

In	Praise	of	Engineering	Software	as	a	Service

It	is	a	pleasure	to	see	a	student	text	that	emphasizes	the	production	of	real	useful	software.	I	also
applaud	the	emphasis	on	getting	results	early	in	the	process.	Nothing	stimulates	student	morale	and

activity	more.
—Frederick	P.	Brooks,	Jr.,	Turing	Award	winner	and	author	of	The	Mythical	Man-Month

I’d	be	far	more	likely	to	prefer	graduates	of	this	program	than	any	other	I’ve	seen.
—Brad	Green,	Engineering	Manager,	Google	Inc.

A	number	of	software	engineers	at	C3	Energy	consistently	report	that	this	book	and	its	companion
online	course	enabled	them	to	rapidly	attain	proficiency	in	SaaS	development.	I	recommend	this	unique

book	and	course	to	anyone	who	wants	to	develop	or	improve	their	SaaS	programming	skills.
—Thomas	M.	Siebel,	CEO,	C3	Energy,	and	founder	and	former	CEO,	Siebel	Systems	(the	leading

Customer	Relationship	Management	software	company)

A	wide	and	deep	coverage	of	all	you	need	to	get	started	in	the	SaaS	business.
—Vicente	Cuellar,	Chief	Executive	Officer,	Wave	Crafters,	Inc.

The	book	filled	a	gap	in	my	knowledge	about	cloud	computing	and	the	lectures	were	easy	to	follow.
Perhaps	the	most	exciting	part	was	to	write	a	cloud	application,	upload,	and	deploy	it	to	Heroku.

—Peter	Englmaier,	University	of	Zürich,	Switzerland

An	excellent	kickstart	into	Ruby,	Rails	and	test	driven	approaches.	The	fundamentals	have	been
covered	with	great	depth	and	experience,	it’s	the	perfect	introduction	to	modern	web	development.	It

should	be	a	requisite	for	new	engineers.
—Stuart	Corbishley,	Clue	Technologies/CloudSeed,	South	Africa.

An	excellent	book	that	will	have	you	up	and	running	building	SaaS	apps	progressively	in	a	few	short
days.	The	screencasts	and	the	Pastebin	sections	are	invaluable.	A	very	practical	approach	to	Agile
software	development.	You	won’t	know	it	but	you	would	have	picked	up	software	engineering

techniques	without	even	knowing	you	are	doing	it!
—Rakhi	Saxena,	Assistant	Professor,	Delhi	University,	India

The	authors	have	accomplished	a	very	welcome	juxtaposition	of	theory	and	practice	for	any	modern
beginning	to	advanced	Software	Engineering	course.	On	the	one	hand,	they	cover	key	Software
Engineering	fundamentals	including	development	processes,	requirements	engineering,	testing,

software	architecture,	configuration	management,	implementation,	and	deployment.	On	the	other	hand,

they	convey	all	of	this	grounded	in	a	“real-world”	approach	centered	around	Ruby/Rails	and	its	rich
ecosystem	of	agile,	test-	and	behavior-driven	development	tools	and	techniques,	with	a	direct	avenue	to

cloud	deployment	of	running,	quality	software.	I	have	used	the	Beta	Edition	of	this	book	very
successfully	in	my	advanced	undergraduate	software	engineering	course,	where	it	beautifully

complements	both	my	lectures	and	the	team	project.
—Ingolf	Krueger,	Professor,	University	of	California	at	San	Diego

A	really	good	introduction	book	to	practical	Agile	development.	All	you	need	is	gathered	in	one	book
with	lots	of	practical	examples.

—Dmitrij	Savicev,	Sungard	Front	Arena,	Sweden

Engineering	Software	as	a	Service:	An	Agile	Approach	Using	Cloud
Computing

First	Edition,	1.1.1
Armando	Fox	and	David	Patterson

Edited	by	Samuel	Joseph

September	17,	2014

Copyright	2012–2014	Strawberry	Canyon	LLC.	All	rights	reserved.

No	part	of	this	book	or	its	related	materials	may	be	reproduced	in	any	form	without	the	written	consent
of	the	copyright	holder.

Book	version:	1.1.1

The	cover	background	is	a	photo	of	the	Aqueduct	of	Segovia,	Spain.	We	chose	 it	as	an	example	of	a
beautiful,	 long-lasting	design.	The	full	aqueduct	 is	about	20	miles	 (32	km)	 long	and	was	built	by	 the
Romans	in	the	1st	or	2nd	century	A.D.	This	photo	is	from	the	half-mile	(0.8	km)	long,	92	feet	(28	m)
high	above	ground	segment	built	using	unmortared	granite	blocks.	The	Roman	designers	followed	the
architectural	 principles	 in	 the	 ten-volume	 series	De	Architectura	 (“On	 Architecture”),	 written	 in	 15
B.C.	by	Marcus	Vitruvius	Pollio.	 It	was	untouched	until	 the	1500s,	when	King	Ferdinand	and	Queen
Isabella	 performed	 the	 first	 reconstruction	 of	 these	 arches.	 The	 aqueduct	 was	 in	 use	 and	 delivering
water	until	recently.

Both	the	print	book	and	ebook	were	prepared	with	LaTeX,	tex4ht,	and	Ruby	scripts	that	use	Nokogiri
(based	on	libxml2)	to	massage	the	XHTML	output	and	HTTParty	to	automatically	keep	the	Pastebin
and	screencast	URIs	up-to-date	in	the	text.	The	necessary	Makefiles,	style	files	and	most	of	the	scripts
are	available	under	the	BSD	License	at	http://github.com/armandofox/latex2ebook.

Arthur	Klepchukov	designed	the	covers	and	graphics	for	all	versions.

http://en.wikipedia.org/wiki/Aqueduct_of_Segovia
http://en.wikipedia.org/wiki/De_Architectura

About	the	Authors

		
Armando	Fox	 is	 a	 Professor	 of	 Computer	 Science	 at	 UC	 Berkeley	 and	 the	 Faculty	 Advisor	 to	 the
UC	Berkeley	MOOCLab.	During	 his	 previous	 time	 at	 Stanford,	 he	 received	 teaching	 and	mentoring
awards	from	the	Associated	Students	of	Stanford	University,	the	Society	of	Women	Engineers,	and	Tau
Beta	Pi	Engineering	Honor	Society.	He	was	named	one	of	the	“Scientific	American	50”	in	2003	and	is
the	 recipient	 of	 an	 NSF	 CAREER	 award	 and	 the	 Gilbreth	 Lectureship	 of	 the	 National	 Academy	 of
Engineering.	 In	previous	 lives	he	helped	design	 the	 Intel	Pentium	Pro	microprocessor	 and	 founded	a
successful	startup	to	commercialize	his	UC	Berkeley	dissertation	research	on	mobile	computing,	which
included	the	world’s	first	graphical	web	browser	running	on	a	mobile	device	(Top	Gun	Wingman	on	the
Palm	Pilot).	He	received	his	other	degrees	in	electrical	engineering	and	computer	science	from	MIT	and
the	 University	 of	 Illinois	 and	 is	 an	 ACM	 Distinguished	 Scientist.	 He	 is	 also	 a	 classically-trained
musician	 and	 freelance	 Music	 Director,	 and	 a	 bilingual/bicultural	 (Cuban-American)	 New	 Yorker
transplanted	to	San	Francisco.

		
David	Patterson	is	the	Pardee	Professor	of	Computer	Science	at	UC	Berkeley.	In	the	past,	he	served	as
Chair	 of	 Berkeley’s	 Computer	 Science	Division,	 Chair	 of	 the	Computing	Research	Association,	 and
President	of	the	Association	for	Computing	Machinery.	His	best-known	research	projects	are	Reduced
Instruction	Set	Computers	(RISC),	Redundant	Arrays	of	Inexpensive	Disks	(RAID),	and	Networks	of
Workstations	(NOW).	This	research	led	to	many	papers,	6	books,	and	more	than	35	honors,	including
election	to	 the	National	Academy	of	Engineering,	 the	National	Academy	of	Sciences,	and	the	Silicon
Valley	Engineering	Hall	of	Fame	as	well	as	being	named	a	Fellow	of	the	Computer	History	Museum,
ACM,	 IEEE,	and	both	AAAS	organizations.	His	 teaching	awards	 include	 the	Distinguished	Teaching
Award	 (UC	 Berkeley),	 the	 Karlstrom	 Outstanding	 Educator	 Award	 (ACM),	 the	Mulligan	 Education
Medal	(IEEE),	and	the	Undergraduate	Teaching	Award	(IEEE).	He	received	all	his	degrees	from	UCLA,
which	awarded	him	an	Outstanding	Engineering	Academic	Alumni	Award.	He	grew	up	in	California,

and	for	fun	he	enters	sporting	events	with	his	 two	adult	sons,	 including	weekly	soccer	games,	annual
charity	bike	rides	and	sprint	triathlons,	and	the	occasional	weight-lifting	contest.

About	the	Editor

		
Samuel	Joseph	 is	an	Associate	Professor	at	Hawaii	Pacific	University	 (HPU)	and	was	previously	an
Associate	Researcher	at	University	of	Hawaii	at	Manoa	(UHM).	He	is	a	recipient	of	the	Raymond	Hide
Prize	for	Astrophysics	and	a	Toshiba	Fellowship.	He	teaches	fully-online	courses	on	game	and	mobile
programming	and	design,	software	engineering,	and	scientific	research	methods,	from	London,	UK.	He
runs	 the	“funniest	computer	ever”	competition	as	part	of	his	 research	on	creating	humorous	chatbots,
which	 dovetails	 nicely	 with	 his	 other	 research	 interests	 in	 software	 to	 support	 online	 collaborative
learning,	 especially	 remote	 pair	 programming.	 He	 runs	 the	 Agile	 Ventures	 group	 which	 coordinates
learning	 developers	 contributing	 to	 open	 source	 projects	 for	 non-profit	 organizations.	His	 degrees	 in
Astrophysics,	 Cognitive	 Science	 and	 Computer	 Science	 are	 from	 the	 University	 of	 Leicester,	 the
University	 of	 Edinburgh,	 and	 UHM.	 He	 grew	 up	 in	 the	 UK	 and	 lived	 in	 Japan	 and	 Hawaii	 before
returning	to	 the	UK	with	his	Japanese	wife	and	three	Hawaiian	born	sons.	His	spare	time	is	 taken	up
biking,	jogging	and	trying	to	keep	up	with	his	guitar,	drum	and	soccer	playing	sons.

Dedication

Armando	Fox	dedicates	this	book	to	his	wife	and	best	friend	Tonia,	whose	support	while	writing	it	made
all	the	difference,	and	to	Pogo,	under	whose	careful	supervision	much	of	it	was	written	and	whose	feisty
spirit	will	always	inhabit	our	home	and	our	hearts.	

David	Patterson	dedicates	this	book	to	his	parents	and	all	their	descendants:
—To	my	father	David,	from	whom	I	 inherited	inventiveness,	athleticism,	and	the	courage	to	fight	for
what	is	right;
—To	my	mother	Lucie,	from	whom	I	inherited	intelligence,	optimism,	and	my	temperament;
—To	our	sons	David	and	Michael,	who	are	friends,	athletic	companions,	and	inspirations	for	me	to	be	a
good	man;
—To	 our	 daughters-in-law	 Heather	 and	 Zackary,	 who	 are	 smart,	 funny,	 and	 caring	 mothers	 to	 our

grandchildren;
—To	our	grandchildren	Andrew,	Grace,	and	Owyn,	who	give	us	our	chance	at	 immortality	 (and	who
helped	with	marketing	for	this	book);
—To	my	younger	siblings	Linda,	Don,	and	Sue,	who	gave	me	my	first	chance	to	teach;
—To	their	descendants,	who	make	the	Patterson	clan	both	large	and	fun	to	be	with;
—And	to	my	beautiful	and	understanding	wife	Linda,	who	is	my	best	friend	and	the	love	of	my	life.	

Contents

♦	Preface

♦	1	Introduction	to	SaaS	and	Agile	Development

1.1	Introduction
1.2	Software	Development	Processes:	Plan	and	Document
1.3	Software	Development	Processes:	The	Agile	Manifesto
1.4	Service	Oriented	Architecture
1.5	Software	as	a	Service
1.6	Cloud	Computing
1.7	Beautiful	vs.	Legacy	Code
1.8	Software	Quality	Assurance:	Testing
1.9	Productivity:	Conciseness,	Synthesis,	Reuse,	and	Tools
1.10	Guided	Tour	of	the	Book
1.11	How	NOT	to	Read	this	Book
1.12	Fallacies	and	Pitfalls
1.13	Engineering	Software	is	More	Than	Programming
1.14	To	Learn	More
1.15	Suggested	Projects
Software	as	a	Service	

♦	2	The	Architecture	of	SaaS	Applications

2.1	100,000	Feet:	Client-Server	Architecture
2.2	50,000	Feet:	Communication—HTTP	and	URIs
2.3	10,000	Feet:	Representation—HTML	and	CSS
2.4	5,000	Feet:	3-Tier	Architecture	&	Horizontal	Scaling
2.5	1,000	Feet:	Model-View-Controller	Architecture
2.6	500	Feet:	Active	Record	for	Models
2.7	500	Feet:	Routes,	Controllers,	and	REST
2.8	500	Feet:	Template	Views
2.9	Fallacies	and	Pitfalls
2.10	Concluding	Remarks:	Patterns,	Architecture,	and	Long-Lived	APIs
2.11	To	Learn	More
2.12	Suggested	Projects

♦	3	SaaS	Framework:	Introduction	to	Ruby

3.1	Overview	and	Three	Pillars	of	Ruby
3.2	Everything	is	an	Object
3.3	Every	Operation	is	a	Method	Call
3.4	Classes,	Methods,	and	Inheritance
3.5	All	Programming	is	Metaprogramming
3.6	Blocks:	Iterators,	Functional	Idioms,	and	Closures
3.7	Mix-ins	and	Duck	Typing
3.8	Make	Your	Own	Iterators	Using	Yield
3.9	Fallacies	and	Pitfalls
3.10	Concluding	Remarks:	Idiomatic	Language	Use
3.11	To	Learn	More
3.12	Suggested	Projects

♦	4	SaaS	Framework:	Introduction	to	Rails

4.1	Rails	Basics:	From	Zero	to	CRUD
4.2	Databases	and	Migrations
4.3	Models:	Active	Record	Basics
4.4	Controllers	and	Views
4.5	Debugging:	When	Things	Go	Wrong
4.6	Form	Submission:	New	and	Create
4.7	Redirection	and	the	Flash
4.8	Finishing	CRUD:	Edit/Update	and	Destroy
4.9	Fallacies	and	Pitfalls
4.10	Concluding	Remarks:	Designing	for	SOA
4.11	To	Learn	More
4.12	Suggested	Projects

♦	5	SaaS	Framework:	Advanced	Rails

5.1	DRYing	Out	MVC:	Partials,	Validations	and	Filters
5.2	Single	Sign-On	and	Third-Party	Authentication
5.3	Associations	and	Foreign	Keys
5.4	Through-Associations
5.5	RESTful	Routes	for	Associations
5.6	Composing	Queries	With	Reusable	Scopes
5.7	Fallacies	and	Pitfalls
5.8	Concluding	Remarks:	Languages,	Productivity,	and	Beauty
5.9	To	Learn	More
5.10	Suggested	Projects

♦	6	SaaS	Client	Framework:	JavaScript	Introduction

6.1	JavaScript:	The	Big	Picture
6.2	Client-Side	JavaScript	for	Ruby	Programmers
6.3	Functions	and	Constructors
6.4	The	Document	Object	Model	and	jQuery
6.5	Events	and	Callbacks
6.6	AJAX:	Asynchronous	JavaScript	And	XML
6.7	Testing	JavaScript	and	AJAX
6.8	Single-Page	Apps	and	JSON	APIs
6.9	Fallacies	and	Pitfalls
6.10	Concluding	Remarks:	JavaScript	Past,	Present	and	Future
6.11	To	Learn	More
6.12	Suggested	Projects
Software	Development:	Agile	vs.	Plan-and-Document	

♦	7	Requirements:	BDD	and	User	Stories

7.1	Introduction	to	Behavior-Driven	Design	and	User	Stories
7.2	Points,	Velocity,	and	Pivotal	Tracker
7.3	SMART	User	Stories
7.4	Lo-Fi	User	Interface	Sketches	and	Storyboards
7.5	Agile	Cost	Estimation
7.6	Introducing	Cucumber	and	Capybara
7.7	Running	Cucumber	and	Capybara
7.8	Enhancing	RottenPotatoes
7.9	Explicit	vs.	Implicit	and	Imperative	vs.	Declarative	Scenarios
7.10	The	Plan-And-Document	Perspective
7.11	Fallacies	and	Pitfalls
7.12	Concluding	Remarks:	Pros	and	Cons	of	BDD
7.13	To	Learn	More
7.14	Suggested	Projects

♦	8	Testing:	Test-Driven	Development

8.1	Background:	A	RESTful	API	and	a	Ruby	Gem
8.2	FIRST,	TDD,	and	Red–Green–Refactor
8.3	Seams	and	Doubles
8.4	Expectations,	Mocks,	Stubs,	Setup
8.5	Fixtures	and	Factories
8.6	Implicit	Requirements	and	Stubbing	the	Internet
8.7	Coverage	Concepts	and	Unit	vs.	Integration	Tests
8.8	Other	Testing	Approaches	and	Terminology

8.9	The	Plan-And-Document	Perspective
8.10	Fallacies	and	Pitfalls
8.11	Concluding	Remarks:	TDD	vs.	Conventional	Debugging
8.12	To	Learn	More
8.13	Suggested	Projects

♦	9	Maintenance:	Legacy,	Refactoring,	and	Agile

9.1	What	Makes	Code	“Legacy”	and	How	Can	Agile	Help?
9.2	Exploring	a	Legacy	Codebase
9.3	Establishing	Ground	Truth	With	Characterization	Tests
9.4	Comments
9.5	Metrics,	Code	Smells,	and	SOFA
9.6	Method-Level	Refactoring
9.7	The	Plan-And-Document	Perspective
9.8	Fallacies	and	Pitfalls
9.9	Concluding	Remarks:	Continuous	Refactoring
9.10	To	Learn	More
9.11	Suggested	Projects

♦	10	Project	Management:	Scrum,	Pairs,	and	VCS

10.1	It	Takes	a	Team:	Two-Pizza	and	Scrum
10.2	Pair	Programming
10.3	Agile	Design	and	Code	Reviews?
10.4	Version	Control	for	the	Two-Pizza	Team:	Merge	Conflicts
10.5	Using	Branches	Effectively
10.6	Reporting	and	Fixing	Bugs:	The	Five	R’s
10.7	The	Plan-And-Document	Perspective
10.8	Fallacies	and	Pitfalls
10.9	Concluding	Remarks:	Teams,	Collaboration,	and	Four	Decades	of	Version	Control
10.10	To	Learn	More
10.11	Suggested	Projects

♦	11	Design	Patterns	for	SaaS	Classes

11.1	Patterns,	Antipatterns,	and	SOLID	Class	Architecture
11.2	Just	Enough	UML
11.3	Single	Responsibility	Principle
11.4	Open/Closed	Principle
11.5	Liskov	Substitution	Principle
11.6	Dependency	Injection	Principle

11.7	Demeter	Principle
11.8	The	Plan-And-Document	Perspective
11.9	Fallacies	and	Pitfalls
11.10	Concluding	Remarks:	Frameworks	Capture	Design	Patterns
11.11	To	Learn	More
11.12	Suggested	Projects

♦	12	Performance,	Releases,	Reliability,	and	Security

12.1	From	Development	to	Deployment
12.2	Quantifying	Responsiveness
12.3	Continuous	Integration	and	Continuous	Deployment
12.4	Releases	and	Feature	Flags
12.5	Quantifying	Availability
12.6	Monitoring	and	Finding	Bottlenecks
12.7	Improving	Rendering	and	Database	Performance	With	Caching
12.8	Avoiding	Abusive	Database	Queries
12.9	Security:	Defending	Customer	Data	in	Your	App
12.10	The	Plan-And-Document	Perspective
12.11	Fallacies	and	Pitfalls
12.12	Concluding	Remarks:	Performance,	Reliability,	Security,	and	Leaky	Abstractions
12.13	To	Learn	More
12.14	Suggested	Projects

♦	13	Afterword

13.1	Perspectives	on	SaaS	and	SOA
13.2	Looking	Backwards
13.3	Looking	Forwards
13.4	Last	Words
13.5	To	Learn	More

♦Appendix	A	Using	the	Bookware

A.1	General	Guidance:	Read,	Ask,	Search,	Post
A.2	Overview	of	the	Bookware
A.3	Using	the	Bookware	VM
A.4	Working	With	Code:	Editors	and	Unix	Survival	Skills
A.5	Getting	Started	With	Secure	Shell	(ssh)
A.6	Getting	Started	With	Git	for	Version	Control
A.7	Getting	Started	With	GitHub
A.8	Deploying	to	the	Cloud	Using	Heroku

A.9	Checklist:	Starting	a	New	Rails	App
A.10	Fallacies	and	Pitfalls
A.11	To	Learn	More

Preface

Why	so	many	quotes?	We	think	quotes	make	the	book	more	fun	to	read,	but	they	are	also	an	efficient	mechanism	to	pass	along	wisdom
from	elders	to	novices,	and	to	help	set	cultural	standards	for	good	software	engineering.	We	also	want	readers	to	pick	up	a	bit	of	history
of	the	field,	which	is	why	we	feature	quotes	from	Turing	Award	winners	to	open	each	chapter	and	throughout	the	text.

If	you	want	to	build	a	ship,	don’t	drum	up	the	men	to	gather	wood,	divide	the	work	and	give	orders.
Instead,	teach	them	to	yearn	for	the	vast	and	endless	sea.

—Antoine	de	Saint-Exupéry,	Citadelle,	1948

Welcome!

There	have	been	two	dramatic	software	advances	in	the	last	decade	that	an	an	up-to-date	textbook	must
include.	These	twin	advances	constitute	the	two	halves	of	this	book.

The	 first	 half	 explains	Software	 as	 a	Service	 (SaaS),	which	 is	 revolutionizing	 the	 software	 industry.
Having	a	single	copy	of	the	program	in	the	cloud	with	potentially	millions	of	customers	places	different
requirements	 and	 offers	 new	 opportunities	 versus	 conventional	 shrink-wrap	 software,	 in	 which
customers	install	millions	of	copies	of	the	program	on	their	own	computers.

The	enthusiasm	for	SaaS	by	developers	and	customers	has	led	to	new	highly-productive	frameworks	for
SaaS	development.	We	use	Ruby	on	Rails	 in	 this	book	because	 it	 is	widely	believed	 to	have	 the	best
tools	 for	 SaaS,	 but	 there	 are	many	 other	 good	 examples	 of	 languages	 and	 frameworks	 for	 SaaS:	 for
example,	Python/Django,	JavaScript/Sails,	and	Java/Enterprise	Java	Beans.

The	question	then	is	which	software	development	methodology	is	best	for	SaaS.	As	there	is	only	one
copy	of	 the	program	and	it	 is	deployed	in	a	controlled	environment,	 it	 is	easy	to	deploy	new	features
quickly	and	incrementally,	and	so	SaaS	evolves	much	more	rapidly	than	shrink-wrap	software.	Thus,	we
needed	a	software	methodology	in	which	change	is	the	norm	rather	than	the	exception.

Since	 industry	 often	 complains	 about	 weaknesses	 in	 software	 education,	 we	 also	 spoke	 to
representatives	 from	many	 leading	 software	 companies	 including	Amazon,	 eBay,	 Facebook,	Google,
and	Microsoft.	We	were	struck	by	the	unanimity	of	 the	number	one	request	from	each	company:	 that
students	learn	how	to	enhance	sparsely-documented	legacy	code.	In	priority	order,	other	requests	were
making	testing	a	first-class	citizen,	working	with	non-technical	customers,	and	working	in	teams.	The
social	skills	needed	to	work	effectively	with	nontechnical	customers	and	work	well	in	teams	surely	are
helpful	for	the	developers’	whole	careers;	the	question	is	how	to	fit	them	into	one	book.	Similarly,	no
one	 questions	 the	 emphasis	 on	 testing;	 the	 question	 is	 how	 to	 get	 novices	 to	 embrace	 it.	 Thus,	 we
needed	an	up-to-date	software	methodology	that	also	works	well	with	legacy	code,	emphasizes	testing,
integrates	non-technical	customers,	and	embraces	working	in	teams	rather	than	as	lone	wolves.

Coincidentally,	about	the	same	time	that	SaaS	appeared	on	the	scene,	a	group	of	developers	proposed
the	The	Agile	Manifesto,	which	was	a	radical	change	from	prior	methods.	One	of	the	founding	tenets	of
Agile	 is	 “responding	 to	 change	 over	 following	 a	 plan,”	 so	 it	 is	 a	much	 better	match	 to	 the	 quickly
evolving	nature	of	SaaS	than	traditional	“Plan-and-Document”	methodologies	like	Waterfall,	Spiral,	or
RUP.	Another	Agile	tenet	is	“customer	collaboration	over	contract	negotiation,”	which	leads	to	weekly

http://en.wikipedia.org/wiki/Software_as_a_Service
http://en.wikipedia.org/wiki/SaaS
http://en.wikipedia.org/wiki/Ruby_on_Rails
http://en.wikipedia.org/wiki/The_Agile_Manifesto

meetings	with	non-technical	customers.	Two	critical	Agile	foundations	are	behavior-driven	design	and
test-driven	development,	which	means	tests	are	written	before	the	code,	so	testing	really	is	a	first	class
citizen	in	Agile.	Agile	ideas	like	pair	programming	and	scrum	emphasize	working	with	others.	Agile
techniques	are	even	a	good	match	to	evolving	legacy	code,	as	well	shall	see.

Therefore,	the	second	half	of	the	book	explains	Agile	in	the	context	of	building	and	deploying	a	SaaS
application	 implemented	 using	Ruby	 on	Rails.	 In	 addition,	 each	 chapter	 gives	 the	 perspective	 of	 the
Plan-and-Document	methodologies	on	topics	like	requirements,	testing,	management,	and	maintenance.
This	contrast	allows	readers	to	decide	for	themselves	when	each	methodology	is	appropriate	for	SaaS
and	non-SaaS	applications.

Fulfilling	the	Most	Recent	Curriculum	Standard

The	Instructors’	Manual,	downloadable	from	http://esa.as,	treats	the	instructor-facing	topics	of	this	chapter	in	depth.

From	an	instructor’s	perspective,	these	dual	views	of	software	development	allow	the	book	to	be	used
for	 software	 engineering	 courses.	 For	 example,	 we’ve	 made	 sure	 that	 the	 material	 fulfills	 all	 the
requirements	of	the	2013	ACM/IEEE	curriculum	standard	for	Software	Engineering;	in	fact,	roughly	45
of	 the	 end-of-chapter	 exercises	 come	 directly	 from	 the	 learning	 outcomes	 in	 the	 standard.	 (We	 label
them	with	a	special	margin	icon,	at	right.)	Stated	alternatively,	about	40%	of	the	learning	outcomes	of
the	standard	are	specific	exercises	and	another	40%	map	directly	onto	book	chapters	or	sections,	which
in	combination	far	exceed	the	45%	minimum	that	a	course	needs	to	conform	to	the	standard.	 		

Massive	Open	Online	Course	(MOOC)	to	Aid	Teachability

We	had	already	decided	to	write	a	textbook	when	we	were	recruited	in	October	2011	to	offer	the	first
part	 of	 the	 UC	 Berkeley	 course	 as	 a	 free	 Massive	 Online	 Open	 Course	 (MOOC).	 We	 ultimately
developed	 two	 MOOCs	 through	 BerkeleyX	 (the	 UC	 Berkeley	 partnership	 with	 the	 nonprofit	 edX)
covering	the	introductory	and	advanced	material:	CS169.1x	and	CS169.2x,	available	at	saas-class.org.
As	 a	 result	 of	 the	 co-development	 of	 the	 book	 and	 the	MOOCs,	 they	 are	 complementary:	 the	 video
segments	of	MOOCs	map	nearly	one-to-one	with	sections	of	the	book,	and	like	the	MOOC	segments,
each	book	section	ends	with	one	or	two	short	“Self-Check”	questions.	Enrollment	is	free;	to	date,	over
100,000	learners	have	experienced	the	MOOCs	and	over	10,000	have	gained	certificates	of	completion,
giving	the	book	and	materials	a	much	bigger	Beta	test	than	we	could	ever	have	envisioned!

The	MOOCs	are	also	a	valuable	instructor	aid.	Some	instructors	have	had	their	students	co-enroll	in	the
MOOC	to	take	advantage	of	its	automatically-graded	programming	assignments.	Some	instructors	have
“flipped	their	classrooms,”	having	students	watch	the	MOOC	videos	and	devoting	class	time	to	problem
solving	and	other	activities,	while	other	instructors	have	used	the	videos	to	prepare	their	own	material.
The	 autograders	 are	 constantly	 being	 enhanced	 and	 new	 assignments	 created	 that	 take	 advantage	 of
them.

In	fact,	interested	instructors	can	even	get	a	private	version	of	the	MOOC—a	SPOC,	or	Small	Private
Online	 Course—which	 they	 can	 customize	 to	 their	 needs	 and	 still	 take	 advantage	 of	 autograded
programming	 assignments	 and	 other	 MOOC	 features.	 The	 Instructor	 Resources	 page	 on	 the	 book’s
website	 has	 information	 on	 how	 to	 request	 a	 SPOC,	 as	well	 as	 a	 report	 describing	 other	 instructors’

http://en.wikipedia.org/wiki/behavior-driven_development
http://en.wikipedia.org/wiki/test-driven_development
http://en.wikipedia.org/wiki/pair_programming
http://en.wikipedia.org/wiki/Scrum_(development)
http://www.saas-class.org
http://www.saasbook.info/instructors

experience	with	SPOCs	in	their	own	classrooms.	SPOC	instructors	can	even	participate	in	a	biweekly
conference	call	to	discuss	problems	and	ideas	with	colleagues	using	the	same	material,	such	as	creating
new	assignments	that	take	advantage	of	the	autograders.

Organization

The	book	is	organized	into	two	main	parts:	the	first	covers	the	big	ideas	and	essential	technologies	of
Agile+SaaS,	while	the	second	focuses	on	the	tools	and	techniques	for	practicing	the	Agile	lifecycle	and
effectively	managing	SaaS	design,	construction,	and	deployment.

These	parts	correspond	to	two	main	units	of	material,	with	an	optional	but	recommended	student	project
providing	a	third	unit.	Unit	1,	which	corresponds	roughly	to	the	content	of	the	CS169.1x	MOOC,	covers
the	basics	of	building	a	 simple	SaaS	app	using	Rails	and	 the	Agile	 lifecycle.	Unit	2	 introduces	more
advanced	software	engineering	concepts	such	as	design	patterns,	working	with	legacy	code,	and	basics
of	 SaaS	 performance	 and	 security	 (“DevOps”),	 corresponding	 roughly	 to	 the	 content	 of
BerkeleyX	 CS169.2x.	 Each	 of	 these	 units	 includes	 autogradable	 assignments,	 supplementary	 online
materials	for	instructors	such	as	question	banks	and	exams,	and	so	on.	In	Unit	3,	students	use	the	skills
acquired	in	the	first	and/or	second	parts	to	develop	an	open-ended	team	project.	At	present	there	is	no
corresponding	MOOC	(though	we	are	exploring	 ideas)	but	 the	Instructors’	Manual	distills	 the	 lessons
we’ve	learned	facilitating	successful	(and	less-successful)	student	projects.

At	Berkeley,	we	cover	all	three	components	in	a	single,	aggressive	14-week	course	(3	hours	of	lecture,	1
hour	of	seminar/recitation,	and	8	non-classroom	hours	of	work	per	week),	in	which	four	Agile	iterations
of	the	group	project	partially	overlap	unit	2.	The	Instructors’	Manual	describes	our	syllabus	as	well	as
many	other	possible	options,	for	example:
	

A	two-course	sequence,	covering	Units	1	and	2	in	the	first	course	and	devoting	the	second	course
to	a	semester-long	or	quarter-long	project
A	single	course	covering	only	Units	1	and	3,	limiting	the	project’s	complexity	to	the	skills	learned
in	Unit	1
A	single	course	covering	all	 the	units	but	omitting	specific	elements	 to	meet	a	 length	constraint,
such	as	omitting	JavaScript	(Chapter	6)	or	DevOps	(Chapter	12).

However	 the	 course	 is	 factored,	 the	 nearly	 one-to-one	 correspondence	 between	 book	 sections	 and
MOOC/SPOC	lecture	videos	makes	it	easy	to	recombine	course	modules	in	whatever	way	works	best
for	your	classroom.

Student	Projects	and	Learning	By	Doing

The	 ACM/IEEE	 software	 engineering	 curriculum	 guidelines	 emphasize	 the	 value	 of	 an	 iterative
approach	in	which	students	assess	and	revise	their	work	continuously.	We	have	found	that	students	are
much	more	likely	to	actually	follow	the	Agile	methodology	because	the	Ruby	on	Rails	tools,	which	we
introduce	in	this	book,	make	it	easy	and	because	the	advice	is	genuinely	helpful	for	their	projects.	We
believe	Agile	offers	learning	skills	that	transfer	to	non-agile	projects,	should	need	arise.	We	even	show
how	to	use	Agile	techniques	on	legacy	code	that	wasn’t	developed	that	way	to	begin	with;	that	is,	Agile
is	 good	 for	more	 than	 just	 writing	 new	 code	 from	 scratch.	 To	 facilitate	 such	 learning	 by	 doing,	 the
book’s	 website	 provides	 links	 to	 a	 freely	 downloadable	 preconfigured	 virtual	 machine	 (VM)	 image,

deployable	 on	 students’	 own	 computers	 or	 in	 the	 cloud.	 The	 free	 screencasts	may	 be	 useful	 to	 both
instructors	and	students	as	demonstrations	of	how	to	use	these	tools.

The	ACM/IEEE	curriculum	guidelines	also	highlight	team	projects	as	a	critical	learning	mechanism	for
software	engineering	students.	The	experience	of	many	instructors	(including	ourselves)	is	that	students
enjoy	learning	and	using	Agile	in	projects.	Its	iteration-based,	short-planning-cycle	approach	is	a	great
fit	 for	 the	 reality	 of	 crowded	 undergraduate	 schedules	 and	 fast-paced	 courses.	Busy	 students	will	 by
nature	procrastinate	and	then	pull	several	all-nighters	 to	get	a	demo	cobbled	together	and	working	by
the	project	deadline;	Agile	not	only	thwarts	this	tactic	(since	students	are	evaluated	on	progress	being
made	each	iteration)	but	in	our	experience	actually	leads	to	real	progress	using	responsible	practices	on
a	more	regular	basis.

To	help	you	run	successful	projects,	the	Instructors’	Manual	contains	detailed	suggestions	for	organizing
and	 scheduling	 project	milestones	 in	 a	 classroom	 course,	 and	 gives	 example	 rubrics	 for	 grading	 the
projects	 based	 on	 both	 the	 artifacts	 produced	 and	 the	 processes	 used	 to	 produce	 them,	 taking	 full
advantage	of	being	able	to	do	multiple	iterations	in	a	single	course.	We	also	survey	each	generation	of
students	to	determine	what	they	learned	from	the	projects	and	where	they	had	difficulty;	the	Instructors’
Manual	distills	these	“seven	habits	of	highly	effective	projects”	based	on	several	offerings	of	the	course
at	UC	Berkeley	and	elsewhere.

Why	Write	a	New	Book?

Prospective	authors	wouldn’t	write	a	new	book	if	they	thought	the	old	ones	were	up-to-date	and	easy	to
teach	from.	Our	dissatisfaction	differs	depending	on	the	part	of	the	book.

http://screencast.saasbook.info

Figure	1:	These	12	books	contain	more	than	5000	pages.	Your	authors	read	more	than	50	books	to	prepare	this	text.	Most	of	these	books
are	listed	in	the	To	Learn	More	sections	at	the	end	of	the	appropriate	chapters.

Figure	2:	Another	12	books	your	authors	read	also	contain	more	than	5000	pages.	Most	of	these	books	are	listed	in	the	To	Learn	More
sections	at	the	end	of	the	appropriate	chapters.

For	Part	1,	the	problem	isn’t	that	there	are	too	few	good	books	on	the	SaaS	topics,	but	that	there	are	too
many!	Our	first	step	 in	writing	was	 to	read	 them.	Figures	1	and	2	show	just	24	of	 the	50+	books	we
consulted,	 and	 just	 these	 24	 represent	 more	 than	 10,000	 pages!	 The	 sheer	 mass	 of	 these	 books	 can
intimidate	 beginners.	 Therefore,	 one	 reason	 we	 wrote	 a	 new	 book	 is	 simply	 to	 offer	 a	 coherent
introduction	 and	 up-to-date	 overview	 of	 all	 SaaS	 topics	 within	 a	 single	 relatively	 slim,	 inexpensive
volume.	As	one	reviewer	of	the	Alpha	edition	complained,	there	is	nothing	new	in	Part	1,	as	long	as	you
have	the	budget	and	time	to	buy	and	read	dozens	of	books.	We	can	live	with	that	critique!

Regarding	Part	2,	there	are	a	few	choices	of	textbooks	on	software	engineering,	but	none	that	you	would
call	 up-to-date,	 slim,	 or	 inexpensive.	 While	 the	 reviews	 of	 the	 SaaS	 books	 we	 consulted	 are	 often
excellent—4	 out	 of	 5	 stars	 or	 higher	 on	 Amazon.com—that	 is	 not	 the	 case	 for	 these	 software
engineering	textbooks.	The	two	most	widely-used	textbooks	get	ratings	between	2	and	3	stars,	and	the
reviewer	comments	are	unkind.

One	 reason	may	 be	 that	 these	 books	 are	 primarily	 long,	 qualitative	 surveys	 of	 the	 literature—listing
many	options	on	each	topic	based	published	research	papers	and	books—but	offer	few	concrete	clues	or
methods	on	how	to	pick	from	among	them.	Another	reason	may	be	that	the	first	editions	were	written
long	before	SaaS	and	Agile	appeared	on	the	scene,	and	it	is	difficult	to	gracefully	integrate	up-to-date
perspectives	into	older	material.

This	is	déjà	vu,	as	one	of	your	authors	had	the	same	feelings	about	computer	architecture	textbooks	25
years	 ago;	 they	 were	 just	 long,	 qualitative	 surveys	 of	 related	 products	 and	 research	 papers	 with	 no
framework	 for	 readers	 to	 pick	 between	 the	 implementation	 options.	 Moreover,	 there	 had	 been	 a
dramatic	and	(at	the	time)	controversial	change	in	computer	architecture	that	was	not	reflected	in	these
books.	This	dissatisfaction	led	one	of	your	authors	and	a	friend	to	write	a	book	that	was	very	different
from	conventional	computer	architecture	textbooks.

Repeating	history,	 then,	Part	 2	 is	very	different	 from	conventional	 software	 engineering	 textbooks.	 It
treats	Agile	as	a	first	class	citizen	and	gives	concrete,	hands	on	examples	of	code	and	tools	to	follow	the
Agile	process	that	can	really	lead	to	products	that	match	customers’	needs.	As	mentioned	above,	each
chapter	in	Part	2	also	presents	the	Plan-and-Document	perspective	to	help	readers	appreciate	Agile	and
to	see	where	it	should	and	should	not	be	used.

Our	goal	 for	each	part	 is	 to	bring	a	diverse	set	of	 topics	 together	 into	a	single	narrative,	 to	help	you
understand	 the	 most	 important	 ideas	 by	 giving	 concrete	 examples.	 We	 can	 then	 imagine	 someone
already	familiar	with	Agile	in	Part	2	to	read	the	book	just	to	learn	about	SaaS	in	Part	1,	or	vice	versa.	If
you’re	new	to	the	topic—or	if	your	education	precedes	the	development	of	SaaS	and	Agile—then	you
get	a	double-barreled,	synergistic	 introduction	to	this	new	and	exciting	software	era.	This	sharp	focus
led	 to	 a	 book	 that	 covers	 both	 of	 the	 recent	 advances	 of	 SaaS	 and	 Agile	 software	 development	 in
approximately	 half	 of	 the	 chapters	 and	 half	 of	 the	 pages	 at	 a	 quarter	 of	 the	 price	 of	 conventional
software	engineering	textbooks.

Errata	and	Supplementary	Content

From	an	author’s	perspective,	one	delightful	 feature	of	electronic	 textbooks	 is	 that	we	can	update	all
electronic	 copies	 of	 an	 edition	when	 readers	 find	mistakes	 in	 the	 book.	We	have	 been	 collecting	 the
Errata	together	and	released	updates	a	few	times	a	year.	The	book’s	website	shows	the	latest	version	of
the	 book	 and	 a	 brief	 description	 of	 the	 changes	 since	 the	 previous	 version.	 Previous	 errata	 can	 be
reviewed,	and	new	ones	reported,	on	the	book’s	website.	We	apologize	in	advance	for	the	problems	you
find	in	this	edition,	and	look	forward	to	your	feedback	on	how	to	improve	this	material.

One	inherent	downside	of	reading	an	electronic	book	on	an	electric	book	reader	like	the	Kindle	is	that
the	 there	are	many	widths	of	displays,	 that	people	 read	with	many	different	 font	sizes,	and	 that	some
people	 prefer	 to	 read	 in	 landscape	mode	 and	 that	 some	 prefer	 portrait	 mode,	 so	 there	 is	 no	 way	 to
guarantee	 that	 the	 book	will	 be	 formatted	 in	 a	way	 that	 authors	 expect.	 This	 problem	 is	 particularly
acute	for	figures	and	tables.

To	examine	a	figure	or	table	that	is	hard	to	read,	please	try:
	

1.	 Rotating	from	portrait	mode	to	landscape	mode,	or	vice	versa,	depending	on	the	orientation	of	the
figure,	which	should	automatically	expand	the	figure.

2.	 Tapping	or	double-tapping	on	figure	in	the	text	to	isolate	the	figure	on	the	screen,	which	may	allow
zooming	in.

History	of	this	Book

The	material	 in	 this	 book	 started	 as	 a	 byproduct	 of	 a	Berkeley	 research	project	 that	was	 developing
technology	to	make	it	easy	to	build	the	next	great	Internet	service.	We	decided	that	young	people	were
more	 likely	 to	 come	 up	 with	 such	 a	 service,	 so	 we	 started	 teaching	 Berkeley	 undergraduates	 about
Software	 as	 a	 Service	 using	 Agile	 techniques	 in	 2007.	 Each	 year	 the	 course	 improved	 in	 scope,
ambition,	and	popularity,	embracing	the	rapid	improvements	in	the	Rails	tools	along	the	way.	Between
2007	and	2013,	our	enrollments	followed	Moore’s	Law:	35,	50,	75,	115,	165,	and	240.

A	colleague	suggested	that	this	would	be	excellent	material	for	the	software	engineering	course	that	has
long	been	taught	at	Berkeley,	so	one	of	us	(Fox)	taught	that	course	with	this	new	content.	The	results
were	so	 impressive	 that	 the	other	of	us	(Patterson)	suggested	that	writing	a	 textbook	would	let	others
benefit	from	this	powerful	curriculum.

These	 ideas	 crystallized	 with	 the	 emerging	 viability	 of	 electronic	 textbooks	 and	 the	 possibility	 of
avoiding	 the	costs	 and	delays	of	 a	 traditional	publisher.	 In	March	2011,	we	made	a	pact	 to	write	 the
book	 together.	 We	 were	 equally	 excited	 by	 making	 the	 material	 more	 widely	 available	 and	 about
rethinking	what	an	electronic	textbook	should	be,	since	up	until	then	they	were	essentially	just	the	PDFs
of	print	books.

We	talked	to	others	about	the	content.	We	attended	conferences	such	as	SIGCSE	(Special	Interest	Group
in	Computer	Science	Education),	the	Conference	on	Software	Engineering	Education	and	Training,	and
the	Federated	Computing	Research	Conference	both	to	talk	with	colleagues	and	to	send	them	a	survey
to	get	their	feedback.

Given	 the	perspective	of	educators	and	 industrial	colleagues,	we	proposed	an	outline	 that	we	 thought
addressed	all	these	concerns,	and	started	writing	in	June	2011.	Given	Fox’s	much	greater	expertise	on

http://radlab.cs.berkeley.edu

the	subject,	the	plan	was	for	him	to	write	roughly	two-thirds	of	the	chapters	and	Patterson	the	rest.	Both
of	us	collaborated	on	the	organization	and	were	first	reviewers	for	each	other’s	chapters.	We’ve	ended
up	 writing	 some	 sections	 each	 other’s	 chapters,	 so	 it’s	 a	 little	 more	 mixed	 than	 we	 expected.	 Fox
authored	Chapters	2,	3,	4,	5,	6,	8,	9,	11,	12,	Appendix	A,	 and	Sections	10.4	 to	 10.6,	while	Patterson
wrote	Chapters	1,7,	10,	the	Preface,	the	Afterword,	the	Instructors’	Manual,	and	the	Plan-and-Document
Perspectives	in	Sections	7.10,	8.9,	9.7,	10.7,	11.8,	and	12.10.	Fox	also	created	the	LaTeX	pipeline	 that
let	us	produce	the	many	formats	of	the	book	for	the	various	electronic	and	print	targets.

We	offered	an	Alpha	edition	of	 the	 textbook	 for	115	UC	Berkeley	students	and	 thousands	of	MOOC
students	in	the	Spring	semester	2012.	Based	on	their	feedback,	the	Beta	edition	was	ready	by	Fall	2012,
when	it	was	used	at	Berkeley	and	several	other	schools.	A	Second	Beta	edition	in	May	2013,	with	new
material	 based	 on	 careful	 study	 of	 the	 2013	ACM/IEEE	Computer	Society	 curriculum	 standard,	was
tested	again	by	Berkeley	and	MOOC	students	 in	Fall	of	2013,	 leading	 to	 this	 (very	well	 tested!)	 first
edition.

Specific	SaaS	Companies	and	Products

Where	 possible,	we	 focus	 on	 free	 and/or	 open-source	 software	 and	 services	 so	 that	 students	 can	 get
hands-on	experience	with	the	examples	without	incurring	additional	out-of-pocket	costs.	A	number	of
companies	in	the	SaaS	ecosystem	have	agreed	to	provide	special	trial	offers	of	useful	tools	and	services;
the	book’s	website	lists	the	constantly-evolving	set	of	special	offers	available	to	instructors	and	students
using	 this	 book.	 None	 of	 this	 affected	 the	 book’s	 content,	 which	 was	 frozen	 long	 before	 these
arrangements	were	made.

Therefore,	 when	 we	 use	 specific	 Web	 sites,	 tools,	 products,	 or	 trade	 names	 to	 ground	 the	 book’s
examples	in	reality,	unless	specifically	noted	we	have	no	formal	connection	to	any	of	these	sites,	tools,
or	 products,	 and	 the	 examples	 are	 for	 informational	 purposes	 only	 and	 not	 meant	 as	 commercial
endorsements.	 Any	 trademarked	 names	 mentioned	 are	 the	 property	 of	 their	 respective	 owners	 and
mentioned	here	for	informational	purposes	only.

The	authors’	opinions	are	their	own	and	not	necessarily	those	of	their	employer.

Acknowledgments

We	thank	our	industrial	colleagues	who	gave	us	feedback	on	our	ideas	about	the	course	and	the	book,
especially	these	awesome	individuals,	 listed	alphabetically	by	company:	Peter	Vosshall,	Amazon	Web
Services;	 Tony	 Ng,	 eBay;	 Tracy	 Bialik,	 Brad	 Green,	 and	 Russ	 Rufer,	 Google	 Inc.;	 Peter	 Van
Hardenberg,	Heroku;	Jim	Larus,	Microsoft	Research;	Brian	Cunnie,	Edward	Hieatt,	Matthew	Kocher,
Jacob	Maine,	Ken	Mayer,	and	Rob	Mee,	Pivotal	Labs;	Jason	Huggins,	SauceLabs;	and	Raffi	Krikorian,
Twitter.

We	 thank	 our	 academic	 colleagues	 for	 their	 feedback	 on	 our	 approach	 and	 ideas,	 especially	 Fred
Brooks,	University	 of	North	Carolina	 at	Chapel	Hill;	Marti	Hearst	 and	Paul	Hilfinger,	UC	Berkeley;
Timothy	 Lethbridge,	 University	 of	 Ottawa;	 John	 Ousterhout,	 Stanford	 University;	 and	 Mary	 Shaw,
Carnegie-Mellon	University.

We	 deeply	 thank	 the	 content	 experts	 who	 reviewed	 specific	 chapters:	 Danny	 Burkes,	 Pivotal	 Labs;
Timothy	Chou,	Stanford;	Daniel	Jackson,	MIT	;	Jacob	Maine,	Pivotal	Labs;	John	Ousterhout,	Stanford

http://github.com/armandofox/latex2ebook

University;	and	Ellen	Spertus,	Mills	College.

Thanks	to	Alan	Fekete,	University	of	Sydney,	for	pointing	us	to	the	2013	ACM/IEEE	Computer	Society
Curriculum	on	Software	Engineering	in	time	for	us	to	consider	it.

We’re	 especially	 grateful	 to	 the	 Beta	 testers	 who	 used	 early	 versions	 of	 our	 book	 in	 their	 own
classrooms,	starting	with	Samuel	Joseph,	Hawaii	Pacific	University,	who	also	serves	as	Lead	Facilitator
for	 the	CS169.1x	 and	CS169.2x	MOOCs	 and	whose	 extensive	 contributions	 to	 the	 development	 and
improvement	of	both	 the	course	materials	and	 the	 textbook	material	made	 it	clear	 that	we	should	ask
him	 to	 assume	 the	 official	 mantle	 of	 Editor.	 Other	 early	 adopters	 who	 continue	 to	 give	 valuable
feedback	and	contribute	to	the	course	materials	include	Daniel	Jackson,	MIT;	Richard	Ilson,	University
of	North	Carolina	at	Charlotte;	 Ingolf	Krueger,	University	of	California,	San	Diego;	Kristen	Walcott-
Justice,	 University	 of	 Colorado–Colorado	 Springs;	 Rose	Williams,	 Binghamton	 University;	 and	Wei
Xu,	Tsinghua	University,	who	was	the	first	to	test	this	material	in	a	classroom	outside	the	United	States
and	who	 facilitated	our	 relationship	with	Tsinghua	University	Press	 to	produce	 the	Chinese	 language
edition	of	the	book.

Part	of	the	“bookware”	is	the	collection	of	excellent	third-party	sites	supporting	SaaS	development.	For
their	help	in	connecting	us	with	the	right	products	and	services	that	could	be	offered	free	of	charge	to
students	 in	 the	class,	and	valuable	discussion	on	how	to	use	 them	in	an	educational	setting,	we	thank
Ann	 Merrihew,	 Kurt	 Messersmith,	 Marvin	 Theimer,	 Jinesh	 Varia,	 and	 Matt	 Wood,	 Amazon	 Web
Services;	Kami	Lott	and	Chris	Wanstrath,	GitHub;	Maggie	Johnson	and	Arjun	Satyapal,	Google	Inc.;
James	Lindenbaum,	Heroku;	Juan	Vargas	and	Jennifer	Perret,	Microsoft;	Rob	Mee,	Pivotal	Labs;	Dana
Le,	Salesforce;	and	John	Dunham,	SauceLabs.

We	thank	our	graduate	student	instructors	Kristal	Curtis	and	Shoaib	Kamil	for	helping	us	reinvent	the
on-campus	class	 that	 led	 to	 this	effort,	and	graduate	student	 instructors	Michael	Driscoll	and	Richard
Xia	for	helping	us	make	scalable	automatic	grading	a	reality	for	the	thousands	of	students	that	enrolled
in	the	online	course.	Last	but	far	from	least,	we	thank	our	dedicated	undergraduate	lab	staff	over	various
iterations	 of	 the	 class	 since	 2008:	Alex	Bain,	Aaron	Beitch,	Allen	Chen,	 James	Eady,	David	Eliahu,
Max	Feldman,	Amber	Feng,	Karl	He,	Arthur	Klepchukov,	Jonathan	Ko,	Brandon	Liu,	Robert	Marks,
Jimmy	Nguyen,	Sunil	Pedapudi,	Omer	Spillinger,	Hubert	Wong,	Tim	Yung,	and	Richard	Zhao.

We’d	 also	 like	 to	 thank	 Andrew	 Patterson,	 Grace	 Patterson,	 and	 Owyn	 Patterson	 for	 their	 help	 in
marketing	the	book,	as	well	as	to	their	managers	Heather	Patterson,	Michael	Patterson,	David	Patterson,
and	Zackary	Patterson.

Finally,	we	thank	the	hundreds	of	UC	Berkeley	students	and	the	tens	of	thousands	of	MOOC	students
for	their	debugging	help	and	their	continuing	interest	in	this	material!

Armando	Fox	and	David	Patterson
March,	2014

Berkeley,	California

http://saas-class.org

1.	 Introduction	 to	 Software	 as	 a	 Service	 and	 Agile	 Software
Development

			Sir	Maurice	Wilkes	(1913–2010)	received	the	1967	Turing	Award	for	designing
and	building	EDSAC	in	1949,	one	of	the	first	stored	program	computers.	The	Turing	Award	is	the
highest	award	in	computing,	which	the	Association	for	Computing	Machinery	(ACM)	has	bestowed
annually	since	1966.	Named	after	computing	pioneer	Alan	Turing,	it	is	known	informally	as	the

“Nobel	Prize	of	Computer	Science.”

(This	book	uses	sidebars	to	include	what	your	authors	think	are	interesting	asides	or	short	biographies
of	computing	pioneers	that	supplement	the	primary	text.	We	hope	readers	will	enjoy	them.)

It	was	on	one	of	my	journeys	between	the	EDSAC	room	and	the	punching	equipment	that	“hesitating
at	the	angles	of	stairs”	the	realization	came	over	me	with	full	force	that	a	good	part	of	the	remainder	of

my	life	was	going	to	be	spent	finding	errors	in	my	own	programs.
—Maurice	Wilkes,	Memoirs	of	a	Computer	Pioneer,	1985

http://en.wikipedia.org/wiki/Turing_Award

1.1	Introduction
1.2	Software	Development	Processes:	Plan	and	Document
1.3	Software	Development	Processes:	The	Agile	Manifesto
1.4	Service	Oriented	Architecture
1.5	Software	as	a	Service
1.6	Cloud	Computing
1.7	Beautiful	vs.	Legacy	Code
1.8	Software	Quality	Assurance:	Testing
1.9	Productivity:	Conciseness,	Synthesis,	Reuse,	and	Tools
1.10	Guided	Tour	of	the	Book
1.11	How	NOT	to	Read	this	Book
1.12	Fallacies	and	Pitfalls
1.13	Engineering	Software	is	More	Than	Programming
1.14	To	Learn	More
1.15	Suggested	Projects

Concepts

Each	 chapter	 opening	 starts	 with	 a	 one-page	 summary	 of	 that	 chapter’s	 big	 concepts.	 For	 this
introductory	chapter,	they	are:
	

Plan-and-Document	 software	 development	 processes	 or	 lifecycles	 rely	 on	 careful,	 up-front
planning	 that	 is	 extensively	 documented	 and	 carefully	managed	 to	make	 software	 development
more	 predictable.	 Prominent	 examples	 are	Waterfall,	Spiral,	 and	 the	Rational	 Unified	 Process
(RUP)	lifecycles.
In	 contrast,	 the	 Agile	 lifecycle	 relies	 on	 incrementally	 developed	 prototypes	 that	 involve
continuous	feedback	from	the	customer	on	each	iteration,	each	of	which	takes	between	one	to	four
weeks.
Service	 Oriented	 Architecture	 (SOA)	 creates	 apps	 from	 components	 that	 act	 as	 interoperable
services,	which	allows	new	systems	to	be	built	from	these	components	with	much	less	effort.	More
importantly,	 from	 a	 software	 engineering	 perspective,	 SOA	 enables	 the	 construction	 of	 large
services	 from	many	 small	 ones,	which	 history	 teaches	 us	 is	more	 likely	 to	 be	 successful	 than	 a
single	large	project.	One	reason	is	that	smaller	size	allows	use	of	Agile	development,	which	has	a
superior	track	record.
Software	as	a	Service	 (SaaS)	 is	a	special	case	of	SOA	that	deploys	software	at	a	single	site	but
makes	 it	available	 to	millions	of	users	over	 the	 Internet	on	 their	personal	mobile	devices,	which
provides	benefits	to	both	users	and	developers.	The	single	copy	of	the	software	and	the	competitive
environment	 for	SaaS	products	 leads	 to	more	 rapid	software	evolution	 for	SaaS	 than	for	shrink-
wrapped	software.
Legacy	Code	evolution	is	vital	in	the	real	world,	yet	often	ignored	in	software	engineering	books
and	courses.	Agile	practices	enhancing	code	each	iteration,	so	the	skills	gained	also	apply	to	legacy
code.
Cloud	 Computing	 supplies	 the	 dependable	 and	 scalable	 computation	 and	 storage	 for	 SaaS	 by
utilizing	Warehouse	Scale	Computers	containing	as	many	as	100,000	servers.	The	economies	of
scale	allow	Cloud	Computing	to	be	offered	as	a	utility,	where	you	pay	only	for	actual	use.

http://en.wikipedia.org/wiki/Product_lifecycle
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/iteration
http://en.wikipedia.org/wiki/Service_Oriented_Architecture
http://en.wikipedia.org/wiki/Service_Oriented_Architecture
http://en.wikipedia.org/wiki/Software_as_a_Service
http://en.wikipedia.org/wiki/Software_as_a_Service
http://en.wikipedia.org/wiki/software_evolution
http://en.wikipedia.org/wiki/Legacy_Code
http://en.wikipedia.org/wiki/Cloud_Computing

Software	 quality	 is	 defined	 as	 providing	 business	 value	 to	 both	 customers	 and	 developers.
Software	Quality	Assurance	(QA)	comes	from	many	levels	of	testing:	unit,	module,	 integration,
system,	and	acceptance.
Clarity	 via	 conciseness,	synthesis,	reuse,	 and	automation	 via	 tools	 are	 four	 paths	 to	 improving
software	productivity.	The	programming	 framework	Ruby	on	Rails	 follows	 them	 to	make	SaaS
developers	productive.	Don’t	Repeat	Yourself	(DRY)	warns	not	to	use	repetition	to	achieve	reuse,
as	there	should	be	one	representation	of	each	piece	of	knowledge.

Since	change	 is	 the	norm	for	Agile,	 it	 is	 an	excellent	SaaS	 lifecycle,	 and	 the	one	on	which	 the	book
focuses.

http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Quality_Assurance
http://en.wikipedia.org/wiki/Quality_Assurance
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/integration_testing
http://en.wikipedia.org/wiki/system_testing
http://en.wikipedia.org/wiki/acceptance_testing
http://en.wikipedia.org/wiki/program_synthesis
http://en.wikipedia.org/wiki/code_reuse
http://en.wikipedia.org/wiki/Programming_productivity
http://en.wikipedia.org/wiki/Ruby_on_Rails
http://en.wikipedia.org/wiki/Don't_Repeat_Yourself

1.1	Introduction

Now,	this	is	real	simple.	It’s	a	website	where	you	can	compare	and	purchase	affordable	health
insurance	plans,	side-by-side,	the	same	way	you	shop	for	a	plane	ticket	on	Kayak	or	the	same	way	you
shop	for	a	TV	on	Amazon...Starting	on	Tuesday,	every	American	can	visit	HealthCare.gov	to	find	out
what’s	called	the	insurance	marketplace...So	tell	your	friends,	tell	your	family...Make	sure	they	sign	up.

Let’s	help	our	fellow	Americans	get	covered.	(Applause.)
—President	Barack	Obama,	Remarks	on	the	Affordable	Care	Act,	Prince	George’s	Community

College,	Maryland,	September	26,	2013

...it	has	now	been	six	weeks	since	the	Affordable	Care	Act’s	new	marketplaces	opened	for	business.	I
think	it’s	fair	to	say	that	the	rollout	has	been	rough	so	far,	and	I	think	everybody	understands	that	I’m
not	happy	about	the	fact	that	the	rollout	has	been,	you	know,	wrought	with	a	whole	range	of	problems

that	I’ve	been	deeply	concerned	about.
—President	Barack	Obama,	Statement	on	the	Affordable	Care	Act,	The	White	House	Press	Briefing

Room,	November	14,	2013

When	the	Affordable	Care	Act	(ACA)	was	passed	in	2010,	it	was	seen	as	the	most	ambitious	US	social
program	in	decades,	and	it	was	perhaps	the	crowning	achievement	of	the	Obama	administration.	Just	as
millions	 shop	 for	 items	 on	 Amazon.com,	 HealthCare.gov—also	 known	 as	 the	 Affordable	 Care	 Act
website—was	 supposed	 to	 let	 millions	 of	 uninsured	 Americans	 shop	 for	 insurance	 policies.	 Despite
taking	 three	 years	 to	 build,	 it	 fell	 flat	 on	 its	 face	 when	 it	 debuted	 on	 October	 1,	 2013.	 Figure	 1.1
compares	Amazon.com	to	Heathcare.gov	in	the	first	three	months	of	operation,	demonstrating	that	not
only	was	it	slow,	error	prone,	and	insecure,	it	was	also	down	much	of	the	time.

Topic Amazon.com ACA	Oct ACA	Nov ACA	Dec
Customers/Day	(Goal) – 50,000 50,000 30,000
Customers/Day	(Actual) >10,000,000 800 3,700 34,300

Average	Response	time	(seconds) 	0.2 8 1 1
Downtime/Month	(hours) 0.07 446 107 36

Availability	(%	up) 99.99% 40% 85% 95%
Error	Rate – 10% 10% –
Secure Yes No No No

Figure	1.1:	Comparing	Amazon.com	and	Healthcare.gov	during	its	first	three	months.	(Thorp	2013)	After	its	stumbling	start,	the
deadline	was	extended	from	December	15,	2013	to	March	31,	2014,	which	explains	the	lower	goal	in	customers	per	day	in	December.
Note	that	availability	for	ACA	does	not	include	time	for	“scheduled	maintenance,”	which	Amazon	does	include	(Zients	2013).	The	error
rate	was	for	significant	errors	on	the	forms	sent	to	insurance	companies	(Horsley	2013).	The	site	was	widely	labeled	by	security	experts
as	insecure,	as	the	developers	were	under	tremendous	pressure	to	get	proper	functionality,	and	little	attention	was	paid	to	security
(Harrington	2013).

Why	is	that	companies	like	Amazon.com	can	build	software	that	serves	a	much	large	customer	base	so
much	 better?	 While	 the	 media	 uncovered	 many	 questionable	 decisions,	 a	 surprising	 amount	 of	 the

blame	was	placed	on	the	methodology	used	 to	develop	 the	software	(Johnson	and	Reed	2013).	Given
their	 approach,	 as	 one	 commentator	 said,	 “The	 real	 news	would	 have	 been	 if	 it	 actually	 did	work.”
(Johnson	2013a)

We’re	 honored	 to	 have	 the	 chance	 to	 explain	 how	 Internet	 companies	 and	 others	 build	 successful
software	 services.	 As	 this	 introduction	 illustrates,	 this	 field	 is	 not	 some	 dreary	 academic	 discipline
where	 few	 care	 what	 happens;	 failed	 software	 projects	 can	 become	 infamous,	 and	 can	 even	 derail
Presidents.	On	the	other	hand,	successful	software	projects	can	create	services	that	millions	of	people
use	 every	 day,	 leading	 to	 companies	 like	 Amazon,	 Facebook,	 and	 Google	 that	 become	 household
names.	All	involved	with	such	services	are	proud	to	be	associated	with	them,	unlike	the	ACA.

Moreover,	this	book	is	not	just	the	traditional	well-intentioned	survey	of	do’s	and	don’ts	for	each	phase
of	software	development.	It	makes	recent	concepts	concrete	with	a	hands-on	demonstration	of	how	to
design,	implement,	and	deploy	an	application	in	the	cloud.	The	virtual	machine	image	associated	with
this	book	comes	pre-loaded	with	all	the	software	you’ll	need	to	do	it	(see	Appendix	A).	In	addition	to
reading	what	we	wrote,	you	can	see	our	demonstrations	and	hear	our	voices	as	part	of	the	27	screencasts
in	the	following	chapters.	You	can	even	watch	us	teach	this	material,	for	this	book	is	associated	with	a
free	Massive	Open	Online	Course	 (MOOC)	 from	EdX.org.	 CS169.1x	 and	CS169.2x	 offer	 6-	 to	 10-
minute	video	segments	that	generally	correspond	one-to-one	with	all	the	sections	of	this	book,	including
this	one.	These	MOOCs	offer	quick	autograding	of	programming	assignments	and	quizzes	to	give	you
feedback	on	how	well	you’ve	learned	the	material	plus	an	online	forum	to	ask	and	answer	questions.

The	rest	of	 this	chapter	explains	why	disasters	 like	ACA	can	happen	and	how	to	avoid	repeating	 this
unfortunate	history.	We	start	our	 journey	with	 the	origins	of	software	engineering	 itself,	which	began
with	software	development	methodologies	that	placed	a	heavy	emphasis	on	planning	and	documenting.
We	 next	 review	 the	 statistics	 on	 how	 well	 the	 Plan-and-Document	 methodologies	 worked,	 alas
documenting	that	project	outcomes	like	ACA	are	all	too	common,	if	not	as	well	known.	The	frequently
disappointing	results	of	following	conventional	wisdom	in	software	engineering	inspired	a	few	software
developers	 to	 stage	 a	 palace	 revolt.	While	 the	Agile	Manifesto	 was	 quite	 controversial	when	 it	 was
announced,	over	time	Agile	software	development	has	trumped	its	critics.	Agile	allows	small	teams	to
outperform	the	industrial	giants,	especially	for	small	projects.	Our	next	step	in	the	journey	demonstrates
how	 service-oriented	 architecture	 allows	 the	 successful	 composition	 of	 large	 software	 services	 like
Amazon.com	from	many	smaller	software	services	developed	by	small	Agile	teams.

As	a	final	but	critical	point,	it’s	rare	in	practice	for	software	developers	to	do	“green	field”	development,
in	which	they	start	 from	a	blank	slate.	 It’s	much	more	common	to	enhance	large	existing	code	bases.
The	next	step	in	our	journey	observes	that	unlike	Plan-and-Document,	which	aims	at	a	perfect	design	up
front	and	then	implements	it,	the	Agile	process	spends	almost	all	of	its	time	enhancing	working	code.
Thus,	by	getting	good	at	Agile,	you	are	also	practicing	the	skills	you	need	to	evolve	existing	code	bases.

To	start	us	on	our	journey,	we	introduce	the	software	methodology	used	to	develop	HealthCare.gov.

1.2	Software	Development	Processes:	Plan	and	Document

If	builders	built	buildings	the	way	programmers	wrote	programs,	then	the	first	woodpecker	that	came
along	would	destroy	civilization.

http://en.wikipedia.org/wiki/Massive_Open_Online_Course
http://en.wikipedia.org/wiki/Massive_Open_Online_Course
https://www.edx.org/

—Gerald	Weinberg,	Weinberg’s	Second	Law

The	 general	 unpredictability	 of	 software	 development	 in	 the	 late	 1960s,	 along	 with	 the	 software
disasters	 similar	 to	 ACA,	 led	 to	 the	 study	 of	 how	 high-quality	 software	 could	 be	 developed	 on	 a
predictable	 schedule	 and	 budget.	Drawing	 the	 analogy	 to	 other	 engineering	 fields,	 the	 term	 software
engineering	was	coined	(Naur	and	Randell	1969).	The	goal	was	to	discover	methods	to	build	software
that	were	as	predictable	in	quality,	cost,	and	time	as	those	used	to	build	bridges	in	civil	engineering.

One	thrust	of	software	engineering	was	to	bring	an	engineering	discipline	to	what	was	often	unplanned
software	development.	Before	starting	to	code,	come	up	with	a	plan	for	the	project,	including	extensive,
detailed	documentation	of	all	phases	of	that	plan.	Progress	is	then	measured	against	the	plan.	Changes
to	the	project	must	be	reflected	in	the	documentation	and	possibly	to	the	plan.

The	goal	of	all	these	“Plan-and-Document”	software	development	processes	is	to	improve	predictability
via	extensive	documentation,	which	must	be	changed	whenever	the	goals	change.	Here	is	how	textbook
authors	put	it	(Lethbridge	and	Laganiere	2002;	Braude	2001):

Documentation	should	be	written	at	all	stages	of	development,	and	includes	requirements,	designs,	user
manuals,	instructions	for	testers	and	project	plans.

—Timothy	Lethbridge	and	Robert	Laganiere,	2002

Documentation	is	the	lifeblood	of	software	engineering.
—Eric	Braude,	2001

This	 process	 is	 even	 embraced	 with	 an	 official	 standard	 of	 documentation:	 IEEE/ANSI	 standard
830/1993.

Governments	like	that	of	the	US	have	elaborate	regulations	to	prevent	corruption	when	acquiring	new
equipment,	which	lead	to	 lengthy	specifications	and	contracts.	Since	the	goal	of	software	engineering
was	 to	 make	 software	 development	 as	 predictable	 as	 building	 bridges,	 including	 elaborate
specifications,	 government	 contracts	 were	 a	 natural	 match	 to	 Plan-and-Document	 software
development.	 Thus,	 like	 many	 countries,	 US	 acquisition	 regulations	 left	 the	 ACA	 developers	 little
choice	but	to	follow	a	Plan-and-Document	lifecycle.

CGI	Group	won	the	contract	for	the	backend	of	the	ACA	website.	The	initial	estimate	ballooned	from	US$94M	to	$292M
(Begley	2013).	This	same	company	was	involved	in	a	Canadian	firearms	registry	whose	costs	skyrocketed,	from	an	initial	estimate	of
US$2M	to	$2B.	When	MITRE	investigated	the	problems	with	Massachusetts’	ACA	website,	it	said	CGI	Group	did	not	have	the	expertise
to	build	the	site,	lost	data,	failed	to	adequately	test	functions,	and	managed	the	project	poorly	(Bidgood	2014).

Of	course,	 like	other	engineering	fields,	 the	government	has	escape	clauses	 in	 the	contracts	 that	 let	 it
still	acquire	the	product	even	if	it	is	late.	Ironically,	the	contractor	makes	more	money	the	longer	it	takes
to	 develop	 the	 software.	 Thus,	 the	 art	 is	 negotiating	 the	 contract	 and	 the	 penalty	 clauses.	 As	 one
commentator	on	ACA	noted	(Howard	2013),	“The	firms	that	 typically	get	contracts	are	 the	firms	that
are	good	at	getting	contracts,	not	typically	good	at	executing	on	them.”	Another	noted	that	the	Plan-and-

http://en.wikipedia.org/wiki/software_engineering

Document	 approach	 is	 not	 well	 suited	 to	modern	 practices,	 especially	 when	 government	 contractors
focus	on	maximizing	profits	(Chung	2013).

An	 early	 version	 of	 this	 Plan-and-Document	 software	 development	 process	 was	 developed	 in
1970	(Royce	1970).	It	follows	this	sequence	of	phases:
	

1.	 Requirements	analysis	and	specification
2.	 Architectural	design
3.	 Implementation	and	Integration
4.	 Verification
5.	 Operation	and	Maintenance

Given	 that	 the	 earlier	 you	 find	 an	 error	 the	 cheaper	 it	 is	 to	 fix,	 the	 philosophy	 of	 this	 process	 is	 to
complete	a	phase	before	going	on	to	the	next	one,	thereby	removing	as	many	errors	as	early	as	possible.
Getting	the	early	phases	right	could	also	prevent	unnecessary	work	downstream.	As	this	process	could
take	years,	the	extensive	documentation	helps	to	ensure	that	important	information	is	not	lost	if	a	person
leaves	the	project	and	that	new	people	can	get	up	to	speed	quickly	when	they	join	the	project.

Because	 it	 flows	 from	 the	 top	 down	 to	 completion,	 this	 process	 is	 called	 the	Waterfall	 software
development	 process	 or	 Waterfall	 software	 development	 lifecycle.	 Understandably,	 given	 the
complexity	 of	 each	 stage	 in	 the	Waterfall	 lifecycle,	 product	 releases	 are	major	 events	 toward	which
engineers	worked	feverishly	and	which	are	accompanied	by	much	fanfare.

Windows	95	was	heralded	by	a	US$300	million	outdoor	party	for	which	Microsoft	hired	comedian	Jay	Leno,	lit	up	New	York’s	Empire
State	Building	using	the	Microsoft	Windows	logo	colors,	and	licensed	“Start	Me	Up”	by	the	Rolling	Stones	as	the	celebration’s	theme
song.

In	the	Waterfall	lifecycle,	the	long	life	of	software	is	acknowledged	by	a	maintenance	phase	that	repairs
errors	as	 they	are	discovered.	New	versions	of	software	developed	 in	 the	Waterfall	model	go	 through
the	same	several	phases,	and	take	typically	between	6	and	18	months.

The	Waterfall	model	can	work	well	with	well-specified	tasks	like	NASA	space	flights,	but	it	runs	into
trouble	when	customers	change	their	minds	about	what	they	want.	A	Turing	Award	winner	captures	this
observation:

Plan	to	throw	one	[implementation]	away;	you	will,	anyhow.
—Fred	Brooks,	Jr.

That	 is,	 it’s	 easier	 for	 customers	 to	 understand	 what	 they	 want	 once	 they	 see	 a	 prototype	 and	 for
engineers	to	understand	how	to	build	it	better	once	they’ve	done	it	the	first	time.

This	 observation	 led	 to	 a	 software	 development	 lifecycle	 developed	 in	 the	 1980s	 that	 combines
prototypes	with	 the	Waterfall	model	 (Boehm	1986).	The	 idea	 is	 to	 iterate	 through	a	 sequence	of	 four
phases,	 with	 each	 iteration	 resulting	 in	 a	 prototype	 that	 is	 a	 refinement	 of	 the	 previous	 version.
Figure	1.2	 illustrates	 this	model	of	development	across	 the	 four	phases,	which	gives	 this	 lifecycle	 its
name:	the	Spiral	model.	The	phases	are

http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Product_lifecycle
http://www.youtube.com/watch?v=DeBi2ZxUZiM
http://en.wikipedia.org/wiki/Spiral_model

	

1.	 Determine	objectives	and	constraints	of	this	iteration
2.	 Evaluate	alternatives	and	identify	and	resolve	risks
3.	 Develop	and	verify	the	prototype	for	this	iteration
4.	 Plan	the	next	iteration

Figure	1.2:	The	Spiral	lifecycle	combines	Waterfall	with	prototyping.	It	starts	at	the	center,	with	each	iteration	around	the	spiral	going
through	the	four	phases	and	resulting	in	a	revised	prototype	until	the	product	is	ready	for	release.

Rather	than	document	all	the	requirements	at	the	beginning,	as	in	the	Waterfall	model,	the	requirement
documents	are	developed	across	the	iteration	as	they	are	needed	and	evolve	with	the	project.	Iterations
involve	 the	 customer	 before	 the	 product	 is	 completed,	which	 reduces	 chances	 of	misunderstandings.
However,	as	originally	envisioned,	these	iterations	were	6	to	24	months	long,	so	there	is	plenty	of	time
for	 customers	 to	 change	 their	 minds	 during	 an	 iteration!	 Thus,	 Spiral	 still	 relies	 on	 planning	 and
extensive	documentation,	but	the	plan	is	expected	to	evolve	on	each	iteration.

Big	Design	Up	Front,	abbreviated	BDUF,	is	a	name	some	use	for	software	processes	like	Waterfall,	Spiral,	and	RUP	that	depend	on
extensive	planning	and	documentation.	They	are	also	known	variously	as	heavyweight,	plan-driven,	disciplined,	or	structured	processes.

Given	the	importance	of	software	development,	many	variations	of	Plan-and-Document	methodologies
were	 proposed	 beyond	 these	 two.	 A	 recent	 one	 is	 called	 the	 Rational	 Unified	 Process
(RUP)	 (Kruchten	 2003),	 which	 combines	 features	 of	 both	 Waterfall	 and	 Spiral	 lifecycles	 as	 well
standards	for	diagrams	and	documentation.	We’ll	use	RUP	as	a	representative	of	the	latest	thinking	in
Plan-and-Document	lifecycles.	Unlike	Waterfall	and	Spiral,	it	is	more	closely	allied	to	business	issues
than	to	technical	issues.

Like	Waterfall	and	Spiral,	RUP	has	phases:
	

1.	 Inception:	makes	the	business	case	for	the	software	and	scopes	the	project	to	set	the	schedule	and
budget,	which	is	used	to	judge	progress	and	justify	expenditures,	and	initial	assessment	of	risks	to
schedule	and	budget.

2.	 Elaboration:	works	with	stakeholders	to	identify	use	cases,	designs	a	software	architecture,	sets	the
development	plan,	and	builds	an	initial	prototype.

3.	 Construction:	codes	and	tests	the	product,	resulting	in	the	first	external	release.
4.	 Transition:	moves	the	product	from	development	to	production	in	the	real	environment,	including

customer	acceptance	testing	and	user	training.

Unlike	Waterfall,	each	phase	involves	iteration.	For	example,	a	project	might	have	one	inception	phase
iteration,	 two	elaboration	phase	iterations,	four	construction	phase	iterations,	and	two	transition	phase
iterations.	Like	Spiral,	a	project	could	also	iterate	across	all	four	phases	repeatedly.

In	 addition	 to	 the	 dynamically	 changing	 phases	 of	 the	 project,	 RUP	 identifies	 six	 “engineering
disciplines”	(also	known	as	workflows)	that	people	working	on	the	project	should	collectively	cover:
	

1.	 Business	Modeling
2.	 Requirements
3.	 Analysis	and	Design
4.	 Implementation
5.	 Test
6.	 Deployment

These	disciplines	are	more	static	than	the	phases,	in	that	they	nominally	exist	over	the	whole	lifetime	of
the	project.	However,	some	disciplines	get	used	more	in	earlier	phases	(like	business	modeling),	some
periodically	throughout	the	process	(like	test),	and	some	more	towards	the	end	(deployment).	Figure	1.3

http://en.wikipedia.org/wiki/Big_Design_Up_Front
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process

shows	the	relationship	of	the	phases	and	the	disciplines,	with	the	area	indicating	the	amount	of	effort	in
each	discipline	over	time.

Figure	1.3:	The	Rational	Unified	Process	lifecycle	allows	the	project	to	have	multiple	iterations	in	each	phase	and	identifies	the	skills
needed	by	the	project	team,	which	vary	in	effort	over	time.	RUP	also	has	three	“supporting	disciplines”	not	shown	in	this	figure:
Configuration	and	Change	Management,	Project	Management,	and	Environment.	(Image	from	Wikipedia	Commons	by	Dutchgilder.)

An	unfortunate	downside	to	teaching	a	Plan-and-Document	approach	is	that	students	may	find	software
development	 tedious	 (Nawrocki	 et	 al.	2002;	 Estler	 et	 al.	 2012).	Given	 the	 importance	 of	 predictable
software	development,	this	is	hardly	a	strong	enough	reason	not	to	teach	it;	the	good	news	is	that	there
are	 alternatives	 that	work	 just	 as	well	 for	many	projects	 that	 are	 a	 better	 fit	 to	 the	 classroom,	 as	we
describe	in	the	next	section.

Summary:	 The	 basic	 activities	 of	 software	 engineering	 are	 the	 same	 in	 all	 the	 software

development	process	or	lifecycles,	but	their	interaction	over	time	relative	to	product	releases	differs
among	the	models.	The	Waterfall	 lifecycle	 is	characterized	by	much	of	 the	design	being	done	 in
advance	of	coding,	 completing	each	phase	before	going	on	 to	 the	next	one.	The	Spiral	 lifecycle
iterates	through	all	the	development	phases	to	produce	prototypes,	but	like	Waterfall,	the	customers
may	only	get	involved	every	6	to	24	months.	The	more	recent	Rational	Unified	Process	lifecycle
includes	 phases,	 iterations,	 and	 prototypes,	 while	 identifying	 the	 people	 skills	 needed	 for	 the
project.	All	rely	on	careful	planning	and	thorough	documentation,	and	all	measure	progress	against
a	plan.

Self-Check	1.2.1.	What	are	a	major	similarity	and	a	major	difference	between	processes	like	Spiral	and
RUP	versus	Waterfall?
	All	rely	on	planning	and	documentation,	but	Spiral	and	RUP	use	iteration	and	prototypes	to	improve

them	over	time	versus	a	single	long	path	to	the	product.

Self-Check	1.2.2.	What	are	the	differences	between	the	phases	of	these	Plan-and-Document	processes?
	 Waterfall	 phases	 separate	 planning	 (requirements	 and	 architectural	 design)	 from	 implementation.

Testing	the	product	before	release	is	next,	followed	by	a	separate	operations	phase.	The	Spiral	phases
are	 aimed	 at	 an	 iteration:	 set	 the	 goals	 for	 an	 iteration;	 explore	 alternatives;	 develop	 and	 verify	 the
prototype	 for	 this	 iteration;	 and	 plan	 the	 next	 iteration.	 RUP	 phases	 are	 tied	 closer	 to	 business
objectives:	 inception	 makes	 business	 case	 and	 sets	 schedule	 and	 budget;	 elaboration	 works	 with
customers	 to	 build	 an	 initial	 prototype;	 construction	 builds	 and	 test	 the	 first	 version;	 and	 transition
deploys	the	product.

ELABORATION:	SEI	Capability	Maturity	Model	(CMM)
The	 Software	 Engineering	 Institute	 at	 Carnegie	 Mellon	 University	 proposed	 the	 Capability	 Maturity	 Model	 (CMM)	 (Paulk
et	al.	1995)	 to	 evaluate	 organizations’	 software-development	 processes	 based	on	Plan-and-Document	methodologies.	The	 idea	 is
that	by	modeling	the	software	development	process,	an	organization	can	improve	them.	SEI	studies	observed	five	levels	of	software
practice:

1.	 Initial	or	Chaotic—undocumented/ad	hoc/unstable	software	development.
2.	 Repeatable—not	following	rigorous	discipline,	but	some	processes	repeatable	with	consistent	results.
3.	 Defined—Defined	and	documented	standard	processes	that	improve	over	time.
4.	 Managed—Management	 can	 control	 software	 development	 using	 process	 metrics,	 adapting	 the	 process	 to	 different	 projects

successfully.
5.	 Optimizing—Deliberate	process	optimization	improvements	as	part	of	management	process.

CMM	 implicitly	 encourages	 an	 organization	 to	 move	 up	 the	 CMM	 levels.	 While	 not	 proposed	 as	 a	 software	 development
methodology,	 many	 consider	 it	 one.	 For	 example,	 	 (Nawrocki	 et	 al.	 2002)	 compares	 CMM	 Level	 2	 to	 the	 Agile	 software
methodology	(see	next	section).

1.3	Software	Development	Processes:	The	Agile	Manifesto

If	a	problem	has	no	solution,	it	may	not	be	a	problem,	but	a	fact—not	to	be	solved,	but	to	be	coped
with	over	time.

—Shimon	Peres

http://en.wikipedia.org/wiki/Product_lifecycle
http://en.wikipedia.org/wiki/Capability_Maturity_Model

Figure	1.4:	a)	Study	of	software	projects	found	that	53%	of	projects	exceeding	their	budgets	by	a	factor	of	2.9	and	overshot	their
schedule	by	a	factor	of	3.2	and	another	31%	of	software	projects	were	cancelled	before	completion	(Johnson	1995).	The	estimated	annual
cost	in	the	United	States	for	such	software	projects	was	$100B.	b)	Survey	of	members	of	the	British	Computer	Society	found	that	only
130	of	1027	projects	met	their	schedule	and	budget.	Half	of	all	projects	were	maintenance	or	data	conversion	projects	and	half	new
development	projects,	but	the	successful	projects	divided	into	127	of	the	former	and	just	3	of	the	latter	(Taylor	2000).	c)	Survey	of	250
large	projects,	each	with	the	equivalent	of	more	than	a	million	lines	of	C	code,	found	similarly	disappointing	results	(Jones	2004).	d)
Survey	listing	just	the	large	examples	of	50,000	projects,	in	that	they	cost	at	least	$10M	in	development	(Johnson	2013b).	It	has	the	most
dismal	outcomes,	suggesting	that	HealthCare.gov	had	just	a	10%	chance	of	success.

While	 plan-and-development	 processes	 brought	 discipline	 to	 software	 development,	 there	 were	 still
software	 projects	 that	 failed	 so	 disastrously	 that	 they	 live	 in	 infamy.	 Programmers	 have	 heard	 these
sorry	 stories	 of	 the	Ariane	5	 rocket	 explosion,	 the	Therac-25	 lethal	 radiation	 overdose,	 and	 the	FBI
Virtual	Case	File	project	abandonment	so	frequently	that	they	are	clichés.	No	software	engineer	would
want	these	projects	on	their	résumés.

Ariane	5	flight	501.	On	June	4,	1996,	an	overflow	occurred	37	seconds	after	liftoff	in	a	guidance	system,	with	spectacular	consequences,

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Virtual_Case_File
http://www.youtube.com/watch?v=kYUrqdUyEpI

when	a	floating	point	number	was	converted	to	a	shorter	integer.	This	exception	could	not	occur	on	the	slower	Ariane	4	rocket,	so
reusing	successful	components	without	thorough	system	testing	was	expensive:	satellites	worth	$370M	were	lost.

One	article	even	listed	a	“Software	Wall	of	Shame”	with	dozens	of	highly-visible	software	projects	that
collectively	 were	 responsible	 for	 losses	 of	 $17B,	 with	 the	 majority	 of	 these	 projects
abandoned	(Charettte	2005).

Figure	1.4	summarizes	four	surveys	of	software	projects.	With	just	10%	to	16%	on	time	and	on	budget,
more	projects	were	cancelled	or	abandoned	than	met	 their	mark.	A	closer	 look	at	 the	13%	success	of
survey	b)	is	even	more	sobering,	as	fewer	than	1%	of	new	development	projects	met	their	schedules	and
budgets.	Although	the	first	three	surveys	are	10	to	25	years	old,	survey	d)	is	from	2013.	Nearly	40%	of
these	 large	 projects	 were	 cancelled	 or	 abandoned,	 and	 50%	 were	 late,	 over	 budget,	 and	 missing
functionality.	 Using	 history	 as	 our	 guide,	 poor	 President	 Obama	 had	 only	 a	 one	 in	 ten	 chance	 that
HealthCare.gov	would	have	a	successful	debut.

Agile	is	also	known	variously	as	a	lightweight	or	undisciplined	process.

Perhaps	 the	 “Reformation	 moment”	 for	 software	 engineering	 was	 the	Agile	 Manifesto	 in	 February
2001.	A	group	of	software	developers	met	to	develop	a	lighter-weight	software	lifecycle.	Here	is	exactly
what	the	Agile	Alliance	nailed	to	the	door	of	the	“Church	of	Plan	and	Document”:

“We	are	uncovering	better	ways	of	developing	software	by	doing	it	and	helping	others	do	it.	Through
this	work	we	have	come	to	value:
	

Individuals	and	interactions	over	processes	and	tools
Working	software	over	comprehensive	documentation
Customer	collaboration	over	contract	negotiation
Responding	to	change	over	following	a	plan

That	is,	while	there	is	value	in	the	items	on	the	right,	we	value	the	items	on	the	left	more.”

Variants	of	Agile	There	are	many	variants	of	Agile	software	development	(Fowler	2005).	The	one	we	use	in	this	book	is	Extreme
Programming,	which	is	abbreviated	XP,	and	credited	to	Kent	Beck.

This	alternative	development	model	is	based	on	embracing	change	as	a	fact	of	life:	developers	should
continuously	refine	a	working	but	incomplete	prototype	until	the	customer	is	happy	with	the	result.	In
addition	 the	 customer	 should	 offer	 feedback	 on	 each	 iteration.	 Agile	 emphasizes	 test-driven
development	 (TDD)	 to	 reduce	mistakes	 by	writing	 the	 tests	 before	 writing	 the	 code,	user	 stories	 to
reach	 agreement	 and	validate	 customer	 requirements,	 and	velocity	 to	measure	project	 progress.	We’ll
cover	these	topics	in	detail	in	later	chapters.

Regarding	software	 lifetimes,	 the	Agile	 software	 lifecycle	 is	 so	quick	 that	new	versions	are	available
every	week	or	two—with	some	even	releasing	every	day—so	they	are	not	even	special	events	as	in	the
Plan-and-Document	 models.	 The	 assumption	 is	 one	 of	 basically	 continuous	 improvement	 over	 its

http://en.wikipedia.org/wiki/Agile_Manifesto
http://en.wikipedia.org/wiki/Agile_Alliance
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/XP
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/user_stories
http://en.wikipedia.org/wiki/Velocity_(software_methodology)

lifetime.

We	mentioned	in	the	prior	section	that	newcomers	can	find	Plan-and-Document	processes	tedious,	but
this	is	not	the	case	for	Agile.	This	perspective	is	captured	by	a	software	engineering	instructor’s	early
review	of	Agile:

Remember	when	programming	was	fun?	Is	this	how	you	got	interested	in	computers	in	the	first	place
and	later	in	computer	science?	Is	this	why	many	of	our	majors	enter	the	discipline—because	they	like

to	program	computers?	Well,	there	may	be	promising	and	respectable	software	development
methodologies	that	are	perfectly	suited	to	these	kinds	of	folks.	...[Agile]	is	fun	and	effective,	because
not	only	do	we	not	bog	down	the	process	in	mountains	of	documentation,	but	also	because	developers
work	face-to-face	with	clients	throughout	the	development	process	and	produce	working	software	early

on.
—Renee	McCauley,	“Agile	Development	Methods	Poised	to	Upset	Status	Quo,”	SIGCSE	Bulletin,

2001

By	 de-emphasizing	 planning,	 documentation,	 and	 contractually	 binding	 specifications,	 the	 Agile
Manifesto	ran	counter	to	conventional	wisdom	of	the	software	engineering	intelligentsia,	so	it	was	not
universally	welcomed	with	open	arms	(Cormick	2001):

[The	Agile	Manifesto]	is	yet	another	attempt	to	undermine	the	discipline	of	software	engineering...In
the	software	engineering	profession,	there	are	engineers	and	there	are	hackers...It	seems	to	me	that	this
is	nothing	more	than	an	attempt	to	legitimize	hacker	behavior...The	software	engineering	profession
will	change	for	the	better	only	when	customers	refuse	to	pay	for	software	that	doesn’t	do	what	they

contracted	for...Changing	the	culture	from	one	that	encourages	the	hacker	mentality	to	one	that	is	based
on	predictable	software	engineering	practices	will	only	help	transform	software	engineering	into	a

respected	engineering	discipline.
—Steven	Ratkin,	“Manifesto	Elicits	Cynicism,”	IEEE	Computer,	2001

One	 pair	 of	 critics	 even	 published	 the	 case	 against	 Agile	 as	 a	 432-page	 book!	 (Stephens	 and
Rosenberg	2003)

The	software	engineering	research	community	went	on	to	compare	Plan-and-Document	lifecycles	to	the
Agile	 lifecycle	 in	 the	field	and	found—to	the	surprise	of	some	cynics—that	Agile	could	 indeed	work
well,	 depending	 on	 the	 circumstances.	 Figure	 1.5	 shows	 10	 questions	 from	 a	 popular	 software
engineering	textbook	(Sommerville	2010)	whose	answers	suggest	when	to	use	Agile	and	when	to	use
Plan-and-Document	methods.

Question:	A	no	answer	suggests	Agile;	a	yes	suggests	Plan	and	Document
1 Is	specification	required?
2 Are	customers	unavailable?
3 Is	the	system	to	be	built	large?
4 Is	the	system	to	be	built	complex	(e.g.,	real	time)?
5 Will	it	have	a	long	product	lifetime?
6 Are	you	using	poor	software	tools?

7 Is	the	project	team	geographically	distributed?
8 Is	team	part	of	a	documentation-oriented	culture?
9 Does	the	team	have	poor	programming	skills?
10 Is	the	system	to	be	built	subject	to	regulation?

Figure	1.5:	Ten	questions	to	help	decide	whether	to	use	an	Agile	lifecycle	(the	answer	is	no)	or	a	Plan-and-Document	lifecycle	(the
answer	is	yes)	(Sommerville	2010).	We	find	it	striking	that	when	asking	these	questions	for	projects	done	by	student	teams	in	a	class,
virtually	all	answers	point	to	Agile.	As	this	book	attests,	open	source	software	tools	are	excellent,	thus	available	to	students	(question	6).
Our	survey	of	industry	(see	Preface)	found	that	graduating	students	do	indeed	have	good	programming	skills	(question	9).	The	other	eight
answers	are	clearly	no	for	student	projects.

Figure	1.6:	This	survey	of	small	examples	of	50,000	projects,	in	that	they	cost	less	than	$1M	in	development	(Johnson	2013b).	These
projects	work	tremendously	better	than	those	of	Figure	1.4.

Recall	 that	 the	 last	 and	 most	 recent	 survey	 in	 Figure	 1.4	 shows	 the	 disappointing	 results	 for	 large
software	projects,	which	do	not	use	Agile.	Figure	1.6	shows	 the	success	of	small	software	projects—
defined	as	costing	less	than	$1M—that	typically	do	use	Agile.	With	three-fourths	of	 these	projects	on
time,	on	budget,	and	with	full	functionality,	the	results	are	in	stark	contrast	to	Figure	1.4.	Success	has
fanned	Agile’s	popularity,	and	recent	surveys	peg	Agile	as	the	primary	development	method	for	60%	to
80%	of	 all	 programming	 teams	 in	 2013	 (ET	Bureau	2012,	Project	Management	 Institute	 2012).	One

paper	 even	 found	 Agile	 was	 used	 by	 the	 majority	 of	 programming	 teams	 that	 are	 geographically
distributed,	which	is	much	more	difficult	to	pull	off	(Estler	et	al.	2012).

Thus,	we	concentrate	on	Agile	in	the	six	software	development	chapters	in	Part	II	of	the	book,	but	each
chapter	also	gives	the	perspective	of	the	Plan-and-Document	methodologies	on	topics	like	requirements,
testing,	 project	management,	 and	maintenance.	This	 contrast	 allows	 readers	 to	 decide	 for	 themselves
when	each	methodology	is	appropriate.

While	we	now	see	how	to	build	some	software	successfully,	not	all	projects	are	small.	We	next	show
how	to	design	software	to	enable	composition	into	services	like	Amazon.com.

Summary:	 In	 contrast	 to	 the	 Plan-and-Document	 lifecycles,	 the	 Agile	 lifecycle	 works	 with
customers	 to	 continuously	 add	 features	 to	 working	 prototypes	 until	 the	 customer	 is	 satisfied,
allowing	customers	to	change	what	they	want	as	the	project	develops.	Documentation	is	primarily
through	 user	 stories	 and	 test	 cases,	 and	 it	 does	 not	measure	 progress	 against	 a	 predefined	 plan.
Progress	 is	 gauged	 instead	 by	 recording	 velocity,	 which	 essentially	 is	 the	 rate	 that	 a	 project
completes	features.

Self-Check	1.3.1.	True	or	False:	A	big	difference	between	Spiral	 and	Agile	 development	 is	 building
prototypes	and	interacting	with	customers	during	the	process.
	False:	Both	build	working	but	incomplete	prototypes	that	the	customer	helps	evaluate.	The	difference

is	that	customers	are	involved	every	two	weeks	in	Agile	versus	up	to	two	years	in	with	Spiral.

ELABORATION:	Versions	of	Agile
There	 is	 not	 just	 a	 single	 Agile	 lifecycle.	 We	 are	 following	 Extreme	 Programming	 (XP),	 which	 includes	 one-	 to	 two-week
iterations,	 behavior	 driven	 design	 (see	Chapter	 7),	 test-driven	 development	 (see	Chapter	 8),	 and	 pair	 programming	 (see	 Section
10.2).	Another	popular	version	 is	Scrum	 (see	Section	10.1),	where	 self-organizing	 teams	use	 two-	 to	 four-week	 iterations	 called
sprints,	and	then	regroup	to	plan	the	next	sprint.	A	key	feature	is	daily	standup	meetings	to	identify	and	overcome	obstacles.	While
there	are	multiple	roles	in	the	scrum	team,	the	norm	is	to	rotate	the	roles	over	time.	The	Kanban	approach	is	derived	from	Toyota’s
just-in-time	manufacturing	process,	which	in	this	case	treats	software	development	as	a	pipeline.	Here	the	team	members	have	fixed
roles,	and	the	goal	 is	 to	balance	the	number	of	 team	members	so	that	 there	are	no	bottlenecks	with	tasks	stacking	up	waiting	for
processing.	One	 common	 feature	 is	 a	wall	 of	 cards	 that	 to	 illustrate	 the	 state	 of	 all	 tasks	 in	 the	 pipeline.	 There	 are	 also	 hybrid
lifecycles	 that	 try	 to	combine	 the	best	of	 two	worlds.	For	example,	ScrumBan	uses	 the	daily	meetings	and	sprints	of	Scrum	but
replaces	the	planning	phase	with	the	more	dynamic	pipeline	control	of	the	wall	of	cards	from	Kanban.

ELABORATION:	Reforming	Acquisition	Regulations
Long	 before	 the	ACA	website,	 there	were	 calls	 to	 reform	 software	 acquisition,	 as	 in	 this	US	National	Academies	 study	 of	 the
Department	of	Defense	(DOD):

“The	DOD	is	hampered	by	a	culture	and	acquisition-related	practices	 that	 favor	 large	programs,	high-level	oversight,	and	a	very
deliberate,	serial	approach	to	development	and	testing	(the	waterfall	model).	Programs	that	are	expected	to	deliver	complete,	nearly
perfect	 solutions	 and	 that	 take	 years	 to	 develop	 are	 the	 norm	 in	 the	 DOD...These	 approaches	 run	 counter	 to	 Agile	 acquisition
practices	 in	which	 the	product	 is	 the	primary	 focus,	end	users	are	engaged	early	and	often,	 the	oversight	of	 incremental	product
development	is	delegated	to	the	lowest	practical	level,	and	the	program	management	team	has	the	flexibility	to	adjust	the	content	of
the	increments	in	order	to	meet	delivery	schedules...Agile	approaches	have	allowed	their	adopters	to	outstrip	established	industrial
giants	 that	 were	 beset	 with	 ponderous,	 process-bound,	 industrial-age	management	 structures.	 Agile	 approaches	 have	 succeeded
because	their	adopters	recognized	the	issues	that	contribute	to	risks	in	an	IT	program	and	changed	their	management	structures	and
processes	to	mitigate	the	risks.”

(National	Research	Council	2010)

http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Scrum_(software_development)
http://en.wikipedia.org/wiki/Kanban_(development)

Even	President	Obama	belatedly	recognized	the	difficulties	of	software	acquisition.	On	November	14,	2013,	he	said	 in	a	speech:
“...when	 I	 do	 some	Monday	morning	 quarterbacking	 on	myself,	 one	 of	 the	 things	 that	 I	 do	 recognize	 is	 since	 I	 know	 how	we
purchase	technology	in	the	federal	government	is	cumbersome,	complicated	and	outdated	...it’s	part	of	the	reason	why,	chronically,
federal	IT	programs	are	over	budget,	behind	schedule...since	I	[now]	know	that	the	federal	government	has	not	been	good	at	 this
stuff	in	the	past,	two	years	ago	as	we	were	thinking	about	this...we	might	have	done	more	to	make	sure	that	we	were	breaking	the
mold	on	how	we	were	going	to	be	setting	this	up.”

1.4	Service	Oriented	Architecture

SOA	had	long	suffered	from	lack	of	clarity	and	direction....SOA	could	in	fact	die—not	due	to	a	lack	of
substance	or	potential,	but	simply	due	to	a	seemingly	endless	proliferation	of	misinformation	and

confusion.
—Thomas	Erl,	About	the	SOA	Manifesto,	2010

The	 success	 of	 small	 projects	 in	 Figure	 1.6	 can	 be	 repeated	 for	 larger	 ones	 by	 using	 a	 software
architecture	designed	to	make	composible	services:	Service	Oriented	Architecture	(SOA).

Alas,	SOA	was	one	of	those	terms	that	was	ill	defined,	over	used,	and	so	over	hyped	that	some	thought
it	 was	 just	 an	 empty	 marketing	 phrase,	 like	modular.	 SOA	 actually	 means	 that	 components	 of	 an
application	 act	 as	 interoperable	 services,	 and	 can	 be	 used	 independently	 and	 recombined	 in	 other
applications.	 The	 contrasting	 implementation	 is	 considered	 a	 “software	 silo,”	 which	 rarely	 has
externalizable	Application	Programming	Interfaces	(APIs)	to	internal	components.

If	you	mis-estimate	what	the	customer	really	wants,	the	cost	is	much	lower	with	SOA	than	with	“siloed”
software	to	recover	from	that	mistake	and	try	something	else	or	to	produce	a	similar-but-not-identical
variant	to	please	a	subset	of	users.

For	example,	Amazon	started	in	1995	with	siloed	software	for	its	online	retailing	site.	According	to	the
blog	of	former	Amazonian	Steve	Yegge,	in	2002	the	CEO	and	founder	of	Amazon	mandated	a	change
to	what	we	would	 today	call	SOA.	Yegge	claims	 that	Jeff	Bezos	broadcast	an	email	 to	all	employees
along	the	following	lines:

	

1.	 All	teams	will	henceforth	expose	their	data	and	functionality	through	service	interfaces.
2.	 Teams	must	communicate	with	each	other	through	these	interfaces.
3.	 There	will	be	no	other	 form	of	 interprocess	communication	allowed:	no	direct	 linking,	no	direct
reads	of	another	team’s	data	store,	no	shared-memory	model,	no	back-doors	whatsoever.	The	only
communication	allowed	is	via	service	interface	calls	over	the	network.

4.	 It	 doesn’t	matter	what	 technology	 they	 use.	HTTP,	CORBA,	Pub/Sub,	 custom	protocols—doesn’t
matter.	Bezos	doesn’t	care.

5.	 All	service	interfaces,	without	exception,	must	be	designed	from	the	ground	up	to	be	externalizable.
That	is	to	say,	the	team	must	plan	and	design	to	be	able	to	expose	the	interface	to	developers	in	the
outside	world.	No	exceptions.

6.	 Anyone	who	doesn’t	do	this	will	be	fired.
7.	 Thank	you;	have	a	nice	day!

http://en.wikipedia.org/wiki/Service-oriented_Architecture
http://en.wikipedia.org/wiki/Modular_programming
https://plus.google.com/112678702228711889851/posts/eVeouesvaVX

A	 similar	 software	 revolution	 happened	 at	 Facebook	 in	 2007—three	 years	 after	 the	 company	 went
online—when	Facebook	Platform	was	 launched.	Relying	 on	SOA,	Facebook	Platform	 allowed	 third
party	developers	to	create	applications	that	interact	with	core	features	of	Facebook	such	as	what	people
like,	who	their	friends	are,	who	is	tagged	in	their	photos,	and	so	on.	For	example,	the	New	York	Times
was	one	of	the	early	Facebook	Platform	developers.	Facebook	users	reading	the	New	York	Times	online
on	May	24,	 2007	 suddenly	 noticed	 that	 they	 could	 see	which	 articles	 their	 friends	were	 reading	 and
which	articles	their	friends	liked.	As	a	contrasting	example	of	a	social	networking	site	using	a	software
silo,	Google+	had	no	APIs	when	it	was	launched	on	June	28,	2011	and	had	just	one	heavyweight	API
three	months	later:	following	the	complete	stream	of	everything	a	Google+	user	sees.

To	make	 these	notions	more	concrete,	suppose	we	wanted	 to	create	a	bookstore	service	first	as	a	silo
and	then	as	a	SOA.	Both	will	contain	the	same	three	subsystems:	reviews,	user	profiles,	and	buying.

The	left	side	of	Figure	1.7	shows	the	silo	version.	The	silo	means	subsystems	can	internally	share	access
to	data	directly	 in	different	subsystems.	For	example,	 the	reviews	subsystem	can	get	user	profile	 info
out	of	the	users	subsystem.	However,	all	subsystems	are	inside	a	single	external	API	(“the	bookstore”).

Figure	1.7:	Left:	Silo	version	of	a	fictitious	bookstore	service,	with	all	subsystems	behind	a	single	API.	Right:	SOA	version	of	a	fictitious
bookstore	service,	where	all	three	subsystems	are	independent	and	available	via	APIs.

The	right	side	of	Figure	1.7	shows	the	SOA	version	of	the	bookstore	service,	where	all	subsystems	are

http://en.wikipedia.org/wiki/Facebook_Platform

separate	 and	 independent.	 Even	 though	 all	 are	 inside	 the	 “boundary”	 of	 the	 bookstore’s	 datacenter,
which	is	shown	as	a	dotted	rectangle,	the	subsystems	interact	with	each	other	as	if	they	were	in	separate
datacenters.	For	example,	 if	 the	reviews	subsystem	wants	 information	about	a	user,	 it	can’t	 just	reach
directly	into	the	users	database.	Instead,	it	has	to	ask	the	users	service,	via	whatever	API	is	provided	for
that	purpose.	A	similar	restriction	is	true	for	buying.

The	“bookstore	app”	is	then	just	one	particular	composition	of	these	services.	Consequently,	others	can
recombine	the	services	with	others	to	create	new	apps.	For	example,	a	“my	favorite	books”	app	might
combine	the	users	service	and	reviews	service	with	a	social	network,	so	you	can	see	what	your	social-
network	friends	think	about	the	books	you	have	reviewed	(see	Figure	1.7).

The	critical	distinction	of	SOA	is	that	no	service	can	name	or	access	another	service’s	data;	it	can	only
make	requests	for	data	through	an	external	API.	If	the	data	it	wants	is	not	available	through	that	API,
then	too	bad.	Note	that	SOA	does	not	match	the	traditional	 layered	model	of	software,	 in	which	each
higher	 layer	 is	built	directly	from	the	primitives	of	 the	immediately	lower	layer	as	 in	siloed	software.
SOA	 implies	 vertical	 slices	 through	many	 layers,	 and	 these	 slices	 are	 connected	 together	 to	 form	 a
service.	While	SOA	usually	means	a	bit	more	work	compared	to	building	a	siloed	service,	the	payback
is	tremendous	reusability.	Another	upside	of	SOA	is	that	the	explicit	APIs	make	testing	easier.

There	 are	 two	 widely	 accepted	 downsides	 to	 SOA.	 First,	 each	 invocation	 of	 a	 service	 involves	 the
higher	 cost	 of	 wading	 through	 the	 deeper	 software	 stack	 of	 a	 network	 interface,	 so	 there	 is	 a
performance	 hit	 to	 SOA.	 Second,	 while	 a	 siloed	 system	 is	 very	 likely	 to	 be	 completely	 down	 on	 a
failure,	software	engineers	using	SOA	must	deal	with	the	sticky	case	of	partial	failures,	so	SOA	makes
dependability	planning	a	bit	more	challenging.

The	huge	upside	of	SOA	 is	 that	we	use	 successfully	built	 small	 services,	 in	part	because	we	can	use
Agile	to	build	them,	and	then	compose	them	together	into	bigger	ones.

Alas,	 if	only	President	Obama	had	 read	 this	 chapter	 in	 time	 to	 send	a	Bezos-style	email	 to	 the	ACA
contractors	before	 its	 launch,	history	might	 record	him	as	a	more	successful	president.	For	 the	 future
presidents	among	our	readers:	forewarned	is	forearmed!

Summary:	Although	the	term	was	nearly	lost	in	a	sea	of	confusion,	Service	Oriented	Architecture
(SOA)	 just	 means	 an	 approach	 to	 software	 development	 in	 which	 all	 the	 subsystems	 are	 only
available	 as	 external	 services,	 which	 means	 others	 can	 recombine	 them	 in	 different	 ways.
Following	the	tools	and	guidelines	in	this	book	ensures	that	your	apps	will	be	a	good	fit	to	SOA.

Self-Check	 1.4.1.	Another	 take	 on	 SOA	 is	 that	 it	 is	 just	 a	 common	 sense	 approach	 to	 improving
programmer	 productivity.	 Which	 productivity	 mechanism	 does	 SOA	 best	 exemplify:	 Clarity	 via
conciseness,	Synthesis,	Reuse,	or	Automation	and	Tools?
	 Reuse!	 The	 purpose	 of	 making	 internal	 APIs	 visible	 is	 so	 that	 programmers	 can	 stand	 on	 the

shoulders	of	others.

1.5	Software	as	a	Service

http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Service_Oriented_Architecture
http://en.wikipedia.org/wiki/Service_Oriented_Architecture

The	power	of	SOA	combined	with	the	power	of	the	Internet	led	to	a	special	case	of	SOA	with	its	own
name:	Software	as	a	Service	(SaaS).	It	delivers	software	and	data	as	a	service	over	the	Internet,	usually
via	a	thin	program	such	as	a	browser	that	runs	on	local	client	devices	instead	as	an	application	binary
that	 must	 be	 installed	 and	 runs	 wholly	 on	 that	 device.	 Examples	 that	 many	 use	 every	 day	 include
searching,	 social	 networking,	 and	 watching	 videos.	 The	 advantages	 for	 the	 customer	 and	 for	 the
software	developer	are	widely	touted:

	

1.	 Since	 customers	 do	 not	 need	 to	 install	 the	 application,	 they	 don’t	 have	 to	 worry	 whether	 their
hardware	 is	 the	 right	 brand	 or	 fast	 enough,	 nor	 whether	 they	 have	 the	 correct	 version	 of	 the
operating	system.

2.	 The	 data	 associated	 with	 the	 service	 is	 generally	 kept	 with	 the	 service,	 so	 customers	 need	 not
worry	about	backing	it	up,	losing	it	due	to	a	local	hardware	malfunction,	or	even	losing	the	whole
device,	such	as	a	phone	or	tablet.

3.	 When	a	group	of	users	wants	to	collectively	interact	with	the	same	data,	SaaS	is	a	natural	vehicle.
4.	 When	data	is	large	and/or	updated	frequently,	it	may	make	more	sense	to	centralize	data	and	offer

remote	access	via	SaaS.
5.	 Only	 a	 single	 copy	 of	 the	 server	 software	 runs	 in	 a	 uniform,	 tightly-controlled	 hardware	 and

operating	system	environment	selected	by	the	developer,	which	avoids	the	compatibility	hassles	of
distributing	binaries	that	must	run	on	wide-ranging	computers	and	operating	systems.	In	addition,
developers	 can	 test	 new	 versions	 of	 the	 application	 on	 a	 small	 fraction	 of	 the	 real	 customers
temporarily	without	disturbing	most	customers.	(If	the	SaaS	client	runs	in	a	browser,	there	still	are
compatibility	challenges,	which	we	describe	in	Chapter	2.)

SaaS:	Innovate	or	Die?	Lest	you	think	the	perceived	need	to	improve	a	successful	service	is	just	software	engineering
paranoia,	the	most	popular	search	engine	used	to	be	AltaVista	and	the	most	popular	social	networking	site	used	to	be
MySpace.

6.	 SaaS	companies	compete	regularly	on	bringing	out	new	features	to	help	ensure	that	their	customers
do	not	abandon	them	for	a	competitor	who	offers	a	better	service.

7.	 Since	only	developers	have	a	copy	of	the	software,	they	can	upgrade	the	software	and	underlying
hardware	frequently	as	long	as	they	don’t	violate	the	external	application	program	interfaces	(API).
Moreover,	 developers	 don’t	 need	 to	 annoy	 users	 with	 the	 seemingly	 endless	 requests	 for
permission	to	upgrade	their	applications.

Combining	 the	 advantages	 to	 the	 customer	 and	 the	 developer	 together	 explains	why	 SaaS	 is	 rapidly
growing	 and	 why	 traditional	 software	 products	 are	 increasingly	 being	 transformed	 to	 offer	 SaaS
versions.	An	example	of	the	latter	is	Microsoft	Office	365,	which	allows	you	to	use	the	popular	Word,
Excel,	 and	PowerPoint	 productivity	 programs	 as	 a	 remote	 service	 by	 paying	 for	 use	 rather	 than	 pre-
purchasing	 software	 and	 installing	 it	 on	 your	 local	 computer.	 Another	 example	 is	 TurboTax	Online,
which	offers	the	same	deal	for	another	shrink-wrap	standard-bearer.

SaaS	Programming	Framework Programming	Language
Active	Server	Pages	(ASP.NET) C#,	VB.NET

Django Python

http://en.wikipedia.org/wiki/Software_as_a_Service

Enterprise	Java	Beans	(EJB) Java
JavaServer	Pages	(JSP) Java

Rails Ruby
Sinatra Ruby
Spring Java
Zend PHP

Figure	1.8:	Examples	of	SaaS	programming	frameworks	and	the	programming	languages	they	are	written	in.

Unsurprisingly,	given	the	popularity	of	SaaS,	Figure	1.8	lists	 the	many	programming	frameworks	that
claim	to	help.	In	this	book,	we	use	Ruby	on	Rails	(“Rails”),	although	the	ideas	we	cover	will	work	with
other	programming	 frameworks	as	well.	We	chose	Rails	because	 it	came	from	a	community	 that	had
already	embraced	the	Agile	lifecycle,	so	the	tools	support	Agile	particularly	well.

Ruby	 is	 typical	 of	 modern	 scripting	 languages	 in	 including	 automatic	 memory	 management	 and
dynamic	 typing.	 By	 including	 important	 advances	 in	 programming	 languages,	 Ruby	 goes	 beyond
languages	 like	 Perl	 in	 supporting	 multiple	 programming	 paradigms	 such	 as	 object	 oriented	 and
functional	programming.

Useful	 additional	 features	 that	 help	 productivity	 via	 reuse	 include	 mix-ins,	 which	 collect	 related
behaviors	and	make	it	easy	to	add	them	to	many	different	classes,	and	metaprogramming,	which	allows
Ruby	programs	to	synthesize	code	at	runtime.	Reuse	is	also	enhanced	with	Ruby’s	support	for	closures
via	blocks	and	yield.	Chapter	3	 is	 a	 short	description	of	Ruby	 for	 those	who	already	know	Java,	 and
Chapter	4	introduces	Rails.

In	 addition	 to	 our	 view	 of	 Rails	 being	 technically	 superior	 for	 Agile	 and	 SaaS,	 Ruby	 and	 Rails	 are
widely	used.	For	example,	Ruby	routinely	appears	among	top	10	most	popular	programming	languages.
A	well-known	SaaS	app	associated	with	Rails	is	Twitter,	which	began	as	a	Rails	app	in	2006	and	grew
from	 20,000	 tweets	 per	 day	 in	 2007	 to	 200,000,000	 in	 2011,	 during	 which	 time	 other	 frameworks
replaced	various	parts	of	it.

If	 you	 are	 not	 already	 familiar	with	Ruby	 or	Rails,	 this	 gives	 you	 a	 chance	 to	 practice	 an	 important
software	engineering	skill:	use	 the	right	 tool	 for	 the	 job,	even	 if	 it	means	 learning	a	new	tool	or	new
language!	Indeed,	an	attractive	feature	of	the	Rails	community	is	that	its	contributors	routinely	improve
productivity	by	inventing	new	tools	to	automate	tasks	that	were	formerly	done	manually.

Note	that	frequent	upgrades	of	SaaS—due	to	only	having	a	single	copy	of	the	software—perfectly	align
with	the	Agile	software	lifecycle.	Hence,	Amazon,	eBay,	Facebook,	Google,	and	other	SaaS	providers
all	rely	on	the	Agile	lifecycle,	and	traditional	software	companies	like	Microsoft	are	increasingly	using
Agile	in	their	product	development.	The	Agile	process	is	an	excellent	match	to	the	fast-changing	nature
of	SaaS	applications.

Summary:	Software	as	a	Service	(SaaS)	is	attractive	to	both	customers	and	providers	because	the
universal	client	(the	Web	browser)	makes	it	easier	for	customers	to	use	the	service	and	the	single
version	of	the	software	at	a	centralized	site	makes	it	easier	for	the	provider	to	deliver	and	improve

http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/metaprogramming
http://en.wikipedia.org/wiki/Closure_(computer_science)
http://en.wikipedia.org/wiki/Block_(programming)
http://en.wikipedia.org/wiki/Software_as_a_Service

the	 service.	 Given	 the	 ability	 and	 desire	 to	 frequently	 upgrade	 SaaS,	 the	 Agile	 software
development	process	is	popular	for	SaaS,	and	so	there	are	many	frameworks	to	support	Agile	and
SaaS.	This	book	uses	Ruby	on	Rails.

Self-Check	1.5.1.	Which	of	the	examples	of	Google	SaaS	apps—Search,	Maps,	News,	Gmail,	Calendar,
YouTube,	and	Documents—is	the	best	match	to	each	of	the	six	arguments	given	in	this	section	for	SaaS,
reproduced	below.
	While	you	can	argue	the	mappings,	below	is	our	answer.	(Note	that	we	cheated	and	put	some	apps	in

multiple	categories)
1.	 No	user	installation:	Documents
2.	 Can’t	lose	data:	Gmail,	Calendar.
3.	 Users	cooperating:	Documents.
4.	 Large/changing	datasets:	Search,	Maps,	News,	and	YouTube.
5.	 Software	centralized	in	single	environment:	Search.
6.	 No	field	upgrades	when	improve	app:	Documents.

Self-Check	1.5.2.	True	or	False:	If	you	are	using	the	Agile	development	process	to	develop	SaaS	apps,
you	 could	 use	 Python	 and	 Django	 or	 languages	 based	 on	 the	 Microsoft’s	 .NET	 framework	 and
ASP.NET	instead	of	Ruby	and	Rails.
	True.	Programming	frameworks	for	Agile	and	SaaS	include	Django	and	ASP.NET.

Given	the	case	for	SaaS	and	the	understanding	that	it	relies	on	a	Service	Oriented	Architecture,	we	are
ready	to	see	the	underlying	hardware	that	makes	SaaS	possible.

1.6	Cloud	Computing

If	computers	of	the	kind	I	have	advocated	become	the	computers	of	the	future,	then	computing	may
someday	be	organized	as	a	public	utility	just	as	the	telephone	system	is	a	public	utility	...The	computer

utility	could	become	the	basis	of	a	new	and	important	industry.
—John	McCarthy,	at	MIT	centennial	celebration	in	1961

			John	McCarthy	(1927–2011)	received	the	Turing	Award	in	1971	and	was	the
inventor	of	Lisp	and	a	pioneer	of	timesharing	large	computers.	Clusters	of	commodity	hardware	and
the	spread	of	fast	networking	have	helped	make	his	vision	of	timeshared	“utility	computing”	a	reality.

SaaS	places	three	demands	on	our	information	technology	(IT)	infrastructure:

	

1.	 Communication,	to	allow	any	customer	to	interact	with	the	service.
2.	 Scalability,	in	that	the	central	facility	running	the	service	must	deal	with	the	fluctuations	in	demand

during	 the	 day	 and	 during	 popular	 times	 of	 the	 year	 for	 that	 service	 as	well	 as	 a	way	 for	 new
services	to	add	users	rapidly.

3.	 Availability,	 in	 that	 both	 the	 service	 and	 the	 communication	 vehicle	 must	 be	 continuously
available:	every	day,	24	hours	a	day	(“24×7”).

The	gold	standard	set	by	the	US	public	phone	system	is	99.999%	availability	(“five	nines”),	or	about	5	minutes	of	downtime	per	year.
Amazon.com	aims	for	four	nines.

The	Internet	and	broadband	to	the	home	easily	resolve	the	communication	demand	of	SaaS.	Although
some	 early	 web	 services	 were	 deployed	 on	 expensive	 large-scale	 computers—in	 part	 because	 such
computers	were	more	 reliable	 and	 in	 part	 because	 it	was	 easier	 to	 operate	 a	 few	 large	 computers—a
contrarian	 approach	 soon	 overtook	 the	 industry.	 Collections	 of	 commodity	 small-scale	 computers
connected	 by	 commodity	 Ethernet	 switches,	 which	 became	 known	 as	 clusters,	 offered	 several
advantages	over	the	“big	iron”	hardware	approach:
	

Because	 of	 their	 reliance	 on	Ethernet	 switches	 to	 interconnect,	 clusters	 are	much	more	 scalable
than	conventional	servers.	Early	clusters	offered	1000	computers,	and	today’s	datacenters	contain
100,000	or	more.
Careful	selection	of	the	type	of	hardware	to	place	in	the	datacenter	and	careful	control	of	software
state	 made	 it	 possible	 for	 a	 very	 small	 number	 of	 operators	 to	 successfully	 run	 thousands	 of
servers.	 In	particular,	some	datacenters	 rely	on	virtual	machines	 to	 simplify	operation.	A	virtual
machine	monitor	is	software	that	imitates	a	real	computer	so	successfully	that	you	can	even	run	an
operating	 system	correctly	on	 top	of	 the	virtual	machine	 abstraction	 that	 it	 provides	 (Popek	 and
Goldberg	 1974).	 The	 goal	 is	 to	 imitate	 with	 low	 overhead,	 and	 one	 popular	 use	 is	 to	 simplify
software	distribution	within	a	cluster.
Two	 senior	 architects	 at	 Google	 showed	 that	 the	 cost	 of	 the	 equivalent	 amount	 of	 processors,
memory,	 and	 storage	 is	 much	 less	 for	 clusters	 than	 for	 “big	 iron,”	 perhaps	 by	 a	 factor	 of
20	(Barroso	and	Hoelzle	2009).
Although	the	cluster	components	are	 less	reliable	 than	conventional	servers	and	storage	systems,
the	 cluster	 software	 infrastructure	 makes	 the	 whole	 system	 dependable	 via	 extensive	 use	 of
redundancy	 in	both	hardware	and	software.	The	 low	hardware	cost	makes	 the	 redundancy	at	 the
software	 level	 affordable.	 Modern	 service	 providers	 also	 use	 multiple	 datacenters	 that	 are
distributed	geographically	so	that	a	natural	disaster	cannot	knock	a	service	offline.

As	 Internet	 datacenters	 grew,	 some	 service	 providers	 realized	 that	 their	 per	 capita	 costs	 were
substantially	 below	 what	 it	 cost	 others	 to	 run	 their	 own	 smaller	 datacenters,	 in	 large	 part	 due	 to
economies	of	scale	when	purchasing	and	operating	100,000	computers	at	a	time.	They	also	benefit	from
higher	utilization	given	that	many	companies	could	share	these	giant	datacenters,	which	(Barroso	and
Hoelzle	2009)	call	Warehouse	Scale	Computers,	whereas	smaller	datacenters	often	run	at	only	10%	to
20%	 utilization.	 Thus,	 these	 companies	 realized	 they	 could	 profit	 from	 making	 their	 datacenter
hardware	available	on	a	pay-as-you-go	basis.

The	 result	 is	 called	public	 cloud	 services	 or	utility	computing,	which	 offers	 computing,	 storage,	 and
communication	 at	 pennies	per	hour	 (Armbrust	 et	 al.	2010).	Moreover,	 there	 is	 no	 additional	 cost	 for
scale:	Using	1000	computers	for	1	hour	costs	no	more	than	using	1	computer	for	1000	hours.	Leading

http://en.wikipedia.org/wiki/Cluster_(computing)
http://en.wikipedia.org/wiki/virtual_machines
http://en.wikipedia.org/wiki/utility_computing

examples	 of	 “infinitely	 scalable”	 pay-as-you-go	 computing	 are	 Amazon	 Web	 Services,	 Google
AppEngine,	and	Microsoft	Azure.	The	public	cloud	means	that	 today	anyone	with	a	credit	card	and	a
good	idea	can	start	a	SaaS	company	that	can	grow	to	millions	of	customers	without	first	having	to	build
and	operate	a	datacenter.

Rapid	growth	of	FarmVille	The	prior	record	for	number	of	users	of	a	social	networking	game	was	5	million.	FarmVille	had	1	million
players	within	4	days	after	it	was	announced,	10	million	after	2	months,	and	28	million	daily	players	and	75	million	monthly	players	after
9	months.	Fortunately,	FarmVille	used	the	Elastic	Compute	Cloud	(EC2)	from	Amazon	Web	Services,	and	kept	up	with	its	popularity	by
simply	paying	to	use	larger	clusters.

Today,	we	call	this	long	held	dream	of	computing	as	a	utility	Cloud	Computing.	We	believe	that	Cloud
Computing	 and	 SaaS	 are	 transforming	 the	 computer	 industry,	with	 the	 full	 impact	 of	 this	 revolution
taking	the	rest	of	this	decade	to	determine.	Indeed,	this	revolution	is	one	reason	we	decided	to	write	this
book,	 as	 we	 believe	 engineering	 SaaS	 for	 Cloud	 Computing	 is	 radically	 different	 from	 engineering
shrink-wrap	software	for	PCs	and	servers.

