 já esteja cheio na prole por k, coloque i na posição ocupada por k
- 6. Tendo repartido os elementos da segmentação do cromossomo, o resto da prole pode ser completada por P2
 - Um segundo filho pode ser criado de forma análoga

Exemplo: PMX


• Passo 1


1 2 3 4 5 6 7 8 9

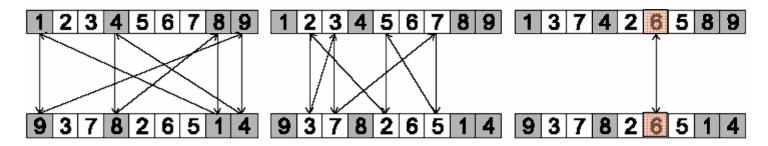
• Passo 2


9 3 7 8 2 6 5 1 4

• Passo 3

1 2 3 4 5 6 7 8 9

9 3 7 8 2 6 5 1 4


Cruzamento Cíclico

- Idéia Básica
 - Cada Gene vem de um pai trazendo sua posição
- Procedimento Informal:
 - 1. Faça um ciclo de Genes a partir do pai P1:
 - (a) Comece com o primeiro gene de P1
 - (b) Olhe para o mesmo gene do pai P2
 - (c) Vá para a posição em P1 com o mesmo gene
 - (d) Adicione este gene ao ciclo
 - (e) Repita do passo (b) ao (d) até chegar ao primeiro gene de P1
 - 2. Coloque os genes do ciclo no primeiro filho sobre as posições que estes aparecem no primeiro pai
 - 3. Comece um novo ciclo a partir do segundo pai

4

Exemplo: Cruzamento Cíclico

• Passo 1: Identifique ciclos

• Passo 2: Copie os ciclos alternados na prole

Recombinação de Bordas (Vizinhos)

- Construa uma tabela que liste as bordas que estão presentes nos dois pais
 - Se uma borda for comum a ambos os pais, marque-a com um "+"
 - Ex.: [1 2 3 4 5 6 7 8 9] e [9 3 7 8 2 6 5 1 4]

Element	Edges	Element	Edges
1	2,5,4,9	6	2,5+,7
2	1,3,6,8	7	3,6,8+
3	2,4,7,9	8	2,7+,9
4	1,3,5,9	9	1,3,4,8
5	1,4,6+		

Recombinação de Borda

- Procedimento Informal
- 1. Construa a tabela de bordas
- 2. Pegue um elemento inicial aleatório e ponha este na prole
- 3. Ajuste a variável do elemento atual = entrada
- 4. Examina a lista para o elemento atual
 - Se existir uma borda em comum, pegue-a com próximo elemento
 - Caso contrário, pegue a entrada que tem a lista mais curta
 - Os laços são quebrados de forma aleatória
- 5. No caso de se alcancar uma lista vazia:
 - Examine se o outro final da prole pode ser expandido
 - Caso contrário, um novo elemento é escolhido de forma aleatória

Exemplo: Recombinação de Borda

Element	Edges	Element	Edges
1	2,5,4,9	6	2,5+,7
2	1,3,6,8	7	3,6,8+
3	2,4,7,9	8	2,7+,9
4	1,3,5,9	9	1,3,4,8
5	1,4,6+		

Choices	Element	Reason	Partial
	selected		result
All	1	Random	[1]
2,5,4,9	5	Shortest list	[1 5]
4,6	6	Common edge	[1 5 6]
2,7	2	Random choice (both have two items in list)	[1 5 6 2]
3,8	8	Shortest list	[1 5 6 2 8]
7,9	7	Common edge	[1 5 6 2 8 7]
3	3	Only item in list	[1 5 6 2 8 7 3]
4,9	9	Random choice	[1 5 6 2 8 7 3 9]
4	4	Last element	[1 5 6 2 8 7 3 9 4]

Tarefa

• Utilize a idéia de permutações e implemente um AG para a resolução do problema das 8 rainhas!