Summary
	

The	Internet	supplies	the	communication	for	SaaS.
Cloud	Computing	 provides	 the	 scalable	 and	 dependable	 hardware	 computation	 and	 storage	 for
SaaS.
Cloud	 computing	 consists	 of	 clusters	 of	 commodity	 servers	 that	 are	 connected	 by	 local	 area
network	switches,	with	a	software	layer	providing	sufficient	redundancy	to	make	this	cost-effective
hardware	dependable.
These	large	clusters	or	Warehouse	Scale	Computers	offer	economies	of	scale.
Taking	 advantage	 of	 economies	 of	 scale,	 some	Cloud	Computing	 providers	 offer	 this	 hardware
infrastructure	 as	 low-cost	 utility	 computing	 that	 anyone	 can	 use	 on	 a	 pay-as-you-go	 basis,
acquiring	resources	immediately	as	your	customer	demand	grows	and	releasing	them	immediately
when	it	drops.

Self-Check	 1.6.1.	True	 or	 False:	 Internal	 datacenters	 could	 get	 the	 same	 cost	 savings	 as	Warehouse
Scale	Computers	(WSCs)	if	they	embraced	SOA	and	purchased	the	same	type	of	hardware.
	False.	While	imitating	best	practices	of	WSC	could	lower	costs,	the	major	cost	advantage	of	WSCs

comes	from	the	economies	of	scale,	which	today	means	100,000	servers,	thereby	dwarfing	most	internal
datacenters.

1.7	Beautiful	vs.	Legacy	Code

To	me	programming	is	more	than	an	important	practical	art.	It	is	also	a	gigantic	undertaking	in	the
foundations	of	knowledge.

—Grace	Murray	Hopper

http://en.wikipedia.org/wiki/Cloud_Computing
http://en.wikipedia.org/wiki/Cloud_Computing
http://en.wikipedia.org/wiki/Cluster_(computing)
http://en.wikipedia.org/wiki/utility_computing

			Grace	Murray	Hopper	(1906–1992)	was	one	of	the	first	programmers,	developed
the	first	compiler,	and	was	referred	to	as	“Amazing	Grace.”	She	became	a	rear	admiral	in	the	US	Navy,

and	in	1997,	a	warship	was	named	for	her:	the	USS	Hopper.

Unlike	hardware,	software	is	expected	to	grow	and	evolve	over	time.	Whereas	hardware	designs	must
be	declared	finished	before	they	can	be	manufactured	and	shipped,	initial	software	designs	can	easily	be
shipped	 and	 later	 upgraded	 over	 time.	Basically,	 the	 cost	 of	 upgrade	 in	 the	 field	 is	 astronomical	 for
hardware	and	affordable	for	software.

Hence,	 software	 can	 achieve	 a	 high-tech	 version	 of	 immortality,	 potentially	 getting	 better	 over	 time
while	generations	of	computer	hardware	decay	into	obsolescence.	The	drivers	of	software	evolution	are
not	 only	 fixing	 faults,	 but	 also	 adding	 new	 features	 that	 customers	 request,	 adjusting	 to	 changing
business	 requirements,	 improving	 performance,	 and	 adapting	 to	 a	 changed	 environment.	 Software
customers	expect	 to	get	notices	about	and	 install	 improved	versions	of	 the	 software	over	 the	 lifetime
that	they	use	it,	perhaps	even	submitting	bug	reports	to	help	developers	fix	their	code.	They	may	even
have	to	pay	an	annual	maintenance	fee	for	this	privilege!

Just	 as	novelists	 fondly	hope	 that	 their	brainchild	will	 be	 read	 long	enough	 to	be	 labeled	a	 classic—
which	 for	 books	 is	 100	 years!—software	 engineers	 should	 hope	 their	 creations	 would	 also	 be	 long
lasting.	Of	course,	software	has	 the	advantage	over	books	of	being	able	 to	be	 improved	over	 time.	In
fact,	a	long	software	life	often	means	that	others	maintain	and	enhance	it,	letting	the	creators	of	original
code	off	the	hook.

The	Oldest	Living	Program	might	be	MOCAS	(“Mechanization	of	Contract	Administration	Services”),	which	was	originally	purchased
by	the	US	Department	of	Defense	in	1958	and	was	still	in	use	as	of	2005.

This	brings	us	to	a	few	terms	we’ll	use	throughout	the	book.	The	term	 legacy	code	 refers	 to	software
that,	 despite	 its	 old	 age,	 continues	 to	 be	 used	 because	 it	 meets	 customers’	 needs.	 Sixty	 percent	 of
software	maintenance	costs	are	for	adding	new	functionality	to	legacy	software,	vs.	only	17%	for	fixing
bugs,	so	legacy	software	is	successful	software.

The	term	“legacy”	has	a	negative	connotation,	however,	in	that	it	indicates	that	the	code	is	difficult	to
evolve	because	of	inelegance	of	its	design	or	use	of	antiquated	technology.	To	contrast	to	legacy	code,
we	use	the	term	beautiful	code	to	indicate	long-lasting	code	that	is	easy	to	evolve.	The	worst	case	is	not
legacy	code,	however,	but	unexpectedly	short-lived	code	that	is	soon	discarded	because	it	doesn’t	meet
customers’	 needs.	 We’ll	 highlight	 examples	 that	 lead	 to	 beautiful	 code	 with	 the	 Mona	 Lisa	 icon.

http://en.wikipedia.org/wiki/software_evolution
http://developers.slashdot.org/story/08/05/11/1759213/
http://en.wikipedia.org/wiki/legacy_code

Similarly,	we’ll	 highlight	 text	 that	 deals	with	 legacy	 code	using	 an	 abacus	 icon,	which	 is	 certainly	 a

long-lasting	 but	 little	 changed	 calculating	 device.	 	 	 	 	 	 	 In	 the	 following	 chapters,	 we	 show
examples	of	both	beautiful	code	and	legacy	code	that	we	hope	will	 inspire	you	to	make	your	designs
simpler	to	evolve.

Abacuses	are	still	in	use	today	in	may	parts	of	the	world	despite	being	thousands	of	years	old.

Surprisingly,	 despite	 the	 widely	 accepted	 importance	 of	 enhancing	 legacy	 software,	 this	 topic	 is
traditionally	ignored	in	college	courses	and	textbooks.	We	feature	such	software	in	this	book	for	three
reasons.	First,	you	can	reduce	the	effort	to	build	a	program	by	finding	existing	code	that	you	can	reuse.
One	supplier	is	open	source	software.	Second,	it’s	advantageous	to	learn	how	to	build	code	that	makes	it
easier	for	successors	to	enhance,	as	that	increases	software’s	chances	of	a	long	life.	Finally,	unlike	Plan-
and-Document,	 in	Agile	you	revise	code	continuously	 to	 improve	 the	design	and	 to	add	functionality
starting	with	the	second	iteration.	Thus,	the	skills	you	practice	in	Agile	are	exactly	the	ones	you	need	to
evolve	 legacy	 code—no	matter	 how	 it	 was	 created—and	 the	 dual	 use	 of	 Agile	 techniques	makes	 it
much	easier	for	us	to	cover	legacy	code	within	a	single	book.

Summary:	 Successful	 software	 can	 live	decades	 and	 is	 expected	 to	 evolve	 and	 improve,	 unlike
computer	hardware	that	is	finalized	at	time	of	manufacture	and	can	be	considered	obsolete	within
just	a	few	years.	One	goal	of	this	book	is	to	teach	you	how	to	increase	the	chances	of	producing
beautiful	code	so	that	your	software	lives	a	long	and	useful	life.

We	next	define	software	quality	and	see	how	to	test	for	it	to	increase	our	chances	of	writing	beautiful
code.

1.8	Software	Quality	Assurance:	Testing

And	the	users	exclaimed	with	a	laugh	and	a	taunt:
“It’s	just	what	we	asked	for,	but	not	what	we	want.”

—Anonymous

We	 start	 this	 topic	 with	 a	 definition	 of	 quality.	 A	 standard	 definition	 of	 quality	 for	 any	 product	 is
“fitness	for	use,”	which	must	provide	business	value	for	both	the	customer	and	the	manufacturer	(Juran
and	Gryna	1998).	For	software,	quality	means	both	satisfying	the	customer’s	needs—easy	to	use,	gets
correct	answers,	does	not	crash,	and	so	on—and	being	easy	 for	 the	developer	 to	debug	and	enhance.
Quality	Assurance	 (QA)	 also	 comes	 from	manufacturing,	 and	 refers	 to	 processes	 and	 standards	 that
lead	 to	manufacture	of	 high-quality	products	 and	 to	 the	 introduction	of	manufacturing	processes	 that
improve	quality.	Software	QA,	then,	means	both	ensuring	that	products	under	development	have	high
quality	and	creating	processes	and	standards	in	an	organization	that	lead	to	high	quality	software.	As	we
shall	see,	some	Plan-and-Document	software	processes	even	use	a	separate	QA	team	that	tests	software

http://en.wikipedia.org/wiki/Quality_(business)
http://en.wikipedia.org/wiki/Quality_Assurance
http://en.wikipedia.org/wiki/Quality_Assurance

quality	(Section	8.9).

Determining	 software	 quality	 involves	 two	 terms	 that	 are	 commonly	 interchanged	 but	 have	 subtle
distinctions	(Boehm	1979):
	

Verification:	Did	you	build	the	thing	right?	(Did	you	meet	the	specification?)
Validation:	 Did	 you	 build	 the	 right	 thing?	 (Is	 this	 what	 the	 customer	 wants?	 That	 is,	 is	 the
specification	correct?)

Software	 prototypes	 that	 are	 the	 lifeblood	 of	 Agile	 typically	 help	 with	 validation	 rather	 than
verification,	 since	 customers	often	 change	 their	minds	on	what	 they	want	once	 they	begin	 to	 see	 the
product	work.

Infeasibility	of	exhaustive	testing	Suppose	it	took	just	1	nanosecond	to	test	a	program	and	it	had	just	one	64-bit	input	that	we	wanted	to
test	exhaustively.	(Obviously,	most	programs	take	longer	to	run	and	have	more	inputs.)	Just	this	simple	case	would	take	264	nanoseconds,
or	500	years!

The	main	approach	to	verification	and	validation	is	testing;	the	motivation	for	testing	is	that	the	earlier
developers	 find	 mistakes,	 the	 cheaper	 it	 is	 to	 repair	 them.	 Given	 the	 vast	 number	 of	 different
combinations	 of	 inputs,	 testing	 cannot	 be	 exhaustive.	 One	 way	 to	 reduce	 the	 space	 is	 to	 perform
different	tests	at	different	phases	of	software	development.	Starting	bottom	up,	unit	testing	makes	sure
that	a	single	procedure	or	method	does	what	was	expected.	The	next	level	up	is	module	testing,	which
tests	 across	 individual	 units.	 For	 example,	 unit	 testing	 works	 within	 a	 single	 class	 whereas	 module
testing	works	across	classes.	Above	this	 level	 is	 integration	 testing,	which	ensures	 that	 the	 interfaces
between	the	units	have	consistent	assumptions	and	communicate	correctly.	This	level	does	not	test	the
functionality	of	the	units.	At	the	top	level	is	system	testing	or	acceptance	testing,	which	tests	 to	see	if
the	 integrated	program	meets	 its	 specifications.	 In	Chapter	8,	we’ll	describe	an	alternative	 to	 testing,
called	formal	methods.

As	mentioned	briefly	in	Section	1.3,	the	approach	to	testing	for	the	XP	version	of	Agile	is	to	write	the
tests	before	 you	write	 the	 code.	You	 then	write	 the	minimum	 code	 you	 need	 to	 pass	 the	 test,	which
ensures	 that	 your	 code	 is	 always	 tested	 and	 reduces	 the	 chances	 of	 writing	 code	 that	 will	 be	 later
discarded.	XP	splits	this	test-first	philosophy	into	two	parts,	depending	on	the	level	of	the	testing.	For
system,	acceptance,	and	integration	tests,	XP	uses	Behavior-Driven	Design	(BDD),	which	is	the	topic
of	Chapter	7.	For	unit	and	module	tests,	XP	uses	Test-Driven	Development	(TDD),	which	is	the	topic	of
Chapter	8.

Summary:	Testing	reduces	the	risks	of	errors	in	designs.
	

In	its	many	forms,	testing	helps	verify	that	software	meets	the	specification	and	validates	that	the
design	does	what	the	customer	wants.
Attacking	the	infeasibility	of	exhaustive	testing,	we	divide	in	order	to	conquer	by	focusing	on	unit
testing,	module	 testing,	 integration	 testing,	 and	 full	 system	 testing	 or	acceptance	 testing.	 Each

http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/unit_testing
http://en.wikipedia.org/wiki/integration_testing
http://en.wikipedia.org/wiki/system_testing
http://en.wikipedia.org/wiki/acceptance_testing
http://en.wikipedia.org/wiki/formal_methods
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/unit_testing
http://en.wikipedia.org/wiki/integration_testing
http://en.wikipedia.org/wiki/system_testing
http://en.wikipedia.org/wiki/acceptance_testing

higher-level	test	delegates	more	detailed	testing	to	lower	levels.
Agile	 attacks	 testing	 by	writing	 the	 tests	 before	writing	 the	 code,	 using	 either	Behavior	Driven
Design	or	Test	Driven	Design,	depending	on	the	level	of	the	test.

Self-Check	1.8.1.	While	all	of	the	following	help	with	verification,	which	form	of	testing	is	most	likely
to	help	with	validation:	Unit,	Module,	Integration,	or	Acceptance?
	 Validation	 is	 concerned	 with	 doing	 what	 the	 customer	 really	 wants	 versus	 whether	 code	met	 the

specification,	 so	acceptance	 testing	 is	most	 likely	 to	point	out	 the	difference	between	doing	 the	 thing
right	and	doing	the	right	thing.

ELABORATION:	Testing:	Plan-and-Document	vs.	Agile	lifecycles
For	the	Waterfall	development	process,	testing	happens	after	each	phase	is	complete	and	in	a	final	verification	phase	that	includes
acceptance	tests.	For	Spiral,	it	happens	on	each	iteration,	which	can	last	one	or	two	years.	Assurance	for	the	XP	version	of	Agile
comes	 from	 test-driven	 development,	 in	 that	 the	 tests	 are	 written	 before	 the	 code	 when	 coding	 from	 scratch.	When	 enhancing
existing	 code,	 test-driven	 design	 means	 writing	 the	 tests	 before	 writing	 the	 enhancements.	 The	 amount	 of	 testing	 depends	 on
whether	you	are	enhancing	beautiful	code	or	legacy	code,	with	the	latter	needing	a	lot	more.

After	this	review	of	quality	assurance,	let’s	see	how	to	make	developers	productive.

1.9	Productivity:	Conciseness,	Synthesis,	Reuse,	and	Tools

Most	software	today	is	very	much	like	an	Egyptian	pyramid	with	millions	of	bricks	piled	on	top	of
each	other,	with	no	structural	integrity,	but	just	done	by	brute	force	and	thousands	of	slaves.

—Alan	Kay,	ACM	Queue,	2005

Moore’s	Law	meant	hardware	resources	have	doubled	every	18	months	for	nearly	50	years.	These	faster
computers	with	much	 larger	memories	 could	 run	much	 larger	programs.	To	build	bigger	 applications
that	could	take	advantage	of	the	more	powerful	computers,	software	engineers	needed	to	improve	their
productivity.

Engineers	developed	four	fundamental	mechanisms	to	improve	their	productivity:
	

1.	 Clarity	via	conciseness
2.	 Synthesis
3.	 Reuse
4.	 Automation	via	Tools

One	of	the	driving	assumptions	of	improving	productivity	of	programmers	is	that	if	programs	are	easier
to	understand,	then	they	will	have	fewer	bugs	and	to	be	easier	to	evolve.	A	closely	related	corollary	is
that	if	the	program	is	smaller,	it’s	generally	easier	to	understand.	We	capture	this	notion	with	our	motto
of	“clarity	via	conciseness.”

Programming	languages	do	this	two	ways.	The	first	is	simply	offering	a	syntax	that	lets	programmers
express	ideas	naturally	and	in	fewer	characters.	For	example,	below	are	two	ways	to	express	a	simple

assertion:

assert_greater_than_or_equal_to(a,	7)

a.should	be	>=	7

Unquestionably,	the	second	version	(which	happens	to	be	legal	Ruby)	is	shorter	and	easier	to	read	and
understand,	and	will	 likely	be	easier	 to	maintain.	It’s	easy	to	imagine	momentary	confusion	about	 the
order	of	arguments	in	the	first	version	in	addition	to	the	higher	cognitive	load	of	reading	twice	as	many
characters	(see	Chapter	3).

The	other	way	to	improve	clarity	is	to	raise	the	level	of	abstraction.

			John	Backus	(1924–2007)	received	the	1977	Turing	Award	in	part	for	“profound,
influential,	and	lasting	contributions	to	the	design	of	practical	high-level	programming	systems,
notably	through	his	work	on	Fortran,”	which	was	the	first	widely	used	high-level	language.

That	initially	meant	the	invention	of	higher-level	programming	languages	such	as	Fortran	and	COBOL.
This	 step	 raised	 the	 engineering	 of	 software	 from	 assembly	 language	 for	 a	 particular	 computer	 to
higher-level	languages	that	could	target	multiple	computers	simply	by	changing	the	compiler.

As	computer	hardware	performance	continued	to	increase,	more	programmers	were	willing	to	delegate
tasks	to	the	compiler	and	runtime	system	that	they	formerly	performed	themselves.	For	example,	Java
and	similar	languages	took	over	memory	management	from	the	earlier	C	and	C++	languages.	Scripting
languages	 like	 Python	 and	 Ruby	 have	 raised	 the	 level	 of	 abstraction	 even	 higher.	 Examples	 are
reflection,	 which	 allows	 programs	 to	 observe	 themselves,	 and	 metaprogramming,	 which	 allows
programs	 to	modify	 their	own	structure	and	behavior	at	 runtime.	To	highlight	examples	 that	 improve

productivity	via	conciseness,	we	will	use	this	“Concise”	icon.	 		

The	 second	productivity	mechanism	 is	 synthesis;	 that	 is,	 the	 implementation	 is	 generated	 rather	 than
created	manually.	Logic	synthesis	for	hardware	engineers	meant	 that	 they	could	describe	hardware	as
Boolean	 functions	 and	 receive	 highly	 optimized	 transistors	 that	 implemented	 those	 functions.	 The
classic	 software	 synthesis	 example	 is	Bit	 blit.	 This	 graphics	 primitive	 combines	 two	 bitmaps	 under
control	of	a	mask.	The	straightforward	approach	would	include	a	conditional	statement	in	the	innermost
loop	 to	 chose	 the	 type	 of	 mask,	 but	 it	 was	 slow.	 The	 solution	 was	 to	 write	 a	 program	 that	 could
synthesize	 the	 appropriate	 special-purpose	 code	without	 the	 conditional	 statement	 in	 the	 loop.	We’ll

highlight	examples	that	improve	productivity	by	generating	code	with	this	“CodeGen”	gears	icon.	
		

The	 third	productivity	mechanism	 is	 to	 reuse	portions	 from	past	designs	 rather	 than	write	 everything
from	scratch.	As	it	is	easier	to	make	small	changes	in	software	than	in	hardware,	software	is	even	more
likely	 than	 hardware	 to	 reuse	 a	 component	 that	 is	 almost	 but	 not	 quite	 a	 correct	 fit.	 We	 highlight

http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://en.wikipedia.org/wiki/metaprogramming
http://en.wikipedia.org/wiki/Bit_blit

examples	that	improve	productivity	via	reuse	with	this	“Reuse”	recycling	icon.	 		

Procedures	 and	 functions	were	 invented	 in	 the	 earliest	 days	of	 software	 so	 that	 different	 parts	 of	 the
program	 could	 reuse	 the	 same	 code	 with	 different	 parameter	 values.	 Standardized	 libraries	 for
input/output	 and	 for	 mathematical	 functions	 soon	 followed,	 so	 that	 programmers	 could	 reuse	 code
developed	by	others.

Procedures	 in	 libraries	 let	 you	 reuse	 implementations	 of	 individual	 tasks.	 But	 more	 commonly,
programmers	 want	 to	 reuse	 and	 manage	 collections	 of	 tasks.	 The	 next	 step	 in	 software	 reuse	 was
therefore	object-oriented	programming,	where	you	could	reuse	the	same	tasks	with	different	objects	via
the	use	of	inheritance	in	languages	like	C++	and	Java.

While	 inheritance	 supported	 reuse	 of	 implementations,	 another	 opportunity	 for	 reuse	 is	 a	 general
strategy	for	doing	something	even	if	 the	 implementation	varies.	Design	patterns,	 inspired	by	work	 in
civil	 architecture	 (Alexander	 et	 al.	 1977),	 arose	 to	 address	 this	 need.	 Language	 support	 for	 reuse	 of
design	 patterns	 includes	 dynamic	 typing,	 which	 facilitates	 composition	 of	 abstractions,	 and	mix-ins,
which	 offer	ways	 to	 collect	 functionality	 from	multiple	methods	without	 some	 of	 the	 pathologies	 of
multiple	 inheritance	 found	 in	 some	 object	 oriented	 programming.	 Python	 and	Ruby	 are	 examples	 of
languages	with	features	that	help	with	reuse	of	design	patterns.

Note	 that	 reuse	does	not	mean	copying	and	pasting	code	so	 that	you	have	very	similar	code	 in	many
places.	The	 problem	with	 copying	 and	 pasting	 code	 is	 that	 you	may	 not	 change	 all	 the	 copies	when
fixing	a	bug	or	adding	a	feature.	Here	is	a	software	engineering	guideline	that	guards	against	repetition:

Every	piece	of	knowledge	must	have	a	single,	unambiguous,	authoritative	representation	within	a
system.

—Andy	Hunt	and	Dave	Thomas,	1999
This	guideline	has	been	captured	in	the	motto	and	acronym:	Don’t	Repeat	Yourself	(DRY).	We’ll	use	a

towel	as	the	“DRY”	icon	to	show	examples	of	DRY	in	the	following	chapters.	 		

A	core	value	of	computer	engineering	is	finding	ways	to	replace	tedious	manual	tasks	with	tools	to	save
time,	 improve	 accuracy,	 or	 both.	 Obvious	 Computer	 Aided	 Design	 (CAD)	 tools	 for	 software
development	 are	 compilers	 and	 interpreters	 that	 raise	 the	 level	 of	 abstraction	 and	 generate	 code	 as
mentioned	above,	but	 there	are	also	more	subtle	productivity	 tools	 like	Makefiles	and	version	control
systems	(see	Section	10.4)	 that	 automate	 tedious	 tasks.	We	highlight	 tool	 examples	with	 the	hammer

icon.	 		

Learning	new	tools	Proverbs	14:4	in	the	King	James	Bible	discusses	improving	productivity	by	taking	the	time	to	learn	and	use	tools:
Where	there	are	no	oxen,	the	manger	is	clean;	but	abundant	crops	come	by	the	strength	of	oxen.

The	tradeoff	is	always	the	time	it	takes	to	learn	a	new	tool	versus	the	time	saved	in	applying	it.	Other
concerns	are	the	dependability	of	the	tool,	the	quality	of	the	user	experience,	and	how	to	decide	which
one	to	use	if	there	are	many	choices.	Nevertheless,	one	of	the	software	engineering	tenets	of	faith	is	that
a	new	tool	can	make	our	lives	better.

http://en.wikipedia.org/wiki/Collection_(abstract_data_type)
http://en.wikipedia.org/wiki/object-oriented_programming
http://en.wikipedia.org/wiki/Design_patterns
http://en.wikipedia.org/wiki/dynamic_typing
http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Don't_Repeat_Yourself

Your	authors	embrace	the	value	of	automation	and	tools.	That	is	why	we	show	you	several	tools	in	this
book	to	make	you	more	productive.	The	good	news	is	that	any	tool	we	show	you	will	have	been	vetted
to	 ensure	 its	 dependability	 and	 that	 time	 to	 learn	 will	 be	 paid	 back	 many	 times	 over	 in	 reduced
development	 time	and	 in	 the	 improved	quality	of	 the	final	 result.	For	example,	Chapter	7	shows	how
Cucumber	automates	 turning	 user	 stories	 into	 integration	 tests	 and	 it	 also	 demonstrates	 how	Pivotal
Tracker	 automatically	 measures	 Velocity,	 which	 is	 a	 measure	 of	 the	 rate	 of	 adding	 features	 to	 an
application.	Chapter	8	 introduces	RSpec	 that	automates	 the	unit	 testing	process.	The	bad	news	 is	 that
you’ll	need	 to	 learn	several	new	 tools.	However,	we	 think	 the	ability	 to	quickly	 learn	and	apply	new
tools	is	a	requirement	for	success	in	engineering	software,	so	it’s	a	good	skill	to	cultivate.

Thus,	 our	 fourth	 productivity	 enhancer	 is	 automation	 via	 tools.	 We	 highlight	 examples	 that	 use

automation	with	the	robot	icon,	although	they	are	often	also	associated	with	tools.	 		

Summary:	Moore’s	Law	inspired	software	engineers	to	improve	their	productivity	by:
	

Coveting	conciseness,	in	using	compact	syntax	and	by	raising	the	level	of	design	by	using	higher-
level	 languages.	Recent	 advances	 include	 reflection	 that	 allows	programs	 to	observe	 themselves
and	 metaprogramming	 that	 allows	 programs	 to	 modify	 their	 own	 structure	 and	 behavior	 at
runtime.
Synthesizing	implementations.
Reusing	designs	by	following	the	principle	of	Don’t	Repeat	Yourself	(DRY)	and	by	relying	upon
innovations	that	help	reuse,	such	as	procedures,	libraries,	object-oriented	programming,	and	design
patterns.
Using	(and	inventing)	CAD	tools	to	automate	tedious	tasks.

Self-Check	1.9.1.	Which	mechanism	is	the	weakest	argument	for	productivity	benefits	of	compilers	for
high-level	 programming	 languages:	 Clarity	 via	 conciseness,	 Synthesis,	 Reuse,	 or	 Automation	 and
Tools?
	 Compilers	 make	 high-level	 programming	 languages	 practical,	 enabling	 programmers	 to	 improve

productivity	 via	writing	 the	more	 concise	 code	 in	 a	HLL.	Compilers	 do	 synthesize	 lower-level	 code
based	on	 the	HLL	 input.	Compilers	 are	 definitely	 tools.	While	 you	 can	 argue	 that	HLL	makes	 reuse
easier,	reuse	is	the	weakest	of	the	four	for	explaining	the	benefits	of	compilers.

ELABORATION:	Productivity:	Plan-and-Document	vs.	Agile	lifecycles
Productivity	 is	 measured	 in	 the	 engineer-hours	 to	 implement	 a	 new	 function.	 The	 difference	 is	 the	 cycles	 are	 much	 longer	 in
Waterfall	and	Spiral	vs.	Agile—on	the	order	of	6	to	24	months	vs.	1/2	month—so	much	more	work	is	done	between	releases	that	the
customer	sees,	and	hence	the	chances	are	greater	that	more	work	will	ultimately	be	rejected	by	the	customer.

1.10	Guided	Tour	of	the	Book

I	hear	and	I	forget.	I	see	and	I	remember.	I	do	and	I	understand.
—Confucius

http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/Pivotal_Tracker
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/RSpec
http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://en.wikipedia.org/wiki/metaprogramming
http://en.wikipedia.org/wiki/Don't_Repeat_Yourself

With	this	introduction	behind	us,	we	can	now	explain	what	follows	and	what	paths	you	might	want	to
take.	To	do	 and	understand,	 as	Confucius	 advises,	 begin	by	 reading	Appendix	A.	 It	 explains	 how	 to
obtain	and	use	the	“bookware,”	which	is	our	name	for	the	software	associated	with	the	book.

The	rest	of	the	book	is	divided	into	two	parts.	Part	I	explains	Software	as	a	Service,	and	Part	II	explains
modern	software	development,	with	a	heavy	emphasis	on	Agile.

Figure	1.9:	An	iteration	of	the	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book.	The	dashed	arrows	indicate	a
more	tangential	relationship	between	the	steps	of	an	iteration,	while	the	solid	arrows	indicate	the	typical	flow.	As	mentioned	earlier,	the

Agile	process	applies	equally	well	to	existing	legacy	applications	and	new	applications,	although	the	customer	may	play	a	smaller	role
with	legacy	apps.

Chapter	2	starts	Part	 I	with	an	explanation	of	 the	architecture	of	a	SaaS	application,	using	an	altitude
analogy	of	going	from	the	100,000-foot	view	to	the	500-foot	view.	During	the	descent	you’ll	learn	the
definition	 of	many	 acronyms	 that	 you	may	 have	 already	 heard—APIs,	 CSS,	 IP,	 REST,	 TCP,	URLs,
URIs,	and	XML—as	well	as	some	widely	used	buzzwords:	cookies,	markup	languages,	port	numbers,
and	 three-tier	 architectures.	 More	 importantly,	 it	 demonstrates	 the	 importance	 of	 design	 patterns,
particularly	Model-View-Controller	that	is	at	the	heart	of	Rails.

Rather	than	just	tell	you	how	to	build	long	lasting	software	and	watch	you	forget,	we	believe	you	must
do	to	understand.	It	is	much	easier	to	try	good	guidelines	if	the	tools	encourage	it,	and	we	believe	today
the	best	SaaS	tools	support	the	Rails	framework,	which	is	written	in	Ruby.	Thus,	Chapter	3	introduces
Ruby.	 The	 Ruby	 introduction	 is	 short	 because	 it	 assumes	 you	 already	 know	 another	 object-oriented
programming	 language	well,	 in	 this	 case	 Java.	As	mentioned	 above,	we	 believe	 successful	 software
engineers	will	need	to	routinely	learn	new	languages	and	tools	over	their	careers,	so	learning	Ruby	and
Rails	is	good	practice.

Chapter	4	next	introduces	the	basics	of	Rails	and	the	more	advanced	features	of	Rails	in	Chapter	5.	We
split	the	material	into	two	chapters	for	readers	who	want	to	get	started	writing	an	app	as	soon	as	they
can,	which	 just	 requires	Chapter	4.	While	 the	material	 in	Chapter	5	 is	more	challenging	 to	 learn	and
understand,	 your	 application	 can	 be	 DRYer	 and	 more	 concise	 if	 you	 use	 concepts	 like	 partials,
validations,	 lifecycle	 callbacks,	 filters,	 associations,	 and	 foreign	 keys.	 Readers	 already	 familiar	 with

Ruby	and	Rails	should	skip	these	chapters.	 			 		

Building	 on	 the	 familiarity	with	Ruby	 and	Rails	 by	 this	 point	 in	 the	 book,	Chapter	 6	 introduces	 the
programming	language	JavaScript,	its	productive	framework	jQuery,	and	the	testing	tool	Jasmine.	Just
as	 the	 Rails	 framework	 amplifies	 the	 power	 and	 productivity	 of	 the	 Ruby	 language	 for	 creating	 the
server	side	of	SaaS	apps,	the	jQuery	framework	amplifies	the	power	and	productivity	of	JavaScript	for
enhancing	 its	 client	 side.	 And	 just	 as	 RSpec	makes	 it	 possible	 to	write	 powerful	 automated	 tests	 to
increase	our	confidence	in	our	Ruby	and	Rails	code,	Jasmine	makes	it	possible	to	write	similar	tests	to
increase	our	confidence	in	our	JavaScript	code.

Given	 this	 background,	 the	 next	 six	 chapters	 of	 Part	 II	 illustrate	 important	 software	 engineering
principles	using	Rails	tools	to	build	and	deploy	a	SaaS	app.	Figure	1.9	shows	one	iteration	of	the	Agile

lifecycle,	which	we	use	as	a	framework	on	which	to	hang	the	next	chapters	of	the	book.	 		

Chapter	7	 discusses	 how	 to	 talk	 to	 the	 customer.	Behavior-Driven	Design	 (BDD)	 advocates	writing
acceptance	tests	that	customers	without	a	programming	background	can	understand,	called	user	stories,
and	Chapter	 7	 shows	 how	 to	write	 them	 so	 that	 they	 can	 be	 turned	 into	 integration	 tests	 as	well.	 It
introduces	 the	 Cucumber	 tool	 to	 help	 automate	 this	 task.	 This	 testing	 tool	 can	 be	 used	 with	 any
language	and	framework,	not	just	Rails.	As	SaaS	apps	are	often	user	facing,	the	chapter	also	covers	how
to	prototype	 a	 useful	 user	 interface	using	 “Lo-Fi”	 prototyping.	 It	 also	 explains	 the	 term	Velocity	and
how	to	use	it	 to	measure	progress	in	the	rate	that	you	deliver	features,	and	introduces	the	SaaS-based
tool	Pivotal	Tracker	to	track	and	calculate	such	measurements.

http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://en.wikipedia.org/wiki/user_stories
http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/Pivotal_Tracker

Chapter	 8	 covers	 Test-Driven	 Development	 (TDD).	 The	 chapter	 demonstrates	 how	 to	 write	 good,
testable	 code	 and	 introduces	 the	 RSpec	 testing	 tool	 for	 writing	 unit	 tests,	 the	 Autotest	 tool	 for
automating	test	running,	and	the	SimpleCov	tool	to	measure	test	coverage.

	 	 	 Chapter	 9	 describes	 how	 to	 deal	with	 existing	 code,	 including	 how	 to	 enhance	 legacy	 code.
Helpfully,	it	shows	how	to	use	BDD	and	TDD	to	both	understand	and	refactor	code	and	how	to	use	the
Cucumber	and	RSpec	tools	to	make	this	task	easier.

	 	 	Chapter	 10	gives	 advice	on	how	 to	organize	 and	work	 as	 part	 of	 an	 effective	 team	using	 the
Scrum	 principles	 mentioned	 above.	 It	 also	 describes	 how	 the	 version	 control	 system	 Git	 and	 the
corresponding	service	GitHub	can	let	team	members	work	on	different	features	without	interfering	with
each	other	or	causing	chaos	in	the	release	process.

	 	 	 	 	 	 To	 help	 you	 practice	Don’t	Repeat	Yourself,	 Chapter	 11	 introduces	 design	 patterns,
which	are	proven	structural	solutions	to	common	problems	in	designing	how	classes	work	together,	and
shows	how	to	exploit	Ruby’s	language	features	to	adopt	and	reuse	the	patterns.	The	chapter	also	offers
guidelines	on	how	to	write	good	classes.	It	introduces	just	enough	UML	(Unified	Modeling	Language)
notation	to	help	you	notate	design	patterns	and	to	help	you	make	diagrams	that	show	how	the	classes
should	work.

Note	that	Chapter	11	is	about	software	architecture	whereas	prior	chapters	in	Part	II	are	about	the	Agile
development	process.	We	believe	in	a	college	course	setting	that	 this	order	will	 let	you	start	an	Agile
iteration	 sooner,	 and	 we	 think	 the	 more	 iterations	 you	 do,	 the	 better	 you	 will	 understand	 the	 Agile
lifecycle.	 However,	 as	 Figure	 1.9	 suggests,	 knowing	 design	 patterns	 will	 be	 useful	 when	 writing	 or
refactoring	code,	since	it	is	fundamental	to	the	BDD/TDD	process.

Chapter	12	offers	practical	advice	on	how	to	first	deploy	and	then	improve	performance	and	scalability
in	the	cloud,	and	briefly	introduces	some	reliability	and	security	techniques	that	are	uniquely	relevant	to
deploying	SaaS.

We	conclude	with	an	Afterword	 that	 reflects	on	 the	material	 in	 the	book	and	projects	what	might	be
next.

1.11	How	NOT	to	Read	this	Book

Don’t	 skip	 the	 screencasts.	 The	 temptation	 is	 to	 skip	 sidebars,	 elaborations,	 and	 screencasts	 to	 just
skim	the	text	until	you	find	what	you	want	to	answer	your	question.

While	elaborations	are	typically	for	experienced	readers	who	want	to	know	more	about	what	is	going	on
behind	the	curtain,	and	sidebars	are	just	short	asides	that	we	think	you’ll	enjoy,	screencasts	are	critical
to	learning	this	material.	While	we	wouldn’t	say	you	could	skip	the	text	and	just	watch	the	screencasts,
we	would	say	that	they	are	some	of	the	most	important	parts	of	the	book.	They	allow	us	to	express	a	lot
of	concepts,	show	how	they	interact,	and	demonstrate	how	you	can	do	the	same	tasks	yourself.	What
would	 take	 many	 pages	 and	 be	 difficult	 to	 describe	 can	 come	 alive	 in	 a	 two	 to	 five	 minute	 video.
Screencasts	allow	us	to	follow	the	advice	of	Confucius:	“I	see	and	I	remember.”	So	please	watch	them!

http://en.wikipedia.org/wiki/Test-Driven_Development
http://en.wikipedia.org/wiki/RSpec
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/GitHub

Learn	by	doing.	Have	 your	 computer	 open	with	 the	Ruby	 interpreter	 ready	 so	 that	 you	 can	 try	 the
examples	 in	 the	screencasts	and	 the	 text.	We	even	make	 it	easy	 to	copy-and-paste	 the	code	using	 the
service	Pastebin,	(If	you’re	reading	the	ebook,	the	link	accompanying	each	code	example	will	take	you
to	 that	 code	 example	 on	 Pastebin.)	 This	 practice	 follows	 the	 “I	 do	 and	 I	 understand”	 observation	 of

Confucius.	Specific	opportunities	to	learn	by	doing	are	highlighted	by	a	bicycle	icon.	 		

There	are	topics	that	you	will	need	to	study	to	learn,	especially	in	our	buzzword-intensive	ecosystem	of
Agile	+	Ruby	+	Rails	+	SaaS	+	Cloud	Computing.	Indeed,	Figure	13.2	in	the	Afterword	lists	nearly	120
new	terms	introduced	in	just	the	first	three	chapters.	To	help	you	learn	them,	each	term	is	linked	to	the
appropriate	Wikipedia	article	the	first	time	it	appears.	We	also	use	icons	to	remind	you	of	the	common
themes	throughout	the	book,	which	Figure	1.10	summarizes	as	a	single	handy	place	to	look	them	up.

Beautiful	Code Legacy	Code

Convention	over	Configuration Don’t	Repeat	Yourself	(DRY)

Clarity	via	Conciseness Learn	By	Doing

Productivity	via	Automation Productivity	via	Code	Generation

Productivity	via	Reuse Productivity	via	Tools

Fallacy Pitfall
Exercise	based	on	learning	outcomes	in	ACM/IEEE	Software	Engineering	Curriculum	Standard
(ACM	IEEE-Computer	Society	Joint	Task	Force	2013)

Figure	1.10:	Summary	of	icons	used	in	the	book.

Depending	on	your	background,	we	suspect	you’ll	need	to	read	some	chapters	more	than	once	before
you	get	the	hang	of	it.	To	help	you	focus	on	the	key	points,	each	chapter	starts	with	a	1-page	Concepts
summary,	 which	 lists	 the	 big	 concepts	 of	 each	 chapter,	 and	 each	 chapter	 ends	 with	 Fallacies	 and
Pitfalls,	which	explains	common	misconceptions	or	problems	that	are	easy	to	experience	if	you’re	not
vigilant.	 Each	 section	 concludes	with	 a	 summary	 of	 the	 key	 concepts	 in	 that	 section	 and	 self-check
questions	with	answers.	Projects	 at	 the	end	of	each	chapter	are	more	open-ended	 than	 the	self-check
questions.	To	give	readers	a	perspective	about	who	came	up	with	these	big	ideas	that	they	are	learning
and	that	information	technology	relies	upon,	we	use	sidebars	to	introduce	20	Turing	Award	winners.	(As
there	is	no	Nobel	Prize	in	IT,	our	highest	honor	is	known	as	the	“Nobel	Prize	of	Computing.”	Or	better
yet,	we	should	call	the	Nobel	Prize	the	“Turing	Award	of	Physics.”)

We	deliberately	chose	 to	keep	 the	book	concise,	 since	different	 readers	will	want	 additional	detail	 in
different	areas.	Links	are	provided	 to	 the	Ruby	and	Rails	online	documentation	for	built-in	classes	or
methods,	to	definitions	of	important	concepts	you	may	be	unfamiliar	with,	and	to	the	Web	in	general	for
further	 reading	 related	 to	 the	material.	 If	 you’re	 using	 the	Kindle	 edition,	 the	 links	 should	 be	 live	 if
you’re	connected	to	the	Internet;	in	the	print	version,	the	link	URIs	appear	at	the	end	of	each	chapter.

1.12	Fallacies	and	Pitfalls

http://www.pastebin.com/u/saasbook
http://en.wikipedia.org/wiki/Wikipedia

Lord,	give	us	the	wisdom	to	utter	words	that	are	gentle	and	tender,	for	tomorrow	we	may	have	to	eat
them.

—Sen.	Morris	Udall

As	mentioned	 above,	 this	 section	near	 the	 end	of	 a	 chapter	 explains	 ideas	 of	 a	 chapter	 from	another
perspective,	and	gives	readers	a	chance	to	 learn	from	the	mistakes	of	others.	Fallacies	are	statements
that	seem	plausible	(or	are	actually	widely	held	views)	based	on	the	ideas	in	the	chapter,	but	they	are	not
true.	Pitfalls,	on	the	other	hand,	are	common	dangers	associated	with	the	topics	in	the	chapter	that	are
difficult	to	avoid	even	when	you	are	warned.

			Fallacy:	The	Agile	lifecycle	is	best	for	all	software	development.

Agile	is	a	nice	match	to	many	types	of	software,	particularly	SaaS,	which	is	why	we	use	it	in	this	book.
However,	Agile	is	not	best	for	everything.	Agile	may	be	ineffective	for	safety-critical	apps,	for	example.

Our	 experience	 is	 that	 once	 you	 learn	 the	 classic	 steps	 of	 software	 development	 and	 have	 a	 positive
experience	 in	 using	 them	 via	Agile,	 you	will	 use	 these	 important	 software	 engineering	 principles	 in
other	projects	no	matter	which	methodology	is	used.	Each	chapter	in	Part	II	concludes	with	contrasting
Plan-and-Document	 perspective	 to	 help	 you	 understand	 these	 principles	 and	 to	 help	 you	 use	 other
lifecycles	should	the	need	arise

Nor	 will	 Agile	 be	 the	 last	 software	 lifecycle	 you	 will	 ever	 see.	 We	 believe	 that	 new	 development
methodologies	develop	and	become	popular	 in	 response	 to	new	opportunities,	 so	expect	 to	 learn	new
methodologies	and	frameworks	in	your	future.

			Pitfall:	Ignoring	the	cost	of	software	design.

Since	 there	 is	no	cost	 to	manufacture	software,	 the	 temptation	 is	 to	believe	 there	 is	almost	no	cost	 to
changing	 it	 so	 that	 it	 can	 be	 remanufactured	 the	way	 the	 customer	wants.	However,	 this	 perspective
ignores	 the	 cost	 of	 design	 and	 test,	which	 can	 be	 a	 substantial	 part	 of	 the	 overall	 costs	 for	 software
projects.	Zero	manufacturing	cost	is	also	one	rationalization	used	to	justify	pirating	copies	of	software
and	 other	 electronic	 data,	 since	 pirates	 apparently	 believe	 no	 one	 should	 pay	 for	 the	 cost	 of
development,	just	for	manufacturing.

1.13	Concluding	Remarks:	Engineering	Software	is	More	Than	Programming

But	if	Extreme	Programming	is	just	a	new	selection	of	old	practices,	what’s	so	extreme	about	it?	Kent’s
answer	is	that	it	takes	obvious,	common	sense	principles	and	practices	to	extreme	levels.	For	example:
—	If	short	iterations	are	good,	make	them	as	short	as	possible—hours	or	minutes	or	seconds	rather	than

days	or	weeks	or	years.
—	If	simplicity	is	good,	always	do	the	simplest	thing	that	could	possibly	work.

—	If	testing	is	good,	test	all	the	time.	Write	the	test	code	before	you	write	the	code	to	test.
—	If	code	reviews	are	good,	review	code	continuously,	by	programming	in	pairs,	two	programmers	to

a	computer,	taking	turns	looking	over	each	other’s	shoulders.	

—Michael	Swaine,	interview	with	Kent	Beck,	(Swaine	2001)

Figure	1.11:	The	Virtuous	Triangle	of	Engineering	SaaS	is	formed	from	the	three	software	engineering	crown	jewels	of	(1)	SaaS	on
Cloud	Computing,	(2)	Agile	Development,	and	(3)	Highly	Productive	Framework	and	Tools.

This	single	quote	gives	a	good	deal	of	the	rationale	behind	the	extreme	programming	(XP)	version	of
Agile	that	we	cover	in	this	book.	We	keep	iterations	short,	so	that	the	customer	sees	the	next	version	of
the	incomplete	but	working	prototype	every	week	or	two.	You	write	the	tests	before	you	write	the	code,
and	then	you	write	the	least	amount	of	code	it	takes	to	make	it	pass	the	test.	Pair	programming	means
the	code	is	under	continuous	review,	rather	than	just	on	special	occasions.	Agile	has	gone	from	software
methodology	heresy	to	the	dominant	form	of	programming	in	just	a	dozen	years,	and	when	combined
with	service	oriented	architecture,	allows	complex	services	to	be	built	reliably.

	 	 	While	 there	 is	no	 inherent	dependency	among	SaaS,	Agile,	and	highly	productive	frameworks
like	 Rails,	 Figure	 1.11	 suggests	 there	 is	 a	 synergistic	 relationship	 among	 them.	 Agile	 development
means	 continuous	progress	while	working	closely	with	 the	 customer,	 and	SaaS	on	Cloud	Computing
enables	 the	 customer	 to	 use	 the	 latest	 version	 immediately,	 thereby	 closing	 the	 feedback	 loop	 (see
Chapters	7	 and	Chapter	 12).	 SaaS	 on	Cloud	Computing	matches	 the	Model–View–Controller	 design
pattern	(see	Chapter	11),	which	Highly-Productive	SaaS	Frameworks	expose	(see	Chapters	2,	4,	and	5).
Highly	Productive	Frameworks	and	Tools	designed	to	support	Agile	development	remove	obstacles	to
practicing	Agile	(see	Chapters	7,		8,	and	10).	We	believe	these	three	“crown	jewels”	form	a	“virtuous
triangle”	that	leads	to	on-time	and	on-budget	engineering	of	beautiful	Software	as	a	Service,	and	they

form	the	foundation	of	this	book.	 		

This	 virtuous	 triangle	 also	 helps	 explain	 the	 innovative	 nature	 of	 the	 Rails	 community,	 where	 new
important	tools	are	frequently	developed	that	further	improve	productivity,	simply	because	it’s	so	easy
to	do.	We	fully	expect	 that	 future	editions	of	 this	book	will	 include	 tools	not	yet	 invented	 that	are	so
helpful	that	we	can’t	imagine	how	we	got	our	work	done	without	them!

As	teachers,	since	many	students	find	the	Plan-and-Document	methods	tedious,	we	are	pleased	that	the
answers	 to	 the	10	questions	 in	Figure	1.5	strongly	 recommend	using	Agile	 for	 student	 team	projects.
Nevertheless,	 we	 believe	 it	 is	 worthwhile	 for	 readers	 to	 be	 familiar	 with	 the	 Plan-and-Document
methodology,	as	there	are	some	tasks	where	it	may	be	a	better	match,	some	customers	require	it,	and	it
helps	explain	parts	of	the	Agile	methodology.	Thus,	we	include	sections	near	the	end	of	all	chapters	in
Part	II	that	offer	the	Plan-and-Document	perspective.

As	 researchers,	 we	 are	 convinced	 that	 software	 of	 the	 future	 will	 increasingly	 be	 built	 and	 rely	 on
services	in	the	Cloud,	and	thus	Agile	methodology	will	continue	to	increase	in	popularity	in	part	given
the	 strong	 synergy	between	 them.	Hence,	we	 are	 at	 a	 happy	point	 in	 technology	where	 the	 future	of
software	development	is	more	fun	both	to	learn	and	to	teach.	Highly	productive	frameworks	like	Rails
let	you	understand	this	valuable	technology	by	doing	in	a	remarkably	short	time.	The	main	reason	we
wrote	 this	 book	 is	 to	 help	 more	 people	 become	 aware	 of	 and	 take	 advantage	 of	 this	 extraordinary
opportunity.

We	believe	if	you	learn	the	contents	of	this	book	and	use	the	“bookware”	that	comes	with	it,	you	can
build	 your	 own	 (simplified)	 version	 of	 a	 popular	 software	 service	 like	 FarmVille	 or	 Twitter	 while
learning	 and	 following	 sound	 software	 engineering	 practices.	 While	 being	 able	 to	 imitate	 currently
successful	 services	 and	 deploy	 them	 in	 the	 cloud	 in	 a	 few	months	 is	 impressive,	 we	 are	 even	more
excited	 to	 see	what	you	will	 invent	 given	 this	 new	 skill	 set.	We	 look	 forward	 to	 your	 beautiful	 code
becoming	long-lasting	and	to	becoming	some	of	its	passionate	fans!

1.14	To	Learn	More

	 ACM	IEEE-Computer	Society	Joint	Task	Force.	Computer	science	curricula	2013,	Ironman	Draft
(version	1.0).	Technical	report,	February	2013.	URL	http:	//ai.stanford.edu/users/sahami/CS2013/.

	 C.	Alexander,	S.	Ishikawa,	and	M.	Silverstein.	A	Pattern	Language:	Towns,	Buildings,	Construction
(Cess	Center	for	Environmental).	Oxford	University	Press,	1977.	ISBN	0195019199.
M.	Armbrust,	A.	Fox,	R.	Griffith,	A.	D.	Joseph,	R.	Katz,	A.	Konwinski,	G.	Lee,	D.	Patterson,

http://ai.stanford.edu/users/sahami/CS2013/

	 A.	Rabkin,	I.	Stoica,	and	M.	Zaharia.	A	view	of	cloud	computing.	Communications	of	the	ACM
(CACM),	53(4):50–58,	Apr.	2010.

	

L.	A.	Barroso	and	U.	Hoelzle.	The	Datacenter	as	a	Computer:	An	Introduction	to	the	Design	of
Warehouse-Scale	Machines	(Synthesis	Lectures	on	Computer	Architecture).	Morgan	and	Claypool
Publishers,	2009.	ISBN	159829556X.	URL	http://www.morganclaypool.com/doi/
pdf/10.2200/S00193ED1V01Y200905CAC006.

	
S.	Begley.	As	Obamacare	tech	woes	mounted,	contractor	payments	soared.	Reuters,	October	17,	2013.
URL	http://www.nbcnews.com/politics/politics-	news/stress-tests-show-healthcare-gov-was-
overloaded-v21337298.

	 J.	Bidgood.	Massachusetts	appoints	official	and	hires	firm	to	fix	exchange	problems.	New	York	Times,
February	7,	2014.	URL	http://www.nytimes.com/	news/affordable-care-act/.

	 B.	W.	Boehm.	Software	engineering:	R	&	D	trends	and	defense	needs.	In	P.	Wegner,	editor,	Research
Directions	in	Software	Technology,	Cambridge,	MA,	1979.	MIT	Press.

	 B.	W.	Boehm.	A	spiral	model	of	software	development	and	enhancement.	In	ACM	SIGSOFT	Software
Engineering	Notes,	1986.

	 E.	Braude.	Software	Engineering:	An	Object-Oriented	Perspective.	John	Wiley	and	Sons,	2001.	ISBN
0471692085.
	 R.	Charettte.	Why	software	fails.	IEEE	Spectrum,	42(9):42–49,	September	2005.

	
L.	Chung.	Too	big	to	fire:	How	government	contractors	on	HealthCare.gov	maximize	profits.	FMS
Software	Development	Team	Blog,	December	7,	2013.	URL	http://blog.fmsinc.com/too-big-to-fire-
healthcare-gov-	government-contractors.
	 M.	Cormick.	Programming	extremism.	Communications	of	the	ACM,	44(6):	109–110,	June	2001.

	
H.-C.	Estler,	M.	Nordio,	C.	A.	Furia,	B.	Meyer,	and	J.	Schneider.	Agile	vs.	structured	distributed
software	development:	A	case	study.	In	Proceedings	of	the	7th	International	Conference	on	Global
Software	Engineering	(ICGSE’12)),	pages	11–20,	2012.

	
ET	Bureau.	Need	for	speed:	More	it	companies	switch	to	agile	code	development.	The	Economic
Times,	August	6,	2012.	URL	http://articles.economictimes.indiatimes.com/2012-	08-
06/news/33065621_1_thoughtworks-software-development-iterative.

	 M.	Fowler.	The	New	Methodology.	martinfowler.com,	2005.	URL	http:
//www.martinfowler.com/articles/newMethodology.html.

	
E.	Harrington.	Hearing:	Security	flaws	in	Obamacare	website	endanger	AmericansHealthCare.gov.
Washington	Free	Beacon,	2013.	URL	http://freebeacon.com/hearing-security-flaws-in-obamacare-
website-endanger-americans/.

	
S.	Horsley.	Enrollment	jumps	at	HealthCare.gov,	though	totals	still	lag.	NPR.org,	December	12,	2013.
URL	http://www.npr.org/blogs/health/2013/12/11/	250023704/enrollment-jumps-at-healthcare-gov-
though-totals-still-lag.

	
A.	Howard.	Why	Obama’s	HealthCare.gov	launch	was	doomed	to	fail.	The	Verge,	October	8,	2013.
URL	http://www.theverge.com/2013/10/8/4814098/why-did-the-tech-	savvy-obama-administration-
launch-a-busted-healthcare-website.

	
C.	Johnson	and	H.	Reed.	Why	the	government	never	gets	tech	right.	New	York	Times,	October	24,
2013.	URL	http://www.pmi.org/en/Professional-	Development/Career-
Central/Must_Have_Skill_Agile.aspx.

	 J.	Johnson.	The	CHAOS	report.	Technical	report,	The	Standish	Group,	Boston,	Massachusetts,	1995.
URL	http://blog.standishgroup.com/.

http://www.morganclaypool.com/doi/pdf/10.2200/S00193ED1V01Y200905CAC006
http://www.nbcnews.com/politics/politics-news/stress-tests-show-healthcare-gov-was-overloaded-v21337298
http://www.nytimes.com/news/affordable-care-act/
http://blog.fmsinc.com/too-big-to-fire-healthcare-gov-government-contractors
http://articles.economictimes.indiatimes.com/2012-08-06/news/33065621_1_thoughtworks-software-development-iterative
http://www.martinfowler.com/articles/newMethodology.html
http://freebeacon.com/hearing-security-flaws-in-obamacare-website-endanger-americans/
http://www.npr.org/blogs/health/2013/12/11/250023704/enrollment-jumps-at-healthcare-gov-though-totals-still-lag
http://www.theverge.com/2013/10/8/4814098/why-did-the-tech-savvy-obama-administration-launch-a-busted-healthcare-website
http://www.pmi.org/en/Professional-Development/Career-Central/Must_Have_Skill_Agile.aspx
http://blog.standishgroup.com/

	
J.	Johnson.	HealthCare.gov	chaos.	Technical	report,	The	Standish	Group,	Boston,	Massachusetts,
October	22,	2013a.	URL	http://blog.standishgroup.
com/images/audio/HealthcareGov_Chaos_Tuesday.mp3.

	 J.	Johnson.	The	CHAOS	manifesto	2013:	Think	big,	act	small.	Technical	report,	The	Standish	Group,Boston,	Massachusetts,	2013b.	URL	http://www.	standishgroup.com.

	
C.	Jones.	Software	project	management	practices:	Failure	versus	success.	CrossTalk:	The	Journal	of
Defense	Software	Engineering,	pages	5–9,	Oct.	2004.	URL
http://cross5talk2.squarespace.com/storage/issue-archives/	2004/200410/200410-Jones.pdf.
	 J.	M.	Juran	and	F.	M.	Gryna.	Juran’s	quality	control	handbook.	New	York:	McGraw-Hill,	1998.

	 P.	Kruchten.	The	Rational	Unified	Process:	An	Introduction,	Third	Edition.	Addison-Wesley
Professional,	2003.	ISBN	0321197704.

	 T.	Lethbridge	and	R.	Laganiere.	Object-Oriented	Software	Engineering:	Practical	SoftwareDevelopment	using	UML	and	Java.	McGraw-Hill,	2002.	ISBN	0072834951.

	
National	Research	Council.	Achieving	Effective	Acquisition	of	Information	Technology	in	the
Department	of	Defense.	The	National	Academies	Press,	2010.	ISBN	9780309148283.	URL
http://www.nap.edu/openbook.php?record_	id=12823.
	 P.	Naur	and	B.	Randell.	Software	engineering.	Scientific	Affairs	Div.,	NATO,	1969.

	 J.	R.	Nawrocki,	B.	Walter,	and	A.	Wojciechowski.	Comparison	of	CMM	level	2	and	extreme
programming.	In	7th	European	Conference	on	Software	Quality,	Helsinki,	Finland,	2002.

	 M.	Paulk,	C.	Weber,	B.	Curtis,	and	M.	B.	Chrissis.	The	Capability	Maturity	Model:	Guidelines	for
Improving	the	Software	Process.	Addison-Wesley,	1995.	ISBN	0201546647.

	 G.	J.	Popek	and	R.	P.	Goldberg.	Formal	requirements	for	virtualizable	third	generation	architectures.Communications	of	the	ACM,	17(7):412–421,	1974.

	
Project	Management	Institute.	Must-have	skill:	Agile.	Professional	Development,	February	28,	2012.
URL	http://www.pmi.org/en/Professional-Development/	Career-
Central/Must_Have_Skill_Agile.aspx.

	 W.	W.	Royce.	Managing	the	development	of	large	software	systems:	concepts	and	techniques.	In
Proceedings	of	WESCON,	pages	1–9,	Los	Angeles,	California,	August	1970.
	 I.	Sommerville.	Software	Engineering,	Ninth	Edition.	Addison-Wesley,	2010.	ISBN	0137035152.

	 M.	Stephens	and	D.	Rosenberg.	Extreme	Programming	Refactored:	The	Case	Against	XP.	Apress,
2003.

	
M.	Swaine.	Back	to	the	future:	Was	Bill	Gates	a	good	programmer?	What	does	Prolog	have	to	do	with
the	semantic	web?	And	what	did	Kent	Beck	have	for	lunch?	Dr.	Dobb’s	The	World	of	Software
Development,	2001.	URL	http:	//www.drdobbs.com/back-to-the-future/184404733.

	 A.	Taylor.	IT	projects	sink	or	swim.	BCS	Review,	Jan.	2000.	URL	http://archive.bcs.org/bulletin/jan00/article1.htm.

	
F.	Thorp.	‘Stress	tests’	show	HealthCare.gov	was	overloaded.	NBC	News,	November	18,	2013.	URL
http://www.nbcnews.com/politics/politics-news/	stress-tests-show-healthcare-gov-was-overloaded-
v21337298.

	
J.	Zients.	HealthCare.gov	progress	and	performance	report.	Technical	report,	Health	and	Human
Services,	December	1,	2013.	URL	http://www.hhs.gov/digitalstrategy/sites/digitalstrategy/
files/pdf/healthcare.gov-progress-report.pdf.

1.15	Suggested	Projects

http://blog.standishgroup.com/images/audio/HealthcareGov_Chaos_Tuesday.mp3
http://www.standishgroup.com
http://cross5talk2.squarespace.com/storage/issue-archives/2004/200410/200410-Jones.pdf
http://www.nap.edu/openbook.php?record_id=12823
http://www.pmi.org/en/Professional-Development/Career-Central/Must_Have_Skill_Agile.aspx
http://www.drdobbs.com/back-to-the-future/184404733
http://archive.bcs.org/bulletin/jan00/article1.htm
http://www.nbcnews.com/politics/politics-news/stress-tests-show-healthcare-gov-was-overloaded-v21337298
http://www.hhs.gov/digitalstrategy/sites/digitalstrategy/files/pdf/healthcare.gov-progress-report.pdf.

Project	 1.1.	 	 	 	 (Discussion)	 Identify	 the	 principal	 issues	 associated	with	 software	 evolution	 and
explain	their	impact	on	the	software	life	cycle.	Note:	We	use	this	margin	icon	to	identify	all	projects	that
from	come	from	the	ACM/IEEE	2013	Computer	Science	Curriculum	for	Software	Engineering	standard
(ACM	IEEE-Computer	Society	Joint	Task	Force	2013).

Project	1.2.	(Discussion)	Discuss	the	challenges	of	evolving	systems	in	a	changing	environment.

Project	1.3.	 			(Discussion)	Explain	the	concept	of	a	software	life	cycle	and	provide	an	example,
illustrating	its	phases	including	the	deliverables	that	are	produced.

Project	1.4.	(Discussion)	Referring	to	Figure	1.5,	compare	 the	process	models	from	this	chapter	with
respect	 to	 their	 value	 for	 development	 of	 particular	 classes	 of	 software	 systems:	 information
management,	embedded,	process	control,	communications,	and	web	applications.

Project	1.5.	(Discussion)	 In	your	opinion,	how	would	you	 rank	 the	 software	disasters	 in	 this	chapter
from	most	terrible	to	the	least?	How	did	you	rank	them?

Project	1.6.	(Discussion)	The	closest	hardware	failure	 to	 the	software	disasters	mentioned	in	 the	first
section	is	probably	the	Intel	Floating	Point	Divide	bug.	Where	would	you	put	this	hardware	problem	in
the	ranked	list	of	software	examples	from	the	exercise	above?

Project	 1.7.	 (Discussion)	Measured	 in	 lines	 of	 code,	 what	 is	 the	 largest	 program	 in	 the	 world?	 For
purposes	of	this	exercise,	assume	it	can	be	a	suite	of	software	that	is	shipped	as	a	single	product.

Project	1.8.	(Discussion)	Which	programming	language	has	the	most	active	programmers?

Project	1.9.	(Discussion)	In	which	programming	language	is	the	most	number	of	lines	of	code	written
annually?	Which	has	the	most	lines	of	active	code	cumulatively?

Project	 1.10.	 (Discussion)	Make	 a	 list	 of,	 in	 your	 opinion,	 the	 Top	 10	most	 important	 applications.
Which	would	best	be	developed	and	maintained	using	the	four	lifecycles	from	this	chapter?	List	your
reasons	for	each	choice.

Project	1.11.	(Discussion)	Given	the	list	of	Top	10	applications	from	the	exercise	above,	how	important
are	each	of	the	four	productivity	techniques	listed	in	this	chapter?

Project	1.12.	(Discussion)	Given	the	list	of	Top	10	applications	from	the	exercise	above,	what	aspects
might	be	difficult	to	test	and	need	to	rely	on	formal	methods?	Would	some	testing	techniques	be	more
important	for	some	applications	than	others?	State	why.

Project	1.13.	Distinguish	between	program	validation	and	program	verification.	 		

Project	1.14.	 (Discussion)	What	are	 the	Top	5	 reasons	 that	SaaS	and	Cloud	Computing	will	grow	 in
popularity	and	the	Top	5	obstacles	to	its	growth?

Project	1.15.	 			(Discussion)	Discuss	the	advantages	and	disadvantages	of	software	reuse.

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

		

Project	 1.16.	 (Discussion)	 Describe	 and	 distinguish	 among	 the	 different	 types	 and	 levels	 of	 testing
(unit,	integration,	module,	system,	and	acceptance).

Project	1.17.	 	 	 	Describe	 the	difference	between	principles	of	 the	waterfall	model	and	Plan-and-
Document	models	using	iterations.

Project	1.18.	 			Describe	the	different	practices	that	are	key	components	of	Agile	and	various	Plan-
and-Document	process	models.

Project	1.19.	 	 	 	Differentiate	among	 the	phases	of	 software	development	of	Plan-and-Document
models.

Part	I
Software	as	a	Service

2.	The	Architecture	of	SaaS	Applications

			Dennis	Ritchie	(left,	1941–2011)	and	Ken	Thompson	(right,	1943–)	shared	the
1983	Turing	Award	for	fundamental	contributions	to	operating	systems	design	in	general	and	the

invention	of	Unix	in	particular.

I	think	the	major	good	idea	in	Unix	was	its	clean	and	simple	interface:	open,	close,	read,	and	write.

—Unix	and	Beyond:	An	Interview	With	Ken	Thompson,	IEEE	Computer	32(5),	May	1999

2.1	100,000	Feet:	Client-Server	Architecture
2.2	50,000	Feet:	Communication—HTTP	and	URIs
2.3	10,000	Feet:	Representation—HTML	and	CSS
2.4	5,000	Feet:	3-Tier	Architecture	&	Horizontal	Scaling
2.5	1,000	Feet:	Model-View-Controller	Architecture
2.6	500	Feet:	Active	Record	for	Models
2.7	500	Feet:	Routes,	Controllers,	and	REST
2.8	500	Feet:	Template	Views
2.9	Fallacies	and	Pitfalls
2.10	Concluding	Remarks:	Patterns,	Architecture,	and	Long-Lived	APIs
2.11	To	Learn	More
2.12	Suggested	Projects

Concepts

Software	architecture	 describes	how	 the	 subsystems	 that	make	up	a	piece	of	 software	 are	 connected
together	 to	 meet	 the	 application’s	 functional	 and	 non-functional	 requirements.	 A	 design	 pattern
describes	a	general	architectural	solution	to	a	family	of	similar	problems,	obtained	by	generalizing	from
the	 experience	 of	 developers	who	 have	 solved	 those	 problems	 before.	 Examining	 SaaS	 apps,	 design
patterns	are	evident	at	all	levels	of	detail:
	

SaaS	apps	follow	the	client-server	pattern,	in	which	a	client	makes	requests	and	a	server	responds
to	the	requests	of	many	clients.
A	SaaS	server	 follows	 the	 three-tier	architecture	 pattern,	which	 separates	 the	 responsibilities	 of
different	 SaaS	 server	 components	 and	 enables	 horizontal	 scaling	 to	 accommodate	 millions	 of
users.
SaaS	 app	 code	 lives	 in	 the	 application	 tier.	 Many	 SaaS	 apps,	 including	 those	 based	 on	 Rails,
follow	the	Model-View-Controller	design	pattern,	in	which	Models	deal	with	the	app’s	resources
such	as	users	or	blog	posts,	Views	present	information	to	the	user	via	the	browser,	and	Controllers
map	the	user’s	browser	actions	to	application	code.
For	Models,	Rails	uses	the	Active	Record	pattern	because	it	is	a	good	fit	to	relational	databases,
the	most	popular	way	of	 storing	SaaS	data.	For	Views,	Rails	uses	 the	Template	View	pattern	 to
create	Web	pages	to	send	to	the	browser.	For	Controllers,	Rails	follows	the	Representational	State
Transfer	 or	 REST	 principle,	 in	 which	 each	 controller	 action	 describes	 a	 single	 self-contained
operation	on	one	of	the	app’s	resources.

Modern	 SaaS	 frameworks	 such	 as	 Rails	 capture	 a	 decade’s	 worth	 of	 developer	 experience	 by
encapsulating	these	SaaS	design	patterns	so	that	SaaS	app	writers	can	easily	apply	them.

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Design_patterns
http://en.wikipedia.org/wiki/client-server_architecture
http://en.wikipedia.org/wiki/three-tier_architecture
http://en.wikipedia.org/wiki/Model-View-Controller
http://en.wikipedia.org/wiki/Web_resource
http://en.wikipedia.org/wiki/Active_record_pattern
http://en.wikipedia.org/wiki/relational_databases
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Web_resource

2.1	100,000	Feet:	Client-Server	Architecture

			Since	the	best	way	to	learn	about	software	is	by	doing,	let’s	jump	in	right	away.

If	you	haven’t	done	so	already,	 turn	 to	Appendix	A	and	get	 this	book’s	“bookware”	 running	on	your
own	computer	or	in	the	cloud.	Once	it	is	ready,	Screencast	2.1.1	shows	how	to	deploy	and	login	to	your
Virtual	Machine	and	try	an	interaction	with	the	simple	educational	app	RottenPotatoes,	which	aspires	to
be	a	simplified	version	of	the	popular	movie-rating	Web	site	RottenTomatoes.

Screencast	2.1.1:	Getting	Started
Once	logged	in	to	your	VM,	the	screencast	shows	how	to	open	a	Terminal	window,	cd	(change	to)	the
directory	Documents/rottenpotatoes,	and	start	the	RottenPotatoes	app	by	typing	rails	server.	We
then	opened	 the	Firefox	web	browser	and	entered	http://localhost:3000/movies	 into	 the	 address
bar	and	pressed	Return,	taking	us	to	the	RottenPotatoes	home	page.

What’s	 going	on?	You’ve	 just	 seen	 the	 simplest	 view	of	 a	Web	 app:	 it	 is	 an	 example	 of	 the	client-
server	architecture.	Firefox	is	an	example	of	a	client:	a	program	whose	specialty	is	asking	a	server	for
information	 and	 (usually)	 allowing	 the	 user	 to	 interact	 with	 that	 information.	WEBrick,	 which	 you
activated	by	typing	rails	server,	is	an	example	of	a	server:	a	program	whose	specialty	is	waiting	for
clients	to	make	a	request	and	then	providing	a	reply.	WEBrick	waits	to	be	contacted	by	a	Web	browser
such	as	Firefox	and	routes	the	browser’s	requests	to	the	RottenPotatoes	app.	Figure	2.1	summarizes	how
a	SaaS	application	works,	from	100,000	feet.

Figure	2.1:	100,000-foot	view	of	a	SaaS	client-server	system.

http://rottentomatoes.com
http://vimeo.com/34754478
http://en.wikipedia.org/wiki/client-server_architecture

Figure	2.2:	Using	altitude	as	an	analogy,	this	figure	illustrates	important	structures	in	SaaS	at	various	levels	of	detail	and	serves	as	an
overall	roadmap	of	the	discussion	in	this	chapter.	Each	level	is	discussed	in	the	sections	shown.

Distinguishing	clients	from	servers	allows	each	type	of	program	to	be	highly	specialized	to	its	task:	the
client	can	have	a	responsive	and	appealing	user	 interface,	while	 the	server	concentrates	on	efficiently
serving	many	clients	simultaneously.	Firefox	and	other	browsers	(Chrome,	Safari,	Internet	Explorer)	are
clients	used	by	millions	of	people	(let’s	call	 them	production	clients).	WEBrick,	on	the	other	hand,	 is
not	a	production	server,	but	a	“mini-server”	with	just	enough	functionality	to	let	one	user	at	a	time	(you,
the	developer)	interact	with	your	Web	app.	A	real	Web	site	would	use	a	production	server	such	as	the
Apache	web	server	or	 the	Microsoft	 Internet	 Information	Server,	 either	of	which	can	be	deployed	on
hundreds	of	computers	efficiently	serving	many	copies	of	the	same	site	to	millions	of	users.

Before	 the	Web’s	 open	 standards	were	 proposed	 in	 1990,	 users	would	 install	 separate	 and	mutually-
incompatible	 proprietary	 clients	 for	 each	 Internet	 service	 they	 used:	 Eudora	 (the	 ancestor	 of
Thunderbird)	for	reading	email,	AOL	or	CompuServe	for	accessing	proprietary	content	portals	(a	role
filled	 today	 by	 portals	 like	 MSN	 and	 Yahoo!),	 and	 so	 on.	 Today,	 the	 Web	 browser	 has	 largely
supplanted	 proprietary	 clients	 and	 is	 justifiably	 called	 the	 “universal	 client.”	 Nonetheless,	 the
proprietary	 clients	 and	 servers	 still	 constitute	 examples	 of	 client-server	 architecture,	 with	 clients

http://projects.apache.org/projects/http_server.html
http://www.iis.net

specialized	for	asking	questions	on	behalf	of	users	and	servers	specialized	for	answering	questions	from
many	 clients.	 Client-server	 is	 therefore	 our	 first	 example	 of	 a	 design	 pattern—a	 reusable	 structure,
behavior,	strategy,	or	 technique	 that	captures	a	proven	solution	 to	a	collection	of	similar	problems	by
separating	 the	 things	 that	 change	 from	 those	 that	 stay	 the	 same.	 In	 the	 case	 of	 client-server
architectures,	 what	 stays	 the	 same	 is	 the	 separation	 of	 concerns	 between	 the	 client	 and	 the	 server,
despite	changes	across	implementations	of	clients	and	servers.	Because	of	the	Web’s	ubiquity,	we	will
use	the	term	SaaS	to	mean	“client-server	systems	built	to	operate	using	the	open	standards	of	the	World
Wide	Web.”

In	 the	past,	 the	 client-server	 architecture	 implied	 that	 the	 server	was	 a	much	more	 complex	program
than	the	client.	Today,	with	powerful	laptops	and	Web	browsers	that	support	animation	and	3D	effects,	a
better	 characterization	 might	 be	 that	 clients	 and	 servers	 are	 comparably	 complex	 but	 have	 been
specialized	for	their	very	different	roles.	In	this	book	we	will	concentrate	on	server-centric	applications;
although	 we	 cover	 some	 JavaScript	 client	 programming	 in	 Chapter	 6,	 its	 context	 is	 in	 support	 of	 a
server-centric	 application	 rather	 than	 for	 building	 complex	 in-browser	 applications	 such	 as	 Google
Docs.

Of	course,	client-server	isn’t	the	only	architectural	pattern	found	in	Internet-based	services.	In	the	peer-
to-peer	architecture,	used	in	BitTorrent,	every	participant	is	both	a	client	and	a	server—anyone	can	ask
anyone	else	for	information.	In	such	a	system	where	a	single	program	must	behave	as	both	client	and
server,	it’s	harder	to	specialize	the	program	to	do	either	job	really	well.

Summary:
SaaS	Web	apps	are	examples	of	the	client-server	architectural	pattern,	in	which	client	software	is
typically	specialized	for	interacting	with	the	user	and	sending	requests	to	the	server	on	the	user’s
behalf,	and	the	server	software	is	specialized	for	handling	large	volumes	of	such	requests.
Because	 Web	 apps	 use	 open	 standards	 that	 anyone	 can	 implement	 royalty-free,	 in	 contrast	 to
proprietary	standards	used	by	older	client-server	apps,	the	Web	browser	has	become	the	“universal
client.”
An	alternative	to	client-server	is	peer-to-peer,	in	which	all	entities	act	as	both	clients	and	servers.
While	arguably	more	flexible,	 this	architecture	makes	 it	difficult	 to	specialize	 the	software	 to	do
either	job	really	well.

Self-Check	2.1.1.	What	is	the	primary	difference	between	a	client	and	a	server	in	SaaS?
	A	SaaS	client	is	optimized	for	allowing	the	user	to	interact	with	information,	whereas	a	SaaS	server	is

optimized	for	serving	many	clients	simultaneously.

Self-Check	2.1.2.	What	element(s)	 in	Figure	2.2	refer	 to	a	SaaS	client	and	what	element(s)	refer	 to	a
SaaS	server?
	The	Browser	box	in	the	upper-left	corner	refers	to	a	client.	The	html	and	css	document	icons	refer	to

content	delivered	to	the	client.	All	other	elements	are	part	of	the	server.

2.2	50,000	Feet:	Communication—HTTP	and	URIs

http://en.wikipedia.org/wiki/design_pattern
http://docs.google.com
http://en.wikipedia.org/wiki/Peer_to_peer
http://en.wikipedia.org/wiki/Client_server

			Vinton	E.	“Vint”	Cerf	(left,	1943–)	and	Bob	Kahn	(right,	1938–)	shared	the	2004
Turing	Award	for	their	pioneering	work	on	networking	architecture	and	protocols,	including	TCP/IP.

A	network	protocol	is	a	set	of	communication	rules	on	which	agents	participating	in	a	network	agree.	In
this	 case,	 the	 agents	 are	 Web	 clients	 (like	 Firefox)	 and	 Web	 servers	 (like	 WEBrick	 or	 Apache).
Browsers	and	Web	servers	communicate	using	the	HyperText	Transfer	Protocol,	or	HTTP.	Like	many
Internet	 application	 protocols,	 HTTP	 relies	 on	 TCP/IP,	 the	 venerable	 Transmission	 Control
Protocol/Internet	Protocol,	which	allows	a	pair	of	agents	to	communicate	ordered	sequences	of	bytes.
Essentially,	TCP/IP	allows	the	communication	of	arbitrary	character	strings	between	a	pair	of	network
agents.

In	a	TCP/IP	network,	each	computer	has	an	IP	address	consisting	of	four	bytes	separated	by	dots,	such
as	128.32.244.172.	Most	of	the	time	we	don’t	use	IP	addresses	directly—another	Internet	service	called
Domain	Name	System	(DNS),	which	has	its	own	protocol	based	on	TCP/IP,	is	automatically	invoked	to
map	 easy-to-remember	 hostnames	 like	 www.eecs.berkeley.edu	 to	 IP	 addresses.	 Browsers
automatically	 contact	 a	 DNS	 server	 to	 look	 up	 the	 site	 name	 you	 type	 in	 the	 address	 bar,	 such	 as
www.eecs.berkeley.edu,	and	get	the	actual	IP	address,	in	this	case	128.32.244.172.	A	convention	used
by	 TCP/IP-compatible	 computers	 is	 that	 if	 a	 program	 running	 on	 a	 computer	 refers	 to	 the	 name
localhost,	 it	 is	 referring	 to	 the	 very	 computer	 it’s	 running	 on.	 That	 is	why	 typing	 localhost	 into
Firefox’s	address	bar	at	the	beginning	of	Section	2.1	caused	Firefox	to	communicate	with	the	WEBrick
process	running	on	the	same	computer	as	Firefox	itself.

ELABORATION:	Networking:	multi-homing,	IPv6	and	HTTPS.
We	have	simplified	some	aspects	of	TCP/IP:	technically	each	network	interface	device	has	an	IP	address,	and	some	multi-homed
computers	may	 have	multiple	 network	 interfaces.	Also,	 for	 various	 reasons	 including	 the	 exhaustion	 of	 the	 address	 space	 of	 IP
numbers,	the	current	version	of	IP	(version	4)	is	slowly	being	phased	out	in	favor	of	version	6	(IPv6),	which	uses	a	different	format
for	addresses.	However,	since	most	computers	have	only	one	network	 interface	active	at	a	 time	and	SaaS	app	writers	 rarely	deal
directly	with	 IP	 addresses,	 these	 simplifications	 don’t	materially	 alter	 our	 explanations.	We	 also	 defer	 discussion	 of	 the	 Secure
HTTP	protocol	(HTTPS)	until	Chapter	12.	HTTPS	uses	public-key	cryptography	 to	encrypt	(encode)	communication	between	an
HTTP	client	 and	 server,	 so	 that	 an	 eavesdropper	 sees	 only	gibberish.	From	a	programmer’s	 point	 of	 view,	HTTPS	behaves	 like
HTTP,	 but	 only	 works	 if	 the	Web	 server	 has	 been	 configured	 to	 support	 HTTPS	 access	 to	 certain	 pages.	 “Mini”	 servers	 like
WEBrick	typically	don’t	support	it.

What	about	the	:3000	we	appended	to	localhost	in	the	example?	Multiple	agents	on	a	network	can	be
running	at	the	same	IP	address.	Indeed,	in	the	example	above,	both	the	client	and	server	were	running
on	your	own	computer.	Therefore,	TCP/IP	uses	port	numbers	from	1	to	65535	to	distinguish	different
network	agents	at	 the	same	IP	address.	All	protocols	based	on	TCP/IP,	 including	HTTP,	must	specify
both	 the	 host	 and	 port	 number	 when	 opening	 a	 connection.	 When	 you	 directed	 Firefox	 to	 go	 to
localhost:3000/movies,	 you	were	 indicating	 that	 on	 the	 computer	 called	localhost	 (that	 is,	 “this
computer”),	a	server	program	was	monitoring	port	3000	waiting	for	browsers	to	contact	it.	If	we	didn’t
specify	 the	port	 number	 (3000)	 explicitly,	 it	would	default	 to	 80	 for	http	 or	 443	 for	https	 (secure)
connections.

http://en.wikipedia.org/wiki/network_protocol
http://en.wikipedia.org/wiki/HyperText_Transfer_Protocol
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/TCP_IP
http://en.wikipedia.org/wiki/TCP_IP
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/hostname
http://en.wikipedia.org/wiki/Network_interface_device
http://en.wikipedia.org/wiki/multi-homed
http://en.wikipedia.org/wiki/public-key_cryptography
http://en.wikipedia.org/wiki/port_numbers

The	IANA.	The	Internet	Assigned	Numbers	Authority	assigns	official	default	port	numbers	for	various	protocols	and	manages	the	top-
level	or	“root”	zone	of	DNS.

To	summarize,	communication	in	HTTP	is	initiated	when	one	agent	opens	a	connection	to	another	agent
by	specifying	a	hostname	and	port	number;	an	HTTP	server	process	must	be	listening	for	connections
on	that	host	and	port	number.

URI	or	URL?	URIs	are	sometimes	referred	to	as	URLs,	or	Uniform	Resource	Locators.	Despite	subtle	technical	distinctions,	for	our
purposes	the	terms	can	be	used	interchangeably.	We	use	URI	because	it	is	more	general	and	matches	the	terminology	used	by	most
libraries.

The	 string	 http://localhost:3000/movies	 that	 you	 typed	 into	 Firefox’s	 address	 bar	 is	 a	URI,	 or
Uniform	Resource	Identifier.	A	URI	begins	with	the	name	of	the	communication	scheme	by	which	the
information	may	be	 retrieved,	 followed	by	a	hostname,	optional	port	number,	 and	a	 resource	 on	 that
host	that	the	user	wants	to	retrieve;	as	shown	in	Figure		2.3.	A	resource	generally	means	“anything	that
can	 be	 delivered	 to	 the	 browser”:	 an	 image,	 the	 list	 of	 all	 movies	 in	 HTML	 format,	 and	 a	 form
submission	that	creates	a	new	movie	are	all	examples	of	resources.	Each	SaaS	application	has	its	own
rules	for	interpreting	the	resource	name,	though	we	will	soon	see	one	proposal	called	REST	that	strives
for	simplicity	and	consistency	in	resource	naming	across	different	SaaS	apps.

Figure	2.3:	An	HTTP	request	consists	of	an	HTTP	method	plus	a	URI.	A	full	URI	begins	with	a	scheme	such	as	http	or	https	and
includes	the	above	components.	Optional	components	are	in	parentheses.	A	partial	URI	omits	any	or	all	of	the	leftmost	components,	in
which	case	those	components	are	filled	in	or	resolved	relative	to	a	base	URI	determined	by	the	specific	application.	Best	practice	is	to	use
full	URIs.

HTTP	 is	 a	 stateless	 protocol	 because	 every	 HTTP	 request	 is	 independent	 of	 and	 unrelated	 to	 all
previous	requests.	A	web	app	that	keeps	track	of	“where	you	are”	(Have	you	logged	in	yet?	What	step
of	the	checkout	process	are	you	on?)	must	have	its	own	mechanisms	for	doing	so,	since	nothing	about
an	HTTP	request	remembers	this	information.	HTTP	cookies	associate	a	particular	user’s	browser	with
information	held	at	the	server	corresponding	to	that	user’s	session,	but	it	is	the	browser’s	responsibility,
not	HTTP’s	or	 the	SaaS	app’s,	 to	make	 sure	 the	 right	 cookies	 are	 included	with	 each	HTTP	 request.
Stateless	protocols	 therefore	 simplify	 server	design	at	 the	 expense	of	 application	design,	but	happily,
successful	frameworks	such	as	Rails	shield	you	from	much	of	this	complexity.

Screencast	2.2.1:	Cookies
SaaS	 frameworks	 simplify	 working	 with	 cookies,	 which	 are	 used	 to	 establish	 that	 two	 independent

http://iana.org
http://en.wikipedia.org/wiki/URI
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/HTTP_method
http://en.wikipedia.org/wiki/URI
http://en.wikipedia.org/wiki/stateless_protocol
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/Session_(computer_science)
http://vimeo.com/33918630

requests	actually	originated	from	the	same	user’s	browser,	and	can	therefore	be	thought	of	as	part	of	a
session.	On	 the	 first	 visit	 to	 a	 site,	 the	 server	 includes	 a	 long	 string	 (up	 to	 4	KBytes)	with	 the	Set-
Cookie:	 HTTP	 response	 header.	 It	 is	 the	 browser’s	 responsibility	 to	 include	 this	 string	 with	 the
Cookie:	HTTP	request	header	on	subsequent	requests	to	that	site.	The	cookie	string,	which	is	usually
not	 encrypted	 but	 is	 protected	 by	 a	 “fingerprint”	 or	message	 authentication	 code,	 contains	 enough
information	for	the	server	to	associate	the	request	with	the	same	user	session.

We	can	now	express	what’s	happening	when	you	load	the	RottenPotatoes	home	page	in	slightly	more
precise	terms,	as	Figure	2.4	shows.

Figure	2.4:	At	50,000	feet,	we	can	expand	Step	1	from	Figure	2.1.

To	drill	down	further,	we’ll	next	look	at	how	the	content	itself	is	represented.

Summary
Web	browsers	and	servers	communicate	using	the	HyperText	Transfer	Protocol.	HTTP	relies	on
TCP/IP	(Transmission	Control	Protocol/Internet	Protocol)	to	reliably	exchange	ordered	sequences
of	bytes.
Each	computer	connected	to	a	TCP/IP	network	has	an	IP	address	such	as	128.32.244.172,	although
the	Domain	Name	System	 (DNS)	 allows	 the	 use	 of	 human-friendly	 names	 instead.	 The	 special
name	localhost	refers	to	the	local	computer	and	resolves	to	the	special	IP	address	127.0.0.1.
Each	application	running	on	a	particular	computer	must	“listen”	on	a	distinct	TCP	port,	numbered
from	1	to	65535	(216-1).	Port	80	is	used	by	HTTP	(Web)	servers.
To	 run	 a	 SaaS	 app	 locally,	 you	 activate	 an	 HTTP	 server	 listening	 on	 a	 port	 on	 localhost.
WEBrick,	Rails’	lightweight	server,	uses	port	3000.
A	 Uniform	 Resource	 Identifier	 (URI)	 names	 a	 resource	 available	 on	 the	 Internet.	 The
interpretation	of	the	resource	name	varies	from	application	to	application.
HTTP	is	a	stateless	protocol	in	that	every	request	is	independent	of	every	other	request,	even	from
the	same	user.	HTTP	cookies	allow	the	association	of	HTTP	requests	from	the	same	user.	It’s	the
browser’s	 responsibility	 to	 accept	 a	 cookie	 from	 an	HTTP	 server	 and	 ensure	 that	 the	 cookie	 is
included	with	future	requests	sent	to	that	server.

http://en.wikipedia.org/wiki/message_authentication_code
http://en.wikipedia.org/wiki/HyperText_Transfer_Protocol
http://en.wikipedia.org/wiki/TCP_IP
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/TCP_port
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/HTTP_cookies

ELABORATION:	Client	Pull	vs.	Server	Push.

The	Web	is	primarily	a	client	pull	client-server	architecture	because	the	client	initiates	all	interactions—HTTP	servers	can	only	wait
for	 clients	 to	 contact	 them.	 This	 is	 because	HTTP	was	 designed	 as	 a	 request-reply	 protocol:	 only	 clients	 can	 initiate	 anything.
Evolving	standards,	including	WebSockets	and	HTML5,	have	some	support	for	allowing	the	server	to	push	updated	content	to	the
client.	In	contrast,	true	server	push	architectures,	such	as	text	messaging	on	cell	phones,	allow	the	server	to	initiate	a	connection	to
the	 client	 to	 “wake	 it	 up”	 when	 new	 information	 is	 available;	 but	 these	 cannot	 use	 HTTP.	 An	 early	 criticism	 of	 the	 Web’s
architecture	was	 that	 a	 pure	 request-reply	 protocol	would	 rule	 out	 such	push-based	 applications.	 In	 practice,	 however,	 the	 high
efficiency	 of	 specialized	 server	 software	 supports	 creating	Web	 pages	 that	 frequently	poll	 (check	 in	with)	 the	 server	 to	 receive
updates,	giving	the	user	the	illusion	of	a	push-based	application	even	without	the	features	proposed	in	WebSockets	and	HTML5.

Self-Check	2.2.1.	What	happens	if	we	visit	the	URI	http://google.com:3000	and	why?

	The	connection	will	eventually	“time	out”	unable	to	contact	a	server,	because	Google	(like	almost	all
Web	sites)	listens	on	TCP	port	80	(the	default)	rather	than	3000.

Self-Check	2.2.2.	What	happens	if	we	try	to	access	RottenPotatoes	at	(say)	http://localhost:3300
(instead	of	:3000)	and	why?

	You	get	a	“connection	refused”	since	nothing	is	listening	on	port	3300.

2.3	10,000	Feet:	Representation—HTML	and	CSS

If	 the	Web	browser	 is	 the	universal	client,	HTML,	 the	HyperText	Markup	Language,	 is	 the	universal
language.	A	markup	 language	 combines	 text	with	markup	 (annotations	 about	 the	 text)	 in	 a	way	 that
makes	 it	 easy	 to	 syntactically	 distinguish	 the	 two.	 Watch	 Screencast	 2.3.1	 for	 some	 highlights	 of
HTML	5,	the	current	version	of	the	language,	then	continue	reading.

Screencast	2.3.1:	HTML	Introduction
HTML	consists	of	a	hierarchy	of	nested	elements,	each	of	which	consists	of	an	opening	tag	such	as	<p>,
a	 content	 part	 (in	 some	 cases),	 and	 a	 closing	 tag	 such	 as	 </p>.	 Most	 opening	 tags	 can	 also	 have
attributes,	 as	 in	.	 Some	 tags	 that	 don’t	 have	 a	 content	 part	 are	 self-closing,
such	as	<br	clear=”both”/>	for	a	line	break	that	clears	both	left	and	right	margins.

The	use	of	angle	brackets	for	tags	comes	from	SGML	(Standard	Generalized	Markup	Language),	a	codified	standardization	of	IBM’s
Generalized	Markup	Language,	developed	in	the	1960s	for	encoding	computer-readable	project	documents.

There	is	an	unfortunate	and	confusing	mess	of	terminology	surrounding	the	lineage	of	HTML.	HTML	5
includes	 features	 of	 both	 its	 predecessors	 (HTML	 versions	 1	 through	 4)	 and	 XHTML	 (eXtended
HyperText	Markup	Language),	which	is	a	subset	of	XML,	an	eXtensible	Markup	Language	that	can	be
used	both	 to	 represent	data	and	 to	describe	other	markup	 languages.	 Indeed,	XML	is	a	common	data
representation	for	exchanging	information	between	two	services	in	a	Service-Oriented	Architecture,	as
we’ll	see	 in	Chapter	8	when	we	extend	RottenPotatoes	 to	 retrieve	movie	 information	from	a	separate
movie	database	service.	The	differences	among	the	variants	of	XHTML	and	HTML	are	difficult	to	keep

http://en.wikipedia.org/wiki/Request-response
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/markup_language
http://vimeo.com/34754506
http://en.wikipedia.org/wiki/SGML
http://www.w3.org/TR/html5/introduction.html#history-1
http://en.wikipedia.org/wiki/XML

straight,	and	not	all	browsers	support	all	versions.	Unless	otherwise	noted,	from	now	on	when	we	say
HTML	we	mean	HTML	5,	and	we	will	try	to	avoid	using	features	that	aren’t	widely	supported.

Of	 particular	 interest	 are	 the	 HTML	 tag	 attributes	 id	 and	 class,	 because	 they	 figure	 heavily	 into
connecting	 the	 HTML	 structure	 of	 a	 page	 with	 its	 visual	 appearance.	 The	 following	 screencast
illustrates	the	use	of	Firefox’s	Web	Developer	toolbar	to	quickly	identify	the	ID’s	and	Classes	of	HTML
elements	on	a	page.

Screencast	2.3.2:	Inspecting	the	ID	and	Class	attributes
CSS	 uses	 selector	 notations	 such	 as	 div#name	 to	 indicate	 a	 div	 element	 whose	 id	 is	 name	 and
div.name	 to	 indicate	 a	div	 element	with	 class	name.	Only	one	 element	 in	 an	HTML	document	 can
have	a	given	id,	whereas	many	elements	 (even	of	different	 tag	 types)	can	share	 the	same	class.	All
three	aspects	of	an	element—its	tag	type,	its	id	(if	it	has	one),	and	its	class	attributes	(if	it	has	any)—
can	be	used	to	identify	an	element	as	a	candidate	for	visual	formatting.

For	an	extreme	example	of	how	much	can	be	done	with	CSS,	visit	the	CSS	Zen	Garden.

As	the	next	screencast	shows,	the	CSS	(Cascading	Style	Sheets)	standard	allows	us	to	associate	visual
“styling”	 instructions	 with	 HTML	 elements	 by	 using	 the	 elements’	 classes	 and	 IDs.	 The	 screencast
covers	only	a	few	basic	CSS	constructs,	which	are	summarized	in	Figure	2.5.	The	Resources	section	at
the	end	of	the	chapter	lists	sites	and	books	that	describe	CSS	in	great	detail,	including	how	to	use	CSS
for	aligning	content	on	a	page,	something	designers	used	to	do	manually	with	HTML	tables.

Screencast	2.3.3:	Introduction	to	CSS
There	are	four	basic	mechanisms	by	which	a	selector	in	a	CSS	file	can	match	an	HTML	element:	by	tag
name,	by	class,	by	ID,	and	by	hierarchy.	If	multiple	selectors	match	a	given	element,	the	rules	for	which
properties	to	apply	are	complex,	so	most	designers	try	to	avoid	such	ambiguities	by	keeping	their	CSS
simple.	A	useful	way	to	see	the	“bones”	of	a	page	is	to	select	CSS>Disable	Styles>All	Styles	from	the
Firefox	Web	Developer	toolbar.	This	will	display	the	page	with	all	CSS	formatting	turned	off,	showing
the	extent	to	which	CSS	can	be	used	to	separate	visual	appearance	from	logical	structure.

Selector What	is	selected
h1 Any	h1	element

div#message The	div	whose	ID	is	message
.red Any	element	with	class	red

div.red,	h1 The	div	with	class	red,	or	any	h1
div#message	h1 An	h1	element	that’s	a	child	of	(inside	of)	div#message

a.lnk a	element	with	class	lnk
a.lnk:hover a	element	with	class	lnk,	when	hovered	over
Attribute Example	values Attribute Example	values

http://vimeo.com/34754568
http://en.wikipedia.org/wiki/CSS_selector
http://csszengarden.com
http://en.wikipedia.org/wiki/CSS
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://vimeo.com/34754607

font-family ”Times,	serif” background-color red,	#c2eed6	(RGB	values)
font-weight bold border 1px	solid	blue

font-size 14pt,	125%,	12px text-align right

font-style italic text-decoration underline

color black vertical-align middle

margin 4px padding 1cm

Figure	2.5:	A	few	CSS	constructs,	including	those	explained	in	Screencast	2.3.3.	The	top	table	shows	some	CSS	selectors,	which	identify
the	elements	to	be	styled;	the	bottom	table	shows	a	few	of	the	many	attributes,	whose	names	are	usually	self-explanatory,	and	example
values	they	can	be	assigned.	Not	all	attributes	are	valid	on	all	elements.

Using	this	new	information,	Figure	2.6	expands	steps	2	and	3	from	the	previous	section’s	summary	of
how	SaaS	works.

Figure	2.6:	SaaS	from	10,000	feet.	Compared	to	Figure	2.4,	step	2	has	been	expanded	to	describe	the	content	returned	by	the	Web	server,
and	step	3	has	been	expanded	to	describe	the	role	of	CSS	in	how	the	Web	browser	renders	the	content.

Summary
An	HTML	(HyperText	Markup	Language)	document	consists	of	a	hierarchically	nested	collection
of	elements.	Each	element	begins	with	a	tag	in	<angle	brackets>	that	may	have	optional	attributes.
Some	elements	enclose	content.

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Html_tag
http://en.wikipedia.org/wiki/HTML#Attributes

A	selector	is	an	expression	that	identifies	one	or	more	HTML	elements	in	a	document	by	using	a
combination	of	 the	element	name	 (such	as	body),	element	id	 (an	 element	 attribute	 that	must	 be
unique	on	a	page),	and	element	class	(an	attribute	that	need	not	be	unique	on	a	page).
Cascading	Style	Sheets	(CSS)	is	a	stylesheet	language	describing	visual	attributes	of	elements	on	a
Web	page.	A	stylesheet	associates	sets	of	visual	properties	with	selectors.	A	special	link	element
inside	the	head	element	of	an	HTML	document	associates	a	stylesheet	with	that	document.
The	Firefox	Web	Developer	toolbar	is	 invaluable	in	peeking	under	the	hood	to	examine	both	the
structure	of	a	page	and	its	stylesheets.

Self-Check	2.3.1.	True	or	false:	every	HTML	element	must	have	an	ID.

	False—the	ID	is	optional,	though	must	be	unique	if	provided.

Pastebin	is	the	service	we	use	to	make	it	easy	to	copy-and-paste	the	code.	The	link	accompanying	each	code	example	will	take	you	to
that	code	example	on	Pastebin.

Self-Check	2.3.2.	Given	the	following	HTML	markup:

http://pastebin.com/4ATW3CJd

	1				<p	class="x"	id="i">I	hate	Mondays</p>

	2				<p>but	Tuesdays	are	OK.</p>

Write	down	a	CSS	selector	that	will	select	only	the	word	Mondays	for	styling.
	Three	possibilities,	from	most	specific	to	least	specific,	are:	#i	span,	p.x	span,	and	.x	span.	Other

selectors	are	possible	but	redundant	or	over-constrained;	for	example,	p#i	span	and	p#i.x	span	are
redundant	with	respect	to	this	HTML	snippet	since	at	most	one	element	can	have	the	ID	i.

Self-Check	2.3.3.	In	Self-Check	2.3.2,	why	are	span	and	p	span	not	valid	answers?
	Both	of	those	selector	also	match	Tuesdays,	which	is	a	span	inside	a	p.

Self-Check	 2.3.4.	What	 is	 the	 most	 common	 way	 to	 associate	 a	 CSS	 stylesheet	 with	 an	 HTML	 or
HTML	document?	(HINT:	refer	to	the	earlier	screencast	example.)

	Within	the	HEAD	element	of	the	HTML	or	HTML	document,	include	a	LINK	element	with	at	least	the
following	three	attributes:	REL=”STYLESHEET”,	TYPE=”text/css”,	and	HREF=”uri”,	where	uri	 is	 the
full	or	partial	URI	of	the	stylesheet.	That	is,	the	stylesheet	must	be	accessible	as	a	resource	named	by	a
URI.

2.4	5,000	Feet:	3-Tier	Architecture	&	Horizontal	Scaling

So	far	we’ve	seen	how	the	client	communicates	with	the	server	and	how	the	information	they	exchange
is	represented,	but	we	haven’t	said	anything	about	the	server	itself.	Moving	back	to	the	server	side	of
Figure	2.2	and	zooming	 in	 for	additional	detail	on	 the	second	 level,	Web	apps	are	structured	as	 three

http://en.wikipedia.org/wiki/CSS_selector
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://pastebin.com/4ATW3CJd

logical	tiers.	The	presentation	tier	usually	consists	of	an	HTTP	server	(or	simply	“Web	server”),	which
accepts	requests	from	the	outside	world	(i.e.,	users)	and	usually	serves	static	assets.	We’ve	been	using
WEBrick	to	fulfill	that	role.

Because	application	servers	sit	between	the	Web	server	(presentation	tier)	and	your	actual	app	code,	they	are	sometimes	referred	to	as
middleware.

The	web	 server	 forwards	 requests	 for	 dynamic	 content	 to	 the	 logic	 tier,	where	 the	 actual	 application
runs	 that	 generates	 dynamic	 content.	The	 application	 is	 typically	 supported	 by	 an	application	 server
whose	job	is	to	hide	the	low-level	mechanics	of	HTTP	from	the	app	writer.	For	example,	an	app	server
can	route	incoming	HTTP	requests	directly	to	appropriate	pieces	of	code	in	your	app,	saving	you	from
having	to	listen	for	and	parse	incoming	HTTP	requests.	Modern	application	servers	support	one	or	more
Web	 application	 frameworks	 that	 simplify	 creation	 of	 a	 particular	 class	 of	 Web	 applications	 in	 a
particular	 language.	 We	 will	 be	 using	 the	 Rails	 framework	 and	 the	 Rack	 application	 server,	 which
comes	with	Rails.	WEBrick	can	“speak”	 to	Rack	directly;	other	Web	servers	 such	as	Apache	 require
additional	software	modules	to	do	so.	If	you	were	writing	in	PHP,	Python,	or	Java,	you	would	use	an
application	server	that	handles	code	written	in	those	languages.	For	example,	Google	AppEngine,	which
runs	Python	and	Java	applications,	has	proprietary	middleware	that	bridges	your	app’s	Python	or	Java
code	to	the	Google-operated	infrastructure	that	faces	the	outside	world.

Finally,	since	HTTP	is	stateless,	application	data	that	must	remain	stored	across	HTTP	requests,	such	as
session	data	and	users’	login	and	profile	information,	is	stored	in	the	persistence	tier.	Popular	choices
for	 the	 persistence	 tier	 have	 traditionally	 been	 databases	 such	 as	 the	 open-source	 MySQL	 or
PostgreSQL,	 although	prior	 to	 their	 proliferation,	 commercial	 databases	 such	 as	Oracle	or	 IBM	DB2
were	also	popular	choices.

LAMP.	Early	SaaS	sites	were	created	using	the	Perl	and	PHP	scripting	languages,	whose	availability	coincided	with	the	early	success	of
Linux,	an	open-source	operating	system,	and	MySQL,	an	open-source	database.	Thousands	of	sites	are	still	powered	by	the	LAMP	Stack
—Linux,	Apache,	MySQL,	and	PHP	or	Perl.

The	 “tiers”	 in	 the	 three-tier	model	 are	 logical	 tiers.	On	 a	 site	with	 little	 content	 and	 low	 traffic,	 the
software	 in	 all	 three	 tiers	might	 run	 on	 a	 single	 physical	 computer.	 In	 fact,	RottenPotatoes	 has	 been
doing	 just	 this:	 its	 presentation	 tier	 is	 just	WEBrick,	 and	 its	 persistence	 tier	 is	 a	 simple	 open-source
database	 called	 SQLite,	 which	 stores	 its	 information	 directly	 in	 files	 on	 your	 local	 computer.	 In
production,	 it’s	more	 common	 for	 each	 tier	 to	 span	 one	 or	more	 physical	 computers.	 As	 Figure	 2.7
shows,	in	a	typical	site,	incoming	HTTP	requests	are	directed	to	one	of	several	Web	servers,	which	in
turn	select	one	of	several	available	application	servers	to	handle	dynamic-content	generation,	allowing
computers	to	be	added	or	removed	from	each	tier	as	needed	to	handle	demand.

However,	as	the	Fallacies	and	Pitfalls	section	explains,	making	the	persistence	layer	shared-nothing	is
much	more	complicated.	Figure	2.7	shows	the	master-slave	approach,	used	when	the	database	is	read
much	more	 frequently	 than	 it	 is	 written:	 any	 slave	 can	 perform	 reads,	 only	 the	master	 can	 perform
writes,	and	the	master	updates	the	slaves	with	the	results	of	writes	as	quickly	as	possible.	However,	in
the	end,	 this	 technique	only	postpones	 the	scaling	problem	rather	 than	solving	it.	As	one	of	Heroku’s
founders	wrote:

http://en.wikipedia.org/wiki/Three-tier_architecture#Three-tier_architecture
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/middleware
http://en.wikipedia.org/wiki/Three-tier_architecture#Three-tier_architecture
http://en.wikipedia.org/wiki/application_server
http://en.wikipedia.org/wiki/Web_application_frameworks
http://en.wikipedia.org/wiki/Three-tier_architecture#Three-tier_architecture
http://en.wikipedia.org/wiki/Master-slave_(technology)
http://heroku.com

A	question	I’m	often	asked	about	Heroku	is:	“How	do	you	scale	the	SQL	database?”	There’s	a	lot	of
things	I	can	say	about	using	caching,	sharding,	and	other	techniques	to	take	load	off	the	database.	But
the	actual	answer	is:	we	don’t.	SQL	databases	are	fundamentally	non-scalable,	and	there	is	no	magical

pixie	dust	that	we,	or	anyone,	can	sprinkle	on	them	to	suddenly	make	them	scale.
—Adam	Wiggins,	Heroku

Figure	2.7:	The	3-tier	shared-nothing	architecture,	so	called	because	entities	within	a	tier	generally	do	not	communicate	with	each	other,
allows	adding	computers	to	each	tier	independently	to	match	demand.	Load	balancers,	which	distribute	workload	evenly,	can	be	either
hardware	appliances	or	specially-configured	Web	servers.	The	statelessness	of	HTTP	makes	shared-nothing	possible:	since	all	requests
are	independent,	any	server	in	the	presentation	or	logic	tier	can	be	assigned	to	any	request.	However,	scaling	the	persistence	tier	is	much
more	challenging,	as	the	text	explains.

We	can	now	add	one	more	level	of	detail	to	our	explanation;	step	2a	is	new	in	Figure	2.8.

http://adam.heroku.com/past/2009/7/6/sql_databases_dont_scale/
http://en.wikipedia.org/wiki/shared-nothing
http://en.wikipedia.org/wiki/Load_balancing_(computing)

Figure	2.8:	SaaS	from	5,000	feet.	Compared	to	Figure	2.6,	step	2a	has	been	inserted,	describing	the	actions	of	the	SaaS	server	in	terms	of
the	three-tier	architecture.

Summary
The	three-tier	architecture	includes	a	presentation	tier,	which	renders	views	and	interacts	with	the
user;	a	logic	tier,	which	runs	SaaS	app	code;	and	a	persistence	tier,	which	stores	app	data.
HTTP’s	 statelessness	 allows	 the	 presentation	 and	 logic	 tiers	 to	 be	 shared-nothing,	 so	 cloud
computing	 can	 be	 used	 to	 add	 more	 computers	 to	 each	 tier	 as	 demand	 requires.	 However,	 the
persistence	tier	is	harder	to	scale.
Depending	 on	 the	 scale	 (size)	 of	 the	 deployment,	 more	 than	 1	 tier	 may	 be	 hosted	 on	 a	 single
computer,	or	a	single	tier	may	require	many	computers.

ELABORATION:	Why	Databases?

While	 the	 earliest	 Web	 apps	 sometimes	 manipulated	 files	 directly	 for	 storing	 data,	 there	 are	 two	 reasons	 why	 databases
overwhelmingly	took	over	this	role	very	early.	First,	databases	have	historically	provided	high	durability	for	stored	information—
the	guarantee	 that	once	 something	has	been	 stored,	unexpected	events	 such	as	 system	crashes	or	 transient	data	corruption	won’t
cause	data	 loss.	For	a	Web	app	storing	millions	of	users’	data,	 this	guarantee	 is	critical.	Second,	databases	store	 information	in	a
structured	format—in	the	case	of	relational	databases,	by	far	the	most	popular	type,	each	kind	of	object	is	stored	in	a	table	whose
rows	represent	object	instances	and	whose	columns	represent	object	properties.	This	organization	is	a	good	fit	for	the	structured	data
that	many	Web	apps	manipulate.	Interestingly,	today’s	largest	Web	apps,	such	as	Facebook,	have	grown	so	far	beyond	the	scale	for

http://en.wikipedia.org/wiki/shared-nothing
http://en.wikipedia.org/wiki/relational_databases

which	relational	databases	were	designed	that	they	are	being	forced	to	look	at	alternatives	to	the	long-reigning	relational	database.

Self-Check	2.4.1.	Explain	why	cloud	computing	might	have	had	a	lesser	impact	on	SaaS	if	most	SaaS
apps	didn’t	follow	the	shared-nothing	architecture.
	Cloud	computing	allows	easily	adding	and	removing	computers	while	paying	only	for	what	you	use,

but	 it	 is	 the	 shared-nothing	 architecture	 that	makes	 it	 straightforward	 to	 “absorb”	 the	new	computers
into	a	running	app	and	“release”	them	when	no	longer	needed.

Self-Check	2.4.2.	In	the	____	tier	of	three-tier	SaaS	apps,	scaling	is	much	more	complicated	than	just
adding	computers.
	Persistence	tier

2.5	1,000	Feet:	Model-View-Controller	Architecture

So	far	we’ve	said	nothing	about	the	structure	of	the	app	code	in	RottenPotatoes.	In	fact,	just	as	we	used
the	client-server	architectural	pattern	 to	characterize	 the	“100,000-foot	view”	of	SaaS,	we	can	use	an
architectural	 pattern	 called	Model-View-Controller	 (usually	 shortened	 to	 MVC)	 to	 characterize	 the
“1,000-foot	view.”

An	application	organized	according	to	MVC	consists	of	three	main	types	of	code.	Models	are	concerned
with	the	data	manipulated	by	the	application:	how	to	store	it,	how	to	operate	on	it,	and	how	to	change	it.
An	MVC	app	typically	has	a	model	for	each	type	of	entity	manipulated	by	the	app.	In	our	simplified
RottenPotatoes	app,	there	is	only	a	Movie	model,	but	we’ll	be	adding	others	later.	Because	models	deal
with	the	application’s	data,	they	contain	the	code	that	communicates	with	the	storage	tier.

Views	are	presented	to	the	user	and	contain	information	about	the	models	with	which	users	can	interact.
The	views	serve	as	the	interface	between	the	system’s	users	and	its	data;	for	example,	in	RottenPotatoes
you	can	list	movies	and	add	new	movies	by	clicking	on	links	or	buttons	in	the	views.	There	is	only	one
kind	 of	model	 in	Rotten	Potatoes,	 but	 it	 is	 associated	with	 a	 variety	 of	 views:	 one	 view	 lists	 all	 the
movies,	another	view	shows	the	details	of	a	particular	movie,	and	yet	other	views	appear	when	creating
new	movies	or	editing	existing	ones.

Finally,	controllers	mediate	the	interaction	in	both	directions:	when	a	user	interacts	with	a	view	(e.g.	by
clicking	something	on	a	Web	page),	a	 specific	controller	action	 corresponding	 to	 that	user	activity	 is
invoked.	Each	controller	corresponds	to	one	model,	and	in	Rails,	each	controller	action	is	handled	by	a
particular	Ruby	method	within	 that	controller.	The	controller	can	ask	 the	model	 to	retrieve	or	modify
information;	depending	on	the	results	of	doing	this,	the	controller	decides	what	view	will	be	presented
next	to	the	user,	and	supplies	that	view	with	any	necessary	information.	Since	RottenPotatoes	has	only
one	model	(Movies),	it	also	has	only	one	controller,	the	Movies	controller.	The	actions	defined	in	that
controller	can	handle	each	type	of	user	interaction	with	any	Movie	view	(clicking	on	links	or	buttons,
for	example)	and	contain	the	necessary	logic	to	obtain	Model	data	to	render	any	of	the	Movie	views.

Given	that	SaaS	apps	have	always	been	view-centric	and	have	always	relied	on	a	persistence	tier,	Rails’
choice	 of	MVC	as	 the	 underlying	 architecture	might	 seem	 like	 an	 obvious	 fit.	But	 other	 choices	 are
possible,	such	as	those	in	Figure	2.9	excerpted	from	Martin	Fowler’s	Catalog	of	Patterns	of	Enterprise
Application	 Architecture.	 Apps	 consisting	 of	 mostly	 static	 content	 with	 only	 a	 small	 amount	 of

http://en.wikipedia.org/wiki/Model-View-Controller
http://en.wikipedia.org/wiki/model-view-controller
http://en.wikipedia.org/wiki/model-view-controller
http://en.wikipedia.org/wiki/model-view-controller
http://martinfowler.com/eaaCatalog

dynamically-generated	 content,	 such	 as	 a	weather	 site,	might	 choose	 the	Template	View	 pattern.	 The
Page	Controller	 pattern	works	well	 for	 an	 application	 that	 is	 easily	 structured	 as	 a	 small	 number	 of
distinct	pages,	effectively	giving	each	page	its	own	simple	controller	that	only	knows	how	to	generate
that	page.	For	an	application	 that	 takes	a	user	 through	a	 sequence	of	pages	 (such	as	 signing	up	 for	a
mailing	list)	but	has	few	models,	the	Front	Controller	pattern	might	suffice,	in	which	a	single	controller
handles	all	incoming	requests	rather	than	separate	controllers	handling	requests	for	each	model.

Figure	2.9:	Comparing	Web	app	architectural	patterns.	Models	are	rounded	rectangles,	controllers	are	rectangles,	and	views	are	document
icons.	Page	Controller	(left),	used	by	Sinatra,	has	a	controller	for	each	logical	page	of	the	app.	Front	Controller	(top	center),	used	by	Java
2	Enterprise	Edition	(J2EE)	servlets,	has	a	single	controller	that	relies	on	methods	in	a	variety	of	models	to	generate	one	of	a	collection	of
views.	Template	View	(bottom	center),	used	by	PHP,	emphasizes	building	the	app	around	the	views,	with	logic	in	the	models	generating
dynamic	content	in	place	of	part	of	the	views;	the	controller	is	implicit	in	the	framework.	Model-View-Controller	(right),	used	by	Rails
and	Java	Spring,	associates	a	controller	and	a	set	of	views	with	each	model	type.

Figure	2.10	summarizes	our	latest	understanding	of	the	structure	of	a	SaaS	app.

Figure	2.10:	Step	2a	has	been	expanded	to	show	the	role	of	the	MVC	architecture	in	fulfilling	a	SaaS	app	request.

Summary
The	Model-View-Controller	or	MVC	design	pattern	distinguishes	models	that	implement	business
logic,	views	 that	present	 information	 to	 the	user	and	allow	 the	user	 to	 interact	with	 the	app,	and
controllers	that	mediate	the	interaction	between	views	and	models.
In	MVC	SaaS	apps,	 every	user	 action	 that	 can	be	performed	on	a	web	page—clicking	a	 link	or
button,	submitting	a	fill-in	form,	or	using	drag-and-drop—is	eventually	handled	by	some	controller
action,	which	will	 consult	 the	model(s)	 as	 needed	 to	 obtain	 information	 and	 generate	 a	 view	 in
response.
MVC	is	appropriate	for	interactive	SaaS	apps	with	a	variety	of	model	types,	where	it	makes	sense
to	situate	controllers	and	views	along	with	each	type	of	model.	Other	architectural	patterns	may	be

http://en.wikipedia.org/wiki/Model-View-Controller

more	appropriate	for	smaller	apps	with	fewer	models	or	a	smaller	repertoire	of	operations.

Self-Check	 2.5.1.	Which	 tier(s)	 in	 the	 three-tier	 architecture	 are	 involved	 in	 handling	 each	 of	 the
following:	(a)	models,	(b)	controllers,	(c)	views?
	(a)	models:	 logic	and	persistence	tiers;	(b)	controllers:	 logic	and	presentation	tiers;	(c)	views:	 logic

and	presentation	tiers.

2.6	500	Feet:	Active	Record	for	Models

How	do	the	models,	views,	and	controllers	actually	do	their	jobs?	Again,	we	can	go	far	by	describing
them	in	terms	of	patterns.

Every	nontrivial	application	needs	to	store	and	manipulate	persistent	data.	Whether	using	a	database,	a
plain	file,	or	other	persistent	storage	location,	we	need	a	way	to	convert	between	the	data	structures	or
objects	 manipulated	 by	 the	 application	 code	 and	 the	 way	 that	 data	 is	 stored.	 In	 the	 version	 of
RottenPotatoes	used	in	this	chapter,	the	only	persistent	data	is	information	about	movies.	Each	movie’s
attributes	include	its	title,	release	date,	MPAA	rating,	and	short	“blurb”	summarizing	the	movie.	A	naive
approach	 might	 be	 to	 store	 the	 movie	 information	 in	 a	 plain	 text	 file,	 with	 one	 line	 of	 the	 file
corresponding	to	one	movie	and	attributes	separated	by	commas:

http://pastebin.com/FYLxpiAT

	1				Gone	with	the	Wind,G,1939-12-15,An	American	classic	...

	2				Casablanca,PG,1942-11-26,Casablanca	is	a	classic	and...

To	retrieve	movie	information,	we	would	read	each	line	of	the	file	and	split	it	into	fields	at	the	commas.
Of	course	we	will	run	into	a	problem	with	the	movie	Food,	Inc.	whose	title	contains	a	comma:

http://pastebin.com/LFSX4LSH

	1				Food,	Inc.,PG,2008-09-07,The	current	method	of	raw...

We	might	try	to	fix	this	by	surrounding	each	field	with	quote	marks:

http://pastebin.com/KubsyZHq

	1				"Food,	Inc.","PG","2008-09-07","The	current	method	of	raw..."

...which	will	be	fine	until	we	try	to	enter	 the	movie	Waiting	for	”Superman”.	As	this	example	shows,
devising	even	a	simple	storage	format	involves	tricky	pitfalls,	and	would	require	writing	code	to	convert
an	 in-memory	 object	 to	 our	 storage	 representation	 (called	marshalling	 or	 serializing	 the	 object)	 and
vice	versa	(unmarshalling	or	deserializing).

http://pastebin.com/FYLxpiAT
http://pastebin.com/LFSX4LSH
http://pastebin.com/KubsyZHq
http://en.wikipedia.org/wiki/serialization
http://en.wikipedia.org/wiki/serialization

			Edgar	F.	“Ted”	Codd	(1923–2003)	received	the	1981	Turing	Award	for	inventing
the	relational	algebra	formalism	underlying	relational	databases.

Fortunately,	the	need	to	persist	objects	is	so	common	that	several	design	patterns	have	evolved	to	fulfill
it.	A	subset	of	these	patterns	makes	use	of	structured	storage—storage	systems	that	allow	you	to	simply
specify	the	desired	structure	of	stored	objects	rather	than	writing	explicit	code	to	create	that	structure,
and	 in	 some	cases,	 to	 specify	 relationships	connecting	objects	of	different	 types.	Relational	database
management	 systems	 (RDBMSs)	 evolved	 in	 the	 early	 1970s	 as	 elegant	 structured	 storage	 systems
whose	design	was	based	on	a	 formalism	for	 representing	structure	and	 relationships.	We	will	discuss
RDBMSs	in	more	detail	later,	but	in	brief,	an	RDBMS	stores	a	collection	of	tables,	each	of	which	stores
entities	 with	 a	 common	 set	 of	 attributes.	 One	 row	 in	 the	 table	 corresponds	 to	 one	 entity,	 and	 the
columns	 in	 that	 row	 correspond	 to	 the	 attribute	 values	 for	 that	 entity.	 The	 movies	 table	 for
RottenPotatoes	includes	columns	for	title,	rating,	release_date,	and	description,	and	 the	rows
of	the	table	look	like	Figure	2.11.

id title rating release_date description

1 Gone	with	the	Wind G 1939-12-15 An	American	classic	...
2 Casablanca PG 1942-11-26 Casablanca	is	a...

Figure	2.11:	A	possible	RDBMS	table	for	storing	movie	information.	The	id	column	gives	each	row’s	primary	key	or	permanent	and
unique	identifier.	Most	databases	can	be	configured	to	assign	primary	keys	automatically	in	various	ways;	Rails	uses	the	very	common
convention	of	assigning	integers	in	increasing	order.

Since	it	is	the	responsibility	of	the	Models	to	manage	the	application’s	data,	some	correspondence	must
be	 established	 between	 the	 operations	 on	 a	 model	 object	 in	 memory	 (for	 example,	 an	 object
representing	 a	movie)	 and	 how	 it	 is	 represented	 and	manipulated	 in	 the	 storage	 tier.	 The	 in-memory
object	is	usually	represented	by	a	class	that,	among	other	things,	provides	a	way	to	represent	the	object’s
attributes,	such	as	the	title	and	rating	in	the	case	of	a	movie.	The	choice	made	by	the	Rails	framework	is
to	use	the	Active	Record	architectural	pattern.	In	this	pattern,	a	single	instance	of	a	model	class	(in	our
case,	the	entry	for	a	single	movie)	corresponds	to	a	single	row	in	a	specific	table	of	an	RDBMS.	The
model	object	has	built-in	behaviors	that	directly	operate	on	the	database	representation	of	the	object:
	

Create	a	new	row	in	the	table	(representing	a	new	object),
Read	an	existing	row	into	a	single	object	instance,
Update	an	existing	row	with	new	attribute	values	from	a	modified	object	instance,
Delete	a	row	(destroying	the	object’s	data	forever).

http://en.wikipedia.org/wiki/relational_algebra
http://en.wikipedia.org/wiki/structured_storage
http://en.wikipedia.org/wiki/primary_key
http://en.wikipedia.org/wiki/Active_record_pattern

This	 collection	 of	 four	 commands	 is	 often	 abbreviated	 CRUD.	 Later	 we	 will	 add	 the	 ability	 for
moviegoers	to	review	their	favorite	movies,	so	there	will	be	a	one-to-many	relationship	or	association
between	 a	moviegoer	 and	 her	 reviews;	 Active	 Record	 exploits	 existing	mechanisms	 in	 the	 RDBMS
based	on	foreign	keys	(which	we’ll	learn	about	later)	to	make	it	easy	to	implement	these	associations	on
the	in-memory	objects.

Summary
One	important	job	of	the	Model	in	an	MVC	SaaS	app	is	to	persist	data,	which	requires	converting
between	the	in-memory	representation	of	an	object	and	its	representation	in	permanent	storage.
Various	 design	 patterns	 have	 evolved	 to	 meet	 this	 requirement,	 many	 of	 them	 making	 use	 of
structured	storage	such	as	Relational	Database	Management	Systems	 (RDBMSs)	 to	 simplify	not
only	the	storage	of	model	data	but	the	maintenance	of	relationships	among	models.
The	 four	basic	operations	 supported	by	RDBMSs	are	Create,	Read,	Update,	Delete	 (abbreviated
CRUD).
In	 the	ActiveRecord	design	pattern,	 every	model	knows	how	 to	do	 the	CRUD	operations	 for	 its
type	of	object.	The	Rails	ActiveRecord	library	provides	rich	functionality	for	SaaS	apps	to	use	this
pattern.

Self-Check	2.6.1.	Which	of	the	following	are	examples	of	structured	storage:	(a)	an	Excel	spreadsheet,
(b)	a	plain	 text	 file	 containing	 the	 text	of	 an	email	message,	 (c)	 a	 text	 file	 consisting	of	names,	with
exactly	one	name	per	line.
	 (a)	 and	 (c)	 are	 structured,	 since	 an	 app	 reading	 those	 files	 can	 make	 assumptions	 about	 how	 to

interpret	the	content	based	on	structure	alone.	(b)	is	unstructured.

2.7	500	Feet:	Routes,	Controllers,	and	REST

Active	Record	gives	each	model	the	knowledge	of	how	to	create,	read,	update,	and	delete	instances	of
itself	 in	 the	 database	 (CRUD).	 Recall	 from	 Section	 2.5	 that	 in	 the	MVC	 pattern,	 controller	 actions
mediate	 the	user’s	Web	browser	 interactions	 that	cause	CRUD	requests,	 and	 in	Rails,	 each	controller
action	 is	 handled	 by	 a	 particular	 Ruby	method	 in	 a	 controller	 file.	 Therefore,	 each	 incoming	HTTP
request	must	be	mapped	to	the	appropriate	controller	and	method.	This	mapping	is	called	a	route.

As	Figure	2.3	showed,	an	HTTP	request	is	characterized	by	the	combination	of	its	URI	and	the	HTTP
method,	sometimes	also	called	the	HTTP	verb.	Of	the	roughly	half	dozen	methods	defined	by	the	HTTP
standard,	the	most	widely	used	in	Web	apps	and	service-oriented	architecture	are	GET,	POST,	PUT,	and
DELETE.	 Since	 the	 term	method	 can	mean	 either	 a	 function	 or	 the	HTTP	method	 of	 a	 request,	when
discussing	routes	we	will	use	method	to	mean	the	HTTP	verb	associated	with	a	request	and	controller
action	or	simply	action	to	mean	the	application	code	(method	or	function)	that	handles	the	request.

A	route,	then,	associates	a	URI	plus	an	HTTP	method	with	a	particular	controller	and	action.	In	2000,
Roy	Fielding	proposed,	 in	 his	 Ph.D.	 dissertation,	 a	 consistent	way	 to	map	 requests	 to	 actions	 that	 is
particularly	well	suited	 to	a	service-oriented	architecture.	His	 idea	was	 to	 identify	 the	various	entities
manipulated	by	a	Web	app	as	resources,	and	design	the	routes	so	that	any	HTTP	request	would	contain
all	the	information	necessary	to	identify	both	a	particular	resource	and	the	action	to	be	performed	on	it.

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/Representational_state_transfer

He	called	the	idea	Representational	State	Transfer,	or	REST	for	short.

Although	 simple	 to	 explain,	 REST	 is	 an	 unexpectedly	 powerful	 organizing	 principle	 for	 SaaS
applications,	 because	 it	 makes	 the	 app	 designer	 think	 carefully	 about	 exactly	 what	 conditions	 or
assumptions	 each	 request	 depends	 on	 in	 order	 to	 be	 self-contained	 and	 how	 each	 type	 of	 entity
manipulated	 by	 the	 app	 can	 be	 represented	 as	 a	 “resource”	 on	 which	 various	 operations	 can	 be
performed.	 Apps	 designed	 in	 accordance	 with	 this	 guideline	 are	 said	 to	 expose	 RESTful	 APIs
(Application	 Programming	 Interfaces),	 and	 the	 URIs	 that	 map	 to	 particular	 actions	 are	 said	 to	 be
RESTful	URIs.

			In	Rails,	the	route	mappings	are	generated	by	code	in	the	file	config/routes.rb,	which	we’ll
learn	about	in	Chapter	4.	While	Rails	doesn’t	mandate	that	routes	be	RESTful,	its	built-in	support	for
routing	 assumes	 REST	 by	 default.	 Figure	 2.12	 explains	 the	 information	 displayed	 when	 you	 type
rake	routes	in	a	terminal	window	while	in	the	rottenpotatoes	directory.

rake	runs	maintenance	tasks	defined	in	RottenPotatoes’	Rakefile.	rake	--help	shows	other	options.

In	a	URI	such	as	/movies/:id,	 the	tokens	beginning	with	‘:’	are	parameters	of	the	route;	in	this	case
:id	 represents	 the	 id	 attribute	 (primary	 key)	 of	 a	 model	 instance.	 For	 example,	 the	 route
GET	/movies/8	will	match	the	second	row	of	Figure	2.12	with	:id	having	the	value	8;	therefore	it	is	a
request	to	display	the	details	for	the	movie	whose	ID	in	the	Movies	table	is	8,	if	such	a	movie	exists.
Similarly,	the	route	GET	/movies	matches	 the	first	 row,	 requesting	a	 list	of	all	 the	movies	 (the	Index
action),	 and	 the	 route	 POST	 /movies	 matches	 the	 fourth	 row	 and	 creates	 a	 new	movie	 entry	 in	 the
database.	 (The	POST	/movies	 route	doesn’t	 specify	 an	id	 because	 the	new	movie	won’t	 have	 an	 ID
until	after	it’s	created.)	Note	that	the	Index	and	Create	actions	have	the	same	URI	but	different	HTTP
methods,	which	makes	them	distinct	routes.

Operation	on	resource Method	&	URI Controller	action
Index	(list)	movies GET /movies index

Read	(show)	existing	movie GET /movies/:id show

Display	fill-in	form	for	new	movie GET /movies/new new

Create	new	movie	from	filled-in	form POST /movies create

Display	form	to	edit	existing	movie GET /movies/:id/edit edit

Update	movie	from	fill-in	form PUT /movies/:id update

Destroy	existing	movie DELETE /movies/:id destroy

Figure	2.12:	A	summary	of	the	output	of	rake	routes	showing	the	routes	recognized	by	RottenPotatoes	and	the	CRUD	action
represented	by	each	route.	The	rightmost	column	shows	which	Rails	controller	action	in	the	Movies	controller	would	be	called	when	a
request	matches	the	given	URI	and	HTTP	method.	The	mapping	of	routes	to	methods	relies	heavily	on	convention	over	configuration,	as
we’ll	see	in	Chapter	4.

Critically,	 a	 RESTful	 interface	 simplifies	 participating	 in	 a	 Service-Oriented	Architecture	 because	 if
every	 request	 is	 self-contained,	 interactions	 between	 services	 don’t	 need	 to	 establish	 or	 rely	 on	 the
concept	of	an	ongoing	session,	as	many	SaaS	apps	do	when	 interacting	with	human	users	via	a	Web

http://en.wikipedia.org/wiki/Representational_State_Transfer

browser.	 This	 is	 why	 Jeff	 Bezos’s	 mandate	 (Section	 1.4)	 that	 all	 internal	 Amazon	 services	 have
“externalizable”	APIs	was	so	forward-looking.

Indeed,	modern	practice	suggests	that	even	when	creating	a	user-facing	SaaS	app	designed	to	be	used
via	a	browser,	we	should	think	of	the	app	primarily	as	a	collection	of	resources	accessible	via	RESTful
APIs	 that	 happen	 to	 be	 accessed	 via	 a	Web	 browser.	 Unfortunately,	 this	 presents	 a	 minor	 problem,
which	 you	may	 have	 already	 spotted	 if	 you	 have	 prior	Web	 programming	 experience.	 The	 routes	 in
Figure	2.12	make	 use	 of	 four	 different	HTTP	methods—GET,	 POST,	 PUT	 and	 DELETE—and	 even	 use
different	 methods	 to	 distinguish	 routes	 with	 the	 same	 URI.	 However,	 for	 historical	 reasons,	 Web
browsers	only	implement	GET	(for	following	a	link)	and	POST	(for	submitting	forms).

Actually,	most	browsers	also	implement	HEAD,	which	requests	metadata	about	a	resource,	but	we	needn’t	worry	about	that	here.

To	 compensate,	 Rails’	 routing	 mechanism	 lets	 browsers	 use	 POST	 for	 requests	 that	 normally	 would
require	PUT	or	DELETE.	Rails	annotates	 the	Web	forms	associated	with	such	requests	so	that	when	the
request	 is	 submitted,	 Rails	 can	 recognize	 it	 as	 special	 and	 can	 internally	 change	 the	 HTTP	method
“seen”	by	the	controller	to	PUT	or	DELETE	as	appropriate.	The	result	 is	 that	 the	Rails	programmer	can
operate	under	the	assumption	that	PUT	and	DELETE	are	actually	supported,	even	though	browsers	don’t
implement	 them.	The	advantage,	as	we	will	see,	 is	 that	 the	same	set	of	routes	and	controller	methods
can	be	used	to	handle	either	requests	coming	from	a	browser	(that	is,	from	a	human	being)	and	requests
coming	from	another	service	in	a	SOA.

Exploring	this	 important	duality	further,	observe	in	Figure	2.12	that	the	new	and	create	 routes	 (third
and	fourth	rows	of	the	table)	both	appear	to	be	involved	in	handling	the	creation	of	a	new	movie.	Why
are	two	routes	needed	for	this	action?	The	reason	is	that	in	a	user-facing	Web	app,	two	interactions	are
required	to	create	a	new	movie,	as	Screencast	2.7.1	shows;	whereas	in	a	SOA,	the	remote	service	can
create	a	single	request	containing	all	the	information	needed	to	create	the	new	movie,	so	it	would	never
need	to	use	the	new	route.

Screencast	2.7.1:	Create	and	Update	each	require	two	interactions
Creating	a	new	movie	requires	two	interactions	with	RottenPotatoes,	because	before	the	user	can	submit
information	about	the	movie	he	must	be	presented	with	a	form	in	which	to	enter	that	information.	The
empty	 form	 is	 therefore	 the	 resource	 named	 by	 the	 route	 in	 the	 third	 row	 of	 Figure	 2.12,	 and	 the
submission	of	the	filled-in	form	is	the	resource	named	by	the	route	in	the	fourth	row.	Similarly,	updating
an	existing	movie	requires	one	resource	consisting	of	an	editable	form	showing	the	existing	movie	info
(fifth	row)	and	a	second	resource	consisting	of	the	submission	of	the	edited	form	(sixth	row).

RESTfulness	may	 seem	 an	 obvious	 design	 choice,	 but	 until	 Fielding	 crisply	 characterized	 the	REST
philosophy	 and	 began	 promulgating	 it,	 many	Web	 apps	 were	 designed	 non-RESTfully.	 Figure	 2.13
shows	how	a	hypothetical	non-RESTful	e-commerce	site	might	implement	the	functionality	of	allowing
a	 user	 to	 login,	 adding	 a	 specific	 item	 to	 his	 shopping	 cart,	 and	 proceeding	 to	 checkout.	 For	 the
hypothetical	non-RESTful	site,	every	request	after	the	login	(line	3)	relies	on	implicit	information:	line
4	assumes	the	site	“remembers”	who	the	currently-logged-in	user	is	to	show	him	his	welcome	page,	and
line	7	assumes	the	site	“remembers”	who	has	been	adding	items	to	their	cart	for	checkout.	In	contrast,
each	URI	 for	 the	RESTful	 site	 contains	 enough	 information	 to	 satisfy	 the	 request	without	 relying	on

http://vimeo.com/34754622

such	implicit	information:	after	Dave	logs	in,	the	fact	that	his	user	ID	is	301	is	present	in	every	request,
and	 his	 cart	 is	 identified	 explicitly	 by	 his	 user	 ID	 rather	 than	 implicitly	 based	 on	 the	 notion	 of	 a
currently-logged-in	user.

Non-RESTful	site	URI RESTful	site	URI
Login	to	site POST	/login/dave POST	/login/dave

Welcome	page GET		/welcome GET		/user/301/welcome

Add	item	ID	427	to	cart POST	/add/427 POST	/user/301/add/427

View	cart GET	/	cart GET		/user/301/cart

Checkout POST	/checkout POST	/user/301/checkout

Figure	2.13:	Non-RESTful	requests	and	routes	are	those	that	rely	on	the	results	of	previous	requests.	In	a	Service-Oriented	Architecture,
a	client	of	the	RESTful	site	could	immediately	request	to	view	the	cart	(line	6),	but	a	client	of	the	non-RESTful	site	would	first	have	to
perform	lines	3–5	to	set	up	the	implicit	information	on	which	line	6	depends.

Summary:	Routes	and	RESTfulness
A	route	consists	of	an	HTTP	method	(GET,	POST,	PUT,	or	DELETE)	and	a	URI,	which	may	include
some	parameters.	App	frameworks	such	as	Rails	map	routes	to	controller	actions.
An	app	designed	in	accordance	with	REST	(REpresentational	State	Transfer)	can	be	seen	from	the
outside	 as	 a	 collection	 of	 entities	 on	 which	 specific	 operations	 can	 be	 performed,	 with	 each
operation	having	a	corresponding	RESTful	 request	 that	 includes	all	 the	 information	necessary	 to
complete	the	action.
When	 routes	and	 resources	are	RESTful,	 the	 same	controller	 logic	can	usually	 serve	user-facing
pages	 via	 a	 Web	 browser	 or	 requests	 arriving	 from	 other	 services	 in	 a	 SOA.	 Although	 web
browsers	only	support	the	GET	and	POST	HTTP	methods,	framework	logic	can	compensate	so	that
the	programmer	can	work	under	the	assumption	that	all	methods	are	available.

ELABORATION:	REST	vs.	SOAP	vs.	WS-*
In	 the	 late	1990s,	 as	 interest	 in	SOA	 increased,	vendors	 and	 standards	bodies	 created	 committees	 to	develop	 standards	 for	SOA
interoperation.	 One	 approach	 resulted	 in	 a	 collection	 of	 elaborate	 protocols	 for	Web	 Services	 including	 WS-Discovery,	 WS-
Description,	and	others,	sometimes	collectively	called	WS-*	and	 jokingly	called	“WS-Deathstar”	by	David	Heinemeier	Hansson,
the	creator	of	Rails.	The	competing	SOAP	standard	(Simple	Object	Access	Protocol)	was	a	bit	simpler	but	still	far	more	complex
than	REST.	By	and	large,	practicing	developers	perceived	SOAP	and	WS-*	as	overdesigned	committee-driven	standards	burdened
by	 the	archaic	design	 stance	of	 enterprise-based	 interoperation	 standards	 such	as	CORBA	and	DCOM,	which	preceded	 them.	 In
contrast,	although	REST	is	dramatically	simpler	and	is	more	of	a	philosophy	than	a	standard,	it	appealed	immediately	to	developers,
so	that	is	how	the	majority	of	SOA	apps	are	built	today.

Self-Check	2.7.1.	True	or	false:	If	an	app	has	a	RESTful	API,	it	must	be	performing	CRUD	operations.
	False.	The	REST	principle	can	be	applied	to	any	kind	of	operation,	as	long	as	the	app	represents	its

entities	as	resources	and	specifies	what	operations	are	allowed	on	each	type	of	resource.

Self-Check	2.7.2.	True	or	false:	Supporting	RESTful	operations	simplifies	integrating	a	SaaS	app	with
other	services	in	a	Service-Oriented	Architecture.
	True.

http://en.wikipedia.org/wiki/List_of_web_service_specifications
http://en.wikipedia.org/wiki/SOAP

2.8	500	Feet:	Template	Views

We	 conclude	 our	 brief	 tour	 with	 a	 look	 at	 views.	 Because	 user-facing	 SaaS	 applications	 primarily
deliver	HTML	 pages,	most	 frameworks	 provide	 a	way	 to	 create	 a	 page	 of	 static	markup	 (HTML	 or
otherwise)	interspersed	with	variables	or	very	brief	snippets	of	code.	At	runtime,	the	variable	values	or
results	 of	 code	 execution	 are	 substituted	or	 interpolated	 into	 the	page.	This	 architecture	 is	 known	as
Template	View,	and	it	is	the	basis	of	many	SaaS	frameworks	including	Rails,	Django,	and	PHP.

We	prefer	Haml’s	conciseness	to	Rails’	built-in	erb	templating	system,	so	Haml	is	preinstalled	with	the	bookware.

We	will	use	a	 templating	system	called	Haml	(for	HTML	Abstraction	Markup	Language,	pronounced
“HAM-ell”)	to	streamline	the	creation	of	HTML	template	views.	We	will	learn	more	details	and	create
our	own	views	in	Chapter	4,	but	in	the	interest	of	visiting	all	the	“moving	parts”	of	a	Rails	app,	open
app/views/movies/index.html.haml	 in	 the	RottenPotatoes	 directory.	This	 is	 the	 view	 used	 by	 the
Index	controller	action	on	movies;	by	convention	over	configuration,	the	suffixes	.html.haml	indicate
that	the	view	should	be	processed	using	Haml	to	create	index.html,	and	the	location	and	name	of	the
file	identify	it	as	the	view	for	the	index	action	in	the	movies	controller.	Screencast	2.8.1	presents	the

basics	of	Haml,	summarized	in	Figure	2.14.	 		

Screencast	2.8.1:	Interpolation	into	views	using	Haml
In	a	Haml	template,	lines	beginning	with	%	expand	into	the	corresponding	HTML	opening	tag,	with	no
closing	tag	needed	since	Haml	uses	indentation	to	determine	structure.	Ruby-like	hashes	following	a	tag
become	HTML	attributes.	Lines	–beginning	with	a	dash	are	executed	as	Ruby	code	with	the	result
discarded,	 and	 lines	=beginning	with	an	equals	sign	 are	 executed	as	Ruby	code	with	 the	 result
interpolated	into	the	HTML	output.

Haml HTML
%br{:clear	=>	’left’} <br	clear=”left”/>

%p.foo	Hello <p	class=”foo”>Hello</p>

%p#foo	Hello <p	id=”foo”>Hello</p>

.foo <div	class=”foo”>.	.	.	</div>

#foo.bar <div	id=”foo”	class=”bar”>.	.	.	</div>

Figure	2.14:	Some	commonly	used	Haml	constructs	and	the	resulting	HTML.	A	Haml	tag	beginning	with	%	must	either	contain	the	tag
and	all	its	content	on	a	single	line,	as	in	lines	1–3	of	the	table,	or	must	appear	by	itself	on	the	line	as	in	lines	4–5,	in	which	case	all	of	the
tag’s	content	must	be	indented	by	2	spaces	on	subsequent	lines.	Notice	that	Haml	specifies	class	and	id	attributes	using	a	notation
deliberately	similar	to	CSS	selectors.

According	to	MVC,	views	should	contain	as	little	code	as	possible.	Although	Haml	technically	permits
arbitrarily	 complex	 Ruby	 code	 in	 a	 template,	 its	 syntax	 for	 including	 a	 multi-line	 piece	 of	 code	 is
deliberately	awkward,	to	discourage	programmers	from	doing	so.	Indeed,	the	only	“computation”	in	the
Index	view	of	RottenPotatoes	 is	 limited	 to	 iterating	over	a	collection	 (provided	by	 the	Model	via	 the
Controller)	and	generating	an	HTML	table	row	to	display	each	element.

http://en.wikipedia.org/wiki/Variable_(programming)#Interpolation
http://vimeo.com/34754654

In	contrast,	applications	written	using	the	PHP	framework	often	mingle	large	amounts	of	code	into	the
view	templates,	and	while	it’s	possible	for	a	disciplined	PHP	programmer	to	separate	the	views	from	the
code,	 the	PHP	 framework	 itself	 provides	 no	 particular	 support	 for	 doing	 this,	 nor	 does	 it	 reward	 the
effort.	MVC	advocates	argue	 that	distinguishing	 the	controller	 from	the	view	makes	 it	easier	 to	 think
first	about	structuring	an	app	as	a	set	of	RESTful	actions,	and	later	about	rendering	the	results	of	these
actions	in	a	separate	View	step.	Section	1.4	made	the	case	for	Service-Oriented	Architecture;	it	should
now	 be	 clear	 how	 the	 separation	 of	 models,	 views	 and	 controllers,	 and	 adherence	 to	 a	 RESTful
controller	style,	naturally	leads	to	an	application	whose	actions	are	easy	to	“externalize”	as	standalone
API	actions.

ELABORATION:	Alternatives	to	Template	View
Because	all	Web	apps	must	ultimately	deliver	HTML	to	a	browser,	building	the	output	(view)	around	a	static	HTML	“template”	has
always	made	sense	for	Web	apps,	hence	the	popularity	of	the	Template	View	pattern	for	rendering	views.	That	is,	the	input	to	the
view-rendering	stage	includes	both	the	HTML	template	and	a	set	of	Ruby	variables	that	Haml	will	use	to	“fill	in”	dynamic	content.
An	alternative	is	the	Transform	View	pattern	(Fowler	2002),	in	which	the	input	to	the	view	stage	is	only	the	set	of	objects.	The	view
code	then	includes	all	the	logic	for	converting	the	objects	to	the	desired	view	representation.	This	pattern	makes	more	sense	if	many
different	representations	are	possible,	since	the	view	layer	is	no	longer	“built	around”	any	particular	representation.	An	example	of
Transform	View	in	Rails	is	a	set	of	Rails	methods	that	accept	ActiveRecord	resources	and	generate	pure-XML	representations	of	the
resources—they	do	not	instantiate	any	“template”	to	do	so,	but	rather	create	the	XML	starting	with	just	the	ActiveRecord	objects.
These	methods	are	used	to	quickly	convert	an	HTML-serving	Rails	app	into	one	that	can	be	part	of	a	Service-Oriented	Architecture.

Self-Check	 2.8.1.	 What	 is	 the	 role	 of	 indentation	 in	 the	 Index	 view	 for	 Movies	 described	 in
Screencast	2.8.1?
	When	one	HTML	element	encloses	other	elements,	indentation	tells	Haml	the	structure	of	the	nesting

so	that	it	can	generate	closing	tags	such	as	</tr>	in	the	proper	places.

Self-Check	2.8.2.	In	 the	Index	view	for	Movies,	why	does	 the	Haml	markup	in	 line	11	begin	with	–,
while	the	markup	in	lines	13–16	begins	with	=?

	In	line	10	we	just	need	the	code	to	execute,	to	start	the	for-loop.	In	lines	13–16	we	want	to	substitute
the	result	of	executing	the	code	into	the	view.

2.9	Fallacies	and	Pitfalls

			Fallacy:	Rails	doesn’t	scale	(or	Django,	or	PHP,	or	other	frameworks).

With	the	shared-nothing	3-tier	architecture	depicted	in	Figure	2.7,	the	Web	server	and	app	server	tiers
(where	Rails	apps	would	run)	can	be	scaled	almost	arbitrarily	far	by	adding	computers	in	each	tier	using
cloud	computing.	The	challenge	lies	in	scaling	the	database,	as	the	next	Pitfall	explains.

			Pitfall:	Putting	all	model	data	in	an	RDBMS	on	a	single	server	computer,	thereby	limiting
scalability.

The	 power	 of	 RDBMSs	 is	 a	 double-edged	 sword.	 It’s	 easy	 to	 create	 database	 structures	 prone	 to
scalability	 problems	 that	might	 not	 emerge	 until	 a	 service	 grows	 to	 hundreds	 of	 thousands	 of	 users.
Some	 developers	 feel	 that	 Rails	 compounds	 this	 problem	 because	 its	 Model	 abstractions	 are	 so
productive	 that	 it	 is	 tempting	 to	 use	 them	 without	 thinking	 of	 the	 scalability	 consequences.

Unfortunately,	unlike	with	the	Web	server	and	app	tiers,	we	cannot	“scale	our	way	out”	of	this	problem
by	 simply	 deploying	 many	 copies	 of	 the	 database	 because	 this	 might	 result	 in	 different	 values	 for
different	copies	of	the	same	item	(the	data	consistency	problem).	Although	techniques	such	as	master-
slave	 replication	 and	 database	 sharding	 help	 make	 the	 database	 tier	 more	 like	 the	 shared-nothing
presentation	 and	 logic	 tiers,	 extreme	 database	 scalability	 remains	 an	 area	 of	 both	 research	 and
engineering	effort.

			Pitfall:	Prematurely	focusing	on	per-computer	performance	of	your	SaaS	app.

Although	 the	 shared-nothing	 architecture	 makes	 horizontal	 scaling	 easy,	 we	 still	 need	 physical
computers	 to	 do	 it.	 Adding	 a	 computer	 used	 to	 be	 expensive	 (buy	 the	 computer),	 time-consuming
(configure	and	install	the	computer),	and	permanent	(if	demand	subsides	later,	you’ll	be	paying	for	an
idle	computer).	With	cloud	computing,	all	 three	problems	are	alleviated,	since	we	can	add	computers
instantly	for	pennies	per	hour	and	release	them	when	we	don’t	need	them	anymore.	Hence,	until	a	SaaS
app	 becomes	 large	 enough	 to	 require	 hundreds	 of	 computers,	 SaaS	 developers	 should	 focus	 on
horizontal	scalability	rather	than	per-computer	performance.

2.10	Concluding	Remarks:	Patterns,	Architecture,	and	Long-Lived	APIs

An	API	that	isn’t	comprehensible	isn’t	usable.
—James	Gosling

To	understand	the	architecture	of	a	software	system	is	 to	understand	its	organizing	principles.	We	did
this	by	 identifying	patterns	at	many	different	 levels:	client-server,	 three-tier	architecture,	model-view-
controller,	Active	Record,	REST.

Patterns	are	a	powerful	way	to	manage	complexity	in	large	software	systems.	Inspired	by	Christopher
Alexander’s	1977	book	A	Pattern	Language:	Towns,	Buildings,	Construction	describing	design	patterns
for	civil	architecture,	Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides	(the	“Gang	Of
Four”	 or	GOF)	 published	 the	 seminal	 book	Design	 Patterns:	 Elements	 of	 Reusable	 Object-Oriented
Software	 in	1995	(Gamma	et	al.	1994).	 It	described	what	are	now	called	 the	23	GOF	Design	Patterns
focusing	on	class-level	structures	and	behaviors.	Despite	design	patterns’	popularity	as	a	tool,	they	have
been	the	subject	of	some	critique;	for	example,	Peter	Norvig,	currently	Google’s	Director	of	Research,
has	argued	that	some	design	patterns	just	compensate	for	deficiencies	in	statically-typed	programming
languages	such	as	C++	and	Java,	and	that	the	need	for	them	disappears	in	dynamic	languages	such	as
Lisp	 or	Ruby.	Notwithstanding	 some	 controversy,	 patterns	 of	many	kinds	 remain	 a	 valuable	way	 for
software	engineers	 to	 identify	structure	 in	 their	work	and	bring	proven	solutions	 to	bear	on	 recurring
problems.

Indeed,	 we	 observe	 that	 by	 choosing	 to	 build	 a	 SaaS	 app,	 we	 have	 predetermined	 the	 use	 of	 some
patterns	and	excluded	others.	By	choosing	to	use	Web	standards,	we	have	predetermined	a	client-server
system;	 by	 choosing	 cloud	 computing,	 we	 have	 predetermined	 the	 3-tier	 architecture	 to	 permit
horizontal	scaling.	Model–View–Controller	is	not	predetermined,	but	we	choose	it	because	it	is	a	good
fit	for	Web	apps	that	are	view-centric	and	have	historically	relied	on	a	persistence	tier,	notwithstanding
other	possible	patterns	such	as	those	in	Figure	2.9.	REST	is	not	predetermined,	but	we	choose	it	because
it	simplifies	 integration	 into	a	Service-Oriented	Architecture	and	can	be	readily	applied	 to	 the	CRUD

http://en.wikipedia.org/wiki/data_consistency
http://en.wikipedia.org/wiki/sharding
http://www.norvig.com/design-patterns

operations,	which	are	so	common	in	MVC	apps.	Active	Record	is	perhaps	more	controversial—as	we
will	 see	 in	 Chapters	 4	 and	 5,	 its	 powerful	 facilities	 simplify	 apps	 considerably,	 but	 misusing	 those
facilities	 can	 lead	 to	 scalability	 and	 performance	 problems	 that	 are	 less	 likely	 to	 occur	with	 simpler
persistence	models.

If	 we	 were	 building	 a	 SaaS	 app	 in	 1995,	 none	 of	 the	 above	 would	 have	 been	 obvious	 because
practitioners	 had	 not	 accumulated	 enough	 examples	 of	 successful	 SaaS	 apps	 to	 “extract”	 successful
patterns	into	frameworks	like	Rails,	software	components	like	Apache,	and	middleware	like	Rack.	By
following	 the	 successful	 footsteps	 of	 software	 architects	 before	 us,	 we	 can	 take	 advantage	 of	 their
ability	to	separate	the	things	that	change	from	those	that	stay	the	same	across	many	examples	of	SaaS
and	 provide	 tools,	 frameworks,	 and	 design	 principles	 that	 support	 building	 things	 this	 way.	 As	 we
mentioned	earlier,	this	separation	is	key	to	enabling	reuse.

In	fact,	Rails	itself	was	originally	extracted	from	a	standalone	app	written	by	the	consulting	group	37signals.

Lastly,	 it	 is	worth	remembering	that	a	key	factor	 in	 the	Web’s	success	has	been	the	adoption	of	well-
defined	protocols	 and	 formats	whose	design	allows	 separating	 the	 things	 that	 change	 from	 those	 that
stay	the	same.	TCP/IP,	HTTP,	and	HTML	have	all	gone	through	several	major	revisions,	but	all	include
ways	to	detect	which	version	is	in	use,	so	a	client	can	tell	if	it’s	talking	to	an	older	server	(or	vice	versa)
and	adjust	its	behavior	accordingly.	Although	dealing	with	multiple	protocol	and	language	versions	puts
an	additional	burden	on	browsers,	it	has	led	to	a	remarkable	result:	A	Web	page	created	in	2011,	using	a
markup	 language	based	on	1960s	 technology,	 can	be	 retrieved	using	network	protocols	 developed	 in
1969	and	displayed	by	a	browser	created	in	1992.	Separating	the	things	that	change	from	those	that	stay
the	same	is	part	of	the	path	to	creating	long-lived	software.

Tim	Berners-Lee,	a	computer	scientist	at	CERN,	led	the	development	of	HTTP	and	HTML	in	1990.	Both	are	now	stewarded	by	the
nonprofit	vendor-neutral	World	Wide	Web	Consortium	(W3C).

2.11	To	Learn	More
	

W3Schools	 is	 a	 free	 (advertising-supported)	 site	 with	 tutorials	 on	 almost	 all	 Web-related
technologies.
Nicole	 Sullivan,	 a	 self-described	 “CSS	 ninja,”	 has	 a	 great	 blog	with	 indispensable	 CSS/HTML
advice	for	more	sophisticated	sites.
The	World	Wide	Web	Consortium	 (W3C)	 stewards	 the	 official	 documents	 describing	 the	Web’s
open	standards,	including	HTTP,	HTML,	and	CSS.
The	XML/XHTML	Validator	 is	one	of	many	you	can	use	 to	ensure	 the	pages	delivered	by	your
SaaS	app	are	standards-compliant.
The	 Object-Oriented	 Design	 web	 site	 has	 numerous	 useful	 resources	 for	 developers	 using	 OO
languages,	including	a	nice	catalog	of	the	GoF	design	patterns	with	graphical	descriptions	of	each
pattern,	some	of	which	we	will	discuss	in	detail	in	Chapter	11.

	 M.	Fowler.	Patterns	of	Enterprise	Application	Architecture.	Addison-Wesley	Professional,	2002.
ISBN	0321127420.	URL	http://martinfowler.com/	eaaCatalog/.
E.	Gamma,	R.	Helm,	R.	Johnson,	and	J.	M.	Vlissides.	Design	Patterns:	Elements	of	Reusable	Object-

http://info.cern.ch
http://w3.org
http://w3schools.com
http://www.stubbornella.org/content
http://w3.org
http://validator.w3.org
http://oodesign.com
http://martinfowler.com/eaaCatalog/

	Oriented	Software.	Addison-Wesley	Professional,	1994.	ISBN	0201633612.

2.12	Suggested	Projects

Project	2.1.	If	the	DNS	service	stopped	working,	would	you	still	be	able	to	surf	the	Web?	Explain	why
or	why	not.

Project	2.2.	Suppose	HTTP	cookies	didn’t	exist.	Could	you	devise	another	way	to	track	a	user	across
page	views?	(HINT:	it	involves	modifying	the	URI	and	was	a	widely-used	method	before	cookies	were
invented.)

Project	2.3.	Find	a	Web	page	for	which	 the	W3C’s	online	XHTML	validator	 finds	at	 least	one	error.
Sadly,	this	should	be	easy.	Read	through	the	validation	error	messages	and	try	to	understand	what	each
one	means.

Project	2.4.	What	port	numbers	are	implied	by	each	of	the	following	URIs	and	why:
1.	 https://paypal.com
2.	 http://mysite.com:8000/index
3.	 ssh://root@cs.berkeley.edu/tmp/file	 (HINT:	 recall	 that	 the	 IANA	 establishes	 default	 port

numbers	for	various	network	services.)

Project	2.5.

As	 described	 on	 the	 DuckDuckGo	 Search	 API	 documentation,	 you	 can	 do	 query	 the	 DuckDuckGo
search	engine	for	a	term	by	constructing	a	URI	that	includes	the	search	query	as	a	parameter	named	q,
for	 example,	 http://api.duckduckgo.com/?q=saas	 to	 search	 for	 the	 term	 “saas”.	 However,	 as
Figure	 2.3	 showed,	 some	 characters	 are	 not	 allowed	 in	 URIs	 because	 they	 are	 “special,”	 including
spaces,	 ’?’,	 and	 ’&’.	Given	 this	 restriction,	 construct	 a	 legal	URI	 that	 searches	DuckDuckGo	 for	 the
terms	“M&M”	and	“100%?”.

String#ord	returns	the	string’s	first	codepoint	(numeric	value	corresponding	to	a	character	in	a	character	set).	If	the	string	is	encoded	in
ASCII,	ord	returns	the	first	character’s	ASCII	code.	So	”%”.ord	shows	the	ASCII	code	for	%,	and	”%”.ord.to_s(16)	shows	its
hexadecimal	equivalent.

Project	2.6.	Why	do	Rails	routes	map	to	controller	actions	but	not	model	actions	or	views?

Project	 2.7.	 	 	 	 Given	 a	 high-level	 design,	 identify	 the	 software	 architecture	 by	 differentiating
among	common	software	architectures	such	as	three-tier,	pipe-and-filter,	and	client-server.

Project	2.8.	 			Investigate	the	impact	of	software	architectures	selection	on	the	design	of	a	simple
system.	Look	at	alternatives	to	client-server,	alternatives	to	request-reply,	and	so	on.

http://validator.w3.org
https://api.duckduckgo.com/api
http://en.wikipedia.org/wiki/codepoint
http://en.wikipedia.org/wiki/ASCII

3.	SaaS	Framework:	Introduction	to	Ruby	for	Java	Programmers

			Jim	Gray	(1944–Lost	at	sea	2007)	was	a	friendly	giant	in	computer	science.	He
was	the	first	PhD	in	Computer	Science	from	UC	Berkeley,	and	he	mentored	hundreds	of	PhD	students
and	faculty	around	the	world.	He	received	the	1998	Turing	Award	for	contributions	to	database	and

transaction	processing	research	and	technical	leadership	in	system	implementation.

Well,	the	<omitted>	paper	is	in	good	company	(and	for	the	same	reason).
The	B-tree	paper	was	rejected	at	first.

The	Transaction	paper	was	rejected	at	first.
The	data	cube	paper	was	rejected	at	first.

The	five-minute	rule	paper	was	rejected	at	first.
But	linear	extensions	of	previous	work	get	accepted.

So,	resubmit!	PLEASE!!!
—Jim	Gray,	Email	to	Jim	Larus	about	a	rejected	paper,	2000

3.1	Overview	and	Three	Pillars	of	Ruby
3.2	Everything	is	an	Object
3.3	Every	Operation	is	a	Method	Call
3.4	Classes,	Methods,	and	Inheritance
3.5	All	Programming	is	Metaprogramming
3.6	Blocks:	Iterators,	Functional	Idioms,	and	Closures
3.7	Mix-ins	and	Duck	Typing
3.8	Make	Your	Own	Iterators	Using	Yield
3.9	Fallacies	and	Pitfalls
3.10	Concluding	Remarks:	Idiomatic	Language	Use
3.11	To	Learn	More
3.12	Suggested	Projects

Concepts

This	 chapter	 introduces	 both	 the	 Ruby	 equivalents	 of	 basic	 object-oriented	 techniques	 in	 other
languages	such	as	Java	and	some	Ruby	mechanisms	with	no	Java	counterparts	that	help	with	reuse	and
DRYness.
	

Everything	is	an	object	in	Ruby,	even	a	lowly	integer,	and	all	Ruby	operations	are	accomplished	by
method	calls	on	objects.
Reflection	lets	your	code	inspect	itself	at	runtime	and	metaprogramming	allows	it	to	generate	and
execute	new	code	at	runtime.
Ruby	 borrows	 great	 ideas	 from	 functional	 programming,	 especially	 the	 use	 of	 blocks—
parameterized	chunks	of	code	called	lambda	expressions	that	carry	their	scope	around	with	them,
making	them	closures.
Ruby’s	yield	statement,	which	has	no	Java	counterpart,	enables	reuse	by	separating	the	traversal
of	data	structures	from	operations	on	their	elements	using	a	coroutine-like	mechanism.
Because	 of	 Ruby’s	 dynamic	 typing,	 to	 determine	 whether	 you	 can	 call	 a	 certain	 method	 on	 a
certain	object,	you	don’t	consider	 the	object’s	 type—only	whether	 it	 can	 respond	 to	 the	method.
Some	call	this	feature	duck	typing:	“If	it	looks	like	an	array,	walks	like	an	array,	and	quacks	like	an
array,	then	you	can	treat	it	like	an	array.”

Metaprogramming,	 reflection,	dynamic	 typing,	and	blocks	using	yield	can	be	 tastefully	combined	 to
write	DRYer,	more	concise,	and	more	beautiful	code.

http://en.wikipedia.org/wiki/Reflection
http://en.wikipedia.org/wiki/metaprogramming
http://en.wikipedia.org/wiki/functional_programming
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/closures
http://en.wikipedia.org/wiki/coroutine
http://en.wikipedia.org/wiki/Type_system#Dynamic_typing
http://en.wikipedia.org/wiki/duck_typing

3.1	Overview	and	Three	Pillars	of	Ruby

	 	 	Programming	can	only	be	learned	by	doing,	so	we’ve	placed	this	 icon	in	 the	margin	in	places
where	we	 strongly	 encourage	you	 to	 try	 the	 examples	yourself.	Since	Ruby	 is	 interpreted,	 there’s	 no
compile	 step—you	 get	 instant	 gratification	 when	 trying	 the	 examples,	 and	 exploration	 and
experimentation	are	easy.	Each	example	has	a	 link	 to	Pastebin,	where	you	can	copy	 the	code	for	 that
example	with	a	single	click	and	paste	it	into	a	Ruby	interpreter	or	editor	window.	(If	you’re	reading	the
ebook,	these	links	are	live.)	We	also	encourage	you	to	check	the	official	documentation	for	much	more
detail	on	many	topics	we	introduce	in	Section	3.11.

Ruby	is	a	minimalist	 language:	while	 its	 libraries	are	rich,	 there	are	few	mechanisms	 in	 the	 language
itself	.	Three	principles	underlying	these	mechanisms	will	help	you	read	and	understand	idiomatic	code:

	

1.	 Everything	is	an	object.	In	Java,	some	primitive	types	like	integers	must	be	“boxed”	to	get	them	to
behave	like	objects.

2.	 Every	operation	is	a	method	call	on	some	object	and	returns	a	value.	In	Java,	operator	overloading
is	different	from	method	overriding,	and	it’s	possible	to	have	void	functions	that	return	no	value.

3.	 All	programming	is	metaprogramming:	classes	and	methods	can	be	added	or	changed	at	any	time,
even	while	a	program	is	running.	In	Java,	all	classes	must	be	declared	at	compile	time,	and	base
classes	can’t	be	modified	by	your	app	even	then.

Variables local_variable,	@@class_variable,	@instance_variable
Constants ClassName,	CONSTANT,	$GLOBAL,	$global

Booleans false,	nil	are	false;	true	and	everything	else	(zero,	empty	string,	etc.)
is	true.

Strings	and	Symbols ”string”,	’also	a	string’,	%q{like	single	quotes},	%Q{like
double	quotes},	:symbol
special	characters	(\n)	expanded	in	double-quoted	but	not	single-quoted
strings

Expressions	in	double-quoted
strings

@foo	=	3	;	”Answer	is	#{@foo}”;	%Q{Answer	is	#{@foo+1}}

Regular	expression	matching ”hello”	=˜	/lo/	or	”hello”.match(Regexp.new	’lo’)
Arrays a	=	[1,	:two,	’three’]	;	a[1]	==	:two

Hashes h	=	{:a	=>1,	’b’	=>”two”}	;	h[’b’]	==	”two”	;	h.has_key?

(:a)	==	true

Hashes	(alternate	notation,
Ruby	1.9+)

h	=	{a:	1,	’b’:	”two”}

Instance	method def	method(arg,	arg)...end

		(use	*args	for	variable	number	of	arguments
Class	(static)	method def	ClassName.method(arg,	arg)...end,

def	self.method(arg,	arg)...end

http://pastebin.com

Special	method	names def	setter=(arg,	arg)...end

Ending	these	methods’	names
in	?	and	!

def	boolean_method?(arg,	arg)...end

is	optional	but	idiomatic def	dangerous_method!(arg,	arg)...end

Conditionals Iteration	(see	Section	3.6) Exceptions
if	cond	(or	unless	cond) while	cond	(or	until	cond) begin

		statements 		statements 		statements
[elsif	cond end rescue	AnError	=>	e

		statements] 1.upto(10)	do	|i|...end 		e	is	an	exception	of	class	AnError;
[else 10.times	do...end 				multiple	rescue	clauses	OK

		statements] collection.each	do	|elt|...end [ensure
end 		this	code	is	always	executed]

end

Figure	3.1:	Basic	Ruby	elements	and	control	structures,	with	optional	items	in	[square	brackets].

Figure	3.2:	Review	of	Ruby’s	regular	expressions.

Each	of	these	three	principles	will	be	covered	in	its	own	section.	#1	and	#2	are	straightforward.	#3	gives
Ruby	much	of	 its	productivity-enhancing	power,	but	must	be	qualified	with	 the	admonition	 that	with
great	power	comes	great	 responsibility.	Using	Ruby’s	metaprogramming	features	 tastefully	will	make

your	code	elegant	and	DRY,	but	abusing	them	will	make	your	code	brittle	and	impenetrable.	 		

Ruby’s	basic	 syntax	should	be	unsurprising	 if	you’re	 familiar	with	other	modern	scripting	 languages.
Figure	 3.1	 shows	 the	 syntax	 of	 basic	 Ruby	 elements.	 Statements	 are	 separated	 by	 newlines	 (most
commonly)	 or	 semicolons	 (rarely).	 Indentation	 is	 insignificant.	While	Ruby	 is	 concise	 enough	 that	 a
single	 line	 of	 code	 rarely	 exceeds	 one	 screen	 line,	 breaking	 up	 a	 single	 statement	with	 a	 newline	 is
allowed	 if	 it	doesn’t	cause	a	parsing	ambiguity.	An	editor	with	good	syntax	highlighting	can	be	very
helpful	if	you’re	not	sure	whether	your	line	break	is	legal.

A	symbol,	such	as	:octocat,	is	an	immutable	string	whose	value	is	itself;	it	is	typically	used	in	Ruby
for	 enumerations,	 like	 an	enum	 type	 in	C	 or	 Java,	 though	 it	 has	 other	 purposes	 as	well.	However,	 a
symbol	 is	 not	 the	 same	 as	 a	 string—it	 is	 its	 own	 primitive	 type,	 and	 string	 operations	 cannot	 be
performed	 on	 it,	 though	 it	 can	 easily	 be	 converted	 to	 a	 string	 by	 calling	 to_s.	 For	 example,
:octocat.to_s	gives	”octocat”,	and	”octocat”.to_sym	gives	:octocat.

Regular	expressions	or	regexps	(often	regex	and	regexes	in	order	to	be	pronounceable)	are	part	of	every
programmer’s	 toolbox.	 A	 regular	 expression	 allows	 matching	 a	 string	 against	 a	 pattern	 containing
possible	“wildcards.”	Ruby’s	regular	expression	support	resembles	that	of	other	modern	programming
languages:	regexes	appear	between	slashes	and	may	be	followed	by	one	or	more	letters	modifying	their
behavior,	 for	 example,	 /regex/i	 to	 indicate	 that	 the	 regex	 should	 ignore	 case	 when	 matching.	 As
Figure	3.2	shows,	special	constructs	embedded	in	the	regex	can	match	multiple	types	of	characters	and
can	specify	the	number	of	times	a	match	must	occur	and	whether	the	match	must	be	“anchored”	to	the
beginning	 or	 end	 of	 the	 string.	 For	 example,	 here	 is	 a	 regex	 that	 matches	 a	 time	 of	 day,	 such	 as
“8:25pm”,	on	a	line	by	itself:

http://pastebin.com/S61dtePp

	1				time_regex	=	/^\d\d?:\d\d\s*[ap]m$/i

This	 regexp	matches	 a	 digit	 at	 the	 beginning	 of	 a	 string	 (ˆ\d),	 optionally	 followed	 by	 another	 digit
(\d?),	followed	by	a	colon,	exactly	two	digits,	zero	or	more	whitespace	characters	(\s*),	either	a	or	p,
then	m	 at	 the	end	of	 the	 string	 (m$)	 and	 ignoring	case	 (the	i	 after	 the	 closing	 slash).	Another	way	 to
match	one	or	two	digits	would	be	[0-9][0-9]?	and	another	way	to	match	exactly	two	digits	would	be
[0-9][0-9].

Ruby	allows	the	use	of	parentheses	in	regexes	to	capture	the	matched	string	or	substrings.	For	example,
here	is	the	same	regexp	with	three	capture	groups:

http://pastebin.com/zFfnSRCG

	1				x	=	"8:25	PM"

	2				x	=~		/(\d\d?):(\d\d)\s*([ap])m$/i

The	second	line	attempts	to	match	the	string	x	against	the	regex.	If	the	match	succeeds,	the	=˜	operator
will	return	the	position	in	the	string	(with	0	being	the	first	character)	at	which	the	match	succeeded,	the
global	 variable	 $1	 will	 have	 the	 value	 ”8”,	 $2	 will	 be	 ”25”,	 and	 $3	 will	 be	 ”P”.	 The	 last-match
variables	are	reset	the	next	time	you	do	another	regex	match.	If	the	match	fails,	=˜	will	return	nil.	Note
that	nil	and	false	 are	not	 actually	 equal	 to	 each	other,	 but	 both	 evaluate	 to	 “false”	when	used	 in	 a
conditional	expression	(in	fact,	they	are	the	only	two	values	in	Ruby	that	do	so).	Idiomatically,	methods
that	 are	 truly	 Boolean	 (that	 is,	 the	 only	 possible	 return	 values	 are	 “true”	 or	 “false”)	 return	 false,
whereas	methods	that	return	an	object	when	successful	return	nil	when	they	fail.

Lastly,	note	that	=˜	works	on	both	strings	and	Regexp	objects,	so	both	of	 the	following	are	 legal	and
equivalent,	and	you	should	choose	whichever	is	easiest	to	understand	in	the	context	of	your	code.

http://en.wikipedia.org/wiki/Symbol_(programming)
http://en.wikipedia.org/wiki/Regular_expressions
http://en.wikipedia.org/wiki/regexps
http://pastebin.com/S61dtePp
http://pastebin.com/zFfnSRCG

http://pastebin.com/8kKJZKpb

	1				"Catch	22"	=~	/\w+\s+\d+/

	2				/\w+\s+\d+/	=~	"Catch	22"

Summary
A	distinguishing	primitive	type	in	Ruby	is	the	symbol,	an	immutable	string	whose	value	is	itself.
Symbols	are	commonly	used	in	Ruby	to	denote	“specialness,”	such	as	being	one	of	a	set	of	fixed
choices	like	an	enumeration.	Symbols	aren’t	the	same	as	strings,	but	they	can	easily	be	converted
back	and	forth	with	the	methods	to_s	and	to_sym.
Ruby	statements	are	separated	by	newlines,	or	less	commonly,	by	semicolons.
Ruby’s	regular	expression	facilities	are	comparable	to	those	of	other	modern	languages,	including
support	 for	 capture	 groups	 using	 parentheses	 and	 for	 match	 modifiers	 such	 as	 a	 trailing	 i	 for
“ignore	case	when	matching.”

Self-Check	 3.1.1.	 Which	 of	 the	 following	 Ruby	 expressions	 are	 equal	 to	 each	 other:	 (a)	 :foo
(b)	%q{foo}	(c)	%Q{foo}	(d)	’foo’.to_sym	(e)	:foo.to_s
	(a)	and	(d)	are	equal	to	each	other;	(b),	(c),	and	(e)	are	equal	to	each	other

Self-Check	3.1.2.	What	 is	 captured	 by	 $1	 when	 the	 string	 25	 to	 1	 is	matched	 against	 each	 of	 the
following	regexps:	
(a)	/(\d+)$/	
(b)	/ˆ\d+([ˆ0-9]+)/
	(a)	the	string	“1”	(b)	the	string	“	to	”	(including	the	leading	and	trailing	spaces)

Self-Check	3.1.3.	When	is	it	correct	to	write	
Fixnum	num=3	
to	initialize	the	variable	num:	(a)	on	its	first	use;	(b)	on	any	use,	as	long	as	it’s	the	same	class	Fixnum
each	time;	(c)	never
	Never;	variable	declarations	aren’t	used	in	Ruby.

3.2	Everything	is	an	Object

Ruby	supports	the	usual	basic	types—fixed-point	integers	(class	Fixnum),	floating-point	numbers	(class
Float),	 strings	 (class	String),	 linear	arrays	 (class	Array),	 and	associative	arrays	or	hashmaps	 (class
Hash).	 But	 in	 contrast	 to	 Java,	 Ruby	 is	 dynamically	 typed:	 the	 type	 of	 a	 variable	 is	 generally	 not
inferable	until	runtime.	That	is,	while	objects	have	types,	the	variables	that	reference	them	do	not.	So
s	=	5	can	follow	s	=	”foo”	in	the	same	block	of	code.	Because	variables	do	not	have	types,	an	array
or	 hash	 can	 consist	 of	 elements	 of	 all	 different	 types,	 as	 Figure	 3.1	 suggests.	We	 speak	 only	 of	 “an
array”	 rather	 than	 “an	 array	 of	 Ints”	 and	 of	 “a	 hash”	 rather	 than	 “a	 hash	with	 keys	 of	 type	Foo	 and
values	of	type	Bar.”

Ruby’s	 object	 model	 descends	 from	 Smalltalk,	 whose	 design	 was	 inspired	 by	 ideas	 in	 Simula.
Everything	in	Ruby,	even	a	plain	integer,	is	an	object	that	is	an	instance	of	some	class.	All	operations,
without	exception,	are	performed	by	calling	a	method	on	an	object,	and	every	such	call	(indeed,	every

http://pastebin.com/8kKJZKpb
http://en.wikipedia.org/wiki/Dynamic_typing#Dynamic_typing

Ruby	statement)	returns	a	value.	The	notation	obj.meth()	calls	method	meth	on	the	object	obj,	which
is	said	to	be	the	receiver	and	is	hopefully	able	to	respond	to	meth.	As	we	will	see	shortly,	parentheses
around	method	arguments	are	often	optional.	For	example:

http://pastebin.com/Pu0uULN8

	1				5.class					#	=>	Fixnum

(We	strongly	recommend	you	start	up	a	Ruby	interpreter	by	typing	irb	in	a	Terminal	window	in	your
VM	so	you	can	try	these	examples	as	you	go.)	The	above	call	sends	the	method	call	class	to	the	object
5.	The	class	method	happens	to	return	the	class	that	an	object	belongs	to,	in	this	case	Fixnum.	(We	will
use	 the	notation	#	=>	 in	 code	 examples	 to	 indicate	what	 the	 interpreter	 should	 print	 as	 the	 result	 of
evaluating	a	given	expression.)

Even	a	class	in	Ruby	is	itself	an	object—it’s	an	instance	of	Class,	which	is	a	class	whose	instances	are	classes	(a	metaclass).

Every	object	is	an	instance	of	some	class.	Classes	can	inherit	from	superclasses	as	they	do	in	Java,	and
all	classes	ultimately	inherit	from	BasicObject,	sometimes	called	the	root	class.	Ruby	does	not	support
multiple	inheritance,	so	every	class	has	exactly	one	superclass,	except	for	BasicObject,	which	has	no
superclass.	As	with	most	languages	that	support	inheritance,	if	an	object	receives	a	call	for	a	method	not
defined	in	its	class,	the	call	will	be	passed	up	to	the	superclass,	and	so	on	until	the	root	class	is	reached.
If	no	class	along	the	way,	including	the	root	class,	is	able	to	handle	the	method,	an	undefined	method
exception	is	raised.

Try	5.class.superclass	 to	find	out	what	Fixnum’s	superclass	is;	this	illustrates	method	chaining,	a
very	 common	Ruby	 idiom.	Method	 chaining	 associates	 to	 the	 left,	 so	 this	 example	 could	 be	written
(5.class).superclass,	meaning:	“Call	the	class	method	on	the	receiver	5,	and	whatever	the	result
of	that	is,	call	the	superclass	method	on	that	receiver.”

Object-orientation	(OO)	and	class	inheritance	are	distinct	properties.	Because	popular	languages	such	as
Java	combine	both,	many	people	conflate	them.	Ruby	also	happens	to	have	both,	but	the	two	features	do
not	necessarily	interact	in	all	the	same	ways	they	would	in	Java.	In	particular,	compared	to	Java,	reuse
through	 inheritance	 is	much	 less	 important,	 but	 the	 implications	of	 object-orientation	 are	much	more
important.	 For	 example,	 Ruby	 supports	 comprehensive	 reflection—the	 ability	 to	 ask	 objects	 about
themselves.	 5.respond_to?(’class’)	 tells	 you	 that	 the	 object	 5	 would	 be	 able	 to	 respond	 to	 the
method	class	if	you	asked	it	to.	5.methods	lists	all	methods	to	which	the	object	5	responds	including
those	defined	in	its	ancestor	classes.	Given	that	an	object	responds	to	a	method,	how	can	you	tell	if	the
method	is	defined	in	the	object’s	class	or	an	ancestor	class?	5.method(:+)	reveals	that	the	+	method	is
defined	 in	 class	 Fixnum,	 whereas	 5.method(:ceil)	 reveals	 that	 the	 ceil	 method	 is	 defined	 in
Integer,	an	ancestor	class	of	Fixnum.	Determining	which	class’s	methods	will	handle	a	method	call	is
called	looking	up	a	method	on	a	receiver,	and	is	analogous	to	virtual	method	dispatch	in	Java.

Summary
The	notation	a.b	means	“call	method	b	on	object	a.”	Object	a	is	said	to	be	the	receiver,	and	if	it

http://pastebin.com/Pu0uULN8
http://en.wikipedia.org/wiki/metaclass
http://en.wikipedia.org/wiki/Reflection_(computer_programming)

cannot	handle	the	method	call,	it	will	pass	the	call	to	its	superclass.	This	process	is	called	looking
up	a	method	on	a	receiver.
Ruby	has	comprehensive	reflection,	allowing	you	to	ask	objects	about	themselves.

ELABORATION:	Looking	up	a	method
Previously	we	said	that	if	method	lookup	fails	in	the	receiver’s	class,	the	call	is	passed	up	to	the	ancestor	(superclass).	The	truth	is	a
bit	more	subtle:	mix-ins,	which	we’ll	describe	shortly,	can	handle	a	method	call	before	punting	up	to	the	superclass.

Self-Check	3.2.1.	Why	does	5.superclass	result	in	an	“undefined	method”	error?	(Hint:	consider	the
difference	between	calling	superclass	on	5	itself	vs.	calling	it	on	the	object	returned	by	5.class.)
	 superclass	 is	 a	 method	 defined	 on	 classes.	 The	 object	 5	 is	 not	 itself	 a	 class,	 so	 you	 can’t	 call

superclass	on	it.

3.3	Every	Operation	is	a	Method	Call

To	cement	the	concept	that	every	operation	is	a	method	call,	note	that	even	basic	math	operations	such
as	 +,	 *,	 ==	 (equality	 comparison)	 are	 syntactic	 sugar	 for	 method	 calls:	 the	 operators	 are	 actually
method	 calls	 on	 their	 receivers.	 The	 same	 is	 true	 for	 array	 dereferences	 such	 as	 x[0]	 and	 array
assignment	such	as	x[0]=”foo”.

The	 table	 in	 Figure	 3.3	 shows	 the	 de-sugared	 versions	 of	 these	 expressions	 and	 of	 the	 regex	 syntax
introduced	in	Section	3.1,	as	well	as	showing	how	Ruby’s	core	method	send	can	be	used	to	send	any
method	 call	 to	 any	 object.	 Many	 Ruby	 methods	 including	 send	 accept	 either	 a	 symbol	 or	 a	 string
argument,	so	the	first	example	in	the	table	could	also	be	written	10.send(’modulo’,3).

Sugared De-sugared Explicit	send
10	%	3 10.modulo(3) 10.send(:modulo,	3)

5+3 5.+(3) 5.send(:+,	3)

x	==	y x.==(y) x.send(:==,	y)

a	*	x	+	y a.*(x).+(y) a.send(:*,	x).send(:+,	y)

a	+	x	*	y a.+(x.*(y)) a.send(:+,	x.send(:*,	y))

(operator	precedence	preserved)
x[3] x.[](3) x.send(:[],	3)

x[3]	=	’a’ x.[]=(3,’a’) x.send(:[]=,	3,	’a’)

/abc/,	%r{abc} Regexp.new(”abc”) Regexp.send(:new,	’abc’)

str	=˜	regex str.match(regex) str.send(:match,	regex)

regex	=˜	str regex.match(str) regex.send(:match,	str)

$1.	.	.	$n	(regex	capture) Regexp.last_match(n) Regexp.send(:last_match,n)

Figure	3.3:	The	first	column	is	Ruby’s	syntactic	sugar	for	common	operations,	the	second	column	shows	the	explicit	method	call,	and	the
third	column	shows	how	to	perform	the	same	method	call	using	Ruby’s	send,	which	accepts	either	a	string	or	a	symbol	(more	idiomatic)
for	the	method	name.

A	critical	implication	of	“every	operation	is	a	method	call”	is	that	concepts	such	as	type	casting	rarely

http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://en.wikipedia.org/wiki/syntactic_sugar
http://en.wikipedia.org/wiki/Type_conversion

apply	in	Ruby.	In	Java,	if	we	write	f+i	where	f	is	a	float	and	i	is	an	integer,	the	type	casting	rules	state
that	i	 will	 be	 converted	 internally	 to	 a	 float	 so	 it	 can	 be	 added	 to	 f.	 If	we	wrote	 i+s	 where	 s	 is	 a
String,	a	compile-time	error	would	result.

In	contrast,	in	Ruby	+	is	just	like	any	other	method	that	can	be	defined	differently	by	each	class,	so	its
behavior	depends	entirely	on	the	receiver’s	implementation	of	the	method.	Since	f+i	is	syntactic	sugar
for	 f.+(i),	 it’s	 entirely	 up	 to	 the	 +	method	 (presumably	 defined	 in	 f’s	 class	 or	 one	 of	 its	 ancestor
classes)	to	decide	how	to	handle	different	types	of	values	for	i.	Thus,	both	3+2	and	”foo”+”bar”	are
legal	 Ruby	 expressions,	 evaluating	 to	 5	 and	 ”foobar”	 respectively,	 but	 the	 first	 one	 is	 calling	 +	 as
defined	in	Numeric	(the	ancestor	class	of	Fixnum)	whereas	the	second	is	calling	+	as	defined	in	String.
As	 above,	 you	 can	 verify	 that	 ”foobar”.method(:+)	 and	 5.method(:+)	 refer	 to	 distinct	 methods.
Although	this	might	resemble	operator	overloading	in	other	languages,	it’s	more	general:	since	only	the
method’s	name	matters	 for	 dispatching,	we’ll	 see	 in	Section	3.7	 how	 this	 feature	 enables	 a	 powerful
reuse	mechanism	called	a	mix-in.

In	Ruby	the	notation	ClassName#method	is	used	to	indicate	the	instance	method	method	in	ClassName,
whereas	 ClassName.method	 indicates	 the	 class	 (static)	 method	 method	 in	 ClassName.	 Using	 this
notation,	we	can	say	that	the	expression	3+2	results	in	calling	Fixnum#+	on	the	receiver	3,	whereas	the
expression	”foo”+”bar”	results	in	calling	String#+	on	the	receiver	”foo”.

Similarly,	in	Java	it’s	common	to	see	explicit	casts	of	a	variable	to	a	subclass,	such	as	Foo	x	=	(Foo)y
where	y	 is	an	instance	of	a	subclass	of	Foo.	In	Ruby	this	is	meaningless	because	variables	don’t	have
types,	 and	 it	 doesn’t	 matter	 whether	 the	 responding	 method	 is	 in	 the	 receiver’s	 class	 or	 one	 of	 its
ancestors.

A	method	is	defined	with	def	method_name(arg1,arg2)	and	ends	with	end;	all	statements	in	between
are	 the	 method	 definition.	 Every	 expression	 in	 Ruby	 has	 a	 value—for	 example,	 the	 value	 of	 an
assignment	is	its	right-hand	side,	so	the	value	of	x=5	is	5—	and	if	a	method	doesn’t	include	an	explicit
return(blah),	 the	value	of	 the	 last	expression	in	 the	method	is	returned.	Hence	the	following	trivial
method	returns	5:

http://pastebin.com/xGYTktUK

	1				def	trivial_method				#	no	arguments;	can	also	use	trivial_method()

	2						x	=	5

	3				end

The	variable	x	in	the	example	is	a	local	variable;	its	scope	is	limited	to	the	block	in	which	it’s	defined,
in	this	case	the	method,	and	is	undefined	outside	that	method.	In	other	words,	Ruby	uses	lexical	scoping
for	local	variables.	When	we	talk	about	classes	in	Ruby,	we’ll	see	how	class	and	instance	variables	are
alternatives	to	local	variables.

An	 important	Ruby	 idiom	 is	poetry	mode:	 the	 ability	 to	 omit	 parentheses	 and	 curly	braces	when	 the
parsing	is	unambiguous.	Most	commonly,	Ruby	programmers	may	omit	parentheses	around	arguments
to	a	method	call,	and	omit	curly	braces	when	the	 last	argument	to	a	method	call	 is	a	hash.	Hence	the
following	two	method	calls	are	equivalent,	given	a	method	link_to	(which	we’ll	meet	in	Section	4.4)
that	takes	one	string	argument	and	one	hash	argument:

http://pastebin.com/xGYTktUK
http://en.wikipedia.org/wiki/lexical_scoping

http://pastebin.com/XC0wHvsW

	1				link_to(’Edit’,	{:controller	=>	’students’,	:action	=>	’edit’})

	2				link_to	’Edit’,		:controller	=>	’students’,	:action	=>	’edit’

Poetry	mode	 is	 exceedingly	 common	 among	 experienced	Rubyists,	 is	 used	 pervasively	 in	Rails,	 and
provides	a	welcome	elimination	of	clutter	once	you	get	used	to	it.

Summary
Everything	in	Ruby	is	an	object,	even	primitive	types	like	integers.
Ruby	objects	have	types,	but	the	variables	that	refer	to	them	don’t.
Ruby	uses	lexical	scoping	for	local	variables:	a	variable	is	defined	in	the	scope	in	which	it’s	first
assigned	and	in	all	scopes	enclosed	inside	that	one,	but	reusing	the	same	local	variable	name	in	an
inner	scope	temporarily	“shadows”	the	name	from	the	enclosing	scope.
Poetry	mode	 reduces	clutter	by	allowing	you	 to	omit	parentheses	around	method	arguments	and
curly	braces	surrounding	a	hash,	as	long	as	the	resulting	code	is	syntactically	unambiguous.

ELABORATION:	Number	of	arguments
Although	 parentheses	 around	method	 arguments	 are	 optional	 both	 in	 the	method’s	 definition	 and	when	 calling	 the	method,	 the
number	 of	 arguments	 does	matter,	 and	 an	 exception	 is	 raised	 if	 a	method	 is	 called	with	 the	wrong	 number	 of	 arguments.	 The
following	code	snippet	shows	two	idioms	you	can	use	when	you	need	more	flexibility.	The	first	is	to	make	the	last	argument	a	hash
and	give	it	a	default	value	of	{}	(the	empty	hash).	The	second	is	to	use	a	splat	(*),	which	collects	any	extra	arguments	into	an	array.
As	with	so	many	Rubyisms,	the	right	choice	is	whichever	results	in	the	most	readable	code.

http://pastebin.com/K6ev3S7g

	1				#	using	’keyword	style’	arguments

	2				def	mymethod(required_arg,	args={})

	3						do_fancy_stuff	if	args[:fancy]

	4				end

	5				

	6				mymethod	"foo",:fancy	=>	true	#	=>	args={:fancy	=>	true}

	7				mymethod	"foo"																#	=>	args={}

	8				

	9				#	using	*	(splat)	arguments

10				def	mymethod(required_arg,	*args)

11						#	args	is	an	array	of	extra	args,	maybe	empty

12				end

13				

14				mymethod	"foo","bar",:fancy	=>	true	#	=>	args=["bar",{:fancy=>true}]

15				mymethod	"foo"																						#	=>	args=[]

		

Self-Check	3.3.1.	What	is	the	explicit-send	equivalent	of	each	of	the	following	expressions:	a<b,	a==b,
x[0],	x[0]=’foo’.
	a.send(:<,b),	a.send(:==,b),	x.send(:[],0),	x.send(:[]=,0,’foo’)

Self-Check	3.3.2.	Suppose	method	foo	 takes	 two	 hash	 arguments.	 Explain	why	we	 can’t	 use	 poetry
mode	to	write	

http://pastebin.com/XC0wHvsW
http://pastebin.com/K6ev3S7g

foo	:a	=>	1,	:b	=>	2

	Without	curly	braces,	there’s	no	way	to	tell	whether	this	call	is	trying	to	pass	a	hash	with	two	keys	or
two	 hashes	 of	 one	 key	 each.	 Therefore	 poetry	 mode	 can	 only	 be	 used	 when	 there’s	 a	 single	 hash
argument	and	it’s	the	last	argument.

3.4	Classes,	Methods,	and	Inheritance

The	excerpt	of	a	class	definition	for	a	Movie	in	Figure	3.4	illustrates	some	basic	concepts	of	defining	a
class	in	Ruby.	Let’s	step	through	it	line	by	line.

http://pastebin.com/Y9RC9KgM

	1	class	Movie

	2			def	initialize(title,	year)

	3					@title	=	title

	4					@year	=	year

	5			end

	6			def	title

	7					@title

	8			end

	9			def	title=(new_title)

10					@title	=	new_title

11			end

12			def	year	;	@year	;	end

13			def	year=(new_year)	;	@year	=	new_year	;	end

14			#	How	to	display	movie	info

15			@@include_year	=	false

16			def	Movie.include_year=(new_value)

17					@@include_year	=	new_value

18			end

19			def	full_title

20					if	@@include_year

21							"#{self.title}	(#{self.year})"

22					else

23							self.title

24					end

25			end

26	end

27	

28	#	Example	use	of	the	Movie	class

29	

30	beautiful	=	Movie.new(’Life	is	Beautiful’,	’1997’)

31	

32	#	What’s	the	movie’s	name?

33	puts	"I’m	seeing	#{beautiful.full_title}"

34	

35	#	And	with	the	year

36	Movie.include_year	=	true

37	puts	"I’m	seeing	#{beautiful.full_title}"

38	

39	#	Change	the	title

40	beautiful.title	=	’La	vita	e	bella’

41	puts	"Ecco,	ora	si	chiama	’#{beautiful.title}!’"

http://pastebin.com/Y9RC9KgM

Figure	3.4:	A	simple	class	definition	in	Ruby.	Lines	12	and	13	remind	us	that	it’s	idiomatic	to	combine	short	statements	on	a	single	line
using	semicolons;	most	Rubyists	take	advantage	of	Ruby’s	conciseness	to	introduce	spaces	around	the	semicolons	for	readability.

Line	 1	 opens	 the	 Movie	 class.	 As	 we’ll	 see,	 unlike	 in	 Java,	 class	 Movie	 is	 not	 a	 declaration	 but
actually	 a	method	 call	 that	 creates	 an	 object	 representing	 a	 new	 class	 and	 assigns	 this	 object	 to	 the
constant	Movie.	The	subsequent	method	definitions	will	occur	in	the	context	of	this	newly-created	class.

Line	2	defines	 the	default	constructor	 for	 the	class	 (the	one	called	when	you	say	Movie.new),	which
must	be	named	initialize.	The	inconsistency	of	naming	a	method	initialize	but	calling	it	as	new	is
an	 unfortunate	 idiosyncrasy	 you’ll	 just	 have	 to	 get	 used	 to.	 (As	 in	 Java,	 you	 can	 define	 additional
constructors	with	other	names	as	well.)	This	constructor	expects	two	arguments,	and	in	lines	3–4,	it	sets
the	instance	variables	of	the	new	Movie	object	to	those	values.	The	instance	variables,	such	as	@title,
are	 associated	 with	 each	 instance	 of	 an	 object.	 The	 local	 variables	 title	 and	 year	 passed	 in	 as
arguments	 are	 out	 of	 scope	 (undefined)	 outside	 the	 constructor,	 so	 if	we	 care	 about	 those	 values	we
must	capture	them	in	instance	variables.

Lines	 6–8	 define	 a	getter	method	 or	accessor	method	 for	 the	 @title	 instance	 variable.	 You	 might
wonder	why,	if	beautiful	were	an	instance	of	Movie,	we	couldn’t	just	write	beautiful.@title.	It’s
because	in	Ruby,	a.b	always	means	“Call	method	b	on	receiver	a”,	and	@title	is	not	the	name	of	any
method	in	the	Movie	class.	In	fact,	it	is	not	a	legal	name	for	a	method	at	all,	since	only	instance	variable
names	and	class	variable	names	may	begin	with	@.	In	this	case,	the	title	getter	is	an	instance	method
of	 the	 Movie	 class.	 That	 means	 that	 any	 object	 that	 is	 an	 instance	 of	 Movie	 (or	 of	 one	 of	 Movie’s
subclasses,	if	there	were	any)	could	respond	to	this	method.

Lines	 9–11	 define	 the	 instance	 method	 title=,	 which	 is	 distinct	 from	 the	 title	 instance	 method.
Methods	whose	names	end	in	=	are	setter	or	mutator	methods,	and	just	as	with	the	getter,	we	need	this
method	 because	we	 cannot	write	beautiful.@title	 =	 ’La	 vita	 e	 bella’.	 However,	 as	 line	 40
shows,	we	can	write	beautiful.title	=	’La	vita	e	bella’.	Beware!	 If	 you’re	 used	 to	 Java	 or
Python,	it’s	very	easy	to	think	of	this	syntax	as	assignment	to	an	attribute,	but	it	is	really	just	a	method
call	like	any	other,	and	in	fact	could	be	written	as	beautiful.send(:title=,	’La	vita	e	bella’).
And	since	it	is	a	method	call,	it	has	a	return	value:	in	the	absence	of	an	explicit	return	statement,	the
value	returned	by	a	method	is	just	the	value	of	the	last	expression	evaluated	in	that	method.	Since	in	this
case	 the	 last	 expression	 in	 the	 method	 is	 the	 assignment	 @title=new_title	 and	 the	 value	 of	 any
assignment	is	its	right-hand	side,	the	method	happens	to	return	the	value	of	new_title	that	was	passed
to	it.

Unlike	Java,	which	allows	attributes	as	well	as	getters	and	setters,	Ruby’s	data	hiding	or	encapsulation
is	total:	the	only	access	to	an	instance	variables	or	class	variables	from	outside	the	class	is	via	method
calls.	This	restriction	is	one	reason	that	Ruby	is	considered	a	more	“pure”	OO	language	than	Java.	But
since	poetry	mode	allows	us	 to	omit	parentheses	and	write	movie.title	 instead	of	movie.title(),

conciseness	need	not	be	sacrificed	to	achieve	this	stronger	encapsulation.	 		

Lines	 12–13	 define	 the	 getter	 and	 setter	 for	 year,	 showing	 that	 you	 can	 use	 semicolons	 as	 well	 as
newlines	 to	 separate	Ruby	 statements	 if	 you	 think	 it	 looks	 less	 cluttered.	As	we’ll	 soon	 see,	 though,
Ruby	provides	a	much	more	concise	way	to	define	getters	and	setters	using	metaprogramming.

Line	14	is	a	comment,	which	in	Ruby	begins	with	#	and	extends	to	the	end	of	the	line.

http://en.wikipedia.org/wiki/Instance_variable
http://en.wikipedia.org/wiki/Mutator_method
http://en.wikipedia.org/wiki/Mutator_method
http://en.wikipedia.org/wiki/Mutator_method
http://en.wikipedia.org/wiki/Mutator_method
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)#As_information_hiding_mechanism

Line	15	defines	a	class	variable,	 or	what	 Java	calls	 a	static	variable,	 that	 defines	whether	 a	movie’s
year	of	release	is	included	when	its	name	is	printed.	Analogously	to	the	setter	for	title,	we	need	one
for	 include_year=	 (lines	 16–18),	 but	 the	 presence	 of	 Movie	 in	 the	 name	 of	 the	 method
(Movie.include_year=)	 tells	us	 it’s	a	class	method.	Notice	we	haven’t	defined	a	getter	 for	 the	class
variable;	that	means	the	value	of	this	class	variable	cannot	be	inspected	at	all	from	outside	the	class.

Lines	 19–25	 define	 the	 instance	 method	 full_title,	 which	 uses	 the	 value	 of	 @@include_year	 to
decide	how	to	display	a	movie’s	full	title.	Line	21	shows	that	the	syntax	#{}	can	be	used	to	interpolate
(substitute)	 the	 value	 of	 an	 expression	 into	 a	 double-quoted	 string,	 as	 with	 #{self.title}	 and	 #
{self.year}.	More	precisely,	#{}	evaluates	the	expression	enclosed	in	the	braces	and	calls	to_s	on	the
result,	 asking	 it	 to	convert	 itself	 into	a	 string	 that	can	be	 inserted	 into	 the	enclosing	string.	The	class
Object	 (which	 is	 the	 ancestor	 of	 all	 classes	 except	 BasicObject)	 defines	 a	 default	 to_s,	 but	most
classes	override	it	to	produce	a	prettier	representation	of	themselves.

Java Ruby
class	MyString	extends	String class	MyString	<	String

class	MyCollection	extends	Array class	MyCollection	<	Array

		implements	Enumerable 		include	Enumerable

Static	variable:	static	int	anInt	=	3 Class	variable:	@@an_int	=	3
Instance	variable:	this.foo	=	1 Instance	variable:	@foo	=	1

Static	method: Class	method:
public	static	int	foo(...) def	self.foo	...	end

Instance	method:	public	int	foo(...) Instance	method:	def	foo	...	end

Figure	3.5:	A	summary	of	some	features	that	translate	directly	between	Ruby	and	Java.

Summary:	Figure	3.5	compares	basic	OO	constructs	in	Ruby	and	Java:
class	Foo	opens	a	class	(new	or	existing)	in	order	to	add	or	change	methods	in	it.	Unlike	Java,	it
is	 not	 a	 declaration	 but	 actual	 code	 executed	 immediately,	 creating	 a	 new	 Class	 object	 and
assigning	it	to	the	constant	Foo.
@x	 specifies	 an	 instance	variable	 and	@@x	 specifies	 a	 class	 (static)	 variable.	The	namespaces	 are
distinct,	so	@x	and	@@x	are	different	variables.
A	class’s	 instance	variables	and	class	variables	can	be	accessed	only	 from	within	 the	class.	Any
access	from	the	“outside	world”	requires	a	method	call	to	either	a	getter	or	a	setter.
A	 class	 method	 in	 class	 Foo	 can	 be	 defined	 using	 either	 def	 Foo.some_method	 or
def	self.some_method.

ELABORATION:	Using	self	to	define	a	class	method.
As	we’ll	soon	see,	the	class	method	definition	def	Movie.include_year	can	actually	appear	anywhere,	even	outside	the	Movie	class
definition,	since	Ruby	allows	adding	and	modifying	methods	in	classes	after	they’ve	been	defined.	However,	another	way	to	define
the	 class	 method	 include_year	 inside	 the	 class	 definition	 would	 be	 def	 self.include_year=(...).	 This	 is	 because,	 as	 we
mentioned	above,	class	Movie	in	line	1	is	not	a	declaration	but	actual	code	that	is	executed	when	this	file	is	loaded,	and	inside	the
code	block	enclosed	by	class	Movie...end	(lines	2–25),	the	value	of	self	is	the	new	class	object	created	by	the	class	keyword.	(In
fact,	Movie	 itself	 is	 just	a	plain	old	Ruby	constant	 that	refers	 to	this	class	object,	as	you	can	verify	by	doing	c	=	Movie	and	 then
c.new(’Inception’,2010).)

http://en.wikipedia.org/wiki/class_variable

ELABORATION:	Why	self.title	in	Movie#full_title	?
In	lines	19–25,	why	do	we	call	self.title	and	self.year	rather	than	just	referring	directly	to	@title	and	@year,	which	would	be
perfectly	legal	inside	an	instance	method?	The	reason	is	that	in	the	future,	we	might	want	to	change	the	way	the	getters	work.	For
example,	when	we	introduce	Rails	and	ActiveRecord	in	Section	4.3,	we’ll	see	that	getters	for	basic	Rails	models	work	by	retrieving
information	 from	 the	 database,	 rather	 than	 tracking	 the	 information	 using	 instance	 variables.	 Encapsulating	 instance	 and	 class
variables	 using	 getters	 and	 setters	 hides	 the	 implementation	 of	 those	 attributes	 from	 the	 code	 that	 uses	 them,	 and	 there’s	 no
advantage	to	be	gained	by	violating	that	encapsulation	inside	an	instance	method,	even	though	it’s	legal	to	do	so.

Self-Check	3.4.1.	Why	is	movie.@year=1998	not	a	substitute	for	movie.year=1998?
	The	notation	a.b	always	means	“call	method	b	on	receiver	a”,	but	@year	is	the	name	of	an	instance

variable,	whereas	year=	is	the	name	of	an	instance	method.

Self-Check	3.4.2.	Suppose	we	delete	 line	12	from	Figure	3.4.	What	would	be	 the	result	of	executing
Movie.new(’Inception’,2011).year?
	Ruby	would	complain	that	the	year	method	is	undefined.

3.5	All	Programming	is	Metaprogramming

Since	defining	simple	getters	and	setters	for	instance	variables	is	so	common,	we	can	make	the	example
more	Ruby-like	by	replacing	lines	6–11	with	the	single	line	attr_accessor	:title	and	 lines	12–13
with	attr_accessor	:year.	attr_accessor	 is	not	part	of	the	Ruby	language—it’s	a	regular	method
call	 that	 defines	 the	 getters	 and	 setters	 on	 the	 fly.	 That	 is,	 attr_accessor	 :foo	 defines	 instance
methods	 foo	 and	 foo=	 that	 get	 and	 set	 the	 value	 of	 instance	 variable	 @foo.	 The	 related	 method
attr_reader	defines	only	a	getter	but	no	setter,	and	vice	versa	for	attr_writer.

			This	is	an	example	of	metaprogramming—creating	code	at	runtime	that	defines	new	methods.	In
fact,	 in	 a	 sense	 all	 Ruby	 programming	 is	 metaprogramming,	 since	 even	 a	 class	 definition	 is	 not	 a
declaration	 as	 it	 is	 in	 Java	 but	 actually	 code	 that	 is	 executed	 at	 runtime.	Given	 that	 this	 is	 true,	 you
might	 wonder	 whether	 you	 can	modify	 a	 class	 at	 runtime.	 In	 fact	 you	 can,	 by	 adding	 or	 changing
instance	methods	or	class	methods,	even	for	Ruby’s	built-in	classes.	For	example,	Figure	3.6	shows	a
way	to	do	time	arithmetic	that	takes	advantage	of	the	now	method	in	the	Time	class	in	the	standard	Ruby
library,	which	returns	the	number	of	seconds	since	1/1/1970.

http://pastebin.com/zxsur5MX

	1	#		Note:	Time.now	returns	current	time	as	seconds	since	epoch

	2	class	Fixnum

	3			def	seconds		;	self	;	end

	4			def	minutes		;	self	*	60	;	end

	5			def	hours				;	self	*	60	*	60	;	end

	6			def	ago						;	Time.now	-	self	;	end

	7			def	from_now	;	Time.now	+	self	;	end

	8	end

	9	Time.now

10	#	=>	Mon	Nov	07	10:18:10	-0800	2011

11	5.minutes.ago

12	#	=>	Mon	Nov	07	10:13:15	-0800	2011

13	5.minutes	-	4.minutes

14	#	=>	60

15	3.hours.from_now

http://en.wikipedia.org/wiki/metaprogramming
http://pastebin.com/zxsur5MX

16	#	=>	Mon	Nov	07	13:18:15	-0800	2011

Figure	3.6:	Doing	simple	time	arithmetic	by	reopening	the	Fixnum	class.	Unix	was	invented	in	1970,	so	its	designers	chose	to	represent
time	as	the	number	of	seconds	since	midnight	(GMT)	1/1/1970,	sometimes	called	the	beginning	of	the	epoch.	For	convenience,	a	Ruby
Time	object	responds	to	arithmetic	operator	methods	by	operating	on	this	representation	if	possible,	though	internally	Ruby	can	represent
any	time	past	or	future.

In	 this	 example,	we	 reopened	 the	Fixnum	 class,	 a	 core	 class	 that	we	met	 earlier,	 and	 added	 six	 new
instance	 methods	 to	 it.	 Since	 each	 of	 the	 new	 methods	 also	 returns	 a	 fixnum,	 they	 can	 be	 nicely
“chained”	to	write	expressions	like	5.minutes.ago.	In	fact,	Rails	includes	a	more	complete	version	of
this	feature	that	does	comprehensive	time	calculations.

			Of	course,	we	cannot	write	1.minute.ago	since	we	only	defined	a	method	called	minutes,	not
minute.	We	could	define	additional	methods	with	singular	names	that	duplicate	the	functionality	of	the
methods	we	already	have,	but	 that’s	not	very	DRY.	 Instead,	we	can	 take	advantage	of	Ruby’s	heavy-
duty	metaprogramming	construct	method_missing.	If	a	method	call	cannot	be	found	in	the	receiver’s
class	or	any	of	its	ancestor	classes,	Ruby	will	then	try	to	call	method_missing	on	the	receiver,	passing
it	the	name	and	arguments	of	the	nonexistent	method.	The	default	implementation	of	method_missing
just	 punts	 up	 to	 the	 superclass’s	 implementation,	 but	 we	 can	 override	 it	 to	 implement	 “singular”
versions	of	the	time-calculation	methods	above:

http://pastebin.com/G0ztHTTP

	1				class	Fixnum

	2						def	method_missing(method_id,	*args)

	3								name	=	method_id.to_s

	4								if	name	=~	/^(second|minute|hour)$/

	5										self.send(name	+	’s’)

	6								else

	7										super	#	pass	the	buck	to	superclass

	8								end

	9						end

10				end

We	convert	the	method	ID	(which	is	passed	as	a	symbol)	into	a	string,	and	use	a	regular	expression	to
see	if	the	string	matches	any	of	the	words	hour,	minute,	second.	If	so,	we	pluralize	the	name,	and	send
the	pluralized	method	name	 to	self,	 that	 is,	 to	 the	object	 that	 received	 the	original	call.	 If	 it	doesn’t
match,	 what	 should	 we	 do?	 You	 might	 think	 we	 should	 signal	 an	 error,	 but	 because	 Ruby	 has
inheritance,	we	must	allow	for	the	possibility	that	one	of	our	ancestor	classes	might	be	able	to	handle
the	 method	 call.	 Calling	 super	 with	 no	 arguments	 passes	 the	 original	 method	 call	 and	 its	 original
arguments	intact	up	the	inheritance	chain.

	 	 	 Try	 augmenting	 this	 example	 with	 a	 days	 method	 so	 that	 you	 can	 write	 2.days.ago	 and
1.day.ago.	Tasteful	 use	of	method_missing	 to	 improve	 conciseness	 is	 part	 of	 the	Ruby	 idiom.	The
Elaboration	at	the	end	of	Section	3.6	shows	how	it’s	used	to	construct	XML	documents,	and	Section	4.3
shows	 how	 it	 enhances	 the	 readability	 of	 the	 find	 method	 in	 the	 ActiveRecord	 part	 of	 the	 Rails

http://pastebin.com/G0ztHTTP

framework.

Summary
	

attr_accessor	 is	an	example	of	metaprogramming:	 it	creates	new	code	at	 runtime,	 in	 this	case
getters	and	setters	for	an	instance	variable.	This	style	of	metaprogramming	is	extremely	common
in	Ruby.
When	neither	a	receiver	nor	any	of	its	ancestor	classes	can	handle	a	method	call,	method_missing
is	called	on	the	receiver.	method_missing	can	inspect	the	name	of	the	nonexistent	method	and	its
arguments,	and	can	either	take	action	to	handle	the	call	or	pass	the	call	up	to	the	ancestor,	as	the
default	implementation	of	method_missing	does.

ELABORATION:	Pitfalls	of	dynamic	language	features
If	 your	Bar	 class	 has	 actually	 been	 using	 an	 instance	 variable	 @fox	 but	 you	 accidentally	write	 attr_accessor	:foo	 (instead	 of
attr_accessor	 :fox),	 you	 will	 get	 an	 error	 when	 you	 write	 mybar.fox.	 Since	 Ruby	 doesn’t	 require	 you	 to	 declare	 instance
variables,	 attr_accessor	 cannot	 check	 whether	 the	 named	 instance	 variable	 exists.	 Therefore,	 as	 with	 all	 dynamic	 language
features,	we	must	employ	care	in	using	it,	and	cannot	“lean	on	the	compiler”	as	we	would	in	Java.	As	we	will	see	in	Chapter	8,	test-
driven	development	 (TDD)	helps	avoid	such	errors.	Furthermore,	 to	 the	extent	 that	your	app	 is	part	of	a	 larger	Service-Oriented
Architecture	ecosystem,	you	always	have	to	worry	about	runtime	errors	in	other	services	that	your	app	depends	on,	as	we’ll	see	in
Chapters	5	and	12.

ELABORATION:	Variable	length	argument	lists
A	call	such	as	1.minute	doesn’t	have	any	arguments—the	only	thing	that	matters	is	the	receiver,	1.	So	when	the	call	is	redispatched
in	line	5	of	method_missing,	we	don’t	need	to	pass	any	of	 the	arguments	 that	were	collected	in	*args.	The	asterisk	 is	how	Ruby
deals	 with	 variable	 length	 argument	 lists:	 *args	 will	 be	 an	 array	 of	 any	 arguments	 passed	 to	 the	 original	 method,	 and	 if	 no
arguments	were	passed	it	will	be	an	empty	array.	It	would	be	correct	in	any	case	for	line	5	to	read	self.send(name+’s’,	*args)	if
we	weren’t	sure	what	the	length	of	the	argument	list	was.

Self-Check	3.5.1.	 In	 the	method_missing	 example	 above,	why	 are	$	 and	ˆ	 necessary	 in	 the	 regular
expression	 match	 in	 line	 4?	 (Hint:	 consider	 what	 happens	 if	 you	 omit	 one	 of	 them	 and	 call
5.milliseconds	or	5.secondary)
	Without	ˆ	 to	 constrain	 the	match	 to	 the	beginning	of	 the	 string,	 a	 call	 like	5.millisecond	would

match,	 which	 will	 cause	 an	 error	 when	 method_missing	 tries	 to	 redispatch	 the	 call	 as
5.milliseconds.	Without	$	 to	constrain	 the	match	 to	 the	end	of	 the	 string,	 a	 call	 like	5.secondary
would	 match,	 which	 will	 cause	 an	 error	 when	 method_missing	 tries	 to	 redispatch	 the	 call	 as
5.secondarys.

Self-Check	 3.5.2.	Why	 should	 method_missing	 always	 call	 super	 if	 it	 can’t	 handle	 the	 missing
method	call	itself?
	It’s	possible	that	one	of	your	ancestor	classes	intends	to	handle	the	call,	but	you	must	explicitly	“pass

the	method	call	up	the	chain”	with	super	to	give	the	ancestor	classes	a	chance	to	do	so.

Self-Check	3.5.3.	In	Figure	3.6,	is	Time.now	a	class	method	or	an	instance	method?
	The	fact	that	its	receiver	is	a	class	name	(Time)	tells	us	it’s	a	class	method.

3.6	Blocks:	Iterators,	Functional	Idioms,	and	Closures

Ruby	 uses	 the	 term	 block	 somewhat	 differently	 than	 other	 languages	 do.	 In	 Ruby,	 a	 block	 is	 just	 a
method	without	a	name,	or	an	anonymous	lambda	expression	 in	programming-language	 terminology.
Like	a	regular	named	method,	it	has	arguments	and	can	use	local	variables.	Here	is	a	simple	example
assuming	movies	is	an	array	of	Movie	objects	as	we	defined	in	the	previous	examples:

http://pastebin.com/715z16f2

	1				movies.each	do	|m|

	2						puts	"#{m.title}	was	released	in	#{m.year}"

	3				end

The	method	each	 is	 an	 iterator	 available	 in	 all	Ruby	 classes	 that	 are	 collection-like.	each	 takes	 one
argument—a	block—and	passes	each	element	of	the	collection	to	the	block	in	turn.	As	you	can	see,	a
block	 is	 bracketed	 by	 do	 and	 end;	 if	 the	 block	 takes	 arguments,	 the	 argument	 list	 is	 enclosed	 in
|pipe	 symbols|	 after	 the	 do.	 The	 block	 in	 this	 example	 takes	 one	 argument:	 each	 time	 through	 the
block,	m	is	set	to	the	next	element	of	movies.

Unlike	named	methods,	a	block	can	also	access	any	variable	accessible	to	the	scope	in	which	the	block
appears.	For	example:

http://pastebin.com/vy3sZHEQ

	1				separator	=	’=>’

	2				movies.each	do	|m|

	3						puts	"#{m.title}	#{separator}	#{m.year}"

	4				end

In	 the	 above	 code,	 the	value	of	separator	 is	 visible	 inside	 the	 block,	 even	 though	 the	 variable	was
created	and	assigned	outside	the	block.	In	contrast,	the	following	would	not	work,	because	separator
is	not	visible	within	print_movies,	and	therefore	not	visible	to	the	each	block:

http://pastebin.com/bdXAcbPc

	1				def	print_movies(movie_list)

	2						movie_list.each	do	|m|

	3								puts	"#{m.title}	#{separator}	#{m.rating}"		#	===	FAILS!!	===

	4						end

	5				end

	6				separator	=	’=>’

	7				print_movies(movies)	#	FAILS!

In	 programming-language	 parlance,	 a	 Ruby	 block	 is	 a	 closure:	 whenever	 the	 block	 executes,	 it	 can
“see”	the	entire	lexical	scope	available	at	the	place	where	the	block	appears	in	the	program	text.	In	other
words,	 it’s	 as	 if	 the	 presence	 of	 the	 block	 creates	 an	 instant	 snapshot	 of	 the	 scope,	 which	 can	 be
reconstituted	 later	 whenever	 the	 block	 executes.	 This	 fact	 is	 exploited	 by	 many	 Rails	 features	 that

http://en.wikipedia.org/wiki/Anonymous_function
http://pastebin.com/715z16f2
http://en.wikipedia.org/wiki/iterator
http://pastebin.com/vy3sZHEQ
http://pastebin.com/bdXAcbPc
http://en.wikipedia.org/wiki/Closure_(computer_science)

improve	DRYness,	including	view	rendering	(which	we’ll	see	in	Section	4.4)	and	model	validations	and
controller	 filters	 (Section	5.1),	 because	 they	 allow	 separating	 the	 definition	 of	what	 is	 to	 occur	 from

when	in	time	and	where	in	the	structure	of	the	application	it	occurs.	 		

The	 fact	 that	 blocks	 are	 closures	 should	 help	 explain	 the	 following	 apparent	 anomaly.	 If	 the	 first
reference	 to	a	 local	variable	 is	 inside	a	block,	 that	variable	 is	“captured”	by	 the	block’s	 scope	and	 is
undefined	after	the	block	exits.	So,	for	example,	the	following	will	not	work,	assuming	line	2	is	the	first
reference	to	separator	within	this	scope:

http://pastebin.com/t8KaAa1y

	1				movies.each	do	|m|

	2						separator	=	’=>’		#	first	assignment	is	inside	a	block!

	3						puts	"#{m.title}	#{separator}	#{m.rating}"			#		OK

	4				end

	5				puts	"Separator	is	#{separator}"					#	===	FAILS!!	===

In	 a	 lexically-scoped	 language	 such	 as	Ruby,	 variables	 are	 visible	 to	 the	 scope	within	which	 they’re
created	and	 to	all	 scopes	enclosed	by	 that	 scope.	Because	 in	 the	above	snippet	separator	 is	created
within	the	block’s	scope,	its	visibility	is	limited	to	that	scope.

In	summary,	each	is	just	an	instance	method	on	a	collection	that	takes	a	single	argument	(a	block)	and
provides	 elements	 to	 that	block	one	at	 a	 time.	A	 related	use	of	blocks	 is	operations	on	collections,	 a
common	idiom	Ruby	borrows	from	functional	programming.	For	example,	to	double	every	element	in
a	collection,	we	could	write:

http://pastebin.com/M6pqwJMy

	1				new_collection	=	collection.map	do	|elt|

	2						2	*	elt

	3				end

If	 the	parsing	 is	unambiguous,	 it	 is	 idiomatic	 to	use	curly	braces	 to	delineate	a	short	 (one-line)	block
rather	than	do...end:

http://pastebin.com/nPQHG2yE

	1				new_collection	=	collection.map	{	|elt|	2	*	elt	}

So,	no	for-loops?	Although	Ruby	allows	for	i	in	collection,	each	allows	us	to	take	better	advantage	of	duck	typing,	which	we’ll	see
shortly,	to	improve	code	reuse.

Ruby	has	 a	wide	variety	of	 such	collection	operators;	Figure	3.7	 lists	 some	of	 the	most	useful.	With
some	 practice,	 you	 will	 automatically	 start	 to	 express	 operations	 on	 collections	 in	 terms	 of	 these
functional	idioms	rather	than	in	terms	of	imperative	loops.	For	example,	to	return	a	list	of	all	the	words

http://pastebin.com/t8KaAa1y
http://en.wikipedia.org/wiki/functional_programming
http://pastebin.com/M6pqwJMy
http://pastebin.com/nPQHG2yE
http://en.wikipedia.org/wiki/duck_typing

in	 some	 file	 (that	 is,	 tokens	 consisting	 entirely	 of	 word	 characters	 and	 separated	 by	 non-word
characters)	that	begin	with	a	vowel,	sorted	and	without	duplicates:

http://pastebin.com/dFJjugTf

	1				#	downcase	and	split	are	defined	in	String	class

	2				words	=	IO.read("file").

	3						split(/\W+/).

	4						select	{	|s|	s	=~	/^[aeiou]/i	}.

	5						map	{	|s|	s.downcase	}.

	6						uniq.

	7						sort

(Recall	 that	 Ruby	 allows	 breaking	 a	 single	 statement	 across	 lines	 for	 readability	 as	 long	 as	 it’s	 not
ambiguous	where	the	statement	ends.	The	periods	at	the	end	of	each	line	make	it	clear	that	the	statement
continues,	since	a	period	must	be	followed	by	a	method	call.)	 In	general,	 if	you	find	yourself	writing
explicit	loops	in	Ruby,	you	should	reexamine	your	code	to	see	if	these	collection	idioms	wouldn’t	make

it	more	concise	and	readable.	 		

Method #Args Returns	a	new	collection	containing.	.	.
c.map 1 elements	obtained	by	applying	block	to	each	element	of	c
c.select 1 Subset	of	c	for	which	block	evaluates	to	true
c.reject 1 Subset	of	c	obtained	by	removing	elements	for	which	block	evaluates	to	true
c.uniq all	elements	of	c	with	duplicates	removed
c.reverse elements	of	c	in	reverse	order
c.compact all	non-nil	elements	of	c

c.flatten
elements	of	c	and	any	of	its	sub-arrays,	recursively	flattened	to	contain	only	non-
array	elements

c.partition 1 Two	collections,	the	first	containing	elements	of	c	for	which	the	block	evaluates
to	true,	and	the	second	containing	those	for	which	it	evaluates	to	false

c.sort 2
Elements	of	c	sorted	according	to	a	block	that	takes	2	arguments	and	returns	-1	if
the	first	element	should	be	sorted	earlier,	+1	if	the	second	element	should	be
sorted	earlier,	and	0	if	the	two	elements	can	be	sorted	in	either	order.

The	following	methods	require	the	collection	elements	to	respond	to	<=>;	see	Section	3.7.

c.sort
If	sort	is	called	without	a	block,	the	elements	are	sorted	according	to	how	they
respond	to	<=>.

c.sort_by 1
Applies	the	block	to	each	element	of	c	and	sorts	the	result.	For	example,
movies.sort_by	{	|m|	m.title	}	sorts	Movie	objects	according	to	how	their
titles	respond	to	<=>.

c.max,

c.min
Largest	or	smallest	element	in	the	collection

Figure	3.7:	Some	common	Ruby	methods	on	collections.	For	those	that	expect	a	block,	we	show	the	number	of	arguments	expected	by
the	block;	if	blank,	the	method	doesn’t	expect	a	block.	For	example,	a	call	to	sort,	whose	block	expects	2	arguments,	might	look	like:
c.sort	{	|a,b|	a	<=>	b	}.	These	methods	all	return	a	new	object	rather	than	modifying	the	receiver.	Some	methods	also	have	a

http://pastebin.com/dFJjugTf

destructive	variant	ending	in	!,	for	example	sort!,	that	modify	their	argument	in	place	(and	also	return	the	new	value).	Use	destructive
methods	with	extreme	care.

Summary
	

Ruby	 includes	 aspects	 of	 functional	 programming	 such	 as	 the	 ability	 to	 operate	 on	 entire
collections	 with	 methods	 such	 as	 map	 and	 sort.	 It	 is	 highly	 idiomatic	 to	 use	 such	 methods	 to
manipulate	collections	rather	than	iterating	over	them	using	for-loops.
The	each	collection	method	returns	one	element	of	the	collection	at	a	time	and	passes	it	to	a	block.
Blocks	in	Ruby	can	only	occur	as	arguments	to	methods	like	each	that	expect	a	block.
Blocks	are	closures:	all	variables	visible	to	the	block’s	code	at	the	place	where	the	block	is	defined
will	also	be	visible	whenever	the	block	executes.
Most	methods	that	appear	to	modify	a	collection,	such	as	reject,	actually	return	a	new	copy	with
the	modifications	made.	Some	have	destructive	versions	whose	name	ends	in	!,	as	in	reject!.

ELABORATION:	Blocks	and	metaprogramming	in	XML	Builder
An	elegant	example	of	combining	blocks	and	metaprogramming	is	the	XML	Builder	class.	(As	we	mentioned	briefly	in	Section	2.3,
HTML	is	closely	related	to	XML.)	In	the	following	example,	the	XML	markup	shown	in	lines	1–8	was	generated	by	the	Ruby	code
in	lines	9–18.	The	method	calls	name,	phone,	address,	and	so	on	all	use	method_missing	to	turn	each	method	call	into	an	XML	tag,
and	blocks	are	used	to	indicate	tag	nesting.

http://pastebin.com/bC02KjiR

	1				<person	type="faculty">

	2						<name>Barbara	Liskov</name>

	3						<contact>

	4								<phone	location="office">617-253-2008</phone>

	5								<email>liskov@csail.mit.edu</email>

	6						</contact>

	7				</person>

	8				

	9				#	Code	that	generates	the	above	markup:

10				require	’builder’

11				b	=	Builder::XmlMarkup.new(:indent	=>	2)

12				b.person	:type	=>	’faculty’	do

13						b.name	"Barbara	Liskov"

14						b.contact	do

15								b.phone	"617-253-2008",	:location	=>	’office’

16								b.email	"liskov@csail.mit.edu"

17						end

18				end

Self-Check	3.6.1.	Write	one	line	of	Ruby	that	checks	whether	a	string	s	is	a	palindrome,	that	is,	it	reads
the	same	backwards	as	forwards.	Hint:	Use	the	methods	in	Figure	3.7,	and	don’t	forget	that	upper	vs.
lowercase	shouldn’t	matter:	ReDivider	is	a	palindrome.
	s.downcase	==	s.downcase.reverse	

You	might	think	you	could	say	s.reverse=~Regexp.new(s),	but	that	would	fail	if	s	happens	to	contain
regexp	metacharacters	such	as	$.

3.7	Mix-ins	and	Duck	Typing

http://en.wikipedia.org/wiki/functional_programming
http://builder.rubyforge.org/
http://pastebin.com/bC02KjiR

			You	may	be	surprised	to	learn	that	the	collection	methods	summarized	in	Figure	3.7	(and	several
others	 not	 in	 the	 figure)	 aren’t	 part	 of	 Ruby’s	 Array	 class.	 In	 fact,	 they	 aren’t	 even	 part	 of	 some
superclass	from	which	Array	and	other	collection	types	inherit.	Instead,	they	take	advantage	of	an	even
more	powerful	mechanism	for	reuse,	called	mix-ins.

A	mix-in	is	a	collection	of	related	behaviors	that	can	be	added	to	any	class,	although	in	some	cases	the
class	may	have	to	fulfill	a	“contract”	in	order	to	use	the	mix-in.	This	may	sound	similar	to	an	Interface
in	Java,	but	there	are	two	differences.	First,	a	mix-in	is	easier	to	reuse:	the	“contract,”	if	any,	is	specified
in	the	mix-in’s	documentation	rather	than	being	formally	declared	as	a	Java	interface	would	be.	Second,
unlike	a	Java	interface,	which	says	nothing	about	how	a	class	 implements	an	interface,	a	mix-in	is	all
about	making	it	easy	to	reuse	an	implementation.

If	you	use	the	Emacs	editor,	you	can	think	of	Emacs	minor	modes	(auto-fill,	abbreviation	support,	and	so	on)	as	mix-ins	that	rely	on
contracts	provided	by	the	major	mode	and	use	Lisp’s	dynamic	typing	to	allow	mixing	them	into	any	major	mode.

A	module	 is	Ruby’s	method	 for	 packaging	 together	 a	 group	 of	methods	 as	 a	mix-in.	 (Modules	 have
other	 uses	 too,	 but	 mix-ins	 are	 the	 most	 important.)	 When	 a	 module	 is	 included	 into	 a	 class	 with
include	 ModuleName,	 the	 instance	 methods,	 class	 methods,	 and	 variables	 in	 the	 module	 become
available	in	the	class.

The	 collection	methods	 in	Figure	 3.7	 are	 part	 of	 a	module	 called	Enumerable	 that	 is	 part	 of	Ruby’s
standard	library;	to	mix	Enumerable	into	your	own	class,	just	say	include	Enumerable	inside	the	class
definition.

Watch	out!	Because	Ruby	allows	adding	and	defining	methods	at	runtime,	include	cannot	check	whether	the	module’s	contract	is
fulfilled	by	the	class.

As	 its	 documentation	 states,	Enumerable	 requires	 the	 class	mixing	 it	 in	 to	 provide	 an	each	method,
since	Enumerable’s	collection	methods	are	implemented	in	terms	of	each.	Unlike	a	Java	interface,	this
simple	contract	is	the	only	requirement	for	mixing	in	the	module;	it	doesn’t	matter	what	class	you	mix	it
into	as	long	as	that	class	defines	the	each	instance	method,	and	neither	the	class	nor	the	mix-in	have	to
declare	their	intentions	in	advance.	For	example,	the	each	method	in	Ruby’s	Array	class	iterates	over
the	array	elements,	whereas	the	each	method	in	the	IO	class	iterates	over	the	lines	of	a	file	or	other	I/O
stream.	Mix-ins	thereby	allow	reusing	whole	collections	of	behaviors	across	classes	that	are	otherwise

unrelated.	 		

The	term	“duck	typing”	is	a	popular	description	of	 this	capability,	because	“if	something	looks	 like	a
duck	and	quacks	like	a	duck,	it	might	as	well	be	a	duck.”	That	is,	from	Enumerable’s	point	of	view,	if	a
class	has	an	each	method,	it	might	as	well	be	a	collection,	thus	allowing	Enumerable	to	provide	other
methods	implemented	in	terms	of	each.	Unlike	Java’s	Interface,	no	formal	declaration	is	required	for
mix-ins;	if	we	invented	a	new	mixin	that	relied	on	(say)	a	class	implementing	the	dereference	operator
[],	we	could	then	mix	it	into	any	such	class	without	otherwise	modifying	the	classes	themselves.	When
Ruby	 programmers	 say	 that	 some	 class	 “quacks	 like	 an	 Array,”	 they	 usually	 mean	 that	 it’s	 not
necessarily	an	Array	nor	a	descendant	of	Array,	but	it	responds	to	most	of	the	same	methods	as	Array

http://en.wikipedia.org/wiki/mixin
http://ruby-doc.org/core-1.9.3/Enumerable.html

and	can	therefore	be	used	wherever	an	Array	would	be	used.

<=>	is	sometimes	called	the	spaceship	operator	since	some	people	think	it	looks	like	a	flying	saucer.

Because	 Enumerable	 can	 deliver	 all	 the	 methods	 in	 Figure	 3.7	 (and	 some	 others)	 to	 any	 class	 that
implements	each,	all	Ruby	classes	that	“quack	like	a	collection”	mix	in	Enumerable	for	convenience.
The	methods	sort	(with	no	block),	max,	and	min	also	require	that	the	elements	of	the	collection	(not	the
collection	 itself)	 respond	 to	 the	<=>	method,	which	 returns	 -1,	0,	or	1	depending	on	whether	 its	 first
argument	 is	 less	 than,	equal	 to,	or	greater	 than	its	second	argument.	You	can	still	mix	in	Enumerable
even	if	the	collection	elements	don’t	respond	to	<=>;	you	just	can’t	use	sort,	max,	or	min.	In	contrast,	in
Java	 every	 collection	 class	 that	 implemented	 the	Enumerable	 interface	would	 have	 to	 ensure	 that	 its
elements	could	be	compared,	whether	that	functionality	was	required	or	not.

In	Chapter	8	we	will	see	how	the	combination	of	mix-ins,	open	classes,	and	method_missing	allows
you	to	write	eminently	readable	unit	tests	using	the	RSpec	tool.

Summary

A	mix-in	 is	 a	 set	 of	 related	 behaviors	 that	 can	 be	 added	 to	 any	 class	 that	 satisfies	 the	mix-in’s
contract.	For	example,	Enumerable	 is	 a	 set	of	behaviors	on	enumerable	collections	 that	 requires
the	including	class	to	define	the	each	iterator.
Ruby	 uses	 modules	 to	 group	 mix-ins.	 A	 module	 is	 mixed	 into	 a	 class	 by	 putting	 include
ModuleName	after	the	class	ClassName	statement.
A	class	 that	 implements	 some	 set	 of	 behaviors	 characteristic	of	 another	 class,	 possibly	by	using
mix-ins,	is	sometimes	said	to	“quack	like”	the	class	it	resembles.	Ruby’s	scheme	for	allowing	mix-
ins	without	static	type	checking	is	therefore	sometimes	called	duck	typing.
Unlike	 interfaces	 in	Java,	mix-ins	 require	no	formal	declaration.	But	because	Ruby	doesn’t	have
static	 types,	 it’s	 your	 responsibility	 to	 ensure	 that	 the	 class	 including	 the	 mix-in	 satisfies	 the
conditions	stated	in	the	mix-in’s	documentation,	or	you	will	get	a	runtime	error.

ELABORATION:	Duck	typing	in	the	Time	class
Ruby	can	represent	times	arbitrarily	far	in	the	past	or	future,	can	use	timezones,	and	can	handle	non-Gregorian	calendrical	systems.
Yet	as	we	saw	in	Section	3.5,	when	a	Time	object	receives	a	method	call	like	+	that	expects	an	arithmetic	argument,	it	attempts	to
return	a	representation	of	itself	compatible	with	the	Unix	representation	(seconds	since	the	epoch).	In	other	words,	a	Time	object	is
not	just	a	simple	integer,	but	when	necessary,	it	quacks	like	one.

Self-Check	 3.7.1.	 Suppose	 you	 mix	 Enumerable	 into	 a	 class	 Foo	 that	 does	 not	 provide	 the	 each
method.	What	error	will	be	raised	when	you	call	Foo.new.map	{	|elt|	puts	elt	}?
	The	map	method	in	Enumerable	will	attempt	to	call	each	on	its	receiver,	but	since	the	new	Foo	object

doesn’t	define	each,	Ruby	will	raise	an	Undefined	Method	error.

Self-Check	 3.7.2.	 Which	 statement	 is	 correct	 and	 why:	 (a)	 include	 ’enumerable’	 (b)
include	Enumerable

http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/duck_typing

	(b)	is	correct,	since	include	expects	the	name	of	a	module,	which	(like	a	class	name)	is	a	constant
rather	than	a	string.

3.8	Make	Your	Own	Iterators	Using	Yield

Although	 Ruby	 defines	 each	 for	 built-in	 collection	 classes	 like	 Array,	 you	 can	 define	 your	 own
iterators	using	each	as	well.	The	idea	of	making	iteration	a	first-class	language	feature	first	appeared	in
the	CLU	language	invented	by	Barbara	Liskov.	Ruby’s	yield	lets	you	define	your	own	each	methods

that	take	a	block,	providing	an	elegant	way	to	allow	collections	to	manage	their	own	traversal.	 		

http://pastebin.com/yAYDz8nS

	1	#	return	every	n’th	element	in	an	enumerable

	2	module	Enumerable

	3			def	every_nth(count)

	4					index	=	0

	5					self.each	do	|elt|

	6							yield	elt	if	index	%	count	==	0

	7							index	+=	1

	8					end

	9			end

10	end

11	

12	list	=	(1..10).to_a	#	make	an	array	from	a	range

13	list.every_nth(3)	{	|s|	print	"#{s},	"	}

14	#	=>	1,	4,	7,	10,

15	list.every_nth(2)	{	|s|	print	"#{s},	"	}

16	#	=>	1,	3,	5,	7,	9,

Figure	3.8:	An	example	of	using	Ruby’s	yield,	which	is	based	on	a	construct	introduced	in	the	language	CLU.	Note	that	we	define
every_nth	in	the	Enumerable	module,	which	most	collections	mix	in,	as	Section	3.7	describes.

Figure	3.8	shows	how	this	unusual	construct	works.	When	a	method	containing	yield	is	called,	it	starts
executing	until	yield	is	reached;	at	that	point,	control	is	transferred	to	the	block	that	was	passed	to	the
method.	If	yield	had	any	arguments,	those	arguments	become	the	arguments	to	the	block.

A	common	use	of	yield	is	implementing	iterators	like	each	and	every_nth.	Unlike	Java,	in	which	you
have	 to	 create	 an	 iterator	 by	 passing	 it	 a	 collection	 of	 some	 type	 and	 then	 repeatedly	 call
while	 (iter.hasNext())	 and	 iter.getNext(),	 Ruby	 iterators	 allow	 turning	 the	 control	 structure
“inside-out”	and	letting	data	structures	manage	their	own	iteration.

Don’t	confuse	this	use	of	the	term	yield	with	the	unrelated	usage	from	operating	systems,	in	which	one	thread	or	process	is	said	to	yield
to	another	by	giving	up	the	CPU.

yield	also	enables	reuse	in	situations	where	you	need	to	“sandwich”	some	custom	functionality	inside
of	 some	 common	 functionality.	 For	 example,	 consider	 an	 app	 that	 creates	 HTML	 pages	 and	 uses	 a
standard	 HTML	 template	 for	 most	 pages	 that	 looks	 like	 this,	 where	 the	 only	 difference	 between

http://en.wikipedia.org/wiki/CLU_(programming_language)
http://pastebin.com/yAYDz8nS

different	pages	is	captured	by	line	8:

http://pastebin.com/tZ5j3G7J

	1				<!DOCTYPE	html>

	2				<html>

	3						<head>

	4						<title>Report</title>

	5						</head>

	6						<body>

	7								<div	id="main">

	8									...user-generated	content	here...

	9								</div>

10						</body>

11				</html>

In	most	languages,	we	could	encapsulate	the	code	that	generates	the	boilerplate	in	lines	1–7	and	9–11	in
methods	called	make_header	and	make_footer,	and	then	require	each	method	that	wants	to	generate	a
page	to	do	this:

http://pastebin.com/0sTEMcdN

	1				def	one_page

	2						page	=	’’

	3						page	<<	make_header()

	4						page	<<	"Hello"

	5						page	<<	make_footer()

	6				end

	7				def	another_page

	8						page	=	’’

	9						page	<<	make_header()

10						page	<<	"World"

11						page	<<	make_footer()

12				end

Since	this	code	looks	repetitive,	we	might	instead	wrap	up	both	calls	in	a	single	method:

http://pastebin.com/TsvTN5ZT

	1				def	make_page(contents)

	2						page	=	’’

	3						page	<<	make_header()

	4						page	<<	contents

	5						page	<<	make_footer()

	6				end

	7				#

	8				def	one_page

	9						make_page("Hello")

10				end

11				def	another_page

12						make_page("World")

13				end

http://pastebin.com/tZ5j3G7J
http://pastebin.com/0sTEMcdN
http://pastebin.com/TsvTN5ZT

But	in	Chapter	2	we	learned	that	useful	design	patterns	arise	from	the	desire	to	separate	the	things	that
change	from	those	that	stay	the	same.	yield	provides	a	better	way	to	encapsulate	the	common	part—
the	boilerplate	“around”	the	user	content—in	its	own	method:

http://pastebin.com/7TbZ12p4

	1				def	make_page

	2						page	=	’’

	3						page	<<	make_header()

	4						page	<<	yield

	5						page	<<	make_footer()

	6				end

	7				def	one_page

	8						make_page	do

	9								"Hello"

10						end

11				end

12				def	another_page

13						make_page	do

14								"World"

15						end

16				end

In	this	example,	when	one_page	calls	make_page,	the	yield	at	line	4	returns	control	to	the	block	at	line
9.	The	block	executes,	and	its	return	value	(in	this	case,	”Hello”)	is	returned	to	line	4	as	the	result	of
the	yield,	and	gets	appended	to	page	(using	the	<<	operator),	after	which	make_page	continues.

We	can	exploit	Ruby’s	idiom	for	single-line	blocks	to	boil	this	down	to:

http://pastebin.com/Nqe8MwA5

	1				def	make_page

	2						make_header	<<	yield	<<	make_footer

	3				end

	4				

	5				def	one_page

	6						make_page	{	"Hello"	}

	7				end

	8				def	another_page

	9						make_page	{	"World"	}

10				end

As	we’ll	see,	yield	is	actually	how	Rails	implements	HTML	template	rendering	for	views:	the	common
HTML	code	 that	goes	 at	 the	beginning	and	end	of	 each	page	 is	 rendered,	 and	 then	yield	 is	 used	 to
render	the	page-specific	content	in	between.	In	Chapter	11,	we’ll	see	how	the	combination	of	blocks	and
the	Factory	design	pattern	gives	an	exceptional	degree	of	conciseness	and	code	beauty	in	separating	the

things	that	change	from	those	that	stay	the	same.	 		

With	 this	 brief	 introduction	 to	 Ruby’s	 most	 distinctive	 features,	 we’re	 ready	 to	 meet	 the	 Rails

http://pastebin.com/7TbZ12p4
http://pastebin.com/Nqe8MwA5

framework.

Summary
In	the	body	of	a	method	that	takes	a	block	as	a	parameter,	yield	transfers	control	to	the	block	and
optionally	passes	it	an	argument.
Because	the	block	is	a	closure,	its	scope	is	the	one	that	was	in	effect	when	the	block	was	defined,
even	though	the	method	yielding	to	the	block	is	executing	in	a	completely	different	scope.
Yielding	 is	 the	general	mechanism	behind	 iterators:	an	 iterator	 is	 simply	a	method	 that	 traverses
some	data	structure	and	uses	yield	to	pass	one	element	at	a	time	to	the	iterator’s	receiver.

Self-Check	3.8.1.	Referring	 to	 Figure	 3.8,	 observe	 that	 every_nth	 uses	 elt	 as	 an	 instance	 variable
name	in	lines	5	and	6.	Suppose	that	in	line	13	we	used	elt	instead	of	s	as	the	name	of	the	local	variable
in	our	block.	What	would	be	the	effect	of	this	change,	if	any,	and	why?
	There	would	be	no	effect.	every_nth	and	the	block	we	pass	to	it	execute	in	different	scopes,	so	there

is	no	“collision”	of	the	local	variable	name	elt.

3.9	Fallacies	and	Pitfalls

			Pitfall:	Writing	Java	in	Ruby.	It	takes	some	mileage	to	learn	a	new	language’s	idioms	and	how
it	fundamentally	differs	from	other	languages.	Common	examples	for	Java	programmers	new	to	Ruby
include:
	

Thinking	 in	 terms	of	casting	 rather	 than	method	calls:	100.0	*	3	 doesn’t	 cast	3	 to	a	Float,	but
calls	Float#*.
Reading	a.b	as	“attribute	b	of	object	a”	rather	than	“call	method	b	on	object	a.”
Thinking	in	 terms	of	classes	and	traditional	static	 types,	rather	 than	duck	typing.	When	calling	a
method	 on	 an	 object,	 or	 doing	 a	 mix-in,	 all	 that	 matters	 is	 whether	 the	 object	 responds	 to	 the
method.	The	object’s	type	or	class	are	irrelevant.
Writing	explicit	for-loops	rather	than	using	an	iterator	such	as	each	and	the	collection	methods	that
exploit	 it	via	mix-ins	such	as	Enumerable.	Use	functional	 idioms	 like	select,	map,	any?,	 all?,
and	so	on.
Thinking	of	attr_accessor	as	a	declaration	of	attributes.	This	shortcut	and	related	ones	save	you
work	 if	 you	 want	 to	 make	 an	 attribute	 publicly	 readable	 or	 writable.	 But	 you	 don’t	 need	 to
“declare”	an	attribute	in	any	way	at	all	(the	existence	of	the	instance	variable	is	sufficient)	and	in
all	 likelihood	 some	 attributes	 shouldn’t	 be	 publicly	 visible.	 Resist	 the	 temptation	 to	 use
attr_accessor	as	if	you	were	writing	attribute	declarations	in	Java.

			Pitfall:	Thinking	of	symbols	and	strings	as	interchangeable.	While	many	Rails	methods	are
explicitly	constructed	to	accept	either	a	string	or	a	symbol,	the	two	are	not	in	general	interchangeable.	A
method	expecting	a	string	may	throw	an	error	if	given	a	symbol,	or	depending	on	the	method,	it	may
simply	 fail.	 For	 example,	 [’foo’,’bar’].include?(’foo’)	 is	 true,	 whereas
[’foo’,’bar’].include?(:foo)	is	legal	but	false.

			Pitfall:	Naming	a	local	variable	when	you	meant	a	local	method.	Suppose	class	C	defines	a
method	x=.	 In	an	 instance	method	of	C,	writing	x=3	will	not	have	 the	desired	effect	of	calling	 the	x=
method	with	the	argument	3;	rather,	it	will	set	a	local	variable	x	to	3,	which	is	probably	not	what	you
wanted.	To	get	the	desired	effect,	write	self.x=3,	which	makes	the	method	call	explicit.

			Pitfall:	Confusing	require	with	include.	require	loads	an	arbitrary	Ruby	file	(typically	the
main	file	for	some	gem),	whereas	include	mixes	in	a	module.	In	both	cases,	Ruby	has	its	own	rules	for
locating	 the	 files	containing	 the	code;	 the	Ruby	documentation	describes	 the	use	of	$LOAD_PATH,	but
you	should	rarely	if	ever	need	to	manipulate	it	directly	if	you	use	Rails	as	your	framework	and	Bundler
to	manage	your	gems.

3.10	Concluding	Remarks:	Idiomatic	Language	Use

Ugly	programs	are	like	ugly	suspension	bridges:	they’re	much	more	liable	to	collapse	than	pretty	ones,
because	the	way	humans	(especially	engineer-humans)	perceive	beauty	is	intimately	related	to	our
ability	to	process	and	understand	complexity.	A	language	that	makes	it	hard	to	write	elegant	code

makes	it	hard	to	write	good	code.
—Eric	S.	Raymond

If	 you’re	 coming	 to	 Ruby	 without	 knowledge	 of	 languages	 such	 as	 Lisp	 or	 Scheme,	 the	 functional
programming	idioms	may	be	new	to	you.	Unless	you’re	familiar	with	JavaScript,	you	probably	haven’t
used	closures	before.	And	unless	you	know	CLU,	Ruby’s	yield	may	take	some	getting	used	to.

There’s	an	old	quip	among	programmers	that	“you	can	write	Fortran	in	any	language.”	This	comment	is
perhaps	unfair	 to	Fortran—you	can	write	good	or	bad	code	in	any	language—but	 the	 intention	of	 the
expression	is	to	discourage	carrying	programming	habits	from	one	language	into	another	where	they	are
inappropriate,	 thereby	 missing	 the	 opportunity	 to	 use	 a	 mechanism	 in	 the	 new	 language	 that	 might

provide	a	more	beautiful	solution.	 		

Our	advice	is	therefore	to	persevere	in	a	new	language	until	you’re	comfortable	with	its	idioms.	Resist
the	temptation	to	transliterate	your	code	from	other	languages	without	first	considering	whether	there’s
a	more	Rubyistic	way	 to	code	what	you	need.	We’ll	 repeat	 this	 advice	when	we	 tackle	 JavaScript	 in
Chapter	6.

Learning	 to	 use	 a	 new	 language	 and	 making	 the	 most	 of	 its	 idioms	 is	 a	 vital	 skill	 for	 software
professionals.	These	are	not	easy	tasks,	but	we	hope	that	focusing	on	unique	and	beautiful	features	in
our	exposition	of	Ruby	and	JavaScript	will	evoke	intellectual	curiosity	rather	than	groans	of	resignation,
and	that	you	will	come	to	appreciate	the	value	of	wielding	a	variety	of	specialized	tools	and	choosing
the	most	productive	one	for	each	new	job.

3.11	To	Learn	More
	

Programming	Ruby	and	The	Ruby	Programming	Language	 (Flanagan	and	Matsumoto	2008),	co-

http://en.wikipedia.org/wiki/CLU_(programming_language)
http://ruby-doc.org/docs/ProgrammingRuby

authored	by	Ruby	inventor	Yukihiro	“Matz”	Matsumoto,	are	definitive	references	for	Ruby.
The	 online	 documentation	 for	 Ruby	 gives	 details	 on	 the	 language,	 its	 classes,	 and	 its	 standard
libraries.	A	few	of	the	most	useful	classes	include	IO	(file	and	network	I/O,	including	CSV	files),
Set	 (collection	 operations	 such	 as	 set	 difference,	 set	 intersection,	 and	 so	 on),	 and	 Time	 (the
standard	class	for	representing	times,	which	we	recommend	over	Date	even	if	you’re	representing
only	dates	without	times).	These	are	reference	materials,	not	a	tutorial.
Learning	Ruby	Fitzgerald	2007	takes	a	more	tutorial-style	approach	to	learning	the	language.	The
no-cost,	Creative	Commons-licensed,	and	quirky	Why’s	(Poignant)	Guide	to	Ruby	is	an	interesting
alternative,	though	some	material	may	be	outdated	since	that	document	was	written	for	Ruby	1.8.
The	Ruby	Way,	Second	Edition	is	an	encyclopedic	reference	to	both	Ruby	itself	and	how	to	use	it
idiomatically	to	solve	many	practical	programming	problems.
Many	newcomers	 to	Ruby	have	 trouble	with	yield,	which	has	no	equivalent	 in	Java,	C	or	C++
(although	recent	versions	of	Python	and	JavaScript	do	have	similar	mechanisms).	The	coroutines
article	on	Wikipedia	gives	good	examples	of	the	general	coroutine	mechanism	that	yield	supports.
Ruby	Best	Practices	Brown	2009	focuses	on	how	to	make	 the	best	of	Ruby’s	“power	 tools”	 like
blocks,	 modules/duck-typing,	metaprogramming,	 etc.	 If	 you	want	 to	 write	 Ruby	 like	 a	 Rubyist
instead	of	writing	Java	code	in	Ruby,	this	is	a	great	read.

	 G.	T.	Brown.	Ruby	Best	Practices.	O’Reilly	Media,	2009.	ISBN	0596523009.
	 M.	J.	Fitzgerald.	Learning	Ruby.	O’Reilly	Media,	2007.	ISBN	0596529864.

	 D.	Flanagan	and	Y.	Matsumoto.	The	Ruby	Programming	Language.	O’Reilly	Media,	2008.	ISBN
0596516177.

3.12	Suggested	Projects

OO	and	Classes

Project	3.1.	How	many	class	ancestors	does	the	object	5	have?	(Hint:	use	method	chaining	to	follow	the
superclass	chain	all	the	way	up	to	BasicObject)

Project	 3.2.	Given	 that	 superclass	 returns	 nil	 when	 called	 on	 BasicObject	 but	 a	 non-nil	 value
otherwise,	write	a	Ruby	method	that,	if	passed	any	object,	will	print	the	object’s	class	and	its	ancestor
classes	all	the	way	up	to	BasicObject.

Project	3.3.	Ben	Bitdiddle	asks:	“If	i	is	an	integer	and	f	is	a	floating	point	number	in	Ruby,	and	I	write
i+f,	does	i	get	converted	to	a	float	or	does	f	get	converted	to	an	integer	to	do	the	addition?”	Explain
why	Ben’s	question	is	ill-formed	when	applied	to	Ruby.

Project	3.4.

Newly	enlightened	by	the	answer	to	Project	3.3	,	Ben	now	observes	that	writing	i+=f	is	legal	Ruby.	His
question	is:	“Is	+=	a	separate	operator	in	Ruby,	or	is	it	purely	syntactic	sugar	for	i=i+f?”	Devise	and
carry	out	an	experiment	to	determine	the	answer.

Metaprogramming

Project	3.5.	Building	on	the	example	in	Section	3.5,	take	advantage	of	Time’s	duck	typing	to	define	a

http://ruby-doc.org/
http://www.scribd.com/doc/2236084/Whys-Poignant-Guide-to-Ruby
http://en.wikipedia.org/wiki/coroutines

method	at_beginning_of_year	that	lets	you	write:

http://pastebin.com/NxicVYaP

	1				Time.now.at_beginning_of_year	+	1.day

	2				#	=>	2011-01-02	00:00:00	-0800

Hint	1:	The	Time	documentation	will	tell	you	that	the	local	class	method	can	be	used	to	create	a	new
Time	object	with	a	specified	year,	month	and	day.

Hint	2:	The	receiver	of	at_beginning_of_year	in	the	above	code	is	now,	just	as	it	was	in	the	example
in	Section	3.5.	But	unlike	that	example,	think	carefully	about	how	you’d	like	now	to	quack.

Project	3.6.

Define	 a	 method	 attr_accessor_with_history	 that	 provides	 the	 same	 functionality	 as
attr_accessor	but	also	tracks	every	value	the	attribute	has	ever	had:

http://pastebin.com/4ffrvFgC

	1				class	Foo

	2						attr_accessor_with_history	:bar

	3				end

	4				f	=	Foo.new					#	=>	#<Foo:0x127e678>

	5				f.bar	=	3							#	=>	3

	6				f.bar	=	:wowzo		#	=>	:wowzo

	7				f.bar	=	’boo!’		#	=>	’boo!’

	8				f.history(:bar)	#	=>	[3,	:wowzo,	’boo!’]

Mix-ins	and	Iterators

Project	3.7.

The	Enumerable	module	 includes	an	 iterator	each_with_index	 that	 yields	 each	 enumerable	 element
along	with	an	index	starting	from	zero	(recall	that	Enumerable	is	mixed	into	Ruby’s	built-in	collection
classes	by	default):

http://pastebin.com/75zEmrAX

	1				%w(alice	bob	carol).each_with_index	do	|person,index|

	2						puts	">>	#{person}	is	number	#{index}"

	3				end

	4				>>	alice	is	number	0

	5				>>	bob	is	number	1

	6				>>	carol	is	number	2

Create	 an	 iterator	 each_with_custom_index	 in	 module	 Enumerable	 that	 lets	 you	 determine	 the
starting	value	and	step	of	the	indices:

http://pastebin.com/NxicVYaP
http://ruby-doc.org/core-1.9.3/Time.html
http://pastebin.com/4ffrvFgC
http://pastebin.com/75zEmrAX

http://pastebin.com/wpYexvCW

	1				%w(alice	bob	carol).each_with_custom_index(3,2)	do	|person,index|

	2						puts	">>	#{person}	is	number	#{index}"

	3				end

	4				>>	alice	is	number	3

	5				>>	bob	is	number	5

	6				>>	carol	is	number	7

Project	3.8.

Recall	that	the	first	two	integers	in	the	Fibonacci	sequence	are	1	and	1,	and	each	successive	Fibonacci
number	is	 the	sum	of	the	previous	two.	Create	a	class	that	returns	an	iterator	for	the	first	n	Fibonacci
numbers.	You	should	be	able	to	use	the	class	as	follows:

http://pastebin.com/W5nm61P9

	1				#	Fibonacci	iterator	should	be	callable	like	this:

	2				f	=	FibSequence.new(6)	#	just	the	first	6	Fibonacci	numbers

	3				f.each	{	|s|	print(s,’:’)	}		#	=>	1:1:2:3:5:8:

	4				f.reject	{	|s|	s.odd?	}						#	=>	[2,	8]

	5				f.reject(&:odd?)													#	=>	[2,	8]	(a	shortcut!)

	6				f.map	{	|x|	2*x	}												#	=>	[2,	2,	4,	6,	10,	16]

HINT:	as	long	as	objects	of	your	class	implement	each,	you	can	mix	in	Enumerable	to	get	reject,	map,
and	so	on.

Project	3.9.	Implement	an	iterator	each_with_flattening	that	behaves	as	follows:

http://pastebin.com/t79i1ZNu

	1				[1,	[2,	3],	4,	[[5,	6],	7]].each_with_flattening	{	|s|	print	"#{s},"	}

	2				>>	1,	2,	3,	4,	5,	6,	7

What	assumption(s)	must	your	iterator	make	about	its	receiver?	What	assumption(s)	must	it	make	about
the	elements	of	its	receiver?

Project	3.10.	Augment	the	Enumerable	module	with	a	new	iterator,	each_permuted,	which	returns	the
elements	of	a	collection	in	a	random	order.	The	iterator	may	assume	that	the	collection	responds	to	each
but	 shouldn’t	make	 any	 other	 assumptions	 about	 the	 elements.	Hint:	 you	may	want	 to	 use	 the	 rand
method	in	the	Ruby	standard	library.

Project	 3.11.	An	 ordered	 binary	 tree	 is	 one	 in	which	 every	 node	 has	 an	 element	 value	 and	 up	 to	 2
children,	each	of	which	is	itself	an	ordered	binary	tree,	and	all	elements	in	the	left	subtree	of	some	node
are	less	than	any	element	in	the	right	subtree	of	that	node.

Define	a	BinaryTree	 collection	class	 that	provides	 the	 instance	methods	<<	 (insert	element),	empty?

http://pastebin.com/wpYexvCW
http://pastebin.com/W5nm61P9
http://pastebin.com/t79i1ZNu

(returns	true	if	tree	has	no	elements),	and	each	(the	standard	iterator	that	yields	each	element	in	turn,	in
any	order	you	desire).

Project	3.12.	Augment	your	ordered	binary	 tree	class	 so	 that	 it	 also	provides	 the	 following	methods,
each	of	which	takes	a	block:	include?(elt)	(true	if	tree	includes	elt),	all?	(true	if	the	given	block	is
true	for	all	elements),	any?	(true	if	the	given	block	is	true	for	any	element),	sort	(sorts	the	elements).
HINT:	A	single	line	of	code	suffices	to	do	all	this.

Project	 3.13.	 Similar	 to	 the	 days.ago	 example	 in	 Section	 3.5,	 define	 the	 appropriate	 conversions
between	Euros,	US	Dollars,	and	Yen	so	that	you	can	type	the	following	conversions:

http://pastebin.com/JhsBT11Z

	1				#	assumes	1	Euro=1.3	US	dollars,	1	Yen=0.012	US	dollars

	2				5.dollars.in(:euros)		#	=>	6.5

	3				(1.euro	-	50.yen).in(:dollars)		#	=>	0.700

Project	3.14.

Which	of	these	methods	actually	cause	mutations	to	happen	the	way	you	expect?

http://pastebin.com/M7dfp9gZ

	1				def	my_swap(a,b)

	2						b,a	=	a,b

	3				end

	4				

	5				class	Foo

	6				attr_accessor	:a,	:b

	7						def	my_swap_2()

	8								@b,@a	=	@a,@b

	9						end

10				end

11				

12				def	my_string_replace_1(s)

13						s.gsub(/Hi/,	’Hello’)

14				end

15				

16				def	my_string_replace_2(s)

17						s.gsub!(/Hi/,	’Hello’)

18				end

Project	3.15.

Extend	the	Time	class	with	a	humanize	method	that	prints	out	an	informative	phrase	describing	the	time
of	 day	 to	 the	 nearest	 fifteen-minute	 division,	 in	 twelve-hour	 mode,	 and	 making	 a	 special	 case	 for
midnight:

http://pastebin.com/4znyp5BZ

http://pastebin.com/JhsBT11Z
http://pastebin.com/M7dfp9gZ
http://pastebin.com/4znyp5BZ

	1				>>		Time.parse("10:47	pm").humanize

	2				#	=>	"About	a	quarter	til	eleven"

	3				>>		Time.parse("10:31	pm").humanize

	4				#	=>	"About	half	past	ten"

	5				>>		Time.parse("10:07	pm").humanize

	6				#	=>	"About	ten"

	7				>>		Time.parse("23:58").humanize

	8				#	=>	"About	midnight"

	9				>>		Time.parse("00:29").humanize

10				#	=>	"About	12:30"

4.	SaaS	Framework:	Introduction	to	Rails

			Charles	Antony	Richard	Hoare	(1934–,	called	“Tony”	by	almost	everyone)
received	the	Turing	Award	in	1980	for	“fundamental	contributions	to	the	definition	and	design	of

programming	languages.”

There	are	two	ways	of	constructing	a	software	design:	One	way	is	to	make	it	so	simple	that	there	are
obviously	no	deficiencies,	and	the	other	way	is	to	make	it	so	complicated	that	there	are	no	obvious

deficiencies.	The	first	method	is	far	more	difficult...The	price	of	reliability	is	the	pursuit	of	the	utmost
simplicity.

—Tony	Hoare

4.1	Rails	Basics:	From	Zero	to	CRUD
4.2	Databases	and	Migrations
4.3	Models:	Active	Record	Basics
4.4	Controllers	and	Views
4.5	Debugging:	When	Things	Go	Wrong
4.6	Form	Submission:	New	and	Create
4.7	Redirection	and	the	Flash
4.8	Finishing	CRUD:	Edit/Update	and	Destroy
4.9	Fallacies	and	Pitfalls
4.10	Concluding	Remarks:	Designing	for	SOA
4.11	To	Learn	More
4.12	Suggested	Projects

Concepts

The	big	ideas	in	this	chapter	deal	with	how	Rails	simplifies	the	creation	of	SaaS	apps.
	

Rails	exposes	 the	client-server,	 three-tier	architecture,	and	model–view–controller	patterns,	all	of
which	are	common	in	SaaS	apps.
Rails’	ActiveRecord	package	uses	Ruby’s	metaprogramming	and	convention	over	configuration	to
free	 you	 from	 writing	 any	 code	 at	 all	 to	 perform	 the	 basic	 Create,	 Read,	 Update	 and	 Delete
(CRUD)	 operations	 on	 your	 models,	 as	 long	 as	 you	 follow	 certain	 conventions	 about	 naming
classes	and	variables.
Rails’	ActionView	 and	ActionController	 packages	 provide	 help	 for	 creating	Web	 pages,	 dealing
with	fill-in	forms,	and	setting	up	the	routes	that	map	URIs	to	controller	actions	(code	in	your	app).
A	properly-constructed	Rails	app	can	be	easily	adapted	to	work	in	a	service-oriented	architecture,
communicating	with	external	services	rather	than	with	a	human	using	a	browser.
Debugging	SaaS	requires	understanding	the	different	places	something	could	go	wrong	during	the
flow	of	a	SaaS	request,	and	making	that	information	visible	to	the	developer.

All	of	these	Rails	facilities	are	designed	to	streamline	the	creation	of	apps	that	will	work	in	a	Service-
Oriented	Architecture	and	exploit	proven	design	patterns	for	SaaS.

http://en.wikipedia.org/wiki/convention_over_configuration

4.1	Rails	Basics:	From	Zero	to	CRUD

As	we	saw	in	Chapter	2,	Rails	 is	a	SaaS	application	framework	 that	defines	a	particular	structure	 for
organizing	your	application’s	code	and	provides	an	interface	to	a	Rails	application	server	such	as	Rack.
The	app	server	waits	for	a	Web	browser	to	contact	your	app	and	maps	every	incoming	request	(URI	and
HTTP	 method)	 to	 a	 particular	 action	 in	 one	 of	 your	 app’s	 controllers.	 Rails	 consists	 of	 both	 the
framework	 itself	and	a	new	command	rails	 that	 is	used	 to	 set	up	and	manipulate	Rails	 apps.	Three
main	 modules	 make	 up	 the	 heart	 of	 Rails’	 support	 for	 MVC:	 ActiveRecord	 for	 creating	 models,
ActionView	for	creating	views,	and	ActionController	for	creating	controllers.

Using	the	explanation	of	Model–View–Controller	in	Chapter	2	as	a	reference	framework,	we	will	start
from	zero	and	create	the	Rotten	Potatoes	app	described	in	Chapter	2	for	maintaining	a	simple	database
of	movie	information.	We	will	briefly	visit	each	of	the	“moving	parts”	of	a	basic	Rails	application	with
a	single	model,	in	the	following	order:

	

1.	 Creating	the	skeleton	of	a	new	app
2.	 Routing
3.	 The	database	and	migrations
4.	 Models	and	Active	Record
5.	 Controllers,	views,	forms,	and	CRUD

-T	omits	directories	for	tests	that	use	Ruby’s	Test::Unit	framework,	since	in	Chapter	8	we	will	use	the	RSpec	testing	framework	instead.
rails	--help	shows	more	options	for	creating	a	new	app.

Begin	 by	 logging	 into	 the	 bookware	 VM,	 changing	 to	 a	 convenient	 directory	 such	 as	 Documents
(cd	Documents),	and	creating	a	new,	empty	Rails	app	with	rails	new	myrottenpotatoes	-T.	If	all
goes	well,	you’ll	see	several	messages	about	files	being	created,	ending	with	“Your	bundle	is	complete.”
You	can	now	cd	 to	 the	newly-created	myrottenpotatoes	directory,	 called	 the	app	root	 directory	 for
your	new	app.	From	now	on,	unless	we	say	otherwise,	all	 file	names	will	be	 relative	 to	 the	app	root.
Before	 going	 further,	 spend	 a	 few	 minutes	 examining	 the	 contents	 of	 the	 new	 app	 directory
myrottenpotatoes,	 as	 described	 in	 Figure	 4.1,	 to	 familiarize	 yourself	 with	 the	 directory	 structure
common	to	all	Rails	apps.

Gemfile list	of	Ruby	gems	(libraries)	this	app	uses	(Chapter	3)
Rakefile commands	to	automate	maintenance	and	deployment	(Chapter	12)
app your	application

		app/models model	code
		app/controllers controller	code
		app/views view	templates

				app/views/layouts page	templates	used	by	all	views	in	the	app	(see	text)
		app/helpers helper	methods	to	streamline	view	templates

		app/assets static	assets	(JavaScript,	images,	stylesheets)
config basic	configuration	information

		config/environments settings	for	running	in	development	vs.	production
		config/database.yml database	configuration	for	development	vs.	production
		config/routes.rb mappings	of	URIs	to	controller	actions

db files	describing	the	database	schema
		db/development.sqlite3 Data	storage	for	SQLite	development	database

		db/test.sqlite3 Database	used	for	running	tests
		db/migrate/ Migrations	(descriptions	of	changes	to	database	schema)

doc generated	documentation
lib additional	app	code	shared	among	M,	V,	C
log log	files

public error	pages	served	by	Web	server
script development	tools,	not	part	of	app
tmp temporary	data	maintained	at	runtime

Figure	4.1:	The	standard	directory	structure	of	a	Rails	project	includes	an	app	directory	for	the	actual	application	logic	with
subdirectories	for	the	app’s	models,	views,	and	controllers,	showing	how	Rails	exposes	the	MVC	architectural	choice	even	in	the
arrangement	of	project	files.

The	message	“Your	bundle	is	complete”	refers	to	the	Gemfile	that	was	automatically	created	for	your
app.	While	the	Ruby	standard	library	includes	a	vast	collection	of	useful	classes,	Rubygems	is	a	system
for	managing	 external	 user-contributed	Ruby	 libraries	 or	gems.	Bundler,	 a	 gem	 preinstalled	with	 the
bookware,	looks	for	a	Gemfile	 in	the	app’s	root	directory	that	specifies	not	only	what	gems	your	app
depends	on,	but	what	versions	of	those	gems.	It	might	surprise	you	that	there	are	already	gem	names	in
this	file	even	though	you	haven’t	written	any	app	code,	but	that’s	because	Rails	itself	is	a	gem	and	also
depends	on	 several	other	gems.	For	example,	 if	you	open	 the	Gemfile	 in	an	editor,	you	can	 see	 that
sqlite3	 is	 listed,	 because	 the	 default	 Rails	 development	 environment	 expects	 to	 use	 the	 SQLite3.
database

	 	 	Edit	your	Gemfile	 by	 adding	 the	 following	 (anywhere	 in	 the	 file,	 as	 long	 as	 it’s	 not	 inside	 a
block	beginning	with	group).

http://pastebin.com/UQTR5UQh

	1				#	use	Haml	for	templates

	2				gem	’haml’

	3				#	use	Ruby	debugger

	4				group	:development,	:test	do

	5						gem	’debugger’

	6				end

Pastebin	is	a	service	for	copying-and-pasting	book	code.	(You	need	to	type	URI	if	you’re	reading	the	print	book;	it’s	a	link	in	ebooks.)

http://ruby-doc.org/core-1.9.3/
http://pastebin.com/UQTR5UQh

This	change	does	two	things.	First,	it	specifies	that	we	will	use	the	Haml	templating	system	rather	than
the	 built-in	 erb.	 Second,	 it	 specifies	 that	 we	want	 to	 use	 the	 interactive	 debugger	 debugger	 during
development	and	testing,	but	not	in	production.

Once	 you’ve	 made	 these	 changes	 to	 the	 Gemfile,	 run	 bundle	 install	 --without	 production,
which	checks	if	any	gems	specified	in	our	Gemfile	are	missing	and	need	to	be	installed.	In	this	case	no
installation	should	be	needed,	since	we’ve	preloaded	most	gems	you	need	in	the	bookware	VM,	so	you
should	see	“Your	bundle	 is	complete”	as	before.	Bundler	creates	 the	file	Gemfile.lock	 listing	which
versions	 of	 which	 Gems	 are	 actually	 being	 used	 in	 your	 development	 environment;	 deployment
platforms	like	Heroku	use	this	information	to	exactly	match	the	gems	and	versions	in	your	production
environment.

Be	sure	to	place	both	Gemfile	and	Gemfile.lock	under	version	control!	Appendix	A.6	explains	the	basics	if	you	haven’t	done	this
before.

	 	 	 As	 the	 margin	 icon	 suggests,	 Bundler	 is	 the	 first	 of	 many	 examples	 we’ll	 encounter	 of
automation	for	repeatability:	rather	 than	manually	 installing	 the	gems	your	app	needs,	 listing	 them	in
the	 Gemfile	 and	 letting	 Bundler	 install	 them	 automatically	 ensures	 that	 the	 task	 can	 be	 repeated
consistently	in	a	variety	of	environments,	eliminating	mistakes	in	doing	such	tasks	as	a	possible	source
of	app	errors.	This	is	important	because	when	you	deploy	your	app,	the	information	is	used	to	make	the
deployment	environment	match	your	development	environment.

Address	already	in	use?	If	you	see	this	error,	you	already	have	an	app	server	listening	on	the	default	port	of	3000,	so	find	the	terminal
window	where	you	started	it	and	type	Control-C	to	stop	it	if	necessary.

Start	 the	 app	 with	 rails	 server	 and	 point	 a	 browser	 to	 http://localhost:3000.	 Recall	 from
Chapter	2	 that	 a	URI	 that	 specifies	only	 the	hostname	and	port	will	 fetch	 the	home	page.	Most	Web
servers	 implement	 the	 convention	 that	 unless	 the	 app	 specifies	 otherwise,	 the	 home	 page	 is
index.html,	and	indeed	the	welcome	page	you	should	be	looking	at	is	stored	at	public/index.html—
the	generic	welcome	page	for	new	Rails	apps.

If	you	now	visit	http://localhost:3000/movies,	you	should	get	a	Routing	Error	from	Rails.	Indeed,
you	should	verify	 that	anything	 you	add	 to	 the	URI	 results	 in	 this	 error,	 and	 it’s	because	we	haven’t
specified	any	routes	mapping	URIs	to	app	methods.	Try	rake	routes	and	verify	that	unlike	the	result
in	Chapter	2,	it	prints	nothing	since	there	are	no	routes	in	our	brand-new	app.	(You	may	want	to	open
multiple	 Terminal	windows	 so	 that	 the	 app	 can	 keep	 running	while	 you	 try	 other	 commands.)	More
importantly,	use	an	editor	to	open	the	file	log/development.log	and	observe	that	the	error	message	is
logged	 there;	 this	 is	where	 you	 look	 to	 find	 detailed	 error	 information	when	 something	 goes	wrong.
We’ll	show	other	problem-finding	and	debugging	techniques	in	Section	4.5.

To	fix	this	error	we	need	to	add	some	routes.	Since	our	initial	goal	 is	 to	store	movie	information	in	a
database,	 we	 can	 take	 advantage	 of	 a	 Rails	 shortcut	 that	 creates	 RESTful	 routes	 for	 the	 four	 basic
CRUD	actions	 (Create,	Read,	Update,	Delete)	 on	 a	model.	 (Recall	 that	RESTful	 routes	 specify	 self-
contained	 requests	 of	what	 operation	 to	perform	and	what	 entity,	 or	 resource,	 to	perform	 it	 on.)	Edit

config/routes.rb,	which	was	auto-generated	by	the	rails	new	command	and	is	heavily	commented.
Replace	the	contents	of	the	file	with	the	following	(the	file	is	mostly	comments,	so	you’re	not	actually
deleting	much):

http://pastebin.com/JpnwuT56

	1				Myrottenpotatoes::Application.routes.draw	do

	2						resources	:movies

	3						root	:to	=>	redirect(’/movies’)

	4				end

Very	important:	In	addition,	delete	the	file	public/index.html	if	it	exists.	Save	the	routes.rb	file	and
run	rake	routes	again,	and	observe	that	because	of	our	change	to	routes.rb,	the	first	line	of	output
says	that	the	URI	GET	/movies	will	try	to	call	the	index	action	of	the	movies	controller;	this	and	most
of	the	other	routes	in	the	table	are	the	result	of	the	line	resources	:movies,	as	we’ll	soon	see.	The	root
route	’/’,	RottenPotatoes’	“home	page,”	will	take	us	to	the	main	Movie	listings	page	by	a	mechanism
we’ll	soon	see	called	an	HTTP	redirect.

Symbol	or	string?As	with	many	Rails	methods,	resources	’movies’	would	also	work,	but	idiomatically,	a	symbol	indicates	that	the
value	is	one	of	a	fixed	set	of	choices	rather	than	an	arbitrary	string.

Using	convention	over	configuration,	Rails	will	expect	this	controller’s	actions	to	be	defined	in	the	class
MoviesController,	and	if	that	class	isn’t	defined	at	application	start	time,	Rails	will	try	to	load	it	from
the	 file	 app/controllers/movies_controller.rb.	 Sure	 enough,	 if	 you	 now	 reload	 the	 page
http://localhost:3000/movies	 in	your	browser,	 you	 should	 see	 a	different	 error:	uninitialized
constant	MoviesController.	This	is	good	news:	a	Ruby	class	name	is	just	a	constant	that	refers	to
the	 class	 object,	 so	 Rails	 is	 essentially	 complaining	 that	 it	 can’t	 find	 the	 MoviesController	 class,
indicating	that	our	route	is	working	correctly!	As	before,	this	error	message	and	additional	information

are	captured	in	the	log	file	log/development.log.	 		

Having	 covered	 the	 first	 two	 steps	 in	 the	 list—setting	 up	 the	 app	 skeleton	 and	 creating	 some	 initial
routes—we	can	move	on	to	setting	up	the	database	that	will	store	the	models,	the	“M”	of	MVC.

Summary:	You	used	the	following	commands	to	set	up	a	new	Rails	app:
rails	new	sets	up	the	new	app;	the	rails	command	also	has	subcommands	to	run	the	app	locally
with	WEBrick	(rails	server)	and	other	management	tasks.
Rails	 and	 the	 other	 gems	 your	 app	 depends	 on	 (we	 added	 the	Haml	 templating	 system	 and	 the
Ruby	debugger)	are	 listed	 in	 the	app’s	Gemfile,	which	Bundler	uses	 to	 automate	 the	process	of
creating	a	consistent	environment	for	your	app	whether	in	development	or	production	mode.
To	 add	 routes	 in	 config/routes.rb,	 the	 one-line	 resources	 method	 provided	 by	 the	 Rails
routing	 system	 allowed	 us	 to	 set	 up	 a	 group	 of	 related	 routes	 for	CRUD	 actions	 on	 a	RESTful
resource.
The	log	files	in	the	log	directory	collect	error	information	when	something	goes	wrong.

http://pastebin.com/JpnwuT56
http://en.wikipedia.org/wiki/URL_redirection

ELABORATION:	Automatically	reloading	the	app
You	may	have	noticed	that	after	changing	routes.rb,	you	didn’t	have	to	stop	and	restart	 the	app	in	order	for	the	changes	to	take
effect.	 In	 development	 mode,	 Rails	 reloads	 all	 of	 the	 app’s	 classes	 on	 every	 new	 request,	 so	 that	 your	 changes	 take	 effect
immediately.	In	production	this	would	cause	serious	performance	problems,	so	Rails	provides	ways	to	change	various	app	behaviors
between	development	and	production	mode,	as	we’ll	see	in	Section	4.2.

Route:	get	’:controller/:action/:id’	or	get	’photos/preview/:id’	
Example	URI:	/photos/preview/3	
Behavior:	call	PhotosController#preview	
params[]:	{:id=>3}

Route:	get	’photos/preview/:id’	
Example	URI:	/photos/look/3?color=true	
Behavior:	no	route	will	match	(look	doesn’t	match	preview)	

Route:	get	’photos/:action/:id’	
Example	URI:	/photos/look/3?color=true	
Behavior:	call	PhotosController#look	(look	matches	:action)	
params[]:	{:id=>3,	:color=>’true’}

Route:	get	’:controller/:action/:vol/:num’	
Example	URI:	/magazines/buy/3/5?newuser=true&discount=2	
Behavior:	call	MagazinesController#buy	
params[]:	{:vol=>3,	:num=>5,	:newuser=>’true’,	:discount=>’2’}

Figure	4.2:	As	the	Elaboration	explains,	routes	can	include	“wildcard”	tokens	such	as	:controller	and	:action,	which	determine	the
controller	and	action	that	will	be	invoked.	Any	other	tokens	beginning	with	:,	plus	any	additional	parameters	encoded	in	the	URI,	will	be
made	available	in	the	params	hash.

ELABORATION:	Non-resource-based	routes
The	shortcut	resources	:movies	 creates	RESTful	 routes	 for	CRUD,	but	any	nontrivial	app	will	have	many	additional	controller
actions	beyond	CRUD.	The	Rails	Routing	from	the	Outside	In	guide	has	much	more	detail,	but	one	way	to	set	up	routes	is	to	map
components	of	the	URI	directly	to	controller	and	action	names	using	wildcards,	as	Figure	4.2	shows.

Self-Check	4.1.1.	Recall	the	generic	Rails	welcome	page	you	saw	when	you	first	created	the	app.	In	the
development.log	 file,	 what	 is	 happening	 when	 the	 line	 Started	 GET	 ”assets/rails.png”	 is
printed?	 (Hint:	 recall	 the	 steps	 needed	 to	 render	 a	 page	 containing	 embedded	 assets,	 as	 described	 in
Section	2.3.)
	The	browser	is	requesting	the	embedded	image	of	the	Rails	logo	for	the	welcome	page.

Self-Check	4.1.2.	What	are	the	two	steps	you	must	take	to	have	your	app	use	a	particular	Ruby	gem?
	You	must	add	a	line	to	your	Gemfile	to	add	a	gem	and	re-run	bundle	install.

4.2	Databases	and	Migrations

http://guides.rubyonrails.org/v3.2.19/routing.html

The	persistence	tier	of	a	Rails	app	(see	Figure	2.7)	uses	a	relational	database	(RDBMS)	by	default,	for
the	reasons	we	discussed	in	Chapter	2.	Amazingly,	you	don’t	need	to	know	much	about	RDBMSs	to	use
Rails,	though	as	your	apps	become	more	sophisticated	it	definitely	helps.	Just	as	we	use	the	“lite”	Web
server	 WEBrick	 for	 development,	 Rails	 apps	 are	 configured	 by	 default	 to	 use	 SQLite3,	 a	 “lite”
RDBMS,	 for	 development.	 In	 production	 you’d	 use	 a	 production-ready	 database	 such	 as	 MySQL,
PostgreSQL	or	Oracle.

But	more	important	than	the	“lightweight”	aspect	is	that	you	wouldn’t	want	to	develop	or	test	your	app
against	 the	 production	 database,	 as	 bugs	 in	 your	 code	might	 accidentally	 damage	 valuable	 customer
data.	 So	 Rails	 defines	 three	 environments—production,	 development,	 and	 test—each	 of	 which
manages	 its	 own	 separate	 copy	 of	 the	 database,	 as	 specified	 in	 config/database.yml.	 The	 test
database	 is	entirely	managed	by	 the	 testing	 tools	and	should	never	be	modified	manually:	 it	 is	wiped
clean	and	repopulated	at	the	beginning	of	every	testing	run,	as	we’ll	see	in	Chapter	8.

An	 empty	 database	 was	 created	 for	 us	 by	 the	 rails	 new	 command	 in	 the	 file
db/development.sqlite3,	as	specified	in	config/database.yml.	We	need	to	create	a	table	for	movie
information.	We	could	use	the	sqlite3	command-line	tool	or	a	SQLite	GUI	tool	 to	do	this	manually,
but	how	would	we	later	create	the	table	in	our	production	database	when	we	deploy?	Typing	the	same
commands	a	second	time	isn’t	DRY,	and	the	exact	commands	might	be	hard	to	remember.	Further,	if	the
production	 database	 is	 something	 other	 than	 SQLite3	 (as	 is	 almost	 certainly	 the	 case),	 the	 specific
commands	might	be	different.	And	in	 the	future,	 if	we	add	more	 tables	or	make	other	changes	 to	 the
database,	we’ll	face	the	same	problem.

			A	better	alternative	is	a	migration—a	portable	script	for	changing	the	database	schema	(layout	of
tables	and	columns)	in	a	consistent	and	repeatable	way,	just	as	Bundler	uses	the	Gemfile	to	identify	and
install	 necessary	 gems	 (libraries)	 in	 a	 consistent	 and	 repeatable	 way.	 Changing	 the	 schema	 using
migrations	is	a	four-step	process:

		
	

1.	 Create	 a	 migration	 describing	 what	 changes	 to	 make.	 As	 with	 rails	 new,	 Rails	 provides	 a
migration	generator	 that	gives	you	 the	boilerplate	code,	plus	various	helper	methods	 to	describe
the	migration.

2.	 Apply	the	migration	to	the	development	database.	Rails	defines	a	rake	task	for	this.
3.	 Assuming	 the	 migration	 succeeded,	 update	 the	 test	 database’s	 schema	 by	 running	 rake

db:test:prepare.
4.	 Run	your	 tests,	 and	 if	all	 is	well,	 apply	 the	migration	 to	 the	production	database	and	deploy	 the

new	 code	 to	 production.	 The	 process	 for	 applying	 migrations	 in	 production	 depends	 on	 the
deployment	environment;	Appendix	A.8	covers	how	to	do	 it	using	Heroku,	 the	cloud	computing
deployment	environment	used	for	the	examples	in	this	book.

			We’ll	use	the	first	3	steps	of	this	process	to	add	a	new	table	that	stores	each	movie’s	title,	rating,
description,	 and	 release	 date,	 to	 match	 Chapter	 2.	 Each	 migration	 needs	 a	 name,	 and	 since	 this
migration	will	 create	 the	movies	 table,	we	choose	 the	name	CreateMovies.	Run	 the	 command	rails
generate	migration	create_movies,	and	if	successful,	you	will	find	a	new	file	under	db/migrate

http://www.sqlite.org/cli.html

whose	name	begins	with	the	creation	time	and	date	and	ends	with	the	name	you	supplied,	for	example,
20111201180638_create_movies.rb.	 (This	 naming	 scheme	 lets	Rails	 apply	migrations	 in	 the	 order
they	 were	 created,	 since	 the	 file	 names	 will	 sort	 in	 date	 order.)	 Edit	 this	 file	 to	 make	 it	 look	 like
Figure	 4.3.	 As	 you	 can	 see,	 migrations	 illustrate	 an	 idiomatic	 use	 of	 blocks:	 the
ActiveRecord::Migration#create_table	method	 takes	 a	 block	 of	 1	 argument	 and	 yields	 to	 that
block	an	 object	 representing	 the	 table	 being	 created.	The	methods	string,	datetime,	 and	 so	 on	 are
provided	by	this	table	object,	and	calling	them	results	in	creating	columns	in	the	newly-created	database
table;	for	example,	t.string	’title’	creates	a	column	named	title	that	can	hold	a	string,	which	for
most	databases	means	up	to	255	characters.

http://pastebin.com/rVw3riS9

	1	class	CreateMovies	<	ActiveRecord::Migration

	2			def	up

	3					create_table	’movies’	do	|t|

	4							t.string	’title’

	5							t.string	’rating’

	6							t.text	’description’

	7							t.datetime	’release_date’

	8							#	Add	fields	that	let	Rails	automatically	keep	track

	9							#	of	when	movies	are	added	or	modified:

10							t.timestamps

11					end

12			end

13	

14			def	down

15					drop_table	’movies’	#	deletes	the	whole	table	and	all	its	data!

16			end

17	end

Figure	4.3:	A	migration	that	creates	a	new	Movies	table,	specifying	the	desired	fields	and	their	types.	The	documentation	for	the
ActiveRecord::Migration	class	(from	which	all	migrations	inherit)	is	part	of	the	Rails	documentation,	and	gives	more	details	and	other
migration	options.

Save	the	file	and	type	rake	db:migrate	to	actually	apply	the	migration	and	create	this	table.	Note	that
this	housekeeping	 task	 also	 stores	 the	migration	number	 itself	 in	 the	database,	 and	by	default	 it	 only
applies	migrations	 that	haven’t	 already	been	applied.	 (Type	rake	db:migrate	 again	 to	 verify	 that	 it
does	nothing	the	second	time.)	rake	db:rollback	will	“undo”	the	last	migration	by	running	its	down
method.	(Try	it.	And	then	run	rake	db:migrate	to	re-apply	the	migration.)	However,	some	migrations,
such	 as	 those	 that	 delete	 data,	 can’t	 be	 “undone”;	 in	 these	 cases,	 the	 down	 method	 should	 raise	 an
ActiveRecord::IrreversibleMigration	exception.

Summary
Rails	defines	three	environments—development,	production	and	test—each	with	its	own	copy	of
the	database.
A	migration	is	a	script	describing	a	specific	set	of	changes	to	the	database.	As	apps	evolve	and	add
features,	 migrations	 are	 added	 to	 express	 the	 database	 changes	 required	 to	 support	 those	 new

http://pastebin.com/rVw3riS9
http://api.rubyonrails.org/v3.2.19/

features.
Changing	a	database	using	a	migration	takes	three	steps:	create	the	migration,	apply	the	migration
to	your	development	database,	 and	 (if	 applicable)	 after	 testing	your	 code	apply	 the	migration	 to
your	production	database.
The	rails	generate	migration	 generator	 fills	 in	 the	boilerplate	 for	 a	new	migration,	 and	 the
ActiveRecord::Migration	class	contains	helpful	methods	for	defining	it.
rake	db:migrate	applies	only	those	migrations	not	already	applied	to	the	development	database.
The	 method	 for	 applying	 migrations	 to	 a	 production	 database	 depends	 on	 the	 deployment
environment.

ELABORATION:	Environments
Different	environments	can	also	override	specific	app	behaviors.	For	example,	production	mode	might	specify	optimizations	 that
give	better	performance	but	complicate	debugging	if	used	in	development	mode.	Test	mode	may	“stub	out”	external	interactions,	for
example,	 saving	 outgoing	 emails	 to	 a	 file	 rather	 than	 actually	 sending	 them.	 The	 file	 config/environment.rb	 specifies	 general
startup	instructions	for	the	app,	but	config/environments/production.rb	allows	setting	specific	options	used	only	 in	production
mode,	and	similarly	development.rb	and	test.rb	in	the	same	directory.

Self-Check	4.2.1.	In	line	3	of	Figure	4.3,	how	many	arguments	are	we	passing	to	create_table,	and	of
what	types?
	Two	arguments:	the	first	is	a	string	and	the	second	is	a	block.	We	used	poetry	mode,	allowing	us	to

omit	parentheses.

Self-Check	4.2.2.	In	Figure	4.3,	the	____	method	yields	____	to	the	block.
	create_table;	the	variable	t

4.3	Models:	Active	Record	Basics

With	our	Movies	 table	 ready	 to	go,	we’ve	completed	 the	 first	 three	steps—app	creation,	 routing,	and
initial	migration—so	it’s	time	to	write	some	app	code.	The	database	stores	the	model	objects,	but	as	we
said	in	Chapter	2,	Rails	uses	the	Active	Record	design	pattern	to	“connect”	models	to	the	database,	so
that’s	what	we	will	explore	next.	Create	a	file	app/models/movie.rb	containing	just	these	three	lines:	

		

http://pastebin.com/1zatve2r

	1				class	Movie	<	ActiveRecord::Base

	2						attr_accessible	:title,	:rating,	:description,	:release_date

	3				end

Thanks	to	convention	over	configuration,	those	three	lines	in	movie.rb	enable	a	great	deal	of	behavior.
To	 explore	 some	of	 it,	 stop	 the	 running	 application	with	Control-C	 and	 instead	 run	rails	console,
which	gives	you	an	interactive	Ruby	prompt	like	irb(main):001.0>	with	the	Rails	framework	and	all
of	your	application’s	classes	already	loaded.	Figure	4.4	illustrates	some	basic	ActiveRecord	features	by
creating	some	movies	in	our	database,	searching	for	them,	changing	them,	and	deleting	them	(CRUD)	.
As	we	describe	the	role	of	each	set	of	lines,	you	should	copy	and	paste	them	into	the	console	to	execute

http://pastebin.com/1zatve2r

the	code.	The	URI	accompanying	the	code	example	will	take	you	to	a	copy-and-pastable	version	of	the

code	on	Pastebin.	 		

http://pastebin.com/sGHfp79H

	1	####		Create

	2	starwars	=	Movie.create!(:title	=>	’Star	Wars’,

	3			:release_date	=>	’25/4/1977’,	:rating	=>	’PG’)

	4	#	note	that	numerical	dates	follow	European	format:	dd/mm/yyyy

	5	requiem	=		Movie.create!(:title	=>	’Requiem	for	a	Dream’,

	6			:release_date	=>	’Oct	27,	2000’,	:rating	=>	’R’)

	7	#		Creation	using	separate	’save’	method,	used	when	updating	existing	records

	8	field	=	Movie.new(:title	=>	’Field	of	Dreams’,

	9			:release_date	=>	’21-Apr-89’,	:rating	=>	’PG’)

10	field.save!

11	field.title	=	’New	Field	of	Dreams’

12	####		Read

13	pg_movies	=	Movie.where("rating	=	’PG’")

14	ancient_movies	=	Movie.where(’release_date	<	:cutoff	and	rating	=	:rating’,

15			:cutoff	=>	’Jan	1,	2000’,	:rating	=>	’PG’)

16	####		Another	way	to	read

17	Movie.find(3)		#	exception	if	key	not	found;	find_by_id	returns	nil	instead

18	####		Update

19	starwars.update_attributes(:description	=>	’The	best	space	western	EVER’,

20			:release_date	=>	’25/5/1977’)

21	requiem.rating	=	’NC-17’

22	requiem.save!

23	####		Delete

24	requiem.destroy

25	Movie.where(’title	=	"Requiem	for	a	Dream"’)

26	####		Find	returns	an	enumerable

27	Movie.where(’rating	=	"PG"’).each	do	|mov|

28			mov.destroy

29	end

Figure	4.4:	Although	Model	behaviors	in	MVC	are	usually	called	from	the	controller,	these	simple	examples	will	help	familiarize	you
with	ActiveRecord’s	basic	features	before	writing	the	controller.

	 	 	 	 	 	 Lines	 1–6	 (Create)	 create	 new	 movies	 in	 the	 database.	 create!	 is	 a	 method	 of
ActiveRecord::Base,	from	which	Movie	inherits,	as	do	nearly	all	models	in	Rails	apps.	ActiveRecord
uses	 convention	 over	 configuration	 in	 three	 ways.	 First,	 it	 uses	 the	 name	 of	 the	 class	 (Movie)	 to
determine	 the	name	of	 the	database	 table	 corresponding	 to	 the	 class	 (movies).	Second,	 it	queries	 the
database	 to	 find	 out	 what	 columns	 are	 in	 that	 table	 (the	 ones	 we	 created	 in	 our	 migration),	 so	 that
methods	like	create!	know	which	attributes	are	legal	to	specify	and	what	types	they	should	be.	Third,
it	 gives	 every	Movie	 object	 attribute	 getters	 and	 setters	 similar	 to	attr_accessor,	 except	 that	 these
getters	 and	 setters	 do	more	 than	 just	modify	 an	 instance	variable.	Before	going	on,	 type	Movie.all,
which	returns	a	collection	of	all	the	objects	in	the	table	associated	with	the	Movie	class.

For	the	purposes	of	demonstration,	we	specified	the	release	date	in	line	6	using	a	different	format	than

http://pastebin.com/sGHfp79H

in	line	3.	Because	Active	Record	knows	from	the	database	schema	that	release_date	 is	a	datetime
column	(recall	the	migration	file	in	Figure	4.3),	it	will	helpfully	try	to	convert	whatever	value	we	pass
for	that	attribute	into	a	date.

Recall	from	Figure	3.1	that	methods	whose	names	end	in	!	are	“dangerous.”	create!	 is	dangerous	in
that	 if	 anything	goes	wrong	 in	creating	 the	object	 and	saving	 it	 to	 the	database,	an	exception	will	be
raised.	The	non-dangerous	version,	create,	returns	the	newly-created	object	if	all	goes	well	or	nil	 if
something	goes	wrong.	For	 interactive	use,	we	prefer	create!	 so	we	don’t	 have	 to	 check	 the	 return
value	 each	 time,	 but	 in	 an	 application	 it’s	much	more	 common	 to	 use	 create	 and	 check	 the	 return
value.

Lines	7–11	(Save)	show	that	Active	Record	model	objects	in	memory	are	independent	of	the	copies	in
the	database,	which	must	be	updated	explicitly.	For	example,	 lines	8–9	create	a	new	Movie	 object	 in
memory	without	saving	it	to	the	database.	(You	can	tell	by	trying	Movie.all	after	executing	lines	8–9.
You	won’t	 see	Field	of	Dreams	 among	 the	movies	 listed.)	Line	10	 actually	 persists	 the	 object	 to	 the
database.	The	distinction	is	critical:	line	11	changes	the	value	of	the	movie’s	title	field,	but	only	on	the
in-memory	copy—do	Movie.all	again	and	you’ll	see	that	the	database	copy	hasn’t	been	changed.	save
and	create	both	cause	the	object	to	be	written	to	the	database,	but	simply	changing	the	attribute	values
doesn’t.

Lines	12–15	(Read)	show	one	way	to	look	up	objects	in	the	database.	The	where	method	is	named	for
the	WHERE	keyword	in	SQL,	the	Structured	Query	Language	used	by	most	RDBMSs	including	SQLite3.
You	can	specify	a	constraint	directly	as	a	string	as	in	line	13,	or	use	keyword	substitution	as	in	lines	14–
15.	Keyword	substitution	is	always	preferred	because,	as	we	will	see	in	Chapter	12,	it	allows	Rails	to
thwart	SQL	injection	attacks	against	your	app.	As	with	create!,	the	time	was	correctly	converted	from
a	 string	 to	 a	 Time	 object	 and	 thence	 to	 the	 database’s	 internal	 representation	 of	 time.	 Since	 the
conditions	 specified	 might	 match	 multiple	 objects,	 where	 always	 returns	 an	 Enumerable	 any	 of

Enumerable’s	methods,	such	as	those	in	Figure	3.7.	 		

Line	17	(Read)	shows	the	most	primitive	way	of	looking	up	objects,	which	is	to	return	a	single	object
corresponding	to	a	given	primary	key.	Recall	from	Figure	2.11	that	every	object	stored	in	an	RDBMS	is
assigned	a	primary	key	that	is	devoid	of	semantics	but	guaranteed	to	be	unique	within	that	table.	When
we	 created	 our	 table	 in	 the	 migration,	 Rails	 included	 a	 numeric	 primary	 key	 by	 default.	 Since	 the
primary	key	for	an	object	is	permanent	and	unique,	it	often	identifies	the	object	in	RESTful	URIs,	as	we
saw	in	Section	2.7.

Lines	18–22	(Update)	show	how	to	Update	an	object.	As	with	create	vs.	save,	we	have	two	choices:
use	update_attributes	to	update	the	database	immediately,	or	change	the	attribute	values	on	the	in-
memory	object	and	then	persist	it	with	save!	(which,	like	create!,	has	a	“safe”	counterpart	save	that
returns	nil	rather	than	raising	an	exception	if	something	goes	wrong).

Lines	23–25	(Delete)	show	how	to	Delete	an	object.	The	destroy	method	(line	24)	deletes	the	object
from	 the	database	permanently.	You	can	 still	 inspect	 the	 in-memory	copy	of	 the	object,	but	 trying	 to
modify	it,	or	to	call	any	method	on	it	that	would	cause	a	database	access,	will	raise	an	exception.	(After
doing	 the	 destroy,	 try	 requiem.update_attributes(...)	 or	 even	 requiem.rating=’R’	 to	 prove
this.)

http://en.wikipedia.org/wiki/SQL_injection

Lines	26–29	 show	 that	 the	 result	of	a	database	 read	does	 indeed	quack	 like	a	collection:	we	can	use
each	to	iterate	over	it	and	delete	each	movie	in	turn.

This	whirlwind	overview	of	Active	Record	barely	scratches	 the	surface,	but	 it	should	clarify	how	the
methods	provided	by	ActiveRecord::Base	support	the	basic	CRUD	actions.

As	a	last	step	before	continuing,	you	should	seed	the	database	with	some	movies	to	make	the	rest	of	the
chapter	more	interesting,	using	the	code	in	Figure	4.5.	Copy	the	code	into	db/seeds.rb	and	run	rake
db:seed	to	run	it.

http://pastebin.com/3bjg6YYx

	1	#	Seed	the	RottenPotatoes	DB	with	some	movies.

	2	more_movies	=	[

	3			{:title	=>	’Aladdin’,	:rating	=>	’G’,

	4					:release_date	=>	’25-Nov-1992’},

	5			{:title	=>	’When	Harry	Met	Sally’,	:rating	=>	’R’,

	6					:release_date	=>	’21-Jul-1989’},

	7			{:title	=>	’The	Help’,	:rating	=>	’PG-13’,

	8					:release_date	=>	’10-Aug-2011’},

	9			{:title	=>	’Raiders	of	the	Lost	Ark’,	:rating	=>	’PG’,

10					:release_date	=>	’12-Jun-1981’}

11]

12	

13	more_movies.each	do	|movie|

14			Movie.create!(movie)

15	end

Figure	4.5:	Adding	initial	data	to	the	database	is	called	seeding,	and	is	distinct	from	migrations,	which	are	for	managing	changes	to	the
schema.	Copy	this	code	into	db/seeds.rb	and	run	rake	db:seed	to	run	it.

Summary
Active	Record	uses	convention	over	configuration	to	infer	database	table	names	from	the	names	of
model	classes,	and	to	infer	the	names	and	types	of	the	columns	(attributes)	associated	with	a	given
kind	of	model.
Basic	Active	Record	support	focuses	on	the	CRUD	actions:	create,	read,	update,	delete.
Model	 instances	 can	 be	Created	 either	 by	 calling	 new	 followed	 by	 save	 or	 by	 calling	 create,
which	combines	the	two.
Every	model	instance	saved	in	the	database	receives	an	ID	number	unique	within	its	 table	called
the	primary	key,	whose	attribute	name	(and	therefore	column	name	in	the	table)	is	id	and	which	is
never	“recycled”	(even	if	the	corresponding	row	is	deleted).	The	combination	of	table	name	and	id
uniquely	 identifies	 a	 model	 stored	 in	 the	 database,	 and	 is	 therefore	 how	 objects	 are	 usually
referenced	in	RESTful	routes.
Model	 instances	can	be	Read	(looked	up)	by	using	where	 to	express	 the	matching	conditions	or
find	 to	 look	up	 the	primary	key	(ID)	directly,	as	might	occur	 if	processing	a	RESTful	URI	 that
embeds	an	object	ID.
Model	instances	can	be	Updated	with	update_attributes.

http://pastebin.com/3bjg6YYx

Model	instances	can	be	Deleted	with	destroy,	after	which	the	 in-memory	copy	can	still	be	read
but	not	modified	or	asked	to	access	the	database.

ELABORATION:	Dynamic	attribute-based	finders

Until	 Rails	 3,	 another	 way	 to	 Read	 from	 the	 database	 was	 find_by_attribute,	 for	 example,	 find_by_title(’Inception’),	 or
find_all_by_rating(’PG’).	These	methods	return	an	Enumerable	of	all	matching	elements	if	the	all	form	is	used,	a	single	object
otherwise,	or	nil	 if	no	matches	are	found.	You	can	even	say	find_all_by_release_date_and_rating	 and	pass	 two	arguments	 to
match	the	 two	attributes.	ActiveRecord	implements	 these	methods	by	overriding	method_missing	 (just	as	we	did	 in	Section	3.5),
and	in	part	because	of	the	performance	penalty	of	doing	so,	these	methods	are	deprecated	in	Rails	4.	We	therefore	omit	them	from
the	main	discussion	but	present	them	here	as	an	interesting	use	of	method_missing.

ELABORATION:	It	quacks	like	a	collection,	but	it	isn't	one
The	object	returned	by	ActiveRecord’s	all,	where	and	find-based	methods	certainly	quacks	like	a	collection,	but	as	we	will	see	in
Chapter	11,	it’s	actually	a	proxy	object	that	doesn’t	even	do	the	query	until	you	force	the	issue	by	asking	for	one	of	the	collection’s
elements,	allowing	you	to	build	up	complex	queries	with	multiple	wheres	without	paying	the	cost	of	doing	the	query	each	time.

ELABORATION:	Overriding	convention	over	configuration
Convention	over	configuration	is	great,	but	there	are	times	you	may	need	to	override	it.	For	example,	if	you’re	trying	to	integrate
your	Rails	app	with	a	non-Rails	legacy	app,	the	database	tables	may	already	have	names	that	don’t	match	the	names	of	your	models,
or	you	may	want	friendlier	attribute	names	than	those	given	by	taking	the	names	of	the	table’s	columns.	All	of	these	defaults	can	be
overridden	at	the	expense	of	more	code,	as	the	ActiveRecord	documentation	describes.	In	this	book	we	choose	to	reap	the	benefits
of	conciseness	by	sticking	to	the	conventions.

Self-Check	4.3.1.	Why	are	where	and	find	class	methods	rather	than	instance	methods?
	Instance	methods	operate	on	one	instance	of	the	class,	but	until	we	look	up	one	or	more	objects,	we

have	no	instance	to	operate	on.

Self-Check	4.3.2.	Do	Rails	models	acquire	the	methods	where	and	find	via	(a)	inheritance	or	(b)	mix-
in?	(Hint:	check	the	movie.rb	file.)
	(a)	they	inherit	from	ActiveRecord::Base.

4.4	Controllers	and	Views

We’ll	complete	our	 tour	by	creating	some	views	 to	support	 the	CRUD	actions	we	 just	 learned	about.
The	RESTful	routes	we	defined	previously	(rake	routes	to	remind	yourself	what	they	are)	expect	the
controller	to	provide	actions	for	index,	show,	new/create	(recall	from	Chapter	2	that	creating	an	object
requires	 two	 interactions	with	 the	user),	edit/update	 (similarly),	and	destroy.	Starting	with	 the	 two
easiest	actions,	index	 should	display	a	 list	of	all	movies,	allowing	us	 to	click	on	each	one,	and	show
should	display	details	for	the	movie	we	click	on.

For	the	index	action,	we	know	from	the	walk-through	examples	in	Section	4.3	that	Movie.all	returns	a
collection	 of	 all	 the	movies	 in	 the	Movies	 table.	Thus	we	 need	 a	 controller	method	 that	 sets	 up	 this
collection	 and	 an	 HTML	 view	 that	 displays	 it.	 By	 convention	 over	 configuration,	 Rails	 expects	 the
following	for	a	method	implementing	the	Show	RESTful	action	on	a	Movie	resource	(note	the	uses	of

singular	vs.	plural	and	of	CamelCase	vs.	snake_case):	 		
	

The	model	 code	 is	 in	 class	Movie,	which	 inherits	 from	ActiveRecord::Base	 and	 is	 defined	 in
app/models/movie.rb

The	 controller	 code	 is	 in	 class	 MoviesController,	 defined	 in
app/controllers/movies_controller.rb	 (note	 that	 the	 model’s	 class	 name	 is	 pluralized	 to
form	 the	 controller	 file	 name.)	Your	 app’s	 controllers	 all	 inherit	 from	your	 app’s	 root	 controller
ApplicationController	 (in	 app/controllers/application_controller.rb),	 which	 in	 turn
inherits	from	ActionController::Base.
Each	instance	method	of	the	controller	is	named	using	snake_lower_case	according	to	the	action
it	handles,	so	the	show	method	would	handle	the	Show	action
The	 Show	 view	 template	 is	 in	 app/views/movies/show.html.haml,	 with	 the	 .haml	 extension
indicating	 use	 of	 the	 Haml	 renderer.	 Other	 extensions	 include	 .xml	 for	 a	 file	 containing	 XML
Builder	 code	 (as	 we	 saw	 in	 Section	 3.6),	 .erb	 (which	 we’ll	 meet	 shortly)	 for	 Rails’	 built-in
Embedded	Ruby	renderer,	and	many	others.

The	Rails	module	that	choreographs	how	views	are	handled	is	ActionView::Base.	Since	we’ve	been
using	the	Haml	markup	for	our	views	(recall	we	added	the	Haml	gem	to	our	Gemfile	dependencies),
our	 view	 files	 will	 have	 names	 ending	 in	 .html.haml.	 Therefore,	 to	 implement	 the	 Index	 RESTful
action,	 we	 must	 define	 an	 index	 action	 in	 app/controllers/movies_controller.rb	 and	 a	 view
template	 in	app/views/movies/index.html.haml.	Create	 these	 two	 files	using	Figure	4.6	 (you	will
need	to	create	the	intermediate	directory	app/views/movies/).

http://pastebin.com/ZLBvm1iN

	1	#	This	file	is	app/controllers/movies_controller.rb

	2	class	MoviesController	<	ApplicationController

	3			def	index

	4					@movies	=	Movie.all

	5			end

	6	end

http://pastebin.com/dLwJ4ZvH

	1	-#		This	file	is	app/views/movies/index.html.haml

	2	%h1	All	Movies

	3	

	4	%table#movies

	5			%thead

	6					%tr

	7							%th	Movie	Title

	8							%th	Rating

	9							%th	Release	Date

10							%th	More	Info

11			%tbody

12					-	@movies.each	do	|movie|

13							%tr

14									%td=	movie.title

15									%td=	movie.rating

16									%td=	movie.release_date

17									%td=	link_to	"More	about	#{movie.title}",	movie_path(movie)

http://pastebin.com/ZLBvm1iN
http://pastebin.com/dLwJ4ZvH

Figure	4.6:	The	controller	code	and	template	markup	to	support	the	Index	RESTful	action.

The	controller	method	just	retrieves	all	the	movies	in	the	Movies	table	using	the	all	method	introduced
in	the	previous	section,	and	assigns	it	to	the	@movies	instance	variable.	Recall	from	the	tour	of	a	Rails
app	in	Chapter	2	that	instance	variables	defined	in	controller	actions	are	available	to	views;	line	12	of
index.html.haml	 iterates	 over	 the	 collection	 @movies	 using	 each.	 There	 are	 three	 things	 to	 notice
about	this	simple	template.

First,	 the	 columns	 in	 the	 table	 header	 (th)	 just	 have	 static	 text	 describing	 the	 table	 columns,	 but	 the
columns	in	the	table	body	(td)	use	Haml’s	=	syntax	to	indicate	that	the	tag	content	should	be	evaluated
as	 Ruby	 code,	 with	 the	 result	 substituted	 into	 the	 HTML	 document.	 In	 this	 case,	 we	 are	 using	 the
attribute	getters	on	Movie	objects	supplied	by	ActiveRecord.

Sanitization	Haml’s	=	syntax	sanitizes	the	result	of	evaluating	the	Ruby	code	before	inserting	it	into	the	HTML	output,	to	help	thwart
cross-site	scripting	and	similar	attacks	described	in	Chapter	12.

Second,	 we’ve	 given	 the	 table	 of	movies	 the	 HTML	 ID	 movies.	We	will	 use	 this	 later	 for	 visually
styling	the	page	using	CSS,	as	we	learned	about	in	Chapter	2.

Third	 is	 the	 call	 in	 line	 17	 to	 link_to,	 one	 of	 many	 helper	 methods	 provided	 by	 ActionView	 for
creating	 views.	As	 its	 documentation	 states,	 the	 first	 argument	 is	 a	 string	 that	 will	 appear	 as	 a	 link
(clickable	 text)	 on	 the	page	 and	 the	 second	argument	 is	 used	 to	 create	 the	URI	 that	will	 become	 the
actual	 link	 target.	This	argument	can	 take	several	 forms;	 the	 form	we’ve	used	 takes	advantage	of	 the
URI	helper	movie_path()	(as	shown	by	rake	routes	for	the	show	action),	which	takes	as	its	argument
an	instance	of	a	RESTful	resource	(in	this	case	an	instance	of	Movie)	and	generates	the	RESTful	URI
for	 the	 Show	 RESTful	 route	 for	 that	 object.	 This	 behavior	 is	 a	 nice	 illustration	 of	 reflection	 and
metaprogramming	in	the	service	of	conciseness.	As	rake	routes	reminds	you,	the	Show	action	for	a
movie	is	expressed	by	a	URI	/movies/:id	where	:id	is	the	movie’s	primary	key	in	the	Movies	table,
so	 that’s	what	 the	 link	 target	created	by	link_to	will	 look	 like.	To	verify	 this,	 restart	 the	application
(rails	 server	 in	 the	 app’s	 root	 directory)	 and	 visit	 http://localhost:3000/movies/,	 the	 URI
corresponding	to	the	index	action.	If	all	is	well,	you	should	see	a	list	of	any	movies	in	the	database.	If
you	use	your	browser’s	View	Source	option	to	look	at	the	generated	source,	you	can	see	that	the	links
generated	by	link_to	have	URIs	corresponding	to	 the	show	action	of	each	of	 the	movies.	 (Go	ahead
and	click	one,	but	expect	an	error	since	we	haven’t	yet	created	the	controller’s	show	method.)

	 	 	 	 	 	 The	 resources	 :movies	 line	 that	we	 added	 in	 Section	 4.1	 actually	 creates	 a	whole
variety	 of	 helper	methods	 for	RESTful	URIs,	 summarized	 in	 Figure	 4.7.	As	 you	may	 have	 guessed,
convention	over	configuration	determines	 the	names	of	 the	helper	methods,	 and	metaprogramming	 is
used	to	define	them	on	the	fly	as	the	result	of	calling	resources	:movies.	The	creation	and	use	of	such
helper	methods	may	seem	gratuitous	until	you	realize	that	it	is	possible	to	define	much	more	complex
and	 irregular	 routes	 beyond	 the	 standard	 RESTful	 ones	 we’ve	 been	 using	 so	 far,	 or	 that	 you	might
decide	during	the	development	of	your	application	that	a	different	routing	scheme	makes	more	sense.
The	helper	methods	insulate	the	views	from	such	changes	and	let	them	focus	on	what	to	display	rather
than	including	code	for	how	to	display	it.	In	fact,	if	link_to’s	second	argument	is	a	resource	for	which

http://en.wikipedia.org/wiki/HTML_sanitization
http://api.rubyonrails.org/v3.2.19/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to

routes	have	been	set	up	in	routes.rb,	link_to	will	automatically	generate	the	RESTful	route	to	show
that	 resource,	 so	 line	 17	 of	 Figure	 4.6	 could	 have	 been	 written	 link_to	 ”More	 about	 #

{movie.title}”,movie.

Helper	method URI	returned RESTful	Route	and	action
movies_path /movies GET	/movies index
movies_path /movies POST	/movies create

new_movie_path /movies/new GET	/movies/new new
edit_movie_path(m) /movies/1/edit GET	/movies/:id/edit edit

movie_path(m) /movies/1 GET	/movies/:id show
movie_path(m) /movies/1 PUT	/movies/:id update
movie_path(m) /movies/1 DELETE	/movies/:id destroy

Figure	4.7:	As	described	in	the	documentation	for	the	ActionView::Helpers	class,	Rails	uses	metaprogramming	to	create	route	helpers
based	on	the	name	of	your	ActiveRecord	class.	m	is	assumed	to	be	an	ActiveRecord	Movie	object.	The	RESTful	routes	are	as	displayed	by
the	output	of	rake	routes;	recall	that	different	routes	may	have	the	same	URI	but	different	HTTP	methods,	for	example	create	vs.	index.

There’s	one	 last	 thing	 to	notice	about	 these	views.	 If	you	View	Source	 in	your	browser,	you’ll	 see	 it
includes	HTML	markup	that	doesn’t	appear	in	our	Haml	template,	such	as	a	head	element	containing
links	 to	 the	 assets/application.css	 stylesheet	 and	 a	 <title>	 tag.	 This	 markup	 comes	 from	 the
application	 template,	 which	 “wraps”	 all	 views	 by	 default.	 The	 default	 file
app/views/layouts/application.html.erb	 created	 by	 the	 rails	 new	 command	 uses	 Rails’	 erb
templating	system,	but	since	we	like	Haml’s	conciseness,	we	recommend	deleting	that	file	and	replacing

it	with	Figure	4.8,	then	watch	Screencast	4.4.1	to	understand	how	the	“wrapping”	process	works.	 		

http://pastebin.com/a9TbxRmU

	1	!!!	5

	2	%html

	3			%head

	4					%title	RottenPotatoes!

	5					=	stylesheet_link_tag	’application’

	6					=	javascript_include_tag	’application’

	7					=	csrf_meta_tags

	8	

	9			%body

10					#main

11							=	yield

Figure	4.8:	Save	this	file	as	app/views/layouts/application.html.haml	and	delete	the	existing	application.html.erb	in	that
directory;	this	file	is	its	Haml	equivalent.	Line	6	loads	some	basic	JavaScript	support;	while	we	won’t	discuss	JavaScript	programming
until	Chapter	6,	some	of	Rails’	built-in	helpers	use	it	transparently.	Line	7	introduces	protection	against	cross-site	request	forgery	attacks
described	in	Chapter	12.	We	also	made	the	title	element	a	bit	more	human-friendly.

http://pastebin.com/a9TbxRmU
http://en.wikipedia.org/wiki/cross-site_request_forgery

Screencast	4.4.1:	The	Application	layout
The	 screencast	 shows	 that	 the	 app/views/layouts/application.html.haml	 template	 is	 used	 to
“wrap”	action	views	by	default,	using	yield	much	like	the	example	in	Section	3.8.

http://pastebin.com/5hfPskzM

	1	#	in	app/controllers/movies_controller.rb

	2	

	3	def	show

	4			id	=	params[:id]	#	retrieve	movie	ID	from	URI	route

	5			@movie	=	Movie.find(id)	#	look	up	movie	by	unique	ID

	6			#	will	render	app/views/movies/show.html.haml	by	default

	7	end

Figure	4.9:	An	example	implementation	of	the	controller	method	for	the	Show	action.	A	more	robust	implementation	would	catch	and
rescue	the	exception	ActiveRecord::RecordNotFound,	as	we	warned	in	Section	4.3.	We’ll	show	how	to	handle	such	cases	in	Chapter	5.

http://pastebin.com/TbbGtpHn

	1	-#	in	app/views/movies/show.html.haml

	2	

	3	%h2	Details	about	#{@movie.title}

	4	

	5	%ul#details

	6			%li

	7					Rating:

	8					=	@movie.rating

	9			%li

10					Released	on:

11					=	@movie.release_date.strftime("%B	%d,	%Y")

12	

13	%h3	Description:

14	

15	%p#description=	@movie.description

16	

17	=	link_to	’Back	to	movie	list’,	movies_path

Figure	4.10:	An	example	view	to	go	with	Figure	4.9.	For	future	CSS	styling,	we	gave	unique	ID’s	to	the	bullet-list	of	details	(ul)	and	the
one-paragraph	description	(p).	We	used	the	strftime	library	function	to	format	the	date	more	attractively,	and	the	link_to	method	with
the	RESTful	helper	movies_path	(Figure	4.7)	to	provide	a	convenient	link	back	to	the	listings	page.	In	general,	you	can	append	_path	to
any	of	the	RESTful	resource	helpers	in	the	leftmost	column	of	the	rake	routes	output	to	call	a	method	that	will	generate	the
corresponding	RESTful	URI.

			On	your	own,	try	creating	the	controller	action	and	view	for	show	using	a	similar	process:
	

1.	 Use	rake	routes	 to	 remind	 yourself	what	 name	 you	 should	 give	 to	 the	 controller	method	 and

http://vimeo.com/34754667
http://pastebin.com/5hfPskzM
http://pastebin.com/TbbGtpHn
http://ruby-doc.org/core-1.9.3/Time.html#method-i-strftime

what	parameters	will	be	passed	in	the	URI
2.	 In	 the	 controller	method,	 use	 the	 appropriate	ActiveRecord	method	 introduced	 in	Section	4.3	 to

retrieve	the	appropriate	Movie	object	from	the	database	and	assign	it	to	an	instance	variable
3.	 Create	a	view	template	in	the	right	location	in	the	app/views	hierarchy	and	use	Haml	markup	to

show	the	various	attributes	of	the	Movie	object	you	set	up	in	the	controller	method
4.	 Exercise	your	method	and	view	by	clicking	on	one	of	the	movie	links	on	the	index	view

Once	you’re	done,	you	can	check	yourself	against	the	sample	controller	method	in	Figure	4.9	and	the
sample	view	in	Figure	4.10.	Experiment	with	other	values	for	the	arguments	to	link_to	and	strftime
to	get	a	sense	of	how	they	work.

Since	the	current	“bare-bones”	views	are	ugly,	as	long	as	we’re	going	to	keep	working	on	this	app	we
might	 as	 well	 have	 something	 more	 attractive	 to	 look	 at.	 Copy	 the	 simple	 CSS	 styling	 below	 into
app/assets/stylesheets/application.css,	 which	 is	 already	 included	 by	 line	 5	 of	 the
application.html.haml	template.

http://pastebin.com/28CD45Cm

	1				/*	Simple	CSS	styling	for	RottenPotatoes	app	*/

	2				/*	Add	these	lines	to	app/assets/stylesheets/application.css	*/

	3				

	4				html,	body	{

	5						margin:	0;

	6						padding:	0;

	7						background:	White;

	8						color:	DarkSlateGrey;

	9						font-family:	Tahoma,	Verdana,	sans-serif;

10						font-size:	10pt;

11				}

12				div#main	{

13						margin:	0;

14						padding:	0	20px	20px;

15				}

16				a	{

17						background:	transparent;

18						color:	maroon;

19						text-decoration:	underline;

20						font-weight:	bold;

21				}

22				h1	{

23						color:	maroon;

24						font-size:	150%;

25						font-style:	italic;

26						display:	block;

27						width:	100%;

28						border-bottom:	1px	solid	DarkSlateGrey;

29				}

30				h1.title	{

31						margin:	0	0	1em;

32						padding:	10px;

33						background-color:	orange;

34						color:	white;

35						border-bottom:	4px	solid	gold;

36						font-size:	2em;

37						font-style:	normal;

http://pastebin.com/28CD45Cm

38				}

39				table#movies	{

40						margin:	10px;

41						border-collapse:	collapse;

42						width:	100%;

43						border-bottom:	2px	solid	black;

44				}

45				table#movies	th	{

46						border:	2px	solid	white;

47						font-weight:	bold;

48						background-color:	wheat;

49				}

50				table#movies	th,	table#movies	td	{

51						padding:	4px;

52						text-align:	left;

53				}

54				#notice,	#warning	{

55						background:	rosybrown;

56						margin:	1em	0;

57						padding:	4px;

58				}

59				form	label	{

60						display:	block;

61						line-height:	25px;

62						font-weight:	bold;

63						color:	maroon;

64				}

Summary:
The	Haml	 templating	 language	 allows	 you	 to	 intersperse	HTML	 tags	with	 Ruby	 code	 for	 your
views.	The	result	of	evaluating	Ruby	code	can	either	be	discarded	or	interpolated	into	the	HTML
page.
For	conciseness,	Haml	relies	on	indentation	to	reveal	HTML	element	nesting.
Convention	 over	 configuration	 is	 used	 to	 determine	 the	 file	 names	 for	 controllers	 and	 views
corresponding	to	a	given	model.	If	the	RESTful	route	helpers	are	used,	as	in	resources	:movies,
convention	 over	 configuration	 also	 maps	 RESTful	 action	 names	 to	 controller	 action	 (method)
names.
Rails	provides	various	helper	methods	that	 take	advantage	of	 the	RESTful	route	URIs,	 including
link_to	for	generating	HTML	links	whose	URIs	refer	to	RESTful	actions.

ELABORATION:	Optional	:format	in	routes
The	raw	output	of	rake	routes	includes	a	token	(.:format)	in	most	routes,	which	we	omitted	for	clarity	in	Figure	2.12.	If	present,
the	 format	 specifier	 allows	 a	 route	 to	 request	 resources	 in	 an	 output	 format	 other	 than	 the	 default	 of	HTML—for	 example,	GET
/movies.xml	 would	 request	 the	 list	 of	 all	 movies	 as	 an	 XML	 document	 rather	 than	 an	 HTML	 page.	 Although	 in	 this	 simple
application	we	haven’t	included	the	code	to	generate	formats	other	than	HTML,	this	mechanism	allows	a	properly-designed	existing
application	 to	 be	 easily	 integrated	 into	 a	 Service-Oriented	 Architecture—changing	 just	 a	 few	 lines	 of	 code	 allows	 all	 existing
controller	actions	to	become	part	of	an	external	RESTful	API.

Self-Check	4.4.1.	In	Figure	4.7,	why	don’t	the	helper	methods	for	the	New	action	(new_movie_path)
and	Create	action	(movies_path)	take	an	argument,	as	the	Show	or	Update	helpers	do?

	Show	and	Update	operate	on	existing	movies,	so	they	take	an	argument	to	identify	which	movie	to

operate	on.	New	and	Create	by	definition	operate	on	not-yet-existing	movies.

Self-Check	4.4.2.	In	Figure	4.7,	why	doesn’t	the	helper	method	for	the	Index	action	take	an	argument?
(HINT:	The	reason	is	different	than	the	answer	to	Self-Check	4.4.1.)

	The	Index	action	just	shows	a	list	of	all	the	movies,	so	no	argument	is	needed	to	distinguish	which
movie	to	operate	on.

Self-Check	4.4.3.	In	Figure	4.6,	why	is	there	no	end	corresponding	to	the	do	in	line	12?
	Unlike	Ruby	 itself,	Haml	 relies	on	 indentation	 to	 indicate	nesting,	 so	 the	end	 is	 supplied	by	Haml

when	executing	the	Ruby	code	in	the	do.

4.5	Debugging:	When	Things	Go	Wrong

The	amazing	 sophistication	of	 today’s	 software	 stacks	makes	 it	 possible	 to	be	highly	productive,	 but
with	so	many	“moving	parts,”	it	also	means	that	things	inevitably	go	wrong,	especially	when	learning
new	languages	and	tools.	Errors	might	happen	because	you	mistyped	something,	because	of	a	change	in
your	environment	or	configuration,	or	any	number	of	other	reasons.	Although	we	take	steps	in	this	book
to	minimize	the	pain,	such	as	using	Test-Driven	Development	(Chapter	8)	to	avoid	many	problems	and
providing	 a	 VM	 image	 with	 a	 consistent	 environment,	 errors	 will	 occur.	 You	 can	 react	 most
productively	by	remembering	the	acronym	RASP:	Read,	Ask,	Search,	Post.

Read	the	error	message.	Ruby’s	error	messages	can	look	disconcertingly	long,	but	a	long	error	message
is	 often	 your	 friend	 because	 it	 gives	 the	 backtrace	 showing	 not	 only	 the	 method	 where	 the	 error
occurred,	but	also	 its	caller,	 its	caller’s	caller,	and	so	on.	Don’t	 throw	up	your	hands	when	you	see	a
long	 error	 message;	 use	 the	 information	 to	 understand	 both	 the	 proximate	 cause	 of	 the	 error	 (the
problem	that	“stopped	the	show”)	and	the	possible	paths	towards	the	root	cause	of	the	error.	This	will
require	some	understanding	of	 the	syntax	of	 the	erroneous	code,	which	you	might	 lack	if	you	blindly
cut-and-pasted	 someone	 else’s	 code	 with	 no	 understanding	 of	 how	 it	 works	 or	 what	 assumptions	 it
makes.	Of	course,	a	syntax	error	due	to	cut-and-paste	is	just	as	likely	to	occur	when	reusing	your	own
code	as	someone	else’s,	but	at	least	you	understand	your	own	code	(right?).

An	amusing	perspective	on	the	perils	of	blind	“shotgun	problem	solving”	is	the	Jargon	File’s	hacker	koan	“Tom	Knight	and	the	Lisp
Machine.”

A	 particularly	 common	 proximate	 cause	 of	 Ruby	 errors	 is	 “Undefined	 method	 foobar	 for
nil:NilClass”,	which	means	“You	tried	to	call	method	foobar	on	an	object	whose	value	is	nil	and
whose	 class	 is	 NilClass,	 which	 doesn’t	 define	 foobar.”	 (NilClass	 is	 a	 special	 class	 whose	 only
instance	is	the	constant	nil.)

This	often	occurs	when	some	computation	fails	and	returns	nil	instead	of	the	object	you	expected,	but
you	forgot	to	check	for	this	error	and	subsequently	tried	to	call	a	method	on	what	you	assumed	was	a
valid	object.	But	if	the	computation	occurred	in	another	method	“upstream,”	the	backtrace	can	help	you
figure	out	where.

In	SaaS	apps	using	Rails,	 this	confusion	can	be	compounded	if	 the	failed	computation	happens	in	the
controller	 action	but	 the	 invalid	object	 is	passed	as	an	 instance	variable	and	 then	dereferenced	 in	 the

http://en.wikipedia.org/wiki/backtrace
http://catb.org/jargon/html/koans.html

view,	as	in	the	following	excerpts	from	a	controller	and	view:

http://pastebin.com/vPnA7s4K

	1				#	in	controller	action:

	2				def	show

	3						@movie	=	Movie.find_by_id(params[:id])	#	what	if	this	movie	not	in	DB?

	4						#	BUG:	we	should	check	@movie	for	validity	here!

	5				end

	6				

	7				-#	...later,	in	the	Haml	view:

	8				

	9				%h1=	@movie.title

10				-#	will	give	"undefined	method	’title’	for	nil:NilClass"	if	@movie	is	nil

Ask	a	coworker.	If	you	are	programming	in	pairs,	two	brains	are	better	than	one.	If	you’re	in	an	“open
seating”	configuration,	or	have	instant	messaging	enabled,	put	the	message	out	there.

Search	for	the	error	message.	You’d	be	amazed	at	how	often	experienced	developers	deal	with	an	error
by	using	a	search	engine	such	as	Google	to	look	up	key	words	or	key	phrases	in	the	error	message.	You
can	also	search	sites	like	StackOverflow,	which	specialize	in	helping	out	developers	and	allow	you	to
vote	for	the	most	helpful	answers	to	particular	questions	so	that	they	eventually	percolate	to	the	top	of
the	answer	list.

Post	a	question	on	one	of	those	sites	if	all	else	fails.	Be	as	specific	as	possible	about	what	went	wrong,
what	your	environment	is,	and	how	to	reproduce	the	problem:
	

Vague:	“The	sinatra	gem	doesn’t	work	on	my	system.”	There’s	not	enough	information	here	for
anyone	to	help	you.
Better,	but	 annoying:	 “The	sinatra	 gem	 doesn’t	work	 on	my	 system.	Attached	 is	 the	 85-line
error	 message.”	 Other	 developers	 are	 just	 as	 busy	 as	 you	 and	 probably	 won’t	 take	 the	 time	 to
extract	relevant	facts	from	a	long	trace.
Best:	Look	at	 the	actual	 transcript	of	 this	question	on	StackOverflow.	At	6:02pm,	 the	developer
provided	specific	information,	such	as	the	name	and	version	of	his	operating	system,	the	specific
commands	he	successfully	ran,	and	the	unexpected	error	that	resulted.	Other	helpful	voices	chimed
in	 asking	 for	 specific	 additional	 information,	 by	 7:10pm,	 two	 of	 the	 answers	 had	 identified	 the
problem.

While	it’s	impressive	that	he	got	his	answer	in	just	over	an	hour,	it	means	he	also	lost	an	hour	of	coding
time,	which	is	why	you	should	post	a	question	only	after	you’ve	exhausted	the	other	alternatives.	How
can	you	make	progress	on	debugging	problems	on	your	own?	There	are	two	kinds	of	problems.	In	the
first	kind,	an	error	or	exception	of	some	kind	stops	the	app	in	its	 tracks.	Since	Ruby	is	an	interpreted
language,	 syntax	 errors	 can	 cause	 this	 (unlike	 Java,	 which	 won’t	 even	 compile	 if	 there	 are	 syntax
errors).	Here	are	some	things	to	try	if	the	app	stops	in	its	tracks.
	

Exploit	automatic	indentation	and	syntax	highlighting.	If	your	text	editor	insists	on	indenting	a	line
farther	 than	you	want	 it	 to	be	 indented,	you	may	have	forgotten	 to	close	a	parenthesis,	brace,	or

http://pastebin.com/vPnA7s4K
http://stackoverflow.com
http://stackoverflow.com/questions/2945228/i-see-gem-in-gem-list-but-have-no-such-file-to-load

do...end	block	somewhere	upstream,	or	you	may	have	forgotten	to	“escape”	a	special	character
(for	example,	a	single-quote	inside	a	single-quoted	string).	If	your	editor	isn’t	so	equipped,	you	can
either	write	your	 code	on	 stone	 tablets,	 or	 switch	 to	one	of	 the	more	productive	modern	 editors
suggested	in	Appendix	A.3.
Look	in	the	log	file,	usually	log/development.log,	for	complete	error	information	including	the
backtrace.	 In	 production	 apps,	 this	 is	 often	 your	 only	 alternative,	 as	 Rails	 apps	 are	 usually
configured	 to	 display	 a	more	 user-friendly	 error	 page	 in	 production	mode,	 rather	 than	 the	 error
backtrace	you’d	see	if	the	error	occurred	in	development	mode.

In	 the	 second	 kind	 of	 problem,	 the	 app	 runs	 but	 produces	 an	 incorrect	 result	 or	 behavior.	 Most
developers	 use	 a	 combination	 of	 two	 approaches	 to	 debug	 such	 problems.	 The	 first	 is	 to	 insert
instrumentation—extra	 statements	 to	 record	 values	 of	 important	 variables	 at	 various	 points	 during
program	execution.	There	are	various	places	we	can	instrument	a	Rails	SaaS	app—try	each	of	the	below
to	get	a	feel	for	how	they	work:

printf	debugging	is	an	old	name	for	this	technique,	from	the	C	library	function	that	prints	a	string	on	the	terminal.

		
Display	a	detailed	description	of	an	object	in	a	view.	For	example,	try	inserting	=	debug(@movie)
or	=	@movie.inspect	in	any	view	(where	the	leading	=	tells	Haml	to	execute	the	code	and	insert
the	result	into	the	view).
“Stop	 the	 show”	 inside	 a	 controller	 method	 by	 raising	 an	 exception	 whose	 message	 is	 a
representation	of	 the	value	you	want	to	inspect,	for	example,	raise	params.inspect	 to	see	 the
detailed	 value	 of	 the	 params	 hash	 inside	 a	 controller	 method.	 Rails	 will	 display	 the	 exception
message	as	the	Web	page	resulting	from	the	request.
Use	 logger.debug(message)	 to	 print	message	 to	 the	 log.	 logger	 is	 available	 in	 models	 and
controllers	 and	 can	 record	 messages	 with	 a	 variety	 of	 urgencies;	 compare
config/environments/production.rb	 with	 development.rb	 to	 see	 how	 the	 default	 logging
level	differs	in	production	vs.	development	environments.

The	second	way	to	debug	correctness	problems	is	with	an	interactive	debugger.	We	already	installed	the
debugger	gem	via	our	Gemfile;	 to	use	 the	debugger	 in	a	Rails	app,	 start	 the	app	server	using	rails
server	--debugger,	and	insert	 the	statement	debugger	at	 the	point	 in	your	code	where	you	want	 to
stop	the	program.	When	you	hit	that	statement,	the	terminal	window	where	you	started	the	server	will
give	you	a	debugger	prompt.	In	Section	4.7,	we’ll	show	how	to	use	the	debugger	to	shed	some	light	on

Rails	internals.	 		

To	debug	non-Rails	apps,	insert	require	’debugger’	at	the	beginning	of	your	app.

Summary
Use	a	language-aware	editor	with	syntax	highlighting	and	automatic	indentation	to	help	find	syntax
errors.
Instrument	your	app	by	inserting	the	output	of	debug	or	inspect	 into	views,	or	by	making	them
the	argument	of	raise,	which	will	cause	a	runtime	exception	that	will	display	message	as	a	Web

http://en.wikipedia.org/wiki/Instrumentation_(computer_programming)

page.
To	debug	using	the	interactive	debugger,	make	sure	your	app’s	Gemfile	includes	debugger,	 start
the	app	server	with	rails	server	--debugger,	and	place	the	statement	debugger	at	the	point	in
your	code	where	you	want	to	break.

Self-Check	4.5.1.	Why	can’t	you	just	use	print	or	puts	to	display	messages	to	help	debug	your	SaaS
app?
	Unlike	command-line	apps,	SaaS	apps	aren’t	attached	 to	a	 terminal	window,	so	 there’s	no	obvious

place	for	the	output	of	a	print	statement	to	go.

Self-Check	4.5.2.	Of	the	three	debugging	methods	described	in	this	section,	which	ones	are	appropriate
for	collecting	instrumentation	or	diagnostic	information	once	your	app	is	deployed	and	in	production?
	 Only	 the	 logger	 method	 is	 appropriate,	 since	 the	 other	 two	 methods	 (“stopping	 the	 show”	 in	 a

controller	 or	 inserting	 diagnostic	 information	 into	 views)	 would	 interfere	 with	 the	 usage	 of	 real
customers	if	used	on	a	production	app.

4.6	Form	Submission:	New	and	Create

Our	last	look	at	views	will	deal	with	a	slightly	more	complex	situation:	that	of	submitting	a	form,	such
as	for	creating	a	new	movie	or	updating	an	existing	one.	There	are	three	problems	we	need	to	address:

	

1.	 How	do	we	display	a	fill-in	form	to	the	user?
2.	 How	is	the	information	filled	in	by	the	user	actually	made	available	to	the	controller	action,	so	that

it	can	be	used	in	a	create	or	update	ActiveRecord	call?
3.	 What	 resource	 should	be	 returned	 and	displayed	 as	 the	 result	 of	 a	RESTful	 request	 to	 create	 or

update	an	item?	Unlike	when	we	ask	for	a	list	of	movies	or	details	about	a	movie,	it’s	not	obvious
what	to	display	as	the	result	of	a	create	or	update.

Of	course,	before	we	go	further,	we	need	to	give	the	user	a	way	to	get	to	the	fill-in	form	we’re	about	to
create.	Since	the	form	will	be	for	creating	a	new	movie,	it	will	correspond	to	the	RESTful	action	new,
and	we	will	 follow	 convention	 by	 placing	 the	 form	 in	 app/views/movies/new.html.haml.	We	 can
therefore	take	advantage	of	the	automatically-provided	RESTful	URI	helper	new_movie_path	to	create

a	link	to	the	form.	Do	this	by	adding	a	single	line	to	the	end	of	index.html.haml:	 		

http://pastebin.com/XUGTnere

	1				-#	add	to	end	of	index.html.haml

	2				

	3				=	link_to	’Add	new	movie’,	new_movie_path

What	controller	action	will	be	 triggered	 if	 the	user	clicks	on	 this	 link?	Since	we	used	 the	URI	helper
new_movie_path,	 it	will	be	 the	new	 controller	 action.	We	haven’t	defined	 this	 action	yet,	 but	 for	 the
moment,	 since	 the	user	 is	 creating	a	brand-new	movie	entry,	 the	only	 thing	 the	action	needs	 to	do	 is

http://pastebin.com/XUGTnere

cause	the	corresponding	view	for	the	new	action	to	be	rendered.	Recall	that	by	default,	every	controller
method	 automatically	 tries	 to	 render	 a	 template	 with	 the	 corresponding	 name	 (in	 this	 case
new.html.haml),	so	you	can	just	add	the	following	trivial	new	method	to	movies_controller.rb:

http://pastebin.com/FeYh04c6

	1				def	new

	2						#	default:	render	’new’	template

	3				end

Rails	makes	it	easy	to	describe	a	fill-in	form	using	form	tag	helpers	available	to	all	views.	Put	the	code
in	Figure	4.11	into	app/views/movies/new.html.haml	and	watch	Screencast	4.6.1	for	a	description	of
what’s	going	on	in	it.

http://pastebin.com/RPPNrMfK

	1	%h2	Create	New	Movie

	2	

	3	=	form_tag	movies_path,	:method	=>	:post	do

	4	

	5			=	label	:movie,	:title,	’Title’

	6			=	text_field	:movie,	:title

	7	

	8			=	label	:movie,	:rating,	’Rating’

	9			=	select	:movie,	:rating,	[’G’,’PG’,’PG-13’,’R’,’NC-17’]

10	

11			=	label	:movie,	:release_date,	’Released	On’

12			=	date_select	:movie,	:release_date

13	

14			=	submit_tag	’Save	Changes’

Figure	4.11:	The	form	the	user	sees	for	creating	and	adding	a	new	movie	to	RottenPotatoes.

Screencast	4.6.1:	Views	with	fill-in	forms
The	form_tag	method	for	generating	a	form	requires	a	route	to	which	the	form	should	be	submitted—
that	is,	a	URI	and	an	HTTP	verb.	We	use	the	RESTful	URI	helper	and	HTTP	POST	method	to	generate	a
route	to	the	create	action,	as	rake	routes	reminds	us.

As	the	screencast	mentions,	not	all	input	field	types	are	supported	by	the	form	tag	helpers	(in	this	case,
the	 date	 fields	 aren’t	 supported),	 and	 in	 some	 cases	 you	 need	 to	 generate	 forms	 whose	 fields	 don’t
necessarily	correspond	to	the	attributes	of	some	ActiveRecord	object.

To	recap	where	we	are,	we	created	the	new	controller	method	that	will	render	a	view	giving	the	user	a
form	 to	 fill	 in,	 placed	 that	 view	 in	new.html.haml,	 and	 arranged	 to	 have	 the	 form	 submitted	 to	 the
create	controller	method.	All	that	remains	is	to	use	the	information	in	params	(the	form	field	values)

http://pastebin.com/FeYh04c6
http://api.rubyonrails.org/v3.2.19/classes/ActionView/Helpers/FormTagHelper.html
http://pastebin.com/RPPNrMfK
http://vimeo.com/34754683

to	actually	create	the	new	movie	in	the	database.

Summary
Rails	provides	form	helpers	to	generate	a	fill-in	form	whose	fields	are	related	to	the	attributes	of	a
particular	type	of	ActiveRecord	object.
When	creating	a	form,	you	specify	the	controller	action	that	will	receive	the	form	submission	by
passing	form_tag	the	appropriate	RESTful	URI	and	HTTP	method	(as	displayed	by	rake	routes)
.
When	the	form	is	submitted,	the	controller	action	can	inspect	params[],	which	will	contain	a	key
for	each	form	field	whose	value	is	the	user-supplied	contents	of	that	field.

Self-Check	4.6.1.	In	line	3	of	Figure	4.11,	what	would	be	 the	effect	of	changing	:method=>:post	 to
:method=>:get	and	why?
	The	form	submission	would	result	in	listing	all	movies	rather	than	creating	a	new	movie.	The	reason

is	that	a	route	requires	both	a	URI	and	a	method.	As	Figure	4.7	shows,	the	movies_path	helper	with	the
GET	method	would	route	to	the	index	action,	whereas	the	movies_path	helper	with	the	POST	method
routes	to	the	create	action.

Self-Check	4.6.2.	Given	that	submitting	the	form	shown	in	Figure	4.11	will	create	a	new	movie,	why	is
the	view	called	new.html.haml	rather	than	create.html.haml?
	A	RESTful	route	and	its	view	should	name	the	resource	being	requested.	In	 this	case,	 the	resource

requested	when	 the	user	 loads	 this	 form	 is	 the	 form	 itself,	 that	 is,	 the	 ability	 to	 create	 a	new	movie;
hence	new	 is	an	appropriate	name	for	this	resource.	The	resource	requested	when	the	user	submits	the
form,	named	by	the	route	specified	for	form	submission	on	line	3	of	the	figure,	is	the	actual	creation	of
the	new	movie.

4.7	Redirection	and	the	Flash

Recall	from	the	examples	 in	Section	4.3	 that	 the	Movie.create!	call	 takes	a	hash	of	attribute	names
and	values	to	create	a	new	object.	As	Screencast	4.7.1	shows,	the	form	field	names	created	by	the	form
tag	helpers	all	have	names	of	 the	 form	params[’movie’][’title’],	 params[’movie’][’rating’],
and	so	on.	As	a	 result,	 the	value	of	params[:movie]	 is	 exactly	a	hash	of	movie	attribute	names	and
values,	which	we	can	pass	along	directly	using	Movie.create!(params[:movie]).

We	must,	however,	attend	to	an	important	detail	before	this	will	work.	“Mass	assignment”	of	a	whole
set	 of	 attributes	 is	 a	 mechanism	 that	 could	 be	 used	 by	 a	 malicious	 attacker	 to	 set	 arbitrary	 model
attributes	 that	 shouldn’t	 be	 changeable	 by	 regular	 users.	 Section	5.2	 describes	 how	Rails	 can	 protect
against	this	attack,	but	prior	to	version	3.2,	the	default	Rails	behavior	was	not	to	do	so.	In	2012	security
consultant	 Egor	 Homakov	 showed	 that	 GitHub	 had	 the	 mass-assignment	 vulnerability	 because	 the
developers	 there	 hadn’t	 changed	 the	 default	 behavior.	 The	Rails	 team	 responded	 by	 changing	Rails’
default	behavior	to	enable	protection	from	mass	assignment	starting	with	Rails	3.2.	For	simplicity	in	our
current	 example,	 we’ll	 disable	 this	 protection,	 but	 in	 real	 apps	 you	 should	 use	 the	mechanisms	 that
Section	5.2	describes	 to	selectively	enable	or	disable	attribute	assignment.	To	temporarily	disable	 this
feature	in	development	mode	only,	find	and	comment	out	(place	a	#	at	the	beginning	of)	the	following

http://guides.rubyonrails.org/v3.2.19/security.html#mass-assignment
http://homakov.blogspot.com/2012/03/how-to.html

line	in	config/environments/development.rb:

http://pastebin.com/AU0kFpdq

	1				config.active_record.mass_assignment_sanitizer	=	:strict

The	screencast	shows	how	mass-assignment	works	in	practice,	and	also	shows	the	helpful	technique	of
using	debug	breakpoints	 to	provide	a	detailed	 look	“under	 the	hood”	during	execution	of	a	controller

action.	 		

Screencast	4.7.1:	The	Create	action
Inside	the	create	controller	action,	we	placed	a	debug	breakpoint	to	inspect	what’s	going	on,	and	used
a	subset	of	the	debugger	commands	in	Figure	4.12	to	inspect	the	params	hash.	In	particular,	because	our
form’s	 field	 names	 all	 looked	 like	 movie[...],	 params[’movie’]	 is	 itself	 a	 hash	 with	 the	 various
movie	fields,	ready	for	assigning	to	a	new	Movie	object.	Like	many	Rails	methods,	params[]	can	take
either	 a	 symbol	 or	 a	 string—in	 fact	 params	 is	 not	 a	 regular	 hash	 at	 all,	 but	 a
HashWithIndifferentAccess,	a	Rails	class	that	quacks	like	a	hash	but	allows	its	keys	to	be	accessed
as	either	symbols	or	strings.

n execute	next	line
s execute	next	statement
f finish	current	method	call	and	return

p	expr print	expr,	which	can	be	anything	that’s	in	scope	within	the	current	stack	frame
eval	expr evaluate	expr;	can	be	used	to	set	variables	that	are	in	scope,	as	in	eval	x=5

up go	up	the	call	stack,	to	caller’s	stack	frame
down go	down	the	call	stack,	to	callee’s	stack	frame
where display	where	you	are	in	the	call	stack

b	file:num set	a	breakpoint	at	line	num	of	file	(current	file	if	file:	omitted)
b	method set	a	breakpoint	when	method	called

c continue	execution	until	next	breakpoint
q quit	program

Figure	4.12:	Command	summary	of	the	interactive	Ruby	debugger.

That	brings	us	to	the	third	question	posed	at	the	beginning	of	Section	4.6:	what	view	should	we	display
when	 the	create	 action	completes?	To	be	consistent	with	other	 actions	 like	show,	we	 could	 create	 a
view	app/views/movies/create.html.haml	containing	a	nice	message	informing	the	user	of	success,
but	it	seems	gratuitous	to	have	a	separate	view	just	to	do	that.	What	most	web	apps	do	instead	is	return
the	user	to	a	more	useful	page—say,	the	home	page,	or	the	list	of	all	movies—but	they	display	a	success
message	 as	 an	 added	 element	 on	 that	 page	 to	 let	 the	 user	 know	 that	 their	 changes	were	 successfully

saved.	 		

http://pastebin.com/AU0kFpdq
http://vimeo.com/34754699

Rails	makes	 it	 easy	 to	 implement	 this	 behavior.	 To	 send	 the	 user	 to	 a	 different	 page,	 redirect_to
causes	a	controller	action	 to	end	not	by	 rendering	a	view,	but	by	 restarting	a	whole	new	request	 to	a
different	action.	Thus,	redirect_to	movies_path	is	just	as	if	the	user	suddenly	requested	the	RESTful
Index	 action	 GET	 movies	 (that	 is,	 the	 action	 corresponding	 to	 the	 helper	 movies_path):	 the	 index
action	will	run	to	completion	and	render	its	view	as	usual.	In	other	words,	a	controller	action	must	finish
by	 either	 rendering	 a	 view	 or	 redirecting	 to	 another	 action.	 Remove	 the	 debug	 breakpoint	 from	 the
controller	 action	 (which	 you	 inserted	 if	 you	modified	 your	 code	 according	 to	 Screencast	 4.7.1)	 and
modify	it	to	look	like	the	listing	below;	then	test	out	this	behavior	by	reloading	the	movie	listing	page,

clicking	Add	New	Movie,	and	submitting	the	form.	 		

http://pastebin.com/g5nq88eJ

	1				#	in	movies_controller.rb

	2				def	create

	3						@movie	=	Movie.create!(params[:movie])

	4						redirect_to	movies_path

	5				end

Of	course,	to	be	user-friendly,	we	would	like	to	display	a	message	acknowledging	that	creating	a	movie
succeeded.	(We’ll	soon	deal	with	the	case	where	it	fails.)	The	hitch	is	that	when	we	call	redirect_to,	it
starts	a	whole	new	HTTP	request;	and	since	HTTP	is	stateless,	all	of	the	variables	associated	with	the
create	request	are	gone.

			To	address	this	common	scenario,	the	flash[]	is	a	special	method	that	quacks	like	a	hash,	but
persists	from	the	current	request	to	the	next.	(In	a	moment	we’ll	explore	how	Rails	accomplishes	this.)
In	other	words,	if	we	put	something	into	flash[]	during	the	current	controller	action,	we	can	access	it
during	the	subsequent	action.	The	entire	hash	is	persisted,	but	by	convention,	flash[:notice]	is	used
for	 informational	 messages	 and	 flash[:warning]	 is	 used	 for	 messages	 about	 things	 going	 wrong.

Modify	the	controller	action	to	store	a	useful	message	in	the	flash,	and	try	it	out:	 		

http://pastebin.com/6DuHAwbN

	1				#	in	movies_controller.rb

	2				def	create

	3						@movie	=	Movie.create!(params[:movie])

	4						flash[:notice]	=	"#{@movie.title}	was	successfully	created."

	5						redirect_to	movies_path

	6				end

What	happened?	Even	though	creating	a	new	movie	appears	to	work	(the	new	movie	shows	up	in	the
list	of	all	movies),	there’s	no	sign	of	the	helpful	message	we	just	created.	As	you’ve	probably	guessed,
that’s	because	we	didn’t	actually	modify	any	of	the	views	to	display	that	message!

But	which	view	should	we	modify?	In	this	example,	we	chose	to	redirect	the	user	to	the	movies	listing,
so	perhaps	we	should	add	code	to	 the	Index	view	to	display	 the	message.	But	 in	 the	future	we	might
decide	to	redirect	the	user	someplace	else	instead,	and	in	any	case,	the	idea	of	displaying	a	confirmation

http://pastebin.com/g5nq88eJ
http://pastebin.com/6DuHAwbN

message	or	warning	message	is	so	common	that	it	makes	sense	to	factor	it	out	rather	than	putting	it	into
one	specific	view.

Recall	that	app/views/layouts/application.html.haml	is	the	template	used	to	“wrap”	all	views	by
default.	 This	 is	 a	 good	 candidate	 for	 displaying	 flash	messages	 since	 any	 pending	messages	will	 be
displayed	no	matter	what	view	is	rendered.	Make	application.html.haml	look	like	Figure	4.13—this
requires	adding	four	lines	of	code	between	%body	and	=yield	to	display	any	pending	flash	messages	at
the	beginning	of	the	page	body.

http://pastebin.com/4rsZ5qyx

	1	-#	this	goes	just	inside	%body:

	2	-	if	flash[:notice]

	3			#notice.message=	flash[:notice]

	4	-	elsif	flash[:warning]

	5			#warning.message=	flash[:warning]

Figure	4.13:	Note	the	use	of	CSS	for	styling	the	flash	messages:	each	type	of	message	is	displayed	in	a	div	whose	unique	ID	is	either
notice	or	warning	depending	on	the	message’s	type,	but	that	share	the	common	class	message.	This	gives	us	the	freedom	in	our	CSS	file
to	either	style	the	two	types	of	messages	the	same	by	referring	to	their	class,	or	style	them	differently	by	referring	to	their	IDs.
Remarkably,	Haml’s	conciseness	allows	expressing	each	div’s	class	and	ID	attributes	and	the	message	text	to	be	displayed	all	on	a	single
line.

Try	styling	all	flash	messages	to	be	printed	in	red	text	and	centered.	You’ll	need	to	add	the	appropriate
CSS	 selector(s)	 in	 app/assets/stylesheets/application.css	 to	 match	 the	 HTML	 elements	 that
display	 the	 flash	 in	 the	 Application	 page	 template.	 The	 CSS	 properties	 color:	 red	 and	 text-
align:	 center	 will	 get	 these	 effects,	 but	 feel	 free	 to	 experiment	 with	 other	 visual	 styles,	 colors,
borders,	and	so	on.

If	you	do	any	nontrivial	CSS	work,	you’ll	want	to	use	a	dedicated	CSS	editor,	such	as	the	open-source	and	cross-platform	Amaya	or	one
of	many	commercial	products.

Summary
Although	the	most	common	way	to	finish	a	controller	action	is	to	render	the	view	corresponding	to
that	action,	for	some	actions	such	as	create	it’s	more	helpful	to	send	the	user	back	to	a	different
view.	 Using	 redirect_to	 replaces	 the	 default	 view	 rendering	 with	 a	 redirection	 to	 a	 different
action.
Although	 redirection	 triggers	 the	 browser	 to	 start	 a	 brand-new	HTTP	 request,	 the	flash	 can	be
used	 to	 save	a	 small	 amount	of	 information	 that	will	be	made	available	 to	 that	new	 request,	 for
example,	to	display	useful	information	to	the	user	regarding	the	redirect.
You	 can	 DRY	 out	 your	 views	 by	 putting	 markup	 to	 display	 flash	 messages	 in	 one	 of	 the
application’s	templates,	rather	than	having	to	replicate	it	in	every	view	that	might	need	to	display
such	messages.

http://pastebin.com/4rsZ5qyx
http://www.w3.org/Amaya

ELABORATION:	The	Session
Actually,	the	flash	is	just	a	special	case	of	the	more	general	facility	session[].	Like	the	flash,	the	session	quacks	like	a	hash	whose
contents	 persist	 across	 requests	 from	 the	 same	 browser,	 but	 unlike	 the	 flash,	 which	 is	 automatically	 erased	 following	 the	 next
request,	anything	you	put	in	the	session	stays	there	permanently	until	you	delete	it.	You	can	either	session.delete(:key)	to	delete
individual	items	just	as	with	a	regular	hash,	or	use	the	reset_session	method	to	nuke	the	whole	thing.	Keep	in	mind	that	the	session
is	based	on	cookies,	so	sessions	from	different	users	are	independent.	Also,	as	we	note	in	Fallacies	&	Pitfalls,	be	careful	how	much
you	store	in	the	session.

Self-Check	4.7.1.	Why	must	every	controller	action	either	render	a	view	or	perform	a	redirect?
	HTTP	is	a	request-reply	protocol,	so	every	action	must	generate	a	reply.	One	kind	of	reply	is	a	view

(Web	 page)	 but	 another	 kind	 is	 a	 redirect,	 which	 instructs	 the	 browser	 to	 issue	 a	 new	 request	 to	 a
different	URI.

Self-Check	4.7.2.	 In	Figure	 4.13,	 given	 that	we	 are	 going	 to	 output	 an	HTML	 tag,	why	 does	 line	 2
begin	with	-	rather	than	=?
	=	directs	Haml	to	evaluate	the	Ruby	expression	and	substitute	it	into	the	view,	but	we	don’t	want	the

value	 of	 the	 if-expression	 to	 be	 placed	 in	 the	 view—we	 want	 the	 actual	 HTML	 tag,	 which	 Haml
generates	 from	#notice.message,	 plus	 the	 result	 of	 evaluating	flash[:notice],	 which	 is	 correctly
preceded	by	=.

4.8	Finishing	CRUD:	Edit/Update	and	Destroy

			We	can	now	follow	a	similar	process	to	add	the	code	for	the	update	functionality.	Like	create,
this	 requires	 two	 actions—one	 to	 display	 the	 form	with	 editable	 information	 (edit)	 and	 a	 second	 to
accept	 the	 form	submission	and	apply	 the	updated	 information	 (update).	Of	course,	we	 first	need	 to
give	 the	 user	 a	way	 to	 specify	 the	Edit	 action,	 so	 before	 going	 further,	modify	 the	show.html.haml
view	 so	 its	 last	 two	 lines	match	 the	 code	 below,	where	 line	 2	 uses	 the	 helper	 edit_movie_path	 to
generate	a	RESTful	URI	that	will	trigger	the	edit	action	for	@movie.

http://pastebin.com/AKqf6jx2

	1				-#	modify	last	2	lines	of	app/views/movies/show.html.haml	to:

	2				=	link_to	’Edit	info’,	edit_movie_path(@movie)

	3				=	link_to	’Back	to	movie	list’,	movies_path

In	fact,	as	Figure	4.14	shows,	the	new/create	and	edit/update	action	pairs	are	similar	in	many	respects.

Create Update
Parameters
passed	to	view none existing	instance	of	Movie

Default	form
field	values blank existing	movie	attributes

Submit	button
label “Create	Movie”	(or	“Save	Changes”) “Update	Movie”	(or	“Save	Changes”)

Controller
actions

new	serves	form,	create	receives	form
and	modifies	database

edit	serves	form,	update	receives	form
and	modifies	database

http://pastebin.com/AKqf6jx2

params[] Attribute	values	for	new	movie Updated	attribute	values	for	existing
movie

Figure	4.14:	The	edit/update	action	pair	is	very	similar	to	the	new/create	action	pair	we’ve	already	implemented.

Shouldn’t	we	DRY	out	similar	things?	In	Chapter	5	we’ll	show	a	way	to	take	advantage	of	this	similarity	to	DRY	out	the	views,	but	for
now	we’ll	tolerate	a	little	duplication	in	order	to	finish	the	example.)

http://pastebin.com/HpVcAmTw

	1	%h2	Edit	Movie

	2	

	3	=	form_tag	movie_path(@movie),	:method	=>	:put	do

	4	

	5			=	label	:movie,	:title,	’Title’

	6			=	text_field	:movie,	’title’

	7	

	8			=	label	:movie,	:rating,	’Rating’

	9			=	select	:movie,	:rating,	[’G’,’PG’,’PG-13’,’R’,’NC-17’]

10	

11			=	label	:movie,	:release_date,	’Released	On’

12			=	date_select	:movie,	:release_date

13	

14			=	submit_tag	’Save	Changes’

Figure	4.15:	The	Haml	markup	for	the	edit	view	differs	from	the	new	view	only	in	line	3.

Use	 Figure	 4.15	 to	 create	 the	 edit.html.haml	 view,	 which	 is	 almost	 identical	 to	 the	 new	 view
(Figure	4.11)—the	only	difference	is	line	3,	which	specifies	the	RESTful	route	for	form	submission.	As
rake	routes	 tells	us,	 the	create	action	requires	an	HTTP	POST	 to	the	URI	/movies,	 so	Figure	4.11
uses	:method=>:post	 and	 the	URI	 helper	 movies_path	 in	 the	 form	 action.	 In	 contrast,	 the	 update
action	 requires	 an	 HTTP	 PUT	 to	 /movies/:id	 where	 :id	 is	 the	 primary	 key	 of	 the	 resource	 to	 be
updated,	 so	 line	 3	 of	 Figure	 4.15	 specifies	 :method=>:put	 and	 uses	 the	 URI	 helper
movie_path(@movie)	to	construct	the	URI	for	editing	this	specific	movie.	We	could	have	constructed
the	 URIs	 manually,	 using	 form_tag	 ”/movies”	 in	 new.html.haml	 and	 form_tag	 ”/movies/#

{@movie.id}”	in	edit.html.haml,	but	the	URI	helpers	are	more	concise,	convey	intent	more	clearly,
and	are	independent	of	the	actual	URI	strings,	should	those	have	a	reason	to	change.	As	we’ll	see,	when
your	 app	 introduces	 relationships	 among	 different	 kinds	 of	 resources,	 such	 as	 a	 moviegoer	 having
favorite	movies,	the	RESTful	URIs	become	more	complicated	and	the	helpers	become	correspondingly

more	concise	and	easy	to	read.	 		

Below	are	 the	actual	controller	methods	you’ll	need	 to	add	to	movies_controller.rb	 to	 try	out	 this
feature,	so	go	ahead	and	add	them.

http://pastebin.com/HpVcAmTw

http://pastebin.com/UYj53gwM

	1				#	in	movies_controller.rb

	2				

	3				def	edit

	4						@movie	=	Movie.find	params[:id]

	5				end

	6				

	7				def	update

	8						@movie	=	Movie.find	params[:id]

	9						@movie.update_attributes!(params[:movie])

10						flash[:notice]	=	"#{@movie.title}	was	successfully	updated."

11						redirect_to	movie_path(@movie)

12				end

13				

Try	clicking	on	the	Edit	link	you	inserted	above	to	edit	an	existing	movie.	Observe	that	when	updating
an	 existing	 movie,	 the	 default	 filled-in	 values	 of	 the	 form	 fields	 correspond	 to	 the	 movie’s	 current
attributes.	This	is	because	helpers	such	as	text_field	 in	 line	6	of	 the	new	or	edit	 templates	will	by
default	 look	 for	an	 instance	variable	whose	name	matches	 their	 first	 argument—in	 this	case,	 the	 first
argument	 is	 :movie	 so	 the	 text_field	 helper	 will	 look	 for	 a	 variable	 @movie.	 If	 it	 exists	 and
corresponds	 to	 an	 ActiveRecord	model,	 the	 helper	 assumes	 that	 this	 form	 is	 for	 editing	 an	 existing
object,	and	@movie’s	current	attribute	values	will	be	used	to	populate	the	form	fields.	If	it	doesn’t	exist
or	doesn’t	 respond	 to	 the	attribute	method	 in	 the	second	argument	 (’title’),	 the	 form	fields	will	be
blank.	 This	 behavior	 is	 a	 good	 reason	 to	 name	 your	 instance	 variable	 @movie	 rather	 than	 (say)
@my_movie:	 you	 can	 still	 get	 the	 extra	 functionality	 from	 the	 helpers,	 but	 you’ll	 have	 to	 pass	 extra

arguments	to	them.	 		

The	last	CRUD	action	is	Delete,	which	Figure	4.4	shows	can	be	accomplished	by	calling	destroy	on	an
ActiveRecord	 model.	 As	 with	 the	 Update	 action,	 it’s	 common	 practice	 to	 respond	 to	 a	 Delete	 by
destroying	the	object	and	then	returning	the	user	to	some	other	useful	page	(such	as	the	Index	view)	and
displaying	 a	 confirmation	message	 that	 the	 item	was	 deleted,	 so	we	 already	 know	 how	 to	write	 the
controller	method—add	the	following	lines	to	movies_controller.rb:

http://pastebin.com/djpFThe2

	1				def	destroy

	2						@movie	=	Movie.find(params[:id])

	3						@movie.destroy

	4						flash[:notice]	=	"Movie	’#{@movie.title}’	deleted."

	5						redirect_to	movies_path

	6				end

(Recall	 from	 the	 explanation	 accompanying	 Figure	 4.4	 that	 even	 after	 destroying	 an	 object	 in	 the
database,	the	in-memory	copy	can	still	be	queried	for	its	attributes	as	long	as	we	don’t	try	to	modify	it
or	ask	it	to	persist	itself.)

As	we	did	with	Edit,	we’ll	provide	access	to	the	Delete	action	from	each	movie’s	Show	page.	What	kind

http://pastebin.com/UYj53gwM
http://pastebin.com/djpFThe2

of	 HTML	 element	 should	 we	 use?	 rake	 routes	 tells	 us	 the	 Delete	 action	 requires	 the	 URI
/movies/:id	with	the	HTTP	verb	DELETE.	This	seems	similar	 to	Edit,	whose	URI	is	similar	but	uses
the	GET	method.	Since	we’ve	been	using	the	URI	helpers	to	generate	routes,	we	can	still	use	link_to	in
this	case,	but	its	behavior	is	a	bit	different	from	what	you	might	expect.

http://pastebin.com/e0CzFW1D

	1				-#	Our	Edit	link	from	previous	example:

	2				=	link_to	’Edit	info’,	edit_movie_path(@movie)

	3				-#	This	Delete	link	will	not	really	be	a	link,	but	a	form:

	4				=	link_to	’Delete’,	movie_path(@movie),	:method	=>	:delete

If	you	examine	the	HTML	generated	by	this	code,	you’ll	find	that	Rails	generates	a	link	that	includes
the	 unusual	 attribute	 data-method=”delete”.	 Long	 before	 RESTfulness	 became	 a	 prominent	 SaaS
concept,	there	was	already	a	general	guideline	that	SaaS	app	requests	that	used	GET	should	always	be
“safe”—they	should	not	cause	any	side	effects	such	as	deleting	an	item	or	purchasing	something,	and
should	be	safely	 repeatable.	 Indeed,	 if	you	 try	 to	 reload	a	page	 that	 resulted	 from	a	POST	operation,
most	browsers	will	display	a	warning	asking	if	you	really	want	to	resubmit	the	form.

Search	engine	crawlers	explore	the	Web	by	following	GET	links.	Imagine	Google	triggering	millions	of	spurious	purchases	every	time	it
crawled	an	e-commerce	site!

Since	 deleting	 something	 is	 not	 a	 “safe”	 operation,	 Rails	 handles	 deletion	 using	 a	 POST.	 As	 the
Elaboration	 at	 the	 end	 of	 Section	 6.5	 explains,	 the	 unusual	 HTML	 generated	 by	 link_to,	 when
combined	with	JavaScript,	actually	results	in	a	form	being	created	and	POSTed	when	the	link	is	clicked
—thereby	alowing	JavaScript-enabled	browsers	to	safely	handle	the	destructive	delete	operation.

			Try	modifying	the	index	view	(list	of	all	movies)	so	that	each	table	row	displaying	a	movie	title
also	includes	an	Edit	link	that	brings	up	the	edit	form	for	that	movie	and	a	Destroy	button	that	deletes
that	movie	with	a	confirmation	dialog.

Self-Check	4.8.1.	Why	does	the	form	in	new.html.haml	submit	to	the	create	method	rather	than	the
new	method?
	As	we	saw	in	Chapter	2,	creating	a	new	record	requires	two	interactions.	The	first	one,	new,	loads	the

form.	The	second	one,	create,	submits	the	form	and	causes	the	actual	creation	of	the	new	record.

Self-Check	4.8.2.	Why	does	it	make	no	sense	to	have	both	a	render	and	a	redirect	(or	two	renders,	or
two	redirects)	along	the	same	code	path	in	a	controller	action?
	Render	and	redirect	are	two	different	ways	to	reply	to	a	request.	Each	request	needs	exactly	one	reply.

Summary
Rails	provides	various	helpers	for	creating	HTML	forms	that	refer	to	ActiveRecord	models.	In	the
controller	method	 that	 receives	 the	 form	 submission,	 the	 keys	 in	 the	 params	 hash	 are	 the	 form
fields’	name	attributes	and	the	corresponding	values	are	the	user-selected	choices	for	those	fields.
Creating	and	updating	an	object	are	 resources	whose	visible	 representation	 is	 just	 the	success	or

http://pastebin.com/e0CzFW1D

failure	 status	 of	 the	 request.	 For	 user	 friendliness,	 rather	 than	 displaying	 a	 web	 page	 with	 just
success	or	failure	and	requiring	the	user	to	click	to	continue,	we	can	instead	redirect_to	a	more
useful	page	such	as	index.	Redirection	is	an	alternative	way	for	a	controller	action	to	finish,	rather
than	rendering	a	view.
For	 user	 friendliness,	 it’s	 typical	 to	modify	 the	 application	 layout	 to	 display	messages	 stored	 in
flash[:notice]	or	flash[:warning],	which	persist	until	 the	next	 request	 so	 they	can	be	used
with	redirect_to.
To	specify	 the	URIs	 required	by	both	 form	submissions	and	redirections,	we	can	use	RESTFUL
URI	helpers	like	movies_path	and	edit_movie_path	rather	than	creating	the	URIs	manually.

4.9	Fallacies	and	Pitfalls

			Pitfall:	Modifying	the	database	manually	rather	than	using	migrations,	or	managing	gems
manually	rather	than	using	Bundler.

Especially	 if	 you’ve	 come	 from	 other	 SaaS	 frameworks,	 it	 may	 be	 tempting	 to	 use	 the	 SQLite3
command	 line	 or	 a	 GUI	 database	 console	 to	 manually	 add	 or	 change	 database	 tables	 or	 to	 install
libraries.	But	 if	you	do	 this,	you’ll	have	no	consistent	way	 to	 reproduce	 these	steps	 in	 the	 future	 (for
example	 at	 deployment	 time)	 and	 no	 way	 to	 roll	 back	 the	 changes	 in	 an	 orderly	 way.	 Also,	 since
migrations	 and	 Gemfiles	 are	 just	 files	 that	 become	 part	 of	 your	 project,	 you	 can	 keep	 them	 under

version	control	and	see	the	entire	history	of	your	changes.	 		

			Pitfall:	Fat	controllers	and	fat	views.	Because	controller	actions	are	the	first	place	in	your	app’s
code	that	are	called	when	a	user	request	arrives,	it’s	remarkably	easy	for	the	actions’	methods	to	get	fat
—putting	all	kinds	of	logic	in	the	controller	that	really	belongs	in	the	model.	Similarly,	it’s	easy	for	code
to	 creep	 into	 views—most	 commonly,	 a	 view	 may	 find	 itself	 calling	 a	 model	 method	 such	 as
Movie.all,	rather	than	having	the	controller	method	set	up	a	variable	such	as	@movies=Movie.all	and
having	the	view	just	use	@movies.	Besides	violating	MVC,	coupling	views	to	models	can	interfere	with
caching,	which	we’ll	explore	in	Chapter	5.	The	view	should	focus	on	displaying	content	and	facilitating
user	input,	and	the	controller	should	focus	on	mediating	between	the	view	and	the	model	and	set	up	any
necessary	variables	to	keep	code	from	leaking	into	the	view.

			Pitfall:	Overstuffing	the	session[]	hash.

You	 should	minimize	 what	 you	 put	 in	 the	 session[]	 for	 two	 reasons.	 First,	 with	 the	 default	 Rails
configuration,	the	session	is	packed	into	a	cookie	(Section	2.2.1	and	Screencast	2.2.1)	at	the	end	of	each
request	and	unpacked	when	 the	cookie	 is	 received	with	 the	next	 request,	 and	 the	HTTP	specification
limits	cookies	to	4	KBytes	in	size.	Second,	although	you	can	change	Rails’	configuration	to	allow	larger
session	objects	 by	 storing	 them	 in	 their	 own	database	 table	 instead	of	 a	 cookie,	 bulky	 sessions	 are	 a
warning	 that	 your	 app’s	 actions	 aren’t	 very	 self-contained.	 That	 would	 mean	 your	 app	 isn’t	 very
RESTful	and	may	be	difficult	to	use	as	part	of	a	Service-Oriented	Architecture.	Although	nothing	stops
you	from	assigning	arbitrary	objects	to	the	session,	you	should	keep	just	the	ids	of	necessary	objects	in

the	session	and	keep	the	objects	themselves	in	model	tables	in	the	database.

4.10	Concluding	Remarks:	Designing	for	SOA

	 	 	 	 	 	The	 introduction	 to	Rails	 in	 this	 chapter	may	 seem	 to	 introduce	 a	 lot	 of	 very	 general
machinery	to	handle	a	fairly	simple	and	specific	task:	implementing	a	Web-based	UI	to	CRUD	actions.
However,	we	will	see	 in	Chapter	5	 that	 this	solid	groundwork	will	position	us	 to	appreciate	 the	more
advanced	mechanisms	that	will	let	you	truly	DRY	out	and	beautify	your	Rails	apps.

One	simple	example	we	can	show	immediately	relates	 to	Service-Oriented	Architecture,	an	important
concept	introduced	in	Chapter	1	and	 to	which	we’ll	 return	often.	 If	we	intended	RottenPotatoes	 to	be
used	in	an	SOA,	its	RESTful	actions	might	be	performed	either	by	a	human	who	expects	to	see	a	Web
page	as	 a	 result	of	 the	action	or	by	another	 service	 that	 expects	 (for	 example)	 an	XML	response.	To
simplify	 the	 task	of	making	your	 app	work	with	SOA,	you	can	 return	different	 formats	 for	 the	 same
resource	using	the	respond_to	method	of	ActionController	(not	to	be	confused	with	Ruby’s	built-in
respond_to?	 introduced	 in	Section	3.2).	ActionController::MimeResponds#respond_to	 yields	 an
object	that	can	be	used	to	select	the	format	in	which	to	render	a	response.	Here’s	how	the	update	action
can	be	immediately	converted	into	an	SOA-friendly	RESTful	API	that	updates	a	movie’s	attributes	and
returns	 an	XML	 representation	of	 the	updated	object,	while	preserving	 the	 existing	user	 interface	 for
human	users:

http://pastebin.com/9ZvvznvJ

	1				def	update

	2						@movie	=	Movie.find	params[:id]

	3						@movie.update_attributes!(params[:movie])

	4						respond_to	do	|client_wants|

	5								client_wants.html	{		redirect_to	movie_path(@movie)		}	#	as	before

	6								client_wants.xml		{		render	:xml	=>	@movie.to_xml				}

	7						end

	8				end

Similarly,	 the	 only	 reason	 new	 requires	 its	 own	 controller	 action	 is	 that	 the	 human	 user	 needs	 an
opportunity	to	fill	in	the	values	that	will	be	used	for	create.	Another	service	would	never	call	the	new
action	at	all.	Nor	would	it	make	sense	to	redirect	back	to	the	list	of	movies	after	a	create	action:	the
create	 method	 could	 just	 return	 an	 XML	 representation	 of	 the	 created	 object,	 or	 even	 the	 created
object’s	ID.

			Thus,	as	with	many	tools	we	will	use	in	this	book,	the	initial	learning	curve	to	do	a	simple	task
may	seem	a	bit	steep,	but	you	will	quickly	reap	the	rewards	by	using	this	strong	foundation	to	add	new
functionality	and	features	quickly	and	concisely.

4.11	To	Learn	More
	

The	 online	 documentation	 for	 Rails	 gives	 details	 on	 the	 language,	 its	 classes,	 and	 the	 Rails
framework.

http://api.rubyonrails.org/v3.2.19/classes/ActionController/MimeResponds.html#method-i-respond_to
http://pastebin.com/9ZvvznvJ
http://api.rubyonrails.org/v3.2.19/

The	Ruby	Way	(Fulton	2006)	and	The	Rails	3	Way	(Fernandez	2010)	go	into	great	depth	on	Ruby
and	Rails	advanced	features	and	wizardry.
Agile	 Web	 Development	 With	 Rails,	 4th	 edition	 Ruby	 et	 al.	 2011	 is	 co-authored	 by	 David
Heinemeier	 Hansson,	 the	 creator	 of	 Rails,	 and	 is	 a	 tutorial-oriented	 introduction	 that	 combines
Ruby	and	Rails,	although	its	emphasis	on	testing	and	BDD	is	less	than	we	would	like.	You	can	get
it	from	major	retailers	or	directly	from	the	publisher,	where	you	can	get	a	discount	for	purchasing
the	print	book	and	(multi-format)	ebook	together.
PluralSight	 publishes	 high-quality	 screencasts	 covering	 almost	 every	 tool	 and	 technique	 in	 the
Rails	ecosystem	for	a	very	reasonable	price	(in	the	authors’	opinion).	The	five-part	Introduction	to
Rails	3	screencast	is	a	particularly	good	complement	to	the	information	in	this	chapter.
Before	writing	new	code	for	any	functionality	that	isn’t	specific	to	your	app,	check	rubygems	and
rubyforge	(at	least)	to	see	if	someone	has	created	a	gem	that	does	most	of	what	you	need.	As	we
saw	in	this	chapter,	using	a	gem	is	as	easy	as	adding	a	line	to	your	Gemfile	and	re-running	bundle
install.

	 O.	Fernandez.	Rails	3	Way,	The	(2nd	Edition)	(Addison-Wesley	Professional	Ruby	Series).	Addison-Wesley	Professional,	2010.	ISBN	0321601661.

	 H.	Fulton.	The	Ruby	Way,	Second	Edition:	Solutions	and	Techniques	in	Ruby	Programming	(2ndEdition).	Addison-Wesley	Professional,	2006.	ISBN	0672328844.

	 S.	Ruby,	D.	Thomas,	and	D.	H.	Hansson.	Agile	Web	Development	with	Rails	3.2	(PragmaticProgrammers).	Pragmatic	Bookshelf,	2011.	ISBN	1934356549.

4.12	Suggested	Projects

Unless	 otherwise	 indicated,	 these	 suggested	 projects	 are	 based	 on	 the	 myrottenpotatoes	 app	 you
created	in	this	chapter.

Project	4.1.

Add	a	default	banner	to	the	main	application	layout	that	will	appear	on	every	page	of	RottenPotatoes.	It
should	display	“RottenPotatoes”	in	large	red	letters,	but	no	visual	styling	information	should	go	into	the
template	itself.	(Hint:	pick	an	element	type	that	reflects	the	role	of	this	banner,	assign	it	a	unique	ID,	and
modify	the	CSS	style	file	to	style	the	element.)	Make	it	so	that	clicking	on	the	banner	always	takes	you
to	RP	homepage.

Project	4.2.	 Instead	of	 redirecting	 to	 the	 Index	action	after	a	 successful	create,	 redirect	 to	 the	show
action	for	the	new	movie	that	was	just	created.	Hint:	you	can	use	the	movie_path	URI	helper	but	you’ll
need	 to	 supply	 an	 argument	 identifying	 which	 movie.	 To	 obtain	 this	 argument,	 recall	 that
Movie.create	if	successful	returns	the	newly-created	object	in	addition	to	creating	it.

Project	 4.3.	Modify	 the	 listing	 of	movies	 as	 follows.	 Each	modification	 task	will	 require	making	 a
change	at	a	different	layer	of	abstraction:
1.	 Modify	the	Index	view	to	include	a	row	number	for	each	row	in	the	movies	table.	HINT:	look	up

the	documentation	of	the	each_with_index	function	used	in	line	11	of	the	view	template.
2.	 Modify	the	Index	view	so	that	hovering	a	mouse	over	a	row	in	the	movies	table	causes	the	row	to

temporarily	 assume	 a	 yellow	 background.	HINT:	 look	 up	 the	 hover	 pseudo-class	 supported	 by
CSS.

http://pragprog.com/book/rails32/agile-web-development-with-rails-3-2
http://pluralsight.com/
http://pluralsight.com/training/courses/TableOfContents/introduction-to-ruby-on-rails-3
http://rubygems.org
http://rubyforge.org

3.	 Modify	the	Index	controller	action	to	return	the	movies	ordered	alphabetically	by	title,	rather	than
by	release	date.	HINT:	Don’t	try	to	sort	the	result	of	the	controller’s	call	to	the	database.	RDBMS’s
provide	ways	 to	 specify	 the	 order	 in	which	 a	 list	 of	 results	 is	 delivered,	 and	 because	 of	Active
Record’s	tight	coupling	to	the	underlying	RDBMS,	the	Rails	ActiveRecord	library’s	find	and	all
methods	provide	a	way	to	ask	the	underlying	RDBMS	to	do	this.

4.	 Pretend	 you	 didn’t	 have	 the	 tight	 coupling	 of	Active	Record,	 and	 so	 you	 could	 not	 assume	 the
underlying	 storage	 system	 can	 return	 collection	 items	 in	 any	 particular	 order.	Modify	 the	 Index
controller	 action	 to	 return	 the	movies	 ordered	 alphabetically	 by	 title.	 HINT:	 Look	 up	 the	 sort
method	in	Ruby’s	Enumerable	module.

Project	4.4.	What	if	the	user	changes	his	mind	before	submitting	a	Create	or	Update	form	and	decides
not	 to	 proceed	 after	 all?	Add	 a	 “Cancel”	 link	 to	 the	 form	 that	 just	 takes	 the	 user	 back	 to	 the	 list	 of
movies.

Project	4.5.	Modify	the	“Cancel”	link	so	that	if	it’s	clicked	as	part	of	a	Create	flow,	the	user	is	taken
back	to	the	list	of	movies,	but	if	clicked	as	part	of	an	Update	flow,	the	user	is	taken	back	to	the	Show
template	 (view)	 for	 the	 movie	 he	 began	 to	 edit.	 Hint:	 the	 instance	 method
ActiveRecord::Base#new_record?	returns	true	if	its	receiver	is	a	new	model	object,	that	is,	one	that
has	never	been	saved	in	the	database.	Such	objects	won’t	have	ID’s.

Project	 4.6.	The	 dropdown	menus	 for	Release	Date	 don’t	 allow	 adding	movies	 released	 earlier	 than
2006.	Modify	it	to	allow	movies	as	early	as	1930.	(Hint:	check	the	documentation	for	the	date_select
helper	used	in	the	form.)

Project	4.7.	The	description	field	of	a	movie	was	created	as	part	of	the	initial	migration,	but	cannot
be	edited.	Make	the	necessary	changes	so	that	the	description	is	visible	and	editable	in	the	New	and	Edit
views.	Hint:	you	should	only	need	to	change	two	files.

Project	 4.8.	Our	 current	 controller	methods	 aren’t	 very	 robust:	 if	 the	 user	manually	 enters	 a	URI	 to
Show	a	movie	that	doesn’t	exist	(for	example	/movies/99999),	she	will	see	an	ugly	exception	message.
Modify	 the	 show	 method	 in	 the	 controller	 so	 that	 if	 the	 requested	 movie	 doesn’t	 exist,	 the	 user	 is
redirected	to	the	Index	view	with	a	friendly	message	explaining	that	no	movie	with	the	given	ID	could
be	found.	(Hint:	use	begin...rescue...end	to	rescue	from	ActiveRecord::RecordNotFound.)

Project	4.9.	Putting	it	all	together	exercise:	Write	and	deploy	a	Rails	app	that	scrapes	some	information
from	a	Web	page	using	Nokogiri’s	XPath	features,	and	turns	it	into	an	RSS	feed	using	Builder.	Verify
that	you	can	subscribe	to	the	RSS	feed	in	your	browser	or	RSS	news	reader.

http://api.rubyonrails.org

5.	SaaS	Framework:	Advanced	Rails

			Kristen	Nygaard	(left,	1926–2002)	and	Ole-Johan	Dahl	(right,	1931–2002)
shared	the	2001	Turing	Award	for	inventing	fundamental	OO	concepts	including	objects,	classes,	and

inheritance,	and	demonstrating	them	in	Simula,	the	ancestor	of	every	OO	language.

Programming	is	understanding.
—Kristen	Nygaard

5.1	DRYing	Out	MVC:	Partials,	Validations	and	Filters
5.2	Single	Sign-On	and	Third-Party	Authentication
5.3	Associations	and	Foreign	Keys
5.4	Through-Associations
5.5	RESTful	Routes	for	Associations
5.6	Composing	Queries	With	Reusable	Scopes
5.7	Fallacies	and	Pitfalls
5.8	Concluding	Remarks:	Languages,	Productivity,	and	Beauty
5.9	To	Learn	More
5.10	Suggested	Projects

Concepts

This	 chapter	 covers	 advanced	 features	 of	 Rails	 that	 you	 can	 use	 to	make	 your	 code	more	DRY	 and
concise,	including	how	to	reuse	entire	external	services	such	as	Twitter	to	integrate	with	your	apps.
	

Rails	mechanisms	such	as	controller	filters,	model	lifecycle	hooks,	and	model	validations	provide	a
limited	form	of	aspect-oriented	programming,	which	allows	code	about	crosscutting	concerns	to
be	centralized	in	a	single	place	and	automatically	called	when	needed.
ActiveRecord	 associations	 use	 metaprogramming	 and	 reflection	 to	 map	 relationships	 among
resources	 in	 your	 app,	 such	 as	 “belongs	 to”	 or	 “has	 many”,	 to	 queries	 that	 mirror	 those
relationships	in	the	app’s	database.
ActiveRecord	scopes	are	composable	“filters”	you	can	define	on	your	model	data,	enabling	DRY
reuse	of	model	logic.

http://en.wikipedia.org/wiki/aspect-oriented_programming

5.1	DRYing	Out	MVC:	Partials,	Validations	and	Filters

We’ll	focus	our	discussion	of	DRYness	on	the	three	elements	of	MVC,	starting	with	Views.

As	Section	6.6	explains,	the	partial	is	also	the	basic	unit	of	view	updating	for	JavaScript-enabled	pages.

			A	partial	is	Rails’	name	for	a	reusable	chunk	of	a	view.	When	similar	content	must	appear	in
different	views,	putting	that	content	in	a	partial	and	“including”	it	in	the	separate	files	helps	DRY	out
repetition.	 For	 example,	 in	 Chapter	 4,	 Figure	 4.14	 noted	 the	 similarities	 between	 the	 new	 and	 edit
actions,	 both	of	whose	views	display	 the	 same	 form	 for	 entering	movie	 information—not	very	DRY.
Figure	 5.1	 captures	 this	 common	 view	 code	 in	 a	 partial	 and	 shows	 how	 to	 modify	 the	 existing
new.html.haml	and	edit.html.haml	to	use	it.

http://pastebin.com/AY6TjGrp

	1	-#	in	_movie_form.html.haml	(the	partial)

	2	

	3	=	label	:movie,	:title,	’Title’

	4	=	text_field	:movie,	’title’

	5	

	6	=	label	:movie,	:rating,	’Rating’

	7	=	select	:movie,	:rating,	Movie.all_ratings

	8	

	9	=	label	:movie,	:release_date,	’Released	On’

10	=	date_select	:movie,	:release_date

http://pastebin.com/F0NzXDqP

	1	-#	new.html.haml	using	partial

	2	

	3	%h2	Create	New	Movie

	4	

	5	=	form_tag	’/movies’,	:method	=>	:post	do

	6			=	render	:partial	=>	’movie_form’

	7			=	submit_tag	’Save	Changes’

http://pastebin.com/J3dz3FjR

	1	-#	edit.html.haml	using	partial

	2	

	3	%h2	Edit	Existing	Movie

	4	

	5	=	form_tag	movie_path(@movie),	:method	=>	:put	do

	6			=	render	:partial	=>	’movie_form’

	7			=	submit_tag	’Update	Movie	Info’

http://pastebin.com/AY6TjGrp
http://pastebin.com/F0NzXDqP
http://pastebin.com/J3dz3FjR

Figure	5.1:	A	partial	(top)	that	captures	the	form	elements	common	to	both	the	new	and	edit	templates.	The	modified	new	and	edit
templates	both	use	the	partial	(line	6	in	both	snippets),	but	line	5	is	different	between	the	two	templates	because	new	and	edit	submit	to
different	actions.	(Use	the	Pastebin	service	to	copy-and-paste	this	code.)

	 	 	 Partials	 rely	 heavily	 on	 convention	 over	 configuration.	 Their	 names	 must	 begin	 with	 an
underscore	 (we	 used	 _movie_form.html.haml)	 which	 is	 absent	 from	 the	 code	 that	 references	 the
partial.	If	a	partial	is	not	in	the	same	directory	as	the	view	that	uses	it,	’layouts/footer’	would	cause
Rails	to	look	for	app/views/layouts/_footer.html.haml.	A	partial	can	access	all	the	same	instance
variables	as	 the	view	 that	 includes	 it.	A	particularly	nice	use	of	a	partial	 is	 to	 render	a	 table	or	other
collection	in	which	all	elements	are	the	same,	as	Figure	5.2	demonstrates.

http://pastebin.com/tEALd9RT

	1	-#	A	single	row	of	the	All	Movies	table

	2	%tr

	3			%td=	movie.title

	4			%td=	movie.rating

	5			%td=	movie.release_date

	6			%td=	link_to	"More	about	#{movie.title}",	movie_path(movie)

Figure	5.2:	If	this	partial	is	saved	as	views/movies/_movie.html.haml,	lines	12–17	of	our	original	index.html.haml	view	(Figure	4.6)
can	be	replaced	with	the	single	line	=	render	:partial=>’movie’,	:collection=>@movies.	By	convention	over	configuration,	the	name
of	the	partial	without	the	leading	underscore	(in	this	case,	movie)	is	available	as	a	local	variable	in	the	partial	that	is	set	to	each	element	of
@movies	in	turn.

Partials	are	simple	and	straightforward,	but	the	mechanisms	provided	by	Rails	for	DRYing	out	models
and	controllers	are	more	subtle	and	sophisticated.	It’s	common	in	SaaS	apps	to	want	to	enforce	certain
validity	 constraints	 on	 a	 given	 type	 of	 model	 object	 or	 constraints	 on	 when	 certain	 actions	 can	 be
performed.	For	example,	when	a	new	movie	is	added	to	RottenPotatoes,	we	may	want	to	check	that	the
title	isn’t	blank,	that	the	release	year	is	a	valid	date,	and	that	the	rating	is	one	of	the	allowed	ratings.	As
another	example,	perhaps	we	want	to	allow	any	user	to	add	new	movies,	but	only	allow	special	“admin”
users	to	delete	movies.

Didn’t	the	user	choose	the	rating	from	a	menu?	Yes,	but	the	request	might	be	constructed	by	a	malicious	user	or	a	bot.	With	SaaS,	you
can’t	trust	anyone:	the	server	must	always	check	its	inputs	rather	than	trust	them,	or	risk	attack	by	methods	we’ll	see	in	Chapter	12.

Both	examples	involve	specifying	constraints	on	entities	or	actions,	and	although	there	might	be	many
places	 in	 an	 app	 where	 such	 constraints	 should	 be	 considered,	 the	 DRY	 philosophy	 urges	 us	 to
centralize	 them	 in	 one	 place.	 Rails	 provides	 two	 analogous	 facilities	 for	 doing	 this:	 validations	 for
models	and	filters	for	controllers.

http://pastebin.com/yctJ0riC

http://pastebin.com/tEALd9RT
http://en.wikipedia.org/wiki/Internet_bot
http://pastebin.com/yctJ0riC

	1	class	Movie	<	ActiveRecord::Base

	 2	 	 	 def	 self.all_ratings	 ;	 %w[G	 PG	 PG-13	 R	 NC-

17]	;	end	#		shortcut:	array	of	strings

	3			validates	:title,	:presence	=>	true

	4			validates	:release_date,	:presence	=>	true

	5			validate	:released_1930_or_later	#	uses	custom	validator	below

	6			validates	:rating,	:inclusion	=>	{:in	=>	Movie.all_ratings},

	7					:unless	=>	:grandfathered?

	8			def	released_1930_or_later

	9					errors.add(:release_date,	’must	be	1930	or	later’)	if

10							release_date	&&	release_date	<	Date.parse(’1	Jan	1930’)

11			end

12			@@grandfathered_date	=	Date.parse(’1	Nov	1968’)

13			def	grandfathered?

14					release_date	&&	release_date	<	@@grandfathered_date

15			end

16	end

17	#	try	in	console:

18	m	=	Movie.new(:title	=>	’’,	:rating	=>	’RG’,	:release_date	=>	’1929-01-01’)

19	#	force	validation	checks	to	be	performed:

20	m.valid?		#	=>	false

21	m.errors[:title]	#	=>	["can’t	be	blank"]

22	m.errors[:rating]	#	=>	["is	not	included	in	the	list"]

23	m.errors[:release_date]	#	=>	["must	be	1930	or	later"]

24	m.errors.full_messages	#	=>	["Title	can’t	be	blank",	"Rating	is	not

25			included	in	the	list",	"Release	date	must	be	1930	or	later"]

Figure	5.3:	Lines	3–5	use	predefined	validation	behaviors	in	ActiveModel::Validations::ClassMethods.	Lines	6–15	show	how	you	can
create	your	own	validation	methods,	which	receive	the	object	to	be	validated	as	an	argument	and	add	error	messages	describing	any
problems.	Note	that	we	first	validate	the	presence	of	release_date,	otherwise	the	comparisons	in	lines	10	and	14	could	fail	if
release_date	is	nil.

Model	 validations,	 like	 migrations,	 are	 expressed	 in	 a	 mini-DSL	 embedded	 in	 Ruby,	 as	 Figure	 5.3
shows.	Validation	checks	are	triggered	when	you	call	 the	instance	method	valid?	or	when	you	try	to
save	the	model	to	the	database	(which	calls	valid?	before	doing	so).

Any	validation	 errors	 are	 recorded	 in	 the	ActiveModel::Errors	 object	 associated	with	 each	model;
this	 object	 is	 returned	 by	 the	 instance	method	 errors.	 As	 Figure	 5.3	 shows,	 you	 can	 inquire	 about
errors	on	individual	attributes	(lines	18–20)	or	use	full_messages	 to	get	all	 the	errors	as	an	array	of
strings.	When	writing	your	own	custom	validations,	as	in	lines	7–10,	you	can	use	errors.add	to	add	an
error	message	associated	with	either	a	specific	invalid	attribute	of	the	object	or	the	object	in	general	(by
passing	:base	rather	than	an	attribute	name).

The	example	also	demonstrates	 that	validations	can	be	conditional.	For	example,	 line	6	 in	Figure	5.3
ensures	that	the	movie’s	rating	is	a	valid	one,	unless	the	movie	was	released	before	the	ratings	system
went	into	effect	(in	the	USA,	1	November	1968),	in	which	case	we	don’t	need	to	validate	the	rating.

			We	can	make	use	of	validation	to	replace	the	dangerous	save!	and	update_attributes!	in	our
controller	actions	with	their	safer	versions,	save	and	update_attributes,	which	fail	if	validation	fails.
Figure	5.4	shows	how	to	modify	our	controller	methods	 to	be	more	 idiomatic	by	 taking	advantage	of

http://api.rubyonrails.org/v3.2.19/classes/ActiveModel/Validations/ClassMethods.html#method-i-validates
http://api.rubyonrails.org/v3.2.19/classes/ActiveModel/Errors.html

this.	 Modify	 your	 create	 and	 update	 controller	 actions	 to	 match	 the	 figure,	 modify
app/models/movie.rb	 to	 include	 the	 validations	 in	 Figure	 5.3,	 and	 then	 try	 adding	 a	 movie	 that
violates	one	or	more	of	the	validations.

http://pastebin.com/fauUp1Xn

	1	#	replaces	the	’create’	method	in	controller:

	2	def	create

	3			@movie	=	Movie.new(params[:movie])

	4			if	@movie.save

	5					flash[:notice]	=	"#{@movie.title}	was	successfully	created."

	6					redirect_to	movies_path

	7			else

	8					render	’new’	#	note,	’new’	template	can	access	@movie’s	field	values!

	9			end

10	end

11	#	replaces	the	’update’	method	in	controller:

12	def	update

13			@movie	=	Movie.find	params[:id]

14			if	@movie.update_attributes(params[:movie])

15					flash[:notice]	=	"#{@movie.title}	was	successfully	updated."

16					redirect_to	movie_path(@movie)

17			else

18					render	’edit’	#	note,	’edit’	template	can	access	@movie’s	field	values!

19			end

20	end

21	#	note,	you	will	also	have	to	update	the	’new’	method:

22	def	new

23			@movie	=	Movie.new

24	end

Figure	5.4:	If	create	or	update	fails,	we	use	an	explicit	render	to	re-render	the	form	so	the	user	can	fill	it	in	again.	Conveniently,	@movie
will	be	made	available	to	the	view	and	will	hold	the	values	the	user	entered	the	first	time,	so	the	form	will	be	prepopulated	with	those
values,	since	(by	convention	over	configuration)	the	form	tag	helpers	used	in	_movie_form.html.haml	will	use	@movie	to	populate	the
form	fields	as	long	as	it’s	a	valid	Movie	object.

Of	course,	it	would	be	nice	to	provide	the	user	an	informative	message	specifying	what	went	wrong	and
what	she	should	do.	This	is	easy:	within	a	view	we	can	get	the	name	of	the	controller	action	that	called
for	the	view	to	be	rendered,	so	we	can	include	it	in	the	error	message,	as	line	5	of	the	following	code
shows.

http://pastebin.com/fNRS4LB6

	1				-#	insert	at	top	of	_movie_form.html.haml

	2				

	3				-	unless	@movie.errors.empty?

	4						#warning

	5								Errors	prevented	this	movie	from	being	#{controller.action_name}d:

	6								%ul

	7										-	@movie.errors.full_messages.each	do	|error|

	8												%li=	error

http://pastebin.com/fauUp1Xn
http://pastebin.com/fNRS4LB6

Screencast	5.1.1	digs	deeper	and	explains	how	Rails	views	take	advantage	of	being	able	to	query	each
model	attribute	about	its	validity	separately,	to	give	the	user	better	visual	feedback	about	which	specific
fields	caused	the	problem.

Screencast	5.1.1:	How	model	validations	interact	with	controllers	and	views
The	form	helpers	in	our	views	use	the	errors	object	to	discover	which	fields	caused	validation	errors
and	apply	the	special	CSS	class	field-with-errors	to	any	such	fields.	By	including	selectors	for	that
class	in	app/assets/stylesheets/application.css,	we	can	visually	highlight	the	affected	fields	for
the	user’s	benefit.

http://vimeo.com/34754932

Figure	5.5:	The	various	points	at	which	you	can	“hook	into”	the	lifecycle	of	an	ActiveRecord	model	object.	All	ActiveRecord	operations
that	modify	the	database	(update,	create,	and	so	on)	all	eventually	call	save,	so	a	before_save	callback	can	intercept	every	change	to	the
database.	See	this	Rails	Guide	for	additional	details	and	examples.

http://pastebin.com/2zQPLxAZ

	1	class	Movie	<	ActiveRecord::Base

	2			before_save	:capitalize_title

	3			def	capitalize_title

	4					self.title	=	self.title.split(/\s+/).map(&:downcase).

	5							map(&:capitalize).join(’	’)

	6			end

	7	end

	8	#	now	try	in	console:

	 9	 m	 =	 Movie.create!(:title	 =>	 ’STAR	 	 wars’,	 :release_date	 =>	 ’27-5-

1977’,	:rating	=>	’PG’)

10	m.title		#	=>	"Star	Wars"

Figure	5.6:	This	before_save	hook	capitalizes	each	word	of	a	movie	title,	downcases	the	rest	of	the	word,	and	compresses	multiple
spaces	between	words	to	a	single	space,	turning	STAR			wars	into	Star	Wars	(not	necessarily	the	right	behavior	for	movie	titles,	but
useful	for	illustration).

In	 fact,	 validations	 are	 just	 a	 special	 case	 of	 a	 more	 general	 mechanism,	 Active	 Record	 lifecycle
callbacks,	which	allow	you	to	provide	methods	that	“intercept”	a	model	object	at	various	relevant	points
in	 its	 lifecycle.	 Figure	 5.5	 shows	what	 callbacks	 are	 available;	 Figure	 5.6	 illustrates	 how	 to	 use	 this
mechanism	to	“canonicalize”	(standardize	the	format	of)	certain	model	fields	before	the	model	is	saved.
We	 will	 see	 another	 use	 of	 lifecycle	 callbacks	 when	 we	 discuss	 the	 Observer	 design	 pattern	 in
Chapter	11	and	caching	in	Chapter	12.

Analogous	to	a	validation	is	a	controller	filter—a	method	that	checks	whether	certain	conditions	are	true
before	an	action	is	run,	or	sets	up	common	conditions	that	many	actions	rely	on.	If	the	conditions	are
not	 fulfilled,	 the	 filter	 can	 choose	 to	 “stop	 the	 show”	by	 rendering	 a	 view	 template	 or	 redirecting	 to
another	action.	If	the	filter	allows	the	action	to	proceed,	it	will	be	the	action’s	responsibility	to	provide	a
response,	as	usual.

As	an	example,	an	extremely	common	use	of	filters	is	to	enforce	the	requirement	that	a	user	be	logged
in	before	certain	actions	can	be	performed.	Assume	for	the	moment	that	we	have	verified	the	identity	of
some	user	and	stored	her	primary	key	(ID)	 in	session[:user_id]	 to	remember	 the	fact	 that	she	has
logged	in.	Figure	5.7	shows	a	filter	that	enforces	that	a	valid	user	is	logged	in.	In	Section	5.2	we	will
show	how	to	combine	the	before-filter	with	the	other	“moving	parts”	involved	in	dealing	with	logged-in
users.

http://pastebin.com/3fzBknNQ

	1	class	ApplicationController	<	ActionController::Base

	2			before_filter	:set_current_user

http://guides.rubyonrails.org/v3.2.19/active_record_validations_callbacks.html
http://pastebin.com/2zQPLxAZ
http://api.rubyonrails.org/v3.2.19/classes/ActiveRecord/Callbacks.html
http://pastebin.com/3fzBknNQ

	3			protected	#	prevents	method	from	being	invoked	by	a	route

	4			def	set_current_user

	5					#	we	exploit	the	fact	that	find_by_id(nil)	returns	nil

	6					@current_user	||=	Moviegoer.find_by_id(session[:user_id])

	7					redirect_to	login_path	and	return	unless	@current_user

	8			end

	9	end

Figure	5.7:	If	there	is	a	logged-in	user,	the	redirect	will	not	occur,	and	the	controller	instance	variable	@current_user	will	be	available	to
the	action	and	views.	Otherwise,	a	redirect	will	occur	to	login_path,	which	is	assumed	to	correspond	to	a	route	that	takes	the	user	to	a
login	page,	about	which	more	in	Section	5.2.	(and	is	just	like	&&	but	has	lower	precedence,	thus	((redirect_to	login_path)	and
(return))	unless...)

Filters	normally	apply	 to	all	actions	 in	 the	controller,	but	:only	 can	be	used	 to	 specify	 that	 the	 filter
only	guards	certain	actions,	while	:except	can	be	used	to	specify	that	some	actions	are	exempt.	Each
takes	an	array	of	action	names.	You	can	define	multiple	filters:	they	are	run	in	the	order	in	which	they
are	declared.	You	can	also	define	after-filters,	which	run	after	certain	actions	are	completed,	and	around-
filters,	which	specify	actions	to	run	before	and	after,	as	you	might	do	for	auditing	or	timing.	Around-
filters	use	yield	to	actually	do	the	controller	action:

http://pastebin.com/LLjiWBK7

	1				#	somewhat	contrived	example	of	an	around-filter

	2				around_filter	:only	=>	[’withdraw_money’,	’transfer_money’]	do

	3						#	log	who	is	trying	to	move	money	around

	4						start	=	Time.now

	5						yield			#	do	the	action

	6						#	note	how	long	it	took

	7						logger.info	params

	8						logger.info	(Time.now	-	start)

	9				end

Summary	of	DRYing	out	MVC	in	Rails:
Partials	 allow	you	 to	 reuse	 chunks	of	views	across	different	 templates,	 collecting	 common	view
elements	in	a	single	place.
Validations	 let	 you	 collect	 constraints	 on	 a	 model	 in	 a	 single	 place.	 Validations	 are	 checked
anytime	 the	 database	 is	 about	 to	 be	 modified;	 failing	 validation	 is	 one	 of	 the	 ways	 that	 non-
dangerous	save	and	update_attributes	can	fail.
The	 errors	 field	 of	 a	 model,	 an	 ActiveRecord::Errors	 object,	 records	 errors	 that	 occurred
during	validation.	View	form	helpers	can	use	this	information	to	apply	special	CSS	styles	to	fields
whose	values	failed	validation,	cleanly	separating	the	responsibility	for	detecting	an	error	from	the
responsibility	for	displaying	that	error	to	the	user.
Controller	filters	 let	you	collect	conditions	affecting	many	controller	actions	 in	a	single	place	by
defining	a	method	that	always	runs	before	those	actions.	A	filter	declared	in	a	controller	affects	all
actions	in	that	controller,	and	a	filter	declared	in	ApplicationController	affects	all	actions	in	all
controllers,	unless	:only	or	:except	are	specified.

http://pastebin.com/LLjiWBK7

ELABORATION:	Aspect-oriented	programming

Aspect-oriented	programming	 (AOP)	 is	a	programming	methodology	 for	DRYing	out	code	by	separating	crosscutting	 concerns
such	 as	model	 validations	 and	 controller	 filters	 from	 the	main	 code	of	 the	 actions	 to	which	 the	 concerns	 apply.	 In	our	 case,	we
specify	model	validations	declaratively	in	one	place,	rather	than	invoking	them	explicitly	at	each	join	point	in	the	code	where	we’d
want	to	perform	a	validity	check.	A	set	of	join	points	is	collectively	called	a	pointcut,	and	the	code	to	be	inserted	at	each	join	point
(such	as	a	validation	in	our	example)	is	called	advice.

Ruby	doesn’t	support	full	AOP,	which	would	allow	you	to	specify	arbitrary	pointcuts	along	with	what	advice	applies	to	each.	But
Rails	 uses	 Ruby’s	 dynamic	 language	 features	 to	 define	 convenient	 pointcuts	 such	 as	 the	 AR	 model	 lifecycle,	 which	 supports
validations	and	other	lifecycle	callbacks,	and	join	points	around	controller	actions,	which	support	the	use	of	before-	and	after-filters.

A	 critique	 of	 AOP	 is	 that	 the	 source	 code	 can	 no	 longer	 be	 read	 in	 linear	 order.	 For	 example,	 when	 a	 before-filter	 prevents	 a
controller	action	from	proceeding,	the	problem	can	be	hard	to	track	down,	especially	for	someone	unfamiliar	with	Rails	who	doesn’t
realize	the	filter	method	isn’t	even	being	called	explicitly	but	is	an	advice	method	triggered	by	a	particular	join	point.	A	response	to
the	 critique	 is	 that	 if	 AOP	 is	 applied	 sparingly	 and	 tastefully,	 and	 all	 developers	 understand	 and	 agree	 on	 the	 pointcuts,	 it	 can
improve	DRYness	and	modularity.	Validations	and	filters	are	the	Rails	designers’	attempt	to	identify	this	beneficial	middle	ground.

Self-Check	5.1.1.	Why	didn’t	the	Rails	designers	choose	to	trigger	validation	when	you	first	instantiate
one	using	Movie#new,	rather	than	waiting	until	you	try	to	persist	the	object?
	As	 you’re	 filling	 in	 the	 attributes	 of	 the	 new	object,	 it	might	 be	 in	 a	 temporarily	 invalid	 state,	 so

triggering	validation	at	that	time	might	make	it	difficult	to	manipulate	the	object.	Persisting	the	object
tells	Rails	“I	believe	this	object	is	ready	to	be	saved.”

Self-Check	 5.1.2.	Why	 can’t	 we	 write	 validate	 released_1930_or_later,	 that	 is,	 why	must	 the
argument	to	validate	be	either	a	symbol	or	a	string?
	If	the	argument	is	just	the	“bare”	name	of	the	method,	Ruby	will	try	to	evaluate	it	at	the	moment	it

executes	validate,	which	isn’t	what	we	want—we	want	released_1930_or_later	to	be	called	at	the
time	any	validation	is	to	occur.

5.2	Single	Sign-On	and	Third-Party	Authentication

One	way	to	be	more	DRY	and	productive	is	 to	avoid	implementing	functionality	that	you	can	instead
reuse	from	other	services.	One	example	of	this	today	is	authentication—the	process	by	which	an	entity
or	principal	proves	that	it	is	who	it	claims	to	be.	In	SaaS,	end	users	and	servers	are	two	common	types
of	 principals	 that	 may	 need	 to	 authenticate	 themselves.	 Typically,	 a	 user	 proves	 her	 identity	 by
supplying	 a	 username	 and	 password	 that	 (presumably)	 nobody	 else	 knows,	 and	 a	 server	 proves	 its
identity	with	 a	 server	certificate	 (discussed	 in	 Chapter	 12)	whose	provenance	 can	 be	 verified	 using
cryptography.

Authorization	refers	to	whether	a	principal	is	allowed	to	do	something.	Although	separate	from	authentication,	the	two	are	often
conflated	because	many	standards	handle	both.

In	the	early	days	of	SaaS,	users	had	to	establish	separate	usernames	and	passwords	for	each	site.	Today,
an	increasingly	common	scenario	is	single	sign-on	(SSO),	in	which	the	credentials	established	for	one
site	(the	provider)	can	be	used	to	sign	in	to	other	sites	that	are	administratively	unrelated	to	it.	Clearly,
SSO	 is	 central	 to	 the	 usefulness	 of	 service-oriented	 architecture:	 It	would	 be	 difficult	 for	 services	 to
work	together	on	your	behalf	if	each	had	its	own	separate	authentication	scheme.	Given	the	prevalence
and	 increasing	 importance	of	SSO,	our	view	 is	 that	new	SaaS	apps	 should	use	 it	 rather	 than	“rolling
their	own”	authentication.

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Cross-cutting_concern
http://en.wikipedia.org/wiki/join_point
http://en.wikipedia.org/wiki/pointcut
http://en.wikipedia.org/wiki/advice
http://en.wikipedia.org/wiki/authentication
http://en.wikipedia.org/wiki/Principal_(computer_security)
http://en.wikipedia.org/wiki/public_key_certificate
http://en.wikipedia.org/wiki/provenance
http://en.wikipedia.org/wiki/single_sign-on

			Facebook	was	an	early	example	of	SSO.

Figure	5.8:	Third-party	authentication	enables	SSO	by	allowing	a	SaaS	app	to	request	that	the	user	authenticate	himself	via	a	third-party
provider.	Once	he	has	done	so,	the	provider	sends	a	token	to	the	requesting	app	proving	that	the	user	authenticated	himself	correctly	and
possibly	encoding	additional	privileges	the	user	grants	to	the	requesting	app.	The	flow	shown	is	a	simplified	version	of	OAuth,	an
evolving	(and	mildly	controversial)	open	standard	for	authentication	and	authorization	used	by	Twitter,	Facebook,	Microsoft,	Google,
Netflix,	and	many	others.	Twitter	logo	and	image	copyright	2012	Twitter	Inc.,	used	for	instructional	purposes	only.

However,	SSO	presents	the	dilemma	that	while	you	may	be	happy	to	use	your	credentials	on	site	A	to
login	to	site	B,	you	usually	don’t	want	to	reveal	those	credentials	to	site	B.	(Imagine	that	site	A	is	your
financial	institution	and	site	B	is	a	foreign	company	from	whom	you	want	to	buy	something.)	Figure	5.8

http://en.wikipedia.org/wiki/OAuth

shows	 how	 third-party	 authentication	 solves	 this	 problem	 using	 RottenPotatoes	 and	 Twitter	 as	 an
example.	First,	the	app	requesting	authentication	(RottenPotatoes)	creates	a	request	to	an	authentication
provider	 on	 which	 the	 user	 already	 has	 an	 account,	 in	 this	 case	 Twitter.	 The	 request	 often	 includes
information	about	what	privileges	the	app	wants	on	the	provider,	for	example,	to	be	able	to	tweet	as	this
user	or	learn	who	the	user’s	followers	are.

The	SSO	process	usually	begins	with	a	link	or	button	the	user	must	click.	That	link	takes	the	user	to	a
login	 page	 served	 securely	by	 the	 provider;	 depending	 on	 implementation,	 the	 login	 page	may	 be	 a
popup,	an	HTML	frame	or	iframe	element,	or	a	regular	page	served	by	the	provider’s	site.	The	user	is
then	 given	 the	 chance	 to	 login	 to	 the	 provider	 and	 decide	 whether	 to	 grant	 the	 app	 the	 requested
privileges.	 Critically,	 this	 interaction	 takes	 place	 entirely	 between	 the	 user	 and	 the	 provider:	 the
requesting	app	has	no	access	to	any	part	of	this	interaction.	Once	authentication	succeeds,	the	provider
generates	 a	 callback	 to	 the	 requesting	 app	 to	 give	 it	 an	 access	 token—a	 string	 created	 using
cryptographic	techniques	that	can	be	passed	back	to	the	provider	later,	allowing	the	provider	to	verify
that	the	token	could	only	have	been	created	as	the	result	of	a	successful	login	process.	At	this	point,	the
requesting	app	is	able	to	do	two	things:
	

1.	 It	 can	 believe	 that	 the	 user	 has	 proven	 her	 identity	 to	 the	 provider,	 and	 optionally	 record	 the
provider’s	persistent	and	globally-unique	ID	or	guid	 (pronounced	GOO-id)	 for	 that	user,	usually
provided	as	part	of	the	access	token.	For	example,	Armando	Fox’s	guid	on	Twitter	happens	to	be
318094297,	though	this	information	isn’t	useful	unless	accompanied	by	an	access	token	granting
the	right	to	obtain	information	about	that	guid.

2.	 It	can	use	the	token	to	request	further	information	about	the	user	from	the	provider,	depending	on
what	specific	privileges	were	granted	along	with	successful	authentication.	For	example,	a	 token
from	Facebook	might	 indicate	 that	 the	user	gave	permission	for	 the	app	to	 learn	who	his	friends
are,	but	denied	permission	for	the	app	to	post	on	his	Facebook	wall.

			Happily,	adding	third-party	authentication	to	Rails	apps	is	straightforward.	Of	course,	before	we
can	enable	a	user	to	log	in,	we	need	to	be	able	to	represent	users!	So	before	continuing,	create	a	basic
model	and	migration	following	the	instructions	in	Figure	5.9.

http://pastebin.com/V4tw3Ld9

	1	rails	generate	model	Moviegoer	name:string	provider:string	uid:string

http://pastebin.com/1JaAMKKD

	1	#	Edit	app/models/moviegoer.rb	to	look	like	this:

	2	class	Moviegoer	<	ActiveRecord::Base

	3			attr_accessible	:uid,	:provider,	:name	#	see	text	for	explanation

	4			def	self.create_with_omniauth(auth)

	5					Moviegoer.create!(

	6							:provider	=>	auth["provider"],

	7							:uid	=>	auth["uid"],

	8							:name	=>	auth["info"]["name"])

	9			end

http://en.wikipedia.org/wiki/Iframe#Frames
http://en.wikipedia.org/wiki/access_token
http://en.wikipedia.org/wiki/guid
http://pastebin.com/V4tw3Ld9
http://pastebin.com/1JaAMKKD

10	end

Figure	5.9:	Top	(a):	Type	this	command	in	a	terminal	to	create	a	moviegoers	model	and	migration,	and	run	rake	db:migrate	to	apply	the
migration.	Bottom	(b):	Then	edit	the	generated	app/models/moviegoer.rb	file	to	match	this	code,	which	the	text	explains.

http://pastebin.com/GUz4rscD

	1	get		’auth/:provider/callback’	=>	’sessions#create’

	2	post	’logout’	=>	’sessions#destroy’

	3	get		’auth/failure’	=>	’sessions#failure’

http://pastebin.com/eb50EvUx

	1	class	SessionsController	<	ApplicationController

	2			#	user	shouldn’t	have	to	be	logged	in	before	logging	in!

	3			skip_before_filter	:set_current_user

	4			def	create

	5					auth=request.env["omniauth.auth"]

	6					user=Moviegoer.find_by_provider_and_uid(auth["provider"],auth["uid"])	||

	7							Moviegoer.create_with_omniauth(auth)

	8					session[:user_id]	=	user.id

	9					redirect_to	movies_path

10			end

11			def	destroy

12					session.delete(:user_id)

13					flash[:notice]	=	’Logged	out	successfully.’

14					redirect_to	movies_path

15			end

16	end

http://pastebin.com/xbMdTJYJ

	1	#login

	2			-	if	@current_user

	3					%p.welcome		Welcome,	#{@current_user.name}!

	4					=	link_to	’Log	Out’,	logout_path

	5			-	else

	6					%p.login=	link_to	’Log	in	with	your	Twitter	account’,	’/auth/twitter’

Figure	5.10:	The	moving	parts	in	a	typical	Rails	app	authentication	flow.	Top	(a):	Three	routes	that	follow	the	OmniAuth	gem’s
convention	for	mapping	the	create	and	destroy	actions	in	a	separate	SessionsController,	plus	a	route	that	in	the	future	can	be	used	to
handle	authentication	failures	(for	example,	user	types	wrong	Twitter	password	or	denies	access	to	our	app).	Middle	(b):	Line	3	skips	the
before_filter	that	we	added	to	ApplicationController	in	Figure	5.7.	Note	that	we	must	delete	line	7	in	Figure	5.7	since	we	don’t	have
a	login	path	to	redirect	to	in	this	example.	Upon	successful	login	of	a	given	user,	the	create	action	remembers	that	user’s	primary	key
(ID)	in	the	session	until	the	destroy	action	is	called	to	forget	it.	Bottom	(c):	The	@current_user	variable	(set	in	line	6	of
ApplicationController,	Figure	5.7)	can	be	used	by	a	login	partial	to	display	an	appropriate	message.	The	partial	could	be	included	from
application.html.haml	with	render	:partial=>’sessions/login’.

http://pastebin.com/GUz4rscD
http://pastebin.com/eb50EvUx
http://pastebin.com/xbMdTJYJ

	 	 	 There	 are	 three	 aspects	 to	 managing	 third-party	 authentication	 in	 Rails.	 The	 first	 is	 how	 to
actually	 authenticate	 the	 user	 via	 a	 third	 party.	 We	 will	 use	 the	 excellent	 OmniAuth	 gem,	 which
abstracts	 away	 the	 entire	 process	 in	 Figure	 5.8	 by	 allowing	 developers	 to	 create	 a	 strategy	 for	 each
third-party	auth	provider.	A	strategy	handles	all	the	interactions	with	the	authentication	provider	(steps
2–4	 in	 Figure	 5.8)	 and	 ultimately	 performs	 an	HTTP	POST	 to	 the	URI	/auth/provider/callback	 in
your	app.	The	data	included	with	the	POST	indicate	the	success	or	failure	of	the	authentication	process,
and	 if	 successful,	 the	 access	 token(s)	 that	 your	 app	 can	 use	 to	 get	 additional	 information	 about	 the
logged-in	 user.	 As	 of	 this	 writing,	 strategies	 are	 available	 for	 Facebook,	 Twitter,	 Google	 Apps,	 and
many	others,	each	available	as	a	gem	named	omniauth-provider.	We	will	use	Twitter	as	an	example,	so
add	both	gem	’omniauth’	and	gem	’omniauth-twitter’	 to	your	Gemfile	and	run	bundle	install
--without	production	as	usual.	You	will	 then	need	 to	create	a	 twitter	development	application	and
configure	the	omniauth	gem	with	a	twitter	provider	in	config/initializers/omniauth.rb.	Details	in
the	omniauth-twitter	set	up	instructions	on	GitHub.	Once	completed	add	the	code	from	Figure	5.10(a)	to
your	config/routes.rb	 file,	which	specify	some	routes	that	 the	OmniAuth	strategy	will	use	when	it
completes	the	authentication	with	Twitter.

The	 second	 aspect	 of	 handling	 authentication	 is	 keeping	 track	 of	 whether	 the	 current	 user	 has	 been
authenticated.	 You	may	 have	 already	 guessed	 that	 this	 information	 can	 be	 stored	 in	 the	 session[].
However,	we	should	keep	session	management	separate	from	the	other	concerns	of	 the	app,	since	the
session	may	not	be	 relevant	 if	 our	 app	 is	 used	 in	 a	 service-oriented	 architecture	 setting.	To	 that	 end,
Figure	 5.10(b)	 shows	 how	we	 can	 “create”	 a	 session	 when	 a	 user	 successfully	 authenticates	 herself
(lines	3–9)	and	“destroy”	it	when	she	logs	out	(lines	11–15).	The	“scare	quotes”	are	there	because	the
only	thing	actually	being	created	or	destroyed	is	the	value	of	session[:user_id],	which	is	set	to	the
primary	key	of	the	logged-in	user	during	the	session	and	nil	at	other	times.	Figure	5.10(c)	shows	how
this	check	is	abstracted	by	a	before_filter	in	ApplicationController	(which	will	be	inherited	by
all	controllers)	that	sets	@current_user	accordingly,	so	that	controller	methods	or	views	can	just	look
at	@current_user	without	being	coupled	to	the	details	of	how	the	user	was	authenticated.

The	third	aspect	is	linking	our	own	representation	of	a	user’s	identity—that	is,	her	primary	key	in	the
moviegoers	table—with	the	auth	provider’s	representation,	such	as	the	uid	in	the	case	of	Twitter.	Since
we	may	want	 to	 expand	which	 auth	 providers	 our	 customers	 can	 use	 in	 the	 future,	 the	migration	 in
Figure	5.9(a)	that	creates	the	Moviegoer	model	specifies	both	a	uid	field	and	a	provider	 field.	What
happens	 the	 very	 first	 time	 Alice	 logs	 into	 RottenPotatoes	 with	 her	 Twitter	 ID?	 The
find_by_provider_and_uid	query	in	line	6	of	the	sessions	controller	(Figure	5.10(b))	will	return	nil,
so	Moviegoer.create_with_omniauth	(Figure	5.9(b),	lines	5–10)	will	be	called	to	create	a	new	record
for	this	user.	Note	that	“Alice	as	authenticated	by	Twitter”	would	therefore	be	a	different	user	from	our
point	 of	 view	 than	 “Alice	 as	 authenticated	 by	Facebook,”	 because	we	 have	 no	way	 of	 knowing	 that
those	represent	the	same	person.	That’s	why	some	sites	that	support	multiple	third-party	auth	providers
give	users	a	way	to	“link”	two	accounts	to	indicate	that	they	identify	the	same	person.

			This	may	seem	like	a	lot	of	moving	parts,	but	compared	to	accomplishing	the	same	task	without	an
abstraction	such	as	OmniAuth,	 this	 is	very	clean	code:	we	added	fewer	 than	 two	dozen	 lines,	and	by
incorporating	more	OmniAuth	 strategies,	we	 could	 support	 additional	 third-party	 auth	providers	with
essentially	no	new	work.	Screencast	5.2.1	shows	the	user	experience	associated	with	this	code.

http://www.omniauth.org
https://github.com/arunagw/omniauth-twitter

Screencast	5.2.1:	Logging	into	RottenPotatoes	with	Twitter
This	 version	 of	RottenPotatoes,	modified	 to	 use	 the	OmniAuth	 gem	 as	 described	 in	 the	 text,	 allows
moviegoers	to	login	using	their	existing	Twitter	IDs.

However,	we	have	just	created	a	security	vulnerability.	So	far	we’ve	exploited	the	convenience	of	“mass
assignment”	 from	 the	 params[]	 hash	 to	 an	 ActiveRecord	 object,	 as	 when	 we	 write
@movie.update_attributes(params[:movie])	 in	 MoviesController#update.	 But	 what	 if	 a
malicious	 attacker	 crafts	 a	 form	 submission	 that	 tries	 to	 modify	 params[:moviegoer][:uid]	 or
params[:moviegoer][:provider]—fields	that	should	only	be	modified	by	the	authentication	logic—
by	posting	hidden	 form	 fields	 named	 params[moviegoer][uid]	 and	 so	 on?	 The	 attr_accessible
command	in	line	3	of	Figure	5.9(b)	is	what	allows	us	to	mass-assign	specific	attributes.	If	we	wanted	to
“protect”	 sensitive	attributes	 from	being	mass-assigned	 from	params	we	 could	use	attr_protected.
The	more	restrictive	attr_accessible	arranges	for	only	the	named	attributes	to	be	modifiable	through
mass	assignment	from	params[]	(or	for	that	matter	from	any	hash).	This	more	restrictive	mechanism	is
recommended	because	it	follows	the	principle	of	least	privilege	in	computer	security,	a	topic	to	which
we	return	in	Section	12.9	when	discussing	how	to	defend	customer	data.

Summary
Single	sign-on	refers	to	an	end-user	experience	in	which	a	single	set	of	credentials	(such	as	their
Google	or	Facebook	username	and	password)	will	sign	them	in	to	a	variety	of	different	services.
Third-party	authentication	using	standards	such	as	OAuth	is	one	way	to	achieve	single-sign	on:	the
requesting	 app	 can	 verify	 the	 identity	 of	 user	 via	 an	 authentication	 provider,	 without	 the	 user
revealing	her	credentials	to	the	requesting	app.
The	cleanest	way	to	factor	out	authentication	in	Rails	apps	is	to	abstract	the	concept	of	a	session.
When	a	user	successfully	authenticates	(perhaps	using	a	framework	such	as	OmniAuth),	a	session
is	created	by	storing	the	authenticated	user’s	id	(primary	key)	in	the	session[].	When	she	signs
out,	the	session	is	destroyed	by	deleting	that	information	from	the	session[].
Use	attr_protected	and	attr_accessible	 to	identify	model	attributes	that	are	“sensitive”	and
should	be	excluded	from	mass	assignment	via	a	hash,	such	as	user	ID	information	used	for	session
management	or	authentication.

ELABORATION:	SSO	side	effects
In	 some	 cases,	 using	 SSO	 enables	 other	 features	 as	 well;	 for	 example,	 Facebook	 Connect	 enables	 sites	 to	 take	 advantage	 of
Facebook’s	social	network,	so	that	(for	example)	Bob	can	see	which	New	York	Times	articles	his	friends	have	been	reading	once	he
authenticates	himself	to	the	New	York	Times	using	Facebook.	While	these	appealing	features	further	strengthen	the	case	for	using
SSO	 rather	 than	 “rolling	 your	 own”	 authentication,	 they	 are	 separate	 from	 the	 basic	 concept	 of	 SSO,	 on	which	 this	 discussion
focuses.

Self-Check	 5.2.1.	Briefly	 describe	 how	 RottenPotatoes	 could	 let	 you	 log	 in	 with	 your	 Twitter	 ID
without	you	having	to	reveal	your	Twitter	password	to	RottenPotatoes.
	RottenPotatoes	 redirects	 you	 to	 a	 page	 hosted	 by	Twitter	where	 you	 log	 in	 as	 usual.	 The	 redirect

includes	a	URL	to	which	Twitter	posts	back	a	message	confirming	that	you’ve	authenticated	yourself
and	specifying	what	actions	RottenPotatoes	may	take	on	your	behalf	as	a	Twitter	user.

Self-Check	5.2.2.	True	or	false:	If	you	log	in	to	RottenPotatoes	using	your	Twitter	ID,	RottenPotatoes

http://vimeo.com/41300070
http://en.wikipedia.org/wiki/HTTP_cookie#Hidden_form_fields
http://api.rubyonrails.org/v3.2.19/classes/ActiveModel/MassAssignmentSecurity/ClassMethods.html#method-i-attr_protected
http://api.rubyonrails.org/v3.2.19/classes/ActiveModel/MassAssignmentSecurity/ClassMethods.html#method-i-attr_accessible
http://en.wikipedia.org/wiki/principle_of_least_privilege
http://en.wikipedia.org/wiki/OAuth
http://www.omniauth.org

becomes	capable	of	tweeting	using	your	Twitter	ID.
	 False:	 authentication	 is	 separate	 from	 permissions.	 Most	 third-party	 authentication	 providers,

including	Twitter,	allow	the	requesting	app	to	ask	for	permission	to	do	specific	things,	and	leave	it	up	to
the	user	to	decide	whether	to	allow	it.

5.3	Associations	and	Foreign	Keys

An	association	 is	 a	 logical	 relationship	 between	 two	 types	 of	 entities	 in	 a	 software	 architecture.	 For
example,	we	might	add	Review	and	Moviegoer	classes	 to	RottenPotatoes	 to	allow	individual	users	 to
write	reviews	of	their	favorite	movies;	we	could	do	this	by	establishing	a	one-to-many	association	from
reviews	 to	movies	 (each	 review	 is	 about	 exactly	 one	movie)	 and	 from	 reviews	 to	moviegoers	 (each
review	is	authored	by	exactly	one	moviegoer).	Figure	5.11	shows	these	associations	using	one	type	of
Unified	Modeling	Language	(UML)	diagram.	We	will	see	more	examples	of	UML	in	Chapter	11.

Figure	5.11:	Each	end	of	an	association	is	labeled	with	its	cardinality,	or	the	number	of	entities	participating	in	that	“side”	of	the
association,	with	an	asterisk	meaning	“zero	or	more”.	In	the	figure,	each	Review	belongs	to	a	single	Moviegoer	and	a	single	Movie,	and	a
Review	without	a	Moviegoer	or	without	a	Movie	is	not	allowed.	(A	cardinality	notation	of	“0..1”	rather	than	“1”	would	allow	“orphaned”
reviews.)

In	Rails	parlance,	Figure	5.11	shows	that:
	

A	Moviegoer	has	many	Reviews
A	Movie	has	many	Reviews
A	Review	belongs	to	one	Moviegoer	and	to	one	Movie

In	Rails,	 the	“permanent	home”	for	our	model	objects	 is	 the	database,	so	we	need	a	way	to	represent
associations	for	objects	stored	there.	Fortunately,	associations	are	so	common	that	relational	databases
provide	 a	 special	mechanism	 to	 support	 them:	 foreign	keys.	A	 foreign	 key	 is	 a	 column	 in	 one	 table
whose	 job	 is	 to	 reference	 the	 primary	 key	 of	 another	 table	 to	 establish	 an	 association	 between	 the
objects	represented	by	those	tables.	Recall	that	by	default,	Rails	migrations	create	tables	whose	primary
key	column	is	called	id.	Figure	5.12	shows	a	Moviegoers	 table	 to	keep	track	of	different	users	and	a
Reviews	table	with	foreign	key	columns	moviegoer_id	and	movie_id,	allowing	each	review	to	refer	to
the	primary	keys	(ids)	of	the	user	who	authored	it	and	the	movie	it’s	about.

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Foreign_key

Figure	5.12:	In	this	figure,	Alice	has	given	5	potatoes	to	Star	Wars	and	4	potatoes	to	Inception,	Bob	has	given	3	potatoes	to	Inception,
Carol	hasn’t	provided	any	reviews,	and	no	one	has	reviewed	It’s	Complicated.	For	brevity	and	clarity,	the	other	fields	of	the	movies	and
reviews	tables	are	not	shown.

For	example,	 to	 find	all	 reviews	 for	Star	Wars,	we	would	 first	 form	 the	Cartesian	product	 of	 all	 the
rows	 of	 the	 movies	 and	 reviews	 tables	 by	 concatenating	 each	 row	 of	 the	 movies	 table	 with	 each
possible	row	of	the	reviews	table.	This	would	give	us	a	new	table	with	9	rows	(since	there	are	3	movies
and	3	reviews)	and	7	columns	(3	from	the	movies	table	and	4	from	the	reviews	table).	From	this	large
table,	we	then	select	only	those	rows	for	which	the	id	from	the	movies	table	equals	the	movie_id	from
the	 reviews	 table,	 that	 is,	 only	 those	 movie-review	 pairs	 in	 which	 the	 review	 is	 about	 that	 movie.
Finally,	we	select	only	 those	rows	for	which	 the	movie	id	 (and	 therefore	 the	review’s	movie_id)	are
equal	to	41,	the	primary	key	ID	for	Star	Wars.	This	simple	example	(called	a	join	in	relational	database
parlance)	illustrates	how	complex	relationships	can	be	represented	and	manipulated	using	a	small	set	of
operations	(relational	algebra)	on	a	collection	of	tables	with	uniform	data	layout.	In	SQL,	the	Structured
Query	Language	 used	 by	 substantially	 all	 relational	 databases,	 the	 query	would	 look	 something	 like
this:

http://pastebin.com/qCTqmark

	1				SELECT	reviews.*

	2						FROM	movies	JOIN	reviews	ON	movies.id=reviews.movie_id

	3						WHERE	movies.id	=	41;

If	we	weren’t	working	with	a	database,	 though,	we’d	probably	come	up	with	a	design	 in	which	each
object	of	a	class	has	“direct	references”	to	its	associated	objects,	rather	than	constructing	the	query	plan
above.	 A	 Moviegoer	 object	 would	 maintain	 an	 array	 of	 references	 to	 Reviews	 authored	 by	 that
moviegoer;	a	Review	object	would	maintain	a	reference	to	the	Moviegoer	who	wrote	it;	and	so	on.	Such
a	design	would	allow	us	to	write	code	that	looks	like	Figure	5.13.

http://pastebin.com/W0xJTuc4

	1	#	it	would	be	nice	if	we	could	do	this:

	2	inception	=	Movie.find_by_title(’Inception’)

	3	alice,bob	=	Moviegoer.find(alice_id,	bob_id)

	4	#	alice	likes	Inception,	bob	hates	it

	5	alice_review	=	Review.new(:potatoes	=>	5)

	6	bob_review			=	Review.new(:potatoes	=>	2)

	7	#	a	movie	has	many	reviews:

	8	inception.reviews	=	[alice_review,	bob_review]

	9	inception.save!

http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/(relational_algebra)#Joins_and_join-like_operators
http://pastebin.com/qCTqmark
http://pastebin.com/W0xJTuc4

10	#	a	moviegoer	has	many	reviews:

11	alice.reviews	<<	alice_review

12	bob.reviews	<<	bob_review

13	#	can	we	find	out	who	wrote	each	review?

14	inception.reviews.map	{	|r|	r.moviegoer.name	}	#	=>	[’alice’,’bob’]

Figure	5.13:	A	straightforward	implementation	of	associations	would	allow	us	to	refer	directly	to	associated	objects,	even	though	they’re
stored	in	different	database	tables.

Rails’	 ActiveRecord::Associations	module	 supports	 exactly	 this	 design,	 as	 we’ll	 learn	 by	 doing.
Apply	the	code	changes	in	Figure	5.14	as	directed	in	the	caption,	and	you	should	then	be	able	to	start

rails	console	and	successfully	execute	the	examples	in	Figure	5.13.	 		

http://pastebin.com/5bwBMzzM

	1	#	Run	’rails	generate	migration	create_reviews’	and	then

	2	#			edit	db/migrate/*_create_reviews.rb	to	look	like	this:

	3	class	CreateReviews	<	ActiveRecord::Migration

	4			def	up

	5					create_table	’reviews’	do	|t|

	6							t.integer				’potatoes’

	7							t.text							’comments’

	8							t.references	’moviegoer’

	9							t.references	’movie’

10					end

11			end

12			def	down	;	drop_table	’reviews’	;	end

13	end

http://pastebin.com/0qJQgUwi

	1	class	Review	<	ActiveRecord::Base

	2			belongs_to	:movie

	3			belongs_to	:moviegoer

	4			attr_protected	:moviegoer_id	#	see	text

	5	end

http://pastebin.com/NG88vs0V

	1	#	place	a	copy	of	the	following	line	anywhere	inside	the	Movie	class

	2	#		AND	inside	the	Moviegoer	class	(idiomatically,	it	should	go	right

	3	#		after	’class	Movie’	or	’class	Moviegoer’):

	4			has_many	:reviews

Figure	5.14:	Top	(a):	Create	and	apply	this	migration	to	create	the	Reviews	table.	The	new	model’s	foreign	keys	are	related	to	the
existing	movies	and	moviegoers	tables	by	convention	over	configuration.	Middle	(b):	Put	this	new	Review	model	in

http://api.rubyonrails.org/v3.2.19/classes/ActiveRecord/Associations/ClassMethods.html
http://pastebin.com/5bwBMzzM
http://pastebin.com/0qJQgUwi
http://pastebin.com/NG88vs0V

app/models/review.rb.	Bottom	(c):	Make	this	one-line	change	to	each	of	the	existing	files	movie.rb	and	moviegoer.rb.

How	does	this	work?	Since	everything	in	Ruby	is	a	method	call,	we	know	that	Line	8	in	Figure	5.13	is
really	a	call	to	the	instance	method	reviews=	on	a	Movie	object.	This	instance	method	remembers	its
assigned	value	(an	array	of	Alice’s	and	Bob’s	reviews)	in	memory.	Recall,	though,	that	since	a	Review
is	on	the	“belongs	to”	side	of	the	association	(Review	belongs	to	a	Movie),	to	associate	a	review	with	a
movie	we	must	 set	 the	movie_id	 field	 for	 that	 review.	We	don’t	 actually	 have	 to	modify	 the	movies
table.	 So	 in	 this	 simple	 example,	 inception.save!	 isn’t	 actually	 updating	 the	 movie	 record	 for
Inception	 at	 all:	 it’s	 setting	 the	movie_id	 field	 of	 both	Alice’s	 and	Bob’s	 reviews	 to	 “link”	 them	 to
Inception.	 Of	 course,	 if	 we	 had	 actually	 modified	 any	 of	 Inception’s	 attributes,	 inception.save!
would	try	to	persist	them;	but	because	save!	is	transactional—that	is,	it’s	all-or-nothing—if	the	save!
fails	then	every	aspect	of	it	fails,	so	neither	the	changes	to	Inception	nor	its	associated	Reviews	would
be	saved.

m.reviews returns	an	Enumerable	of	all	owned	reviews

m.reviews=[r1,r2]

Replaces	the	set	of	owned	reviews	with	the	set	r1,r2,	adding	or
deleting	as	appropriate,	by	setting	the	movie_id	field	of	each	of
r1	and	r2	to	m.id	(m’s	primary	key)	in	the	database	immediately.

m.reviews<<r1

Adds	r1	to	the	set	of	m’s	reviews	by	setting	r1’s	movie_id	field
to	m.id.	The	change	is	written	to	the	database	immediately	(you

don’t	need	to	do	a	separate	save).

r	=

m.reviews.build(:potatoes=>5)

Makes	r	a	new,	unsaved	Review	object	whose	movie_id	is	preset
to	indicate	that	it	belongs	to	m.	Arguments	are	the	same	as	for

Review.new.
r	=

m.reviews.create(:potatoes=>5)

Like	build	but	saves	the	object	immediately	(analogous	to	the
difference	between	new	and	save).

Note:	if	the	parent	object	m	has	never	been	saved,	that	is,	m.new_record?	is	true,	then	the	child	objects
aren’t	saved	until	the	parent	is	saved.

m	=	r.movie Returns	the	Movie	instance	associated	with	this	review
r.movie	=	m Sets	m	as	the	movie	associated	with	review	r

Figure	5.15:	A	subset	of	the	association	methods	created	by	movie	has_many	:reviews	and	review	belongs_to	:movie,	assuming	m	is	an
existing	Movie	object	and	r1,r2	are	Review	objects.	Consult	the	ActiveRecord::Associations	documentation	for	a	full	list.	Method
names	of	association	methods	follow	convention	over	configuration	based	on	the	name	of	the	associated	model.

Figure	5.15	lists	some	of	the	most	useful	methods	added	to	a	movie	object	by	virtue	of	declaring	that	it
has_many	reviews.	Of	particular	interest	is	that	since	has_many	implies	a	collection	of	the	owned	object
(Reviews),	the	reviews	method	quacks	like	a	collection.	That	is,	you	can	use	all	the	collection	idioms
of	Figure	3.7	on	it—iterate	over	 its	elements	with	each,	use	functional	 idioms	like	sort,	search	and
map,	and	so	on,	as	in	lines	8,	11	and	14	of	Figure	5.13.

What	 about	 the	belongs_to	method	 calls	 in	review.rb?	As	 you	might	 guess,	belongs_to	 :movie
gives	Review	objects	a	movie	instance	method	that	looks	up	and	returns	the	movie	to	which	this	review
belongs.	Since	a	review	belongs	to	at	most	one	movie,	the	method	name	is	singular	rather	than	plural,
and	returns	a	single	object	rather	than	an	enumerable.

http://api.rubyonrails.org/v3.2.19/classes/ActiveRecord/Associations/ClassMethods.html

has_one	is	a	close	relative	of	has_many	that	singularizes	the	association	method	name	and	operates	on	a	single	owned	object	rather	than	a
collection.

Summary:
	

Associations	 are	 one-to-one,	 one-to-many,	 or	 many-to-many	 relationships	 among	 application
entities.
Relational	databases	(RDBMSs)	use	foreign	keys	to	represent	these	relationships.
ActiveRecord’s	 Associations	 module	 uses	 Ruby	 metaprogramming	 to	 create	 new	 methods	 to
“traverse”	 associations	 by	 constructing	 the	 appropriate	 database	 queries.	 You	must	 still	 add	 the
necessary	foreign	key	fields	yourself	with	a	migration.

ELABORATION:	Associations	in	ActiveRecord	vs.	Data	Mapper

The	concept	of	associations	is	architectural;	the	use	of	foreign	keys	to	represent	them	is	an	implementation	choice,	and	the	Active
Record	architectural	pattern,	which	Rails’	ActiveRecord	library	implements,	can	bridge	the	two	by	providing	methods	for	automatic
traversal	 when	 a	 relational	 database	 is	 used.	 But	 foreign-key-based	 associations	 can	 become	 so	 complex	 that	 the	 overhead	 of
managing	 them	 limits	 the	 scalability	 of	 relational	 databases,	 which	 are	 already	 the	 first	 bottleneck	 in	 the	 3-tier	 architecture	 of
Figure	2.7.	One	way	to	avoid	this	pitfall	is	to	use	the	Data	Mapper	architectural	pattern	(see	Figure	5.16),	in	which	a	Mapper	class
defines	how	each	model	and	its	associations	are	represented	in	the	storage	system	and	provides	its	own	code	to	traverse	them.	Since
DataMapper	doesn’t	rely	on	foreign	key	support	in	the	underlying	storage	system,	it	can	use	so-called	“NoSQL”	storage	systems,
such	 as	Cassandra,	MongoDB,	 and	CouchDB,	which	 omit	 all	 but	 the	 simplest	 foreign	 key	 support	 in	 order	 to	 achieve	 superior
horizontal	scalability	far	beyond	most	RDBMSs.	Indeed,	you	can	deploy	Ruby-based	SaaS	apps	on	Google	AppEngine	if	they	use	a
Google-provided	DataMapper	library	rather	than	ActiveRecord.

http://cassandra.apache.org
http://mongodb.org
http://couchdb.org
http://appspot.com

Figure	5.16:	In	the	Active	Record	design	pattern	(left),	used	by	Rails,	the	model	object	itself	knows	how	it’s	stored	in	the	persistence	tier,
and	how	its	relationship	to	other	types	of	models	is	represented	there.	In	the	Data	Mapper	pattern	(right),	used	by	Google	AppEngine,
PHP	and	Sinatra,	a	separate	class	isolates	model	objects	from	the	underlying	storage	layer.	Each	approach	has	pros	and	cons.	This	class
diagram	is	one	form	of	Unified	Modeling	Language	(UML)	diagram,	which	we’ll	learn	more	about	in	Chapter	11.

Self-Check	5.3.1.	In	Figure	5.14(a),	why	did	we	add	foreign	keys	(references)	only	 to	 the	reviews
table	and	not	to	the	moviegoers	or	movies	tables?
	Since	we	need	to	associate	many	reviews	with	a	single	movie	or	moviegoer,	the	foreign	keys	must	be

part	of	the	model	on	the	“owned”	side	of	the	association,	in	this	case	Reviews.

Self-Check	 5.3.2.	 In	 Figure	 5.15,	 are	 the	 association	 accessors	 and	 setters	 (such	 as	 m.reviews	 and
r.movie)	instance	methods	or	class	methods?
	Instance	methods,	since	a	collection	of	reviews	is	associated	with	a	particular	movie,	not	with	movies

in	general.

5.4	Through-Associations

Referring	back	to	Figure	5.11,	there	are	direct	associations	between	Moviegoers	and	Reviews	as	well	as
between	Movies	and	Reviews.	But	since	any	given	Review	is	associated	with	both	a	Moviegoer	and	a
Movie,	we	could	say	that	there’s	an	indirect	association	between	Moviegoers	and	Movies.	For	example,
we	might	 ask	 “What	 are	 all	 the	movies	Alice	 has	 reviewed?”	 or	 “Which	moviegoers	 have	 reviewed
Inception?”	Indeed,	line	14	in	Figure	5.13	essentially	answers	the	second	question.

http://pastebin.com/3UMDrq1N

	1	#	in	moviegoer.rb:

	2	class	Moviegoer

	3			has_many	:reviews

	4			has_many	:movies,	:through	=>	:reviews

	5			#	...other	moviegoer	model	code

	6	end

	7	alice	=	Moviegoer.find_by_name(’Alice’)

	8	alice_movies	=	alice.movies

	9	#	MAY	work,	but	a	bad	idea	-	see	caption:

10	alice.movies	<<	Movie.find_by_name(’Inception’)	#	Don’t	do	this!

Figure	5.17:	Using	through-associations	in	Rails.	As	before,	the	object	returned	by	alice.movies	in	line	8	quacks	like	a	collection.	Note,
however,	that	since	the	association	between	a	Movie	and	a	Moviegoer	occurs	through	a	Review	belonging	to	both,	the	syntax	in	lines	9
and	10	will	cause	a	Review	object	to	be	created	to	“link”	the	association,	and	by	default	all	its	attributes	will	be	nil.	This	is	almost
certainly	not	what	you	want,	and	if	you	have	validations	on	the	Review	object	(for	example,	the	number	of	potatoes	must	be	an	integer),
the	newly-created	Review	object	will	fail	validation	and	cause	the	entire	operation	to	abort.

This	kind	of	indirect	association	is	so	common	that	Rails	and	other	frameworks	provide	an	abstraction
to	simplify	its	use.	It’s	sometimes	called	a	through-association,	since	Moviegoers	are	related	to	Movies
through	 their	 reviews	 and	 vice	 versa.	 Figure	 5.17	 shows	 how	 to	 use	 the	 :through	 option	 to	 Rails’
has_many	 to	 represent	 this	 indirect	 association.	 You	 can	 similarly	 add	 has_many	 :moviegoers,

:through=>:reviews	to	the	Movie	model,	and	write	movie.moviegoers	to	ask	which	moviegoers	are
associated	with	(wrote	reviews	for)	a	given	movie.

How	is	a	through-association	“traversed”	in	the	database?	Referring	again	to	Figure	5.12,	finding	all	the
movies	 reviewed	 by	 Alice	 first	 requires	 forming	 the	 Cartesian	 product	 of	 the	 three	 tables	 (movies,
reviews,	 moviegoers),	 resulting	 in	 a	 table	 that	 conceptually	 has	 27	 rows	 and	 9	 columns	 in	 our
example.	 From	 this	 table	we	 then	 select	 those	 rows	 for	which	 the	movie’s	 ID	matches	 the	 review’s
movie_id	and	 the	moviegoer’s	ID	matches	 the	review’s	moviegoer_id.	Extending	the	explanation	of
Section	5.3,	the	SQL	query	might	look	like	this:

http://pastebin.com/uupUEC58

	1				SELECT	movies.*

	2						FROM	movies	JOIN	reviews	ON	movies.id	=	reviews.movie_id

http://pastebin.com/3UMDrq1N
http://pastebin.com/uupUEC58

	3						JOIN	moviegoers	ON	moviegoers.id	=	reviews.moviegoer_id

	4						WHERE	moviegoers.id	=	1;

	 	 	For	efficiency,	 the	 intermediate	Cartesian	product	 table	 is	usually	not	materialized,	 that	 is,	not
explicitly	constructed	by	the	database.	Indeed,	Rails	3	has	a	sophisticated	relational	algebra	engine	that
constructs	and	performs	optimized	SQL	join	queries	for	traversing	associations.

The	point	of	these	two	sections,	though,	is	not	just	to	explain	how	to	use	associations,	but	to	help	you
appreciate	 the	 elegant	 use	 of	 duck	 typing	 and	 metaprogramming	 that	 makes	 them	 possible.	 In
Figure	 5.14(c)	 you	 added	 has_many	 :reviews	 to	 the	 Movie	 class.	 The	 has_many	method	 performs
some	metaprogramming	to	define	the	new	instance	method	reviews=	that	we	used	in	Figure	5.13.	As
you’ve	no	doubt	guessed,	convention	over	configuration	determines	the	name	of	the	new	method,	 the
table	it	will	use	in	the	database,	and	so	on.	Just	like	attr_accessor,	has_many	is	not	a	declaration,	but
an	 actual	 method	 call	 that	 does	 all	 of	 this	 work	 at	 runtime,	 adding	 a	 slew	 of	 new	 model	 instance

methods	to	help	manage	the	association.	 		

http://pastebin.com/BmTg4Fs2

	1	class	Review	<	ActiveRecord::Base

	2			#	review	is	valid	only	if	it’s	associated	with	a	movie:

	3			validates	:movie_id,	:presence	=>	true

	4			#	can	ALSO	require	that	the	referenced	movie	itself	be	valid

	5			#		in	order	for	the	review	to	be	valid:

	6			validates_associated	:movie

	7	end

Figure	5.18:	This	example	validation	on	an	association	ensures	that	a	review	is	only	saved	if	it	has	been	associated	with	some	movie.

Associations	 are	 one	 of	 the	 most	 feature-rich	 aspects	 of	 Rails,	 so	 take	 a	 good	 look	 at	 the	 full
documentation	for	them.	In	particular:
	

Just	like	ActiveRecord	lifecycle	hooks,	associations	provide	additional	hooks	that	can	be	triggered
when	objects	are	added	to	or	removed	from	an	association	(such	as	when	new	Reviews	are	added
for	a	Movie),	which	are	distinct	from	the	lifecycle	hooks	of	Movies	or	Reviews	themselves.
Validations	can	be	declared	on	associated	models,	as	Figure	5.18	shows.
Because	 calling	 save	 or	 save!	 on	 an	 object	 that	 uses	 associations	 also	 affects	 the	 associated
objects,	various	caveats	apply	to	what	happens	if	any	of	the	saves	fails.	For	example,	if	you	have
just	created	a	new	Movie	and	two	new	Reviews	to	link	to	it,	and	you	now	try	to	save	the	Movie,
any	of	the	three	saves	could	fail	if	the	objects	aren’t	valid	(among	other	reasons).
Additional	 options	 to	 association	 methods	 control	 what	 happens	 to	 “owned”	 objects	 when	 an
“owning”	 object	 is	 destroyed.	 For	 example,	 has_many	 :reviews,:dependent=>:destroy

specifies	that	the	reviews	belonging	to	a	movie	should	be	deleted	from	the	database	if	the	movie	is
destroyed.

http://pastebin.com/BmTg4Fs2
http://api.rubyonrails.org/v3.2.19/classes/ActiveRecord/Associations/ClassMethods.html

Through-associations	summary:
	

When	two	models	A	and	B	each	have	a	has-one	or	has-many	relationship	to	a	common	third	model
C,	a	many-to-many	association	between	A	and	B	can	be	established	through	C.
The	:through	option	 to	has_many	allows	you	 to	manipulate	either	side	of	a	 through-association
just	as	 if	 it	were	a	direct	association.	However,	 if	you	modify	a	 through-association	directly,	 the
intermediate	model	object	must	be	automatically	created,	which	is	probably	not	what	you	intended.

ELABORATION:	Has	and	belongs	to	many
Given	 that	has_many	:through	 creates	“many-to-many”	associations	between	 the	 two	outer	entities	 (Movies	and	Reviews	 in	our
running	 example),	 could	 we	 create	 such	 many-to-many	 relationships	 directly,	 without	 going	 through	 an	 “intermediate”	 table?
ActiveRecord	provides	 another	 association	we	don’t	discuss	here,	has_and_belongs_to_many	 (HABTM),	 for	pure	many-to-many
associations	 in	which	you	don’t	need	 to	maintain	any	other	 information	about	 the	 relationship	besides	 the	 fact	 that	 it	 exists.	For
example,	on	Facebook,	 a	given	user	might	 “like”	many	wall	posts,	 and	a	given	wall	post	might	be	 “liked	by”	many	users;	 thus
“like”	is	a	many-to-many	relationship	between	users	and	wall	posts.	However,	even	in	that	simple	example,	to	keep	track	of	when
someone	liked	or	unliked	a	wall	post,	the	concept	of	a	“like”	would	then	need	its	own	model	to	track	these	extra	attributes.	In	most
cases,	therefore,	has_many	:through	is	more	appropriate	because	it	allows	the	relationship	itself	(in	our	example,	the	movie	review)
to	be	 represented	as	 a	 separate	model.	 In	Rails,	HABTM	associations	are	 represented	by	a	 join	table	 that	 by	 convention	 has	 no
primary	key	and	is	created	with	a	special	migration	syntax.

Self-Check	 5.4.1.	Describe	 in	 English	 the	 steps	 required	 to	 determine	 all	 the	moviegoers	who	 have
reviewed	a	movie	with	some	given	id	(primary	key).
	Find	all	the	reviews	whose	movie_id	field	contains	the	id	of	the	movie	of	interest.	For	each	review,

find	the	moviegoer	whose	id	matches	the	review’s	moviegoer_id	field.

5.5	RESTful	Routes	for	Associations

How	should	we	RESTfully	refer	to	actions	associated	with	movie	reviews?	In	particular,	at	least	when
creating	or	updating	a	 review,	we	need	a	way	 to	 link	 it	 to	a	moviegoer	and	a	movie.	Presumably	 the
moviegoer	will	be	the	@current_user	we	set	up	in	Section	5.2.	But	what	about	the	movie?

Let’s	think	about	this	problem	from	the	BDD	point	of	view.	Since	it	only	makes	sense	to	create	a	review
when	you	have	a	movie	in	mind,	most	likely	the	“Create	Review”	functionality	will	be	accessible	from
a	button	or	link	on	the	Show	Movie	Details	page	for	a	particular	movie.	Therefore,	at	the	moment	we
display	 this	 control,	we	know	what	movie	 the	 review	 is	going	 to	be	associated	with.	The	question	 is
how	to	get	this	information	to	the	new	or	create	method	in	the	ReviewsController.

One	 method	 we	 might	 use	 is	 that	 when	 the	 user	 visits	 a	 movie’s	 Detail	 page,	 we	 could	 use	 the
session[],	which	persists	across	 requests,	 to	 remember	 the	 ID	of	 the	movie	whose	details	have	 just
been	rendered	as	the	“current	movie.”	When	ReviewsController#new	is	called,	we’d	retrieve	that	ID
from	the	session[]	and	associate	it	with	the	review	by	populating	a	hidden	form	field	in	the	review,
which	in	turn	will	be	available	to	ReviewsController#create.	However,	this	approach	isn’t	RESTful,
since	the	movie	ID—a	critical	piece	of	information	for	creating	a	review—is	“hidden”	in	the	session.

A	 more	 RESTful	 alternative,	 which	 makes	 the	 movie	 ID	 explicit,	 is	 to	 make	 the	 RESTful	 routes
themselves	reflect	the	logical	“nesting”	of	Reviews	inside	Movies:

http://en.wikipedia.org/wiki/join_table

http://pastebin.com/r0SdhkJa

	1				#	in	routes.rb,	change	the	line	’resources	:movies’	to:

	2				resources	:movies	do

	3						resources	:reviews

	4				end

			Since	Movie	is	the	“owning”	side	of	the	association,	it’s	the	outer	resource.	Just	as	the	original
resources	:movies	provided	a	set	of	RESTful	URI	helpers	for	CRUD	actions	on	movies,	this	nested
resource	route	specification	provides	a	set	of	RESTful	URI	helpers	for	CRUD	actions	on	reviews	 that
are	owned	by	a	movie.	Make	 the	above	changes	 to	routes.rb	 and	 try	rake	routes,	 comparing	 the
output	to	the	simple	routes	introduced	in	Chapter	4.	Figure	5.19	summarizes	the	new	routes,	which	are
provided	in	addition	to	the	basic	RESTful	routes	on	Movies	that	we’ve	been	using	all	along.	Note	that
via	convention	over	configuration,	the	URI	wildcard	:id	will	match	the	ID	of	the	resource	itself—that
is,	the	ID	of	a	review—and	Rails	chooses	the	“outer”	resource	name	to	make	:movie_id	capture	the	ID
of	 the	 “owning””	 resource.	 The	 ID	 values	 will	 therefore	 be	 available	 in	 controller	 actions	 as
params[:id]	 (the	 review)	 and	 params[:movie_id]	 (the	 movie	 with	 which	 the	 review	 will	 be

associated).	 		

Helper	method RESTful	Route	and	action
movie_reviews_path(m) GET	/movies/:movie_id/reviews index
movie_review_path(m) POST	/movies/:movie_id/reviews create

new_movie_review_path(m) GET	/movies/:movie_id/reviews/new new
edit_movie_review_path(m,r) GET	/movies/:movie_id/reviews/:id/edit edit

movie_review_path(m,r) GET	/movies/:movie_id/reviews/:id show
movie_review_path(m,r) PUT	/movies/:movie_id/reviews/:id update
movie_review_path(m,r) DELETE	/movies/:movie_id/reviews/:id destroy

Figure	5.19:	Specifying	nested	routes	in	routes.rb	also	provides	nested	URI	helpers,	analogous	to	the	simpler	ones	provided	for	regular
resources.	Compare	this	table	with	Figure	4.7	in	Chapter	4.

””

http://pastebin.com/J5UR6ftj

	1	class	ReviewsController	<	ApplicationController

	2			before_filter	:has_moviegoer_and_movie,	:only	=>	[:new,	:create]

	3			protected

	4			def	has_moviegoer_and_movie

	5					unless	@current_user

	6							flash[:warning]	=	’You	must	be	logged	in	to	create	a	review.’

	7							redirect_to	’/auth/twitter’

	8					end

	9					unless	(@movie	=	Movie.find_by_id(params[:movie_id]))

http://pastebin.com/r0SdhkJa
http://pastebin.com/J5UR6ftj

10							flash[:warning]	=	’Review	must	be	for	an	existing	movie.’

11							redirect_to	movies_path

12					end

13			end

14			public

15			def	new

16					@review	=	@movie.reviews.build

17			end

18			def	create

19					#	since	moviegoer_id	is	a	protected	attribute	that	won’t	get

20					#	assigned	by	the	mass-assignment	from	params[:review],	we	set	it

21					#	by	using	the	<<	method	on	the	association.		We	could	also

22					#	set	it	manually	with	review.moviegoer	=	@current_user.

23					@current_user.reviews	<<	@movie.reviews.build(params[:review])

24					redirect_to	movie_path(@movie)

25			end

26	end

http://pastebin.com/5VuxXT4z

	1	%h1	New	Review	for	#{@movie.title}

	2	

	3	=	form_tag	movie_reviews_path(@movie)	do

	4			%label	How	many	potatoes:

	5			=	select_tag	’review[potatoes]’,	options_for_select(1..5)

	6			=	submit_tag	’Create	Review’

	7	

Figure	5.20:	Top	(a):	a	controller	that	manipulates	Reviews	that	are	“owned	by”	both	a	Movie	and	a	Moviegoer,	using	before-filters	to
ensure	the	“owning”	resources	are	properly	identified	in	the	route	URI.	Bottom	(b):	A	possible	Haml	view	template	for	creating	a	new
review,	that	is,	app/views/reviews/new.html.haml.

Figure	5.20	 shows	 a	 simplified	 example	 of	 using	 such	 nested	 routes	 to	 create	 the	 views	 and	 actions
associated	with	a	new	review.	Of	particular	note	is	the	use	of	a	before-filter	in	ReviewsController	to
ensure	 that	 before	 a	 review	 is	 created,	@current_user	 is	 set	 (that	 is,	 someone	 is	 logged	 in	 and	will
“own”	 the	 new	 review)	 and	 that	 the	 movie	 captured	 from	 the	 route	 (Figure	 5.19)	 as
params[:movie_id]	exists	 in	 the	database.	 If	either	condition	 is	not	met,	 the	user	 is	 redirected	 to	an
appropriate	 page	 with	 an	 error	 message	 explaining	 what	 happened.	 If	 both	 conditions	 are	 met,	 the
controller	instance	variables	@current_user	and	@movie	become	accessible	to	the	controller	action	and
view.

The	 view	 uses	 the	 @movie	 variable	 to	 create	 a	 submission	 path	 for	 the	 form	 using	 the
movie_review_path	helper	(Figure	5.19	again).	When	that	form	is	submitted,	once	again	movie_id	is
parsed	from	the	route	and	checked	by	the	before-filter	prior	to	calling	the	create	action.	Finally,	since
in	Figure	5.14(b)	we	declared	moviegoer_id	as	a	protected	attribute,	it	cannot	be	assigned	to	the	new
review	via	 the	mass	 assignment	 from	params	 (line	23	 in	 the	create	 action),	 so	 instead	we	 set	 it	 by
building	the	review	from	its	other	“owner”	@current_user.

We	could	link	to	the	page	for	creating	a	new	review	using	something	like	the	following	on	a	movie’s
Details	page:

http://pastebin.com/5VuxXT4z

http://pastebin.com/rpJ02W6A

	1				=	link_to	’Add	Review’,	new_movie_review_path(@movie)

Summary:	controller	and	view	support	for	associations
The	RESTful	way	to	create	routes	for	associations	is	to	capture	the	IDs	of	both	the	resource	itself
and	its	associated	item(s)	in	a	“nested”	route	URI.
When	manipulating	“owned”	resources	that	have	a	parent,	such	as	Reviews	that	are	“owned	by”	a
Movie,	 before-filters	 can	 be	 used	 to	 capture	 and	 verify	 the	 validity	 of	 the	 IDs	 embedded	 in	 the
RESTful	nested	route.

ELABORATION:	SOA,	RESTful	association	routes,	and	the	session

RESTful	SOA	design	guidelines	suggest	that	every	request	be	self-contained,	so	that	there	is	no	concept	of	a	session	(nor	any	need
for	one).	 In	our	example,	we	used	nested	RESTful	 resource	 routes	 to	keep	 the	movie	and	 review	IDs	 together	and	 relied	on	our
authentication	framework	to	set	up	@current_user	as	the	moviegoer	who	owns	the	review.	For	a	pure	SOA	API,	we	would	need	to
capture	the	moviegoer	ID	and	 review	ID	along	with	 the	movie	ID.	Rails’	 routing	subsystem	is	 flexible	enough	 to	allow	defining
routes	with	multiple	wildcard	components	for	this	purpose.	In	general,	this	design	problem	arises	whenever	you	need	to	create	an
object	with	multiple	“owners”	such	as	a	Review.	If	not	all	the	owning	objects	are	required	in	order	for	the	owned	object	to	be	valid
—for	example,	if	it	was	possible	for	a	Review	to	be	“anonymous”—another	solution	would	be	to	separate	creation	of	the	review	and
assigning	it	to	a	moviegoer	into	different	RESTful	actions.

Self-Check	5.5.1.	Why	must	we	provide	values	for	a	review’s	movie_id	and	moviegoer_id	to	the	new
and	create	actions	in	ReviewsController,	but	not	to	the	edit	and	update	actions?
	Once	 the	 review	 is	created,	 the	 stored	values	of	 its	movie_id	and	moviegoer_id	 fields	 tell	 us	 the

associated	movie	and	moviegoer.

5.6	Composing	Queries	With	Reusable	Scopes

We’ve	 said	 repeatedly	 that	 to	keep	 concerns	 separate	 in	Model–View–Controller,	 the	 implementation
details	of	the	app’s	models	shouldn’t	be	exposed	to	controllers,	as	Figure	5.21	(top)	shows.	An	easy	fix
would	be	to	create	class	methods	Movie.with_good_reviews	(perhaps	taking	one	argument	to	specify
the	threshold	average	for	“good”	reviews)	and	Movie.for_kids,	but	what	if	you	want	to	allow	the	user
to	filter	by	both	attributes—movies	for	kids	with	good	reviews?

http://pastebin.com/JyHTtgT5

	1	#	BAD:	details	of	computing	review	goodness	is	exposed	to	controller

	2	class	MoviesController	<	ApplicationController

	3			def	movies_with_good_reviews

	4					@movies	=	Movie.joins(:reviews).group(:movie_id).

	5							having(’AVG(reviews.potatoes)	>	3’)

	6			end

	7			def	movies_for_kids

	8					@movies	=	Movie.where(’rating	in	?’,	%w(G	PG))

	9			end

10	end

http://pastebin.com/rpJ02W6A
http://pastebin.com/JyHTtgT5

Figure	5.21:	Determining	what	makes	a	movie	“good”	or	whether	a	movie	is	appropriate	for	kids	should	really	be	the	Movie	model’s	job,
yet	in	this	bad	example,	those	details	have	been	hardwired	into	two	different	controller	methods.	(We	used	ActiveRecord’s	group	method
to	group	the	reviews	by	movie	ID,	and	then	applied	SQL’s	AVERAGE	aggregator	to	retain	only	those	movie	IDs	whose	reviews	average
more	than	3	potatoes.)

http://pastebin.com/JCwE7cNx

	1	#	BETTER:	move	filter	logic	into	Movie	class	using	composable	scopes

	2	class	Movie	<	ActiveRecord::Base

	3			scope	:with_good_reviews,	lambda	{	|threshold|

	4					Movie.joins(:reviews).group(:movie_id).

	5							having([’AVG(reviews.potatoes)	>	?’,	threshold.to_i])

	6			}

	7			scope	:for_kids,	lambda	{

	8					Movie.where(’rating	in	(?)’,	%w(G	PG))

	9			}

10	end

11	#	in	the	controller,	a	single	method	can	now	dispatch:

12	class	MoviesController	<	ApplicationController

13			def	movies_with_filters

14					@movies	=	Movie.with_good_reviews(params[:threshold])

15					@movies	=	@movies.for_kids										if	params[:for_kids]

16					@movies	=	@movies.with_many_fans				if	params[:with_many_fans]

17					@movies	=	@movies.recently_reviewed	if	params[:recently_reviewed]

18			end

19			#	or	even	DRYer:

20			def	movies_with_filters_2

21					@movies	=	Movie.with_good_reviews(params[:threshold])

22					%w(for_kids	with_many_fans	recently_reviewed).each	do	|filter|

23							@movies	=	@movies.send(filter)	if	params[filter]

24					end

25			end

26	end

27	#	in	the	view:

28	-	@movies.each	do	|movie|

29			-#	...code	to	display	the	movie	here...

Figure	5.22:	We	encapsulate	the	various	filtering	criteria	using	scopes,	which	can	optionally	take	one	or	more	arguments.	Scopes	can	be
composed	flexibly	at	runtime	(lines	14–17),	for	example,	in	response	to	the	presence	of	checkboxes	named	for_kids,	with_many_fans,
and	so	on.	The	alternative	implementation	movies_with_filters_2	accomplishes	the	same	thing	with	less	code	using	metaprogramming
and	extends	readily	to	more	scopes.

Composable	 scopes	 are	 a	 powerful	 feature	 of	 ActiveRelation	 (the	 “relational	 algebra”	 behind
ActiveRecord)	that	help	you	do	this.	As	Figure	5.22	shows,	a	named	scope	is	a	lambda	expression	that
gets	 evaluated	 at	 runtime.	 But	 scopes	 have	 two	 neat	 features	 that	 make	 them	 superior	 to	 defining
explicit	 methods	 like	 Movie.with_good_reviews.	 First,	 they	 are	 composable:	 as	 lines	 15–17	 of
Figure	5.22	show,	the	return	value	from	calling	a	scope	is	 itself	an	ActiveRelation	object,	 to	which
additional	scopes	can	be	applied.	This	allows	chunks	of	model	logic	such	as	these	filters	to	be	cleanly

reused	in	different	places.	 		

http://pastebin.com/JCwE7cNx

Second,	 scopes	 are	 evaluated	 lazily:	 the	 chaining	 of	 scopes	 builds	 up	 a	 relation	 that	 can	 create	 and
execute	the	corresponding	SQL	query,	but	the	execution	doesn’t	actually	occur	until	the	first	matching
result	 is	 requested.	 In	 our	 example,	 that	 happens	 in	 the	 view,	 in	 the	 each	 loop	 in	 lines	 28–29	 of
Figure	 5.22.	 Lazy	 evaluation	 is	 a	 powerful	 technique	 from	 functional	 programming	 that	 we’ll	 meet
again	in	Chapter	12.

Summary	of	scopes:

Scopes	 let	 you	 declaratively	 specify	model	 logic	 in	 a	 composable	way,	 enabling	 clean	 reuse	 of
various	 chunks	 of	model	 logic.	 Because	 scopes	 are	 lazily	 evaluated—no	 database	 query	 occurs
until	the	first	matching	result	is	requested—they	can	be	composed	in	any	order	without	incurring
performance	penalties.

Self-Check	5.6.1.

Write	 a	 scope	 expression	 for	movies	 reviewed	within	 the	 last	 n	 days,	where	 n	 is	 a	 parameter	 to	 the
scope.

	http://pastebin.com/EG3hcHXi

	1				class	Movie	<	ActiveRecord::Base

	2						scope	:recently_reviewed,	lambda	{	|n|

	3								Movie.joins(:reviews).where([’reviews.created_at	>=	?’,	n.days.ago]).uniq

	4						}

	5				end

Self-Check	5.6.2.

Why	must	scope	logic	be	part	of	a	block	or	lambda-expression?	For	example,	why	didn’t	the	designers
of	Rails	use	this	syntax	instead:

http://pastebin.com/ErKmDCYL

	1				class	Movie	<	ActiveRecord::Base

	2						scope	:for_kids,	Movie.where(’rating	in	?’,	%w(G	PG))

	3				end

	With	this	syntax,	 the	where	clause	would	be	evaluated	immediately	(when	this	code	file	 is	 loaded)
rather	 than	 before	 each	 query.	 In	 other	words,	 only	 those	movies	 in	 existence	at	 the	 time	 the	 file	 is
loaded	(that	is,	when	the	application	starts	up)	would	be	included	in	the	query.

5.7	Fallacies	and	Pitfalls

http://en.wikipedia.org/wiki/lazy_evalution
http://pastebin.com/EG3hcHXi
http://pastebin.com/ErKmDCYL

	 	 	Pitfall:	Too	many	filters	or	model	 lifecycle	callbacks,	or	overly	complex	logic	 in	filters	or
callbacks.

Filters	and	callbacks	provide	convenient	and	well-defined	places	to	DRY	out	duplicated	code,	but	too
many	 of	 them	 can	 make	 it	 difficult	 to	 follow	 the	 app’s	 logic	 flow.	 For	 example,	 when	 there	 are
numerous	before-filters,	after-filters	and	around-filters	that	trigger	on	different	sets	of	controller	actions,
it	can	be	hard	to	figure	out	why	a	controller	action	fails	to	execute	as	expected	or	which	filter	“stopped
the	show.”	Things	can	be	even	worse	if	some	of	the	filters	are	declared	not	in	the	controller	itself	but	in
a	controller	from	which	it	 inherits,	such	as	ApplicationController.	Filters	and	callbacks	should	be
used	when	you	truly	want	to	centralize	code	that	would	otherwise	be	duplicated.

			Pitfall:	Not	checking	for	errors	when	saving	associations.

Saving	 an	 object	 that	 has	 associations	 implies	 potentially	modifying	multiple	 tables.	 If	 any	 of	 those
modifications	fails,	perhaps	because	of	validations	either	on	the	object	or	on	its	associated	objects,	other
parts	of	the	save	might	silently	fail.	Be	sure	to	check	the	return	value	of	save,	or	else	use	save!	and
rescue	any	exceptions.

			Pitfall:	Nesting	resources	more	than	1	level	deep.

Although	it’s	technically	possible	to	have	nested	resources	multiple	levels	deep,	the	routes	and	actions
quickly	 become	 cumbersome,	which	may	be	 a	 sign	 that	 your	 design	 isn’t	 properly	 factored.	 Perhaps
there	 is	 an	 additional	 entity	 relationship	 that	 needs	 to	 be	 modeled,	 using	 a	 shortcut	 such	 as
has_many	:through	to	represent	the	final	association.

5.8	Concluding	Remarks:	Languages,	Productivity,	and	Beauty

			This	chapter	showed	two	examples	of	using	language	features	to	support	the	productive	creation	of
beautiful	 and	 concise	 code.	 The	 first	 is	 the	 use	 of	 metaprogramming,	 closures	 and	 higher-order
functions	to	allow	model	validations	and	controller	filters	to	be	DRYly	declared	in	a	single	place,	yet
called	 from	 multiple	 points	 in	 the	 code.	 Validations	 and	 filters	 are	 an	 example	 of	 aspect-oriented
programming	 (AOP),	 a	methodology	 that	 has	 been	 criticized	 because	 it	 obfuscates	 control	 flow	 but
whose	well-circumscribed	use	can	enhance	DRYness.

AOP	has	been	compared	with	the	fictitious	COME	FROM	programming	language	construct,	which	began	as	a	humorous	response	to
Edsger	Dijkstra’s	letter	Go	To	Statement	Considered	Harmful	(Dijkstra	1968)	promoting	structured	programming.

The	second	example	is	the	design	choices	reflected	in	the	association	helper	methods.	For	example,	you
may	have	noticed	that	while	the	foreign	key	field	for	a	Movie	object	associated	with	a	review	is	called
movie_id,	 the	association	helper	methods	allow	us	 to	 reference	review.movie,	 allowing	our	code	 to
focus	 on	 the	 architectural	 association	 between	Movies	 and	 Reviews	 rather	 than	 the	 implementation
detail	of	the	foreign	key	names.	You	could	certainly	manipulate	the	movie_id	or	review_id	 fields	 in
the	database	directly,	as	Web	applications	based	on	less-powerful	frameworks	are	often	forced	to	do,	or
do	so	in	your	Rails	app,	as	in	review.movie_id=some_movie.id.	But	besides	being	harder	to	read,	this

http://en.wikipedia.org/wiki/aspect-oriented_programming
http://en.wikipedia.org/wiki/COME_FROM
http://en.wikipedia.org/wiki/Go_To_Statement_Considered_Harmful

code	hardwires	the	assumption	that	the	foreign	key	field	is	named	movie_id,	which	may	not	be	true	if
your	models	are	using	advanced	Rails	features	such	as	polymorphic	associations,	or	if	ActiveRecord	has
been	configured	 to	 interoperate	with	a	 legacy	database	 that	 follows	a	different	naming	convention.	 In
such	cases,	review.movie	and	review.movie=	will	still	work,	but	referring	to	review.movie_id	will
fail.	 Since	 someday	 your	 code	 will	 be	 legacy	 code,	 help	 your	 successors	 be	 productive—keep	 the

logical	structure	of	your	entities	as	separate	as	possible	from	the	database	representation.	 		

We	 might	 similarly	 ask,	 now	 that	 we	 know	 how	 associations	 are	 stored	 in	 the	 RDBMS,	 why
movie.save	actually	also	causes	a	change	to	the	reviews	 table	when	we	save	a	movie	after	adding	a
review	 to	 it.	 In	 fact,	 calling	save	 on	 the	 new	 review	object	would	 also	work,	 but	 having	 said	 that	 a
Movie	has	many	Reviews,	it	just	makes	more	sense	to	think	of	saving	the	Movie	when	we	update	which
Reviews	it	has.	In	other	words,	it’s	designed	this	way	in	order	to	make	sense	to	programmers	and	make
the	code	more	beautiful.

All	in	all,	validations,	filters,	and	association	helper	methods	are	worth	studying	as	successful	examples
of	tastefully	exploiting	programming	language	features	to	enhance	code	beauty	and	productivity.

5.9	To	Learn	More
	

The	ActiveRelation	part	of	Rails,	which	manipulates	ActiveRecord	associations	and	generates	SQL
queries,	was	completely	redesigned	for	Rails	3	and	 is	amazingly	powerful.	This	guide	has	many
examples	beyond	those	introduced	in	 this	chapter	 that	will	help	you	use	 the	database	effectively,
which	as	we’ll	see	in	Chapter	12	is	critical	to	successful	operations.
The	 Guides	 section	 of	 the	 Rails	 website	 includes	 useful	 guides	 on	 a	 variety	 of	 Rails	 topics
including	debugging,	managing	the	configuration	of	your	app,	and	more.
A	concise	review	of	associations	basics	is	in	the	Guides	section	of	the	Rails	website.
The	Rails	3	Way	(Fernandez	2010)	is	an	encyclopedic	reference	to	all	aspects	of	Rails	3,	including
the	extremely	powerful	mechanisms	that	support	associations.

	 E.	Dijkstra.	Go	to	statement	considered	harmful.	Communications	of	the	ACM,	11(3):147–148,	March
1968.	URL	https://dl.acm.org/purchase.cfm?id=	362947&CFID=100260848&CFTOKEN=27241581.

	 O.	Fernandez.	Rails	3	Way,	The	(2nd	Edition)	(Addison-Wesley	Professional	Ruby	Series).	Addison-Wesley	Professional,	2010.	ISBN	0321601661.

5.10	Suggested	Projects

Filters	and	authentication:

Project	5.1.	Extend	the	example	in	Section	5.2	to	allow	authentication	via	Facebook	Connect.

Project	5.2.	Extend	your	solution	to	Exercise	5.1	to	allow	an	authenticated	user	to	“link”	two	accounts.
That	 is,	 if	Alice	 has	 previously	 logged	 in	with	Twitter	 and	 subsequently	 logs	 in	with	 Facebook,	 she
should	 be	 able	 to	 “link”	 the	 two	 accounts	 so	 that	 in	 the	 future,	 logging	 in	 with	 either	 one	 will
authenticate	her	as	the	same	principal.	Hint:	Consider	creating	an	additional	model	Identity	that	has	a
many-to-one	relationship	to	Moviegoer.

http://guides.rubyonrails.org/v3.2.19/active_record_querying.html
http://guides.rubyonrails.org/v3.2.19/
http://guides.rubyonrails.org/v3.2.19/association_basics.html
https://dl.acm.org/purchase.cfm?id=362947&CFID=100260848&CFTOKEN=27241581

Project	5.3.	In	 the	README	for	 the	OmniAuth	plugin,	 the	author	gives	 the	following	example	code
showing	how	to	integrate	OmniAuth	into	a	Rails	app:

http://pastebin.com/3shQFuZm

	1				class	SessionsController	<	ApplicationController

	2						def	create

	3								@user	=	User.find_or_create_from_auth_hash(auth_hash)

	4								self.current_user	=	@user

	5								redirect_to	’/’

	6						end

	7						protected

	8						def	auth_hash

	9								request.env[’omniauth.auth’]

10						end

11				end

The	auth_hash	method	(lines	8–10)	has	the	trivial	task	of	returning	whatever	OmniAuth	returned	as	the
result	of	trying	to	authenticate	a	user.	Why	do	you	think	the	author	placed	this	functionality	in	its	own
method	rather	than	just	referencing	request.env[’omniauth.auth’]	directly	in	line	3?

Associations	and	RESTful	application	architecture:

Project	5.4.	Extend	the	controller	code	in	Figure	5.20	with	edit	and	update	methods	for	reviews.	Use
a	controller	filter	to	ensure	that	a	user	can	only	edit	or	update	her	own	reviews.

http://pastebin.com/3shQFuZm

6.	SaaS	Client	Framework:	Introduction	to	JavaScript

			Alan	Perlis	(1922–1990)	was	the	first	recipient	of	the	Turing	Award	(1966),
conferred	for	his	influence	on	advanced	programming	languages	and	compilers.	In	1958	he	helped
design	ALGOL,	which	has	influenced	virtually	every	imperative	programming	language	including	C
and	Java.	To	avoid	FORTRAN’s	syntactic	and	semantic	problems,	ALGOL	was	the	first	language

described	in	terms	of	a	formal	grammar,	the	eponymous	Backus-Naur	form	(named	for	Turing	award
winner	Jim	Backus	and	his	colleague	Peter	Naur).

A	language	that	doesn’t	affect	the	way	you	think	about	programming	is	not	worth	knowing.
—Alan	Perlis

http://en.wikipedia.org/wiki/Backus-Naur_Form

6.1	JavaScript:	The	Big	Picture
6.2	Client-Side	JavaScript	for	Ruby	Programmers
6.3	Functions	and	Constructors
6.4	The	Document	Object	Model	and	jQuery
6.5	Events	and	Callbacks
6.6	AJAX:	Asynchronous	JavaScript	And	XML
6.7	Testing	JavaScript	and	AJAX
6.8	Single-Page	Apps	and	JSON	APIs
6.9	Fallacies	and	Pitfalls
6.10	Concluding	Remarks:	JavaScript	Past,	Present	and	Future
6.11	To	Learn	More
6.12	Suggested	Projects

Concepts

JavaScript	 is	 a	 dynamic,	 interpreted	 scripting	 language	 built	 into	 modern	 browsers.	 This	 chapter
describes	 its	 main	 features,	 including	 some	 that	 we	 recommend	 avoiding	 because	 they	 represent
questionable	 design	 choices,	 and	 how	 it	 extends	 the	 types	 of	 content	 and	 applications	 that	 can	 be
delivered	as	SaaS.
	

A	browser	represents	a	web	page	as	a	data	structure	called	the	Document	Object	Model	 (DOM).
JavaScript	 code	 running	 in	 the	 browser	 can	 inspect	 and	modify	 this	 data	 structure,	 causing	 the
browser	to	redraw	the	modified	page	elements.
When	a	user	interacts	with	the	browser	(for	example,	by	typing,	clicking,	or	moving	the	mouse)	or
the	 browser	 makes	 progress	 in	 an	 interaction	 with	 a	 server,	 the	 browser	 generates	 an	 event
indicating	what	happened.	Your	JavaScript	code	can	take	app-specific	actions	to	modify	the	DOM
when	such	events	occur.
Using	AJAX,	or	Asynchronous	JavaScript	And	XML,	JavaScript	code	can	make	HTTP	requests	to
a	Web	server	without	triggering	a	page	reload.	The	information	in	the	response	can	then	be	used	to
modify	 page	 elements	 in	 place,	 giving	 a	 richer	 and	 often	more	 responsive	 user	 experience	 than
traditional	Web	pages.	Rails	 partials	 and	 controller	 actions	 can	be	 readily	 used	 to	 handle	AJAX
interactions.
Just	as	we	used	the	highly-productive	Rails	framework	and	RSpec	TDD	tool	for	server-side	SaaS
code,	 here	 we	 use	 the	 highly-productive	 jQuery	 framework	 and	 Jasmine	 TDD	 tool	 to	 develop
client-side	code.
We	 follow	 the	 best	 practice	 of	 “graceful	 degradation,”	 also	 referred	 to	 as	 “progressive
enhancement”:	 legacy	 browsers	 lacking	 JavaScript	 support	 will	 still	 provide	 a	 good	 user
experience,	while	JavaScript-enabled	browsers	will	provide	an	even	better	experience.

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Event_(computing)
http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/jQuery
http://pivotal.github.com/jasmine

6.1	JavaScript:	The	Big	Picture

JavaScript	had	to	“look	like	Java”	only	less	so—be	Java’s	dumb	kid	brother	or	boy-hostage	sidekick.
Plus,	I	had	to	be	done	in	ten	days	or	something	worse	than	JavaScript	would	have	happened.

—Brendan	Eich,	creator	of	JavaScript

Brendan	Eich	proposed	embedding	the	Scheme	language	in	the	browser	(Seibel	2009).	Although	pressure	to	create	a	Java-like	syntax
prevailed,	many	Scheme	ideas	survive	in	JavaScript.

Despite	 its	 name,	 JavaScript	 is	 unrelated	 to	 Java:	 LiveScript,	 the	 original	 name	 chosen	 by	Netscape
Communications	 Corp.,	 was	 changed	 to	 JavaScript	 to	 capitalize	 on	 Java’s	 popularity.	 In	 fact,	 as	 a
language	 JavaScript	 inherits	 almost	 nothing	 from	 Java	 except	 superficial	 syntax.	 It	 has	 higher-order
functions,	which	come	from	the	Scheme	dialect	of	Lisp	and	figure	prominently	in	AJAX	programming
and	 in	 the	 Jasmine	 TDD	 tool.	 Its	 dynamic	 type	 system	 is	 similar	 to	 Ruby’s	 and	 plays	 a	 similarly
prominent	role	in	how	the	language	is	used.	If	you	have	a	solid	grasp	of	these	concepts	from	Chapters	3
and	8,	 and	 are	 comfortable	 using	CSS	 selectors	 as	 you	 did	 in	 Chapters	 2	 and	 7,	 learning	 and	 using
JavaScript	productively	will	be	easy.

JavaScript,	Microsoft	JScript,	and	Adobe	ActionScript	are	dialects	of	ECMAScript,	the	1997	standard	that	codifies	the	language.	We
follow	standard	usage	and	use	“JavaScript”	to	refer	to	the	language	generically.

There	 are	 four	major	 uses	 of	 JavaScript	 in	 today’s	 SaaS	 ecosystem,	which	we	 list	 in	 order	 of	 “least
JavaScript-intensive”	to	“most	JavaScript-intensive”:

	

1.	 Using	 JavaScript	 to	 enhance	 the	 user	 experience	 of	 server-centric	 SaaS	 apps	 that	 follow	 the
Model–View–Controller	architectural	pattern.	In	this	case,	JavaScript	is	combined	with	HTML	and
CSS	to	form	the	“three-legged	stool”	of	client-side	SaaS	programming.	This	case	is	called	client-
side	JavaScript	to	clarify	that	JavaScript	is	“embedded”	in	the	browser	in	a	way	that	lets	it	interact
with	Web	 pages.	 In	 this	 scenario,	 the	 server	 typically	 sends	 pre-rendered	HTML	 in	 response	 to
JavaScript	requests,	and	the	browser	uses	these	HTML	chunks	to	replace	existing	page	elements.

2.	 Creating	single-page	applications	 (SPAs)	 that	 fit	 on	 a	 single	web	 page,	 optionally	 enhanced	 by
connectivity	with	the	server.	The	user	experience	is	that	once	the	initial	page	is	loaded,	no	further
page	reloads	or	redraws	occur,	although	elements	on	the	page	are	updated	continuously	in	response
to	communication	with	the	server.	In	this	scenario,	the	server	appears	to	the	app	as	one	or	several
Service-Oriented	Architecture	 endpoints	 that	 return	 data	 encoded	 in	XML	 or	 JSON	 (JavaScript
Object	Notation)	to	the	client-side	JavaScript	code,	which	parses	the	data	and	updates	various	page
elements	accordingly.

3.	 Creating	client-side	applications	such	as	Google	Docs,	comparable	in	complexity	to	desktop	apps
and	possibly	able	to	operate	while	disconnected	from	the	Internet.	Like	all	complex	software,	such
apps	 must	 be	 built	 on	 some	 underlying	 architecture;	 for	 example,	 the	 Angular	 framework	 for
JavaScript	supports	Model–View–Controller.

http://en.wikipedia.org/wiki/ECMAScript
http://en.wikipedia.org/wiki/single-page_applications
http://en.wikipedia.org/wiki/JSON
http://angularjs.org

4.	 Creating	 full	 server-side	 apps	 similar	 to	 those	 we’ve	 been	 building	 using	 Rails,	 but	 using
JavaScript	frameworks	such	as	Node.js.

In	this	chapter	we	focus	on	cases	1	and	2,	keeping	the	following	best	practices	in	mind:
	

Graceful	 degradation:	 In	 Case	 1,	 a	 site’s	 user	 experience	 should	 be	 acceptable	 even	 in	 the
absence	of	JavaScript.	(Displaying	the	message	“JavaScript	is	required	for	this	site”	doesn’t	count.)
The	 more	 positive-sounding	 term	 progressive	 enhancement	 emphasizes	 the	 benefit	 of	 adding
JavaScript	 rather	 than	 the	penalty	of	omitting	 it.	Why	should	you	care	about	 this?	One	reason	 is
compatibility:	according	 to	Microsoft,	24%	of	Chinese	 Internet	users	 in	2013—over	130	million
people—still	 use	 Internet	 Explorer	 6,	 which	 has	 serious	 JavaScript	 compatibility	 problems.
Another	 reason	 is	 that	 JavaScript	may	 be	 disabled	 for	 security	 reasons,	 especially	 in	 enterprise
environments	where	 users	 cannot	 change	 their	 own	 configuration	 settings.	We	 refer	 to	 all	 these
cases	as	 legacy	browsers,	and	we	 insist	 that	our	app	remain	usable	 in	 the	absence	of	JavaScript.
Obviously,	this	guideline	doesn’t	apply	to	Case	2,	since	JavaScript	is	required	for	SPAs.
Unobtrusive:	 JavaScript	 code	 should	 be	 kept	 completely	 separate	 from	 page	 markup.	 In	 both
cases,	 this	 helps	 separate	 concerns	 as	 we	 did	 with	 Model–View–Controller.	 In	 Case	 1,	 it	 also
simplifies	supporting	legacy	browsers.

Figure	 6.1	 compares	 our	 exposition	 of	 server-side	 and	 client-side	 programming.	 Screencast	 6.1.1
demonstrates	the	two	JavaScript	features	we	will	add	to	RottenPotatoes	in	this	chapter.

Server Client
Language Ruby JavaScript
Framework Rails jQuery
Client-
Server

Architecture
over	HTTP

Controller	receives	request,
interacts	with	model,	renders

new	page	(view)

Controller	receives	request,	interacts	with	model,	and
renders	a	partial	or	an	XML-	or	JSON-encoded	object,
which	is	used	by	JavaScript	code	running	in	browser	to

modify	current	page	in	place

Debugging Ruby	debugger,	rails
console

Firebug,	browser’s	JavaScript	console

Testing

RSpec	with	rspec-rails;
isolate	tests	from	database
using	ActiveRecord	model

fixtures	and	factories

Jasmine,	jasmine-jquery;	isolate	tests	from	server	using
HTML	and	JSON	fixtures

Figure	6.1:	The	correspondence	between	our	exposition	of	server-side	programming	with	Ruby	and	Rails	and	client-side	programming
with	JavaScript	continues	our	focus	on	productively	creating	DRY,	concise	code	that	is	well	covered	by	tests.

Screencast	6.1.1:	Adding	JavaScript	features	to	RottenPotatoes
We	 will	 first	 add	 a	 checkbox	 that	 allows	 filtering	 the	 RottenPotatoes	 movie	 list	 to	 exclude	 films
unsuitable	 for	 children.	 This	 behavior	 can	 be	 implemented	 entirely	 in	 client-side	 JavaScript	 using
techniques	described	in	Sections	6.4	and	6.5.	Next	we	will	change	the	behavior	of	the	“More	info”	link

http://www.ie6countdown.com
http://vimeo.com/45331300

for	each	movie	 to	display	 the	extra	 info	 in	a	“floating”	window	rather	 than	 loading	a	new	page.	This
will	require	AJAX,	since	fetching	the	movie	info	requires	communicating	with	the	server.	Section	6.6
introduces	AJAX	programming.	Both	behaviors	will	be	implemented	with	graceful	degradation	so	that
legacy	browsers	still	have	a	good	experience.

JavaScript	has	a	bad	reputation	that	isn’t	entirely	deserved.	It	began	as	a	language	that	would	allow	Web
browsers	to	run	simple	client-side	code	to	validate	form	inputs,	animate	page	elements,	or	communicate
with	Java	applets.	Inexperienced	programmers	began	to	copy-and-paste	simple	JavaScript	examples	to
achieve	appealing	visual	effects,	albeit	with	terrible	programming	practices,	giving	the	language	itself	a
bad	reputation.	In	fact,	JavaScript	 is	a	powerful	and	expressive	language	that	 incorporates	great	 ideas
enabling	 reuse	 and	 DRYness,	 such	 as	 closures	 and	 higher-order	 functions,	 but	 people	 without
programming	experience	rarely	use	these	tools	properly.

That	said,	because	of	JavaScript’s	turbulent	birth,	its	syntax	and	semantics	have	quirks	ranging	from	the
idiosyncratic	 to	 the	 regrettable,	 with	 almost	 as	 many	 special-case	 exceptions	 as	 there	 are	 rules.	 In
addition,	 there	 are	 incompatibilities	 among	different	 versions	of	 the	 JavaScript	 interpreter	 and	 across
different	 browsers’	 JavaScript	Application	 Programming	 Interface	 (JSAPI),	 the	 browser	 functionality
that	lets	JavaScript	code	manipulate	the	content	of	the	current	HTML	page.	We	will	avoid	compatibility
problems	in	two	major	ways:

quirksmode.org	tells	you	more	about	JSAPI	browser	incompatibilities	than	you	want	to	know.

	

1.	 Restricting	 ourselves	 to	 language	 features	 in	 the	 ECMAScript	 3	 standard,	 which	 all	 browsers
support

2.	 Using	the	powerful	jQuery	library,	rather	than	individual	browsers’	JSAPIs,	to	interact	with	HTML
documents

	 	 	 	 	 	 Section	 6.2	 introduces	 the	 language	 and	 how	 code	 is	 connected	 to	 Web	 pages	 and
Section	6.3	describes	how	its	 functions	work,	an	understanding	of	which	 is	 the	basis	of	writing	clean
and	unobtrusive	JavaScript	code.	Section	6.4	introduces	jQuery,	which	overlays	the	separate	browsers’
incompatible	JSAPIs	with	a	single	API	that	works	across	all	browsers,	and	Section	6.5	describes	how
jQuery’s	features	make	it	easy	to	program	interactions	between	page	elements	and	JavaScript	code.

jQuery	can	be	viewed	as	an	enhanced	Adapter	(Section	11.6)	to	the	various	browsers’	JSAPIs.

Section	6.6	introduces	AJAX	programming.	In	1998,	Internet	Explorer	5	introduced	a	new	mechanism
that	allowed	JavaScript	code	to	communicate	with	a	SaaS	server	after	a	page	had	been	loaded,	and	use
information	from	the	server	to	update	the	page	“in	place”	without	the	user	having	to	reload	a	new	page.
Other	browsers	quickly	copied	the	technology.	Developer	Jesse	James	Garrett	coined	the	term	AJAX,
for	Asynchronous	JavaScript	And	XML,	to	describe	how	the	combination	of	this	technology	to	power
impressive	“Web	2.0”	apps	like	Google	Maps.

Ironically,	modern	AJAX	programming	involves	much	less	XML	than	originally,	as	we’ll	see.

http://jquery.org
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://en.wikipedia.org/wiki/Ajax_(programming)

Testing	 client-side	 JavaScript	 is	 challenging	 because	 browsers	will	 fail	 silently	when	 an	 error	 occurs
rather	 than	displaying	JavaScript	error	messages	 to	unsuspecting	users.	Fortunately,	 the	Jasmine	TDD
framework	will	help	you	test	your	code,	as	Section	6.7	describes.

Finally,	Section	6.8	 describes	 the	mechanisms	 for	 both	 developing	 and	 testing	 browser-based	 single-
page	apps	(SPAs),	which	are	becoming	increasingly	popular.

Summary	of	JavaScript	background:
JavaScript	 resembles	 Java	 in	 name	 and	 syntax	 only;	 despite	 nontrivial	 flaws,	 it	 embodies	 great
ideas	found	in	Scheme	and	Ruby.
We	focus	on	client-side	JavaScript,	that	is,	on	using	the	language	to	enhance	the	user	experience	of
pages	delivered	by	a	server-centric	SaaS	app.	We	strive	for	graceful	degradation	(user	experience
without	JavaScript	should	be	usable,	if	impoverished)	and	unobtrusiveness	(JavaScript	code	should
be	completely	separate	from	page	markup).

Self-Check	6.1.1.	True	 or	 false:	 one	 early	 advantage	 of	 JavaScript	 for	 form	validation	 (preventing	 a
user	from	submitting	a	form	with	invalid	data)	was	the	ability	to	remove	validation	code	from	the	server
and	move	it	to	the	client	instead.
	False;	 there	is	no	guarantee	the	submission	actually	came	from	that	page	(anyone	with	a	command

line	tool	can	construct	an	HTTP	request),	and	even	if	 it	did,	 the	user	might	be	working	with	a	 legacy
browser.	As	we	point	out	repeatedly	in	SaaS,	the	server	cannot	trust	anyone	and	must	always	validate	its
inputs.

6.2	Client-Side	JavaScript	for	Ruby	Programmers

Stop	me	if	you	think	you’ve	heard	this	before.
—variously	attributed

Despite	its	name	and	syntax,	JavaScript	has	more	in	common	with	Ruby	than	with	Java:
	

Almost	everything	is	an	object.	The	basic	JavaScript	object	looks	like	a	Ruby	hash,	except	that	its
keys	(property	names)	must	be	strings.
Typing	is	dynamic:	variables	don’t	have	types,	but	the	objects	they	refer	to	do.
Classes	and	types	matter	even	less	than	they	do	in	Ruby—in	fact,	despite	the	syntactic	appearance
of	 much	 JavaScript	 code	 in	 the	 wild,	 JavaScript	 has	 no	 classes,	 although	 there	 are	 coding
conventions	that	are	used	to	achieve	some	of	the	effects	of	having	classes.
Functions	are	 closures	 that	 carry	 their	 environment	around	with	 them,	allowing	 them	 to	execute
properly	 at	 a	 different	 place	 and	 time	 than	where	 they	were	 defined.	 Just	 as	 anonymous	 blocks
(do...end)	are	ubiquitous	in	Ruby,	anonymous	functions	(function()	{...})	are	ubiquitous	in
JavaScript.
JavaScript	is	interpreted	and	includes	metaprogramming	and	introspection	facilities.

Objects

movie={title:	’The	Godfather’,	’releaseInfo’:	{’year’:	1972,	rating:

’PG’}}

Quotes	optional	around	property	name	if	it’s	a	legal	variable	name;	objects	can	be	nested.	
Access	an	object’s	properties	with	movie.title,	or	movie[’title’]	if	property	name
isn’t	a	legal	variable	name	or	isn’t	known	until	runtime.	
for	(var	in	obj)	{.	.	.	}	iterates	over	obj’s	property	names	in	arbitrary	order.

Types
typeof	x	returns	a	string	representation	of	x’s	primitive	type:	one	of	”object”,
”string”,	”array”,	”number”,	”boolean”,	”function”,	”undefined”.	All
numbers	are	doubles.

Strings	&	
Regexps

”string”,	’also	a	string’,	’joining’+’strings’	
’mad,	mad	world’.split(/[,]+/)	==	[”mad”,”mad”,”world”]	
’mad,	mad	world’.slice(3,8)==”,	mad”	;	’mad,	mad	world’.slice(-3)==”rld”	
’mad’.indexOf(’d’)==2,	’mad’.charAt(2)==’d’,	’mad’.charCodeAt(4)==100	
’mad’.replace(/(\w)$/,’$1$1er’)==”madder”	
/regexp/.exec(string)	if	no	match	returns	null,	if	match	returns	array	whose	zeroth
element	is	whole	string	matched	and	additional	elements	are	parenthesized	capture
groups.	
string.match(/regexp/)	does	the	same,	unless	the	/g	regexp	modifier	is	present.
/regexp/.test(string)	(faster)	returns	true	or	false	but	no	capture	groups.	
Alternate	constructor:	new	RegExp(’[Hh]e(l+)o’)

Arrays
var	a	=	[1,	{two:	2},	’three’]	;	a[1]	==	{two:	2}

Zero-based,	grow	dynamically;	objects	whose	keys	are	numbers	(see	Fallacies	&	Pitfalls)	
arr.sort(function	(a,b)	{.	.	.	})	Function	returns	-1,	0	or	1	for	a<b,a==b,a>b

Numbers

+	-	/	%,	also	+=,	etc.,	++	--,	Math.pow(num,exp)	
Math.round(n),	Math.ceil(n),	Math.floor(n)	round	their	argument	to	nearest,
higher,	or	lower	integer	respectively	
Math.random()	returns	a	random	number	in	(0,1)

Conversions

’catch’+22==’catch22’,	’4’+’11’==’411’	
parseInt(’4oneone’)==4,	parseInt(’four11’)==NaN	
parseInt(’0101’,10)==101,	parseInt(’0101’,2)==5,	parseInt(’0101’)==65	
(numbers	beginning	with	0	are	parsed	in	octal	by	default,	unless	radix	is	specified)	
parseFloat(’1.1b23’)==1.1,	parseFloat(’1.1e3’)==1100

Booleans false,	null,	undefined	(undefined	value,	different	from	null),	0,	the	empty	string	’’,
and	NaN	(not-a-number)	are	falsy	(Boolean	false);	true	and	all	other	values	are	truthy.

Naming

localVar,	local_var,	ConstructorFunction,	GLOBAL	
All	are	conventions;	JavaScript	has	no	specific	capitalization	rules.	var	keyword	scopes
variable	to	the	function	in	which	it	appears,	otherwise	it	becomes	a	global	(technically,	a
property	of	the	global	object,	as	Section	6.3	describes).	Variables	don’t	have	types,	but	the
objects	they	refer	to	do.

Control
flow

while(),	for(;;),	if.	.	.	else	if.	.	.	else,	?:	(ternary	operator),
switch/case,	try/catch/throw,	return,	break	
Statements	separated	by	semicolons;	interpreter	tries	to	auto-insert	“missing”	ones,	but
this	is	perilous	(see	Fallacies	&	Pitfalls)

Figure	6.2:	Analogous	to	Figure	3.1,	this	table	summarizes	basic	constructs	of	JavaScript.	See	the	text	for	important	pitfalls.	Whereas
Ruby	uses	nil	as	both	an	explicit	null	value	and	the	value	returned	for	nonexistent	instance	variables,	JavaScript	distinguishes	undefined,

which	is	returned	for	undeclared	or	unassigned	variables,	from	the	special	value	null	and	Boolean	false.	However,	all	three	are
“falsy”—they	evaluate	to	false	in	a	conditional.

Figure	6.2	shows	JavaScript’s	basic	syntax	and	constructs,	which	should	look	familiar	to	Java	and	Ruby
programmers.	The	Fallacies	&	Pitfalls	section	describes	several	JavaScript	pitfalls	associated	with	the
figure;	 read	 them	carefully	after	you’ve	 finished	 this	chapter,	or	you	may	 find	yourself	banging	your
head	 against	 one	 of	 JavaScript’s	 unfortunate	 misfeatures	 or	 a	 JavaScript	 mechanism	 that	 looks	 and
works	almost	but	not	quite	like	its	Ruby	counterpart.	For	example,	whereas	Ruby	uses	nil	to	mean	both
“undefined”	(a	variable	that	has	never	been	given	a	value)	and	“empty”	(a	value	that	is	always	false),
JavaScript’s	null	is	distinct	from	its	undefined,	which	is	what	you	get	as	the	“value”	of	a	variable	that
has	never	been	initialized.

http://pastebin.com/gaR9tA4k

	1	var	potatoReview	=

	2	{

	3			"potatoes":	5,

	4			"reviewer":	"armandofox",

	5			"movie":	{

	6					"title":	"Casablanca",

	7					"description":	"Casablanca	is	a	classic	and	iconic	film	starring	...",

	8					"rating":	"PG",

	9					"release_date":		"1942-11-26T07:00:00Z"

10			}

11	};

12	potatoReview[’potatoes’]		//	=>	5

13	potatoReview[’movie’].title				//	=>	"Casablanca"

14	potatoReview.movie.title					//	=>	"Casablanca"

15	potatoReview[’movie’][’title’]	//	=>	"Casablanca"

16	potatoReview[’blah’]									//	=>	undefined

Figure	6.3:	JavaScript	notation	for	object	literals,	that	is,	objects	you	specify	by	enumerating	their	properties	and	values	explicitly.	If	the
property	name	is	a	legal	JavaScript	variable	name,	quotes	can	be	omitted	or	the	idiomatic	dot-notation	shortcut	(lines	13–14)	can	be	used,
although	quotes	are	always	required	around	all	strings	when	an	object	is	expressed	in	JSON	format.	Since	objects	can	contain	other
objects,	hierarchical	data	structures	can	be	built	(line	5)	and	traversed	(lines	13–15).

As	 the	 first	 row	 of	 Figure	 6.2	 shows,	 JavaScript’s	 fundamental	 type	 is	 the	 object,	 an	 unordered
collection	 of	 key/value	 pairs,	 or	 as	 they	 are	 called	 in	 JavaScript,	properties	 or	 slots.	 The	 name	 of	 a
property	can	be	any	string,	 including	the	empty	string.	The	value	of	a	property	can	be	any	JavaScript
expression,	including	another	object;	it	cannot	be	undefined.

JavaScript	 allows	 you	 to	 express	object	 literals	 by	 specifying	 their	 properties	 and	 values	 directly,	 as
Figure	6.3	shows.	This	simple	object-literal	syntax	is	the	basis	of	JSON,	or	JavaScript	Object	Notation,
which	despite	its	name	is	a	language-independent	way	to	represent	data	that	can	be	exchanged	between
SaaS	services	or	between	a	SaaS	client	and	server.	In	fact,	lines	2–11	in	the	figure	(minus	the	trailing
semicolon	on	line	11)	are	a	legal	JSON	representation.	Officially,	each	property	value	in	a	JSON	object
can	be	a	Number,	Unicode	String,	Boolean	(true	or	false	are	the	only	possible	values),	null	(empty
value),	 or	 a	 nested	 Object	 recursively	 defined.	 Unlike	 full	 JavaScript,	 though,	 in	 the	 JSON

http://pastebin.com/gaR9tA4k
http://en.wikipedia.org/wiki/JSON

representation	of	an	object	all	strings	must	be	quoted,	so	the	example	in	the	top	row	of	Figure	6.2	would
need	quotes	around	the	word	title	to	comply	with	JSON	syntax.	Figure	6.4	summarizes	a	variety	of
tools	 for	checking	 the	syntax	and	style	of	both	JavaScript	code	and	JavaScript-related	data	 structures
and	protocols	that	we’ll	meet	in	the	rest	of	this	chapter.

JSON.org	defines	JSON’s	precise	syntax	and	lists	parsing	libraries	available	for	other	languages.

Name Tool	type Description

JSLint Web-based

Copy	and	paste	your	code	into	the	form	at	jslint.com	to	check	it	for	errors	and
stylistic	pitfalls	according	to	the	guidelines	in	Doug	Crockford’s	JavaScript:	The
Good	Parts.	Also	checks	for	legal	but	unsafe	constructions;	some	developers
find	it	overly	pedantic.

JavaScript
Lint

Command-
line

Matthias	Miller’s	command-line	tool,	preinstalled	in	bookware	VM,	reports
errors	and	warnings	based	on	the	same	JavaScript	interpreter	used	by	the	Firefox
browser.	To	run	it,	type	jsl	-process	file.js

Closure Command-
line

Google’s	source-to-source	compiler	translates	JavaScript	to	better	JavaScript,
removing	dead	code	and	minifying	as	it	goes,	and	giving	errors	and	warnings.	Its
associated	Linter	tool	goes	even	further	and	enforces	Google’s	JavaScript	style
guidelines.	Not	preinstalled	in	bookware	VM;	requires	Java.

YUI Command-
line

Yahoo’s	YUI	Compressor	minifies	JavaScript	and	CSS	more	aggressively	than
some	other	tools	and	looks	for	stylistic	problems	in	the	process.	Not	preinstalled
in	bookware	VM;	requires	Java.

JSONlint Web-based This	tool	at	jsonlint.com	checks	your	JSON	data	structures	for	syntax	errors.

Figure	6.4:	A	variety	of	tools	for	debugging	your	JavaScript	code	and	associated	data	structures	and	server	interactions.	One	challenge	is
that	just	as	with	the	C	language,	there	are	many	competing	coding	guidelines	for	JavaScript—Google’s,	Yahoo’s,	the	Node.js	project’s,
and	others—and	different	tools	check	and	enforce	different	coding	styles.

http://pastebin.com/7SztJxcj

	1	<script	src="/public/javascripts/application.js"></script>

http://pastebin.com/KBnYjPhc

	1	<html>

	2			<head><title>Update	Address</title></head>

	3			<body>

	4					<!--	BAD:	embedding	scripts	directly	in	page,	esp.	in	body	-->

	5					<script>

	6					<!--	//	BAD:	"hide"	script	body	in	HTML	comment

	7										//		(modern	browsers	may	not	see	script	at	all)

	8							function	checkValid()	{				//	BAD:	checkValid	is	global

	9									if	!(fieldsValid(getElementById(’addr’)))	{

10											//	BAD:	>	and	<	may	confuse	browser’s	HTML	parser

http://developers.google.com/closure
http://yui.github.io/yuicompressor
http://jsonlint.com
http://pastebin.com/7SztJxcj
http://pastebin.com/KBnYjPhc

11											alert(’>>>	Please	fix	errors	&	resubmit.	<<<’);

12							}

13					//	BAD:	"hide"	end	of	HTML	comment	(l.3)	in	JS	comment:	-->

14					</script>

15					<!--	BAD:	using	HTML	attributes	for	JS	event	handlers	-->

16					<form	onsubmit="return	checkValid()"	id="addr"	action="/update">

17							<input	onchange="RP.filter_adult"	type="checkbox"/>

18							<!--	BAD:	URL	using	’javascript:’	-->

19							Go	Back

20					</form>

21			</body>

22	</html>

Figure	6.5:	Top:	The	unobtrusive	and	recommended	way	to	load	JavaScript	code	in	your	HTML	view(s).	Bottom:	Three	obtrusive	ways
to	embed	JavaScript	into	HTML	pages,	all	deprecated	because	they	mix	JavaScript	code	with	HTML	markup.	Sadly,	all	are	common	in
the	“street	JavaScript”	found	on	poorly-engineered	sites,	yet	all	are	easily	avoided	by	using	the	script	src=	method	and	by	using	the
unobtrusive	techniques	described	in	the	rest	of	this	chapter	for	connecting	JavaScript	code	to	HTML	elements.

The	 fact	 that	 a	 JavaScript	 object	 can	 have	 function-valued	 properties	 is	 used	 by	 well-engineered
libraries	to	collect	all	their	functions	and	variables	into	a	single	namespace.	For	example,	as	we’ll	see	in
Section	6.4,	 jQuery	defines	a	 single	global	variable	jQuery	 through	which	 all	 features	of	 the	 jQuery
library	are	accessed,	rather	than	littering	the	global	namespace	with	the	many	objects	in	the	library.	We
will	 follow	 a	 similar	 practice	 by	 defining	 a	 small	 number	 of	 global	 variables	 to	 encapsulate	 all	 our

JavaScript	code.	 		

	 	 	 The	 term	 client-side	 JavaScript	 refers	 specifically	 to	 JavaScript	 code	 that	 is	 associated	 with
HTML	pages	 and	 therefore	 runs	 in	 the	 browser.	Each	 page	 in	 your	 app	 that	wants	 to	 use	 JavaScript
functions	 or	 variables	 must	 include	 the	 necessary	 JavaScript	 code	 itself.	 The	 recommended	 and
unobtrusive	way	to	do	this	is	using	a	script	tag	referencing	the	file	containing	the	code,	as	Figure	6.5
shows.	The	Rails	view	helper	javascript_include_tag	’application’,	which	generates	the	above
tag,	can	be	placed	in	your	app/views/layouts/application.html.haml	or	other	layout	template	that
is	part	of	every	page	served	by	your	app.	If	you	then	place	your	code	in	one	or	more	separate	.js	files
in	 app/assets/javascripts,	 when	 you	 deploy	 to	 production	 Rails	 will	 do	 the	 following	 steps
automatically:
	

1.	 Concatenate	the	contents	of	all	JavaScript	files	in	this	directory;
2.	 Compress	 the	 result	 by	 removing	 whitespace	 and	 performing	 other	 simple	 transformations	 (the

uglifier	gem);
3.	 Place	the	result	in	a	single	large	file	in	the	public	subdirectory	that	will	be	served	directly	by	the

presentation	tier	with	no	Rails	intervention;
4.	 Adjust	the	URLs	emitted	by	javascript_include_tag	so	that	the	user’s	browser	loads	not	only

your	own	JavaScript	files	but	also	the	jQuery	library.

This	automatic	behavior,	supported	by	modern	production	environments	including	Heroku,	is	called	the
asset	pipeline.	Described	more	fully	in	this	guide,	the	asset	pipeline	also	allows	us	to	use	languages	like
CoffeeScript,	 as	 we’ll	 see	 later.	 You	might	 think	 it	 wasteful	 for	 the	 user’s	 browser	 to	 load	 a	 single

http://en.wikipedia.org/wiki/namespace
http://guides.rubyonrails.org/v3.2.19/asset_pipeline.html

enormous	JavaScript	file,	especially	if	only	a	few	pages	in	your	app	use	JavaScript	and	any	given	page
only	uses	a	small	subset	of	your	JavaScript	code.	But	the	user’s	browser	only	loads	the	large	file	once
and	then	caches	it	until	you	redeploy	your	app	with	changed	.js	files.	Also,	in	development	mode,	the
asset	pipeline	skips	the	“precompilation”	process	and	just	loads	each	of	the	JavaScript	files	separately,
since	they’re	likely	to	be	changing	frequently	while	you’re	developing.

Minifying	is	a	term	used	to	describe	the	compression	transformations,	which	reduce	the	size	of	the	jQuery	1.7.2	library	from	247	KiB	to
32	KiB.

Summary	of	Client-Side	JavaScript	and	HTML:
	

Like	Ruby,	JavaScript	 is	 interpreted	and	dynamically	typed.	The	basic	object	 type	is	a	hash	with
keys	that	are	strings	and	values	of	arbitrary	type,	including	other	hashes.
The	 fundamental	 JavaScript	data	 type	 is	 an	object,	which	 is	 an	unordered	collection	of	property
names	and	values,	 similar	 to	a	hash.	Since	objects	 can	nest,	 they	can	 represent	hierarchical	data
structures.	 JavaScript’s	 simple	 object-literal	 notation	 is	 the	 inspiration	 for	 the	 JSON	 data
interchange	format.
The	 preferred	 unobtrusive	way	 to	 associate	 JavaScript	with	 an	HTML	page	 is	 to	 include	 in	 the
HTML	document’s	head	 element	 a	script	 tag	whose	src	 attribute	 gives	 the	URL	of	 the	 script
itself,	 so	 that	 the	 JavaScript	 code	 can	 be	 kept	 separate	 from	 HTML	markup.	 The	 Rails	 helper
javascript_include_tag	generates	the	correct	URL	that	takes	advantage	of	Rails’	asset	pipeline.

ELABORATION:	JSON,	XML,	or	YAML	for	structured	data?

You’ve	now	seen	at	least	three	different	ways	to	represent	structured	data:	XML	(Section	8.1),	YAML	(Sections	4.2	and	8.5),	and
JSON	 (lines	2–11	of	Figure	6.3.	These	 three	 standards,	 and	many	 others,	 address	 the	 problem	of	 data	 serialization	 (also	 called
marshalling	 or	deflating)—translating	 a	 program’s	 internal	 data	 structures	 into	 a	 representation	 that	 can	 be	 “resurrected”	 later.
Deserialization	(unmarshalling,	inflating)	is	often	performed	by	a	different	program,	possibly	written	in	a	different	language	or	at
the	other	end	of	a	network	connection,	so	the	serialization	format	must	be	portable.	As	we’ll	see	in	Section	6.8,	JSON	is	becoming
the	 most	 popular	 serialization	 format	 between	 SaaS	 clients	 and	 servers;	 in	 fact,	 Ruby	 1.9	 added	 an	 alternate	 hash	 notation
{foo:	’bar’},	equivalent	to	{:foo=>’bar’},	to	mimic	JSON.

Self-Check	6.2.1.

In	Ruby,	when	a	method	call	takes	no	arguments,	the	empty	parentheses	following	the	method	call	are
optional.	Why	wouldn’t	this	work	in	JavaScript?

	Because	JavaScript	functions	are	first-class	objects,	a	function	name	without	parentheses	would	be	an
expression	whose	value	is	the	function	itself,	rather	than	a	call	to	the	function.

6.3	Functions	and	Constructors

In	Chapter	 3	we	mentioned	 that	 object-orientation	 and	 class	 inheritance	 are	 distinct	 language	 design

http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
http://en.wikipedia.org/wiki/serialization

concepts,	 although	 many	 people	 mistakenly	 conflate	 them	 because	 popular	 languages	 like	 Java	 use
both.	 JavaScript	 is	 object-oriented,	 but	 lacks	 classes.	Nonetheless,	 it	 has	 some	mechanisms	 that	 look
and	 act	 similarly	 to	 those	 in	 languages	with	 classes.	Unfortunately,	 the	 questionable	 design	 of	 these
mechanisms	leads	to	a	lot	of	confusion	for	newcomers	to	JavaScript,	especially	regarding	the	behavior
of	the	keyword	this.	We	will	concern	ourselves	with	 three	common	uses	of	this.	In	this	section	we
introduce	the	first	two	of	these	uses,	and	an	associated	pitfall.	In	Section	6.5	we	introduce	the	third	use.

		

Try	these	examples	in	Firebug	or	your	browser’s	built-in	JavaScript	console;	there’s	no	standardized	interactive	JavaScript	interpreter
analogous	to	Ruby’s	irb.

Lines	 1–8	 of	 Figure	 6.6	 show	 a	 function	 called	 Movie.	 This	 syntax	 for	 defining	 functions	 may	 be
unfamiliar,	whereas	the	alternate	syntax	in	lines	9–11	looks	comfortably	familiar.	Nonetheless,	we	will
use	 the	 first	 syntax	 for	 two	 reasons.	 First,	 unlike	 Ruby,	 functions	 in	 JavaScript	 are	 true	 first-class
objects—you	can	pass	them	around,	assign	them	to	variables,	and	so	on.	The	syntax	in	line	1	makes	it
clear	that	Movie	 is	simply	a	variable	whose	value	happens	 to	be	a	function.	Second,	although	it’s	not
obvious,	 the	 variable	 Movie	 in	 line	 9	 is	 being	 declared	 in	 JavaScript’s	 global	 namespace—hardly
beautiful.	In	general	we	want	to	minimize	clutter	in	the	global	namespace,	so	we	will	usually	create	one
or	a	few	objects	named	by	global	variables	associated	with	our	app,	and	all	of	our	JavaScript	functions
will	be	the	values	of	properties	of	those	objects.

If	we	call	the	Movie	function	using	JavaScript’s	new	keyword	(line	13),	the	value	of	this	in	the	function
body	will	be	a	new	JavaScript	object	that	will	eventually	be	returned	by	the	function,	similar	to	Ruby’s
self	 inside	an	initialize	 constructor	method.	 In	 this	case,	 the	 returned	object	will	have	properties
title,	year,	rating,	and	full_title,	the	last	of	which	is	a	property	whose	value	is	a	function.	If	line
14	looks	like	a	function	call	to	you,	then	you’ve	been	hanging	around	Ruby	too	long;	since	functions	are
first-class	objects	 in	 JavaScript,	 this	 line	 just	 returns	 the	value	of	full_title,	which	 is	 the	 function
itself,	not	the	result	of	calling	it!	To	actually	call	it,	we	need	to	use	parentheses,	as	in	line	15.	When	we
make	 that	 call,	 within	 the	 body	 of	 full_title,	 this	 will	 refer	 to	 the	 object	 whose	 property	 the
function	is,	in	this	case	pianist.

Remember,	though,	that	while	these	examples	look	just	like	calling	a	class’s	constructor	and	calling	an
instance	method	 in	Ruby,	 JavaScript	 has	 no	 concept	 of	 classes	 or	 instance	methods.	 In	 fact,	 there	 is
nothing	about	a	particular	 JavaScript	 function	 that	makes	 it	a	constructor;	 instead,	 it’s	 the	use	of	new
when	calling	the	function	that	makes	it	a	constructor,	causing	it	to	create	and	return	a	new	object.	The
reason	this	works	is	because	of	JavaScript’s	prototype	inheritance	mechanism,	which	we	don’t	discuss
further	(but	see	the	Elaboration	below	to	learn	more).	Nonetheless,	forgetting	this	subtle	distinction	may
confuse	you	when	you	expect	class-like	behaviors	and	don’t	get	them.

http://pastebin.com/4nBsjb0t

	1	var	Movie	=	function(title,year,rating)	{

	2			this.title	=	title;

	3			this.year	=	year;

	4			this.rating	=	rating;

http://getfirebug.org
http://en.wikipedia.org/wiki/First-class_citizen
http://en.wikipedia.org/wiki/Prototype-based_programming
http://pastebin.com/4nBsjb0t

	5			this.full_title	=	function()	{	//	"instance	method"

	6					return(this.title	+	’	(’	+	this.year	+	’)’);

	7			};

	8	};

	9	function	Movie(title,year,rating)	{		//	this	syntax	may	look	familiar...

10			//	...

11	}

12	//	using	’new’	makes	Movie	the	new	objects’	prototype:

13	pianist	=	new	Movie(’The	Pianist’,	2002,	’R’);

14	pianist.full_title;			//	=>	function()	{...}

15	pianist.full_title();	//	=>	"The	Pianist	(2002)"

16	//	BAD:	without	’new’,	’this’	is	bound	to	global	object	in	Movie	call!!

17	juno	=	Movie(’Juno’,	2007,	’PG-13’);	//	DON’T	DO	THIS!!

18	juno;															//	undefined

19	juno.title;									//	error:	’undefined’	has	no	properties

20	juno.full_title();		//	error:	’undefined’	has	no	properties

Figure	6.6:	Since	functions	are	first-class	objects,	it	is	fine	for	an	object	to	have	a	property	whose	value	is	a	function,	as	full_title	is.
We	will	make	extensive	use	of	this	characteristic.	Note	the	pitfall	in	lines	14–18.

However,	a	JavaScript	misfeature	can	trip	us	up	here.	It	is	(unfortunately)	perfectly	legal	to	call	Movie
as	 a	 plain	 old	 function	 without	 using	 the	 new	 keyword,	 as	 in	 line	 17.	 If	 you	 do	 this,	 JavaScript’s
behavior	is	completely	different	in	two	horrible,	horrible	ways.	First,	 in	the	body	of	Movie,	this	will
not	refer	to	a	brand-new	object	but	instead	to	the	global	object,	which	defines	various	special	constants
such	as	Infinity,	NaN,	and	null,	and	supplies	various	other	parts	of	the	JavaScript	environment.	When
JavaScript	is	run	in	a	browser,	the	global	object	happens	to	be	a	data	structure	representing	the	browser
window.	 Therefore,	 lines	 2–5	will	 be	 creating	 and	 setting	 new	 properties	 of	 this	 object—clearly	 not
what	 we	 intended,	 but	 unfortunately,	 when	 this	 is	 used	 in	 a	 scope	 where	 it	 would	 otherwise	 be
undefined,	 it	 refers	 to	 the	 global	 object,	 a	 serious	 design	 defect	 in	 the	 language.	 (See	 Fallacies	 and
Pitfalls	and	To	Learn	More	if	you	want	to	learn	about	the	reasons	for	this	odd	behavior,	a	discussion	of
which	is	beyond	the	scope	of	this	introduction	to	the	language.)

Second,	since	Movie	doesn’t	explicitly	return	anything,	its	return	value	(and	therefore	the	value	of	juno)
will	be	undefined.	Whereas	a	Ruby	function	returns	the	value	of	the	last	expression	in	the	function	by
default,	 a	 JavaScript	 function	 returns	 undefined	 unless	 it	 has	 an	 explicit	 return	 statement.	 (The
return	 in	 line	 6	 belongs	 to	 the	full_title	 function,	 not	 to	Movie	 itself.)	Hence,	 lines	 19–20	 give
errors	because	we’re	trying	to	reference	a	property	(title)	on	something	that	isn’t	even	an	object.

You	 can	 avoid	 this	 pitfall	 by	 rigorously	 following	 the	 widespread	 JavaScript	 convention	 that	 a
function’s	name	should	be	capitalized	if	and	only	if	the	function	is	intended	to	be	called	as	a	constructor
using	new.	Functions	 that	are	not	“constructor-like”	should	be	given	names	beginning	with	 lowercase

letters.	 		

Summary:	Functions	and	Constructors
JavaScript	 functions	 are	 first-class	 objects:	 they	 can	 be	 assigned	 to	 variables,	 passed	 to	 other
functions,	or	returned	from	functions.
Although	JavaScript	doesn’t	have	classes,	one	way	of	managing	namespaces	in	an	orderly	way	in

JavaScript	is	to	store	functions	as	object	properties,	allowing	a	single	object	(hash)	to	collect	a	set
of	related	functions	as	a	class	would.
If	the	new	keyword	is	used	to	call	a	function,	this	in	the	function	body	will	refer	to	a	new	object
whose	property	values	can	be	initialized	in	the	“constructor.”	This	mechanism	is	similar	to	creating
new	instances	of	a	class,	though	JavaScript	lacks	classes.
However,	if	a	function	is	called	without	the	new	keyword,	this	in	the	function	body	will	refer	to
the	global	object,	which	is	almost	never	what	you	wanted,	and	the	function	will	return	undefined.
To	avoid	this	pitfall,	capitalize	the	names	of	constructor-like	functions	intended	to	be	called	with
new,	but	don’t	capitalize	the	names	of	any	other	functions.

ELABORATION:	Prototypal	inheritance
Every	JavaScript	object	inherits	from	exactly	one	prototype	object—new	strings	inherit	from	String.prototype,	new	arrays	from
Array.prototype,	and	so	on,	up	to	Object	(the	empty	object).	If	you	look	up	a	property	on	an	object	that	doesn’t	have	that	property,
its	 prototype	 is	 checked,	 then	 its	 prototype’s	 prototype,	 and	 so	 on	 until	 one	 of	 the	 prototypes	 responds	 with	 the	 property	 or
undefined	is	returned.	Given	this	background,	the	effect	of	calling	a	function	using	the	new	keyword	is	to	create	a	new	object	whose
prototype	is	the	same	as	the	function’s	prototype.

Prototypes	 come	 from	 Self,	 a	 language	 originally	 designed	 at	 the	 legendary	 Xerox	 PARC	 and	 which	 heavily	 influenced
NewtonScript,	the	programming	language	for	the	ill-fated	Apple	Newton	“handheld.”	Proper	use	of	prototypal	inheritance	affords
an	 effective	 kind	 of	 implementation	 reuse	 that	 is	 different	 from	 what	 classes	 provide.	 Unfortunately,	 as	 Crockford	 notes	 in
JavaScript:	 The	 Good	 Parts	 Crockford	 2008,	 JavaScript’s	 implementation	 of	 prototypal	 inheritance	 is	 halfhearted	 and	 uses	 a
confusing	syntax,	perhaps	in	an	effort	to	resemble	“classical”	languages	with	class	inheritance.

Self-Check	6.3.1.	What	is	the	difference	between	evaluating	square.area	and	square.area()	in	the
following	JavaScript	code?

http://pastebin.com/CfuHynff

	1				var	square	=	{

	2						side:	3,

	3						area:	function()	{

	4								return	this.side*this.side;

	5						}

	6				};

	 square.area()	 is	 a	 function	 call	 that	 in	 this	 case	 will	 return	 9,	 whereas	 square.area	 is	 an
unapplied	function	object.

Self-Check	 6.3.2.	 Given	 the	 code	 in	 Self-Check	 6.3.1,	 explain	 why	 it’s	 is	 incorrect	 to	 write
s=new	square.

	square	is	just	an	object,	not	a	function,	so	it	cannot	be	called	as	a	constructor	(or	at	all).

6.4	The	Document	Object	Model	and	jQuery

The	World	Wide	Web	Consortium	Document	Object	Model	(W3C	DOM)	is	“a	platform-	and	language-
neutral	 interface	 that	will	 allow	 programs	 and	 scripts	 to	 dynamically	 access	 and	 update	 the	 content,

http://en.wikipedia.org/wiki/NewtonScript
http://pastebin.com/CfuHynff
http://www.w3.org/DOM

structure	 and	 style	of	documents”—in	other	words,	 a	 standard	 representation	of	 an	HTML,	XML,	or
XHTML	document	consisting	of	a	hierarchy	of	elements.	A	DOM	element	is	recursively	defined	in	that
one	of	its	properties	is	an	array	of	child	elements,	as	Figure	6.7	shows.	Hence	a	DOM	node	representing
the	<html>	element	of	an	HTML	page	is	sufficient	to	represent	the	whole	page,	since	every	element	on
a	well-formed	page	is	a	descendant	of	<html>.	Other	DOM	element	properties	correspond	to	the	HTML
element’s	attributes	 (href,	src,	 and	 so	on).	When	a	browser	 loads	 a	page,	 the	HTML	of	 the	page	 is
parsed	into	a	DOM	tree	similar	to	Figure	6.7.

DOM	technically	refers	to	the	standard	itself,	but	developers	often	use	it	to	mean	the	specific	DOM	tree	corresponding	to	the	current
page.

Figure	6.7:	A	simplified	view	of	the	DOM	tree	corresponding	to	the	RottenPotatoes	“list	of	movies”	page	with	skeletal	HTML	markup.
An	open	triangle	indicates	places	where	we’ve	elided	the	rest	of	the	subtree	for	brevity.	this.document	is	set	to	point	to	the	DOM	tree’s
root	when	a	page	is	loaded.

How	does	JavaScript	get	access	 to	 the	DOM?	When	JavaScript	 is	embedded	 in	a	browser,	 the	global
object,	 named	 by	 the	 global	 variable	 window,	 defines	 additional	 browser-specific	 properties	 and
functions,	collectively	called	the	JSAPI.	Whenever	a	new	page	is	loaded,	a	new	global	window	object	is
created	that	shares	no	data	with	the	global	objects	of	other	visible	pages.	One	of	the	properties	of	the
global	object	is	window.document,	which	is	the	root	element	of	the	current	document’s	DOM	tree	and
also	 defines	 some	 functions	 to	 query,	 traverse,	 and	 modify	 the	 DOM;	 one	 of	 the	 most	 common	 is
getElementById,	which	you	may	have	run	across	while	perusing	others’	JavaScript	code.

However,	 to	avoid	compatibility	problems	stemming	 from	different	browsers’	 implementations	of	 the
JSAPI,	 we	 will	 bypass	 these	 native	 JSAPI	 functions	 entirely	 in	 favor	 of	 jQuery’s	 more	 powerful
“wrappers”	 around	 them.	 jQuery	 also	 adds	 additional	 features	 and	 behaviors	 absent	 from	 the	 native
JSAPIs,	such	as	animations	and	better	support	for	CSS	and	AJAX	(Section	6.6).

The	jquery-rails	gem	documentation	explains	how	to	manually	add	jQuery	to	your	app	if	using	a	Rails	version	earlier	than	3.1.

https://github.com/rails/jquery-rails

jQuery	defines	a	global	function	jQuery()	(aliased	as	$())	that,	when	passed	a	CSS	selector	(examples
of	which	we	saw	in	Figure	2.5),	returns	all	of	the	current	page’s	DOM	elements	matching	that	selector.
For	 example,	 jQuery(’#movies’)	 or	 $(’#movies’)	 would	 return	 the	 single	 element	 whose	 ID	 is
movies,	if	one	exists	on	the	page;	$(’h1.title’)	would	return	all	the	h1	elements	whose	CSS	class	is
title.	A	more	general	version	of	this	functionality	is	.find(selector),	which	only	searches	the	DOM
subtree	rooted	at	 the	 target.	To	 illustrate	 the	distinction,	$(’p	span’)	 finds	any	span	 element	 that	 is
contained	 inside	 a	 p	 element,	 whereas	 if	 elt	 already	 refers	 to	 a	 particular	 p	 element,	 then
elt.find(’span’)	only	finds	span	elements	that	are	descendants	of	elt.

The	call	jQuery.noConflict()	“undefines”	the	$	alias,	in	case	your	app	uses	the	browser’s	built-in	$	(usually	an	alias	for
document.getElementById)	or	loads	another	JavaScript	library	such	as	Prototype	that	also	tries	to	define	$.

Property	or	function,	example Value/description

$(dom-element)	
$(this)

Returns	a	set	of	jQuery-wrapped	DOM	element(s)	specified	by	the
argument,	which	can	be	a	CSS3	selector	(such	as	’span.center’	or

’#main’),	the	element	object	returned	by	the	browser’s
getElementById	function,	or	in	an	event	handler,	the	element	that
received	the	event,	named	by	this.	The	return	value	of	this	function
is	suitable	as	the	target	for	any	of	the	below	calls.	(Recall	that	the
term	target	is	used	in	JavaScript	the	way	receiver	is	used	in	Ruby.)

is(cond)

Test	if	the	element	is	’:checked’,	’:selected’,	’:enabled’,
’:disabled’.	Note	that	these	strings	were	chosen	to	resemble	Ruby

symbols,	though	JavaScript	doesn’t	have	symbols.

addClass(),	removeClass(),
hasClass()

Shortcuts	for	manipulating	the	class	attribute:	add	or	remove	the
specified	CSS	class	(a	string)	from	the	element,	or	test	whether	the

given	class	is	currently	associated	with	the	element.

insertBefore(),
insertAfter()

Insert	the	target	element(s)	before	or	after	the	argument.	That	is,
newElt.insertBefore(existingElt)	inserts	newElt	just	before

existingElt,	which	must	exist.
remove() Remove	the	target	element(s)	from	the	DOM.

replaceWith(new) Replace	the	target	element(s)	with	the	new	element(s)	provided.

clone()
Return	a	complete	copy	of	the	target	element,	recursively	cloning	its

descendants.

html(),	text()

Return	(with	no	argument)	or	set	(with	one	argument)	the	element’s
complete	HTML	content	or	plain-text	content.	If	the	element	has
other	elements	nested	inside	it,	you	can	replace	its	HTML	with
nested	elements	but	don’t	have	to,	but	replacing	its	text	will

obliterate	the	nested	elements.

val()

Return	(with	no	argument)	or	set	(with	one	argument)	the	current
value	of	the	element.	For	text	boxes,	value	is	the	current	string

contents;	for	buttons,	the	button’s	label;	for	select	menus,	the	text	of
the	currently	selected	value.

http://prototypejs.org

attr(attr,[newval])	
$(’img’).attr(’src’,

’http://imgur.com/xyz’)

Return	or	(with	second	argument)	set	the	value	of	the	given	attribute
on	the	element.

hide(duration,callback),
show(),	toggle()	

slideUp(),	slideDown(),

slideToggle()	
fadeOut(),	fadeIn(),	

fadeTo(duration,target,callback)

Hide	or	show	elements	selected	by	the	target.	Optional	duration	is
one	of	’fast’,	’slow’,	or	the	integer	number	of	milliseconds	that
the	animation	should	last.	Optional	callback	is	a	function	to	call
when	animation	completes.	Other	sets	of	animations	with	same
arguments	include	slideDown/slideUp/slideToggle	and

fadeOut/fadeIn.	For	fadeTo,	second	argument	is	target	opacity,
from	0.0	(transparent)	to	1.0	(opaque).

evt(func)	
$(’li’).click(function()	{

$(this).hide();	

});

Set	func	as	the	handler	for	event	evt	on	the	element(s)	selected	by
the	target.	func	can	be	an	anonymous	function	or	a	named	function.

See	Figure	6.9	for	some	of	the	most	important	event	types.

Figure	6.8:	Some	attributes	and	functions	defined	on	jQuery’s	enhanced	DOM	element	objects;	they	should	be	called	with	the
appropriate	element	or	collection	of	elements	as	the	target	of	the	call	(like	receiver	in	Ruby).	Functions	that	only	make	sense	applied	to	a
single	element,	such	as	attr,	apply	to	the	first	element	when	used	on	a	collection	of	elements.	Functions	that	can	both	read	and	modify
element	properties	act	as	getters	when	the	final	(or	only)	argument	is	absent,	and	setters	when	it’s	present.	Unless	otherwise	noted,	all
functions	return	their	target,	so	calls	can	be	chained,	as	in	elt.insertBefore(...).hide().	See	the	jQuery	documentation	for	more
features	beyond	this	subset.

Whether	 you	 use	 $()	 or	 find,	 the	 return	 value	 is	 a	 node	 set	 (collection	 of	 one	 or	 more	 elements)
matching	the	selector,	or	null	if	there	were	no	matches.	Each	element	is	“wrapped”	in	jQuery’s	DOM
element	representation,	giving	it	abilities	beyond	the	browser’s	built-in	JSAPI.	From	now	on,	we	will
refer	to	such	elements	as	“jQuery-wrapped”	elements,	to	distinguish	them	from	the	representation	that
would	be	returned	by	the	browser’s	native	JSAPI.	In	particular,	you	can	do	various	things	with	jQuery-
wrapped	elements	in	the	node	set,	as	Figure	6.8	shows:
	

To	change	an	element’s	visual	appearance,	define	CSS	classes	that	create	the	desired	appearances,
and	use	jQuery	to	add	or	remove	CSS	class(es)	from	the	element	at	runtime.
To	change	an	element’s	content,	use	 jQuery	 functions	 that	 set	 the	element’s	HTML	or	plain	 text
content.
To	 animate	 an	 element	 (show/hide,	 fade	 in/out,	 and	 so	 on),	 invoke	 a	 jQuery	 function	 on	 that
element	that	manipulates	the	DOM	to	achieve	the	desired	effect.

Note,	however,	 that	even	when	a	node	set	 includes	multiple	matching	elements,	 it	 is	not	a	JavaScript
array	and	you	cannot	treat	it	 like	one:	you	cannot	write	$(’tr’)[0]	 to	select	 the	first	 row	of	a	 table,
even	if	you	first	call	jQuery’s	toArray()	function	on	the	node	set.	Instead,	following	the	Iterator	design
pattern,	 jQuery	provides	an	each	 iterator	defined	on	 the	collection	 that	 returns	one	element	at	a	 time
while	hiding	 the	details	of	how	 the	elements	are	 stored	 in	 the	collection,	 just	as	Array#each	does	 in
Ruby.

Screencast	 6.4.1	 shows	 some	 simple	 examples	 of	 these	 behaviors	 from	 the	 browser’s	 JavaScript
console.	We	will	use	these	to	implement	the	features	of	Screencast	6.1.1.

http://api.jquery.com

Screencast	6.4.1:	Manipulating	the	DOM	with	jQuery
jQuery	makes	it	easy	to	manipulate	the	DOM	from	JavaScript	and	provides	a	built-in	library	of	useful
visual	 effects.	 These	 simple	 examples	 show	 that	 JavaScript	 can	 not	 only	 read	 element	 and	 content
information	 on	 the	 page,	 but	 also	 modify	 the	 elements,	 causing	 the	 browser	 to	 redraw	 them.	 This
behavior	is	the	key	to	client-side	JavaScript.

Finally,	as	we	will	see,	the	jQuery()	or	$()	function	is	overloaded:	its	behavior	depends	on	the	number
and	 types	 of	 arguments	 with	 which	 it’s	 called.	 In	 this	 section	 we	 introduced	 just	 one	 of	 its	 four
behaviors,	namely	for	selecting	elements	in	the	DOM;	we	will	soon	see	the	others.

Summary	of	the	DOM	and	jQuery:
	

The	 World	 Wide	 Web	 Consortium	 Document	 Object	 Model	 (W3C	 DOM)	 is	 a	 language-
independent	representation	of	the	hierarchy	of	elements	that	constitute	an	HTML	document.
All	JavaScript-enabled	browsers	provide	JavaScript	 language	bindings	 to	access	and	 traverse	 the
DOM.	 This	 set	 of	 functionality,	 together	 with	 JavaScript	 access	 to	 other	 browser	 features,	 is
collectively	called	the	JavaScript	Application	Programming	Interface	or	JSAPI.
The	powerful	 jQuery	 library	provides	 a	uniform	adapter	 to	browsers’	differing	 JSAPIs	 and	adds
many	enhanced	functions	such	as	CSS-based	DOM	traversal,	animation,	and	other	special	effects.

Self-Check	 6.4.1.	 Why	 is	 this.document,	 when	 it	 appears	 outside	 the	 scope	 of	 any	 function,
equivalent	to	window.document?
	 Outside	 of	 any	 function,	 the	 value	 of	 this	 is	 the	 global	 object.	When	 JavaScript	 runs	 in	 a	Web

browser,	the	global	object	is	the	window	object.

Self-Check	6.4.2.	True	or	false:	even	after	the	user	closes	a	window	in	her	Web	browser,	the	JavaScript
code	associated	with	 that	window	can	still	 access	and	 traverse	 the	HTML	document	 the	window	had
been	displaying.
	False.	Each	new	HTML	document	gets	its	own	global	object	and	DOM,	which	are	destroyed	when

the	document’s	window	is	closed.

6.5	Events	and	Callbacks

So	far	all	of	our	DOM	manipulation	has	been	by	typing	JavaScript	commands	directly.	As	you’ve	no
doubt	guessed,	much	more	interesting	behaviors	are	possible	when	DOM	manipulation	can	be	triggered
by	user	actions.	As	part	of	the	JSAPI	for	the	DOM,	browsers	allow	attaching	JavaScript	event	handlers
to	the	user	interface:	when	the	user	performs	a	certain	UI	action,	such	as	clicking	a	button	or	moving	the
mouse	into	or	out	of	a	particular	HTML	element,	you	can	designate	a	JavaScript	function	that	will	be
called	and	have	the	opportunity	to	react.	This	capability	makes	the	page	behave	more	like	a	desktop	UI
in	which	individual	elements	respond	visually	to	user	interactions,	and	less	like	a	static	page	in	which
any	interaction	causes	a	whole	new	page	to	be	loaded	and	displayed.

http://vimeo.com/46694004
http://en.wikipedia.org/wiki/Function_overloading

The	less	precise	term	Dynamic	HTML	was	sometimes	used	in	the	past	to	refer	to	the	effects	of	combining	JavaScript-based	DOM
manipulation	and	CSS.

Events	on	arbitrary	elements

click,	dblclick,	mousedown/mouseup,
mouseenter/mouseleave,	keypress	(event.which	gives

the	ASCII	code	of	the	key	pressed)	
focus/blur	(element	gains/loses	focus),

focusin/focusout	(parent	gains/loses	focus)

Events	on	user-editable	controls	(forms,
checkboxes,	radio	buttons,	text	boxes,	text

fields,	menus)

change	fires	when	any	control’s	state	or	content	is	changed.
select	(user	selects	text;	string	event.which	is	selected

text)	
submit	fires	when	the	user	attempts	to	submit	the	form	by

any	means.

Figure	6.9:	A	few	of	the	JavaScript	events	defined	by	the	jQuery	API.	Set	a	handler	for	an	event	with	element.on(’evt’,	func)	or	as	a
shortcut,	element.evt(func).	Hence,	$(’h1’).on(’click’,	function()	{...})	is	equivalent	to	$(’h1’).click(function()	{...}).	The
callback	func	will	be	passed	an	argument	(which	you’re	free	to	ignore)	whose	value	is	the	jQuery	Event	object	describing	the	event	that
was	triggered.	Remember	that	on	and	its	shortcuts	will	bind	the	callback	to	all	elements	matching	the	selector,	so	be	sure	the	selector	you
pass	is	unambiguous,	for	example	by	identifying	an	element	by	its	ID.

Figure	6.9	summarizes	the	most	important	events	defined	by	the	browser’s	native	JSAPI	and	improved
upon	 by	 jQuery.	 While	 some	 are	 triggered	 by	 user	 actions	 on	 DOM	 elements,	 others	 relate	 to	 the
operation	of	the	browser	itself	or	to	“pseudo-UI”	events	such	as	form	submission,	which	may	occur	via
clicking	 a	 Submit	 button,	 pressing	 the	 Enter	 key	 (in	 some	 browsers),	 or	 another	 JavaScript	 callback
causing	the	form	to	be	submitted.	To	attach	a	behavior	to	an	event,	simply	provide	a	JavaScript	function
that	will	be	called	when	the	event	fires.	We	say	that	this	function,	called	a	callback	or	event	handler,	is
bound	to	that	event	on	that	DOM	element.	Although	events	are	automatically	triggered	by	the	browser,
you	can	also	trigger	them	yourself:	for	example,	e.trigger(’click’)	triggers	the	click	event	handler
for	element	e.	As	we	will	see	in	Section	6.7,	this	ability	is	useful	when	testing:	you	can	simulate	user
interaction	and	check	that	the	correct	changes	are	applied	to	the	DOM	in	response	to	a	UI	event.

Browsers	define	built-in	behavior	for	some	events	and	elements:	for	example,	clicking	on	a	link	visits
the	 linked	page.	 If	 such	 an	 element	 also	 has	 a	 programmer-supplied	click	 handler,	 the	handler	 runs
first;	if	the	handler	returns	a	truthy	value	(Figure	6.2),	the	built-in	behavior	runs	next,	but	if	the	handler
returns	a	falsy	value,	the	built-in	behavior	is	suppressed.	What	if	an	element	has	no	handler	for	a	user-
initiated	event,	as	is	the	case	for	images?	In	that	case,	its	parent	element	in	the	DOM	tree	is	given	the
chance	to	respond	to	the	event	handler.	For	example,	if	you	click	on	an	img	element	inside	a	div	and	the
img	has	no	click	handler,	 then	the	div	will	 receive	 the	click	event.	This	process	continues	until	some
element	handles	the	event	or	it	“bubbles”	all	the	way	up	to	the	top-level	window,	which	may	or	may	not
have	a	built-in	response	depending	on	the	event.

Our	 discussion	 of	 events	 and	 event	 handlers	 motivates	 the	 third	 common	 use	 of	 JavaScript’s	 this
keyword	(recall	that	Section	6.3	introduced	the	first	two	uses).	When	an	event	is	handled,	in	the	body	of
the	event	handler	function,	jQuery	will	arrange	for	this	to	refer	to	the	element	to	which	the	handler	is
attached	 (which	may	not	be	 the	element	 that	originally	 received	 the	event,	 if	 the	event	 “bubbled	up”
from	a	descendant).	However,	if	you	were	programming	without	jQuery,	the	value	of	this	in	an	event

http://en.wikipedia.org/wiki/callback

handler	 is	 the	 global	 object	 (document.window),	 and	 you	 have	 to	 examine	 the	 event’s	 data	 structure
(usually	 passed	 as	 the	 final	 argument	 to	 the	 handler)	 to	 identify	 the	 element	 that	 handled	 the	 event.
Since	handling	events	is	such	a	common	idiom,	and	most	of	the	time	an	event	handler	wants	to	inspect
or	manipulate	the	state	of	the	element	on	which	the	event	was	triggered,	jQuery	is	written	to	explicitly
set	this	to	that	DOM	element.

Putting	all	these	pieces	together,	Figure	6.10	shows	the	client-side	JavaScript	to	implement	a	checkbox
that,	when	 checked,	will	 hide	 any	movies	with	 ratings	 other	 than	G	 or	 PG.	Our	 general	 strategy	 for
JavaScript	can	be	summarized	as:
	

1.	 Identify	 the	 DOM	 elements	 we	 want	 to	 operate	 on,	 and	 make	 sure	 there	 is	 a	 convenient	 and
unambiguous	way	of	selecting	them	using	$().

2.	 Create	 the	necessary	 JavaScript	 functions	 to	manipulate	 the	elements	 as	needed.	For	 this	 simple
example	we	can	just	write	them	down,	but	as	we’ll	see	in	Section	6.7,	for	AJAX	or	more	complex
functions	we	will	use	TDD	(Chapter	8)	to	develop	the	code.

3.	 Define	 a	 setup	 function	 that	 binds	 the	 appropriate	 JavaScript	 functions	 to	 the	 elements	 and
performs	any	other	necessary	DOM	manipulation.

4.	 Arrange	to	call	the	setup	function	once	the	document	is	loaded.

http://pastebin.com/s9tPrqjZ

	1	var	MovieListFilter	=	{

	2			filter_adult:	function	()	{

	3					//	’this’	is	*unwrapped*	element	that	received	event	(checkbox)

	4					if	($(this).is(’:checked’))	{

	5							$(’tr.adult’).hide();

	6					}	else	{

	7							$(’tr.adult’).show();

	8					};

	9			},

10			setup:	function()	{

11					//	construct	checkbox	with	label

12					var	labelAndCheckbox	=

13							$(’<label	for="filter">Only	movies	suitable	for	children</label>’	+

14									’<input	type="checkbox"	id="filter"/>’);

15					labelAndCheckbox.insertBefore(’#movies’);

16					$(’#filter’).change(MovieListFilter.filter_adult);

17			}

18	}

19	$(MovieListFilter.setup);	//	run	setup	function	when	document	ready

Figure	6.10:	Using	jQuery	to	add	a	“filter	movies”	checkbox	to	RottenPotatoes’	list	of	movies	page;	put	this	code	in
app/assets/javascripts/movie_list_filter.js.	The	text	walks	through	the	example	in	detail,	and	additional	figures	in	the	rest	of	the
chapter	generalize	the	techniques	shown	here.	Our	examples	use	jQuery’s	DOM	manipulation	features	rather	than	the	browser’s	built-in
ones	because	the	jQuery	API	is	more	consistent	across	different	browsers	than	the	official	W3C	DOM	specification.

For	Step	1,	we	will	modify	our	existing	Rails	movie	list	view	to	attach	the	CSS	class	adult	to	any	table
rows	for	movies	rated	other	than	G	or	PG.	All	we	have	to	do	is	change	line	13	of	the	Index	template

http://pastebin.com/s9tPrqjZ

(Figure	4.6)	as	follows,	thereby	allowing	us	to	write	$(’tr.adult’)	to	select	those	rows:

http://pastebin.com/JM9NP8sP

	1						%tr{:class	=>	(’adult’	unless	movie.rating	=~	/^G|PG$/)}

For	Step	2,	we	provide	the	function	filter_adult,	which	we	will	arrange	to	be	called	whenever	 the
checkbox	is	checked	or	unchecked.	As	lines	4–8	of	Figure	6.10	show,	if	 the	checkbox	is	checked,	the
adult	movie	rows	are	hidden;	if	unchecked,	they	are	revealed.	Recall	from	Figure	6.8	that	:checked	 is
one	 of	 jQuery’s	 built-in	 behaviors	 for	 checking	 the	 state	 of	 an	 element.	 Remember	 also	 that	 jQuery
selectors	such	as	$(’tr.adult’)	generally	 return	a	collection	of	matching	elements,	and	actions	 like
hide()	are	applied	to	the	whole	collection.

Why	does	line	4	refer	to	$(this)	rather	than	just	this?	The	mechanism	by	which	user	interactions	are
dispatched	to	JavaScript	functions	is	part	of	the	browser’s	JSAPI,	so	the	value	of	this	is	the	browser’s
representation	of	the	checkbox	(the	element	that	handled	the	event).	In	order	to	use	the	more	powerful
jQuery	features	such	as	is(’:checked’),	we	have	to	“wrap”	the	native	element	as	a	jQuery	element	by
calling	$	on	it	in	order	to	give	it	these	special	powers.	The	first	row	of	Figure	6.12	shows	this	usage	of
$.

For	 Step	 3,	 we	 provide	 the	 setup	 function,	 which	 does	 two	 things.	 First,	 it	 creates	 a	 label	 and	 a
checkbox	 (lines	12–14),	using	 the	$	mechanism	shown	 in	 the	 second	 row	of	Figure	6.12,	and	 inserts
them	 just	before	 the	movies	 table	 (line	15).	Again,	 by	 creating	 a	 jQuery	 element	we	 are	 able	 to	 call
insertBefore	on	it,	which	is	not	part	of	the	browser’s	built-in	JSAPI.	Most	jQuery	functions	such	as
insertBefore	 return	 the	 target	 object	 itself,	 allowing	 “chaining”	 of	 function	 calls	 as	we’ve	 seen	 in
Ruby.

<input>	outside	<form>?	Yes—it’s	legal	in	HTML	4	and	later,	as	long	as	you	manage	all	the	input’s	behaviors	yourself,	as	we’re	doing.

Second,	 the	 setup	 function	binds	 the	filter_adult	 function	 to	 the	 checkbox’s	change	 handler.	You
might	have	expected	to	bind	to	the	checkbox’s	click	handler,	but	change	is	more	robust	because	it’s	an
example	 of	 a	 “pseudo-UI”	 event:	 it	 fires	 whether	 the	 checkbox	 was	 changed	 by	 a	 mouse	 click,	 a
keypress	(for	browsers	that	have	keyboard	navigation	turned	on,	such	as	for	users	with	disabilities	that
prevent	use	of	a	mouse),	or	even	by	other	JavaScript	code.	The	submit	event	on	forms	is	similar:	it’s
better	to	bind	to	that	event	than	to	bind	to	the	click	handler	on	the	form-submit	button,	in	case	the	user
submits	the	form	by	hitting	the	Enter	key.

Why	didn’t	we	 just	add	 the	 label	and	checkbox	 to	 the	Rails	view	template?	The	reason	 is	our	design
guideline	of	graceful	degradation:	by	using	JavaScript	to	create	the	checkbox,	legacy	browsers	will	not
render	 the	 checkbox	 at	 all.	 If	 the	 checkbox	was	 part	 of	 the	 view	 template,	 users	 of	 legacy	 browsers
would	still	see	the	checkbox,	but	nothing	would	happen	when	they	clicked	on	it.

Why	does	line	16	refer	to	MovieListFilter.filter_adult?	Couldn’t	it	just	refer	to	filter_adult?
No,	because	that	would	imply	that	filter_adult	is	a	variable	name	visible	in	the	scope	of	the	setup
function,	 but	 in	 fact	 it’s	 not	 a	variable	name	at	 all—it’s	 just	 a	 function-valued	property	of	 the	object
MovieListFilter,	which	 is	 a	 (global)	variable.	 It	 is	good	 JavaScript	practice	 to	 create	one	or	 a	 few

http://pastebin.com/JM9NP8sP

global	objects	 to	“encapsulate”	your	 functions	as	properties,	 rather	 than	writing	a	bunch	of	 functions
and	polluting	the	global	namespace	with	their	names.

The	last	step	is	Step	4,	which	is	to	arrange	for	the	setup	function	to	be	called.	For	historical	reasons,
JavaScript	code	associated	with	a	page	can	begin	executing	before	the	entire	page	has	been	loaded	and
the	DOM	fully	parsed.	This	feature	was	more	important	for	responsiveness	when	browsers	and	Internet
connections	were	slower.	Nonetheless,	we	usually	want	to	wait	until	the	page	is	finished	loading	and	the
entire	DOM	has	been	parsed,	or	else	we	might	be	trying	to	bind	callbacks	on	elements	that	don’t	exist
yet!	Line	19	does	this,	adding	MovieListFilter.filter_adult	to	the	list	of	functions	to	be	executed
once	the	page	is	finished	loading,	as	the	last	row	of	Figure	6.12	shows.	Since	you	can	call	$()	multiple
times	 to	run	multiple	setup	functions,	you	can	keep	each	file’s	setup	function	together	with	 that	file’s
functionality,	 as	 we’ve	 done	 here.	 To	 run	 this	 example	 place	 all	 the	 code	 from	 Figure	 6.12	 in
app/assets/javascripts/movie_list_filter.js.

This	 was	 a	 dense	 example,	 but	 it	 illustrates	 the	 basic	 jQuery	 functionality	 you’ll	 need	 for	many	UI
enhancements.	 The	 figures	 and	 tables	 in	 this	 section	 generalize	 the	 techniques	 introduced	 in	 the
example,	 so	 it’s	worth	 spending	 some	 time	perusing	 them.	 In	 particular,	Figure	6.12	 summarizes	 the
four	different	ways	to	use	jQuery’s	$,	all	of	which	we’ve	now	seen.

var	m	=	new	Movie();

(Figure	6.6,	line	13)	In	the	body	of	the	Movie	function,	this	will
be	bound	to	a	new	object	that	will	be	returned	from	the	function,
so	you	can	use	this.title	(for	example)	to	set	its	properties.
The	new	object’s	prototype	will	be	the	same	as	the	function’s

prototype.

pianist.full_title();

(Figure	6.6,	line	15)	When	full_title	executes,	this	will	be
bound	to	the	object	that	“owns”	the	function,	in	this	case

pianist.

$(’#filter’).change(

MovieListFilter.filter_adult);

(Figure	6.10,	line	16)	When	filter_adult	is	called	to	handle	a
change	event,	this	will	refer	to	the	element	on	which	the

handler	was	bound,	in	this	case	one	of	the	element(s)	matching
the	CSS	selector	#filter.

Figure	6.11:	The	three	common	uses	of	this	introduced	in	Sections	6.3	and	6.5.	See	Fallacies	and	Pitfalls	for	more	on	the	use	and	misuse
of	this.

Uses	of	$()	or	jQuery()	with	example Value/side	effects,	line	number	in	Figure	6.10
$(sel)

$(’.mov	span’)

return	collection	of	jQuery-wrapped	elements	selected	by
CSS3	selector	sel	(line	16)

$(elt)	
$(this),	$(document),

$(document.getElementById(’main’))

When	an	element	is	returned	by	a	JSAPI	call	such	as
getElementById	or	supplied	to	an	event-handler	callback,
use	this	function	to	create	a	jQuery-wrapped	version	of	the
element,	on	which	you	can	call	the	operations	in	Figure	6.8

(line	4)
Returns	a	new	jQuery-wrapped	HTML	element

$(HTML[,	attribs])	
$(’<p>boldwords</p>’),

$(’’,	{	

src:	’/rp.gif’,	

click:	handleImgClick	})

corresponding	to	the	passed	text,	which	must	contain	at	least
one	HTML	tag	with	angle	brackets	(otherwise	jQuery	will
think	you’re	passing	a	CSS	selector	and	calling	it	as	in	the
previous	table	row).	If	a	JavaScript	object	is	passed	for

attribs,	it	is	used	to	construct	the	element’s	attributes.	(Lines
13–14)	The	new	element	is	not	automatically	inserted	into
the	document;	Figure	6.8	shows	some	methods	for	doing

that,	one	of	which	is	used	in	line	15.

$(func)	
$(function	()	{.	.	.	});

Run	the	provided	function	once	the	document	has	finished
loading	and	the	DOM	is	ready	to	be	manipulated.	This	is	a
shortcut	for	$(document).ready(func),	which	is	itself	a
jQuery	wrapper	around	the	onLoad()	handler	of	the

browser’s	built-in	JSAPI.	(line	19)

Figure	6.12:	The	four	ways	to	invoke	the	overloaded	function	jQuery()	or	$()	and	the	effects	of	each.	All	four	are	demonstrated	in
Figure	6.10.

Summary	of	jQuery’s	DOM	and	event	handlers:
You	 can	 set	 or	 override	 how	 various	HTML	 elements	 react	 to	 user	 input	 by	 binding	 JavaScript
handlers	 or	 callbacks	 to	 specific	 events	 on	 specific	 elements.	 jQuery	 allows	 you	 to	 bind	 both
“physical”	user	events	such	as	mouse	clicks	and	“logical”	pseudo-events	such	as	form	submission.
Figure	6.9	summarizes	a	subset	of	jQuery	events.
Inside	an	event	handler,	jQuery	causes	this	to	be	bound	to	the	browser’s	DOM	representation	of
the	 element	 that	 handled	 the	 event.	We	 usually	 “wrap”	 the	 element	 to	 get	$(this),	 a	 “jQuery-
wrapped”	element	that	supports	enhanced	jQuery	operations,	such	as	$(this).is(’:checked’).
One	 of	 jQuery’s	 advanced	 features	 is	 the	 ability	 to	 apply	 transformations	 such	 as	 show()	 and
hide()	 to	 a	 collection	 of	 elements	 (for	 example,	 a	 group	 of	 elements	 named	 by	 a	 single	 CSS
selector)	as	well	as	a	single	element.
For	 both	 DRYness	 and	 graceful	 degradation,	 the	 binding	 of	 event	 handlers	 to	 elements	 should
occur	in	a	setup	function	that	 is	called	when	the	document	 is	 loaded	and	ready;	 that	way,	 legacy
non-JavaScript	browsers	will	not	run	the	function	at	all.	Passing	a	function	to	$()	adds	it	to	the	list
of	setup	functions	that	will	be	run	once	the	document	is	finished	loading.

ELABORATION:	Custom	events

Most	of	jQuery’s	events	are	based	on	the	built-in	events	recognized	by	browsers,	but	you	can	also	define	your	own	custom	events
and	use	trigger	to	trigger	them.	For	example,	you	might	enclose	menus	for	month	and	day	in	a	single	outer	element	such	as	a	div
and	then	define	a	custom	update	event	on	the	div	that	checks	that	the	month	and	day	are	compatible.	You	could	isolate	the	checking
code	in	a	separate	event	handler	for	update,	and	use	trigger	to	call	it	from	within	the	change	handlers	for	the	individual	month	and
day	menus.	This	is	one	way	that	custom	handlers	help	DRY	out	your	JavaScript	code.

		

ELABORATION:	JavaScript	and	Rails	view	helpers
In	Section	4.8	we	used	 the	Rails	link_to	helper	with	:method=>:delete	 to	create	a	clickable	 link	 that	would	 trigger	 the	delete

controller	method.	We	noted	that	the	unusual	HTML	generated	by	the	helper	looked	something	like	this:

http://pastebin.com/nRgdBDwU

	1				Delete

Rails’	 conventional	way	 to	 handle	 a	 delete	 operation	 is	 using	 an	HTTP	 POST	 operation	 that	 submits	 a	 form	with	 the	 additional
argument	_method=”delete”,	since	most	browsers	cannot	issue	HTTP	DELETE	requests	directly.	Given	the	knowledge	you’ve	gained
in	this	section,	Figure	6.13	shows	how	link_to	actually	works	by	annotating	code	excerpts	from	the	file	jquery_ujs.js,	which	is
part	 of	 the	 jquery-rails	 gem	 that	 every	 Rails	 app	 uses	 by	 default.	 Since	Web	 crawlers	 don’t	 usually	 execute	 JavaScript,	 the
attribute	rel=”nofollow”	 is	a	request	 to	 the	crawler	or	other	client	not	 to	follow	the	 link,	but	 there’s	no	guarantee	 the	client	will
respect	this	request.	That’s	why	it’s	important	that	your	routes	only	allow	the	“destructive”	controller	actions	to	be	called	with	non-
GET	methods.

http://pastebin.com/AqHkMHRk

	1	//	from	file	jquery_ujs.js	in	jquery-rails	3.0.4	gem

	2	//	(Line	numbers	may	differ	if	you	have	a	different	gem	version)

	3	//	line	23:

	4			$.rails	=	rails	=	{

	5					//	Link	elements	bound	by	jquery-ujs

	6					linkClickSelector:	’a[data-confirm],	a[data-method],	a[data-remote],	a[data-

disable-with]’,

	7	//	line	160:

	8					handleMethod:	function(link)	{

	9									//	...code	elided...

10									form	=	$(’<form	method="post"	action="’	+	href	+	’"></form>’),

11									metadata_input	=	’<input	name="_method"	value="’	+	method	+	’"	type="hidden"	/>’;

12							//	...code	elided...

13							form.hide().append(metadata_input).appendTo(’body’);

14							form.submit();

15					}

Figure	6.13:	When	jquery_ujs	is	loaded,	<a>	elements	having	any	of	the	attributes	data-confirm,	data-method,	data-remote,	or	data-
disable-with	are	bound	to	a	handler	handleMethod	that	executes	when	the	link	is	clicked.	If	the	link	has	a	data-method	attribute,	the
handler	constructs	an	ephemeral	<form>	passing	the	value	of	data-method	as	the	hidden	_method	attribute,	hides	the	form	(so	it	doesn’t
appear	on	the	page	when	constructed),	and	submits	it.	In	Rails	2	and	earlier,	the	link_to	helper	generated	inline	(obtrusive)	JavaScript;
Rails	3	changed	the	behavior	to	more	beautiful	unobtrusive	JavaScript.

		

Self-Check	 6.5.1.	 Explain	 why	 calling	 $(selector)	 is	 equivalent	 to	 calling
$(window.document).find(selector).

	document	 is	a	property	of	the	browser’s	built-in	global	object	(window)	that	refers	to	the	browser’s
representation	 of	 the	 root	 of	 the	 DOM.	Wrapping	 the	 document	 element	 using	 $	 gives	 it	 access	 to
jQuery	functions	such	as	find,	which	locates	all	elements	matching	the	selector	that	are	in	the	subtree
of	its	target;	in	this	case,	the	target	is	the	DOM	root,	so	it	will	find	any	matching	elements	in	the	entire
document.

http://pastebin.com/nRgdBDwU
http://pastebin.com/AqHkMHRk

Self-Check	 6.5.2.	 In	 Self-Check	 6.5.1,	 why	 did	 we	 need	 to	 write	 $(document).find	 rather	 than
document.find?
	document,	also	known	as	window.document,	is	the	browser’s	native	representation	of	the	document

object.	Since	find	is	a	jQuery	function,	we	need	to	“wrap”	document	to	give	it	special	jQuery	powers.

Self-Check	6.5.3.	What	would	happen	if	we	omitted	the	last	line	of	Figure	6.10,	which	arranges	to	call
the	setup	function?
	 The	 browser	 would	 behave	 like	 a	 legacy	 browser	 without	 JavaScript.	 The	 checkbox	wouldn’t	 be

drawn	(since	that	happens	in	the	setup	function)	and	even	if	it	were,	nothing	would	happen	when	it	was
clicked,	since	the	setup	function	binds	our	JavaScript	handler	for	the	checkbox’s	change	event.

6.6	AJAX:	Asynchronous	JavaScript	And	XML

In	1998,	Microsoft	added	a	new	function	to	the	JavaScript	global	object	defined	by	Internet	Explorer	5.
XmlHttpRequest	 (usually	shortened	 to	XHR)	allowed	JavaScript	 code	 to	 initiate	HTTP	 requests	 to	a
server	without	 loading	 a	 new	 page	 and	 use	 the	 server’s	 response	 to	modify	 the	DOM	of	 the	 current
page.	This	new	function,	key	 to	AJAX	apps,	allowed	creating	a	 rich	 interactive	UI	 that	more	closely
resembled	a	desktop	application,	as	Google	Maps	powerfully	demonstrated.	Happily,	you	already	know
all	the	ingredients	needed	for	“AJAX	on	Rails”	programming:

	

1.	 Create	 a	 controller	 action	 or	modify	 an	 existing	 one	 (Section	 4.4)	 to	 handle	 the	AJAX	 requests
made	by	your	JavaScript	code.	Rather	than	rendering	an	entire	view,	the	action	will	render	a	partial
(Section	5.1)	to	generate	a	chunk	of	HTML	for	insertion	into	the	page.

2.	 Construct	your	RESTful	URI	in	JavaScript	and	use	XHR	to	send	the	HTTP	request	to	a	server.	As
you	 may	 have	 guessed,	 jQuery	 has	 helpful	 shortcuts	 for	 many	 common	 cases,	 so	 we	 will	 use
jQuery’s	higher-level	and	more	powerful	functions	rather	than	calling	XHR	directly.

3.	 Because	JavaScript	is	by	definition	single-threaded—it	can	only	work	on	one	task	at	a	time	until
that	 task	 completes—the	 browser’s	 UI	 would	 be	 “frozen”	 while	 JavaScript	 awaited	 a	 response
from	the	server.	Therefore	XHR	instead	returns	immediately	and	lets	you	provide	an	event	handler
callback	(as	you	did	for	browser-only	programming	in	Section	6.5)	that	will	be	triggered	when	the
server	responds	or	an	error	occurs.

4.	 When	the	response	arrives	at	the	browser,	your	callback	is	passed	the	response	content.	It	can	use
jQuery’s	replaceWith()	 to	replace	an	existing	element	entirely,	text()	or	html()	 to	update	an
element’s	content	in	place,	or	an	animation	such	as	hide()	to	hide	or	show	elements,	as	Figure	6.8
showed.	Because	JavaScript	functions	are	closures	(like	Ruby	blocks),	the	callback	has	access	to
all	the	variables	visible	at	the	time	the	XHR	call	was	made,	even	though	it	executes	at	a	later	time
and	in	a	different	environment.

			Let’s	illustrate	how	each	step	works	for	the	AJAX	feature	shown	in	Screencast	6.1.1,	in	which
movie	details	 appear	 in	 a	 floating	window	 rather	 than	 loading	 a	 separate	 page.	Step	1	 requires	 us	 to
identify	 or	 create	 a	 new	 controller	 action	 that	will	 handle	 the	 request.	We	will	 just	 use	 our	 existing
MoviesController#show	 action,	 so	 we	 don’t	 need	 to	 define	 a	 new	 route.	 This	 design	 decision	 is
defensible	 since	 the	AJAX	version	 of	 the	 action	 performs	 the	 same	 function	 as	 the	 original	 version,
namely	 the	RESTful	 “show”	 action.	We	will	modify	 the	show	 action	 so	 that	 if	 it’s	 responding	 to	 an
AJAX	request,	it	will	render	the	simple	partial	in	Figure	6.14(a)	rather	than	an	entire	view.	You	could

http://en.wikipedia.org/wiki/Thread_(computer_science)

also	 define	 separate	 controller	 actions	 exclusively	 for	 AJAX,	 but	 that	 might	 be	 non-DRY	 if	 they
duplicate	the	work	of	existing	actions.

How	does	our	controller	 action	know	whether	show	was	called	 from	JavaScript	 code	or	by	a	 regular
user-initiated	 HTTP	 request?	 Fortunately,	 every	 major	 JavaScript	 library	 and	 most	 browsers	 set	 an
HTTP	header	X-Requested-With:	XMLHttpRequest	 on	 all	AJAX	HTTP	 requests.	 The	Rails	 helper
method	 xhr?,	 defined	 on	 the	 controller	 instance’s	 request	 object	 representing	 the	 incoming	 HTTP
request,	 checks	 for	 the	 presence	 of	 this	 header.	 Figure	 6.14(b)	 shows	 the	 controller	 action	 that	 will
render	the	partial.

http://pastebin.com/mcmdUnqA

	1	%p=	movie.description

	2	

	3	=	link_to	’Edit	Movie’,	edit_movie_path(movie)

	4	=	link_to	’Close’,	’’,	{:id	=>	’closeLink’}

http://pastebin.com/ck2q1ZxJ

	1	class	MoviesController	<	ApplicationController

	2			def	show

	3					id	=	params[:id]	#	retrieve	movie	ID	from	URI	route

	4					@movie	=	Movie.find(id)	#	look	up	movie	by	unique	ID

	5					render(:partial	=>	’movie’,	:object	=>	@movie)	if	request.xhr?

	6					#	will	render	app/views/movies/show.<extension>	by	default

	7			end

	8	end

Figure	6.14:	(a)	Top:	a	simple	partial	that	will	be	rendered	and	returned	to	the	AJAX	request.	We	give	the	“Close”	link	a	unique	element
ID	so	we	can	conveniently	bind	a	handler	to	it	that	will	hide	the	popup.	(b)	Bottom:	The	controller	action	that	renders	the	partial,	obtained
by	a	simple	change	to	Figure	4.9:	if	the	request	is	an	AJAX	request,	line	5	performs	a	render	and	immediate	return.	The	:object	option
makes	@movie	available	to	the	partial	as	a	local	variable	whose	name	matches	the	partial’s	name,	in	this	case	movie.	If	xhr?	is	not	true,	the
controller	method	will	perform	the	default	rendering	action,	which	is	to	render	the	show.html.haml	view	as	usual.

http://pastebin.com/zZPKvmVW

	1	var	MoviePopup	=	{

	2			setup:	function()	{

	3					//	add	hidden	’div’	to	end	of	page	to	display	popup:

	4					var	popupDiv	=	$(’<div	id="movieInfo"></div>’);

	5					popupDiv.hide().appendTo($(’body’));

	6					$(document).on(’click’,	’#movies	a’,	MoviePopup.getMovieInfo);

	7			}

	8			,getMovieInfo:	function()	{

	9					$.ajax({type:	’GET’,

10													url:	$(this).attr(’href’),

11													timeout:	5000,

12													success:	MoviePopup.showMovieInfo,

http://pastebin.com/mcmdUnqA
http://pastebin.com/ck2q1ZxJ
http://pastebin.com/zZPKvmVW

13													error:	function(xhrObj,	textStatus,	exception)	{	alert(’Error!’);	}

14													//	’success’	and	’error’	functions	will	be	passed	3	args

15												});

16					return(false);

17			}

18			,showMovieInfo:	function(data,	requestStatus,	xhrObject)	{

19					//	center	a	floater	1/2	as	wide	and	1/4	as	tall	as	screen

20					var	oneFourth	=	Math.ceil($(window).width()	/	4);

21					$(’#movieInfo’).

22							css({’left’:	oneFourth,		’width’:	2*oneFourth,	’top’:	250}).

23							html(data).

24							show();

25					//	make	the	Close	link	in	the	hidden	element	work

26					$(’#closeLink’).click(MoviePopup.hideMovieInfo);

27					return(false);		//	prevent	default	link	action

28			}

29			,hideMovieInfo:	function()	{

30					$(’#movieInfo’).hide();

31					return(false);

32			}

33	};

34	$(MoviePopup.setup);

Figure	6.15:	The	ajax	function	constructs	and	sends	an	XHR	request	with	the	given	characteristics.	type	specifies	the	HTTP	verb	to	use,
url	is	the	URL	or	URI	for	the	request,	timeout	is	the	number	of	milliseconds	to	wait	for	a	response	before	declaring	failure,	success
specifies	a	function	to	call	with	the	returned	data,	and	error	specifies	a	function	to	call	if	a	timeout	or	other	error	occurs.	Many	more
options	to	the	ajax	function	are	available,	in	particular	for	more	robust	error	handling.

Moving	on	to	step	2,	how	should	our	JavaScript	code	construct	and	fire	off	the	XHR	request?	As	the
screencast	showed,	we	want	the	floating	window	to	appear	when	we	click	on	the	link	that	has	the	movie
name.	As	Section	6.5	explained,	we	can	“hijack”	 the	built-in	behavior	of	 an	element	by	attaching	an
explicit	JavaScript	click	handler	to	it.

HiJax	is	sometimes	humorously	used	to	describe	this	technique.

Of	course,	for	graceful	degradation,	we	should	only	hijack	the	link	behavior	if	JavaScript	is	available.
So	 following	 the	 same	 strategy	 as	 the	 example	 in	 Section	 6.5,	 our	 setup	 function	 (lines	 2–8	 of
Figure	 6.15)	 binds	 the	 handler	 and	 creates	 a	 hidden	 div	 to	 display	 the	 floating	 window.	 Legacy
browsers	won’t	run	that	function	and	will	just	get	the	default	behavior	of	clicking	on	the	link.

The	actual	click	handler	getMovieInfo	must	fire	off	the	XHR	request	and	provide	a	callback	function
that	will	be	called	with	the	returned	data.	For	this	we	use	jQuery’s	ajax	function,	which	takes	an	object
whose	properties	specify	the	characteristics	of	the	AJAX	request,	as	lines	10–15	of	Figure	6.15	show.

Of	course,	$.ajax	is	just	an	alias	for	jQuery.ajax.

Our	example	shows	a	subset	of	the	properties	you	can	specify	in	this	object;	one	important	property	we
don’t	show	is	data,	which	can	be	either	a	string	of	arguments	to	append	to	the	URI	(as	in	Figure	2.3)	or
a	JavaScript	object,	in	which	case	the	object’s	properties	and	their	values	will	be	serialized	into	a	string

that	can	be	appended	to	the	URI.	As	always,	such	arguments	would	then	appear	in	the	params[]	hash
available	to	our	Rails	controller	actions.

Screencast	6.6.1	uses	the	Firebug	interactive	debugger	as	well	as	the	Rails	debugger	to	step	through	the
rest	of	the	code	in	Figure	6.15.	Getting	the	URI	that	is	the	target	of	the	XHR	request	is	easy:	since	the
link	we’re	hijacking	already	links	to	the	RESTful	URI	for	showing	movie	details,	we	can	query	its	href
attribute,	as	line	11	shows.	Lines	13–14	remind	us	that	function-valued	properties	can	specify	either	a
named	 function,	 as	 success	 does,	 or	 an	 anonymous	 function,	 as	 error	 does.	 To	 keep	 the	 example
simple,	our	error	behavior	is	rudimentary:	no	matter	what	kind	of	error	happens,	including	a	timeout	of
5000	ms	(5	seconds),	we	just	display	an	alert	box.	In	case	of	success,	we	specify	showMovieInfo	as	the
callback.

http://pastebin.com/vWwDrYEc

	1	#movieInfo	{

	2			padding:	2ex;

	3			position:	absolute;

	4			border:	2px	double	grey;

	5			background:	wheat;

	6	}

Figure	6.16:	Adding	this	code	to	app/assets/stylesheets/application.css	specifies	that	the	“floating”	window	should	be	positioned
at	absolute	coordinates	rather	than	relative	to	its	enclosing	element,	but	as	the	text	explains,	we	don’t	know	until	runtime	what	those
coordinates	should	be,	so	we	use	jQuery	to	dynamically	modify	#movieInfo’s	CSS	style	properties	when	we	are	ready	to	display	the
floating	window.

Screencast	6.6.1:	Interactively	single-stepping	through	AJAX
AJAX	debugging	 requires	 a	 combination	of	 a	 JavaScript	debugger	 such	as	Firebug	and	a	 server-side
debugger	such	as	debugger,	which	you	met	in	Chapter	4.	Be	aware	that	Firefox’s	“Information”	views
(such	 as	 we	 used	 in	 Screencast	 2.3.2	 work	 by	 modifying	 the	 DOM	 itself	 to	 show	 the	 popups	 and
tooltips,	so	if	you’re	“testing	things	out”	using	the	JavaScript	console,	you	may	get	unexpected	results	if
these	 features	 are	 active.	Note:	 The	 JavaScript	 code	 in	 the	 screencast	 uses	 the	 name	 RP	 rather	 than
MoviePopup	to	name	the	global	variable	that	stores	the	JavaScript	functions	related	to	this	example,	but
other	than	that	difference,	the	code	is	the	same.

Some	interesting	CSS	trickery	happens	in	lines	20	and	23	of	Figure	6.15.	Since	our	goal	is	to	“float”	the
popup	 window,	 we	 can	 use	 CSS	 to	 specify	 its	 positioning	 as	 absolute	 by	 adding	 the	 markup	 in
Figure	 6.16.	 But	 without	 knowing	 the	 size	 of	 the	 browser	 window,	 we	 don’t	 know	 how	 large	 the
floating	 window	 should	 be	 or	 where	 to	 place	 it.	 showMovieInfo	 computes	 the	 dimensions	 and
coordinates	of	a	floating	div	half	as	high	and	one-fourth	as	tall	as	the	browser	window	itself	(line	20).	It
replaces	 the	HTML	contents	 of	 the	div	with	 the	 data	 returned	 from	 the	 server	 (line	 22),	 centers	 the
element	 horizontally	 over	 the	main	window	 and	 250	 pixels	 from	 the	 top	 edge	 (line	 23),	 and	 finally
shows	the	div,	which	up	until	now	has	been	hidden	(line	24).

http://pastebin.com/vWwDrYEc
http://vimeo.com/47064979

There’s	one	last	thing	to	do:	the	floated	div	has	a	“Close”	link	that	should	make	it	disappear,	so	line	26
binds	 a	 very	 simple	 click	 handler	 to	 it.	 Finally,	 showMovieInfo	 returns	 false	 (line	 27).	 Why?
Because	 the	 handler	was	 called	 as	 the	 result	 of	 clicking	 on	 a	 link	 (<a>)	 element,	we	 need	 to	 return
false	to	suppress	the	default	behavior	associated	with	that	action,	namely	following	the	link.	(For	the
same	reason,	the	“Close”	link’s	click	handler	returns	false	in	line	31.)

With	so	many	different	functions	to	call	for	even	a	simple	example,	it	can	be	hard	to	trace	the	flow	of
control	when	debugging.	While	you	can	always	use	console.log(string)	 to	write	messages	 to	your
browser’s	 JavaScript	 console	 window,	 it’s	 easy	 to	 forget	 to	 remove	 these	 in	 production,	 and	 as
Chapter	8	describes,	such	“printf	debugging”	can	be	slow,	 inefficient	and	frustrating.	In	Section	6.7
we’ll	introduce	a	better	way	by	creating	tests	with	Jasmine.

Lastly,	 there	 is	 one	 caveat	 we	 need	 to	 mention	 which	 could	 arise	 when	 you	 use	 JavaScript	 to
dynamically	 create	 new	 elements	 at	 runtime,	 although	 it	 didn’t	 arise	 in	 this	 particular	 example.	We
know	 that	 $(’.myClass’).on(’click’,func)	 will	 bind	 func	 as	 the	 click	 handler	 for	 all	 current
elements	 that	 match	 CSS	 class	 myClass.	 But	 if	 you	 then	 use	 JavaScript	 to	 create	 new	 elements
matching	 myClass	 after	 the	 initial	 page	 load	 and	 initial	 call	 to	 on,	 those	 elements	 won’t	 have	 the
handler	bound	to	them,	because	on	can	only	bind	handlers	to	already-existing	elements.

A	common	solution	to	this	problem	is	to	take	advantage	of	a	jQuery	mechanism	that	allows	an	ancestor
element	 to	 delegate	 event	 handling	 to	 a	 descendant,	 by	 using	 on’s	 polymorphism:
$(’body’).on(’click’,’.myClass’,func)	 binds	 the	HTML	body	 element	 (which	always	exists)	 to
the	click	event,	but	delegates	the	event	to	any	descendant	matching	the	selector	.myClass.	Since	the
delegation	 check	 is	 done	 each	 time	 an	 event	 is	 processed,	 new	 elements	 matching	 .myClass	 will
“automagically”	have	func	bound	as	their	click	handler	when	created.

Summary	of	AJAX:
	

To	create	an	AJAX	interaction,	 figure	out	what	what	elements	will	acquire	new	behaviors,	what
new	elements	may	need	to	be	constructed	to	support	 the	 interaction	or	display	responses,	and	so
on.
An	 AJAX	 interaction	 will	 usually	 involve	 three	 pieces	 of	 code:	 the	 handler	 that	 initiates	 the
request,	 the	 callback	 that	 receives	 the	 response,	 and	 the	 code	 in	 the	 document.ready	 function
(setup	 function)	 to	bind	 the	handler.	 It’s	more	 readable	 to	do	each	 in	 a	 separate	named	 function
rather	than	providing	anonymous	functions.
Just	as	we	did	in	the	example	of	Section	6.5,	for	graceful	degradation,	any	page	elements	used	only
in	AJAX	interactions	should	be	constructed	in	your	setup	function(s),	rather	than	being	included	on
the	HTML	page	itself.
Both	 interactive	 debuggers	 such	 as	 Firebug	 or	 the	 JavaScript	 consoles	 in	 Google	 Chrome	 and
Safari	and	“printf	debugging”	using	console.log()	can	help	you	find	JavaScript	problems,	but
a	better	way	is	through	testing,	which	we	show	how	to	do	in	Section	6.7.

ELABORATION:	Event-driven	programming

The	programming	model	 in	which	operations	specify	a	completion	callback	rather	 than	waiting	for	completion	 to	occur	 is	called
event-driven	programming.	As	you	might	conclude	from	the	number	of	handlers	and	callbacks	in	this	simple	example,	event-driven
programs	are	considered	harder	to	write	and	debug	than	task-parallel	programs	such	as	Rails	apps,	in	which	separate	machinery	in
the	app	server	effectively	creates	multiple	copies	of	our	app	to	handle	multiple	simultaneous	users.	Of	course,	behind	the	scenes,	the
operating	system	is	switching	among	those	tasks	just	as	programmers	do	manually	in	JavaScript:	when	one	user’s	“copy”	of	the	app
is	blocked	waiting	for	a	response	from	the	database,	for	example,	another	user’s	copy	is	allowed	to	make	progress,	and	the	first	copy
gets	 “called	back”	when	 the	 database	 response	 arrives.	 In	 this	 sense,	 event-driven	 and	 task-parallel	 programming	 are	 duals,	 and
emerging	standards	such	as	WebWorkers	enable	task	parallelism	in	JavaScript	by	allowing	different	copies	of	a	JavaScript	program
to	 run	 simultaneously	 on	 different	 operating	 system	 threads.	 However,	 JavaScript	 itself	 lacks	 concurrency	 abstractions	 such	 as
Java’s	synchronized	and	inter-thread	communication,	so	concurrency	must	be	managed	explicitly	by	the	application.

Self-Check	6.6.1.	In	line	13	of	Figure	6.15,	why	did	we	write	MoviePopup.showMovieInfo	instead	of
MoviePopup.showMovieInfo()?
	The	former	is	the	actual	function,	which	is	what	ajax	expects	as	its	success	property,	whereas	the

latter	is	a	call	to	the	function.

Self-Check	 6.6.2.	 In	 line	 33	 of	 Figure	 6.15,	 why	 did	 we	 write	 $(MoviePopup.setup)	 rather	 than
$(’MoviePopup.setup’)	or	$(MoviePopup.setup())?
	We	need	to	pass	the	actual	function	to	$(),	not	its	name	or	the	result	of	calling	it.

Self-Check	 6.6.3.	 Continuing	 Self-Check	 6.6.2,	 if	 we	 had	 accidentally	 called
$(’MoviePopup.setup’),	would	the	result	be	a	syntax	error	or	legal	but	unintended	behavior?
	Recall	that	$()	is	overloaded,	and	when	called	with	a	string,	it	tries	to	interpret	the	string	as	HTML

markup	if	it	contains	any	angle	brackets	or	a	CSS	selector	otherwise.	The	latter	applies	in	this	case,	so	it
would	return	an	empty	collection,	since	there	are	no	elements	whose	tag	is	MoviePopup	and	whose	CSS
class	is	setup.

6.7	Testing	JavaScript	and	AJAX

			Even	our	simple	AJAX	example	has	many	moving	parts.	In	this	section	we	show	how	to	test	it
using	 Jasmine,	 an	 open-source	 JavaScript	 TDD	 framework	 developed	 by	 Pivotal	 Labs.	 Jasmine	 is
designed	to	mimic	RSpec	and	support	the	same	TDD	practices	RSpec	supports.	The	rest	of	this	section
assumes	you’ve	read	Chapter	8	or	are	otherwise	proficient	with	TDD	and	RSpec;	as	Figure	6.17	shows,
we	will	reuse	all	those	TDD	concepts	in	Jasmine.

What RSpec/Ruby Jasmine/JavaScript
Libraries rspec,	rspec-rails	gems jasmine	gem,	jasmine-jquery	add-on

Setup rails	generate

rspec:install
rails	generate	jasmine:install

Test	files
spec/models/,

spec/controllers/,

spec/helpers

spec/javascripts/

Naming
conventions

spec/models/movie_spec.rb

contains	tests	for
app/models/movie.rb

spec/javascripts/movie_popup_spec.js	contains
tests	for	app/assets/javascripts/movie_popup.js;
spec/javascripts/moviePopupSpec.js	contains	tests

for	app/assets/javascripts/moviePopup.js
Configuration

file
.rspec spec/javascripts/support/jasmine.yml

http://en.wikipedia.org/wiki/event-driven_programming
http://en.wikipedia.org/wiki/task_parallelism
http://en.wikipedia.org/wiki/Web_Workers

Run	all	tests rake	spec

rake	jasmine,	then	visit	http://localhost:8888;	or
rake	jasmine:ci	to	run	once	using

Selenium/Webdriver	and	capture	the	output;	or	use
jasmine-headless-webkit	to	run	from	command	line

with	no	browser

Figure	6.17:	Comparison	of	setting	up	and	using	Jasmine	and	RSpec.	All	paths	are	relative	to	the	app	root	and	all	commands	should	be
run	from	the	app	root.	As	you	can	see,	the	main	difference	is	the	use	of	lower_snake_case	for	filenames	and	method	names	in	Ruby,
versus	lowerCamelCase	in	JavaScript.

http://pastebin.com/YPssaaXU

	1	rails	generate	jasmine:install

	2	mkdir	spec/javascripts/fixtures

	 3	 curl	 https://raw.githubusercontent.com/velesin/jasmine-

jquery/master/lib/jasmine-jquery.js	>	spec/javascripts/helpers/jasmine-jquery.js

	4	git	add	spec/javascripts

Figure	6.18:	Creating	the	Jasmine-related	directories	in	your	app.	Line	1	creates	a	spec/javascripts	directory	where	our	tests	will	go,
with	subdirectories	support	and	helper	analogous	to	RSpec’s	setup	(Section	8.2).	Line	2	adds	a	subdirectory	for	fixtures	(Section	8.5).
Line	3	installs	an	add-on	to	Jasmine	that	provides	extra	support	for	testing	jQuery-based	code	and	for	using	fixtures.	Line	4	adds	these
new	JavaScript	TDD	files	to	your	project.

			To	start	using	Jasmine,	add	gem	’jasmine’	to	your	Gemfile	and	run	bundle	as	usual,	then	run
the	 commands	 in	 Figure	 6.18	 from	 your	 app’s	 root	 directory.	 For	 esoteric	 reasons,	 we	 can’t	 run	 a
completely	 empty	 Jasmine	 test	 suite,	 so	 create	 the	 file	 spec/javascripts/sanity_check_spec.js
containing	the	following	code:

http://pastebin.com/gD120Ena

	1				describe(’Jasmine	sanity	check’,	function()	{

	2						it(’works’,	function()	{		expect(true).toBe(true);	});

	3				});

To	run	tests,	type	rake	jasmine,	and	once	it’s	running	browse	to	http://localhost:8888	to	see	the
test	 results.	 From	 now	 on,	 when	 we	 change	 any	 code	 in	 app/assets/javascripts	 or	 tests	 in
spec/javascripts,	just	reload	the	browser	page	to	rerun	all	the	tests.

Self-checking?	rake	jasmine:ci	runs	the	Jasmine	suite	just	once	using	Webdriver	and	collects	the	output,	and	the	(faster)
jasmineheadlesswebkit	or	the	Jasmine-Rails	gem	run	tests	without	the	overhead	of	running	a	browser.	Either	method	would	work	in	an
automated	continuous	integration	(CI)	environment	(Section	12.3)	where	there’s	no	human	watching	the	test	results	on	the	browser	page.

Testing	AJAX	code	must	address	two	problems,	and	if	you	have	read	about	TDD	in	Chapter	8,	you’re
already	familiar	with	the	solutions	to	both.	First,	just	as	we	did	in	Section	8.6,	we	must	be	able	to	“stub
out	the	Internet”	by	intercepting	AJAX	calls,	so	that	we	can	return	“canned”	AJAX	responses	and	test

http://johnbintz.github.com/jasmine-headless-webkit/
http://pastebin.com/YPssaaXU
http://pastebin.com/gD120Ena
http://johnbintz.github.com/jasmine-headless-webkit/
https://github.com/searls/jasmine-rails

our	JavaScript	code	 in	 isolation	 from	the	server.	We	will	 solve	 this	problem	using	stubs.	Second,	our
JavaScript	code	expects	to	find	certain	elements	on	the	rendered	page,	but	as	we	just	saw,	when	running
Jasmine	tests	 the	browser	is	viewing	the	Jasmine	reporting	page	rather	than	our	app.	Happily,	we	can
use	fixtures	to	test	JavaScript	code	that	relies	on	the	presence	of	certain	DOM	elements	on	the	page,	just
as	we	used	them	in	Section	8.5	to	test	Rails	app	code	that	relies	on	the	presence	of	certain	items	in	the
database.

Structure	of	test	cases	⋅	it(”does	something”,	function()	{.	.	.	})	
Specifies	 a	 single	 test	 (spec)	 by	 giving	 a	 descriptive	 name	 and	 a	 function	 that	 performs	 the	 test.	 ⋅
describe(”behaviors”,	function(){.	.	.	})	
Collects	a	related	set	of	specs;	the	function	body	consists	of	calls	to	it,	beforeEach,	and	afterEach.
describes	can	be	nested.	⋅	beforeEach	and	afterEach	
Setup/teardown	functions	that	are	run	before	each	it	block	within	the	same	describe	block.	As	with
RSpec,	if	describes	are	nested,	all	beforeEach	are	run	from	the	outside	in,	and	all	afterEach	 from
the	inside	out.

Expectations

An	 expectation	 in	 a	 spec	 takes	 the	 form	 expect(object).expectation	 or
expect(object).not.expectation

Commonly	used	expectations	built	into	Jasmine:
	

toEqual(val),	toBeTruthy(),	toBeFalsy()

Test	for	equality	using	==,	or	that	an	expression	evaluates	to	Boolean	true	or	false.

Commonly	used	 expectations	 provided	by	 the	 Jasmine	 jQuery	 add-on—in	 this	 case,	 the	 argument	 of
expect	should	be	a	jQuery-wrapped	element	or	set	of	elements:
	

toBeSelected(),	toBeChecked(),	toBeDisabled(),	toHaveValue(stringValue)	
Expectations	on	input	elements	in	forms.
toBeVisible(),	toBeHidden()	
Hidden	is	true	if	the	element	has	zero	width	and	height,	if	it	is	a	form	input	with	type=”hidden”,
or	if	the	element	or	one	of	its	ancestors	has	the	CSS	property	display:	none.
toExist(),	toHaveClass(class),	toHaveId(id),	toHaveAttr(attrName,attrValue)	
Tests	various	attributes	and	characteristics	of	an	element.
toHaveText(stringOrRegexp),	toContainText(string)

Tests	 if	 the	element’s	 text	exactly	matches	 the	given	string	or	 regexp,	or	contains	 the	given
substring.

Figure	6.19:	A	partial	summary	of	a	small	subset	of	commonly	used	features	in	Jasmine	and	Jasmine-jQuery,	following	the	structure	of

Figures	8.17	and	8.18	and	extracted	from	the	complete	Jasmine	documentation	and	Jasmine	jQuery	add-on	documentation.

Stubs	(Spies)	⋅	spyOn(obj,	’func’)	
Creates	and	returns	a	spy	(mock)	of	an	existing	function,	which	must	be	a	function-valued	property	of
obj	named	by	func.	The	spy	replaces	 the	existing	function.	⋅	calls	 is	a	property	of	a	spy	that	 tracks
calls	that	have	been	made	to	it,	and	the	array	args[]	of	the	arguments	of	each	call.

The	following	modifiers	can	be	called	on	a	spy	to	control	its	behavior:
	

and.returnValue(value)
and.throwError(exception)

and.callThrough()

and.callFake(func)

func	must	be	a	function	of	zero	arguments,	though	it	has	access	to	the	arguments	with	which
the	spy	was	called	via	spy.calls.mostRecent().args[],	and	can	call	other	functions	using
these	arguments.

Fixtures	and	factories	(requires	jasmine-jquery)
	

sandbox({class:	’myClass’,	id:	’myId’})	
Creates	an	empty	div	with	the	given	HTML	attributes,	if	any;	default	is	an	empty	div	with	no	CSS
class	and	an	ID	of	sandbox.	An	alternative	way	to	create	the	argument	to	setFixtures	that	avoids
putting	literal	HTML	strings	into	your	test	code.
loadFixtures(”file.html”)	
Load	HTML	content	from	in	spec/javascripts/fixtures/file.html	and	put	it	inside	a	div	with
ID	jasmine-fixtures,	which	is	cleaned	out	between	test	cases.
setFixtures(HTMLcontent)	
Create	a	 fixture	directly	 instead	of	 loading	 it	 from	a	file.	HTMLcontent	 can	be	a	 literal	 string	of
HTML	 such	 as	 <p	 class=”foo”>text</p>	 or	 a	 jQuery-wrapped	 element	 such	 as
$(’<p	class=”foo”>text</p>’).
getJSONFixture(”file.json”)	
Returns	 the	 JSON	 object	 in	 spec/javascripts/fixtures/file.json.	 Useful	 for	 storing	 mock
data	to	simulate	the	result	of	an	AJAX	call	without	having	to	put	literal	JSON	objects	into	your	test
code.

Figure	6.20:	Continuation	of	Figure	6.19	describing	stubs	(spies	in	Jasmine)	and	fixtures.

Figure	 6.19	 gives	 an	 overview	 of	 Jasmine	 for	 RSpec	 users.	 We	 will	 walk	 through	 five	 happy-path
Jasmine	 specs	 for	 the	 popup-window	 functionality	 developed	 in	 Section	 6.6.	 While	 these	 tests	 are
hardly	exhaustive	even	for	the	happy	path,	our	goal	is	to	illustrate	Jasmine	testing	techniques	generally
and	the	use	of	Jasmine	stubs	and	fixtures	in	AJAX	testing	specifically.

http://pivotal.github.com/jasmine
http://github.com/velesin/jasmine-jquery

http://pastebin.com/zhQw7uUd

	1	describe(’MoviePopup’,	function()	{

	2			describe(’setup’,	function()	{

	3					it(’adds	popup	Div	to	main	page’,	function()	{

	4							expect($(’#movieInfo’)).toExist();

	5					});

	6					it(’hides	the	popup	Div’,	function()	{

	7							expect($(’#movieInfo’)).toBeHidden();

	8					});

	9			});

10			describe(’clicking	on	movie	link’,	function()	{

11					beforeEach(function()	{	loadFixtures(’movie_row.html’);	});

12					it(’calls	correct	URL’,	function()	{

13							spyOn($,	’ajax’);

14							$(’#movies	a’).trigger(’click’);

15							expect($.ajax.calls.mostRecent().args[0][’url’]).toEqual(’/movies/1’);

16					});

17					describe(’when	successful	server	call’,	function()	{

18							beforeEach(function()	{

19									var	htmlResponse	=	readFixtures(’movie_info.html’);

20									spyOn($,	’ajax’).and.callFake(function(ajaxArgs)	{

21											ajaxArgs.success(htmlResponse,	’200’);

22									});

23									$(’#movies	a’).trigger(’click’);

24							});

25							it(’makes	#movieInfo	visible’,	function()	{

26									expect($(’#movieInfo’)).toBeVisible();

27							});

28							it(’places	movie	title	in	#movieInfo’,	function()	{

29									expect($(’#movieInfo’).text()).toContain(’Casablanca’);

30							});

31					});

32			});

33	});

Figure	6.21:	Five	happy-path	Jasmine	specs	for	the	AJAX	code	developed	in	Section	6.6.	Lines	2–9	check	whether	the
MoviePopup.setup	function	correctly	sets	up	the	floating	div	that	will	be	used	to	display	movie	info.	Lines	10–32	check	the	behavior	of
the	AJAX	code	without	actually	calling	the	RottenPotatoes	server	by	stubbing	around	the	AJAX	call.

The	basic	 structure	of	 Jasmine	 test	 cases	 is	 immediately	 evident	 in	Figure	6.21:	 like	RSpec,	 Jasmine
uses	it	 to	specify	a	single	example	and	nestable	describe	blocks	 to	group	 related	sets	of	examples.
Just	 as	 in	RSpec,	describe	 and	it	 take	 a	 block	of	 code	 as	 an	 argument,	 but	whereas	 in	Ruby	 code
blocks	 are	 delimited	 by	do...end,	 in	 JavaScript	 they	 are	 anonymous	 functions	 (functions	without	 a
name)	of	zero	arguments.	The	punctuation	sequence	});	is	so	prevalent	because	describe	and	it	are
JavaScript	functions	of	two	arguments,	the	second	of	which	is	a	function	of	no	arguments.

The	 describe(’setup’)	 examples	 check	 that	 the	 MoviePopup.setup	 function	 correctly	 creates	 the
#movieInfo	 container	 but	 keeps	 it	 hidden	 from	 display.	 toExist	 and	 toBeHidden	 are	 expectation
matchers	provided	by	the	Jasmine-jQuery	add-on.	Since	Jasmine	loads	all	your	JavaScript	files	before
running	any	examples,	the	call	to	setup	(line	34	of	Figure	6.15)	occurs	before	our	tests	run;	hence	it’s
reasonable	to	test	whether	that	function	did	its	work.

http://pastebin.com/zhQw7uUd

http://pastebin.com/1PdEwxnQ

	1	<table	id="movies">

	2			<tbody>

	3					<tr	class="adult">

	4							<td>Casablanca</td>

	5							<td>PG</td>

	6							<td>More	about	Casablanca</td>

	7					</tr>

	8			</tbody>

	9	</table>

Figure	6.22:	This	HTML	fixture	mimics	a	row	of	the	#movies	table	generated	by	the	RottenPotatoes	list-of-movies	view	(Figure	4.6);	it
goes	in	spec/javascripts/fixtures/movie_row.html.	You	can	generate	such	fixtures	by	copy-and-pasting	HTML	code	from	“View
Source”	in	the	browser,	or	for	source	that	was	generated	dynamically	by	JavaScript	(such	as	the	“Hide	adult	movies”	checkbox),	by
inspecting	$(’#movieInfo’).html()	in	the	JavaScript	console.	Fallacies	and	Pitfalls	describes	a	way	to	prevent	such	fixtures	from	getting
out	of	sync	if	you	change	your	app’s	views.

The	describe(’AJAX	call	to	server’)	examples	are	more	 interesting	because	 they	use	stubs	and
fixtures	to	isolate	our	client-side	AJAX	code	from	the	server	with	which	it	communicates.	Figure	6.20
summarizes	 the	 stubs	 and	 fixtures	 available	 in	 Jasmine	 and	 Jasmine-jQuery.	 Like	 RSpec,	 Jasmine
allows	 us	 to	 run	 test	 setup	 and	 teardown	 code	 using	 beforeEach	 and	 afterEach.	 In	 this	 set	 of
examples,	our	setup	code	loads	the	HTML	fixture	shown	in	Figure	6.22,	to	mimic	the	environment	the
getMovieInfo	 handler	 would	 see	 if	 it	 was	 called	 after	 movie	 list	 was	 displayed.	 The	 fixtures
functionality	is	provided	by	Jasmine-jQuery;	each	fixture	is	loaded	inside	of	div#jasmine-fixtures,
which	is	inside	of	div#jasmine_content	on	the	main	Jasmine	page,	and	all	the	fixtures	are	cleared	out
after	each	spec	to	preserve	test	independence.

The	 first	 example	 (line	 12	 of	 Figure	 6.21)	 checks	 that	 the	 AJAX	 call	 uses	 the	 correct	 movie	 URL
derived	 from	 the	 table.	 To	 do	 this,	 it	 uses	 Jasmine’s	 spyOn	 to	 stub	 out	 the	 $.ajax	 function.	 Like
RSpec’s	stub,	this	call	replaces	any	existing	function	of	the	same	name,	so	when	we	manually	trigger
the	click	action	on	the	(only)	a	element	in	the	#movies	table,	if	all	is	working	well	we	should	expect	our
spy	function	to	have	been	called.	Because	in	JavaScript	it’s	common	for	functions	to	be	the	values	of
object	 properties,	 spyOn	 takes	 two	 arguments,	 an	 object	 ($)	 and	 the	 name	 of	 the	 function-valued
property	of	that	object	on	which	to	spy	(’ajax’).

Line	15	looks	complex,	but	it’s	straightforward.	Each	Jasmine	spy	remembers	the	arguments	passed	to	it
in	each	of	its	calls,	e.g.	calls.mostRecent(),	and	as	you	recall	from	the	explanation	in	Section	6.6,	a
real	call	to	the	AJAX	function	takes	a	single	object	(lines	9–15	of	Figure	6.15)	whose	url	property	is
the	URL	to	which	the	AJAX	call	should	go.	Line	15	of	 the	spec	 is	simply	checking	the	value	of	 this
URL.	In	effect,	it’s	testing	whether	$(this).attr(’href’)	is	the	correct	JavaScript	code	to	extract	the
AJAX	URL	from	the	table.

http://pastebin.com/1PdEwxnQ

Figure	6.23:	Top:	Normally,	our	getMovieInfo	function	calls	jQuery’s	ajax,	which	calls	xhr	in	the	browser’s	JSAPI,	which	sends	the
request	to	the	server.	The	server’s	reply	triggers	callback	logic	in	the	browser’s	JSAPI,	which	calls	an	internal	jQuery	method	that
eventually	calls	our	showMovieInfo	callback.	If	we	stub	the	ajax	function,	we	can	cause	showMovieInfo	to	be	called	immediately;	we	can
also	stub	“farther	away”	by	stubbing	xhr	(using	the	Jasmine-Ajax	plugin),	causing	the	jQuery	internal	dispatcher	to	be	called
immediately.	Bottom:	Graphical	representation	of	the	discussion	accompanying	Figure	8.16	in	Section	8.6.

Figure	6.23	shows	the	similarity	between	the	challenges	of	stubbing	the	Internet	for	testing	AJAX	and
stubbing	the	Internet	for	testing	code	in	a	Service-Oriented	Architecture	(Section	8.6).	As	you	can	see,
in	both	scenarios,	the	decision	of	where	to	stub	depends	on	how	much	of	the	stack	we	want	to	exercise
in	our	tests.

Line	19	reads	in	a	fixture	that	will	take	the	place	of	the	ajax	response	from	the	movies	controller	show
action,	see	Figure	6.24.	In	lines	20–22	we	see	the	use	fo	the	callFake	function	to	not	only	intercept	an
AJAX	call,	but	also	to	fake	a	successful	response	using	the	fixture.	This	and	the	triggering	of	the	AJAX
call	 (line	 23)	 is	 repeated	 for	 each	 of	 the	 following	 two	 tests	which	 check	 that	 both	 the	#movieInfo
popup	is	visible	(line	26)	and	that	it	contains	text	from	the	movie	description	(line	29).

http://pastebin.com/pnTj5S5c

	1	<p>Casablanca	is	a	classic	and	iconic	film	starring

	2				Humphrey	Bogart	and	Ingrid	Bergman.</p>

	3	Close

http://pastebin.com/pnTj5S5c

Figure	6.24:	This	HTML	fixture	mimics	the	ajax	response	from	the	movies	controller	show	action;	it	goes	in
spec/javascripts/fixtures/movie_info.html.

This	concise	introduction,	along	with	the	summary	tables	in	this	section,	should	get	you	started	using
BDD	 for	 your	 JavaScript	 code.	 The	 best	 sources	 of	 complete	 documentation	 for	 these	 tools	 are	 the
Jasmine	documentation	and	the	Jasmine	jQuery	add-on	documentation.

http://pastebin.com/9rsFCnwE

	1	describe(’element	sanitizer’,	function()	{

	2			it(’removes	IMG	tags	from	evil	HTML’,	function()	{

	3					setFixtures(sandbox({class:	’myTestClass’}));

	4					$(’.myTestClass’).text("Evil	HTML!	");

	5					$(’.myTestClass’).sanitize();

	6					expect($(’.myTestClass’).text()).not.toContain(’<img’);

	7			});

	8	});

Figure	6.25:	Jasmine-jQuery’s	sandbox	method	creates	a	new	HTML	div	with	the	given	attributes;	its	id	defaults	to	sandbox	if	not	given.
Lines	4–5	use	the	sandbox-created	element.	The	sandbox	can	be	used	to	temporarily	contain	elements	constructed	in	a	factory-like	way
without	“polluting”	the	test	code	with	HTML	markup.

Summary	of	Jasmine	BDD	for	JavaScript:
	

Like	RSpec,	Jasmine	specs	are	anonymous	functions	accompanied	by	a	descriptive	string.	They	are
introduced	by	 the	Jasmine	function	it,	can	be	grouped	with	(nested)	describe	blocks	 that	have
associated	beforeEach	and	afterEach	(test	setup	and	teardown)	calls.
spyOn	can	be	used	to	stub	an	existing	method	by	replacing	it	with	a	spy.	The	spy’s	behavior	can	be
controlled	with	 functions	 like	 and.callThrough,	 and.returnValue,	 and	 so	 on,	 as	 Figure	 6.20
shows.
Jasmine-jQuery’s	HTML	 fixtures	 can	provide	both	 the	 “before”	 content	 for	 triggering	 an	AJAX
request	and	the	“after”	content	for	testing	the	results	of	a	successful	or	failed	AJAX	request.

ELABORATION:	Why	no	Jasmine	specs	for	client-side-only	code?

We	didn’t	include	specs	for	the	client-side-only	example	in	Section	6.5	for	the	same	reason	we	didn’t	write	view	specs	in	Chapter	8:
a	widespread	practice	 is	 to	 test	client-side	view	behaviors	with	 integration	or	acceptance	 level	 tests,	such	as	Cucumber	scenarios
using	Webdriver	(Section	7.6).

ELABORATION:	Testing	client-side	form	validation

A	common	JavaScript	use	case	is	to	validate	entries	in	a	form	as	the	user	types,	before	the	form	can	be	submitted.	You	can	test	such
self-validating	forms	by	creating	an	HTML	fixture	representing	a	form	or	part	of	a	form,	using	element.val()	to	set	the	value	of	one
or	more	form	inputs,	and	triggering	element.blur()	to	cause	the	element	to	lose	focus,	simulating	the	user’s	pressing	the	Tab	key	or

http://pivotal.github.com/jasmine
http://github.com/velesin/jasmine-jquery
http://pastebin.com/9rsFCnwE

using	the	mouse	to	navigate	to	a	different	form	field.	You	can	then	either	check	that	the	other	form	fields	were	properly	updated
with	the	new	value	(by	inspecting	their	element.val())	or	spy	on	the	validation	function	with	.and.callThrough()	to	ensure	that	it
is	called	as	result	of	blur.

ELABORATION:	Fixtures	or	factories?

As	Section	8.5	explains,	 in	Rails	apps	it’s	often	preferable	to	use	a	factory	to	create	necessary	test	doubles	“in	place”	rather	than
specifying	fixtures.	So	why	do	we	describe	the	use	of	fixtures	rather	than	factories	for	AJAX	testing?	One	reason	is	that	the	tradeoff
is	 different	 in	 JavaScript.	 In	 the	Rails	 app,	 fixtures	 are	 loaded	 into	 the	 database	 before	 tests	 are	 run,	 and	 various	ActiveRecord
methods	such	as	find	may	behave	differently	when	different	fixtures	are	present;	therefore	fixtures	may	break	test	Independence.
Factories	are	an	appealing	alternative	 in	Rails	because	gems	such	as	FactoryGirl	make	 it	easy	 to	 instantiate	 test	doubles	“just	 in
time”	in	each	test	that	needs	them.	In	Jasmine,	to	substitute	an	HTML	“factory”	for	HTML	fixtures,	we	would	use	$(”)	 to	create
inline	HTML	elements,	 but	many	developers	 view	 this	 as	 undesirable	 because	mixing	HTML	markup	with	 JavaScript	 test	 code
makes	the	latter	hard	to	read.	Jasmine-jQuery	provides	some	simple	support	for	using	factories	without	excessively	polluting	your
test	code	with	HTML	markup,	as	Figure	6.25	shows,	but	in	general	we	see	that	fixtures	for	AJAX	testing	avoid	some	of	the	pitfalls
of	fixtures	for	Rails	 testing.	They	do,	however,	 introduce	a	pitfall	of	 their	own—the	possibility	of	getting	“out	of	sync”	with	 the
app’s	views.	See	Fallacies	and	Pitfalls	for	a	discussion	of	this	pitfall	and	its	solution.

Self-Check	6.7.1.	Jasmine-jQuery	also	supports	toContain	and	toContainText	to	check	if	a	string	of
text	or	HTML	occurs	within	an	element.	In	line	7	of	Figure	6.21,	why	would	it	be	incorrect	to	substitute
.not.toContain(’<div	id=”movieInfo”></div>’)	for	toBeHidden()?
	A	hidden	element	is	not	visible,	but	 it	still	contains	the	text	or	HTML	associated	with	the	element.

Hence	toContain-style	matchers	can	be	used	to	test	the	content	of	an	element	but	not	its	visibility.	 In
addition,	 there	are	many	ways	 for	an	element	 to	be	hidden—its	CSS	could	 include	display:none,	 it
could	 have	 zero	width	 and	 height,	 or	 its	 ancestor	 could	 be	 hidden—and	 the	 toBeHidden()	matcher
checks	all	of	these.

Self-Check	 6.7.2.	Like	 RSpec,	 Jasmine	 supports	 and.returnValue()	 for	 returning	 a	 canned	 value
from	 a	 stub.	 In	 Figure	 6.21,	 why	 why	 did	 we	 have	 to	 write	 and.callFake	 to	 pass	 ajaxArgs	 to	 a
function	as	the	result	of	stubbing	ajax,	rather	than	simply	writing	and.returnValue(ajaxArgs)?
	Remember	that	AJAX	calls	are	asynchronous.	It’s	not	the	case	that	the	$.ajax	call	returns	data	from

the	server:	normally,	 it	 returns	 immediately,	and	sometime	 later,	your	callback	 is	called	with	 the	data
from	from	the	server.	and.callFake	simulates	this	behavior.

6.8	Single-Page	Apps	and	JSON	APIs

Google	 Maps	 was	 an	 early	 example	 of	 the	 emerging	 category	 called	 client-side	 single-page	 apps
(SPAs).	In	a	SPA,	after	the	initial	page	load	from	the	server,	all	interaction	appears	to	the	user	to	occur
without	 any	 page	 reloads.	 While	 we	 won’t	 develop	 a	 full	 SPA	 in	 this	 section,	 we	 will	 show	 the
techniques	necessary	to	do	so.

So	far,	we	have	concentrated	on	using	JavaScript	to	enhance	server-centric	SaaS	apps;	since	HTML	has
long	been	the	lingua	franca	of	content	served	by	those	apps,	rendering	a	partial	and	using	JavaScript	to
insert	the	“ready-made”	partial	into	the	DOM	was	a	sensible	way	to	proceed.	But	with	SPAs,	it’s	more
common	for	client-side	code	to	request	some	“raw”	data	from	the	server,	and	use	that	data	to	construct
or	modify	DOM	elements.	How	can	a	Rails	app	return	raw	data	rather	than	HTML	markup	to	JavaScript
client	code?

One	simple	mechanism	is	for	the	controller	action	to	use	render	:text	to	return	a	plain	string.	But	if
we	need	to	send	structured	data	to	the	client,	we	face	the	same	problem	that	we	solved	using	a	relational
database	 in	 Section	 2.6—how	 to	 “freeze-dry”	 the	 data	 so	 that	 its	 structure	 can	 be	 “reconstituted”
correctly	at	the	client,	that	is,	how	to	serialize	and	subsequently	deserialize	the	data.

In	the	early	days	of	SPAs,	XML	seemed	a	promising	choice	for	a	serialization	format.	The	X	in	AJAX
stands	 for	 XML,	 and	 Section	 8.1	 shows	 a	 simple	 example	 of	 data	 returned	 from	 a	 server	 in	 XML
format.	But	although	XML	looks	simple,	the	full	XML	specification	has	many	quirks	that	make	a	fully
compliant	parser	complex	and	challenging	to	write.	While	most	major	browsers	have	XML	parsers	built
in,	their	JSAPIs	are	incompatible,	and	jQuery	doesn’t	provide	any	façade	for	them	as	it	does	for	DOM
manipulation.	Even	lightweight	XML	parsers	such	as	Sax-JS	add	about	1300	LOC	to	your	JavaScript
app,	and	don’t	provide	convenient	access	to	the	DOM.

An	appealing	alternative	is	therefore	JSON,	the	JavaScript	Object	Notation	that	we	met	in	Figure	6.3.
It’s	much	simpler	than	XML	but	sufficient	for	representing	many	apps’	data	structures,	and	has	become
so	popular	that	many	RESTful	APIs	can	serve	either	JSON	or	XML:	you	specify	which	one	you	want
either	by	calling	a	different	endpoint	(URL)	for	each	format	or	by	passing	a	parameter	in	the	REST	API
call.	 Since	 the	 JSON	 format	 is	 a	 proper	 subset	 of	 JavaScript’s	 built-in	 object	 notation,	 we	 could	 in
principle	 just	write	 var	 e=eval(j)	 to	 deserialize	 a	 JSON-encoded	 string	 j	 into	 a	 “live”	 JavaScript
object	e.	In	practice,	modern	browsers’	JSAPIs	include	a	function	JSON.parse	which	is	not	only	much
faster	 than	 eval	 but	 also	 safer:	 whereas	 eval	 will	 evaluate	 arbitrary	 (untrusted	 and	 possibly	 evil)
JavaScript	code,	JSON.parse	will	raise	an	error	if	asked	to	parse	anything	other	than	valid	JSON	data
structures.	(JSONLint,	listed	in	Figure	6.4,	validates	the	syntax	of	JSON	expressions.)

To	use	JSON	in	our	client-side	code,	we	must	address	three	questions:

	

1.	 How	 do	 we	 get	 the	 server	 app	 to	 generate	 JSON	 in	 response	 to	 AJAX	 requests,	 rather	 than
rendering	HTML	view	templates	or	partials?

2.	 How	 does	 the	 client	 specify	 that	 it	 expects	 a	 JSON	 response,	 and	 how	 does	 it	 use	 the	 JSON
response	data	to	modify	the	DOM?

3.	 When	testing	AJAX	requests	that	expect	JSON	responses,	how	can	we	use	fixtures	to	“stub	out	the
server”	and	test	these	behaviors	in	isolation,	as	we	did	in	Section	6.7?

http://pastebin.com/H16DAvwY

	1	Review.first.to_json

	2	#		=>	"{\"created_at\":\"2012-10-01T20:44:42Z\",	\"id\":1,	\"movie_id\":1,

	3			\"moviegoer_id\":2,\"potatoes\":3,\"updated_at\":\"2013-07-28T18:01:35Z\"}"

Figure	6.26:	Rails’	built-in	to_json	can	serialize	simple	ActiveRecord	objects	by	calling	itself	recursively	on	each	attribute	of	the	model.
As	you	can	see,	it	doesn’t	traverse	associations—the	review’s	movie_id	and	moviegoer_id	are	serialized	to	integers,	not	to	the	Movie	and
Moviegoer	objects	to	which	the	integer	foreign	keys	refer.	You	can	effect	more	sophisticated	serialization	by	overriding	to_json	in	your
ActiveRecord	models.

http://en.wikipedia.org/wiki/serialization
http://en.wikipedia.org/wiki/serialization
http://github.com/isaacs/sax-js
http://pastebin.com/H16DAvwY

The	 first	question	 is	 easy.	 If	you	have	control	over	 the	 server	code,	your	Rails	controller	actions	can
emit	JSON	rather	than	XML	or	a	Haml	template	by	using	render	:json=>object,	which	sends	a	JSON
representation	 of	 an	 object	 back	 to	 the	 client	 as	 the	 single	 response	 from	 the	 controller	 action.	 Like
rendering	a	template,	you	are	only	allowed	a	single	call	to	render	per	action,	so	all	the	response	data
for	a	given	controller	action	must	be	packed	into	a	single	JSON	object.

render	:json	works	by	calling	to_json	on	object	to	create	the	string	to	send	back	to	the	client.	The
default	implementation	of	to_json	can	serialize	simple	ActiveRecord	objects,	as	Figure	6.26	shows.

http://pastebin.com/6cUbpbfY

	1	var	MoviePopupJson	=	{

	2			//	’setup’	function	omitted	for	brevity

	3			getMovieInfo:	function()	{

	4					$.ajax({type:	’GET’,

	5													dataType:	’json’,

	6													url:	$(this).attr(’href’),

	7													success:	MoviePopupJson.showMovieInfo

	8													//	’timeout’	and	’error’	functions	omitted	for	brevity

	9												});

10					return(false);

11			}

12			,showMovieInfo:	function(jsonData,	requestStatus,	xhrObject)	{

13					//	center	a	floater	1/2	as	wide	and	1/4	as	tall	as	screen

14					var	oneFourth	=	Math.ceil($(window).width()	/	4);

15					$(’#movieInfo’).

16							css({’left’:	oneFourth,		’width’:	2*oneFourth,	’top’:	250}).

17							html($(’<p>’	+	jsonData.description	+	’</p>’),

18														$(’’)).

19							show();

20					//	make	the	Close	link	in	the	hidden	element	work

21					$(’#closeLink’).click(MoviePopupJson.hideMovieInfo);

22					return(false);		//	prevent	default	link	action

23			}

24			//	hideMovieInfo	omitted	for	brevity

25	};

Figure	6.27:	This	version	of	MoviePopup	expects	a	JSON	rather	than	HTML	response	(line	5),	so	the	success	function	uses	the	returned
JSON	data	structure	to	create	new	HTML	elements	inside	the	popup	div	(lines	17–19;	observe	that	jQuery	DOM-manipulation	functions
such	as	append	can	take	multiple	arguments	of	distinct	pieces	of	HTML	to	create).	The	functions	omitted	for	brevity	are	the	same	as	in
Figure	6.15.

http://pastebin.com/sq6FASzh

	1	describe(’MoviePopupJson’,	function()	{

	2			describe(’successful	AJAX	call’,	function()	{

	3					beforeEach(function()	{

	4							loadFixtures(’movie_row.html’);

	5							var	jsonResponse	=	getJSONFixture(’movie_info.json’);

	6							spyOn($,	’ajax’).and.callFake(function(ajaxArgs)	{

	7									ajaxArgs.success(jsonResponse,	’200’);

http://pastebin.com/6cUbpbfY
http://pastebin.com/sq6FASzh

	8							});

	9							$(’#movies	a’).trigger(’click’);

10					});

11					//	’it’	clauses	are	same	as	in	movie_popup_spec.js

12			});

13	});

Figure	6.28:	Jasmine-jQuery	expects	to	find	fixture	files	containing	.json	data	in	spec/javascripts/fixtures/json.	After	executing
line	5,	jsonResponse	will	contain	the	actual	JavaScript	object	(not	the	raw	JSON	string!)	that	will	get	passed	to	the	success	handler.

To	make	an	AJAX	call	that	expects	a	JSON-encoded	response,	we	just	ensure	that	the	argument	object
passed	to	$.ajax	includes	a	dataType	property	whose	value	is	the	string	json,	as	Figure	6.27	shows.
The	presence	of	this	property	tells	jQuery	to	automatically	call	JSON.parse	on	the	returned	data,	so	you
don’t	have	to	do	so	yourself.

Of	course,	we	must	also	arrange	for	the	server	to	return	a	JSON	object,	as	discussed	above.

How	 can	we	 test	 this	 code	without	 calling	 the	 server	 every	 time?	Happily,	 Jasmine-jQuery’s	 fixture
mechanism	allows	us	to	specify	JSON	fixtures	as	well	as	HTML	fixtures,	as	Figure	6.28	shows.

Summary	of	Single-Page	Apps:
	

Whereas	 JavaScript-enhanced	 traditional	 SaaS	 apps	 will	 typically	 render	 complete	 chunks	 of
HTML	(for	example,	using	partials)	that	the	client	will	simply	“plug	into”	the	current	HTML	page,
SPAs	will	usually	receive	structured	data	from	one	or	more	services	and	use	that	data	to	synthesize
new	content	or	modify	existing	content	on	the	page.
JSON’s	simplicity	and	its	natural	fit	with	JavaScript	are	rapidly	making	it	the	preferred	format	for
interchanging	 structured	data	 in	SPAs.	Rails	 can	 serialize	 simple	ActiveRecord	models	 to	 JSON
with	render	:json=>	object,	but	you	can	override	ActiveRecord’s	to_json	method	 to	 serialize
arbitrarily	complex	data	structures.
Setting	 the	 dataType	 property	 to	 ”json”	 in	 an	 $.ajax	 call	 tells	 jQuery	 to	 automatically
deserialize	the	server’s	response	data	into	a	JSON	object.
A	 spy	 that	 returns	 a	 JSON	 fixture	 can	be	used	 to	 simulate	 a	 server’s	 response	 in	 testing	 a	SPA,
allowing	Jasmine	tests	to	be	isolated	from	the	remote	server(s)	the	SPA	relies	on.

ELABORATION:	Other	ways	to	stub	out	the	Internet	for	AJAX

Section	8.6	discusses	how	stubbing	the	Internet	to	isolate	tests	from	external	services	can	be	done	either	“near	the	client”	or	“far
from	 the	client.”	 In	Section	6.7	we	 stubbed	“near	 the	 client”	by	 stubbing	$.ajax	 and	 forcing	 it	 to	 immediately	 call	 the	success
function	 rather	 than	 allowing	 it	 to	 proceed	 with	 the	 external	 HTTP	 request.	 This	 technique	 is	 similar	 to	 how	 we	 stubbed
find_in_tmdb	 in	Section	8.6	 to	 return	 a	value	 immediately	 rather	 than	 allowing	 it	 to	make	 a	 real	HTTP	 request.	An	alternative,
which	would	more	thoroughly	exercise	the	code	that	handles	the	actual	AJAX	server	responses,	is	to	stub	at	the	network	level,	just
as	FakeWeb	does	for	Rails	apps.	Just	as	FakeWeb	lets	you	provide	“canned”	XML	or	HTML	responses	based	on	the	arguments	of
an	XHR	call,	jasmine-ajax,	a	Jasmine	extension	from	Pivotal	Labs,	lets	you	provide	“canned”	XML,	HTML	or	JSON	responses	to

https://github.com/pivotal/jasmine-ajax

AJAX	XHR	calls	that	are	used	instead	of	allowing	the	XHR	call	to	proceed.	You	can	then	spy	on	the	handler	functions	success,
failure,	timeout,	and	so	on	passed	to	$.ajax	to	make	sure	the	correct	handler	is	called	depending	on	the	server’s	response.

Self-Check	6.8.1.	 In	Figure	 6.28	 showing	 the	 use	 of	 a	 JSON	 fixture,	why	 do	we	also	 still	 need	 the
HTML	fixture	to	be	loaded	in	line	4?
	Line	9	tries	to	trigger	the	click	handler	for	an	element	matching	#movies	a,	and	if	we	don’t	load	the

HTML	 fixture	 representing	 a	 row	 of	 the	 movies	 table,	 no	 such	 element	 will	 exist.	 (Indeed,	 the
MoviePopupJson.setup	function	tries	to	bind	a	click	handler	on	this	element,	so	that	would	also	fail.)
This	is	an	example	of	using	both	an	HTML	fixture	to	simulate	the	user	clicking	on	a	page	element	and	a
JSON	fixture	to	simulate	a	successful	response	from	the	server	in	response	to	that	click.

ELABORATION:	Same-origin	policy

You	can	also	arrange	for	your	SPA	to	communicate	with	a	RESTful	server	façade	(Section	11.6),	as	Figure	6.29	shows.	You	might
do	this	if	your	SPA	relies	on	content	from	multiple	sites:	for	security,	JavaScript	browser	apps	are	bound	by	a	same	origin	policy,
which	 says	 that	 a	 JavaScript	 app	 can	 only	 make	 AJAX	 requests	 to	 the	 same	 origin	 (scheme,	 host	 name,	 and	 port	 number,	 as
described	in	Section	2.2)	from	which	the	app	itself	was	served.

Figure	6.29:	Architecture	of	in-browser	SPAs	that	retrieve	assets	from	multiple	distinct	services.	Left:	If	the	JavaScript	code	was	served
from	RottenPotatoes.com,	the	default	same-origin	policy	that	browsers	implement	for	JavaScript	will	forbid	the	code	from	making	AJAX
calls	to	servers	in	other	domains.	The	cross-origin	resource	sharing	(CORS)	specification	relaxes	this	restriction	but	is	only	supported	by
very	recent	browsers.	Right:	in	the	traditional	SPA	architecture,	a	single	server	serves	the	JavaScript	code	and	interacts	with	other	remote
services.	This	arrangement	respects	the	same-origin	policy	and	also	allows	the	main	server	to	do	additional	work	on	behalf	of	the	client	if
needed.

6.9	Fallacies	and	Pitfalls

			Fallacy:	AJAX	will	surely	improve	my	app’s	responsiveness	because	more	action	happens
right	in	the	browser.

In	a	carefully-engineered	app,	AJAX	may	well	have	the	potential	to	improve	responsiveness	of	certain
interactions.	However,	many	factors	in	using	AJAX	also	work	against	this	goal.	Your	JavaScript	code
must	be	fetched	from	the	server,	as	must	any	libraries	or	frameworks	on	which	it	relies,	such	as	jQuery,
before	any	AJAX	action	can	take	place;	on	platforms	such	as	mobile	phones,	this	may	incur	an	up-front
latency	 that	 negates	 any	 later	 savings.	 Wide	 variation	 in	 JavaScript	 performance	 across	 different
browser	types	and	devices,	Internet	connection	speeds	spanning	a	range	from	1	Mbps	(smart	phones)	to

http://en.wikipedia.org/wiki/same_origin_policy
http://en.wikipedia.org/wiki/same-origin_policy
http://en.wikipedia.org/wiki/cross-origin_resource_sharing

1000	Mbps	(high-speed	wired	networks),	and	other	factors	beyond	your	control,	all	conspire	 to	make
overall	AJAX	performance	 effects	 difficult	 to	 predict;	 in	 some	 cases,	AJAX	may	 slow	 things	 down.
Like	all	powerful	tools,	AJAX	should	be	used	with	a	solid	understanding	of	precisely	how	and	why	it
will	improve	responsiveness,	rather	than	added	on	in	the	vague	hope	that	it	will	somehow	help	because
the	 app	 feels	 slow.	 The	 techniques	 in	 Chapter	 12	 will	 help	 you	 identify	 and	 resolve	 some	 common
performance	problems.

			Pitfall:	Creating	a	site	that	fails	without	JavaScript	rather	than	being	enhanced	by	it.

For	 reasons	 of	 accessibility	 by	 people	 with	 disabilities,	 security,	 and	 cross-browser	 compatibility,	 a
well-designed	site	should	work	better	if	JavaScript	is	available,	but	acceptably	otherwise.	For	example,
GitHub’s	 pages	 for	 browsing	 code	 repos	work	well	without	 JavaScript	 but	work	more	 smoothly	 and
quickly	with	JavaScript.	Try	the	site	both	ways	for	a	great	example	of	progressive	enhancement.	Tests
also	run	faster	without	JavaScript:	having	a	site	for	which	JavaScript	is	optional	means	you	can	do	the
majority	of	your	integration	testing	in	the	faster	“headless	browser”	mode	of	Cucumber	and	Capybara.

			Pitfall:	Silent	JavaScript	failures	in	production	code.

When	an	unexpected	exception	occurs	 in	your	Rails	 code,	you	know	 it	 right	 away,	 as	we’ve	 already
seen:	 your	 app	 displays	 an	 ugly	 error	 page,	 or	 if	 you’ve	 been	 careful,	 a	 service	 like	 Hoptoad
immediately	contacts	you	 to	 report	 the	error,	as	we	describe	 in	Chapter	12).	But	 JavaScript	problems
manifest	 as	 silent	 failures—the	 user	 clicks	 a	 control	 or	 loads	 a	 page,	 and	 nothing	 happens.	 These
problems	 are	 especially	 pernicious	 because	 if	 they	 occur	while	 an	AJAX	 request	 is	 in	 progress,	 the
success	callback	will	never	get	called.	So	be	warned:	jQuery	provides	shortcuts	for	common	uses	of
$.ajax()	 such	 as	 $.get(url,data,callback),	 $.post(url,data,callback),
$.load(url_and_selector),	 and	 $.getJSON(url,data,callback),	 but	 all	 of	 these	 fail	 silently	 if
anything	goes	wrong,	whereas	$.ajax()	allows	you	to	specify	additional	callbacks	to	be	called	in	case
of	errors.

			Pitfall:	Silent	JavaScript	failures	in	tests.

The	 “silent	 failure”	 pitfall	 also	 arises	when	 using	 Jasmine:	 if	 there	 are	 syntax	 errors	 in	 any	 of	 your
JavaScript	files	or	specs,	when	you	reload	the	browser	page	that	runs	your	Jasmine	specs,	you	may	see	a
blank	page	with	no	hint	 as	 to	where	 the	 errors	 are.	We	 suggest	 using	Doug	Crockford’s	 JSLint	 tool,
which	not	only	finds	syntax	errors	but	also	points	out	bad	habits	and	the	use	of	JavaScript	mechanisms
that	Crockford	and	others	consider	misfeatures.

Similarly,	 you	may	 accidentally	 load	HTML	 fixtures	 that	 result	 in	 illegal	 HTML.	 For	 example,	 you
might	accidentally	create	a	fixture	containing	an	element	whose	ID	duplicates	an	existing	element,	or	a
fixture	containing	improperly-nested	elements	or	HTML	syntax	errors.	Since	fixtures	are	loaded	into	an
actual	page	when	tests	are	run,	the	results	of	an	ill-formed	page	may	be	unpredictable	or	result	in	silent
failures.

			Pitfall:	Providing	only	expensive	server	operations	and	relying	on	JavaScript	to	do	the	rest.

http://jslint.com

If	JavaScript	is	so	powerful,	why	not	write	substantially	all	of	the	app	logic	in	it,	using	the	server	as	just
a	thin	API	to	a	database?	For	one	thing,	as	we’ll	see	in	Chapter	12,	successful	scaling	requires	reducing
the	 load	 on	 the	 database,	 and	 unless	 the	 APIs	 exposed	 to	 your	 JavaScript	 client	 code	 are	 carefully
thought	out,	there’s	a	risk	of	making	needlessly	complex	database	queries	so	that	client-side	JavaScript
code	can	pick	out	the	data	it	needs	for	each	view.	Second,	whereas	you	have	nearly	complete	control	of
performance	 (and	 therefore	 of	 the	 user	 experience)	 on	 the	 server	 side,	 you	 have	 nearly	 none	 on	 the
client	 side.	Because	of	wide	variation	 in	browser	 types,	 Internet	connection	speeds,	and	other	 factors
beyond	 your	 control,	 JavaScript	 performance	 on	 each	 user’s	 browser	 is	 largely	 out	 of	 your	 hands,
making	it	difficult	to	provide	consistent	performance	for	the	user	experience.

			Pitfall:	Allowing	HTML	or	JavaScript	fixtures	to	get	out	of	sync	with	the	app	code	or	each
other.

A	 risk	 of	 using	HTML	 fixtures	 to	 test	 your	AJAX	 functionality	 is	 that	 the	 fixtures	 are	 based	 on	 the
HTML	generated	by	your	app,	and	 if	you	change	 the	app’s	view	templates	without	also	changing	 the
fixtures,	you	may	be	running	tests	against	HTML	that	doesn’t	match	the	true	output	of	your	app.

	 	 	 One	 solution	 is	 automation:	 this	 workflow	 from	 Pivotal	 Labs	 uses	 RSpec	 (Chapter	 8)	 to
automatically	create	fixtures	from	your	app’s	views	for	use	in	Jasmine	tests.	This	solution	also	avoids
another	subtle	problem:	tests	that	operate	on	a	small	fixture	but	fail	on	the	full-page	DOM.	For	example,
two	event	handlers	that	try	to	respond	to	the	same	event	will	probably	do	the	wrong	thing	in	production,
but	if	they	are	only	tested	one	at	a	time	using	separate	fixtures,	the	unit	tests	will	not	catch	this	problem.
Running	 specs	 using	 full-page	 “fixtures”	 rather	 than	 fixtures	 for	 different	 snippets	 of	 a	 page	 would
solve	this,	and	Pivotal’s	automated	workflow	does	this	in	an	elegant	way.

			Pitfall:	Incorrect	use	of	this	in	JavaScript	functions.

The	value	of	this	 in	 the	body	of	a	JavaScript	function	is	 the	source	of	much	grief	and	confusion	for
programmers	new	to	the	language.	In	particular,	after	seeing	a	couple	of	examples,	new	programmers
don’t	realize	 that	 the	value	of	this	 for	a	particular	 function	 is	not	dependent	on	how	that	 function	 is
written,	but	on	how	it	is	called,	so	different	calls	to	the	same	function	can	result	in	different	bindings	for
this.	A	complete	discussion	of	why	this	works	as	it	does	is	beyond	the	scope	of	this	introduction,	but
the	To	Learn	More	section	offers	some	pointers	for	those	interested	in	delving	deeper,	which	will	take
you	into	the	realm	of	how	JavaScript	is	influenced	by	its	ancestors	Scheme	and	Self.

Until	 you	 understand	 the	 issue	 more	 deeply,	 you	 can	 make	 your	 own	 code	 safe	 by	 following	 the
common	cases	we	outlined,	which	Figure	6.11	summarizes.

			Pitfall:	JavaScript—the	bad	parts.

The	++	operator	was	invented	by	[Ken]	Thompson	for	pointer	arithmetic.	We	now	know	that	pointer
arithmetic	is	bad,	and	we	don’t	do	it	anymore;	it’s	been	implicated	in	buffer-overrun	attacks	and	other
evil	stuff.	The	last	popular	language	to	include	the	++	operator	is	C++,	a	language	so	bad	it	was	named

http://pivotallabs.com/javascriptspecs-bind-reality/

after	this	operator.
—Douglas	Crockford,	Programming	and	Your	Brain,	keynote	at	USENIX	WebApps’12	conference

The	entrepreneurial	boom	in	which	JavaScript	was	born	was	a	 time	of	 ridiculous	schedule	pressures:
LiveScript	was	designed,	implemented,	and	released	in	a	product	in	10	days.	As	a	result,	the	language
has	 some	 widely-regarded	 misfeatures	 and	 pitfalls	 that	 some	 have	 compared	 to	 “gotchas”	 in	 the	 C
language,	so	we	urge	you	to	use	Doug	Crockford’s	JSLint	tool	to	warn	you	of	both	potential	pitfalls	and
opportunities	 to	beautify	your	 JavaScript	 code.	This	 tool	 is	 preinstalled	 in	 the	virtual	machine	 image
supplied	with	the	bookware;	you	can	run	it	by	typing	jsl	-process	filename	at	the	command	line.	It

has	myriad	options,	which	you	can	read	about	on	the	JSLint	website.	 			 		

Some	specific	pitfalls	to	avoid	include	the	following:

	

1.	 The	interpreter	helpfully	tries	to	insert	semicolons	it	believes	you	forgot,	but	sometimes	its	guesses
are	wrong	and	 result	 in	drastic	 and	unexpected	 changes	 in	 code	behavior,	 such	as	 the	 following
example:

http://pastebin.com/AZk8Q4uK

	1	//	good:	returns	new	object

	2	return	{

	3			ok:	true;

	4	};

	5	//	bad:	returns	undefined,	because	JavaScript

	6	//		inserts	"missing	semicolon"	after	return

	7	return

	8	{

	9			ok:	true;

10	};

One	good	workaround	 is	 to	 adopt	 a	 consistent	 coding	 style	 designed	 to	make	 “punctuation
errors”	 quickly	 visible,	 such	 as	 the	 coding	 style	 recommended	 for	 Node.js	 package
developers.

2.	 Despite	a	syntax	that	suggests	block	scope—for	example,	the	body	of	a	for-loop	inside	a	function
gets	its	own	set	of	curly	braces	inside	which	additional	var	declarations	can	appear—all	variables
declared	with	var	 in	a	function	are	visible	everywhere	 throughout	that	function,	including	to	any
nested	 functions.	Hence,	 in	 a	 common	 construction	 such	 as	 for	 (var	 m	 in	 movieList),	 the
scope	of	m	 is	 the	entire	 function	 in	which	 the	 for-loop	appears,	not	 just	 the	body	of	 the	 for-loop
itself.	The	same	is	true	for	variables	declared	with	var	inside	the	loop	body.	This	behavior,	called
function	 scope,	 was	 invented	 in	 Algol	 60.	 Keeping	 functions	 short	 (remember	 SOFA	 from
Section	9.5?)	helps	avoid	the	pitfall	of	block	vs.	function	scope.

3.	 An	 Array	 is	 really	 just	 a	 object	 whose	 keys	 are	 nonnegative	 integers.	 In	 some	 JavaScript
implementations,	retrieving	an	item	from	a	linear	array	is	marginally	faster	than	retrieving	an	item
from	a	hash,	but	not	enough	to	matter	in	most	cases.	The	pitfall	is	that	if	you	try	to	index	an	array
with	 a	 number	 that	 is	 negative	 or	 not	 an	 integer,	 a	 string-valued	 key	 will	 be	 created.	 That	 is,

http://jslint.com
http://jslint.com
http://pastebin.com/AZk8Q4uK
https://npmjs.org/doc/coding-style.html

a[2.1]	becomes	a[”2.1”].
4.	 The	comparison	operators	==	and	!=	perform	type	conversions	automatically,	so	’5’==5.0	is	true.

The	operators	===	and	!==	perform	comparisons	without	doing	any	conversions.	This	is	potentially
confusing	because	Ruby	also	has	a	===	(“threequal”)	operator	that	does	something	quite	different.

5.	 Equality	for	arrays	and	hashes	is	based	on	identity	and	not	value,	so	[1,2,3]==[1,2,3]	is	false.
Unlike	Ruby,	in	which	the	Array	class	can	define	its	own	==	operator,	in	JavaScript	you	must	work
around	these	built-in	behaviors,	because	==	is	part	of	the	language.

6.	 Strings	are	immutable,	so	methods	like	toUpperCase()	always	return	a	new	object.	Hence	write
s=s.toUpperCase()	if	you	want	to	replace	the	value	of	an	existing	variable.

7.	 If	 you	call	 a	 function	with	more	 arguments	 than	 its	definition	 specifies,	 the	 extra	 arguments	 are
ignored;	 if	 you	 call	 it	 with	 fewer,	 the	 unassigned	 arguments	 are	 undefined.	 In	 either	 case,	 the
array	arguments[]	(within	the	function’s	scope)	gives	access	to	all	arguments	that	were	actually
passed.

8.	 String	 literals	behave	differently	 from	strings	 created	with	new	String	 if	 you	 try	 to	 create	new
properties	 on	 them,	 as	 the	 code	 excerpt	 below	 shows.	 The	 reason	 is	 that	 JavaScript	 creates	 a
temporary	“wrapper	object”	around	fake	to	respond	to	fake.newprop=1,	performs	the	assignment,
then	 immediately	 destroys	 the	 wrapper	 object,	 leaving	 the	 “real”	 fake	 without	 any	 newprop
property.	You	can	set	extra	properties	on	strings	if	you	create	them	explicitly	with	new.	But	better
yet,	don’t	set	properties	on	built-in	types:	define	your	own	prototype	object	and	use	composition
rather	 than	 inheritance	 (Chapter	 11)	 to	 make	 a	 string	 one	 of	 its	 properties,	 then	 set	 the	 other
properties	as	you	see	 fit.	 (This	 restriction	applies	equally	 to	numbers	and	Booleans	for	 the	same
reasons,	but	it	doesn’t	apply	to	arrays	because,	as	we	mentioned	earlier,	they	are	just	a	special	case
of	hashes.)

http://pastebin.com/LWxdsn3F

	1	real	=	new	String("foo");

	2	fake	=	"foo";

	3	real.newprop	=	1;

	4	real.newprop						//	=>	1

	5	fake.newprop	=	1;	//	BAD:	silently	fails	since	’fake’	isn’t	true	object

	6	fake.newprop						//	=>	undefined

6.10	Concluding	Remarks:	JavaScript	Past,	Present	and	Future

JavaScript’s	privileged	position	as	the	client-side	language	of	the	Web	has	focused	a	lot	of	energy	on	it.
Since	most	smart	phones	and	tablets	can	now	run	JavaScript,	source-portable	mobile	device	apps	can	be
created	using	HTML,	CSS	and	 JavaScript,	 rather	 than	creating	 separate	versions	 for	different	mobile
platforms	such	as	iOS	and	Android.	Frameworks	like	PhoneGap	make	JavaScript	a	productive	path	to
creating	mobile	apps,	especially	when	combined	with	flexible	UI	frameworks	such	as	jQuery	Mobile	or
Sencha	 Touch.	 Indeed,	 today	 the	 main	 reason	 not	 to	 use	 JavaScript	 for	 mobile	 apps	 is	 insufficient
performance,	 but	 because	 of	 increased	 reliance	 on	 JavaScript	 for	 both	 “Web	 2.0”	 sites	 and	 complex
SPAs	 such	as	Google	Docs,	 developers	 have	 been	 focusing	on	both	 performance	 and	productivity	 in
JavaScript.

Performance.	 Just-in-time	 compilation	 (JIT)	 techniques	 and	 other	 advanced	 language	 engineering

http://pastebin.com/LWxdsn3F
http://phonegap.com
http://jquerymobile.org

features	are	being	brought	to	bear	on	the	language,	closing	the	performance	gap	with	other	interpreted
and	 even	 some	 compiled	 languages.	 Over	 half	 a	 dozen	 JavaScript	 engine	 implementations	 and	 one
compiler	 (Google’s	Closure)	 are	 available	 as	of	 this	writing,	most	 of	 them	open	 source,	 and	vendors
such	as	Microsoft,	Apple,	Google,	and	others	compete	on	the	performance	of	their	browsers’	JavaScript
interpreters.	Evaluating	the	performance	of	interpreted	languages	is	tricky,	since	results	depend	on	the
implementation	 of	 the	 interpreter	 as	 well	 as	 the	 specific	 application,	 but	 benchmarks	 of	 the	 Box2D
physics	engine	found	the	JavaScript	version	to	be	5x	slower	than	the	Java	version	and	10–12x	slower
than	 the	 C	 version,	 and	 found	 performance	 differences	 of	 up	 to	 a	 factor	 of	 three	 using	 different
JavaScript	interpreters.	Still,	JavaScript	is	now	fast	enough	that	in	May	2011,	Hewlett-Packard	used	it	to
rewrite	large	parts	of	its	Palm	webOS	operating	system.	We	can	expect	this	trend	to	continue,	because
JavaScript	is	one	of	the	first	languages	to	receive	attention	when	new	hardware	becomes	available	that
could	be	useful	for	user-facing	apps:	for	example,	WebCL	proposes	JavaScript	bindings	for	the	OpenCL
language	used	for	programming	Graphics	Processing	Units	(GPUs).

			Productivity.	We	saw	over	and	over	again	in	studying	Ruby	and	Rails	that	productivity	goes	hand
in	 hand	with	 conciseness.	 JavaScript’s	 syntax	 is	 hardly	 concise	 and	 often	 awkward—in	 part	 because
JavaScript	was	always	functional	at	heart	(recall	that	its	creator	originally	wanted	to	use	Scheme	as	the
browser	scripting	language)	but	burdened	by	a	marketing-driven	requirement	to	resemble	the	imperative
language	 Java.	 CoffeeScript,	 first	 released	 in	 2010,	 tries	 to	 restore	 some	 syntactic	 conciseness	 and
beauty	 befitting	 JavaScript’s	 better	 nature.	 A	 source-to-source	 translator	 compiles	 CoffeeScript
(.coffee)	files	into	.js	files	containing	regular	JavaScript,	which	are	served	to	the	browser.	The	Rails
asset	 pipeline,	which	Section	A.8	 discusses	 further,	 automates	 this	 compilation	 so	 you	 don’t	 need	 to
manually	 generate	 the	.js	 files	 or	 include	 them	 in	 your	 source	 tree.	 Since	CoffeeScript	 compiles	 to
JavaScript,	 it	 can’t	 do	 anything	 that	 JavaScript	 doesn’t	 already	 do,	 but	 it	 provides	 more	 concise
syntactic	notation	for	many	common	constructs.	As	an	example,	Figure	6.30	shows	the	much	less	noisy
CoffeeScript	version	of	the	Jasmine	spec	in	Figure	6.21.

Unfortunately,	after	a	few	years	“in	the	wild,”	CoffeeScript’s	design	has	been	criticized	for	fundamental
design	problems	that	 limit	 its	usefulness	in	large	projects.	Two	major	objections	are	its	scoping	of	all
outer	 variables	 as	 global	 and	 a	 sensitivity	 to	whitespace	 that	 results	 in	 ambiguous	 interpretations	 of
source	code,	violating	the	“Principle	of	Least	Surprise”	that	is	one	of	the	cornerstones	of	Ruby’s	design.
Time	will	tell	whether	CoffeeScript	will	largely	displace	JavaScript	or	remain	a	“niche	language”	used
only	in	smaller	projects.

http://pastebin.com/gEyt3RUd

	1	describe	’MoviePopup’,	->

	2			describe	’setup’,	->

	3					it	’adds	popup	Div	to	main	page’,	->	expect	$(’#movieInfo’).toExist

	4					it	’hides	the	popup	Div’,	->	expect	$(’#movieInfo’).toBeHidden

	5			describe	’AJAX	call	to	server’,	->

	6					beforeEach	->	loadFixtures(’movie_row.html’)

	7					it	’calls	correct	URL’,	->

	8							spyOn	$,	’ajax’

	9							$(’#movies	a’).trigger	’click’

10							expect($.ajax.mostRecentCall.args[0][’url’]).toEqual	’/movies/1’

11					describe	’when	successful’,	->

12							beforeEach	->

http://en.wikipedia.org/wiki/JavaScript_engine
http://blog.j15r.com/2011/12/for-those-unfamiliar-with-it-box2d-is.html
http://coffeescript.org
https://donatstudios.com/CoffeeScript-Madness
http://ruoyusun.com/2013/03/17/my-take-on-coffeescript.html
http://pastebin.com/gEyt3RUd

13									@htmlResponse	=	readFixtures	’movie_info.html’

14									spyOn($,	’ajax’).andCallFake	(ajaxArgs)	->

15											ajaxArgs.success(htmlResponse,	’200’)

16									$(’#movies	a’).trigger	’click’

17							it	’makes	#movieInfo	visible’,	->	expect	$(’#movieInfo’).toBeVisible

18							it	’places	movie	title	in	#movieInfo’,	->

19									expect($(’#movieInfo’).text).toContain	’Casablanca’

Figure	6.30:	The	CoffeeScript	version	of	Figure	6.21.	Among	other	differences,	CoffeeScript	provides	the	Haskell-like	concise	syntax	->
for	functions,	uses	Haml-like	indentation	rather	than	braces	to	indicate	structure,	and	allows	Ruby-like	omission	of	most	parentheses	as
well	as	borrowing	the	@	instance-variable	notation	to	refer	to	properties	of	this.	Some	find	the	resulting	code	easier	to	read,	as	it	has	1⁄3
fewer	lines	and	a	lot	less	punctuation	than	the	plain	JavaScript	version.

Tools	 for	 SPA	 developers	 creating	 JSON-centric	 apps	 are	 improving	 as	 well.	 For	 example,	 Yahoo’s
open-source	Mojito	framework	allows	the	same	JavaScript	code	to	render	HTML	from	JSON	on	either
the	client	or	a	Node-based	server.	However,	there	is	a	potential	huge	downside	to	apps	taking	this	route:
their	content	will	be	neither	indexable	nor	searchable	by	search	engines,	without	which	the	Web	loses	a
great	deal	of	 its	utility.	There	 are	 technological	 solutions	 to	 this	problem,	but	 at	 the	moment	 there	 is
little	discussion	about	them.

In	 addition	 to	 that	 disadvantage,	 JavaScript’s	 single-threaded	 execution	 model,	 which	 some	 feel
hampers	productivity	because	it	requires	event-driven	programming,	seems	unlikely	to	change	anytime
soon.	 Some	 bemoan	 the	 adoption	 of	 JavaScript-based	 server-side	 frameworks	 such	 as	 Node,	 a
JavaScript	library	that	provides	event-driven	versions	of	the	same	POSIX	(Unix-like)	operating	system
facilities	 used	 by	 task-parallel	 code.	 Rails	 core	 committer	Yehuda	Katz	 summarized	 the	 opinions	 of
many	experienced	programmers:	when	things	happen	in	a	deterministic	order,	such	as	server-side	code
handling	a	controller	action	in	a	SaaS	app,	a	sequential	and	blocking	model	is	easier	to	program;	when
things	 happen	 in	 an	 unpredictable	 order,	 such	 as	 reacting	 to	 external	 stimuli	 like	 user-initiated	 user
interface	events,	the	asynchronous	model	makes	more	sense.	Your	authors	firmly	believe	that	the	future
of	software	is	“cloud+client”	apps,	and	our	view	is	that	it’s	more	important	to	choose	the	right	language
or	framework	for	each	job	than	to	obsess	about	whether	a	single	language	or	framework	will	become
dominant	for	both	the	client	and	cloud	parts	of	the	app.

Finally,	whereas	in	the	early	days	of	the	Web	it	was	common	for	pages	to	be	hand-authored	in	HTML
and	CSS	(perhaps	using	WYSIWYG	authoring	tools),	today	the	vast	majority	of	HTML	is	generated	by
frameworks	 like	 Rails.	 In	 a	 similar	 way,	 developments	 such	 as	 CoffeeScript	 suggest	 that	 while
JavaScript	will	remain	the	lingua	franca	of	browser	programming,	it	may	increasingly	become	a	target
language	rather	than	the	one	in	which	most	people	code	directly.

6.11	To	Learn	More

We	 covered	 only	 a	 small	 part	 of	 the	 language-independent	DOM	 representation	 using	 its	 JavaScript
API.	The	DOM	representation	itself	has	a	rich	set	of	data	structures	and	traversal	methods,	and	APIs	are
available	for	all	major	languages,	such	as	the	dom4j	library	for	Java	and	the	Nokogiri	gem	for	Ruby.

Here	are	additional	useful	resources	for	mastering	JavaScript	and	jQuery:
	

http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://developer.yahoo.com/blogs/ydn/posts/2012/04/
http://dom4j.sourceforge.net
http://nokogiri.org

A	 great	 presentation	 by	 Google	 JavaScript	 guru	 Miško	 Hevery:	 How	 JavaScript	 works:
introduction	to	JavaScript	and	Browser	DOM
Yehuda	 Katz	 is	 an	 active	 core	 committer	 to	 both	 Rails	 and	 jQuery,	 among	 other	 high-profile
projects.	 His	 programmer-oriented	 blog	 posts	 discuss	 tips	 and	 techniques	 ranging	 from	 the
practical	to	the	esoteric	for	both	Ruby	and	JavaScript.	In	particular,	he	has	a	nice	post	on	the	subtle
difference	 between	Ruby	blocks	 and	 JavaScript	 anonymous	 functions	 and	 another	 on	why	 this
works	the	way	it	does	in	JavaScript	functions.
jQuery	is	an	extremely	powerful	library	whose	potential	we	barely	tapped.	jQuery:	Novice	to	Ninja
(Castledine	and	Sharkie	2012)	is	an	excellent	reference	with	many	examples	that	go	far	beyond	our
introduction.
JavaScript:	 The	 Good	 Parts	 (Crockford	 2008),	 by	 the	 creator	 of	 the	 JSLint	 tool,	 is	 a	 highly
opinionated,	 intellectually	 rigorous	 exposition	 of	 JavaScript,	 focusing	 uncompromisingly	 on	 the
disciplined	use	of	 its	good	features	while	candidly	exposing	 the	pitfalls	of	 its	design	flaws.	This
book	is	“must”	reading	if	you	plan	to	write	entire	JavaScript	apps	comparable	to	Google	Docs.
The	ProgrammableWeb	site	 lists	hundreds	of	 service	APIs,	both	RESTful	 and	non-RESTful	 and
serving	 both	XML	 and	 JSON	 data,	 that	 you	may	 find	 useful	 for	 SPAs	 and	mashups.	 Some	 are
completely	open	and	require	no	authentication;	others	require	a	developer	key	which	may	be	free
or	non-free.

	 E.	Castledine	and	C.	Sharkie.	jQuery:	Novice	to	Ninja,	2nd	Edition	-	New	Kicks	and	Tricks.	SitePointBooks,	2012.
	 D.	Crockford.	JavaScript:	The	Good	Parts.	O’Reilly	Media,	2008.

	 P.	Seibel.	Coders	at	Work:	Reflections	on	the	Craft	of	Programming.	Apress,	2009.	ISBN1430219483.

6.12	Suggested	Projects

Project	6.1.

A	disadvantage	of	prototype	inheritance	is	that	all	object	attributes	(properties)	are	public.	(Recall	that
in	 Ruby,	 no	 attributes	 are	 public:	 getter	 and	 setter	 methods,	 defined	 either	 explicitly	 or	 using
attr_accessor,	 are	 the	only	way	 to	access	attributes	 from	outside	 the	class.)	However,	we	can	 take
advantage	of	closures	to	get	private	attributes.	Create	a	simple	constructor	for	User	objects	that	accepts
a	username	and	password,	and	provides	a	checkPassword	method	tells	whether	a	supplied	password	is
correct	but	disallows	 inspecting	 the	actual	password.	This	 “accessors	only”	 idiom	 is	used	 throughout
jQuery.	(Hint:	the	constructor	should	return	an	object	one	of	whose	properties	is	a	function	that	exploits
JavaScript	 closures	 to	 “remember”	 the	 password	 initially	 supplied	 to	 the	 constructor.	 The	 returned
object	should	not	have	a	property	that	holds	the	password.)

Project	6.2.

In	the	example	used	in	Section	6.5,	suppose	you	couldn’t	modify	the	server	code	to	add	the	adult	CSS
class	to	rows	in	the	movies	table.	How	might	you	identify	the	rows	to	be	hidden	using	only	client-side
JavaScript?

Project	6.3.

http://misko.hevery.com/2010/07/14/how-javascript-works/
http://yehudakatz.com
http://yehudakatz.com/2012/01/10/javascript-needs-blocks/
http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this
http://jslint.com
http://programmableweb.com

Write	JavaScript	to	create	cascading	menus	for	day,	month,	and	year	that	allow	the	entry	of	valid	dates
only.	For	example,	if	February	is	selected	as	the	month,	the	Day	menu	should	only	go	from	1–28,	unless
the	Year	menu	indicates	a	leap	year,	in	which	case	the	Day	menu	should	go	from	1–29,	and	so	on.

As	a	bonus,	wrap	your	JavaScript	in	a	Rails	helper	that	results	in	date	menus	with	the	same	menu	names
and	 option	 tags	 as	 the	Rails’	 built-in	 helpers,	making	 your	 JavaScript	menus	 a	 drop-in	 replacement.
Note:	 it’s	 important	 that	 the	menus	 also	 work	 in	 non-JavaScript-enabled	 browsers;	 in	 that	 case,	 the
menus	should	statically	display	1–31	for	the	days	of	the	month.

Project	6.4.

Create	the	AJAX	code	necessary	to	create	cascading	menus	based	on	a	has_many	association.	That	is,
given	Rails	models	A	and	B	where	A	has_many	Bs,	the	first	menu	in	the	pair	should	list	the	A	choices,
and	when	one	is	selected,	retrieve	the	corresponding	B	choices	and	populate	the	B	menu.

Project	6.5.

Augment	 the	 validation	 functionality	 in	ActiveModel	 (which	we	met	 in	 Chapter	 5)	 to	 automatically
generate	 JavaScript	 code	 that	validates	 form	 inputs	before	 the	 form	 is	 submitted.	For	example,	given
RottenPotatoes’	Movie	model	asserts	 that	a	movie	must	have	a	nonblank	 title,	JavaScript	code	should
prevent	the	“Add	New	Movie”	form	from	being	submitted	if	the	validation	is	not	met,	displays	a	helpful
message	to	the	user,	and	highlights	the	field(s)	that	had	validation	problems.	Handle	at	least	the	built-in
validations	 such	 as	 nonblank,	 minimum/maximum	 string	 lengths,	 numerical	 values	 with	 range
constraints,	and	for	bonus	points,	validations	based	on	regular	expressions.

Project	6.6.

Following	 the	 approach	 of	 the	 jQuery	 example	 in	 Section	 6.5,	 use	 JavaScript	 to	 implement	 a	 set	 of
checkboxes	for	 the	 list	of	movies	page,	one	for	each	rating	(G,	PG,	and	so	on),	which	when	checked
allow	movies	 with	 that	 rating	 to	 stay	 in	 the	 list.	When	 the	 page	 first	 loads,	 all	 should	 be	 checked;
unchecking	any	of	them	should	hide	the	movies	with	that	rating.

Project	6.7.

Extend	the	example	of	Section	6.6	so	that	if	the	user	repeatedly	expands	and	collapses	the	same	row	in
the	movies	table,	a	request	to	the	server	for	that	movie’s	info	is	only	made	the	first	time.	In	other	words,
implement	client-side	JavaScript	caching	for	the	movie	info	retrieved	on	each	AJAX	call.

Project	6.8.	 If	you	visit	twitter.com	 and	 the	page	 takes	more	 than	a	 few	 seconds	 to	 load,	 a	popup
appears	apologizing	for	 the	delay	and	suggesting	you	try	reloading	the	page.	Explain	how	you	would
implement	this	behavior	using	JavaScript.	Hint:	Remember	that	JavaScript	code	can	begin	executing	as
soon	 as	 it’s	 loaded,	 whereas	 the	 document.ready	 function	 won’t	 run	 until	 the	 document	 has	 been
completely	loaded	and	parsed.

Project	6.9.

Use	the	JSON	and	jQuery	techniques	in	this	chapter	to	use	BDD	to	develop	the	following	single-page
app	 (SPA)	counterpart	 to	RottenPotatoes,	which	we	call	LocalPotatoes.	When	 the	user	 enters	her	US

postal	code	(called	“zip	code”	in	the	US),	LocalPotatoes	uses	the	RSS	feed	(Really	Simple	Syndication)
provided	 free	 by	 the	 Fandango	movie	 fan	 site	 to	 retrieve	 the	 names	 and	 locations	 of	 nearby	movie
theaters	and	the	titles	of	movies	playing	there.	This	data	is	returned	in	XML,	so	you’ll	need	to	do	some
minimal	XML	parsing	in	your	JavaScript	code	to	extract	the	theater	names	and	movie	names.	A	list	of
theaters	 is	 displayed	 on	 the	 client	 page;	 when	 the	 user	 clicks	 on	 a	 theater	 name,	 the	 Google	Maps
JavaScript	API	 is	 used	 to	 center	 the	map	 on	 that	 theater’s	 location,	 and	 the	movies	 showing	 at	 that
theater	 are	 listed	 in	 the	Movies	box.	Clicking	on	 the	name	of	 a	movie	 looks	up	 information	about	 it
using	the	free	Open	Movie	Database	API,	which	can	return	basic	results	in	either	JSON	or	XML,	and
displays	the	movie’s	promotional	artwork	and	overall	rating	by	Internet	Movie	Database	users.

Project	6.10.

Consider	a	site	that	sells	a	small	fixed	number	of	items,	and	the	user	just	indicates	how	many	of	each
item	 she	 wants	 by	 choosing	 a	 quantity	 from	 a	 dropdown	 menu	 next	 to	 each	 item	 name.	 Write
unobtrusive	JavaScript	code	that	watches	these	dropdown	menus,	and	every	time	any	of	them	changes,
updates	a	Total	field	with	the	total	value	of	 the	order	by	multiplying	each	quantity	by	the	appropriate
item	 price	 and	 then	 summing	 over	 the	 results.	 The	 total	 field	 should	 be	 read-only	 (i.e.	 not	 user-
changeable).

Figure	6.31:	A	simple	shopping	cart	with	dropdown	menus	to	select	how	many	of	each	item	to	purchase.

Project	6.11.

Figure	6.21	 only	 tests	 the	 happy	 path	 spec	 (describe(’when	 successful’)	 using	AJAX	 stubbing.
Add	specs	for	the	sad	paths	when	server	error	and	when	timeout.

http://http://www.fandango.com/rss/moviefeed
https://developers.google.com/maps/documentation/javascript/tutorial
http://www.omdbapi.com
http://imdb.com

Part	II
Software	 Development:	 Agile	 vs.	 Plan-and-
Document

7.	Requirements:	Behavior-Driven	Design	and	User	Stories

Clearly,	programming	courses	should	teach	methods	of	design	and	construction,	and	the	selected
examples	should	be	such	that	a	gradual	development	can	be	nicely	demonstrated.

—Niklaus	Wirth,	“Program	Development	by	Stepwise	Refinement,”	CACM	14(5),	May	1971

			Niklaus	Wirth	(1934–)	received	the	Turing	Award	in	1984	for	developing	a
sequence	of	innovative	programming	languages,	including	Algol-W,	Euler,	Modula,	and	Pascal.

7.1	Introduction	to	Behavior-Driven	Design	and	User	Stories
7.2	Points,	Velocity,	and	Pivotal	Tracker
7.3	SMART	User	Stories
7.4	Lo-Fi	User	Interface	Sketches	and	Storyboards
7.5	Agile	Cost	Estimation
7.6	Introducing	Cucumber	and	Capybara
7.7	Running	Cucumber	and	Capybara
7.8	Enhancing	RottenPotatoes
7.9	Explicit	vs.	Implicit	and	Imperative	vs.	Declarative	Scenarios
7.10	The	Plan-And-Document	Perspective
7.11	Fallacies	and	Pitfalls
7.12	Concluding	Remarks:	Pros	and	Cons	of	BDD
7.13	To	Learn	More
7.14	Suggested	Projects

Concepts

The	big	concepts	of	 this	chapter	are	 requirements	elicitation,	cost	 estimation,	project	 scheduling,	and
monitoring	progress.

The	 version	 of	 these	 concepts	 for	 the	Agile	 lifecycle,	 which	 follows	Behavior-Driven	Development
(BDD),	are:
	

User	stories	to	elicit	functional	requirements.
Low-fidelity	(Lo-Fi)	user	interfaces	and	storyboards	to	elicit	UI	requirements.
Points	to	turn	user	stories	into	cost	estimates.
Velocity	to	measure	and	estimate	schedule.
Using	the	tool	Cucumber	to	transform	user	stories	into	acceptance	tests.
Using	the	tool	Pivotal	Tracker	to	track	project	progress,	to	calculate	velocity,	and	to	estimate	time
to	milestones.

For	 the	 Plan	 and	 Document	 lifecycle,	 you	 will	 become	 familiar	 with	 the	 same	 concepts	 in	 a	 quite
different	format:
	

Requirements	elicitation	via	 interviewing,	scenarios,	and	use	cases,	 requirements	documentation
via	a	Software	Requirements	Specification	(SRS),	and	requirement	fulfillment	using	requirements
traceability.
Cost	estimation	based	on	project	manager	experience	or	formulas	such	as	COCOMO,	 scheduling
and	 monitoring	 progress	 using	 PERT	 charts,	 and	 change	 management	 using	 version	 control
systems	for	documentation	and	schedule	as	well	as	the	code.
Risk	analysis	and	management	to	increase	chances	of	project	being	successful.

Both	 lifecycles	 illustrate	 the	 difference	 between	 functional	 versus	non-functional	 requirements	 and
explicit	versus	implicit	requirements.

http://en.wikipedia.org/wiki/Behavior-Driven_Development
http://en.wikipedia.org/wiki/Behavior-Driven_Development
http://en.wikipedia.org/wiki/User_stories
http://en.wikipedia.org/wiki/Low_Fidelity_Mock-Up
http://en.wikipedia.org/wiki/storyboards
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/Pivotal_Tracker
http://en.wikipedia.org/wiki/Scenario_(computing)
http://en.wikipedia.org/wiki/use_cases
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Requirements_traceability
http://en.wikipedia.org/wiki/COCOMO
http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Risk_analysis_(engineering)
http://en.wikipedia.org/wiki/Functional_requirement
http://en.wikipedia.org/wiki/non-functional_requirements

7.1	Introduction	to	Behavior-Driven	Design	and	User	Stories

Behavior-Driven	Design	is	Test-Driven	Development	done	correctly.
—Anonymous

Software	projects	fail	because	they	don’t	do	what	customers	want;	or	because	they	are	late;	or	because
they	are	over	budget;	or	because	they	are	hard	to	maintain	and	evolve;	or	all	of	the	above.

Figure	7.1:	An	iteration	of	the	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book.	This	chapter	emphasizes	talking
to	customers	as	part	of	Behavior-Driven	Design.

The	 Agile	 lifecycle	 was	 invented	 to	 attack	 these	 problems	 for	 many	 common	 types	 of	 software.
Figure	7.1	shows	one	iteration	of	the	Agile	lifecycle	from	Chapter	1,	highlighting	the	portion	covered	in
this	chapter.	As	we	saw	in	Chapter	1,	the	Agile	lifecycle	involves:

Agile	stakeholders	include	users,	customers,	developers,	maintenance	programmers,	operators,	project	management,

	

Working	closely	and	continuously	with	stakeholders	to	develop	requirements	and	tests.
Maintaining	a	working	prototype	while	deploying	new	features	typically	every	two	weeks—called
an	iteration—and	checking	in	with	stakeholders	to	decide	what	to	add	next	and	to	validate	that	the
current	 system	 is	 what	 they	 really	 want.	 Having	 a	 working	 prototype	 and	 prioritizing	 features
reduces	the	chances	of	a	project	being	late	or	over	budget,	or	perhaps	increasing	the	likelihood	that
the	stakeholders	are	satisfied	with	the	current	system	once	the	budget	is	exhausted!

Unlike	 a	 plan-and-document	 lifecycle	 in	Chapter	 1,	Agile	 development	 does	 not	 switch	 phases	 (and
people)	 over	 time	 from	 development	 mode	 to	 maintenance	 mode.	With	 Agile,	 you	 are	 basically	 in
maintenance	mode	as	soon	as	you’ve	implemented	the	first	set	of	features.	This	approach	helps	make
the	project	easier	to	maintain	and	evolve.

We	 start	 the	 Agile	 lifecycle	 with	 Behavior-Driven	 Design	 (BDD).	 BDD	 asks	 questions	 about	 the
behavior	 of	 an	 application	before	 and	 during	 development	 so	 that	 the	 stakeholders	 are	 less	 likely	 to
miscommunicate.	 Requirements	 are	 written	 down	 as	 in	 plan-and-document,	 but	 unlike	 plan-and-
document,	 requirements	 are	 continuously	 refined	 to	 ensure	 the	 resulting	 software	 meets	 the
stakeholders’	 desires.	 That	 is,	 using	 the	 terms	 from	 Chapter	 1,	 the	 goal	 of	 BDD	 requirements	 is
validation	(build	the	right	thing),	not	just	verification	(build	the	thing	right).

The	BDD	version	of	requirements	is	user	stories,	which	describe	how	the	application	is	expected	to	be
used.	They	 are	 lightweight	 versions	 of	 requirements	 that	 are	 better	 suited	 to	Agile.	User	 stories	 help
stakeholders	 plan	 and	 prioritize	 development.	 Thus,	 like	 plan-and-document,	 you	 start	 with
requirements,	but	in	BDD	user	stories	take	the	place	of	design	documents	in	plan-and-document.

By	concentrating	on	the	behavior	of	the	application	versus	the	implementation	of	application,	it	is	easier
to	reduce	misunderstandings	between	stakeholders.	As	we	shall	see	in	the	next	chapter,	BDD	is	closely
tied	 to	 Test-Driven	 Development	 (TDD),	 which	 does	 test	 implementation.	 In	 practice	 they	 work
together	hand-in-hand,	but	for	pedagogical	reasons	we	introduce	them	sequentially.

User	stories	came	from	the	Human	Computer	Interface	(HCI)	community.	They	developed	them	using
3-inch	by	5-inch	index	cards	or	“3-by-5	cards,”	or	in	countries	where	metric	paper	sizes	are	used,	A7
cards	of	74	mm	by	105	mm.	(We’ll	see	other	examples	of	paper	and	pencil	 technology	from	the	HCI
community	 shortly.)	 These	 cards	 contain	 one	 to	 three	 sentences	 written	 in	 everyday	 nontechnical
language	 written	 jointly	 by	 the	 customers	 and	 developers.	 The	 rationale	 is	 that	 paper	 cards	 are
nonthreatening	 and	 easy	 to	 rearrange,	 thereby	 enhancing	 brainstorming	 and	 prioritizing.	 The	 general
guidelines	for	the	user	stories	themselves	is	that	they	must	be	testable,	be	small	enough	to	implement	in
one	iteration,	and	have	business	value.	Section	7.3	gives	more	detailed	guidance	for	good	user	stories.

http://en.wikipedia.org/wiki/iteration
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/user_stories

Note	that	individual	developers	working	by	themselves	without	customer	interaction	don’t	need	these	3-
by-5	cards,	but	this	“lone	wolf”	developer	doesn’t	match	the	Agile	philosophy	of	working	closely	and
continuously	with	the	customer.

We	will	use	the	RottenPotatoes	app	from	Chapters	2	and	4	as	the	running	example	in	this	chapter	and
the	next	one.	We	start	with	the	stakeholders,	which	are	simple	for	this	simple	app:
	

The	operators	of	RottenPotatoes,	and
The	movie	fans	who	are	end-users	of	RottenPotatoes.

We’ll	 introduce	a	new	 feature	 in	Section	7.8,	 but	 to	help	understand	all	 the	moving	parts,	we’ll	 start
with	a	user	story	for	an	existing	feature	of	RottenPotatoes	so	that	we	can	understand	the	relationship	of
all	the	components	in	a	simpler	setting.	The	user	story	we	picked	is	to	add	movies	to	the	RottenPotatoes
database:

Pastebin	is	a	service	for	copying-and-pasting	book	code.	(You	need	to	type	the	URI	into	a	browser	if	you’re	reading	the	print	book;	it’s	a
link	in	ebooks.)

http://pastebin.com/BpmHu0Nq

	1				Feature:	Add	a	movie	to	RottenPotatoes

	2						As	a	movie	fan

	3						So	that	I	can	share	a	movie	with	other	movie	fans

	4						I	want	to	add	a	movie	to	RottenPotatoes	database

This	user	story	format	was	developed	by	the	startup	company	Connextra	and	is	named	after	them;	sadly,
this	startup	is	no	longer	with	us.	The	format	is:

http://pastebin.com/We7vY0eg

	1				Feature	name

	2						As	a	[kind	of	stakeholder],

	3						So	that	[I	can	achieve	some	goal],

	4						I	want	to	[do	some	task]

This	 format	 identifies	 the	 stakeholder	 since	 different	 stakeholders	may	 describe	 the	 desired	 behavior
differently.	For	 example,	 users	may	want	 to	 link	 to	 information	 sources	 to	make	 it	 easier	 to	 find	 the
information	while	operators	may	want	links	to	trailers	so	that	they	can	get	an	income	stream	from	the
advertisers.	All	three	clauses	have	to	be	present	in	the	Connextra	format,	but	they	are	not	always	in	this
order.

Summary	of	BDD	and	User	Stories
BDD	emphasizes	working	with	stakeholders	to	define	the	behavior	of	the	system	being	developed.
Stakeholders	include	nearly	everyone:	customers,	developers,	managers,	operators,
User	 stories,	 a	 device	 borrowed	 from	 the	 HCI	 community,	 make	 it	 easy	 for	 nontechnical

http://pastebin.com/BpmHu0Nq
http://pastebin.com/We7vY0eg
http://en.wikipedia.org/wiki/User_stories

stakeholders	to	help	create	requirements.
3x5	 cards,	 each	 with	 a	 user	 story	 of	 one	 to	 three	 sentences,	 are	 an	 easy	 and	 nonthreatening
technology	that	lets	all	stakeholders	brainstorm	and	prioritize	features.
The	Connextra	format	of	user	stories	captures	the	stakeholder,	the	stakeholder’s	goal	for	the	user
story,	and	the	task	at	hand.

Self-Check	 7.1.1.	 True	 or	 False:	 User	 stories	 on	 3x5	 cards	 in	 BDD	 play	 the	 same	 role	 as	 design
requirements	in	plan-and-document.
	True.

ELABORATION:	User	Stories	and	Case	Analysis
User	stories	represent	a	lightweight	approach	to	use-case	analysis,	a	term	traditionally	used	in	software	engineering	to	describe	a
similar	process.	A	full	use	case	analysis	would	include	the	use	case	name;	actor(s);	goals	of	the	action;	summary	of	the	use	case;
preconditions	(state	of	the	world	before	the	action);	steps	occurring	in	the	scenario	(both	the	actions	performed	by	the	user	and	the
system’s	responses);	related	use	cases;	and	postconditions	(state	of	the	world	after	the	action).	A	use	case	diagram	is	a	type	of	UML
diagram	(see	Chapter	11)	with	stick	figures	standing	in	for	the	actors,	and	can	be	used	to	generalize	or	extend	use	cases	or	to	include
a	use	case	by	reference.	For	example,	if	we	have	a	use	case	for	“user	logs	in”	and	another	use	case	for	“logged-in	user	views	her
account	summary”,	the	latter	could	include	the	former	by	reference,	since	a	precondition	to	the	second	use	case	is	that	the	user	has
logged	in.

7.2	Points,	Velocity,	and	Pivotal	Tracker

One	way	 to	measure	 the	productivity	of	a	 team	would	be	simply	 to	count	 the	number	of	user	 stories
completed	per	iteration,	and	then	calculate	the	average	number	of	stories	per	week.	The	average	would
then	be	used	to	decide	how	many	stories	to	try	to	implement	each	iteration.

The	 problem	 with	 this	 measure	 is	 that	 some	 stories	 are	 much	 harder	 than	 others,	 leading	 to
mispredictions.	The	simple	solution	is	to	rate	each	user	story	in	advance	on	a	simple	integer	scale.	We
recommend	starting	with	a	three-point	scale:	1	for	straightforward	stories,	2	for	medium	stories,	and	3
for	 very	 complex	 stories.	 (As	 you	 get	 experience	with	 rating	 and	 completing	 stories,	 you	 can	 use	 a
wider	 range.)	 The	 average	 is	 now	 of	 the	 number	 of	 points	 per	 iteration	 a	 team	 completes,	which	 is
called	velocity.	The	backlog	is	the	name	of	the	collection	of	stories	that	have	not	yet	been	completed	in
this	iteration.

Fibonacci	scale	With	more	experience,	the	Fibonacci	scale	is	commonly	used:	1,	2,	3,	5,	and	8.	(Each	new	number	is	sum	of	previous
two.)	However,	at	places	like	Pivotal	Labs,	8	is	extremely	rare.

Note	 that	velocity	measures	work	 rate	based	on	 the	 team’s	 self-evaluation.	As	 long	as	 the	 team	rates
user	 stories	 consistently,	 it	 doesn’t	matter	 whether	 the	 team	 is	 completing	 5	 points	 or	 10	 points	 per
iteration.	The	purpose	of	velocity	is	to	give	all	stakeholders	an	idea	how	many	iterations	it	will	take	a
team	to	add	the	desired	set	of	features,	which	helps	set	reasonable	expectations	and	reduces	chances	of
disappointment.

Pivotal	Tracker	is	a	service	that	tracks	user	stories	and	velocity.

http://en.wikipedia.org/wiki/Index_card
http://en.wikipedia.org/wiki/use-case_analysis
http://en.wikipedia.org/wiki/use_case_diagram
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/Pivotal_Tracker

	 	 	Figure	7.2	shows	Tracker’s	UI.	You	start	by	entering	user	stories,	which	requires	filling	in	the
difficulty	rating.	You	then	prioritize	the	stories	by	placing	them	either	into	the	Current	panel	or	into	the
Backlog	panel.	The	order	of	the	stories	within	each	panel	defines	their	relative	priority.	When	stories	are
completed,	they	are	placed	into	a	Done	panel	and	Tracker	suggests	stories	from	the	backlog	in	priority
order.	Another	category	is	the	Icebox	panel,	which	contains	unprioritized	stories.	They	can	stay	“on	ice”
indefinitely,	but	when	you’re	ready	to	start	working	on	them,	just	drag	them	to	the	Current	or	Backlog
panels.

Tracker	intro	Pivotal	Labs	has	produced	an	excellent	3-minute	video	intro	to	using	Tracker.

Tracker	also	allows	the	insertion	of	markers	of	Release	points	in	the	prioritized	lists	of	user	stories.	As	it
calculates	 velocity	 based	 on	 points	 completed,	 it	 also	 supplies	 the	 current	 estimate	 of	 when	 these
software	 releases	will	 actually	occur.	This	 approach	 is	 in	 sharp	 contrast	 to	management	by	 schedule,
where	a	manager	picks	a	release	date	and	the	team	is	expected	to	work	hard	to	meet	the	deadline.

Another	 Pivotal	 feature	 that	 is	 not	 really	 a	 story	 is	 a	 Spike.	 A	 spike	 is	 a	 short	 investigation	 into	 a
technique	 or	 problem	 that	 the	 teams	 wants	 explored	 before	 sitting	 down	 to	 do	 serious	 coding.	 An
example	would	be	a	“spike”	on	recommendation	algorithms.	After	a	spike	is	done,	the	spike	code	must
be	thrown	away.	The	spike	let	you	know	what	approach	you	want	to	follow,	and	now	you	should	write	it
correctly.

http://www.youtube.com/watch?v=mTYcHg51sWY

Figure	7.2:	Screen	image	of	the	UI	of	the	Pivotal	Tracker	service.

Tracker	recently	added	a	new	concept	to	combine	a	collection	of	related	user	stories	into	a	group	called
an	 Epic.	 Epics	 have	 their	 own	 panel	 and	 their	 own	 progress	 bar	 in	 Tracker,	 and	 can	 be	 ordered
independently	of	the	user	stories	in	the	backlog.	The	idea	is	to	give	software	engineers	the	big	picture	of
where	the	application	is	in	the	development	process	with	regard	to	big	features.

Developers	do	not	decide	when	the	user	stories	are	completed.	The	developer	pushes	the	Deliver	button,
which	sends	it	to	the	Product	Owner—exactly	the	same	role	as	in	the	Scrum	organization.	The	Product
Owner	tries	out	the	user	story	and	then	either	hits	the	Accept	button	that	marks	user	story	as	done	or	hits
the	Reject	button,	which	marks	the	story	as	needing	to	be	Restarted	by	the	developer.

Teams	 need	 a	 virtual	 commons	 in	 which	 to	 share	 information,	 and	 Tracker	 allows	 you	 to	 attach
documents	to	user	stories,	which	seems	a	perfect	place	for	Lo-Fi	sketches	and	design	documents.	Here
are	other	good	cyberspace	locales	your	team	could	use	to	communicate	and	share	information	such	as
meeting	notes,	software	architecture,	and	so	on:
	

Every	GitHub	repository	(see	Section	A.7)	offers	a	Wiki,	which	allows	 team	members	 to	 jointly
edit	a	document	and	add	files.
Google	Docs	allows	joint	creation	and	viewing	of	drawings,	presentations,	spreadsheets,	and	text
documents.
Campfire	is	a	web-based	service	for	password-protected	online	chat	rooms.

Summary:	To	help	the	team	manage	each	iteration	and	to	predict	how	long	the	team	will	take	to
implement	 new	 features,	 the	 team	 assigns	 points	 to	 rate	 difficulty	 of	 user	 stories	 and	 tracks	 the
team’s	 velocity,	 or	 average	 points	 per	 iteration.	 Pivotal	 Tracker	 provides	 a	 service	 that	 helps
prioritize	and	keep	track	of	user	stories	and	their	status,	calculates	velocity,	and	predicts	software
development	time	based	on	the	team’s	history.

Self-Check	7.2.1.	True	or	False:	When	comparing	two	teams,	the	one	with	the	higher	velocity	is	more
productive.
	False:	Since	each	 team	assigns	points	 to	user	stories,	you	cannot	use	velocity	 to	compare	different

teams.	However,	 you	 could	 look	over	 time	 for	 a	 given	 team	 to	 see	 if	 there	were	 iterations	 that	were
significantly	less	or	more	productive.

Self-Check	7.2.2.	True	or	False:	When	you	don’t	know	how	to	approach	a	given	user	story,	just	give	it
3	points.
	False:	A	user	story	should	not	be	so	complex	that	you	don’t	have	an	approach	to	implementing	it.	If

they	are,	you	should	go	back	to	your	stakeholders	to	refactor	the	user	story	into	a	set	of	simpler	tasks
that	you	do	know	how	to	approach.

7.3	SMART	User	Stories

What	makes	a	good	user	story	versus	a	bad	one?	The	SMART	acronym	offers	concrete	and	(hopefully)
memorable	guidelines:	Specific,	Measurable,	Achievable,	Relevant,	and	Timeboxed.
	

Specific.	Here	are	examples	of	a	vague	feature	paired	with	a	specific	version:

http://pastebin.com/vnUt6KLF

	1	Feature:	User	can	search	for	a	movie	(vague)

	2	Feature:	User	can	search	for	a	movie	by	title	(specific)

Measurable.	 Adding	 Measurable	 to	 Specific	 means	 that	 each	 story	 should	 be	 testable,	 which

http://docs.google.com
http://campfirenow.com
http://en.wikipedia.org/wiki/velocity_(software_methodology)
http://pastebin.com/vnUt6KLF

implies	 that	 there	are	known	expected	 results	 for	 some	good	 inputs.	An	example	of	a	pair	of	an
unmeasurable	versus	measurable	feature	is

http://pastebin.com/rbLcwD2f

	1	Feature:		RottenPotatoes	should	have	good	response	time	(unmeasurable)

	2	Feature:		When	adding	a	movie,	99%	of	Add	Movie	pages

	3											should	appear	within	3	seconds	(measurable)

Only	the	second	case	can	be	tested	to	see	if	the	system	fulfills	the	requirement.

Achievable.	 			Ideally,	you	implement	the	user	story	in	one	Agile	iteration.	If	you	are	getting
less	than	one	story	per	iteration,	then	they	are	too	big	and	you	need	to	subdivide	these	stories	into
smaller	ones.	As	mentioned	above,	the	tool	Pivotal	Tracker	measures	Velocity,	which	is	the	rate	of
completing	stories	of	varying	difficulty.
Relevant.	A	user	story	must	have	business	value	to	one	or	more	stakeholders.	To	drill	down	to	the
real	business	value,	one	technique	is	to	keep	asking	“Why.”	Using	as	an	example	a	ticket-selling
app	for	a	regional	theater,	suppose	the	proposal	is	to	add	a	Facebook	linking	feature.	Here	are	the
“Five	Whys”	in	action	with	their	recursive	questions	and	answers:

	
1.	 Why	 add	 the	 Facebook	 feature?	As	 box	 office	manager,	 I	 think	more	 people	will	 go	with

friends	and	enjoy	the	show	more.
2.	 Why	does	it	matter	if	they	enjoy	the	show	more?	I	think	we	will	sell	more	tickets.
3.	 Why	do	you	want	to	sell	more	tickets?	Because	then	the	theater	makes	more	money.
4.	 Why	does	theater	want	to	make	more	money?	We	want	to	make	more	money	so	that	we	don’t

go	out	of	business.
5.	 Why	does	it	matter	that	theater	is	in	business	next	year?	If	not,	I	have	no	job.

(We’re	pretty	sure	the	business	value	is	now	apparent	to	at	least	one	stakeholder!)

Timeboxed.	Timeboxing	means	 that	 you	 stop	developing	 a	 story	once	you’ve	 exceeded	 the	 time
budget.	 Either	 you	 give	 up,	 divide	 the	 user	 story	 into	 smaller	 ones,	 or	 reschedule	 what	 is	 left
according	to	a	new	estimate.	If	dividing	looks	like	it	won’t	help,	then	you	go	back	to	the	customers
to	find	the	highest	value	part	of	the	story	that	you	can	do	quickly.

The	reason	for	a	 time	budget	per	user	story	is	 that	 it	 is	extremely	easy	to	underestimate	the
length	of	a	software	project.	Without	careful	accounting	of	each	iteration,	 the	whole	project
could	 be	 late,	 and	 thus	 fail.	 Learning	 to	 budget	 a	 software	 project	 is	 a	 critical	 skill,	 and
exceeding	a	story	budget	and	then	refactoring	it	is	one	way	to	acquire	that	skill.

One	 important	 concept	 expands	 upon	 the	 R	 of	 SMART.	 The	minimum	 viable	 product	 (MVP)	 is	 a
subset	of	the	full	set	of	features	that	when	completed	has	business	value	in	the	real	world.	Not	only	are
the	 stories	 Relevant,	 but	 the	 combination	 of	 all	 of	 them	 makes	 the	 software	 product	 viable	 in	 the
marketplace.	Obviously,	you	can’t	start	selling	the	product	if	 it’s	not	viable,	so	it	makes	sense	to	give
priority	to	the	stories	that	will	let	the	product	be	shipped.	The	Epic	or	a	Release	point	of	Pivotal	Tracker
can	help	identify	the	stories	of	the	MVP.

http://pastebin.com/rbLcwD2f
http://en.wikipedia.org/wiki/Pivotal_Tracker
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/minimum_viable_product

Summary	of	SMART	User	Stories
The	SMART	acronym	captures	the	desirable	features	of	a	good	user	story:	Specific,	Measurable,
Achievable,	Relevant,	and	Timeboxed.
The	Five	Whys	are	a	technique	to	help	you	drill	down	to	uncover	the	real	business	relevance	of	a
user	story.

Self-Check	 7.3.1.	 Which	 SMART	 guideline(s)	 does	 the	 feature	 below	 violate?
http://pastebin.com/TuyS5mpC

	1				Feature:	RottenPotatoes	should	have	a	good	User	Interface

	 It	 is	 not	Specific,	 not	Measurable,	 not	Achievable	 (within	 1	 iteration),	 and	 not	Timeboxed.	While
business	Relevant,	this	feature	goes	just	one	for	five.

Self-Check	7.3.2.	Rewrite	this	feature	to	make	it	SMART.

http://pastebin.com/cdV6mjBb

	1				Feature:	I	want	to	see	a	sorted	list	of	movies	sold.

	Here	is	one	SMART	revision	of	this	user	story:

http://pastebin.com/pZMPJqPq

	1				Feature:	As	a	customer,	I	want	to	see	the	top	10	movies	sold,

	2													listed	by	price,	so	that	I	can	buy	the	cheapest	ones	first.

Given	user	 stories	 as	 the	work	product	 from	eliciting	 requirements	of	 customers,	we	can	 introduce	 a
metric	and	tool	to	measure	productivity.

7.4	Lo-Fi	User	Interface	Sketches	and	Storyboards

We	 usually	 need	 to	 specify	 a	 user	 interface	 (UI)	 when	 adding	 a	 new	 feature	 since	 many	 SaaS
applications	interact	with	end	users.	Thus,	part	of	the	BDD	task	is	often	to	propose	a	UI	to	match	the
user	stories.	 If	a	user	story	says	a	user	needs	 to	 login,	 then	we	need	a	mockup	of	a	page	 that	has	 the
login.	Alas,	building	software	prototypes	of	user	interfaces	can	intimidate	stakeholders	from	suggesting
improvements—just	the	opposite	of	the	effect	we	need	at	this	early	point	of	the	design.

http://en.wikipedia.org/wiki/5_Whys
http://pastebin.com/TuyS5mpC
http://pastebin.com/cdV6mjBb
http://pastebin.com/pZMPJqPq

Figure	7.3:	Window	that	appears	when	adding	a	movie	to	RottenPotatoes.

What	 we	 want	 is	 the	 UI	 equivalent	 of	 3x5	 cards;	 engaging	 to	 the	 nontechnical	 stakeholder	 and
encouraging	 trial	 and	error,	which	means	 it	must	be	 easy	 to	 change	or	 even	discard.	 Just	 as	 the	HCI
community	 advocates	 3x5	 cards	 for	 user	 stories,	 they	 recommend	 using	 kindergarten	 tools	 for	 UI
mockups:	crayons,	construction	paper,	and	scissors.	They	call	this	low-tech	approach	to	user	interfaces
Lo-Fi	UI	and	the	paper	prototypes	sketches.	For	example,	Figure	7.3	shows	a	Lo-Fi	sketch	of	the	UI	for
adding	a	movie	to	RottenPotatoes.

Ideally,	you	make	sketches	for	all	the	user	stories	that	involve	a	UI.	It	may	seem	tedious,	but	eventually
you	are	going	to	have	to	specify	all	the	UI	details	when	using	HTML	to	make	the	real	UI,	and	it’s	a	lot
easier	to	get	it	right	with	pencil	and	paper	than	with	code.

http://en.wikipedia.org/wiki/website_wireframe

Figure	7.4:	Storyboard	of	images	for	adding	a	movie	to	RottenPotatoes.

Lo-Fi	sketches	show	what	the	UI	looks	like	at	one	instant	in	time.	However,	we	also	need	to	show	how
the	 sketches	work	 together	 as	 a	user	 interacts	with	 a	page.	Filmmakers	 face	 a	 similar	 challenge	with
scenes	of	a	movie.	Their	solution,	which	they	call	storyboarding,	is	to	go	through	the	entire	film	as	if	it
was	 a	 comic	 book,	 with	 drawings	 for	 every	 scene.	 Instead	 of	 a	 linear	 sequence	 of	 images	 like	 in	 a
movie,	the	storyboard	for	a	UI	is	typically	a	tree	or	graph	of	screens	driven	by	different	user	choices.

To	make	a	storyboard,	you	must	think	about	all	the	user	interactions	with	a	web	app:
	

Pages	or	sections	of	pages,
Forms	and	buttons,	and
Popups.

Figure	7.4	 shows	 a	 sequence	 of	Lo-Fi	 sketches	with	 indications	 of	what	 the	 user	 clicks	 to	 cause	 the
transitions	 between	 sketches.	 After	 drawing	 the	 sketches	 and	 storyboards,	 you	 are	 ready	 to	 write
HTML.	Chapter	2	showed	how	Haml	markup	becomes	HTML,	and	how	the	class	and	id	attributes	of
HTML	elements	can	be	used	to	attach	styling	information	to	 them	via	Cascading	Style	Sheets	(CSS).
The	key	 to	 the	Lo-Fi	approach	 is	 to	get	a	good	overall	structure	from	your	sketches,	and	do	minimal
CSS	(if	any)	to	get	the	view	to	look	more	or	less	like	your	sketch.	Remember	that	the	common	parts	of
the	 page	 layout—banners,	 structural	 divs,	 and	 so	 on—can	 go	 into
views/layouts/application.html.haml.

Start	 the	process	by	 looking	at	 the	Lo-Fi	UI	sketches	and	split	 them	 into	“blocks”	of	 the	 layout.	Use
CSS	divs	for	obvious	layout	sections.	There	is	no	need	to	make	it	pretty	until	after	you	have	everything
working.	Adding	CSS	styling,	images,	and	so	on	is	the	fun	part,	but	make	it	look	good	after	it	works.

Since	the	example	in	Section	7.6	involved	existing	functionality,	there	is	no	need	to	modify	the	Haml	or
CSS.	The	next	section	adds	a	new	feature	to	RottenPotatoes	and	thus	needs	Haml	changes.

Summary:	Borrowing	from	the	HCI	community	once	again,	Lo-Fi	sketches	are	low	cost	ways	to
explore	the	user	interface	of	a	user	story.	Paper	and	pencil	makes	them	easy	to	change	or	discard,
which	 once	 again	 can	 involve	 all	 stakeholders.	 Storyboards	 capture	 the	 interaction	 between
different	pages	depending	on	what	 the	user	does.	It	 is	much	less	effort	 to	experiment	 in	 this	 low
cost	medium	before	using	Haml	and	CSS	to	create	the	pages	you	want	in	HTML.

Self-Check	7.4.1.	True	or	False:	The	purpose	of	the	Lo-Fi	UI	and	storyboards	is	to	debug	the	UI	before
you	program	it.
	True.

7.5	Agile	Cost	Estimation

Given	 that	 the	 Agile	 Manifesto	 values	 customer	 collaboration	 over	 contract	 negotiation,	 it	 is
unsurprising	 that	 it	 does	 not	 follow	 the	 plan-and-document	 approach	 of	making	 a	 cost	 estimate	 and

http://en.wikipedia.org/wiki/storyboarding
http://en.wikipedia.org/wiki/website_wireframe
http://en.wikipedia.org/wiki/Storyboards

schedule	for	a	given	set	of	features	as	part	of	bid	to	win	a	contract,	as	we	shall	see	in	Section	7.10).	This
section	describes	the	process	at	Pivotal	Labs,	which	relies	upon	Agile	development	(Burkes	2012).

Pivotal	Labs	is	a	software	consultancy	that	teaches	clients	the	Agile	lifecycle	while	collaborating	with	them	to	develop	a	specific
software	product.

Because	Pivotal	does	Agile,	Pivotal	never	commits	to	delivering	features	X,	Y,	and	Z	by	date	D.	Pivotal
commits	 to	providing	a	certain	amount	of	 resources	 to	work	 in	 the	most	efficient	way	possible	up	 to
date	D.	Along	the	way,	Pivotal	needs	the	client	to	work	with	the	project	team	to	define	priorities,	and	let
Tracker’s	velocity	guide	the	decisions	as	to	which	features	actually	make	it	into	the	release	on	date	D.

A	potential	client	first	gets	in	contact	with	the	Agile	team.	If	it	looks	like	a	good	fit	for	the	Agile	team,
they	first	do	a	30	to	60	minute	phone	call	telling	potential	clients	what	an	engagement	looks	like,	how
it’s	different	 from	other	“outsourcing”	agencies,	what	 type	of	 time	commitment	 it	will	 require	on	 the
customer’s	part,	and	so	on.	This	first	call	makes	clear	that	the	Agile	team	works	on	a	time	and	materials
basis,	not	on	a	fixed	bid	basis,	as	is	usually	the	case	with	plan-and-document	processes.	The	Agile	team
gets	them	to	describe	at	a	high	level	what	they	want	developed,	what	their	current	development	process
looks	like,	what	their	current	staffing	is,	and	so	on.

If	the	clients	are	comfortable	with	what	they	heard,	and	the	Agile	team	thinks	it	still	sounds	like	a	good
fit,	 the	clients	visit	for	what	Pivotal	calls	a	“scoping.”	A	scoping	is	a	roughly	90	minute	conversation
with	 a	 potential	 client,	 preferably	 in	 person.	 The	 Agile	 team	 asks	 the	 client	 to	 bring	 the	 person
responsible	for	the	product,	a	lead	developer	if	they	have	one,	a	designer	if	they	have	one,	any	existing
designs	 for	what	 they	want	built,	 and	 so	on.	Basically,	 the	 client	 representatives	bring	whatever	 they
think	can	clarify	exactly	what	they	want	done.	the	Agile	team	brings	two	engineers	to	the	scoping.

During	the	scoping,	the	Agile	team	asks	the	client	to	describe	what	they	want	done	in	detail,	and	they
ask	 a	 series	 of	 questions	 designed	 to	 identify	 unknowns,	 risks,	 external	 integrations,	 and	 so	 forth.
Essentially,	the	Agile	team	wants	to	identify	anything	that	would	add	uncertainty	to	the	estimate	that	the
Agile	team	will	deliver.	If	the	Agile	team	gets	a	client	with	a	very	clear	definition	of	what	they	want	to
build,	a	finished	design,	no	external	integrations,	and	so	on,	the	Agile	team	can	produce	a	fairly	tightly-
scoped	 estimate,	 such	 as	 “20	 to	 22	 weeks.”	 On	 the	 other	 hand,	 if	 they	 don’t	 have	 clear	 product
definition,	 lots	 of	 external	 integrations,	 or	 other	 uncertainty,	 the	 Agile	 team’s	 estimate	 will	 have	 a
greater	 range,	 such	 as	 “18	 to	26	weeks.”	 If	 you	use	pair	 programming	 (see	Section	10.2),	 as	Pivotal
Labs	does,	the	cost	estimates	would	be	in	“pair	weeks.”

After	the	client	leaves	the	scoping,	the	Pivot	engineers	involved	will	stay	behind	for	another	15	to	30
minutes,	 and	 agree	 on	 an	 estimate	 in	 terms	 of	weeks.	They	 deliver	 their	 findings,	which	 include	 the
estimate,	identification	of	risks,	and	so	on,	to	the	sales	staff,	who	then	turn	that	into	a	proposal	email	to
the	client.

Because	the	Agile	team	does	time	and	materials	only,	it’s	easy	to	turn	estimated	weeks	into	an	estimated
range	of	expense.

Summary:	Following	the	Agile	Manifesto’s	emphasis	on	customer	cooperation	over	contracts,	an

Agile	team’s	notion	of	“cost	estimation”	is	therefore	more	about	advising	the	client	on	what	team
size	 can	 provide	 the	 maximum	 efficiency,	 following	 Brooks’s	 Law	 that	 there	 is	 a	 point	 of
diminishing	returns	on	team	size	(see	Section		7.11).	The	Agile	team’s	goal	in	the	scoping	process
is	to	identify	that	point,	then	ramp	the	team	up	to	that	size	over	time.	Agile	companies	bid	costs	for
time	 and	 materials	 based	 on	 short	 discussions	 with	 external	 customers.	 As	 we	 shall	 see	 in
Section	 7.10,	 this	 approach	 is	 in	 sharp	 contrast	 with	 companies	 that	 follow	 plan-and-document
processes,	which	promise	customers	a	set	of	features	for	an	agreed	upon	cost	by	an	agreed	upon
date.

Self-Check	 7.5.1.	True	 or	 False:	 As	 practitioners	 of	 Agile	 Development,	 Pivotal	 Labs	 does	 not	 use
contracts.
	False.	Pivotal	certainly	offers	customers	a	contract	that	they	sign,	but	it	is	primarily	a	promise	to	pay

Pivotal	for	its	best	effort	over	to	make	the	customer	happy	for	a	limited	range	of	time.

With	the	already	helpful	role	of	user	stories	for	measuring	progress	behind	us,	we	introduce	a	tool	that
lets	user	stories	play	yet	another	important	role.

7.6	Introducing	Cucumber	and	Capybara

Remarkably	 enough,	 the	 tool	Cucumber	 turns	 customer-understandable	 user	 stories	 into	 acceptance
tests,	 which	 ensure	 the	 customer	 is	 satisfied,	 and	 integration	 tests,	 which	 ensure	 that	 the	 interfaces
between	modules	have	consistent	assumptions	and	communicate	correctly.	(Chapter	1	describes	types	of
testing).	The	key	is	that	Cucumber	meets	halfway	between	the	customer	and	the	developer:	user	stories
don’t	look	like	code,	so	they	are	clear	to	the	customer	and	can	be	used	to	reach	agreement,	but	they	also
aren’t	completely	freeform.	This	section	explains	how	Cucumber	accomplishes	this	minor	miracle.

In	the	Cucumber	context	we	will	use	the	term	user	story	to	refer	to	a	single	feature	with	one	or	more
scenarios	that	show	different	ways	a	feature	is	used.	The	keywords	Feature	and	Scenario	identify	the
respective	components.	Each	scenario	is	in	turn	composed	of	a	sequence	of	3	to	8	steps.

Figure	7.5	is	an	example	user	story,	showing	a	feature	with	one	scenario	of	adding	the	movie	Men	In
Black;	the	scenario	has	eight	steps.	(We	show	just	a	single	scenario	in	this	example,	but	features	usually
have	many	scenarios.)	Although	stilted	writing,	this	format	that	Cucumber	can	act	upon	is	still	easy	for
the	nontechnical	customer	to	understand	and	help	develop,	which	is	a	founding	principle	of	Agile	and
BDD.

Cucumber	keywords	Given,	When,	Then,	And,	and	But	have	different	names	just	for	benefit	of	human	readers,	but	they	are	all	aliases	to	the
same	method.	Thus,	you	don’t	have	to	remember	the	syntax	for	many	different	keywords.

Each	step	of	a	 scenario	 starts	with	 its	own	keyword.	Steps	 that	 start	with	Given	usually	 set	up	 some
preconditions,	such	as	navigating	to	a	page.	Steps	that	start	with	When	typically	use	one	of	Cucumber’s
built-in	web	steps	 to	simulate	 the	user	pressing	a	button,	 for	example.	Steps	 that	start	with	Then	will
usually	check	to	see	if	some	condition	is	true.	The	conjunction	And	allows	more	complicated	versions	of
Given,	When,	or	Then	phrases.	The	only	other	keyword	you	see	in	this	format	is	But.

http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/acceptance_tests
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/user_story
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Scenario_(computing)

http://pastebin.com/CSCVp9M3

	1	Feature:	User	can	manually	add	movie

	2	

	3	Scenario:	Add	a	movie

	4			Given	I	am	on	the	RottenPotatoes	home	page

	5			When	I	follow	"Add	new	movie"

	6			Then	I	should	be	on	the	Create	New	Movie	page

	7			When	I	fill	in	"Title"	with	"Men	In	Black"

	8			And	I	select	"PG-13"	from	"Rating"

	9			And	I	press	"Save	Changes"

10			Then	I	should	be	on	the	RottenPotatoes	home	page

11			And	I	should	see	"Men	In	Black"

Figure	7.5:	A	Cucumber	scenario	associated	with	the	adding	a	movie	feature	for	RottenPotatoes.

A	separate	 set	of	 files	defines	 the	Ruby	code	 that	 tests	 these	 steps.	These	are	 called	step	definitions.
Generally,	many	steps	can	use	a	single	step	definition.

How	does	Cucumber	match	the	steps	of	the	scenarios	with	the	step	definitions	that	perform	these	tests?
The	trick	is	that	Cucumber	uses	regular	expressions	or	regexes	(Chapter	3)	to	match	the	English	phrases
in	the	steps	of	the	scenarios	to	the	step	definitions	of	the	testing	harness.

For	example,	below	is	a	string	from	a	step	definition	in	the	scenario	for	RottenPotatoes:

http://pastebin.com/hwkkP8Mr

	1				Given	/^(?:|I)am	on	(.+)$/

This	 regex	can	match	 the	 text	 “I	 am	on	 the	RottenPotatoes	home	page”	on	 line	4	of	Figure	7.5.	The
regex	also	captures	 the	string	after	 the	phrase	“am	on	”	until	 the	end	of	 the	 line	(“the	RottenPotatoes
home	 page”).	 The	 body	 of	 the	 step	 definition	 contains	 Ruby	 code	 that	 tests	 the	 step,	 likely	 using
captured	strings	such	as	the	one	above.

Thus,	a	way	to	 think	of	 the	relationship	between	step	definitions	and	steps	 is	 that	step	definitions	are
like	method	definitions,	and	the	steps	of	the	scenarios	are	like	method	calls.

We	then	need	a	tool	that	will	act	as	a	user	and	pretend	to	use	the	feature	under	different	scenarios.	In	the
Rails	 world,	 this	 tool	 is	 called	 Capybara,	 and	 Cucumber	 integrates	 seamlessly	 with	 it.	 Capybara
“pretends	to	be	a	user”	by	taking	actions	in	a	simulated	web	browser,	for	example,	clicking	on	a	link	or
button.	Capybara	can	 interact	with	 the	app	 to	 receive	pages,	parse	 the	HTML,	and	submit	 forms	as	a

user	would.	 		

Summary	of	Cucumber	Introduction
Cucumber	 combines	 a	 feature	 that	 you	 want	 to	 add	 with	 a	 set	 of	 scenarios.	 We	 call	 this

http://pastebin.com/CSCVp9M3
http://en.wikipedia.org/wiki/regexes
http://pastebin.com/hwkkP8Mr
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Scenario_(computing)

combination	a	user	story.
The	steps	of	the	scenarios	use	the	keyword	Given	to	identify	the	current	state,	When	to	identify	the
action,	and	Then	to	identify	the	consequence	of	the	action.
The	 scenario	 steps	 also	 use	 the	 keywords	 And	 and	 But	 to	 act	 as	 conjunctions	 to	 make	 more
complex	descriptions	of	state,	action,	and	consequences.
Cucumber	matches	steps	to	step	definitions	using	regular	expressions.
Capybara	puts	the	SaaS	application	through	its	paces	by	simulating	a	user	and	browser	performing
the	steps	of	the	scenarios.
By	storing	features	in	files	along	with	different	scenarios	of	feature	use	composed	of	many	steps,
and	storing	Ruby	code	in	separate	files	containing	step	definitions	that	tests	each	type	of	step,	the
Rails	tools	Cucumber	and	Capybara	automatically	test	the	behavior	of	the	SaaS	app.

Self-Check	7.6.1.	True	or	False:	Cucumber	matches	scenario	steps	to	step	definitions	using	regexes	and
Capybara	pretends	to	be	a	user	that	interacts	with	the	SaaS	application	according	to	these	scenarios.
	True.

ELABORATION:	Stubbing	the	web
The	way	we	use	Cucumber	and	Capybara	in	this	chapter	doesn’t	allow	us	to	test	JavaScript	code,	which	is	covered	in	Chapter	6.
With	appropriate	options,	Cucumber	can	control	Webdriver,	which	actually	fires	up	a	real	browser	and	“remote	controls”	it	to	make
it	 do	what	 the	 stories	 say,	 including	 all	 JavaScript	 code.	 For	 this	 chapter,	 we	will	 stick	 to	 using	 Capybara’s	 “headless	 browser
simulator”	mode,	which	is	much	faster	and	is	appropriate	for	testing	everything	except	JavaScript.	Figure	7.16	towards	the	end	of
the	chapter	shows	the	relationship	among	these	tools.

7.7	Running	Cucumber	and	Capybara

A	major	benefit	of	user	stories	in	Cucumber	is	Red-Yellow-Green	analysis.	Once	a	user	story	is	written,
we	can	try	to	run	it	immediately.	In	the	beginning,	steps	may	initially	be	highlighted	either	in	Red	(for
failing)	or	Yellow	(not	yet	implemented).	Our	goal	is	to	take	each	step	and	go	from	Yellow	or	Red	to
Green	(for	passing),	by	incrementally	adding	what’s	needed	to	make	it	pass.	In	some	cases,	this	is	really
easy.	In	the	next	chapter,	we	similarly	try	to	go	from	Red	to	Green	at	the	level	of	unit	tests.	Recall	that
unit	tests	are	for	individual	methods	whereas	Cucumber	scenarios	test	entire	paths	through	the	app	and
thus	can	be	acceptance	tests	or	integration	tests.

Cucumbers	are	green	The	test-passing	green	color	of	the	cucumber	plant	gives	this	tool	its	name.

			Like	other	useful	tools	we’ve	seen,	Cucumber	is	supplied	as	a	Ruby	gem,	so	the	first	thing	we
need	 to	do	 is	declare	 that	our	app	depends	on	 this	gem	and	use	Bundler	 to	 install	 it.	Building	on	 the
myrottenpotatoes	app	you	started	in	Chapter	4,	add	the	following	lines	to	Gemfile;	we’ve	indicated
that	Cucumber	and	its	related	gems	are	only	needed	in	the	test	environment	and	not	the	production
and	development	environments	(Section	4.2	introduced	the	three	environments	in	which	Rails	apps	can
run).

http://pastebin.com/s8EB8Mhs

http://en.wikipedia.org/wiki/user_story
http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/regular_expressions
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Scenario_(computing)
http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/unit_tests
http://pastebin.com/s8EB8Mhs

	1				#	add	to	end	of	Gemfile

	2				group	:test	do

	3						gem	’cucumber-rails’,	:require	=>	false

	4						gem	’cucumber-rails-training-wheels’	#	some	pre-fabbed	step	definitions

	5						gem	’database_cleaner’	#	to	clear	Cucumber’s	test	database	between	runs

	6						gem	’capybara’									#	lets	Cucumber	pretend	to	be	a	web	browser

	7						gem	’launchy’										#	a	useful	debugging	aid	for	user	stories

	8				end

		

Once	you’ve	modified	Gemfile,	run	bundle	install	--without	production.	If	all	goes	well,	you’ll
eventually	see	“Your	bundle	is	complete.”

We	now	have	to	set	up	the	directories	and	“boilerplate”	files	that	Cucumber	and	Capybara	need.	Like
Rails	itself,	Cucumber	comes	with	a	generator	that	does	this	for	you.	In	the	app’s	root	directory,	run	the
following	 two	 commands	 (if	 they	 ask	 whether	 it’s	 OK	 to	 overwrite	 certain	 files	 such	 as
cucumber.rake,	you	can	safely	say	yes):	
rails	generate	cucumber:install	capybara	
rails	generate	cucumber_rails_training_wheels:install	

Running	 these	 two	 generators	 gives	 you	 commonly	 used	 step	 definitions	 as	 a	 starting	 point,	 such	 as
interactions	 with	 a	 web	 browser.	 For	 this	 app,	 you	 will	 find	 them	 in
myrottenpotatoes/features/step_definitions/web_steps.rb.	 In	 addition	 to	 these	 predefined
steps,	you’ll	need	to	create	new	step	definitions	to	match	the	unique	functionality	of	your	app.	You	will
probably	want	to	learn	the	most	common	predefined	step	definitions	and	use	them	when	you	write	your
features	so	that	you	can	write	fewer	step	definitions.

			Before	trying	to	run	Cucumber,	there’s	one	more	step	we	must	take:	you	must	initialize	the	test
database	by	running	rake	db:test:prepare.	You	need	to	do	this	before	the	first	time	you	run	tests	or
whenever	the	database	schema	is	changed.	Section	4.2	provides	a	more	detailed	description.

At	this	point,	you’re	ready	to	start	using	Cucumber.	You	add	the	features	themselves	in	the	features
directory	as	files	with	a	.feature	file	extension.	Copy	the	user	story	in	Figure	7.5	and	paste	 it	 into	a
file	called	AddMovie.feature	in	the	directory	features.	To	see	how	scenarios	and	the	step	definitions
interact	and	how	they	change	color	like	maple	trees	in	New	England	when	the	seasons	change,	type
cucumber	features/AddMovie.feature

Watch	the	screencast	to	see	what	to	do	next.

Screencast	7.7.1:	Cucumber	Part	I
The	 screencast	 shows	 how	 Cucumber	 checks	 to	 see	 whether	 the	 tests	 work	 by	 coloring	 the	 step
definitions.	Failing	steps	are	red,	unimplemented	steps	are	yellow,	and	passing	steps	are	green.	(Steps
after	a	failed	red	step	are	blue,	indicating	that	they	have	not	yet	been	tried.)	The	first	step	on	line	4	is
red,	 so	 Cucumber	 skips	 the	 rest.	 It	 fails	 because	 there	 is	 no	 path	 in	 paths.rb	 that	 matches	 “the
RottenPotatoes	home	page”,	as	the	Cucumber	error	message	explains.	The	message	even	suggests	how
to	fix	the	failure	by	adding	such	a	path	to	paths.rb.	See	Figure	7.6.	This	new	path	turns	this	first	step

http://vimeo.com/34754747

as	green	as	a	cucumber,	but	now	the	third	step	on	line	6	is	red.	As	the	error	message	explains,	it	fails
because	no	path	matches	“Create	New	Movie	page”,	and	we	fix	it	again	by	adding	the	path	to	paths.rb.
All	steps	now	are	as	cool	as	a	cucumber,	and	the	AddMovie	scenario	passes.

http://pastebin.com/RbPqfg1g

	1	#	add	to	paths.rb,	just	after	"when	/^the	home\s?page$/

	2	#	’/’"

	3	

	4	when	/^the	RottenPotatoes	home	page/

	5			’/movies’

	6	when	/^the	Create	New	Movie	page/

	7			’/movies/new’

Figure	7.6:	The	code	we	need	to	add	to	features/support/paths.rb	in	order	to	make	the	AddMovie	scenario	pass.	Note	that	the	first
line	on	both	paths.rb	and	websteps.rb	is	an	instruction	to	’DELETE	THIS	FILE’,	which	is	something	that	you	should	do	once	you	have
become	familiar	with	the	basics	of	cucumber	and	capybara.	The	files	paths.rb	and	websteps.rb	are	part	of	the	cucumber	rails	training
wheels	gem,	and	are	useful	when	you	are	just	getting	started	with	cucumber,	but	ultimately	need	to	be	removed	for	serious	use.	Please
continue	to	use	them	for	the	time	being.

Summary:	To	add	features	as	part	of	BDD,	we	need	to	define	acceptance	criteria	first.	Cucumber
enables	both	capturing	requirements	as	user	stories	and	getting	integration	and	acceptance	tests	out
of	that	story.	Moreover,	we	get	automatically	runnable	tests	so	that	we’ll	have	regression	tests	to
help	maintain	the	code	as	we	evolve	it	further.	(We’ll	see	this	approach	again	in	Chapter	9	with	a
much	larger	application	than	RottenPotatoes.)

Self-Check	7.7.1.	Cucumber	colors	steps	green	that	pass	the	test.	What	is	the	difference	between	steps
colored	yellow	and	red?
	Yellow	steps	have	not	yet	been	implemented	while	red	steps	have	been	implemented	but	fail	the	test.

7.8	Enhancing	RottenPotatoes

As	 a	 second	 example	 of	 user	 stories	 and	 Lo-Fi	 UIs,	 suppose	 we	 want	 to	 search	 The	 Open	 Movie
Database	(TMDb)	to	find	information	about	a	movie	we	are	interested	in	adding	to	RottenPotatoes.	As
we’ll	 see	 in	Chapter	 8,	TMDb	has	 an	API	 (application	programming	 interface)	 designed	 to	 allow	 its
information	to	be	accessed	in	a	Service-Oriented	Architecture.

In	this	chapter,	we	use	Cucumber	to	develop	two	scenarios	and	the	corresponding	Lo-Fi	UI	sketches	to
show	how	we	would	like	RottenPotatoes	to	integrate	with	TMDb,	and	we’ll	get	one	of	the	scenarios	to
go	green	by	temporarily	“faking	out”	some	of	the	code.	In	Chapter	8,	we’ll	write	the	code	needed	to	get
the	other	scenario	to	go	green.	Getting	the	first	couple	of	scenarios	working	can	seem	tedious,	because
you	usually	have	to	add	a	 lot	of	 infrastructure,	but	 it	goes	much	faster	after	 that,	and	in	fact	you	will
even	be	able	to	re-use	your	step	definitions	to	create	higher-level	“declarative”	steps,	as	we	will	see	in
Section	7.9.

http://pastebin.com/RbPqfg1g

Figure	7.7:	Storyboard	of	UI	for	searching	The	Movie	Database.

The	 storyboard	 in	 Figure	 7.7	 shows	 how	 we	 envision	 the	 feature	 working.	 The	 home	 page	 of
RottenPotatoes,	which	lists	all	movies,	will	be	augmented	with	a	search	box	where	we	can	type	some
title	keywords	of	a	movie	and	a	“Search”	button	that	will	search	TMDb	for	a	movie	whose	title	contains
those	keywords.	 If	 the	 search	does	match—the	 so-called	 “happy	path”	 of	 execution—the	 first	movie
that	matches	will	 be	 used	 to	 “pre-populate”	 the	 fields	 in	 the	Add	New	Movie	 page	 that	we	 already
developed	in	Chapter	4.	(In	a	real	app,	you’d	want	to	create	a	separate	page	showing	all	matches	and
letting	 the	 user	 pick	 one,	 but	 we’re	 deliberately	 keeping	 the	 example	 simple.)	 If	 the	 search	 doesn’t
match	any	movies—the	“sad	path”—we	should	be	returned	to	the	home	page	with	a	message	informing
us	of	this	fact.

http://pastebin.com/qTYS5tLs

	1	Feature:	User	can	add	movie	by	searching	for	it	in	The	Movie	Database	(TMDb)

	2	

	3			As	a	movie	fan

	4			So	that	I	can	add	new	movies	without	manual	tedium

	5			I	want	to	add	movies	by	looking	up	their	details	in	TMDb

	6	

	7	Scenario:	Try	to	add	nonexistent	movie	(sad	path)

	8	

	9			Given	I	am	on	the	RottenPotatoes	home	page

10			Then	I	should	see	"Search	TMDb	for	a	movie"

11			When	I	fill	in	"Search	Terms"	with	"Movie	That	Does	Not	Exist"

12			And	I	press	"Search	TMDb"

13			Then	I	should	be	on	the	RottenPotatoes	home	page

14			And	I	should	see	"’Movie	That	Does	Not	Exist’	was	not	found	in	TMDb."

Figure	7.8:	A	sad	path	scenario	associated	with	adding	a	feature	to	search	The	Movie	Database.

Normally	 you’d	 complete	 the	 happy	 path	 first,	 and	 when	 you	 reach	 a	 failing	 or	 pending	 step	 that
requires	writing	new	code,	you	do	so	via	Test	Driven	Development	(TDD).	We’ll	do	that	in	Chapter	8
by	writing	code	that	really	calls	TMDb	and	integrating	it	back	into	this	scenario.	For	now,	we’ll	start
with	the	sad	path	to	illustrate	Cucumber	features	and	the	BDD	process.	Figure	7.8	shows	the	sad	path
scenario	for	the	new	feature;	create	a	file	features/search_tmdb.feature	containing	this	code.	When
we	 run	 the	 feature	with	cucumber	features/search_tmdb.feature,	 the	 second	 step	Then	 I	 should
see	“Search	TMDb	for	a	movie”	should	fail	(red),	because	we	haven’t	yet	added	this	text	to	the	home
page	app/views/movies/index.html.haml.	So,	our	first	task	is	to	get	this	step	to	go	green	by	making
that	change.

Technically,	 a	 “pure”	BDD	approach	 could	be	 to	get	 this	 step	 to	pass	 just	 by	 adding	 the	 text	Search
TMDb	for	a	movie	anywhere	in	that	view,	and	then	re-running	the	scenario.	But	of	course	we	know	that
the	 very	 next	 step	When	 I	 fill	 in	 “Search	 Terms”	with	 “Movie	 That	Does	 Not	 Exist”	 will	 also	 fail,
because	we	haven’t	added	a	form	field	called	“Search	Terms”	to	the	view	either.	So	in	 the	interest	of

http://pastebin.com/qTYS5tLs

efficiency,	modify	index.html.haml	by	adding	the	lines	in	Figure	7.9,	which	we	now	explain.	 		

http://pastebin.com/QtUf0qsB

	1	-#	add	to	end	of	app/views/movies/index.html.haml:

	2	

	3	%h1	Search	TMDb	for	a	movie

	4	

	5	=	form_tag	:action	=>	’search_tmdb’	do

	6	

	7			%label{:for	=>	’search_terms’}	Search	Terms

	8			=	text_field_tag	’search_terms’

	9			=	submit_tag	’Search	TMDb’

Figure	7.9:	The	Haml	code	for	the	Search	TMDb	page.

Line	3	 is	 the	 text	 that	allows	Then	 I	 should	see	“Search	TMDb	 for	a	movie”	 to	pass.	The	 remaining
lines	 create	 the	 fill-in	 form;	 we	 introduced	 these	 in	 Chapter	 4,	 so	 some	 of	 this	 markup	 should	 be
familiar.	Two	things	are	worth	noting.	First,	as	with	any	user	interaction	in	a	view,	we	need	a	controller
action	that	will	handle	that	 interaction.	In	this	case,	 the	interaction	is	submitting	the	form	with	search
keywords.	Line	5	says	that	when	the	form	is	submitted,	the	controller	action	search_tmdb	will	receive
the	form	submission.	That	code	doesn’t	exist	yet,	so	we	had	to	choose	a	descriptive	name	for	the	action.

The	second	thing	to	note	is	the	use	of	the	HTML	label	tag.	Figure	2.14	in	Chapter	2	tells	us	that	lines	7
and	8	will	expand	to	the	following	HTML	markup:

http://pastebin.com/itVarUq5

	1				<label	for=’search_terms’>Search	Terms</label>

	2				<input	id="search_terms"	name="search_terms"	type="text"	/>

The	key	is	that	the	for	attribute	of	the	label	tag	matches	the	id	attribute	of	the	input	tag,	which	was
determined	 by	 the	 first	 argument	 to	 the	text_field_tag	 helper	 called	 in	 line	 8	 of	 Figure	 7.9.	 This
correspondence	allows	Cucumber	to	determine	what	form	field	is	being	referenced	by	the	name	“Search
Terms”	in	line	11	of	Figure	7.8:	When	I	fill	in	“Search	Terms”....

Doing	it	over	and	over?	rake	cucumber	runs	all	your	features,	or	more	precisely,	those	selected	by	the	default	profile	in	Cucumber’s
configuration	file	cucumber.yml.

In	the	next	chapter	we’ll	meet	a	tool	called	autotest	that	automates	re-running	tests	when	you	make
changes	to	files.

As	you	may	recall	from	Section	4.1,	we	have	to	make	sure	there	is	a	route	to	this	new	controller	action.
The	 top	 part	 of	 the	 Figure	 7.10	 shows	 the	 line	 you	must	 add	 to	 config/routes.rb	 to	 add	 a	 form

http://pastebin.com/QtUf0qsB
http://pastebin.com/itVarUq5
https://github.com/cucumber/cucumber/wiki/cucumber.yml

submission	(POST)	route	to	that	action.

However,	 even	with	 the	new	 route,	 this	 step	 still	will	 fail	with	an	exception:	even	 though	we	have	a
button	with	the	name	“Search	TMDb”,	the	form_tag	specifies	that	MoviesController#search_tmdb
is	 the	 controller	 action	 that	 should	 receive	 the	 form,	 yet	 no	 such	 method	 exists	 in
movies_controller.rb.	 Figure	 7.1	 says	 that	 we	 should	 now	 use	 Test-Driven	 Development	 (TDD)
techniques	to	create	that	method.	But	since	TDD	is	the	topic	of	the	next	chapter,	we’re	going	to	cheat	a
bit	in	order	to	get	the	scenario	running.	Since	this	is	the	“sad	path”	scenario	where	no	movies	are	found,
we	will	temporarily	create	a	controller	method	that	always	behaves	as	if	nothing	was	found,	so	we	can
finish	 testing	 the	 sad	 path.	Also,	 The	 bottom	 part	 of	 Figure	 7.10	 shows	 the	 code	 you	 should	 add	 to
app/controllers/movies_controller.rb	to	create	the	“fake”	hardwired	search_tmdb	action.

http://pastebin.com/tdxgK77Z

	1	#	add	to	routes.rb,	just	before	or	just	after	’resources	:movies’	:

	2	

	3	#	Route	that	posts	’Search	TMDb’	form

	4	post	’/movies/search_tmdb’

http://pastebin.com/cGmgFyEZ

	1	#	add	to	movies_controller.rb,	anywhere	inside

	2	#		’class	MoviesController	<	ApplicationController’:

	3	

	4	def	search_tmdb

	5			#	hardwire	to	simulate	failure

	6			flash[:warning]	=	"’#{params[:search_terms]}’	was	not	found	in	TMDb."

	7			redirect_to	movies_path

	8	end

Figure	7.10:	(Top)	A	route	that	triggers	this	mechanism	when	a	form	is	POSTed.	(Bottom)	This	“fake”	controller	method	always	behaves
as	if	no	matches	were	found.	It	retrieves	the	keywords	typed	by	the	user	from	the	params	hash	(as	we	saw	in	Chapter	4),	stores	a	message
in	the	flash[],	and	redirects	the	user	back	to	the	list	of	movies.	Recall	from	Chapter	4	that	we	added	code	to
app/views/layouts/application.html.haml	to	display	the	contents	of	the	flash	on	every	view.

If	you’re	new	to	BDD,	this	step	might	surprise	you.	Why	would	we	deliberately	create	a	fake	controller
method	that	doesn’t	actually	call	TMDb,	but	just	pretends	the	search	failed?	In	this	case,	the	answer	is
that	it	lets	us	finish	the	rest	of	the	scenario,	making	sure	that	our	HTML	views	match	the	Lo-Fi	sketches
and	 that	 the	 sequence	 of	 views	 matches	 the	 storyboards.	 Indeed,	 once	 you	 make	 the	 changes	 in
Figure	7.10,	the	entire	sad	path	should	pass.	Screencast	7.8.1	summarizes	what	we’ve	done	so	far.

Screencast	7.8.1:	Cucumber	Part	II
In	this	screencast,	we	do	a	sad	path	to	illustrate	features	of	Cucumber	because	it	is	able	to	use	existing
code.	 The	 first	 step	 on	 line	 5	 of	 Figure	 7.8	 passes	 but	 the	 step	 on	 line	 6	 fails	 because	 we	 haven’t
modified	index.html.haml	 to	include	the	name	of	the	new	page	or	 to	include	a	form	for	typing	in	a

http://pastebin.com/tdxgK77Z
http://pastebin.com/cGmgFyEZ
http://vimeo.com/34754766

movie	 to	 search	 for.	 We	 fix	 this	 by	 adding	 this	 form	 to	 index.html.haml,	 using	 the	 same	 Rails
methods	described	in	Sections	4.4	and	4.6	of	Chapter	4.	There	is	no	route	that	would	match	an	incoming
URI.	To	keep	 things	 simple,	we	will	 set	 up	 a	 route	 just	 for	 that	 action	 in	config/routes.rb,	 again
using	techniques	discussed	in	Section	4.1	of	Chapter	4.	When	creating	a	form,	we	have	to	specify	which
controller	 action	 will	 receive	 it;	 we	 chose	 the	 name	 search_tmdb	 for	 controller	 action.	 (We’ll
implement	this	method	in	the	next	chapter).	Once	we	have	updated	index.html.haml,	created	the	route
in	config/routes.rb,	and	named	the	controller	action,	Cucumber	colors	all	the	steps	green.

What	about	the	happy	path,	when	we	search	for	an	existing	movie?	Observe	that	the	first	two	actions	on
that	 path—going	 to	 the	 Rotten	 Potatoes	 home	 page	 and	 making	 sure	 there	 is	 a	 search	 form	 there,
corresponding	 to	 lines	 9	 and	10	of	Figure	7.8—are	 the	 same	 as	 for	 the	 sad	 path.	That	 should	 ring	 a

Pavlovian	bell	in	your	head	asking	how	you	can	DRY	out	the	repetition.	 		

http://pastebin.com/7nQQ6zwg

	1	Feature:	User	can	add	movie	by	searching	for	it	in	The	Movie	Database	(TMDb)

	2	

	3			As	a	movie	fan

	4			So	that	I	can	add	new	movies	without	manual	tedium

	5			I	want	to	add	movies	by	looking	up	their	details	in	TMDb

	6	

	7	Background:	Start	from	the	Search	form	on	the	home	page

	8	

	9			Given	I	am	on	the	RottenPotatoes	home	page

10			Then	I	should	see	"Search	TMDb	for	a	movie"

11	

12	Scenario:	Try	to	add	nonexistent	movie	(sad	path)

13	

14			When	I	fill	in	"Search	Terms"	with	"Movie	That	Does	Not	Exist"

15			And	I	press	"Search	TMDb"

16			Then	I	should	be	on	the	RottenPotatoes	home	page

17			And	I	should	see	"’Movie	That	Does	Not	Exist’	was	not	found	in	TMDb."

18	

19	Scenario:	Try	to	add	existing	movie	(happy	path)

20	

21			When	I	fill	in	"Search	Terms"	with	"Inception"

22			And	I	press	"Search	TMDb"

23			Then	I	should	be	on	the	"Search	Results"	page

24			And	I	should	not	see	"not	found"

25			And	I	should	see	"Inception"

Figure	7.11:	DRYing	out	the	common	steps	between	the	happy	and	sad	paths	using	the	Background	keyword,	which	groups	steps	that
should	be	performed	before	each	scenario	in	a	feature	file.

Figure	7.11	shows	the	answer.	The	Cucumber	Background	command	shows	the	steps	that	should	be	run
before	any	other	scenarios	of	a	feature	are	run,	which	lets	us	DRY-out	the	happy	and	sad	path	scenarios.
Modify	 features/search_tmdb.feature	 to	 match	 the	 figure	 and	 once	 again	 run	 cucumber
features/search_tmdb.feature.	 Unsurprisingly,	 the	 step	 at	 line	 23	 will	 fail,	 because	 we	 have

http://pastebin.com/7nQQ6zwg

hardwired	the	controller	method	to	pretend	there	is	never	a	match	in	TMDb,	resulting	in	a	redirect	back
the	 home	page	 rather	 than	 to	 the	Search	Results	 page.	At	 this	 point,	we	 could	 change	 the	 controller
method	to	hardwire	success	and	make	the	happy	path	green,	but	besides	the	fact	that	this	would	cause
the	sad	path	to	go	red,	in	the	next	chapter	we	will	see	a	better	way.	In	particular,	we’ll	develop	the	real
controller	action	using	Test-Driven	Development	(TDD)	techniques	that	“cheat”	to	set	up	the	inputs	and
the	 state	 of	 the	world	 to	 test	 particular	 conditions	 in	 isolation.	Once	 you	 learn	 both	BDD	and	TDD,
you’ll	see	that	you	commonly	iterate	between	these	two	levels	as	part	of	normal	software	development.

Summary:
Adding	a	new	feature	for	a	SaaS	app	normally	means	you	specify	a	UI	for	the	feature,	write	new
step	 definitions,	 and	 perhaps	 even	 write	 new	methods	 before	 Cucumber	 can	 successfully	 color
steps	green.
Usually,	you’d	write	and	complete	scenarios	for	the	happy	path(s)	first;	we	began	with	the	sad	path
only	because	it	allowed	us	to	better	illustrate	some	Cucumber	features.
The	Background	 keyword	 can	 be	 used	 to	DRY	out	 common	 steps	 across	 related	 scenarios	 in	 a
single	feature	file.
Usually,	 system-level	 tests	 such	 as	 Cucumber	 scenarios	 shouldn’t	 “cheat”	 by	 hard-wiring	 fake
behavior	 in	methods.	BDD	and	Cucumber	are	about	behavior,	not	 implementation,	 so	we	would
instead	use	other	 techniques	 such	as	TDD	(which	 the	next	chapter	describes)	 to	write	 the	actual
methods	to	make	all	scenarios	pass.

Self-Check	7.8.1.	True	or	False:	You	need	to	implement	all	the	code	being	tested	before	Cucumber	will
say	that	the	test	passes.
	False.	A	sad	path	can	pass	without	having	the	code	written	need	to	make	a	happy	path	pass.

7.9	Explicit	vs.	Implicit	and	Imperative	vs.	Declarative	Scenarios

Now	that	we	have	seen	user	stories	and	Cucumber	in	action,	we	are	ready	to	cover	two	important	testing
topics	that	involve	contrasting	perspectives.

The	first	is	explicit	versus	implicit	requirements.	A	large	part	of	the	formal	specification	in	plan-and-
document	 is	 requirements,	 which	 in	 BDD	 are	 user	 stories	 developed	 by	 the	 stakeholders.	 Using	 the
terminology	from	Chapter	1,	they	typically	correspond	to	acceptance	tests.	Implicit	requirements	are	the
logical	 consequence	 of	 explicit	 requirements,	 and	 typically	 correspond	 to	 what	 Chapter	 1	 calls
integration	 tests.	 An	 example	 of	 an	 implicit	 requirement	 in	 RottenPotatoes	might	 be	 that	 by	 default
movies	should	be	listed	in	chronological	order	by	release	date.

The	good	news	is	that	you	can	use	Cucumber	to	kill	two	birds	with	one	stone—create	acceptance	tests
and	 integration	 tests—if	you	write	user	 stories	 for	both	explicit	 and	 implicit	 requirements.	 (The	next
chapter	shows	how	to	use	another	tool	for	unit	testing.)

The	second	contrasting	perspective	is	imperative	versus	declarative	scenarios.	The	example	scenario	in
Figure	7.5	above	is	imperative,	in	that	you	are	specifying	a	logical	sequence	of	user	actions:	filling	in	a
form,	clicking	on	buttons,	 and	so	on.	 Imperative	 scenarios	 tend	 to	have	complicated	When	 statements
with	lots	of	And	steps.	While	such	scenarios	are	useful	in	ensuring	that	the	details	of	the	UI	match	the

customer’s	expectations,	it	quickly	becomes	tedious	and	non-DRY	to	write	most	scenarios	this	way.

To	see	why,	suppose	we	want	to	write	a	feature	that	specifies	that	movies	should	appear	in	alphabetical
order	on	the	list	of	movies	page.	For	example,	“Zorro”	should	appear	after	“Apocalypse	Now”,	even	if
“Zorro”	was	added	 first.	 It	would	be	 the	height	of	 tedium	 to	express	 this	 scenario	naively,	because	 it
mostly	repeats	lines	from	our	existing	“add	movie”	scenario—not	very	DRY:

http://pastebin.com/qR9UTSsP

	1				Feature:	movies	should	appear	in	alphabetical	order,	not	added	order

	2				

	3				Scenario:	view	movie	list	after	adding	2	movies	(imperative	and	non-DRY)

	4				

	5						Given	I	am	on	the	RottenPotatoes	home	page

	6						When	I	follow	"Add	new	movie"

	7						Then	I	should	be	on	the	Create	New	Movie	page

	8						When	I	fill	in	"Title"	with	"Zorro"

	9						And	I	select	"PG"	from	"Rating"

10						And	I	press	"Save	Changes"

11						Then	I	should	be	on	the	RottenPotatoes	home	page

12						When	I	follow	"Add	new	movie"

13						Then	I	should	be	on	the	Create	New	Movie	page

14						When	I	fill	in	"Title"	with	"Apocalypse	Now"

15						And	I	select	"R"	from	"Rating"

16						And	I	press	"Save	Changes"

17						Then	I	should	be	on	the	RottenPotatoes	home	page

18						Then	I	should	see	"Apocalypse	Now"	before	"Zorro"	on	the	RottenPotatoes	home	page	sorted	by	title

Cucumber	 is	 supposed	 to	 be	 about	behavior	 rather	 than	 implementation—focusing	 on	what	 is	 being
done—yet	in	this	poorly-written	scenario,	only	line	18	mentions	the	behavior	of	interest!

An	alternative	approach	is	to	think	of	using	the	step	definitions	to	make	a	domain	language	(which	is
different	from	a	formal	Domain	Specific	Language	(DSL))	for	your	application.	A	domain	language	is
informal	 but	 uses	 terms	 and	 concepts	 specific	 to	 your	 application,	 rather	 than	 generic	 terms	 and
concepts	 related	 to	 the	 implementation	 of	 the	 user	 interface.	 Steps	written	 in	 a	 domain	 language	 are
typically	more	declarative	 than	 imperative	 in	 that	 they	describe	 the	 state	of	 the	world	 rather	 than	 the
sequence	of	steps	to	get	to	that	state	and	they	are	less	dependent	on	the	details	of	the	user	interface.

A	declarative	version	of	the	above	scenario	might	look	like	this:

http://pastebin.com/355SUaaT

	1				Feature:	movies	should	appear	in	alphabetical	order,	not	added	order

	2				

	3				Scenario:	view	movie	list	after	adding	movie	(declarative	and	DRY)

	4				

	5						Given	I	have	added	"Zorro"	with	rating	"PG-13"

	6						And			I	have	added	"Apocalypse	Now"	with	rating	"R"

	7						Then		I	should	see	"Apocalypse	Now"	before	"Zorro"	on	the	RottenPotatoes	home	page	sorted	by	title

http://pastebin.com/h7e2xtZu

http://pastebin.com/qR9UTSsP
http://en.wikipedia.org/wiki/Domain_specific_Language
http://pastebin.com/355SUaaT
http://pastebin.com/h7e2xtZu

	1	Given	/I	have	added	"(.*)"	with	rating	"(.*)"/	do	|title,	rating|

	2			steps	%Q{

	3					Given	I	am	on	the	Create	New	Movie	page

	4					When		I	fill	in	"Title"	with	"#{title}"

	5					And			I	select	"#{rating}"	from	"Rating"

	6					And			I	press	"Save	Changes"

	7			}

	8	end

	9	

10	Then	/I	should	see	"(.*)"	before	"(.*)"	on	(.*)/	do	|string1,	string2,	path|

11			step	"I	am	on	#{path}"

12			regexp	=	/#{string1}.*#{string2}/m	#		/m	means	match	across	newlines

13			page.body.should	=~	regexp

14	end

Figure	7.12:	Adding	this	code	to	movie_steps.rb	creates	new	step	definitions	matching	lines	5	and	6	of	the	declarative	scenario	by
reusing	your	existing	steps.	steps	(line	2)	reuses	a	sequence	of	steps	and	step	(line	11)	reuses	a	single	step.	Recall	from	Figure	3.1	that	%Q
is	an	alternative	syntax	for	double-quoting	a	string,	and	that	Given,	When,	Then	and	so	on	are	synonyms	provided	for	readability.	(We	will
learn	about	should,	which	appears	in	line	13,	in	the	next	chapter.)

			 			The	declarative	version	is	obviously	shorter,	easier	to	maintain,	and	easier	to	understand
since	the	text	describes	the	state	of	the	app	in	a	natural	form:	“I	am	on	the	RottenPotatoes	home	page
sorted	by	title.”

The	good	news	is	that,	as	Figure	7.12	shows,	you	can	reuse	your	existing	imperative	steps	to	implement
such	scenarios.	This	is	a	very	powerful	form	of	reuse,	and	as	your	app	evolves,	you	will	find	yourself
reusing	steps	from	your	first	few	imperative	scenarios	to	create	more	concise	and	descriptive	declarative
scenarios.	 Declarative,	 domain-language-oriented	 scenarios	 focus	 the	 attention	 on	 the	 feature	 being
described	rather	than	the	low-level	steps	you	need	to	set	up	and	perform	the	test.

Summary:
We	can	use	Cucumber	for	both	acceptance	and	integration	testing	if	we	write	user	stories	for	both
explicit	 and	 implicit	 requirements.	 Declarative	 scenarios	 are	 simpler,	 less	 verbose,	 and	 more
maintainable	than	imperative	scenarios.
As	 you	 get	 more	 experienced,	 the	 vast	 majority	 of	 your	 user	 stories	 should	 be	 in	 a	 domain
language	that	you	have	created	for	your	app	via	your	step	definitions,	and	the	stories	should	worry
less	about	user	 interface	details.	The	exception	 is	 for	 the	specific	 stories	where	 there	 is	business
value	(customer	need)	in	expressing	the	details	of	the	user	interface.

ELABORATION:	The	BDD	ecosystem

There	is	enormous	momentum,	especially	 in	 the	Ruby	community	where	 testable,	beautiful,	and	self-documenting	code	is	highly
valued,	to	document	and	promote	best	practices	for	BDD.	Good	scenarios	serve	as	both	documentation	of	the	app	designers’	intent
and	executable	acceptance	and	integration	tests;	they	therefore	deserve	the	same	attention	to	beauty	as	the	code	itself.	For	example,
this	 free	screencast	 from	RailsCasts	describes	scenario	outlines,	 a	way	 to	DRY	out	 a	 repetitive	 set	of	happy	or	 sad	paths	whose
expected	outcomes	differ	 based	on	how	a	 form	 is	 filled	 in,	 similar	 to	 the	 contrast	 between	our	happy	and	 sad	paths	 above.	The
Cucumber	wiki	is	a	good	place	to	start,	but	as	with	all	programming,	you’ll	learn	BDD	best	by	doing	it	often,	making	mistakes,	and

http://railscasts.com/episodes/159-more-on-cucumber
http://cukes.info

revising	and	beautifying	your	code	and	scenarios	as	you	learn	from	your	mistakes.

Self-Check	7.9.1.	True	 or	False:	Explicit	 requirements	 are	 usually	 defined	with	 imperative	 scenarios
and	implicit	requirements	are	usually	defined	with	declarative	scenarios.
	False.	These	are	two	independent	classifications;	both	requirements	can	use	either	type	of	scenarios.

7.10	The	Plan-And-Document	Perspective

As	is	well	known	to	software	engineers	(but	not	to	the	general	public),	by	far	the	largest	class	of
[software]	problems	arises	from	errors	made	in	the	eliciting,	recording,	and	analysis	of	requirements.

—Daniel	Jackson,	Martyn	Thomas,	and	Lynette	Millett	(Editors),	Software	for	Dependable	Systems:
Sufficient	Evidence?,	2007

Recall	that	the	hope	for	plan-and-document	methods	is	to	make	software	engineering	as	predictable	in
budget	and	schedule	as	civil	engineering.	Remarkably,	user	stories,	points,	and	velocity	correspond	to
seven	major	tasks	of	the	plan-and-document	methodologies.	They	include:
	

1.	 Requirements	Elicitation
2.	 Requirements	Documentation
3.	 Cost	Estimation
4.	 Scheduling	and	Monitoring	Progress

These	are	done	up	 front	 for	 the	Waterfall	model	 and	at	 the	beginning	of	 each	major	 iteration	 for	 the
Spiral	and	RUP	models.	As	requirements	change	over	time,	these	items	above	imply	other	tasks:
	

1.	 Change	Management	for	Requirements,	Cost,	and	Schedule
2.	 Ensuring	Implementation	Matches	Requirement	Features

Finally,	since	accuracy	of	the	budget	estimate	and	the	schedule	is	vital	to	the	success	of	the	plan-and-
document	process,	there	is	another	task	not	found	in	BDD:
	

1.	 Risk	Analysis	and	Management

The	hope	is	that	by	imagining	all	the	risks	to	the	budget	and	schedule	in	advance,	the	project	can	make
plans	to	avoid	or	overcome	them.

As	 we	 shall	 see	 in	 Chapter	 10,	 the	 plan-and-document	 processes	 assume	 that	 each	 project	 has	 a
manager.	While	 the	whole	 team	may	participate	 in	requirements	elicitation	and	risk	analysis	and	help
document	them,	it	is	up	to	the	project	manager	to	estimate	costs,	make	and	maintain	the	schedule,	and
decide	which	risks	to	address	and	how	to	overcome	or	avoid	them.

Advice	for	project	managers	comes	from	all	corners,	from	practitioners	who	offer	guidelines	and	rules

of	thumb	based	on	their	experience	to	researchers	who	have	measured	many	projects	to	come	up	with
formulas	for	estimating	budget	and	schedule.	There	are	also	 tools	 to	help.	Despite	 this	helpful	advice
and	 tools,	 the	 project	 statistics	 from	Chapter	 1	 (Johnson	 1995,	 2009)—that	 40%	 to	 50%	 exceed	 the
budget	and	schedule	by	factors	of	1.7	to	3.0	and	that	20%	to	30%	of	projects	are	cancelled	or	abandoned
—document	the	difficulty	of	accurate	making	accurate	budgets	and	schedules.

We	now	give	quick	overviews	of	these	seven	tasks	so	that	you	can	be	familiar	with	what	is	done	in	plan-
and-document	processes	to	give	you	a	head	start	if	you	need	to	use	them	in	the	future.	These	overviews
help	explain	the	inspiration	for	the	Agile	Manifesto.	If	you	are	unclear	on	how	to	successfully	perform
these	tasks,	it	may	be	due	more	to	their	inherent	difficulties	rather	than	to	brevity.

1.	Requirements	Elicitation.	 Like	User	 Stories,	 requirement	 elicitation	 involves	 participation	 by	 all
stakeholders,	 using	 one	 of	 several	 techniques.	 The	 first	 is	 interviewing,	 where	 stakeholders	 answer
predefined	questions	or	 just	have	 informal	discussions.	Note	 that	one	goal	 is	 to	understand	 the	social
and	 organization	 environment	 to	 see	 how	 tasks	 are	 really	 done	 versus	 the	 official	 story.	 Another
technique	is	to	cooperatively	create	scenarios,	which	can	start	with	an	initial	assumption	of	the	state	of
the	system,	show	the	flow	of	the	system	for	a	happy	case	and	a	sad	case,	list	what	else	is	going	on	in	the
system,	and	then	the	state	of	the	system	at	the	end	of	the	scenario.	Related	to	scenarios	and	user	stories,
a	 third	 technique	 is	 to	 create	 use	 cases,	 which	 are	 lists	 of	 steps	 between	 a	 person	 and	 a	 system	 to
achieve	a	goal	(see	the	elaboration	in	Section	7.1).

In	addition	to	functional	requirements	such	as	those	listed	above,	non-functional	requirements	include
performance	goals,	dependability	goals,	and	so	on.

2.	Requirements	Documentation.	Once	 elicited,	 the	 next	 step	 is	 to	 document	 the	 requirements	 in	 a
Software	Requirements	Specification	(SRS).	Figure	7.13	gives	an	outline	for	an	SRS	based	on	IEEE
Standard	 830-1998.	 A	 SRS	 for	 a	 patient	 management	 system	 is	 14	 pages	 long,	 but	 they	 are	 often
hundreds	of	pages.

Table	of	Contents
1.	Introduction
			1.1	Purpose
			1.2	Scope

			1.3	Definitions,	acronyms,	and	abbreviations
			1.4	References
			1.5	Overview

2.	Overall	description
			2.1	Product	perspective
			2.2	Product	functions
			2.3	User	characteristics

			2.4	Constraints
			2.5	Assumptions	and	dependencies

3.	Specific	requirements
			3.1	External	interface	requirements

http://en.wikipedia.org/wiki/Scenario_(computing)
http://en.wikipedia.org/wiki/use_cases
http://en.wikipedia.org/wiki/functional_requirements
http://en.wikipedia.org/wiki/non-functional_requirements
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/CaseStudies/MHCPMS/SupportingDocs/MHCPMSCaseStudy.pdf

						3.1.1	User	interfaces
						3.1.2	Hardware	interfaces
						3.1.3	Software	interfaces

						3.1.4	Communication	interfaces
			3.2	System	features

						3.2.1	System	feature	1
									3.2.1.1	Introduction/purpose	of	feature
									3.2.1.2	Stimulus/response	sequence

									3.2.1.3	Associated	function	requirements
												3.2.1.3.1	Functional	requirement	1

												.	.	.
												3.2.1.3.n	Functional	requirement	n

						3.2.2	System	feature	2
						.	.	.

						3.2.m	System	feature	m
			3.3	Performance	requirements

			3.4	Design	constraints
			3.5	Software	system	attributes

			3.6	Other	requirements

Figure	7.13:	A	table	of	contents	for	the	IEEE	Standard	830-1998	recommended	practice	for	Software	Requirements	Specifications.	We
show	Section	3	organized	by	feature,	but	the	standard	offers	many	others	ways	to	organize	Section	3:	by	mode,	user	class,	object,
stimulus,	functional	hierarchy,	or	even	mixing	multiple	organizations.

Part	of	the	process	is	to	check	the	SRS	for:
	

Validity–are	all	these	requirements	really	necessary?
Consistency–do	requirements	conflict?
Completeness–are	all	requirements	and	constraints	included?
Feasibility–can	the	requirements	really	be	implemented?

Techniques	 to	 test	 for	 these	 four	 characteristics	 include	 having	 stakeholders—developers,	 customers,
testers,	and	so	on—proof-read	the	document,	trying	to	build	a	prototype	that	includes	the	basic	features,
and	generating	test	cases	that	check	the	requirements.

A	project	may	find	 it	useful	 to	have	 two	 types	of	SRS:	a	high-level	SRS	 that	 is	 for	management	and
marketing	and	a	detailed	SRS	for	the	project	development	team.	The	former	is	presumably	a	subset	of
the	latter.	For	example,	the	high-level	SRS	might	leave	out	the	functional	requirements	that	correspond
to	3.2.1.3	in	Figure	7.13.

ELABORATION:	Formal	specification	languages
Formal	 specification	 languages	 such	 as	Alloy	 or	Z	 allow	 the	 project	manager	 to	write	 executable	 requirements,	which	makes	 it
easier	to	validate	the	implementation.	Not	surprisingly,	the	cost	is	both	a	more	difficult	document	to	write	and	usually	a	much	longer
requirements	document	to	read.	The	advantage	is	both	precision	in	the	specification	and	the	potential	to	automatically	generate	tests

cases	or	even	use	formal	methods	for	verification	of	correctness	(see	Section	8.9).

3.	Cost	Estimation.	The	project	manager	then	decomposes	the	SRS	into	the	tasks	to	implement	it,	and
then	estimates	 the	number	of	weeks	 to	complete	each	 task.	The	advice	 is	 to	decompose	no	finer	 than
one	week.	Just	as	a	user	story	with	more	than	seven	points	should	be	divided	into	smaller	user	stories,
any	task	with	an	estimate	of	more	than	eight	weeks	should	be	further	divided	into	smaller	tasks.

The	 total	 effort	 is	 traditionally	 measured	 in	 person-months,	 perhaps	 in	 homage	 to	 Brooks’s	 classic
software	 engineering	 book	 The	 Mythical	 Man-Month	 (Brooks	 1995).	 Managers	 use	 salaries	 and
overhead	rates	to	convert	person-months	into	an	actual	budget.

The	cost	estimate	is	likely	done	twice:	once	to	bid	a	contract,	and	once	again	after	the	contract	is	won.
The	second	estimate	is	done	after	the	software	architecture	is	designed,	so	that	the	tasks	as	well	as	the
effort	per	task	can	be	more	easily	and	accurately	identified.

The	project	manager	surely	wants	the	second	estimate	to	be	no	larger	than	the	first,	since	that	is	what
the	customer	will	pay.	One	suggestion	is	to	add	a	safety	margin	by	multiplying	your	original	estimate	by
1.3	 to	 1.5	 to	 try	 to	 handle	 estimation	 inaccuracy	 or	 unforeseen	 events.	 Another	 is	 to	 make	 three
estimates:	a	best	case,	expected	case,	and	worst	case,	and	then	use	that	information	to	make	your	best
guess.

The	 two	 approaches	 to	 estimating	 are	 experiential	 or	 quantitative.	 The	 first	 assumes	 the	 project
managers	 have	 significant	 experience	 either	 at	 the	 company	or	 in	 the	 industry,	 and	 they	 rely	 on	 that
experience	to	make	accurate	estimates.	It	certainly	increases	confidence	when	the	project	is	similar	to
tasks	that	the	organization	has	already	successfully	completed.

The	 quantitative	 or	 algorithmic	 approach	 is	 to	 estimate	 the	 programming	 effort	 of	 the	 tasks	 in	 a
technical	measure	such	as	lines	of	code	(LOC),	and	then	divide	by	a	productivity	measure	like	LOC	per
person-month	 to	 yield	 person-months	 per	 task.	 The	 project	manager	 can	 get	 help	 from	 others	 to	 get
estimates	on	LOC,	and	like	velocity,	can	look	at	the	historical	record	of	the	organization’s	productivity
to	calculate	person-months.

Since	cost	estimates	for	software	projects	have	such	a	dismal	record,	there	has	been	considerable	effort
on	improving	the	quantitative	approach	by	collecting	information	about	completed	projects	and	finding
models	that	predict	the	outcomes	(Boehm	and	Valerdi	2008).	The	next	step	in	sophistication	follows	this
formula:

(7.1)

Constructive	Cost	Model	(COCOMO)	is	the	basis	of	this	1981	formula.	Its	1995	successor	is	called	COCOMO	II.

where	 Organizational	 Factors	 include	 practices	 for	 this	 type	 of	 product,	 Code	 Size	 is	 measured	 as
before,	Size	Penalty	reflects	that	effort	is	not	linear	in	code	size,	and	Product	Factors	include	experience
of	development	team	with	this	type	of	product,	dependability	requirements,	platform	difficulty,	and	so
on.	Example	constants	from	real	projects	are	2.94	for	Organizational	Factors;	Size	Penalty	between	1.10
and	1.24;	and	Product	Factors	between	0.9	and	1.4.

While	these	estimates	are	quantitative,	they	certainly	depend	on	the	project	manager’s	subjective	picks
for	Code	Size,	Size	Penalty,	and	Product	Factors.

The	successor	to	the	COCOMO	formula	above	asks	the	project	manager	to	pick	many	more	parameters.
COCOMO	II	adds	three	more	formulas	to	adjust	estimates	for	1)	developing	prototypes,	2)	accounting
for	 the	 amount	of	 code	 reuse,	 and	3)	 a	post-detailed-architecture	 estimate.	This	 last	 formula	 expands
Size	Penalty	by	adding	a	normalized	product	of	5	independent	factors	and	replaces	Product	Factors	by	a
product	of	17	independent	factors.

The	British	Computer	Society	Survey	of	more	 than	1000	projects	mentioned	 in	Chapter	1	 found	 that
92%	of	project	managers	made	their	estimates	using	experience	instead	of	formulas	(Taylor	2000).

As	no	more	than	20%	to	30%	of	projects	are	meet	their	budget	and	schedule,	what	happens	to	the	rest?
Another	20%	to	30%	of	the	projects	are	indeed	cancelled	or	abandoned,	but	the	remaining	40%	to	50%
are	still	valuable	to	the	customer	even	if	late.	Customers	and	providers	typically	then	negotiate	a	new
contract	to	deliver	the	product	with	a	limited	set	of	missing	features	by	a	near-term	date.

ELABORATION:	Function	points
Function	points	are	an	alternative	measure	to	LOC	that	can	lead	to	estimates	that	are	more	accurate.	They	are	based	on	the	function
inputs,	outputs,	external	queries,	 input	 files,	output	 files,	and	 the	complexity	of	each.	The	corresponding	productivity	measure	 is
then	function	points	per	person-month.

PERT	stands	for	Program	Evaluation	and	Review	Technique,	which	was	invented	by	the	US	Navy	in	the	1950s	for	its	nuclear	submarine
program.

4.	Scheduling	and	Monitoring	Progress.	Given	the	SRS	has	been	broken	into	tasks	whose	effort	has
been	estimated,	 the	next	 step	 is	 to	use	a	 scheduling	 tool	 that	 shows	which	 tasks	can	be	performed	 in
parallel	and	which	have	dependencies	so	they	must	be	performed	sequentially.	The	format	is	typically	a
box	and	arrow	diagram	such	as	a	PERT	chart.	Figure	7.14	gives	an	example.	Such	tools	can	identify
the	critical	path,	which	determines	the	minimum	time	for	project.	The	project	manager	that	places	the
graph	in	a	table	with	rows	associated	with	the	people	on	the	project,	and	then	assigns	people	to	tasks.

http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique
http://en.wikipedia.org/wiki/Critical_path_method

Figure	7.14:	Numbered	nodes	represent	milestones	and	labeled	lines	represent	tasks,	with	arrowheads	representing	dependencies.
Diverging	lines	from	a	node	represent	concurrent	tasks.	The	numbers	on	the	other	side	of	lines	represent	the	time	allocated	for	the	task.
Dotted	lines	indicate	dependencies	that	need	no	resources,	so	they	have	no	time	allocated	for	the	task.

Once	 again,	 this	 process	 is	 typically	 done	 twice,	 once	when	 bidding	 the	 contract,	 and	 once	 after	 the
contract	is	won	and	the	detailed	architecture	design	is	complete.	Safety	margins	are	again	used	to	ensure
that	the	first	schedule,	which	is	when	the	customer	expects	the	product	to	be	released,	is	not	longer	than
the	second	version.

Similar	 to	calculating	velocity,	 the	project	manager	can	see	 if	 the	project	 is	behind	by	comparing	 the
predicted	expenditures	and	time	for	tasks	to	the	actual	expenditures	and	progress	to	date.	A	way	to	make
project	 status	 clear	 to	 all	 stakeholders	 is	 to	 add	 intermediate	 milestones	 to	 the	 schedule,	 which	 lets
everyone	see	if	the	project	is	on	schedule	and	on	budget.

Requirements	Creep	is	the	term	developers	use	to	describe	the	dreaded	increase	in	requirements	over	time.

5.	Change	Management	for	Requirements,	Cost,	and	Schedule.	As	stated	many	times	in	this	book,
customers	 are	 likely	 to	 ask	 for	 changes	 to	 the	 requirements	 as	 the	project	 evolves	 for	many	 reasons,
including	a	better	understanding	of	what	is	wanted	after	trying	a	prototype,	changing	market	conditions
for	the	project,	and	so	on.	The	challenge	for	the	project	manager	is	keep	the	requirement	documents,	the
schedule,	 and	 cost	 predictions	 up-to-date	 as	 the	 project	 changes.	 Thus,	 version	 control	 systems	 are
needed	for	evolving	documents	as	well	as	for	programs,	so	the	norm	should	be	checking	in	the	revised
documentation	along	with	the	revised	code.

6.	Ensuring	Implementation	Matches	Requirement	Features.	The	Agile	process	consolidates	 these
many	major	tasks	into	three	tightly	coupled	ones:	User	Stories,	acceptance	tests	in	Cucumber,	and	the
code	 that	 comes	 from	BDD/TDD	process.	 Thus,	 there	 is	 little	 confusion	 in	 the	 relationship	 between
particular	stories,	tests,	and	code.

However,	plan-and-document	methodologies	involve	many	more	mechanisms	without	tight	integration.
Thus,	we	need	tools	that	allow	the	project	manager	to	check	to	see	if	the	implementation	matches	the
requirements.	 The	 relationship	 between	 features	 in	 requirements	 and	 what	 is	 implemented	 is	 called
requirements	traceability.	Tools	that	implement	traceability	essentially	offer	cross-references	between	a
portion	of	the	design,	the	portion	of	the	code	that	implements	the	feature,	code	reviews	that	checked	it,
and	the	tests	that	validate	it.

If	there	is	both	a	high-level	SRS	and	a	detailed	SRS,	forward	traceability	refers	to	the	traditional	path
from	 requirements	 to	 implementation,	 while	 backwards	 traceability	 is	 the	 mapping	 from	 a	 detailed
requirement	back	to	a	high-level	requirement.

7.	 Risk	 Analysis	 and	 Management.	 In	 an	 effort	 to	 improve	 the	 accuracy	 of	 cost	 estimation	 and
scheduling,	plan-and-document	methodologies	have	borrowed	 risk	 analysis	 from	 the	business	 school.
The	philosophy	is	that	by	taking	the	time	up	front	to	identify	potential	risks	to	the	budget	and	schedule,
a	 project	 can	 either	 do	 extra	work	 to	 reduce	 the	 changes	 of	 risks	 or	 change	 the	 plan	 to	 avoid	 risks.
Ideally,	risk	identification	and	management	occurs	over	the	first	third	of	a	project.	It	does	not	bode	well
if	they	are	identified	late	in	the	development	cycle.

Risks	are	classified	as	 technical,	organizational,	or	business.	An	example	of	a	 technical	 risk	might	be
that	 the	 relational	 database	 chosen	 cannot	 scale	 to	 the	workload	 the	project	 needs.	An	organizational
risk	might	 be	 that	many	members	 of	 the	 team	 are	 unfamiliar	with	 J2EE,	which	 the	 project	 depends
upon.	A	business	risk	could	be	that	by	the	time	to	project	is	complete,	the	product	is	not	competitive	in
the	market.

Example	of	 actions	 to	overcome	 the	 above	 risks	would	be	 to	 acquire	 a	more	 scalable	database,	 send
team	members	 to	 a	 J2EE	workshop,	 and	 do	 competitive	 survey	 of	 existing	 products,	 including	 their
current	features	and	plans	for	improvements.

The	approach	 to	 identify	 risks	 is	 to	ask	everyone	 for	 their	worst-case	scenarios.	The	project	manager
puts	them	into	a	“risk	table,”	assigns	probability	of	each	happening	as	a	percentage	between	0	and	100,
and	the	impact	on	a	numeric	scale	of	1	to	4,	representing	negligible,	marginal,	critical,	and	catastrophic.
You	can	then	sort	the	risk	table	by	the	product	of	the	probability	and	impact	of	each	risk.

There	are	many	more	potential	risks	than	projects	can	afford	to	address,	so	the	advice	is	to	address	the
top	 20%	 of	 the	 risks,	 in	 the	 hope	 that	 they	 represent	 80%	 of	 the	 potential	 risks	 to	 the	 budget	 and

http://en.wikipedia.org/wiki/Requirements_traceability

schedule.	 Trying	 to	 address	 all	 potential	 risks	 could	 lead	 to	 an	 effort	 that	 is	 larger	 than	 the	 original
software	 project!	 Risk	 reduction	 is	 a	major	 reason	 for	 iteration	 in	 both	 the	 Spiral	 and	RUP	models.
Iterations	and	prototypes	should	reduce	risks	associated	with	a	project.

Section	7.5	mentions	asking	the	customers	about	risks	for	the	project	as	part	of	 the	cost	estimation	in
Agile,	but	the	difference	is	that	it	used	to	decide	the	range	of	the	cost	estimate	rather	than	becoming	a
significant	part	of	the	project	itself.

Tasks In	Plan	and	Document In	Agile

Requirements
Documentation

Software	Requirements	Specification	such	as	IEEE
Standard	830-1998

User	stories,
Cucumber,
Points,
Velocity

Requirements
Elicitation Interviews,	Scenarios,	Use	Cases

Change
Management	for
Requirements,
Schedule,	and

Budget

Version	Control	for	Documentation	and	Code

Ensuring
Requirements
Features

Traceability	to	link	features	to	tests,	reviews,	and	code

Scheduling	and
Monitoring

Early	in	project,	contracted	delivery	date	based	on	cost
estimation,	using	PERT	charts.	Milestones	to	monitor

progress

Cost	Estimation
Early	in	project,	contracted	cost	based	on	manager
experience	or	estimates	of	task	size	combined	with

productivity	metrics

Evaluate	to	pick	range	of
effort	for	time	and	materials

contract
Risk

Management
Early	in	project,	identify	risks	to	budget	and	schedule,

and	take	actions	to	overcome	or	avoid	them

Figure	7.15:	The	relationship	between	the	requirements	related	tasks	of	Plan-and-Document	versus	Agile	methodologies.

Summary	 The	 hope	 of	 the	 original	 efforts	 in	 software	 engineering	 was	 to	 make	 software
development	as	predictable	in	quality,	cost,	and	schedule	as	building	a	bridge.	Perhaps	because	less
than	a	sixth	of	software	projects	are	completed	on	 time	and	on	budget	with	 full	 funtionality,	 the
plan-and-document	process	has	many	steps	to	try	to	achieve	this	difficult	goal.	Agile	does	not	try
to	predict	cost	and	schedule	at	the	start	of	the	project,	instead	relying	on	working	with	customers
on	frequent	iterations	and	agreeing	on	a	range	of	time	for	the	best	effort	to	achieve	the	customer’s
goals.	Rating	user	 stories	 on	 difficulty	 and	 recording	 the	 points	 actually	 completed	per	 iteration
increases	 the	chances	of	more	 realistic	estimates.	Figure	7.15	shows	 the	 resulting	different	 tasks
given	the	differing	perspectives	of	these	two	philosophies.

Self-Check	7.10.1.	Name	three	plan-and-document	techniques	that	help	with	requirements	elicitation.
	Interviewing,	Scenarios,	and	Use	Cases.

7.11	Fallacies	and	Pitfalls

			Fallacy:	If	a	software	project	is	falling	behind	schedule,	you	can	catch	up	by	adding	more
people	to	the	project.

The	main	theme	of	Fred	Brooks’s	classic	book,	The	Mythical	Man-Month,	is	that	not	only	does	adding
people	not	help,	it	makes	it	worse.	The	reason	is	twofold:	it	takes	a	while	for	new	people	to	learn	about
the	project,	 and	 as	 the	 size	of	 the	project	 grows,	 the	 amount	of	 communication	 increases,	which	 can
reduce	 the	 time	available	 for	people	 to	get	 their	work	done.	His	 summary,	which	some	call	Brooks’s
Law,	is

Adding	manpower	to	a	late	software	project	makes	it	later.
—Fred	Brooks,	Jr.

			Pitfall:	Customers	who	confuse	mock-ups	with	completed	features.

As	a	developer,	 this	pitfall	may	 seem	 ridiculous	 to	you.	But	nontechnical	 customers	 sometimes	have
difficulty	 distinguishing	 a	 highly	 polished	 digital	 mock-up	 from	 a	 working	 feature!	 The	 solution	 is
simple:	 use	 paper-and-pencil	 techniques	 such	 as	 hand-drawn	 sketches	 and	 storyboards	 to	 reach
agreement	 with	 the	 customer—there	 can	 be	 no	 doubt	 that	 such	 Lo-Fi	 mockups	 represent	 proposed
rather	than	implemented	functionality.

			Pitfall:	Adding	cool	features	that	do	not	make	the	product	more	successful.

Agile	 development	was	 inspired	 in	 part	 by	 the	 frustration	 of	 software	 developers	 building	what	 they
thought	was	cool	code	that	customers	dropped.	The	temptation	is	strong	to	add	a	feature	that	you	think
would	 be	 great,	 but	 it	 can	 also	 be	 disappointing	when	 your	work	 is	 discarded.	User	 stories	 help	 all
stakeholders	 prioritize	 development	 and	 reduce	 chances	 of	 wasted	 effort	 on	 features	 that	 only
developers	love.

			Pitfall:	Sketches	without	storyboards.

Sketches	are	static;	interactions	with	a	SaaS	app	occur	as	a	sequence	of	actions	over	time.	You	and	the
customer	must	 agree	not	 only	on	 the	general	 content	 of	 the	Lo-Fi	UI	 sketches,	 but	 on	what	 happens
when	 they	 interact	with	 the	page.	“Animating”	 the	Lo-Fi	sketches—“OK,	you	clicked	on	 that	button,
here’s	 what	 you	 see;	 is	 that	 what	 you	 expected?”—goes	 a	 long	 way	 towards	 ironing	 out
misunderstandings	before	the	stories	are	turned	into	tests	and	code.

			Pitfall:	Using	Cucumber	solely	as	a	test-automation	tool	rather	than	as	a	common	middle

ground	for	all	stakeholders.

If	you	look	at	web_steps.rb,	you’ll	quickly	notice	that	low-level,	imperative	Cucumber	steps	such	as
“When	I	press	Cancel”	are	merely	a	thin	wrapper	around	Capybara’s	“headless	browser”	API,	and	you
might	 wonder	 (as	 some	 of	 the	 authors’	 students	 have)	 why	 you	 should	 use	 Cucumber	 at	 all.	 But
Cucumber’s	real	value	is	in	creating	documentation	that	nontechnical	stakeholders	and	developers	can
agree	on	and	that	serves	as	the	basis	for	automating	acceptance	and	integration	tests,	which	is	why	the
Cucumber	features	and	steps	for	a	mature	app	should	evolve	towards	a	“mini-language”	appropriate	for
that	app.	For	example,	an	app	 for	 scheduling	vacations	 for	hospital	nurses	would	have	scenarios	 that
make	heavy	use	of	domain-specific	 terms	such	as	shift,	 seniority,	holiday,	overtime,	and	so	on,	 rather
than	focusing	on	the	low-level	interactions	between	the	user	and	each	view.

			Pitfall:	Trying	to	predict	what	you	need	before	you	need	it.

Part	of	the	magic	of	Behavior-Driven	Design	(and	Test-Driven	Development	in	the	next	chapter)	is	that
you	write	the	tests	before	you	write	the	code	you	need,	and	then	you	write	code	needed	to	pass	the	tests.
This	top-down	approach	again	makes	it	more	likely	for	your	efforts	to	be	useful,	which	is	harder	to	do
when	you’re	predicting	what	you	think	you’ll	need.	This	observation	has	also	been	called	the	YAGNI
principle—You	Ain’t	Gonna	Need	It.

			Pitfall:	Careless	use	of	negative	expectations.

Beware	of	overusing	Then	I	should	not	see....	Because	 it	 tests	a	negative	condition,	you	might	not	be
able	 to	 tell	 if	 the	 output	 is	what	 you	 intended—you	 can	only	 tell	what	 the	 output	 isn’t.	Many,	many
outputs	 don’t	match,	 so	 that	 is	 not	 likely	 to	 be	 a	 good	 test.	 For	 example,	 if	 you	were	 testing	 for	 the
absence	 of	 “Welcome,	Dave!”	 but	 you	 accidentally	wrote	 Then	 I	 should	 not	 see	 “Greetings,
Dave!”,	 the	 scenario	will	 pass	 even	 if	 the	 app	 incorrectly	 emits	 “Welcome,	Dave!”.	Always	 include
positive	expectations	such	as	Then	I	should	see...	to	check	results.

			Pitfall:	Careless	use	of	positive	expectations.

Even	if	you	use	positive	expectations	such	as	Then	I	should	see...,	what	if	the	string	you’re	looking	for
occurs	 multiple	 times	 on	 the	 page?	 For	 example,	 if	 the	 logged-in	 user’s	 name	 is	 Emma	 and	 your
scenario	 is	 checking	whether	 Jane	Austen’s	 book	Emma	was	 correctly	 added	 to	 the	 shopping	 cart,	 a
scenario	step	Then	I	should	see	“Emma”	might	pass	even	if	the	cart	isn’t	working.	To	avoid	this	pitfall,
use	 Capybara’s	 within	 helper,	 which	 constrains	 the	 scope	 of	 matchers	 such	 as	 I	 should	 see	 to	 the
element(s)	 matching	 a	 given	 CSS	 selector,	 as	 in	 Then	 I	 should	 see	 ”Emma”	 within

”div#shopping_cart”,	 and	 use	 unambiguous	 HTML	 id	 or	 class	 attributes	 for	 page	 elements	 you
want	to	name	in	your	scenarios.	The	Capybara	documentation	lists	all	the	matchers	and	helpers.

			Pitfall:	Delivering	a	story	as	“done”	when	only	the	happy	path	is	tested.

As	should	be	clear	by	now,	a	story	is	only	a	candidate	for	delivery	when	both	the	happy	path	and	the
most	 important	 sad	 paths	 have	 been	 tested.	Of	 course,	 as	Chapter	 8	 describes,	 there	 are	many	more
ways	for	something	to	work	incorrectly	than	to	work	correctly,	and	sad-path	tests	are	not	intended	to	be

http://rubydoc.info/github/jnicklas/capybara/

a	substitute	for	finer-grained	test	coverage.	But	from	the	user’s	point	of	view,	correct	app	behavior	when
the	user	accidentally	does	 the	wrong	thing	 is	 just	as	 important	as	correct	behavior	when	she	does	 the
right	thing.

7.12	Concluding	Remarks:	Pros	and	Cons	of	BDD

In	software,	we	rarely	have	meaningful	requirements.	Even	if	we	do,	the	only	measure	of	success	that
matters	is	whether	our	solution	solves	the	customer’s	shifting	idea	of	what	their	problem	is.

—Jeff	Atwood,	Is	Software	Development	Like	Manufacturing?,	2006

Figure	7.16	shows	the	relationship	of	the	testing	tools	introduced	in	this	chapter	to	the	testing	tools	in
the	 following	 chapters.	 Cucumber	 allows	 writing	 user	 stories	 as	 features,	 scenarios,	 and	 steps	 and
matches	these	steps	to	step	definitions	using	regular	expressions.	The	step	definitions	invoke	methods	in
Cucumber	 and	Capybara.	We	 need	Capybara	 because	we	 are	writing	 a	 SaaS	 application,	 and	 testing
requires	a	tool	to	act	as	the	user	and	web	browser.	If	the	app	was	not	for	SaaS,	then	we	could	invoke	the
methods	that	test	the	app	directly	in	Cucumber.

Figure	7.16:	The	relationship	of	Cucumber,	RSpec,	Capybara,	and	the	many	other	testing	tools	and	services	described	in	this	book.	This
chapter	uses	Rack::Test,	since	our	application	does	not	yet	use	JavaScript.	If	it	did,	we’d	have	to	use	the	slower	but	more	complete
Webdriver.	Chapter	12	shows	how	we	can	replace	Webdriver	with	the	service	from	SauceLabs	to	test	your	app	with	many	browsers
instead	of	just	one.

The	 advantage	 of	 user	 stories	 and	 BDD	 is	 creating	 a	 common	 language	 shared	 by	 all	 stakeholders,
especially	 the	nontechnical	customers.	BDD	is	perfect	 for	projects	where	 the	requirements	are	poorly
understood	or	rapidly	changing,	which	is	often	the	case.	User	stories	also	make	it	easy	to	break	projects
into	small	increments	or	iterations,	which	makes	it	easier	to	estimate	how	much	work	remains.	The	use
of	3x5	cards	 and	paper	mockups	of	user	 interfaces	keeps	 the	nontechnical	 customers	 involved	 in	 the
design	 and	 prioritization	 of	 features,	 which	 increases	 the	 chances	 of	 the	 software	 meeting	 the
customer’s	needs.	Iterations	drive	the	refinement	of	this	software	development	process.	Moreover,	BDD
and	Cucumber	naturally	 leads	 to	writing	 tests	before	 coding,	 shifting	 the	validation	and	development

effort	from	debugging	to	testing.

			Google	places	these	posters	inside	restrooms	to	remind	developers	of	the
importance	of	testing.	Used	with	permission.

Comparing	user	 stories,	Cucumber,	points,	and	velocity	 to	 the	plan-and-document	processes	makes	 it
clear	that	BDD	plays	many	important	roles	in	the	Agile	process:
	

1.	 Requirement	elicitation
2.	 Requirement	documentation
3.	 Acceptance	tests
4.	 Traceability	between	features	and	implementation
5.	 Scheduling	and	monitoring	of	project	progress

The	downside	of	user	stories	and	BDD	is	that	it	may	be	difficult	or	too	expensive	to	have	continuous
contact	with	 the	 customer	 throughout	 the	 development	 process,	 as	 some	 customers	may	 not	want	 to
participate.	This	approach	may	also	not	scale	to	very	large	software	development	projects	or	to	safety
critical	applications.	Perhaps	plan-and-document	is	a	better	match	in	both	situations.

Another	potential	downside	of	BDD	is	that	the	project	could	satisfy	customers	but	not	result	in	a	good
software	architecture,	which	is	an	important	foundation	for	maintaining	the	code.	Chapter	11	discusses
design	patterns,	which	should	be	part	of	your	software	development	toolkit.	Recognizing	which	pattern
matches	the	circumstances	and	refactoring	code	when	necessary	(see	Chapter	9)	reduces	the	chances	of
BDD	producing	poor	software	architectures.

All	this	being	said,	there	is	enormous	momentum	in	the	Ruby	community	(which	places	high	value	on
testable,	beautiful	and	self-documenting	code)	 to	document	and	promote	best	practices	 for	 specifying
behavior	 both	 as	 a	 way	 to	 document	 the	 intent	 of	 the	 app’s	 developers	 and	 to	 provide	 executable
acceptance	tests.	The	Cucumber	wiki	is	a	good	place	to	start.

BDD	may	not	seem	initially	the	natural	way	to	develop	software;	the	strong	temptation	is	to	just	start
hacking	code.	However,	once	you	have	learned	BDD	and	had	success	at	it,	for	most	developers	there	is
no	going	back.	Your	authors	remind	you	that	good	tools,	while	sometimes	intimidating	to	learn,	repay
the	effort	many	times	over	in	the	long	run.	Whenever	possible	in	the	future,	we	believe	you’ll	follow	the

BDD	path	to	writing	beautiful	code.	 		

7.13	To	Learn	More
	

The	Cucumber	wiki	 has	 links	 to	 documentation,	 tutorials,	 examples,	 screencasts,	 best	 practices,
and	lots	more	on	Cucumber.
The	Cucumber	Book	(Wynne	and	Hellesøy	2012),	co-authored	by	the	tool’s	creator	and	one	of	its
earliest	 adopters,	 includes	 detailed	 information	 and	 examples	 using	 Cucumber,	 excellent

http://cukes.info
http://cukes.info

discussions	 of	 best	 practices	 for	 BDD,	 and	 additional	 Cucumber	 uses	 such	 as	 testing	 RESTful
service	automation.
Ben	 Mabey	 (a	 core	 Cucumber	 developer)	 and	 Jonas	 Nicklas,	 among	 others,	 have	 written
eloquently	about	the	benefits	of	declarative	vs.	 imperative	Cucumber	scenarios.	In	fact,	 the	main
author	 of	 Cucumber,	 Aslak	 Hellesøy,	 deliberately	 removed	 web_steps.rb	 (which	 we	 met	 in
Section	 7.7)	 from	 Cucumber	 in	 October	 2011,	 which	 is	 why	 we	 had	 to	 separately	 install	 the
cucumber_rails_training_wheels	gem	to	get	it	for	our	examples.

	 ACM	IEEE-Computer	Society	Joint	Task	Force.	Computer	science	curricula	2013,	Ironman	Draft
(version	1.0).	Technical	report,	February	2013.	URL	http:	//ai.stanford.edu/users/sahami/CS2013/.

	 B.	W.	Boehm	and	R.	Valerdi.	Achievements	and	challenges	in	COCOMO-based	software	resource
estimation.	IEEE	Software,	25(5):74–83,	Sept	2008.

	 F.	P.	Brooks.	The	Mythical	Man-Month.	Addison-Wesley,	Reading,	MA,	Anniversary	edition,	1995.
ISBN	0201835959.
	 D.	Burkes.	Personal	communication,	December	2012.

	 J.	Johnson.	The	CHAOS	report.	Technical	report,	The	Standish	Group,	Boston,	Massachusetts,	1995.
URL	http://blog.standishgroup.com/.

	 J.	Johnson.	The	CHAOS	report.	Technical	report,	The	Standish	Group,	Boston,	Massachusetts,	2009.
URL	http://blog.standishgroup.com/.

	 A.	Taylor.	IT	projects	sink	or	swim.	BCS	Review,	Jan.	2000.	URL	http://archive.bcs.org/bulletin/jan00/article1.htm.

	 M.	Wynne	and	A.	Hellesøy.	The	Cucumber	Book:	Behaviour-Driven	Development	for	Testers	and
Developers.	Pragmatic	Bookshelf,	2012.	ISBN	1934356808.

7.14	Suggested	Projects

Project	 7.1.	 Create	 step	 definitions	 that	 would	 allow	 you	 to	 write	 the	 following	 steps	 in	 a
RottenPotatoes	scenario:

http://pastebin.com/tni5pA8w

	1				Given	the	movie	"Inception"	exists

	2				And	it	has	5	reviews

	3				And	its	average	review	score	is	3.5

Hint:	 Instance	 variables	 in	Cucumber	 step	 definitions	 are	 associated	with	 the	 scenario,	 not	with	 the
step.

Project	7.2.	Suppose	in	RottenPotatoes,	instead	of	dials	to	pick	the	rating	and	pick	the	release	date,	the
choice	 was	 instead	 fill	 in	 the	 blank	 form.	 First,	 make	 the	 appropriate	 changes	 to	 the	 scenario	 in
Figure	7.5.	 List	 the	 step	 definitions	 from	features/cucumber/web_steps.rb	 that	 Cucumber	would
now	invoke	in	testing	these	new	steps.

Project	7.3.	Add	a	sad	path	scenario	to	the	feature	in	Figure	7.5	of	what	happens	when	a	user	leaves	the
title	field	empty.

http://benmabey.com/2008/05/19/imperative-vs-declarative-scenarios-in-user-stories.html
http://elabs.se/blog/15-you-re-cuking-it-wrong
http://aslakhellesoy.com/post/11055981222/the-training-wheels-came-off
http://ai.stanford.edu/users/sahami/CS2013/
http://blog.standishgroup.com/
http://blog.standishgroup.com/
http://archive.bcs.org/bulletin/jan00/article1.htm
http://pastebin.com/tni5pA8w

Project	7.4.	Write	down	a	list	of	background	steps	that	will	populate	the	RottenPotatoes	site	with	a	few
movies.

Project	7.5.	Create	a	lo-fi	mockup	showing	the	current	behavior	of	the	RottenPotatoes	app.

Project	 7.6.	 Come	 up	 with	 a	 feature	 that	 you	 would	 like	 to	 add	 to	 RottenPotatoes,	 and	 draw	 a
storyboards	showing	how	it	would	be	implemented	and	used.

Project	7.7.	Create	a	list	of	steps	such	as	those	in	Figure	7.12	that	would	be	used	to	implement	the	step:

http://pastebin.com/6RvBzD4f

	1	When	/	I	delete	the	movie:	"(.*)"/	do	|title|

Project	7.8.	Use	Cucumber	and	Mechanize	to	create	integration	tests	or	acceptance	tests	for	an	existing
SaaS	application	that	has	no	testing	harness.

Project	 7.9.	Create	 a	Cucumber	 step	 definition	 that	 allows	 you	 to	 check	 for	multiple	 instances	 of	 a
string	on	a	page,	such	as	Then	I	should	see	”Hurrah”	3	times.	Hint:	Consider	what	happens	 if
you	try	to	split	the	page	text	into	chunks	separated	by	the	string	to	be	matched.

Project	7.10.	Enhance	your	step	definition	from	the	previous	exercise	so	that	matches	can	be	scoped	to
a	CSS	selector,	as	in	Then	I	should	see	”Hurrah”	3	times	within	”div#congratulations”.

Project	7.11.	Transform	two	paragraphs	of	the	patient	management	system	found	online	and	turn	them
into	User	Stories	in	the	Connextra	format.	Are	they	all	SMART?	Which	ones	are	function	and	which	are
non-functional?

Project	 7.12.	Transform	 the	 RottenPotatoes	 user	 stories	 into	 a	 Software	 Requirements	 Specification
document.	Where	any	hard	to	express	in	an	SRS?

Project	7.13.	 			Use	an	ad	hoc	method	to	estimate	software	development	effort	(e.g.,	time)	from	a
Plan-and-Document	 process	 and	 compare	 to	 actual	 effort	 required	 that	 is	 tracked	 using	 a	 tool	 like
Pivotal	 Tracker.	 Note:	 The	 margin	 icon	 identifies	 projects	 from	 the	 ACM/IEEE	 2013	 Software
Engineering	standard	(ACM	IEEE-Computer	Society	Joint	Task	Force	2013).

Project	 7.14.	 	 	 	 Describe	 the	 fundamental	 challenges	 of	 and	 common	 techniques	 used	 for
requirements	elicitation.

Project	7.15.	 			Differentiate	between	forward	and	backward	tracing	and	explain	their	roles	in	the
requirements	validation	process.

Project	7.16.	 			List	several	examples	of	software	risks.

Project	7.17.	 			Describe	different	categories	of	risk	in	software	systems.

http://pastebin.com/6RvBzD4f
http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/CaseStudies/MHCPMS/SupportingDocs/MHCPMSCaseStudy.pdf

Project	7.18.	 			Describe	the	impact	of	risk	in	a	Plan-and-Document	lifecycle.

8.	Software	Testing:	Test-Driven	Development

			Donald	Knuth	(1938–)	one	of	the	most	illustrious	computer	scientists,	received
the	Turing	Award	in	1974	for	major	contributions	to	the	analysis	of	algorithms	and	the	design	of
programming	languages,	and	in	particular	for	his	contributions	to	his	multi-volume	The	Art	of

Computer	Programming.	Many	consider	this	series	the	definitive	reference	on	analysis	of	algorithms;
“bounty	checks”	from	Knuth	for	finding	errors	in	his	books	are	among	the	most	prized	trophies	among
computer	scientists.	Knuth	also	invented	the	widely-used	TeX	typesetting	system,	with	which	this

book	was	prepared.

One	of	the	most	important	lessons,	perhaps,	is	the	fact	that	SOFTWARE	IS	HARD.	...TeX	and
METAFONT	proved	to	be	much	more	difficult	than	all	the	other	things	I	had	done	(like	proving

theorems	or	writing	books).	The	creation	of	good	software	demands	a	significantly	higher	standard	of
accuracy	than	those	other	things	do,	and	it	requires	a	longer	attention	span	than	other	intellectual	tasks.

—Donald	Knuth,	Keynote	address	to	11th	World	Computer	Congress,	1989

8.1	Background:	A	RESTful	API	and	a	Ruby	Gem
8.2	FIRST,	TDD,	and	Red–Green–Refactor
8.3	Seams	and	Doubles
8.4	Expectations,	Mocks,	Stubs,	Setup
8.5	Fixtures	and	Factories
8.6	Implicit	Requirements	and	Stubbing	the	Internet
8.7	Coverage	Concepts	and	Unit	vs.	Integration	Tests
8.8	Other	Testing	Approaches	and	Terminology
8.9	The	Plan-And-Document	Perspective
8.10	Fallacies	and	Pitfalls
8.11	Concluding	Remarks:	TDD	vs.	Conventional	Debugging
8.12	To	Learn	More
8.13	Suggested	Projects

Concepts

The	big	concepts	of	this	chapter	are	test	creation,	test	coverage,	and	levels	of	testing.

The	five	principles	for	creating	good	tests	are	Fast,	Independent,	Repeatable,	Self-checking,	and	Timely
(FIRST).	To	help	keep	tests	Fast	and	Independent	from	the	behavior	of	other	classes,	use	mock	objects
and	stubs.	They	are	examples	of	seams,	which	change	program	behavior	during	test	without	changing
the	source	code	itself.

Testing	in	the	Agile	lifecycle,	which	follows	Test-Driven	Development	(TDD),	follows	these	steps:
	

Starting	from	the	acceptance	and	integration	tests	derived	from	User	stories,	write	failing	unit	tests
that	test	the	nonexistent	code	you	wish	you	had.	We	will	use	the	RSpec	tool	to	do	this.
Write	 just	 enough	 code	 to	 pass	 one	 test	 and	 look	 for	 opportunities	 to	 refactor	 the	 code	 before
continuing	with	the	next	test.	Since	failed	tests	are	reported	in	red	and	passing	results	are	green,	the
sequence	is	called	Red–Green–Refactor.
Use	mocks	 and	 stubs	 in	 your	 tests	 to	 isolate	 the	 behavior	 of	 the	 code	 you’re	 testing	 from	 the
behavior	of	other	classes	or	methods	on	which	it	depends.
Various	code	coverage	metrics	help	you	determine	which	parts	of	your	code	need	more	testing.

For	the	Plan	and	Document	lifecycle,	you	use	some	of	the	same	concepts	in	a	quite	different	order	and
even	with	different	people:
	

The	 program	manager	 assigns	 programming	 tasks	 based	 on	 the	SRS,	 so	unit	 testing	 starts	 after
coding.	Quality-Assurance	(QA)	testers	take	over	from	the	developers	to	perform	the	higher	level
tests.
Top-down,	Bottom-up,	and	Sandwich	are	options	on	how	to	combine	the	resulting	code	to	perform
integration	 testing.	 The	 testing	 plan	 and	 results	 are	 documented,	 such	 as	 by	 following	 IEEE
Standard	829-2008.
After	integration	testing,	the	QA	team	performs	a	systems	test	before	releasing	it	to	the	customer.
Testing	stops	when	a	specified	level	of	coverage	is	reached,	such	as	“95%	statement	coverage.”

http://en.wikipedia.org/wiki/mock_object
http://en.wikipedia.org/wiki/Test_stub
http://en.wikipedia.org/wiki/Test-Driven_Development
http://en.wikipedia.org/wiki/TDD
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/unit_tests
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/mock_object
http://en.wikipedia.org/wiki/Test_stub
http://en.wikipedia.org/wiki/code_coverage
http://en.wikipedia.org/wiki/unit_test
http://en.wikipedia.org/wiki/Quality-Assurance
http://en.wikipedia.org/wiki/QA
http://en.wikipedia.org/wiki/integration_testing
http://en.wikipedia.org/wiki/System_testing

An	 alternative	 to	 testing,	 used	 for	 small	 critical	 software,	 is	 formal	methods.	 They	 use	 formal
specifications	of	correct	program	behavior	that	are	automatically	verified	by	theorem	provers	or	by
exhaustive	state	search,	both	of	which	can	go	beyond	what	conventional	testing	can	do.

Their	approaches	to	testing	are	some	of	the	starkest	differences	between	Agile	and	Plan-and-Document
lifecycles:	when	 test	writing	 starts,	 the	 order	 that	 levels	 of	 tests	 are	written,	 and	 even	who	 does	 the
testing.

http://en.wikipedia.org/wiki/formal_methods

8.1	Background:	A	RESTful	API	and	a	Ruby	Gem

Chapter	1	introduced	the	Agile	lifecycle	and	distinguished	two	aspects	of	software	assurance:	validation
(“Did	you	build	the	right	thing?”)	and	verification	(“Did	you	build	the	thing	right?”).	In	this	chapter,	we
focus	 on	 verification—building	 the	 thing	 right—via	 software	 testing	 as	 part	 of	 the	 Agile	 lifecycle.
Figure	8.1	highlights	the	portion	of	the	Agile	lifecycle	covered	in	this	chapter.

Although	 testing	 is	 only	 one	 technique	 used	 for	 verification,	we	 focus	 on	 it	 because	 its	 role	 is	 often
misunderstood,	and	as	a	result	it	doesn’t	get	as	much	attention	as	other	parts	of	the	software	lifecycle.	In
addition,	 as	 we	 will	 see,	 approaching	 software	 construction	 from	 a	 test-centric	 perspective	 often
improves	the	software’s	readability	and	maintainability.	In	other	words,	testable	code	tends	to	be	good
code,	and	vice	versa.

Figure	8.1:	The	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book.	This	chapter	emphasizes	unit	testing	as	part	of
Test-Driven	Development.

In	Chapter	 7	we	 began	working	 on	 a	 new	 feature	 for	 RottenPotatoes	 to	 enable	 information	 about	 a
movie	 to	 be	 imported	 automatically	 from	 The	 Open	 Movie	 Database,	 or	 TMDb	 for	 short.	 In	 this
chapter,	we’ll	develop	the	necessary	methods	to	complete	this	feature.

Method	or	function?	Following	the	terminology	of	OOP	(object-oriented	programming),	we	use	method	to	mean	a	named	piece	of	code

http://themoviedb.org

that	implements	a	behavior	associated	with	a	class,	whether	it’s	more	like	a	function	that	returns	a	value	or	more	like	a	procedure	that
causes	side	effects.	Additional	historical	terms	for	such	a	piece	of	code	include	function,	routine,	subroutine,	and	subprogram.

Like	many	SaaS	applications,	TMDb	is	designed	to	be	part	of	a	Service-Oriented	Architecture:	it	has	an
API	(application	programming	interface)	that	allows	external	applications,	not	just	human	Web	surfers,
to	 use	 its	 functionality.	As	 Screencast	 8.1.1	 shows,	 TMDb’s	API	 is	 RESTful,	 allowing	 each	 request
made	by	an	external	application	to	be	entirely	self-contained,	as	described	in	Chapter	2.

Screencast	8.1.1:	Using	the	TMDb	API
TMDb’s	API	is	accessed	by	constructing	a	RESTful	URI	for	the	appropriate	function,	such	as	“search
for	movies	matching	a	keyword”	or	“retrieve	detailed	information	about	a	specific	movie”.	To	prevent
abuse	and	track	each	user	of	the	API	separately,	each	developer	must	first	obtain	their	own	API	key	by
requesting	 one	 via	 the	 TMDb	 website.	 Request	 URI’s	 that	 do	 not	 include	 a	 valid	 API	 key	 are	 not
honored,	 returning	 an	 error	 instead.	 For	 request	 URI’s	 containing	 a	 valid	API	 key,	 TMDb	 returns	 a
JSON	object	as	the	result	of	the	request	encoded	by	the	URI.	This	flow—construct	a	RESTful	URI	that
includes	 an	 API	 key,	 receive	 a	 JSON	 response—is	 a	 common	 pattern	 for	 interacting	 with	 external
services.

	 	 	Usually,	calling	such	an	API	from	RottenPotatoes	would	require	us	to	use	the	URI	class	in	the
Ruby	standard	library	to	construct	the	request	URI	containing	our	API	key,	use	the	Net::HTTP	class	to
issue	the	request	to	api.themoviedb.org,	and	parse	the	resulting	JSON	object	(perhaps	using	the	json
gem).	But	sometimes	we	can	be	more	productive	by	standing	on	the	shoulders	of	others,	as	we	can	in
this	case.	The	gem	themoviedb	 is	a	user-contributed	Ruby	“wrapper”	around	TMDb’s	RESTful	API,
mentioned	on	the	TMDb	API	documentation	pages.	Screencast	8.1.2	shows	how	to	use	it.

Screencast	8.1.2:	Simplified	use	of	the	TMDb	API	with	the	themoviedb	gem
Not	every	RESTful	API	has	a	corresponding	Ruby	 library,	but	 for	 those	 that	do,	 such	as	TMDb,	 the
library	can	hide	 the	API	details	behind	a	 few	simple	Ruby	methods.	Ahmet	Abdi’s	themoviedb	gem
conveniently	 constructs	 the	 correct	RESTful	URIs,	 performs	 the	 remote	 service	 calls,	 and	 parses	 the
JSON	results	into	Ruby	objects	representing	movies,	playlists,	and	so	on.	But	as	this	screencast	shows,
we	must	be	careful	in	how	we	detect	and	handle	errors	interacting	with	the	remote	service.

Summary:	 TMDb	 (The	 Movie	 Database)	 has	 a	 service-oriented	 API	 that	 can	 be	 accessed	 by
sending	 HTTP	 requests	 with	 properly-constructed	 HTTP	 URIs	 and	 returns	 an	 HTTP	 response
whose	body	is	a	JSON	object	containing	the	response	data.	Conveniently,	the	work	of	creating	the
appropriate	 requests	 and	 parsing	 the	 JSON	 responses	 is	 handled	 by	 an	 open-source	 Ruby	 gem,
which	we	can	use	instead	of	dealing	directly	with	URIs	and	JSON.

ELABORATION:	RESTful	APIs	and	Developer	Keys

Most	RESTful	APIs	require	a	developer	key;	some	provide	it	free,	others	make	you	pay.	For	example,	a	free	Google	API	key	allows
you	to	use	various	Google	services	such	as	maps	and	geocoding.	In	some	cases,	like	TMDb,	you	simply	embed	the	key	in	the	URL
of	 each	 call,	 using	SSL	 to	 transmit	 requests	 securely	 (Section	12.9)	 so	malicious	 users	 cannot	 snoop	on	 the	 key.	However,	API
endpoints	that	access	user-specific	data	often	require	more	sophisticated	third-party	authentication,	usually	using	a	scheme	such	as
OAuth,	which	is	introduced	in	Section	5.2.

http://en.wikipedia.org/wiki/API
http://vimeo.com/83460540
http://vimeo.com/84683958
https://code.google.com/apis/console

Self-Check	8.1.1.	True	or	false:	in	order	to	use	the	TMDb	API	from	another	language	such	as	Java,	we
would	need	a	Java	library	equivalent	to	themoviedb	gem.

	False:	the	API	consists	of	a	set	of	HTTP	requests	and	JSON	responses,	so	as	long	as	we	can	transmit
and	receive	bytes	over	TCP/IP	and	have	the	ability	to	parse	strings	(the	JSON	responses),	we	can	use
the	APIs	without	a	special	library.

8.2	FIRST,	TDD,	and	Red–Green–Refactor

Developers	 “tossing	 their	 code	 over	 the	 wall”	 to	 Quality	 Assurance	 (QA)	 is	 not	 typical	 for	 SaaS
applications,	as	are	the	days	of	QA	engineers	manually	exercising	the	software	and	filing	bug	reports.
Indeed,	the	idea	that	quality	assurance	is	the	responsibility	of	a	separate	group	rather	than	the	result	of	a
good	 process	 is	 considered	 antiquated	 for	 SaaS	 apps.	 Today’s	 SaaS	 developers	 bear	 far	 more
responsibility	 for	 testing	 their	own	code	and	participating	 in	 reviews;	 the	 responsibilities	of	QA	have
largely	shifted	 to	 improving	 the	 testing	 tools	 infrastructure,	helping	developers	make	 their	code	more
testable,	 and	 verifying	 that	 customer-reported	 bugs	 are	 reproducible,	 as	 we’ll	 discuss	 further	 in
Chapter	10.	As	we	shall	see,	the	Agile	lifecycle	also	expects	the	QA	team	to	be	the	developers.

Testing	 today	 is	 also	 far	 more	 automated.	 Automated	 testing	 doesn’t	 mean	 that	 tests	 are	 created
automatically	for	you,	but	that	the	tests	are	self-checking:	the	test	code	itself	can	determine	whether	the
code	being	tested	works	or	not,	without	requiring	a	human	to	manually	check	test	output	or	interact	with
the	 software.	A	 high	 degree	 of	 automation	 is	 key	 to	 supporting	 the	 five	 principles	 for	 creating	 good
tests,	which	are	summarized	by	the	acronym	FIRST:	Fast,	Independent,	Repeatable,	Self-checking,	and
Timely.
	

Fast:	it	should	be	easy	and	quick	to	run	the	subset	of	test	cases	relevant	to	your	current	coding	task,
to	avoid	interfering	with	your	train	of	thought.	We	will	use	a	Ruby	tool	called	Autotest	to	help	with

this.	 		
Independent:	No	test	should	rely	on	preconditions	created	by	other	tests,	so	that	we	can	prioritize
running	only	a	subset	of	tests	that	cover	recent	code	changes.
Repeatable:	test	behavior	should	not	depend	on	external	factors	such	as	today’s	date	or	on	“magic
constants”	that	will	break	the	tests	if	their	values	change,	as	occurred	with	many	1960s	programs
when	the	year	2000	arrived.

			Y2K	bug	in	action	This	photo	was	taken	on	Jan.	3,	2000.	(Wikimedia
Commons)

Self-checking:	each	test	should	be	able	to	determine	on	its	own	whether	it	passed	or	failed,	rather
than	relying	on	humans	to	check	its	output.
Timely:	tests	should	be	created	or	updated	at	the	same	time	as	the	code	being	tested.	As	we’ll	see,
with	test-driven	development	the	tests	are	written	immediately	before	the	code.

Test-driven	 development	 (TDD)	 advocates	 the	 use	 of	 tests	 to	drive	 the	 development	 of	 code.	When
TDD	 is	 used	 to	 create	 new	 code,	 as	 we	 do	 in	 this	 chapter,	 it	 is	 sometimes	 referred	 to	 as	 test-first

http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Y2k
http://en.wikipedia.org/wiki/Test-driven_development

development	since	the	tests	come	into	existence	before	any	of	the	code	being	tested.	When	TDD	is	used
to	 extend	 or	modify	 legacy	 code,	 as	we’ll	 do	 in	 Chapter	 9,	 new	 tests	 may	 be	 created	 for	 code	 that
already	exists.	As	we	explore	TDD	in	 this	chapter,	we’ll	show	how	the	Ruby	tools	support	TDD	and
FIRST.	Although	 TDD	may	 feel	 strange	when	 you	 first	 try	 it,	 it	 tends	 to	 result	 in	 code	 that	 is	well
tested,	more	modular,	 and	easier	 to	 read	 than	most	code	developed.	While	TDD	 is	obviously	not	 the
only	way	to	achieve	those	goals,	 it	 is	difficult	 to	end	up	with	seriously	deficient	code	if	TDD	is	used
correctly.

	 	 	We	will	write	 tests	using	RSpec,	a	domain-specific	language	 (DSL)	for	 testing	Ruby	code.	A
DSL	is	a	small	programming	language	designed	to	ease	tackling	problems	within	a	single	area	(domain)
at	 the	 expense	 of	 generality.	 You’ve	 already	 seen	 examples	 of	 external	 (standalone)	 DSLs,	 such	 as
HTML	 for	 describing	Web	pages.	RSpec	 is	 an	 internal	 or	embedded	DSL:	RSpec	 code	 is	 just	Ruby
code,	but	takes	advantage	of	Ruby’s	features	and	syntax	so	as	to	make	up	a	“mini-language”	focused	on
the	job	of	testing.	Regular	expressions	are	another	example	of	an	internal	DSL	embedded	in	Ruby.

Note:	These	examples	and	instructions	are	for	RSpec	versions	earlier	than	3.0.	A	future	version	of
the	book	will	update	these	instructions	for	RSpec	3.0	and	later.

RSpec	can	also	be	used	for	integration	tests,	but	we	prefer	Cucumber	since	it	facilitates	dialogue	with	the	customer	and	automates
acceptance	as	well	as	integration	tests.

RSpec’s	 facilities	 help	 us	 capture	 expectations	 of	 how	 our	 code	 should	 behave.	 Such	 tests	 are
executable	 specifications	 or	 “specs”	 written	 in	 Ruby,	 hence	 the	 name	 RSpec.	 How	 can	 we	 capture
expectations	in	tests	before	there	is	any	code	to	be	tested?	The	surprising	answer	is	that	we	write	a	test
that	exercises	the	code	we	wish	we	had,	which	forces	us	to	think	not	only	about	what	the	code	will	do,
but	how	it	will	be	used	by	its	callers	and	collaborators	(other	pieces	of	code	that	have	to	work	with	it).
We	did	this	in	Chapter	7	in	the	Cucumber	scenario	step	And	I	click	“Search	TMDb”:	when	we	modified
the	 List	 Movies	 view	 (views/movies/index.html.haml)	 to	 include	 a	 “Search	 TMDb”	 button,	 we
picked	 the	 name	 search_tmdb	 for	 the	 not-yet-existing	 controller	 method	 that	 would	 respond	 to	 the
click.	Of	course,	since	no	method	MoviesController#search_tmdb	existed,	the	Cucumber	step	failed
(showing	red)	when	you	tried	to	actually	run	the	scenario.	In	the	rest	of	this	chapter	we	will	use	TDD	to
develop	the	search_tmdb	method.

Bar#foo	is	idiomatic	Ruby	notation	denoting	the	instance	method	foo	of	class	Bar.	The	notation	Bar.foo	denotes	the	class	method	foo.

In	 the	MVC	architecture,	 the	 controller’s	 job	 is	 to	 respond	 to	 a	 user	 interaction,	 call	 the	 appropriate
model	method(s)	 to	 retrieve	or	manipulate	 any	necessary	data,	 and	generate	 an	appropriate	view.	We
might	therefore	describe	the	desired	behavior	of	our	as-yet-nonexistent	controller	method	as	follows:
	

It	should	call	a	model	method	to	perform	the	TMDb	search,	passing	it	the	search	terms	typed	by
the	user.

http://en.wikipedia.org/wiki/domain-specific_language

It	should	select	the	Search	Results	HTML	view	(in	Rails	parlance,	the	Search	Results	template)	for
rendering.
It	should	make	the	TMDb	search	results	available	to	that	template.

Note	 that	 none	 of	 the	methods	 or	 templates	 in	 this	 list	 of	 desiderata	 actually	 exists	 yet!	 That	 is	 the
essence	of	TDD:	write	a	concrete	and	concise	list	of	the	desired	behaviors	(the	spec),	and	use	it	to	drive
the	creation	of	the	methods	and	templates.

http://pastebin.com/2BXbVMN8

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					it	’should	call	the	model	method	that	performs	TMDb	search’

	6					it	’should	select	the	Search	Results	template	for	rendering’

	7					it	’should	make	the	TMDb	search	results	available	to	that	template’

	8			end

	9	end

Figure	8.2:	Skeleton	of	RSpec	examples	for	MoviesController#search_tmdb.	By	convention	over	configuration,	the	specs	for
app/controllers/movies_controller.rb	are	expected	to	be	in	spec/controllers/movies_controller_spec.rb,	and	so	on.	(Use
Pastebin	to	copy-and-paste	this	code.)

		

You	can	see	what	they	are	in	spec/spec_helper.rb.

Figure	8.2	shows	how	we	would	express	these	requirements	in	RSpec.	As	in	Chapter	3,	we	encourage
you	learn	by	doing.	Before	creating	this	file,	you	need	to	set	up	RottenPotatoes	to	use	RSpec	for	testing,
which	requires	four	steps:
1.	 In	the	group	:test	block	in	the	Gemfile,	add	gem	’rspec-rails’
2.	 Since	 our	 app	will	 be	 using	 and	 relying	 on	 themoviedb	 gem	 as	 well,	 add	 gem	 ’themoviedb’

outside	of	any	group	block	(since	the	gem	will	be	used	in	the	production,	development,	and	testing
environments)

3.	 As	always	when	modifying	the	Gemfile,	run	bundle	install	--without	production
4.	 In	 the	app	 root	directory	of	RottenPotatoes,	 run	rails	generate	rspec:install	 to	 set	up	 the

files	and	directories	RSpec	needs.	This	step	also	creates	a	default	spec/spec_helper.rb	file	that
sets	up	some	helper	methods	we	will	use	in	all	the	examples.

You’re	 now	 ready	 to	 create	 the	 file	 spec/controllers/movies_controller_spec.rb	 as	 shown	 in
Figure	8.2.	Line	1	loads	some	helper	methods	that	will	be	used	by	all	RSpec	tests;	in	general,	for	Rails
apps	 this	 will	 be	 the	 first	 line	 of	 any	 specfile.	 Line	 3	 says	 that	 the	 following	 specs	 describe	 the
behavior	of	the	MoviesController	class.	Because	this	class	has	several	methods,	line	4	says	that	this
first	set	of	specs	describes	the	behavior	of	the	method	that	searches	TMDb.	As	you	can	see,	describe

http://pastebin.com/2BXbVMN8

can	be	followed	by	either	a	class	name	or	a	descriptive	documentation	string.

The	next	three	lines	are	placeholders	for	examples,	the	RSpec	term	for	a	short	piece	of	code	that	tests
one	specific	behavior	of	the	search_tmdb	method.	We	haven’t	written	any	test	code	yet,	but	 the	next
screencast	shows	that	we	can	not	only	execute	these	test	skeletons	with	the	rspec	command,	but	more
importantly,	 automate	 running	 them	with	 the	autotest	 tool.	While	 the	 command	rake	 spec	 is	 one
way	to	run	the	complete	set	of	all	tests,	the	automation	of	autotest	helps	productivity	since	we	don’t
have	 to	shift	our	attention	between	writing	code	and	running	 tests.	 It	also	makes	 running	 tests	Faster
since	 it	 is	 smart	 about	 focusing	only	on	 tests	 that	 are	 still	 failing	or	 for	which	 the	 code	has	 changed
recently,	 rather	 than	 re-running	 the	 entire	 test	 suite	 every	 time.	 To	 use	 autotest,	 inside	 the	 group
:test	 section	of	your	Gemfile	add	 the	 line	gem	autotest-rails,	and	run	bundle	 as	usual	 to	make
sure	the	gem	is	installed.	Then	in	the	root	directory	of	your	app,	just	type	autotest	to	start	it.	For	the
rest	 of	 the	 chapter,	 we’ll	 assume	 that	 autotest	 is	 running	 and	 that	 whenever	 you	 add	 tests	 or
application	code	you	will	get	immediate	feedback	from	RSpec.	In	the	next	section	we’ll	create	our	first

tests	using	TDD.	 		

Screencast	8.2.1:	Executing	the	empty	test	skeletons	and	automating	execution	with	autotest
When	we	run	the	RSpec	command,	examples	(it	clauses)	containing	no	code	are	displayed	in	yellow	as
“pending”.	You	can	also	explicitly	mark	an	example	using	pending	and	provide	a	description	of	why
it’s	pending.	Rather	than	manually	running	spec	each	time	we	add	or	change	some	code,	we	can	use	the
autotest	command,	which	automatically	reruns	the	appropriate	specs	whenever	you	change	a	specfile
or	code	file.

Debugging	and	autotest	To	use	the	interactive	debugger	introduced	in	Chapter	4	with	autotest,	add	require	’debugger’	to
spec/spec_helper.rb	and	insert	debugger	calls	wherever	you	want	the	action	to	stop.

Summary
Good	tests	should	be	Fast,	Independent,	Repeatable,	Self-checking,	and	Timely	(FIRST).
RSpec	 is	 a	 domain-specific	 language	 embedded	 in	 Ruby	 for	 writing	 tests.	 Convention	 over
configuration	determines	where	the	specfile	corresponding	to	a	given	class	file	should	reside.
Within	 a	 specfile,	 a	 single	 example,	 introduced	 by	 the	 it	 method,	 tests	 a	 single	 behavior	 of	 a
method.	describe	groups	examples	hierarchically	according	to	the	set	of	behaviors	they	test.

Self-Check	8.2.1.	A	single	RSpec	test	case	or	example	is	introduced	by	the	keyword	____.	A	group	of
related	 examples	 is	 introduced	 by	 the	 keyword	 ____,	 which	 can	 be	 nested	 to	 organize	 examples
hierarchically.
	it;	describe

Self-Check	8.2.2.	Since	RSpec	matches	tests	to	classes	using	convention	over	configuration,	we	would
put	the	tests	for	app/models/movie.rb	in	the	file	____.

http://vimeo.com/34754856

	spec/models/movie_spec.rb

8.3	Seams,	Doubles,	and	the	Code	You	Wish	You	Had

Figure	8.3	captures	the	basic	TDD	method.	You	might	think	we’ve	violated	the	TDD	methodology	by
writing	down	 three	 test	cases	 in	Figure	8.2	before	completing	 the	code	 for	any	of	 those	cases,	but	 in
practice,	there’s	nothing	wrong	with	creating	it	blocks	for	tests	you	know	you	will	want	to	write.	Now,
though,	it’s	time	to	get	down	to	business	and	start	working	on	the	tests.

1.	Before	you	write	any	new	code,	write	a	test	for	one	aspect	of	the	behavior	it	should	have.	Since	the
code	being	 tested	doesn’t	exist	yet,	writing	 the	 test	 forces	you	 to	 think	about	how	you	wish	 the	code
would	behave	and	 interact	with	 its	 collaborators	 if	 it	did	exist.	We	call	 this	“exercising	 the	code	you
wish	you	had.”

2.	Red	 step:	 Run	 the	 test,	 and	 verify	 that	 it	 fails	 because	 you	 haven’t	 yet	 implemented	 the	 code
necessary	to	make	it	pass.

3.	Green	 step:	 Write	 the	 simplest	 possible	 code	 that	 causes	 this	 test	 to	 pass	 without	 breaking	 any
existing	tests.

4.	Refactor	step:	Look	for	opportunities	to	refactor	either	your	code	or	your	tests—changing	the	code’s
structure	to	eliminate	redundancy,	repetition,	or	other	ugliness	that	may	have	arisen	as	a	result	of	adding
the	new	code.	The	tests	ensure	that	your	refactoring	doesn’t	introduce	bugs.

5.	Repeat	until	all	behaviors	necessary	to	pass	a	scenario	step	are	complete.

Figure	8.3:	The	Test-Driven	Development	(TDD)	loop	is	also	known	as	Red–Green–Refactor	because	of	its	skeleton	in	steps	2–4.	The
last	step	assumes	you	are	developing	code	in	order	to	complete	a	scenario,	such	as	the	one	you	started	in	Chapter	7.

The	 first	 example	 (test	 case)	 in	 Figure	 8.2	 states	 that	 the	 search_tmdb	method	 should	 call	 a	model
method	 to	 perform	 the	 TMDb	 search,	 passing	 the	 keywords	 typed	 by	 the	 user	 to	 that	 method.	 In
Chapter	7,	we	modified	the	index	view	of	RottenPotatoes	by	adding	an	HTML	form	whose	submission
would	be	handled	by	MoviesController#search_tmdb;	 the	 form	contained	a	 single	 text	 field	called
search_terms	for	the	user	to	fill	in.	Our	test	case	will	therefore	need	to	emulate	what	happens	when	the
user	types	something	into	the	search_terms	field	and	submits	the	form.	As	we	know,	in	a	Rails	app	the
params	hash	is	automatically	populated	with	the	data	submitted	in	a	form	so	that	the	controller	method
can	examine	 it.	Happily,	RSpec	provides	a	post	method	 that	simulates	posting	a	 form	to	a	controller
action:	 the	 first	 argument	 is	 the	 action	 name	 (controller	 method)	 that	 will	 receive	 the	 post,	 and	 the
second	argument	is	a	hash	that	will	become	the	params	seen	by	the	controller	action.	We	can	now	write
the	 first	 line	 of	 our	 first	 spec,	 as	 Figure	 8.4	 shows.	As	 the	 next	 screencast	 shows,	 though,	we	must
overcome	a	couple	of	hurdles	just	to	get	to	the	Red	phase	of	Red–Green–Refactor.

http://pastebin.com/6tJvd0hx

http://en.wikipedia.org/wiki/refactor
http://pastebin.com/6tJvd0hx

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					it	’should	call	the	model	method	that	performs	TMDb	search’	do

	6							post	:search_tmdb,	{:search_terms	=>	’hardware’}

	7					end

	8					it	’should	select	the	Search	Results	template	for	rendering’

	9					it	’should	make	the	TMDb	search	results	available	to	that	template’

10			end

11	end

Figure	8.4:	Filling	out	the	first	spec.	Whereas	a	“bare”	it	(line	8)	serves	as	a	placeholder	for	a	yet-to-be-written	example,	an	it
accompanied	by	a	do...end	block	(lines	5–7)	is	an	actual	test	case.

Screencast	8.3.1:	Developing	the	first	example	requires	adding	an	empty	controller	method	and	creating
an	empty	view
To	get	past	RSpec’s	errors,	we	 first	have	 to	create	an	empty	controller	method	and	 its	 corresponding
route,	so	that	the	action	(form	submission	by	the	user)	would	have	somewhere	to	go.	Then	we	need	to
create	an	empty	view	so	that	 the	controller	action	has	something	to	render.	That	one	line	of	 test	code
drove	us	to	ensure	that	our	new	controller	method	and	the	view	it	will	ultimately	render	have	the	correct
names	and	have	a	matching	route.

At	 this	 point	 RSpec	 reports	 Green	 for	 our	 first	 example,	 but	 that’s	 not	 really	 accurate	 because	 the
example	itself	is	incomplete:	we	haven’t	actually	checked	whether	search_tmdb	calls	a	model	method
to	 search	 TMDb,	 as	 the	 spec	 requires.	 (We	 did	 this	 deliberately	 in	 order	 to	 illustrate	 some	 of	 the
mechanics	necessary	to	get	your	first	specs	running.	Usually,	since	each	spec	tends	to	be	short,	you’d
complete	a	spec	before	re-running	your	tests.)

The	code	we	wish	we	had	will	be	a	class	method,	since	finding	movies	in	TMDb	is	a	behavior	related	to	movies	in	general	and	not	to	a
particular	instance	of	a	Movie.

How	 should	 we	 check	 that	 search_tmdb	 calls	 a	model	method,	 since	 no	model	method	 exists	 yet?
Again,	 we	 will	 write	 a	 test	 for	 the	 behavior	 of	 the	 code	 we	 wish	 we	 had,	 as	 directed	 in	 step	 1	 of
Figure	 8.3.	 Let’s	 pretend	we	 have	 a	model	method	 that	 does	 just	 what	 we	want.	 In	 this	 case,	 we’d
probably	want	to	pass	the	method	a	string	and	get	back	a	collection	of	Movie	objects	based	on	TMDb
search	results	matching	that	string.	If	that	method	existed,	our	controller	method	might	therefore	call	it
like	this:

http://pastebin.com/ACNefdqY

	1				@movies	=	Movie.find_in_tmdb(params[:search_terms])

http://pastebin.com/fyyXrYJD

http://vimeo.com/34754876
http://pastebin.com/ACNefdqY
http://pastebin.com/fyyXrYJD

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					it	’should	call	the	model	method	that	performs	TMDb	search’	do

	6							fake_results	=	[mock(’movie1’),	mock(’movie2’)]

	7							Movie.should_receive(:find_in_tmdb).with(’hardware’).

	8									and_return(fake_results)

	9							post	:search_tmdb,	{:search_terms	=>	’hardware’}

10					end

11					it	’should	select	the	Search	Results	template	for	rendering’

12					it	’should	make	the	TMDb	search	results	available	to	that	template’

13			end

14	end

Figure	8.5:	Completing	the	example	by	asserting	that	the	controller	method	will	call	the	code	we	wish	we	had	in	the	Movie	model.	Lines
5–10	in	this	listing	replace	lines	5–7	in	Figure	8.4.

Figure	8.5	shows	the	code	for	a	test	case	that	asserts	such	a	call	will	occur.	In	this	case,	the	code	we	are
testing—the	 subject	 code—is	 search_tmdb.	 However,	 part	 of	 the	 behavior	 we’re	 testing	 appears	 to
depend	on	find_in_tmdb.	Since	find_in_tmdb	 is	code	we	don’t	yet	have,	the	goal	of	lines	6–8	is	to
“fake”	the	behavior	 it	would	exhibit	 if	we	did	have	it.	Line	6	uses	RSpec’s	mock	method	to	create	an
array	of	two	“test	double”	Movie	objects.	In	particular,	whereas	a	real	Movie	object	would	respond	to
methods	like	title	and	rating,	the	test	double	would	raise	an	exception	if	you	called	any	methods	on
it.	 Given	 this	 fact,	 why	would	we	 use	 doubles	 at	 all?	 The	 reason	 is	 to	 isolate	 these	 specs	 from	 the
behavior	of	the	Movie	class,	which	might	have	bugs	of	its	own.	Mocks	are	like	puppets	whose	behavior
we	completely	 control,	 allowing	us	 to	 isolate	unit	 tests	 from	 their	 collaborator	 classes	 and	keep	 tests
Independent	(the	I	in	FIRST).

In	fact,	an	alias	for	mock	is	double.	For	clarity,	use	mock	when	you’re	going	to	ask	the	fake	object	to	do	things,	and	double	when	you	just
need	a	stand-in.

			Returning	to	Figure	8.5,	lines	6–7	express	the	expectation	that	the	Movie	class	should	receive	a
call	 to	 the	method	 find_in_tmdb	 and	 that	method	 should	 receive	 the	 single	 argument	 ’hardware’.
RSpec	will	open	the	Movie	class	and	define	a	class	method	called	find_in_tmdb	whose	only	purpose	is
to	track	whether	it	gets	called,	and	if	so,	whether	the	right	arguments	are	passed.	Critically,	if	a	method
with	the	same	name	already	existed	in	the	Movie	class,	it	would	be	temporarily	“overwritten”	by	this
method	stub.	That’s	why	in	our	case	it	doesn’t	matter	that	we	haven’t	written	the	“real”	find_in_tmdb:
it	wouldn’t	get	called	anyway!

The	use	of	should_receive	to	temporarily	replace	a	“real”	method	for	testing	purposes	is	an	example
of	 using	 a	 seam:	 “a	 place	 where	 you	 can	 alter	 behavior	 in	 your	 program	 without	 editing	 in	 that
place.”	(Feathers	2004)	In	this	case,	should_receive	creates	a	seam	by	overriding	a	method	in	place,
without	 us	 having	 to	 edit	 the	 file	 containing	 the	 original	method	 (although	 in	 this	 case,	 the	 original
method	doesn’t	even	exist	yet).	Seams	are	also	 important	when	 it	comes	 to	adding	new	code	 to	your
application,	but	in	the	rest	of	this	chapter	we	will	see	many	more	examples	of	seams	in	testing.	Seams

http://en.wikipedia.org/wiki/Test_stub

are	useful	in	testing	because	they	let	us	break	dependencies	between	a	piece	of	code	we	want	to	test	and
its	collaborators,	allowing	the	collaborators	to	behave	differently	under	test	than	they	would	in	real	life.

Line	8	(which	is	just	a	continuation	of	line	7)	specifies	that	find_in_tmdb	should	return	the	collection
of	doubles	we	set	up	in	line	6.	This	completes	the	illusion	of	“the	code	we	wish	we	had”:	we’re	calling	a
method	that	doesn’t	yet	exist,	and	supplying	the	result	we	wish	it	would	give	if	it	existed!	If	we	omit
with,	RSpec	will	still	check	that	find_in_tmdb	gets	called,	but	won’t	check	if	the	arguments	are	what
we	expected.	If	we	omit	and_return,	the	fake	method	call	will	return	nil	rather	than	a	value	chosen	by
us.	In	any	case,	after	each	example	is	run,	RSpec	performs	a	teardown	step	that	restores	the	classes	to
their	original	condition,	so	if	we	wanted	to	perform	these	same	fake-outs	in	other	examples,	we’d	need
to	specify	them	in	each	one	(though	we’ll	soon	see	a	way	to	DRY	out	such	repetition).	This	automatic
teardown	is	another	important	part	of	keeping	tests	Independent.

Technically,	in	this	case	it	would	be	OK	to	omit	and_return,	since	this	example	isn’t	checking	the	return	value,	but	we	included	it	for
illustrative	purposes.

This	new	version	of	the	test	fails	because	we	established	an	expectation	that	search_tmdb	would	call
find_in_tmdb,	but	the	search_tmdb	isn’t	even	written	yet.	Therefore	the	last	step	is	to	go	from	Red	to
Green	by	adding	just	enough	code	to	search_tmdb	to	pass	this	test.	We	say	the	test	drives	the	creation
of	the	code,	because	adding	to	the	test	results	in	a	failure	that	must	be	addressed	by	adding	new	code	in
the	model.	Since	the	only	thing	this	particular	example	is	testing	is	the	method	call	to	find_in_tmdb,	it
suffices	to	add	to	search_tmdb	the	single	line	of	code	we	had	in	mind	as	“the	code	we	wished	we	had”:

http://pastebin.com/vWt9uxGQ

	1				@movies	=	Movie.find_in_tmdb(params[:search_terms])

If	TDD	is	new	to	you,	 this	has	been	a	 lot	 to	absorb,	especially	when	testing	an	app	using	a	powerful
framework	such	as	Rails.	Don’t	worry—now	that	you	have	been	exposed	to	the	main	concepts,	the	next
round	of	specs	will	go	faster.	It	takes	a	bit	of	faith	to	jump	into	this	system,	but	we	have	found	that	the
reward	 is	well	worth	 it.	Read	 the	summary	below	and	consider	having	a	sandwich	and	reviewing	 the
concepts	in	this	section	before	moving	on.

Summary
The	TDD	cycle	of	Red–Green–Refactor	begins	with	writing	a	 test	 that	 fails	because	 the	 subject
code	it’s	testing	doesn’t	exist	yet	(Red)	and	then	adding	the	minimum	code	necessary	to	pass	just
that	one	example	(Green).
Seams	let	you	change	the	behavior	of	your	application	in	a	particular	place	without	editing	in	that
place.	Typical	 test	 setup	often	establishes	 seams	by	using	mock	 or	 its	 alias	double	 to	 create	 test
double	 objects,	 or	 by	 using	 should_receive...and_return	 to	 stub	 (replace	 and	 control	 the
return	 value	 of)	 collaborator	methods.	Mocks	 and	 stubs	 are	 seams	 that	 help	 with	 testability	 by
isolating	the	behavior	of	the	code	being	tested	from	the	behavior	of	its	collaborators.
Each	 example	 sets	 up	preconditions,	 executes	 the	 subject	 code,	 and	 asserts	 something	 about	 the
results.	 Assertions	 such	 as	 should,	 should_not,	 should_receive,	 and	 with	 make	 tests	 Self-
checking,	eliminating	the	need	for	a	human	programmer	to	inspect	test	results.

http://pastebin.com/vWt9uxGQ

After	each	test,	an	automatic	teardown	destroys	the	mocks	and	stubs	and	unsets	any	expectations,
so	that	tests	remain	Independent.

ELABORATION:	Seams	in	other	languages

In	non-object-oriented	languages	such	as	C,	seams	are	hard	to	create.	Since	all	method	calls	are	resolved	at	link	time,	usually	the
developer	creates	a	library	containing	the	“fake”	(test	double)	version	of	a	desired	method,	and	carefully	controls	library	link	order
to	ensure	the	test-double	version	is	used.	Similarly,	since	C	data	structures	are	accessed	by	reading	directly	from	memory	rather	than
calling	accessor	methods,	data	structure	seams	(mocks)	are	usually	created	by	using	preprocessor	directives	such	as	#ifdef	TESTING
to	compile	the	code	differently	for	testing	vs.	production	use.

In	 statically-typed	OO	 languages	 like	 Java,	 since	method	 calls	 are	 resolved	 at	 runtime,	 one	way	 to	 create	 seams	 is	 to	 create	 a
subclass	 of	 the	 class	 under	 test	 and	 override	 certain	methods	when	 compiling	 against	 the	 test	 harness.	Mocking	 objects	 is	 also
possible,	though	the	mock	object	must	satisfy	the	compiler’s	expectations	for	a	fully-implemented	“real”	object,	even	if	the	mock	is
doing	only	a	small	part	of	the	work	that	a	real	object	would.	The	JMock	website	shows	some	examples	of	inserting	testing	seams	in
Java.

In	dynamic	OO	languages	like	Ruby	that	let	you	modify	classes	at	runtime,	we	can	create	a	seam	almost	anywhere	and	anytime.
RSpec	exploits	this	ability	in	allowing	us	to	create	just	the	specific	mocks	and	stubs	needed	by	each	test,	which	makes	tests	easy	to
write.

Self-Check	8.3.1.	In	Figure	8.5,	why	must	the	should_receive	expectation	in	line	7	come	before	 the
post	action	in	line	9?
	The	expectation	needs	to	set	up	a	test	double	for	find_in_tmdb	that	can	be	monitored	to	make	sure	it

was	 called.	 Since	 the	post	 action	 is	 eventually	 going	 to	 result	 in	 calling	 find_in_tmdb,	 the	 double
must	be	set	up	before	the	post	occurs,	otherwise	the	real	find_in_tmdb	would	be	called.	(In	this	case,
find_in_tmdb	doesn’t	even	exist	yet,	so	the	test	would	fail	for	that	reason.)

8.4	Expectations,	Mocks,	Stubs,	and	Example	Setup	&	Teardown

Returning	 to	 our	 original	 specfile	 skeleton	 from	 the	 listing	 in	 Figure	 8.2,	 line	 6	 says	 that
search_tmdb	should	select	the	“Search	Results”	view	for	rendering.	Of	course,	that	view	doesn’t	exist
yet,	but	as	in	the	first	example	we	wrote	above,	that	needn’t	stop	us.

		

Is	this	really	necessary?	Since	the	default	view	is	determined	by	convention	over	configuration,	all	we’re	really	doing	here	is	testing
Rails’	built-in	functionality.	But	if	we	were	rendering	one	view	if	the	action	succeeded	but	a	different	view	for	displaying	an	error,
examples	like	this	would	verify	that	the	correct	view	was	selected.

Since	 we	 know	 from	 Chapter	 3	 that	 the	 default	 behavior	 of	 the	 method
MoviesController#search_tmdb	 is	 to	 attempt	 to	 render	 the	 view
app/views/movies/search_tmdb.html.haml	(which	we	created	in	Chapter	7),	our	spec	just	needs	to
verify	that	the	controller	action	will	indeed	try	to	render	that	view	template.	To	do	this	we	will	use	the
response	method	of	RSpec:	once	we	have	done	a	get	or	post	action	 in	a	controller	spec,	 the	object
returned	 by	 the	 response	method	will	 contain	 the	 app	 server’s	 response	 to	 that	 action,	 and	we	 can
assert	an	expectation	that	the	response	would	have	rendered	a	particular	view.	This	happens	in	line	15	of
Figure	8.6,	which	 illustrates	another	kind	of	RSpec	assertion:	object.should	match-condition.	 In	 this

http://jmock.org/getting-started.html

example,	match-condition	is	supplied	by	render_template(),	so	the	assertion	is	satisfied	if	the	object
(in	this	case	the	response	from	the	controller	action)	attempted	to	render	a	particular	view.	We	will	see
the	 use	 of	 should	 with	 other	match-conditions.	 The	 negative	 assertion	 should_not	 can	 be	 used	 to
specify	that	the	match-condition	should	not	be	true.

http://pastebin.com/T5rakACv

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					it	’should	call	the	model	method	that	performs	TMDb	search’	do

	6							fake_results	=	[mock(’movie1’),	mock(’movie2’)]

	7							Movie.should_receive(:find_in_tmdb).with(’hardware’).

	8									and_return(fake_results)

	9							post	:search_tmdb,	{:search_terms	=>	’hardware’}

10					end

11					it	’should	select	the	Search	Results	template	for	rendering’	do

12							fake_results	=	[mock(’Movie’),	mock(’Movie’)]

13							Movie.stub(:find_in_tmdb).and_return(fake_results)

14							post	:search_tmdb,	{:search_terms	=>	’hardware’}

15							response.should	render_template(’search_tmdb’)

16					end

17					it	’should	make	the	TMDb	search	results	available	to	that	template’

18			end

19	end

Figure	8.6:	Filling	out	the	second	example.	Lines	11–16	replace	line	11	from	Figure	8.5.

There	are	two	things	to	notice	about	Figure	8.6.	First,	since	each	of	the	two	examples	(lines	5–10	and
11–16)	are	 self-contained	and	Independent,	we	have	 to	 create	 the	 test	 doubles	 and	perform	 the	post
command	 separately	 in	 each.	 Second,	 whereas	 the	 first	 example	 uses	 should_receive,	 the	 second
example	uses	stub,	which	creates	a	test	double	for	a	method	but	doesn’t	establish	an	expectation	 that
that	method	will	necessarily	be	called.	The	double	springs	into	action	if	the	method	is	called,	but	it’s	not
an	 error	 if	 the	method	 is	 never	 called.	Make	 the	 changes	 so	 that	 your	 specfile	 looks	 like	Figure	8.6;
autotest	should	still	be	running	and	report	that	this	second	example	passes.

In	 this	 simple	 example,	 you	 could	 argue	 that	we’re	 splitting	 hairs	 by	 using	should_receive	 in	 one
example	 and	 stub	 in	 another,	 but	 the	 goal	 is	 to	 illustrate	 that	 each	 example	 should	 test	 a	 single
behavior.	This	second	example	is	only	checking	that	the	correct	view	is	selected	for	rendering.	It’s	not
checking	 that	 the	 appropriate	model	method	 gets	 called—that’s	 the	 job	 of	 the	 first	 example.	 In	 fact,
even	 if	 the	method	Movie.find_in_tmdb	 actually	was	 implemented	 already,	we’d	 still	 stub	 it	 out	 in
these	examples,	because	examples	should	isolate	the	behaviors	under	test	from	the	behaviors	of	other
classes	with	which	the	subject	code	collaborates.

			Before	we	write	another	example,	we	consider	the	Refactor	step	of	Red–Green–Refactor.	Given
that	lines	6	and	12	are	identical,	Figure	8.7	shows	one	way	to	DRY	them	out	by	factoring	out	common
setup	code	into	a	before(:each)	block.	As	the	name	implies,	this	code	is	executed	before	each	of	the

http://pastebin.com/T5rakACv
http://en.wikipedia.org/wiki/Code_refactoring

examples	 within	 the	 describe	 example	 group,	 similar	 to	 the	 Background	 section	 of	 a	 Cucumber
feature,	whose	steps	are	performed	before	each	scenario.	There	is	also	before(:all),	which	runs	setup
code	just	once	for	a	whole	group	of	tests;	but	you	risk	making	your	tests	dependent	on	each	other	by
using	it,	since	it’s	easy	for	hard-to-debug	dependencies	to	creep	in	that	are	only	exposed	when	tests	are
run	in	a	different	order	or	when	only	a	subset	of	tests	are	run.

While	 the	 concept	 of	 factoring	out	 common	 setup	 into	 a	before	 block	 is	 straightforward,	we	had	 to
make	one	syntactic	change	to	make	it	work,	because	of	the	way	RSpec	is	implemented.	Specifically,	we
had	 to	 change	 fake_results	 into	 an	 instance	 variable	 @fake_results,	 because	 local	 variables
occurring	 inside	 each	 test	 case’s	 do...end	 block	 disappear	 once	 that	 test	 case	 finishes	 running.	 In
contrast,	instance	variables	of	an	example	group	are	visible	to	all	examples	in	that	group.	Since	we	are
setting	 the	 value	 in	 the	 before	 :each	 block,	 every	 test	 case	 will	 see	 the	 same	 initial	 value	 of
@fake_results.

Instance	variable	of	what?	@fake_results	is	an	instance	variable	not	of	the	class	under	test	(MoviesController),	but	of	the
Test::Spec::ExampleGroup	object	that	represents	a	group	of	test	cases.

http://pastebin.com/eWvBdJR7

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					before	:each	do

	6							@fake_results	=	[mock(’movie1’),	mock(’movie2’)]

	7					end

	8					it	’should	call	the	model	method	that	performs	TMDb	search’	do

	9							Movie.should_receive(:find_in_tmdb).with(’hardware’).

10									and_return(@fake_results)

11							post	:search_tmdb,	{:search_terms	=>	’hardware’}

12					end

13					it	’should	select	the	Search	Results	template	for	rendering’	do

14							Movie.stub(:find_in_tmdb).and_return(@fake_results)

15							post	:search_tmdb,	{:search_terms	=>	’hardware’}

16							response.should	render_template(’search_tmdb’)

17					end

18					it	’should	make	the	TMDb	search	results	available	to	that	template’

19			end

20	end

Figure	8.7:	DRYing	out	the	controller	examples	using	a	before	block	(lines	5–7).

There’s	just	one	example	left	to	write,	to	check	that	the	TMDb	search	results	will	be	made	available	to
the	response	view.	Recall	that	in	Chapter	7,	we	created	views/movies/search_tmdb.html.haml	under
the	assumption	 that	@movies	would	be	 set	up	by	 the	controller	 action	 to	 contain	 the	 list	 of	matching
movies	from	TMDb.	That’s	why	in	MoviesController#search_tmdb	we	assigned	the	result	of	calling
find_in_tmdb	to	the	instance	variable	@movies.	(Recall	that	instance	variables	set	in	a	controller	action
are	available	to	the	view.)

http://pastebin.com/eWvBdJR7

The	RSpec	assigns()	method	keeps	 track	of	what	 instance	variables	were	assigned	 in	 the	controller
method.	 Hence	 assigns(:movies)	 returns	 whatever	 value	 (if	 any)	 was	 assigned	 to	 @movies	 in
search_tmdb,	and	our	spec	just	has	to	verify	that	the	controller	action	correctly	sets	up	this	variable.	In
our	case,	we’ve	already	arranged	to	return	our	doubles	as	the	result	of	the	faked-out	method	call,	so	the
correct	 behavior	 for	 search_tmdb	 would	 be	 to	 set	 @movies	 to	 this	 value,	 as	 line	 21	 of	 Figure	 8.8
asserts.

http://pastebin.com/LJiz2q2q

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					before	:each	do

	6							@fake_results	=	[mock(’movie1’),	mock(’movie2’)]

	7					end

	8					it	’should	call	the	model	method	that	performs	TMDb	search’	do

	9							Movie.should_receive(:find_in_tmdb).with(’hardware’).

10									and_return(@fake_results)

11							post	:search_tmdb,	{:search_terms	=>	’hardware’}

12					end

13					it	’should	select	the	Search	Results	template	for	rendering’	do

14							Movie.stub(:find_in_tmdb).and_return(@fake_results)

15							post	:search_tmdb,	{:search_terms	=>	’hardware’}

16							response.should	render_template(’search_tmdb’)

17					end

18					it	’should	make	the	TMDb	search	results	available	to	that	template’	do

19							Movie.stub(:find_in_tmdb).and_return(@fake_results)

20							post	:search_tmdb,	{:search_terms	=>	’hardware’}

21							assigns(:movies).should	==	@fake_results

22					end

23			end

24	end

Figure	8.8:	Asserting	that	@movie	is	set	up	correctly	by	search_tmdb.	Lines	18–22	in	this	listing	replace	line	18	in	Figure	8.7.

ELABORATION:	More	than	we	need?
Strictly	speaking,	for	the	purposes	of	this	example	the	stubbed	find_in_tmdb	could	have	returned	any	value	at	all,	such	as	the	string
“I	am	a	movie”,	because	the	only	behavior	tested	by	this	example	is	whether	the	correct	instance	variable	is	being	set	up	and	made
available	to	the	view.	In	particular,	this	example	doesn’t	care	what	the	value	of	that	variable	is,	or	whether	find_in_tmdb	is	returning
something	sensible.	But	since	we	already	had	doubles	set	up,	it	was	easy	enough	to	use	them	in	this	example.

http://pastebin.com/xcGUCCFb

	1	require	’spec_helper’

	2	

	3	describe	MoviesController	do

	4			describe	’searching	TMDb’	do

	5					before	:each	do

http://pastebin.com/LJiz2q2q
http://pastebin.com/xcGUCCFb

	6							@fake_results	=	[mock(’movie1’),	mock(’movie2’)]

	7					end

	8					it	’should	call	the	model	method	that	performs	TMDb	search’	do

	9							Movie.should_receive(:find_in_tmdb).with(’hardware’).

10									and_return(@fake_results)

11							post	:search_tmdb,	{:search_terms	=>	’hardware’}

12					end

13					describe	’after	valid	search’	do

14							before	:each	do

15									Movie.stub(:find_in_tmdb).and_return(@fake_results)

16									post	:search_tmdb,	{:search_terms	=>	’hardware’}

17							end

18							it	’should	select	the	Search	Results	template	for	rendering’	do

19									response.should	render_template(’search_tmdb’)

20							end

21							it	’should	make	the	TMDb	search	results	available	to	that	template’	do

22									assigns(:movies).should	==	@fake_results

23							end

24					end

25			end

26	end

Figure	8.9:	Completed	and	refactored	spec	for	search_tmdb.	The	nested	group	starting	at	line	13	allows	DRYing	out	the	duplication
between	lines	14–15	and	19–20	in	Figure	8.8.

			Our	last	task	in	Red–Green–Refactor	is	the	Refactor	step.	The	second	and	third	examples	are
identical	except	 for	 the	 last	 line	 in	each	one	 (lines	16	and	21).	To	DRY	them	out,	Figure	8.9	starts	a
separate	 nested	 example	 group	 with	 describe,	 grouping	 the	 common	 behaviors	 of	 the	 last	 two
examples	into	their	own	before	block.	We	chose	the	description	string	after	valid	search	to	name
this	 describe	 block	 because	 the	 examples	 in	 this	 subgroup	 all	 assume	 that	 a	 valid	 call	 to
find_in_tmdb	has	occurred.	(That	assumption	itself	is	tested	by	the	first	example.)

When	 example	 groups	 are	 nested,	 any	before	 blocks	 associated	with	 the	 outer	 nesting	 are	 executed
prior	to	those	associated	with	the	inner	nesting.	So,	for	example,	considering	the	test	case	in	lines	18–20
of	Figure	8.9,	 the	setup	code	 in	 lines	5–7	 is	 run	first,	 followed	by	 the	setup	code	 in	 lines	14–17,	and
finally	the	example	itself	(lines	18–20).

Our	next	 task	will	be	 to	use	TDD	 to	create	 the	model	method	find_in_tmdb	 that	we’ve	so	 far	been
stubbing	out.	Since	this	method	is	supposed	to	call	the	actual	TMDb	service,	we	will	again	need	to	use
stubbing,	this	time	to	avoid	having	our	examples	depend	on	the	behavior	of	a	remote	Internet	service.

Summary
An	example	of	 the	Refactor	 step	of	Red–Green–Refactor	 is	 to	move	 common	 setup	 code	 into	 a
before	block,	thus	DRYing	out	your	specs.
Like	 should_receive,	 stubbing	with	 stub	 creates	 a	 “test	 double”	method	 for	 use	 in	 tests,	 but
unlike	should_receive,	stub	doesn’t	require	that	the	method	actually	be	called.
assigns()	 allows	a	controller	 test	 to	 inspect	 the	values	of	 instance	variables	 set	by	a	controller
action.

Self-Check	8.4.1.	Specify	whether	each	of	the	following	RSpec	constructs	is	used	to	(a)	create	a	seam,
(b)	determine	 the	behavior	of	a	seam,	(c)	neither:	 (1)	assigns();	(2)	should_receive;	 (3)	stub;	 (4)
and_return.
	(1)	c,	(2)	a,	(3)	a,	(4)	b

Self-Check	8.4.2.	Why	is	it	usually	preferable	to	use	before(:each)	rather	than	before(:all)?
	 Code	 in	 a	 before(:each)	 block	 is	 run	 before	 each	 spec	 in	 that	 block,	 setting	 up	 identical

preconditions	for	all	those	specs	and	thereby	keeping	them	Independent.

8.5	Fixtures	and	Factories

Mocks	 and	 stubs	 are	 appropriate	when	 you	 need	 a	 stand-in	with	 a	 small	 amount	 of	 functionality	 to
express	a	 test	 case.	But	 suppose	you	were	 testing	a	new	method	Movie#name_with_rating	 that	 you
know	will	examine	the	title	and	rating	attributes	of	a	Movie	object.	You	could	create	a	mock	 that
knows	all	that	information,	and	pass	that	mock:

http://pastebin.com/mTMdUt2i

	1				fake_movie	=	mock(’Movie’)

	2				fake_movie.stub(:title).and_return(’Casablanca’)

	3				fake_movie.stub(:rating).and_return(’PG’)

	4				fake_movie.name_with_rating.should	==	’Casablanca	(PG)’

But	 there	 are	 two	 reasons	 not	 to	 use	 a	 mock	 here.	 First,	 this	 mock	 object	 needs	 almost	 as	 much
functionality	as	a	real	Movie	object,	so	you’re	probably	better	off	using	a	real	object.	Second,	since	the
instance	method	being	tested	is	part	of	the	Movie	class	itself,	it	makes	sense	to	use	a	real	object	since
this	isn’t	a	case	of	isolating	the	test	code	from	collaborator	classes.

You	have	two	choices	for	where	to	get	a	real	Movie	object	to	use	in	such	tests.	One	choice	is	to	set	up
one	or	more	fixtures—a	fixed	 state	used	as	a	baseline	 for	one	or	more	 tests.	The	 term	 fixture	 comes
from	the	manufacturing	world:	a	test	fixture	is	a	device	that	holds	or	supports	the	item	under	test.	Since
all	 state	 in	 Rails	 SaaS	 apps	 is	 kept	 in	 the	 database,	 a	 fixture	 file	 defines	 a	 set	 of	 objects	 that	 is
automatically	loaded	into	the	test	database	before	tests	are	run,	so	you	can	use	those	objects	in	your	tests
without	first	setting	them	up.	Like	setup	and	teardown	of	mocks	and	stubs,	the	test	database	is	erased
and	reloaded	with	the	fixtures	before	each	spec,	keeping	tests	Independent.	Rails	looks	for	fixtures	in	a
file	containing	YAML	(Yet	Another	Markup	Language)	objects.	As	Figure	8.10	shows,	YAML	is	a	very
simple-minded	way	of	 representing	hierarchies	 of	 objects	with	 attributes,	 similar	 to	XML,	which	we
saw	 at	 the	 beginning	 of	 the	 chapter.	 The	 fixtures	 for	 the	 Movie	 model	 are	 loaded	 from
spec/fixtures/movies.yml,	and	are	available	to	your	specs	via	their	symbolic	names,	as	Figure	8.10
shows.

Strictly	speaking,	it’s	not	erased,	but	each	spec	is	run	inside	a	database	transaction	that	is	rolled	back	when	the	spec	finishes.

		

http://pastebin.com/mTMdUt2i
http://en.wikipedia.org/wiki/Test_fixture#Software
http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/database_transaction

http://pastebin.com/LViW2uA8

	1	#	spec/fixtures/movies.yml

	2	milk_movie:

	3			id:	1

	4			title:	Milk

	5			rating:	R

	6			release_date:	2008-11-26

	7	

	8	documentary_movie:

	9			id:	2

10			title:	Food,	Inc.

11			release_date:	2008-09-07

http://pastebin.com/n6hkM1Cw

	1	#	spec/models/movie_spec.rb:

	2	

	3	require	’spec_helper.rb’

	4	

	5	describe	Movie	do

	6			fixtures	:movies

	7			it	’should	include	rating	and	year	in	full	name’	do

	8					movie	=	movies(:milk_movie)

	9					movie.name_with_rating.should	==	’Milk	(R)’

10			end

11	end

Figure	8.10:	Fixtures	declared	in	YAML	files	(top)	are	automatically	loaded	into	the	test	database	before	each	spec	is	executed	(bottom).

But	unless	used	carefully,	fixtures	can	interfere	with	tests	being	Independent,	as	every	test	now	depends
implicitly	on	the	fixture	state,	so	changing	the	fixtures	might	change	the	behavior	of	tests.	In	addition,
although	each	individual	test	probably	relies	on	only	one	or	two	fixtures,	the	union	of	fixtures	required
by	 all	 tests	 can	 become	 unwieldy.	 For	 this	 reason,	 many	 programmers	 prefer	 to	 use	 a	 factory—a
framework	designed	to	allow	quick	creation	of	full-featured	objects	(rather	than	mocks)	at	testing	time.
For	 example,	 the	 popular	 FactoryGirl	 tool	 for	 Rails	 lets	 you	 define	 a	 factory	 for	Movie	 objects	 and
create	 just	 the	objects	you	need	quickly	for	each	test,	selectively	overriding	only	certain	attributes,	as
Figure	8.11	 shows.	 (FactoryGirl	 is	 part	 of	 the	 bookware.)	 In	 our	 simple	 app,	 using	 a	 factory	 doesn’t
confer	 much	 benefit	 over	 just	 calling	 Movie.new	 to	 create	 a	 new	 Movie	 directly.	 But	 in	 more
complicated	apps	in	which	object	creation	and	initialization	involve	many	steps—for	example,	objects
that	have	many	attributes	that	must	be	initialized	at	creation	time—a	factory	helps	DRY	out	your	test

preconditions	(before	blocks)	and	streamline	your	test	code.	 			 		

http://pastebin.com/60Th29d1

http://pastebin.com/LViW2uA8
http://pastebin.com/n6hkM1Cw
http://en.wikipedia.org/wiki/Factory_(software_concept)
https://github.com/thoughtbot/factory_girl_rails
http://pastebin.com/60Th29d1

	1	#	spec/factories/movie.rb

	2	

	3	FactoryGirl.define	do

	4			factory	:movie	do

	5					title	’A	Fake	Title’	#	default	values

	6					rating	’PG’

	7					release_date	{	10.years.ago	}

	8			end

	9	end

http://pastebin.com/DVpJAWgr

	1	#	in	spec/models/movie_spec.rb

	2	describe	Movie	do

	3			it	’should	include	rating	and	year	in	full	name’	do

	4					#	’build’	creates	but	doesn’t	save	object;	’create’	also	saves	it

	5					movie	=	FactoryGirl.build(:movie,	:title	=>	’Milk’,	:rating	=>	’R’)

	6					movie.name_with_rating.should	==	’Milk	(R)’

	7			end

	8	end

	9	#	More	concise:	uses	Alternative	RSpec2	’subject’	syntax’,	and	mixes	in

10	#	FactoryGirl	methods	in	spec_helper.rb	(see	FactoryGirl	README)

11	describe	Movie	do

12			subject	{	build	:movie,	:title	=>	’Milk’,	:rating	=>	’R’	}

13			its(:name_with_rating)	{	should	==	’Milk	(R)’	}

14	end

Figure	8.11:	Using	factories	rather	than	fixtures	preserves	Independence	among	tests.	Frameworks	such	as	FactoryGirl
(gem	’factory_girl_rails’	in	Gemfile)	make	this	easy	by	streamlining	the	creation	of	real	(not	mock)	objects.

Before	adding	more	functionality,	let’s	dig	a	bit	more	deeply	into	how	RSpec	works.	RSpec’s	should	is
a	great	example	of	the	use	of	Ruby	language	features	to	improve	readability	and	blur	the	line	between
tests	and	documentation.	The	following	screencast	explains	in	a	bit	more	detail	how	an	expression	such
as	value.should	==	5	is	actually	handled.

Screencast	8.5.1:	How	Ruby's	dynamic	language	features	make	specs	more	readable
RSpec	mixes	 a	module	 containing	 the	 should	 method	 into	 the	 Object	 class.	 should	 expects	 to	 be
passed	a	matcher	that	can	be	evaluated	to	the	condition	being	asserted.	RSpec	methods	such	as	be	can
be	 used	 to	 construct	 such	 a	matcher;	 because	 of	Ruby’s	 flexible	 syntax	 and	optional	 parentheses,	 an
assertion	such	as	value.should	be	<	5	can	be	understood	by	fully	parenthesizing	and	de-sugaring	it
to	 value.should(be.<(5)).	 In	 addition,	 RSpec	 uses	 Ruby’s	 method_missing	 feature	 (described	 in
Chapter	3)	to	detect	matchers	beginning	with	be_	or	be_a_,	allowing	you	 to	create	assertions	such	as
cheater.should	 be_disqualified.	 (Note:	 The	 spec	 shown	 at	 the	 beginning	 of	 this	 Beta	 Edition
screencast	 doesn’t	 correspond	 to	 the	 example	 being	 developed	 in	 this	 section.	 However,	 this	 doesn’t
affect	the	main	point	of	the	screencast,	which	is	to	illustrate	in	detail	how	should	works	in	RSpec.)

(Further	Note:	you	may	need	 the	command	require	’rspec/expectations’	 to	get	 the	examples	 in
this	screencast	to	work.)

http://pastebin.com/DVpJAWgr
http://vimeo.com/34754890

Summary
When	a	test	needs	to	operate	on	a	real	object	rather	than	a	mock,	the	real	object	can	be	created	on
the	 fly	 by	 a	 factory	 or	 preloaded	 as	 a	 fixture.	 But	 beware	 that	 fixtures	 can	 create	 subtle
interdependencies	between	tests,	breaking	Independence.
Tests	are	a	form	of	internal	documentation.	RSpec	exploits	Ruby	language	features	to	let	you	write
exceptionally	readable	test	code.	Like	application	code,	test	code	is	there	for	humans,	not	for	the
computer,	so	taking	the	time	to	make	your	tests	readable	not	only	deepens	your	understanding	of
them	but	 also	documents	your	 thoughts	more	effectively	 for	 those	who	will	work	with	 the	code
after	you’ve	moved	on.

ELABORATION:	New	expectation	syntax

As	of	RSpec	version	2.11,	a	new	and	somewhat	different	 expectation	 syntax	 is	 also	 supported.	For	example,	 rather	 than	writing
foo.should==5,	we	can	now	write	expect(foo).to	eq(5).	This	article	describes	both	the	rationale	for	the	change	and	the	reason	we
cannot	write	expect(foo).to==5;	both	arguments	are	subtle.	While	the	“classic”	should	syntax	is	still	supported,	the	new	expect-
style	syntax	more	closely	resembles	how	expectations	for	JavaScript	tests	are	written	in	Jasmine	(Section	6.7).	Figure	8.19	shows	a
partial	list	of	correspondences	between	the	“classic”	and	new	syntaxes,	based	on	the	complete	RSpec	documentation.

Self-Check	 8.5.1.	Suppose	 a	 test	 suite	 contains	 a	 test	 that	 adds	 a	 model	 object	 to	 a	 table	 and	 then
expects	to	find	a	certain	number	of	model	objects	in	the	table	as	a	result.	Explain	how	the	use	of	fixtures
may	 affect	 the	 Independence	 of	 the	 tests	 in	 this	 suite,	 and	how	 the	 use	 of	Factories	 can	 remedy	 this
problem.
	If	the	fixtures	file	is	ever	changed	so	that	the	number	of	items	initially	populating	that	table	changes,

this	test	may	suddenly	start	failing	because	its	assumptions	about	the	initial	state	of	the	table	no	longer
hold.	 In	 contrast,	 a	 factory	 can	 be	 used	 to	 quickly	 create	 only	 those	 objects	 needed	 for	 each	 test	 or
example	group	on	demand,	so	no	test	needs	to	depend	on	any	global	“initial	state”	of	the	database.

8.6	Implicit	Requirements	and	Stubbing	the	Internet

We’ve	now	created	two	of	the	three	parts	of	the	new	“Search	TMDb”	feature:	we	created	the	view	in
Chapter	7	and	we	used	TDD	to	drive	the	creation	of	the	controller	action	in	the	previous	sections.	All
that	remains	to	finish	the	user	story	we	started	in	Chapter	7	is	the	model	method	find_in_tmdb,	which
actually	 uses	 Service-Oriented	Architecture	 technology	 to	 communicate	 with	 TMDb.	 Using	 TDD	 to
drive	its	implementation	will	go	quickly	now	that	we	know	the	basics.

	 	 	 By	 convention	 over	 configuration,	 specs	 for	 the	 Movie	 model	 go	 in
spec/models/movie_spec.rb.	 Figure	 8.12	 shows	 the	 happy	 path	 for	 calling	 find_in_tmdb,	 which
describes	 what	 happens	 when	 everything	 works	 correctly.	 (Complete	 specs	 must	 also	 cover	 the	 sad
paths,	as	we’ll	soon	see.)	Inside	the	overall	describe	Movie,	we’ve	added	a	nested	describe	block	for
the	 keyword-search	 function.	 Our	 first	 spec	 says	 that	 when	 find_in_tmdb	 is	 called	 with	 a	 string
parameter,	 it	 should	pass	 that	string	parameter	 to	 the	TMDb	gem’s	Tmdb::Movie.find	class	method.
This	spec	should	immediately	fail	because	we	haven’t	defined	find_in_tmdb	yet,	so	we	are	at	the	Red
stage	already.	Of	course,	at	this	stage,	find_in_tmdb	is	trivial,	so	the	bottom	of	Figure	8.12	shows	its
initial	implementation	that	gets	us	from	Red	to	Green.

http://myronmars.to/n/dev-blog/2012/06/rspecs-new-expectation-syntax
http://rubydoc.info/gems/rspec-expectations/frames

Where’s	the	gem?	Don’t	we	need	to	require	’themoviedb’	somewhere	in	the	model	definition	or	the	specs?	For	a	non-Rails	app,	yes,
but	Rails	automatically	requires	any	gems	you	specify	in	the	Gemfile.

http://pastebin.com/TVmi7Zxu

	1	require	’spec_helper’

	2	

	3	describe	Movie	do

	4			describe	’searching	Tmdb	by	keyword’	do

	5					it	’should	call	Tmdb	with	title	keywords’	do

	6							Tmdb::Movie.should_receive(:find).with(’Inception’)

	7							Movie.find_in_tmdb(’Inception’)

	8					end

	9			end

10	end

http://pastebin.com/XvaAGUUQ

	1	class	Movie	<	ActiveRecord::Base

	2	

	3			def	self.find_in_tmdb(string)

	4					Tmdb::Movie.find(string)

	5			end

	6	

	7			#	rest	of	file	elided	for	brevity

	8	end

Figure	8.12:	(Top)	the	happy	path	spec	for	using	the	TMDb	gem;	(bottom)	Initial	happy	path	implementation	driven	by	happy	path	spec.

Why	 doesn’t	 the	 controller	 method	 search_tmdb	 just	 call	 Tmdb::Movie.find	 directly,	 rather	 than
passing	an	argument	 to	 the	 seemingly	“intermediate”	method	find_in_tmdb?	There	are	 two	 reasons.
First,	 if	 the	TMDb	gem’s	API	changes,	perhaps	 to	accommodate	a	change	 to	 the	TMDb	service	API
itself,	we	can	 insulate	 the	controller	from	those	changes	because	all	 the	knowledge	of	how	to	use	 the
gem	to	communicate	with	the	service	is	encapsulated	inside	the	Movie	model	class.	This	indirection	is
an	example	of	separating	things	that	change	from	those	that	stay	the	same,	a	key	underlying	idea	in	the
use	 of	 design	 patterns,	 which	 was	 introduced	 briefly	 in	 Section	 2.1	 and	 is	 elaborated	 at	 length	 in
Chapter	11.	The	second	and	more	important	reason	is	that	this	spec	is	subtly	incomplete:	find_in_tmdb
has	additional	jobs	to	do.	Our	test	cases	have	been	based	on	the	explicit	requirement	described	in	the
user	 story	 of	Chapter	 7:	when	 the	 user	 types	 in	 the	 name	 of	 a	movie	 and	 clicks	Search	 TMDb,	 she
should	see	a	page	showing	matching	results.	But	Screencast	8.1.2	showed	that	if	a	valid	API	key	does
not	accompany	a	request,	an	exception	is	raised	that	isn’t	very	communicative	to	the	programmer	about
the	 real	 source	 of	 the	 error.	 Our	 strategy	 will	 be	 to	 catch	 this	 exception	 and	 raise	 our	 own
InvalidKeyError	when	the	invalid-key	problem	occurs,	sometimes	called	“wrapping”	an	exception.	In
this	way,	if	the	gem’s	error	behavior	changes	in	the	future,	we	can	make	the	changes	here	in	the	model,
and	the	caller	(in	this	case	search_tmdb)	need	only	worry	about	handling	InvalidKeyError.

http://pastebin.com/TVmi7Zxu
http://pastebin.com/XvaAGUUQ

In	previous	editions	of	this	book,	the	gem	API,	service	API,	and	error	behavior	without	a	valid	API	key	were	all	different,	yet	the	only
changes	needed	to	this	example	were	encapsulated	in	the	model!

This	leads	to	a	new	implicit	requirement	that	we	discovered	while	experimenting	with	the	gem:
	

It	should	raise	an	“invalid	key”	exception	if	an	invalid	key	is	provided.

The	 revised	 spec	 in	 Figure	 8.13	 expresses	 this	 implicit	 requirement	 as	 a	 new	 spec.	 Note	 that	 we
renamed	our	first	spec	to	indicate	that	it	applies	to	the	case	when	the	API	key	is	valid,	and	added	a	new
spec	to	cover	the	case	when	the	API	key	is	invalid.

http://pastebin.com/cPXrpyMT

	1	require	’spec_helper’

	2	

	3	describe	Movie	do

	4			describe	’searching	Tmdb	by	keyword’	do

	5					it	’should	call	Tmdb	with	title	keywords	given	valid	API	key’	do

	6							Tmdb::Movie.should_receive(:find).with(’Inception’)

	7							Movie.find_in_tmdb(’Inception’)

	8					end

	9					it	’should	raise	an	InvalidKeyError	with	invalid	API	key’	do

10							lambda	{	Movie.find_in_tmdb(’Inception’)	}.

11									should	raise_error(Movie::InvalidKeyError)

12					end

13			end

14	end

Figure	8.13:	The	code	we	wish	we	had	would	raise	a	very	specific	exception	to	signal	a	missing	API	key	(line	11),	but	this	spec	fails
because	find_in_tmdb	has	no	logic	to	check	for	an	error	in	the	service	call	and	raise	this	exception.

But	now	we	have	two	dilemmas.	The	first	dilemma	is	that	this	spec	would	actually	call	the	real	TMDb
service	 every	 time	 it	 was	 executed,	making	 the	 spec	 neither	Fast	 (each	 call	 takes	 a	 few	 seconds	 to
complete)	nor	Repeatable	 (the	 test	will	behave	differently	 if	TMDb	 is	down	or	your	computer	 is	not
connected	 to	 the	 Internet).	 Even	 if	 you	 only	 ran	 tests	while	 connected	 to	 the	 Internet,	 it	 is	 very	 bad
etiquette	to	have	your	tests	constantly	contacting	a	production	service.

We	 can	 fix	 this	 by	 introducing	 a	 seam	 that	 isolates	 the	 caller	 from	 the	 callee.	 We	 know	 from
Screencast	8.1.2	that	when	an	invalid	key	is	used,	Tmdb::Movie.find	raises	a	NoMethodError,	and	we
can	 then	 inspect	 Tmdb::Api.response	 to	 verify	 that	 the	HTTP	 response	 code	 is	 401,	which	means
“Unauthorized.”	We	can	mimic	that	behavior	with	a	stub	that	“fakes”	the	behavior	that	happens	when
the	gem	makes	a	service	call	with	a	bad	API	key.	Figure	8.14	shows	this	spec.	Notice	 that	we	had	to
“wrap”	the	call	to	find_in_tmdb	in	line	12	in	a	lambda.	We	expect	the	call	to	raise	an	exception,	but	if
a	spec	actually	raises	an	exception,	it	stops	the	testing	run!	So	in	order	to	make	the	spec	Self-checking,
we	 invoke	 should	 on	 the	 callable	 lambda	 object,	 which	 will	 cause	 the	 lambda	 to	 be	 executed	 in	 a

http://pastebin.com/cPXrpyMT

“controlled	environment”	where	RSpec	can	catch	any	exceptions	and	match	them	to	our	expectation.

This	spec	fails	for	the	right	reason,	that	is,	because	we	haven’t	added	code	to	find_in_tmdb	to	check
for	an	exception	in	the	gem.	Figure	8.15	shows	the	new	code	added	to	find_in_tmdb	to	make	the	spec
pass.	Notice	 that	 if	a	NoMethodError	occurs	but	 the	API	 response	code	cannot	be	verified	 to	be	401
(lines	 9–13	of	Figure	8.15),	we	 just	 re-raise	 the	 original	 exception	 since	 in	 this	 case	we	 don’t	 know
what’s	wrong	 (and	 there’s	 nothing	 in	themoviedb	 gem	 documentation	 to	 tell	 us).	 Similarly,	 if	 some
exception	other	than	NoMethodError	occurs,	we	won’t	catch	it,	and	the	caller	will	have	to	deal	with	it.

http://pastebin.com/cjcEZd4Y

	1	require	’spec_helper’

	2	

	3	describe	Movie	do

	4			describe	’searching	Tmdb	by	keyword’	do

	5					it	’should	call	Tmdb	with	title	keywords	given	valid	API	key’	do

	6							Tmdb::Movie.should_receive(:find).with(’Inception’)

	7							Movie.find_in_tmdb(’Inception’)

	8					end

	9					it	’should	raise	an	InvalidKeyError	with	no	API	key’	do

10							Tmdb::Movie.stub(:find).and_raise(NoMethodError)

11							Tmdb::Api.stub(:response).and_return({’code’	=>	401})

12							lambda	{	Movie.find_in_tmdb(’Inception’)	}.

13									should	raise_error(Movie::InvalidKeyError)

14					end

15			end

16	end

Figure	8.14:	The	stubs	in	lines	10–11	mimic	the	behavior	we	observed	in	Screencast	8.1.2	when	an	invalid	API	key	is	supplied.

http://pastebin.com/1GRqdr91

	1	class	Movie	<	ActiveRecord::Base

	2	

	3			class	Movie::InvalidKeyError	<	StandardError	;	end

	4	

	5			def	self.find_in_tmdb(string)

	6					begin

	7							Tmdb::Movie.find(string)

	8					rescue	NoMethodError	=>	tmdb_gem_exception

	9							if	Tmdb::Api.response[’code’]	==	401

10									raise	Movie::InvalidKeyError,	’Invalid	API	key’

11							else

12									raise	tmdb_gem_exception

13							end

14					end

15			end

16	

17			#	rest	of	file	elided	for	brevity

18	end

http://pastebin.com/cjcEZd4Y
http://pastebin.com/1GRqdr91

Figure	8.15:	Adding	code	to	find_in_tmdb	to	catch	the	exception,	including	a	definition	of	our	own	new	exception	type	(line	3).	If	the
API	response	code	is	401,	we	know	the	problem	was	an	invalid	key,	but	if	it’s	something	else,	we	don’t	know	what	the	problem	is,	so	to
be	safe	we	just	re-raise	the	original	exception.

But	now	we	can	 see	 the	 second	dilemma	 in	Figure	8.14:	we	have	 two	passing	 specs	 that	 clearly	 test
behavior	under	different	conditions—valid	API	key	vs.	invalid	API	key—yet	there	is	nothing	in	the	test
code	that	tells	us	that!	This	error	is	a	common	antipattern	when	writing	tests	that	involve	using	another
API,	 whether	 for	 a	 remote	 service	 or	 for	 another	 class.	 Since	 our	 tests	 never	 call	 the	 “real”	 remote
TMDb	service,	what	we	really	want	is	to	group	our	tests	into	two	different	sets,	based	on	whether	we
are	simulating	successful	calls	with	a	valid	API	key	or	failed	calls	due	to	an	invalid	API	key.

Figure	 8.16	 shows	 how	 to	 do	 this	 in	 RSpec.	 context	 is	 just	 a	 synonym	 for	 describe,	 and	 besides
letting	us	group	the	specs	according	to	their	purpose,	we	can	also	use	before	blocks	to	setup	the	stubs
that	will	simulate	calls	with	a	bad	API	key.	Any	future	specs	for	testing	other	cases	involving	a	bad	API
key	can	now	just	go	into	this	context	block.

http://pastebin.com/CT0XWNrH

	1	require	’spec_helper’

	2	

	3	describe	Movie	do

	4			describe	’searching	Tmdb	by	keyword’	do

	5					context	’with	valid	API	key’	do

	6							it	’should	call	Tmdb	with	title	keywords’	do

	7									Tmdb::Movie.should_receive(:find).with(’Inception’)

	8									Movie.find_in_tmdb(’Inception’)

	9							end

10					end

11					context	’with	invalid	API	key’	do

12							before	:each	do

13									Tmdb::Movie.stub(:find).and_raise(NoMethodError)

14									Tmdb::Api.stub(:response).and_return({’code’	=>	401})

15							end

16							it	’should	raise	an	InvalidKeyError	with	no	API	key’	do

17									lambda	{	Movie.find_in_tmdb(’Inception’)	}.

18											should	raise_error(Movie::InvalidKeyError)

19							end

20					end

21			end

22	end

Figure	8.16:	The	specs	are	now	clearly	grouped	according	to	the	different	circumstances	(valid	API	key	or	not)	under	which
find_in_tmdb	is	tested.	An	added	benefit	of	this	grouping	is	that	we	can	DRY	out	the	setup	of	the	stubs	that	simulate	the	invalid-key
scenario	by	putting	them	into	a	before	block	that	applies	to	all	specs	in	that	group.

Figure	8.16	raises	a	more	general	question:	where	should	we	stub	external	methods	when	testing	using
an	external	service?	We	chose	to	stub	find_in_tmdb	and	mimic	the	results	of	the	gem’s	calls	to	TMDb,
but	 a	more	 robust	 integration	 testing	 approach	would	 instead	 stub	 “closer	 to	 the	 remote	 service.”	 In

http://pastebin.com/CT0XWNrH

particular,	we	could	create	fixtures—files	containing	the	content	returned	by	actual	calls	to	the	service,
such	as	the	JSON	objects	in	Screencast	8.1.1—and	arrange	to	intercept	calls	to	the	remote	service	and
return	the	contents	of	 those	fixture	files	 instead.	The	FakeWeb	gem	does	exactly	 this:	 it	stubs	out	 the
entire	 Web	 except	 for	 particular	 URIs	 that	 return	 a	 canned	 response	 when	 accessed	 from	 a	 Ruby
program.	 (You	 can	 think	 of	 FakeWeb	 as	 stub...with...and_return	 for	 the	 whole	Web.)	 There’s
even	 a	 companion	 gem	 VCR	 that	 automates	 getting	 a	 response	 from	 the	 real	 service,	 saving	 the
response	data	in	a	fixture	file,	and	then	“replaying”	the	fixture	when	your	tests	cause	the	remote	service
to	be	“called”	by	intercepting	low-level	calls	in	the	Ruby	HTTP	library.

VCR	(for	Videocassette	Recorder)	was	an	analog-tape	video-recording	device	popular	in	the	1980s	but	made	obsolete	by	DVDs	in	the
early	2000s.	The	vcr	gem	even	uses	the	term	“cassette”	to	refer	to	the	stored	server	responses	that	are	replayed	during	tests.

From	 an	 integration-testing	 standpoint,	 FakeWeb	 is	 the	most	 realistic	way	 to	 test	 interactions	with	 a
remote	service,	because	the	stubbed	behavior	is	“farthest	away”—we	are	stubbing	as	late	as	possible	in
the	 flow	 of	 the	 request.	 Therefore,	 when	 creating	 Cucumber	 scenarios	 to	 test	 external	 service
integration,	 FakeWeb	 is	 usually	 the	 appropriate	 choice.	 From	 a	 unit	 testing	 point	 of	 view	 (as	 we’ve
adopted	 in	 this	 chapter)	 it’s	 less	 compelling,	 since	 we	 are	 concerned	 with	 the	 correct	 behavior	 of
specific	class	methods,	and	we	don’t	mind	stubbing	“close	by”	in	order	to	observe	those	behaviors	in	a
controlled	environment.

Summary
Sometimes	 explicit	 requirements	 lead	 to	 additional	 implicit	 requirements—additional	 constraints
that	 are	 not	 “visible”	 like	 the	 explicit	 requirements	 but	 must	 still	 be	 satisfied	 for	 the	 explicit
requirement	to	be	met.	Implicit	requirements	are	just	as	important	as	explicit	ones	and	should	be
tested	with	the	same	rigor.
If	we	need	to	check	that	the	subject	code	raises	an	exception,	we	can	do	so	by	making	a	lambda-
expression	 the	 receiver	 of	 an	 expectation	 like	 should	 or	 should_not	 and	 using	 the	 matcher
raise_error.
To	create	Fast	and	Repeatable	specs	for	code	that	communicates	with	an	external	service,	we	use
stubs	to	mimic	the	service’s	behavior.	context	blocks	can	group	specs	that	test	different	behaviors
of	 the	 remote	 service,	 using	 before	 blocks	 to	 set	 up	 necessary	 stubs	 or	 other	 preconditions	 to
simulate	each	behavior.
The	question	of	“where	 to	stub”	an	external	service	depends	on	what	 the	purpose	of	 the	 tests	 is.
Stubbing	“far	away”	using	FakeWeb	is	more	realistic	and	appropriate	for	functional	or	integration
tests;	stubbing	“close	by”	in	a	gem	or	library	that	communicates	with	the	remote	service	is	often
adequate	for	low-level	unit	tests.

		

ELABORATION:	Declared	vs.	undeclared	exceptions

In	statically-typed	languages	such	as	Java,	the	compiler	enforces	that	a	method	must	declare	any	exceptions	it	might	throw.	If	the
callee	 wants	 to	 add	 a	 new	 type	 of	 exception,	 the	 callee’s	 method	 signature	 changes,	 requiring	 the	 callee	 and	 all	 callers	 to	 be
recompiled.	 This	 approach	 doesn’t	 extend	 well	 to	 SaaS	 apps,	 which	 may	 communicate	 with	 other	 services	 like	 TMDb	 whose

http://fakeweb.rubyforge.org
http://github.com/vcr
http://en.wikipedia.org/wiki/Videocassette_Recorder

evolution	and	behavior	are	not	under	the	caller’s	control.	As	we’ve	seen,	we	must	rely	on	the	remote	service’s	API	documentation	to
tell	us	what	could	go	wrong,	as	well	as	capture	and	handle	other	undocumented	failure	modes.	Thus,	while	Ruby	doesn’t	require
declared	exceptions	 as	 Java	does,	Ruby	apps	 still	 need	 to	understand	and	handle	 exceptional	behaviors	 arising	 from	 interactions
with	another	API,	especially	when	that	API	calls	a	remote	service.

Self-Check	8.6.1.	Given	 that	 failing	 to	 initialize	a	valid	API	key	causes	themoviedb	gem	to	raise	an
exception,	why	doesn’t	line	7	of	Figure	8.13	raise	an	exception?
	Line	6	replaces	the	Tmdb::Movie.find	call	with	a	stub,	preventing	the	“real”	method	from	executing

and	raising	an	exception.

Self-Check	 8.6.2.	 Considering	 line	 10	 of	 Figure	 8.13,	 suppose	 we	 didn’t	 wrap	 the	 call	 to
find_in_tmdb	in	a	lambda-expression.	What	would	happen	and	why?
	If	find_in_tmdb	correctly	raises	the	exception,	the	spec	will	fail	because	the	exception	will	stop	the

run.	 If	find_in_tmdb	 incorrectly	 fails	 to	 raise	 an	 exception,	 the	 spec	will	 fail	 because	 the	 assertion
should	raise_error	 expects	one.	Therefore	 the	 test	would	 always	 fail	whether	find_in_tmdb	was
correct	or	not.

Self-Check	 8.6.3.	Name	 two	 likely	 violations	 of	 FIRST	 that	 arise	 when	 unit	 tests	 actually	 call	 an
external	service	as	part	of	testing.
	The	test	may	no	longer	be	Fast,	since	it	takes	much	longer	to	call	an	external	service	than	to	compute

locally.	The	test	may	no	longer	be	Repeatable,	since	circumstances	beyond	our	control	could	affect	its
outcome,	such	as	the	temporary	unavailability	of	the	external	service.

Structure	of	test	cases:

⋅	before(:each)	do.	.	.	end	
Set	up	preconditions	executed	before	each	spec	(use	before(:all)	to	do	just	once,	at	your	own	risk)	⋅
it	’should	do	something’	do.	.	.	end	
A	 single	 example	 (test	 case)	 for	one	behavior	 ⋅	describe	 ’collection	 of	 behaviors’	 do.	 .	 .
end	
Groups	a	set	of	related	examples

Mocks	and	stubs:
	

m=mock(’movie’)	
Creates	a	mock	object	with	no	predefined	methods
m.stub(:rating).and_return(’R’)	
Replaces	 the	existing	rating	method	on	m,	or	defines	a	new	rating	method	 if	none	exists,	 that
returns	the	canned	response	’R’
m=mock(’movie’,	:rating=>’R’)	
Shortcut	that	combines	the	2	previous	examples
Movie.stub(:find).and_return(@fake_movie)	
Forces	@fake_movie	to	be	returned	if	Movie.find	is	called,	but	doesn’t	require	that	it	be	called

Useful	 methods	 and	 objects	 for	 controller	 specs:	 Your	 specs	 must	 be	 in	 the	 spec/controllers
subdirectory	for	these	methods	to	be	available.
	

post	’/movies/create’,	

{:title=>’Milk’,	:rating=>’R’}

Causes	a	POST	request	to	/movies/create	and	passes	the	given	hash	as	the	value	of	params.	get,
put,	delete	also	available.
response.should	render_template(’show’)	
Checks	that	the	controller	action	renders	the	show	template	for	this	controller’s	model
response.should	redirect_to(:controller	=>	’movies’,	:action	=>	’new’)	
Checks	that	the	controller	action	redirects	to	MoviesController#new	rather	than	rendering	a	view

Figure	8.17:	Some	of	the	most	useful	RSpec	methods	introduced	in	this	chapter.	See	the	full	RSpec	documentation	for	details	and
additional	methods	not	listed	here.

Assertions	on	method	calls:	can	also	negate,	e.g.	should_not_receive

⋅	Movie.should_receive(:find).exactly(2).times	
Stubs	 Movie.find	 and	 ensures	 it’s	 called	 exactly	 twice	 (omit	 exactly	 if	 you	 don’t	 care	 how	many
calls;	 at_least()	 and	 at_most()	 also	 available	 ⋅
Movie.should_receive(:find).with(’Milk’,’R’)	
Checks	 that	 Movie.find	 is	 called	 with	 exactly	 2	 arguments	 having	 these	 values	 ⋅
Movie.should_receive(:find).with(anything())	
Checks	 that	 Movie.find	 is	 called	 with	 1	 argument	 whose	 value	 isn’t	 checked	 ⋅
Movie.should_receive(:find).

with(hash_including	:title=>’Milk’)

Checks	that	Movie.find	is	called	with	1	argument	that	must	be	a	hash	(or	something	that	quacks	like
one)	 that	 includes	 the	 key	 :title	 with	 the	 value	 ’Milk’	 ⋅
Movie.should_receive(:find).with(no_args())	
Checks	that	Movie.find	is	called	with	zero	arguments

Matchers
	

greeting.should	==	’bonjour’	
Compares	its	argument	for	equality	with	receiver	of	assertion
value.should	be	>=	7	
Compares	its	argument	with	the	given	value;	syntactic	sugar	for	value.should(be.>=(7))
result.should	be_remarkable	
Calls	remarkable?	(note	question	mark)	on	result

http://rspec.info

Figure	8.18:	Continuation	of	summary	of	useful	RSpec	methods	introduced	in	this	chapter.

Classic	RSpec	syntax New	expectation	syntax	(RSpec	≥	2.11)
expr.should	==	value expect(expr).to	eq(value)
expr.should_not	==	value expect(expr).not_to	eq(value)
expr.should	be_close(value,delta) expect(expr).to	be_within(delta).of(value)
expr.should	be	>10 expect(expr).to	be	>10
expr.should_not	be_nil expect(expr).not_to	be_nil
”string”.should_not	match(/regexp/) expect(”string”).not_to	match(/regexp/)
[1,2,3].should	=˜[2,1,3] expect([1,2,3]).to	match_array([2,1,3])

response.should	render_template(tmpl) expect(response).to	render_template(tmpl)
lambda	{code	}.should	expectation expect	{code	}.to	expectation

Figure	8.19:	A	partial	mapping	from	the	“classic”	and	new	syntaxes	for	RSpec	expectations.	For	the	negative	expectation	examples,	you
can	infer	the	corresponding	positive	expectation	by	removing	the	word	not.

8.7	Coverage	Concepts	and	Unit	vs.	Integration	Tests

How	much	testing	is	enough?	A	poor	but	unfortunately	widely-given	answer	is	“As	much	as	you	can	do
before	the	shipping	deadline.”	A	very	coarse-grained	alternative	is	the	code-to-test	ratio,	the	number	of
non-comment	lines	of	code	divided	by	number	of	lines	of	tests	of	all	types.	In	production	systems,	this
ratio	 is	usually	 less	 than	1,	 that	 is,	 there	are	more	 lines	of	 test	 than	 lines	of	app	code.	The	command
rake	stats	issued	in	the	root	directory	of	a	Rails	app	computes	this	ratio	based	on	the	number	of	lines
of	RSpec	tests	and	Cucumber	scenarios.

A	more	precise	way	to	approach	the	question	is	in	terms	of	code	coverage.	Since	the	goal	of	testing	is	to
exercise	the	subject	code	in	at	least	the	same	ways	it	would	be	exercised	in	production,	what	fraction	of
those	 possibilities	 is	 actually	 exercised	 by	 the	 test	 suite?	 Surprisingly,	measuring	 coverage	 is	 not	 as
straightforward	as	you	might	suspect.	Here	is	a	simple	fragment	of	code	and	the	definitions	of	several
commonly-used	coverage	terms	as	they	apply	to	the	example.

http://pastebin.com/QzMnndtu

	1	class	MyClass

	2			def	foo(x,y,z)

	3					if	x

	4							if	(y	&&	z)	then	bar(0)	end

	5					else

	6							bar(1)

	7					end

	8			end

	9			def	bar(x)	;	@w	=	x	;	end

10	end

http://en.wikipedia.org/wiki/code_coverage
http://pastebin.com/QzMnndtu

Figure	8.20:	A	simple	code	example	to	illustrate	basic	coverage	concepts.

	
S0	or	Method	coverage:	 Is	 every	method	executed	at	 least	once	by	 the	 test	 suite?	Satisfying	S0
requires	calling	foo	and	bar	at	least	once	each.

Sometimes	written	with	a	subscript,	S0.

S1	or	Call	coverage	or	Entry/Exit	coverage:	Has	each	method	been	called	from	every	place	it	could
be	called?	Satisfying	S1	requires	calling	bar	from	both	line	4	and	line	6.
C0	or	Statement	coverage:	Is	every	statement	of	the	source	code	executed	at	least	once	by	the	test
suite,	 counting	 both	 branches	 of	 a	 conditional	 as	 a	 single	 statement?	 In	 addition	 to	 calling	bar,
satisfying	C0	would	require	calling	foo	at	least	once	with	x	true	(otherwise	the	statement	in	line	4
will	never	be	executed),	and	at	least	once	with	y	false.
C1	or	Branch	coverage:	Has	each	branch	been	taken	in	each	direction	at	least	once?	Satisfying	C1
would	require	calling	foo	with	both	false	and	true	values	of	x	and	with	values	of	y	and	z	such	that
y	&&	z	 in	 line	4	 evaluates	 once	 to	 true	 and	once	 to	 false.	A	more	 stringent	 condition,	decision
coverage,	 requires	that	each	subexpression	 that	 independently	affects	a	conditional	expression	be
evaluated	to	true	and	false.	In	this	example,	a	test	would	additionally	have	to	separately	set	y	and	z
so	that	the	condition	y	&&	z	fails	once	for	y	being	false	and	once	for	z	being	false.
C2	 or	 Path	 coverage:	Has	 every	 possible	 route	 through	 the	 code	 been	 executed?	 In	 this	 simple
example,	where	x,y,z	are	treated	as	booleans,	there	are	8	possible	paths.
Modified	 Condition/Decision	 Coverage	 (MCDC)	 combines	 a	 subset	 of	 the	 above	 levels:	 Every
point	 of	 entry	 and	 exit	 in	 the	 program	 has	 been	 invoked	 at	 least	 once,	 every	 decision	 in	 the
program	has	taken	all	possible	outcomes	at	least	once,	and	each	condition	in	a	decision	has	been
shown	to	independently	affect	that	decision’s	outcome.

Achieving	 C0	 coverage	 is	 relatively	 straightforward,	 and	 a	 goal	 of	 100%	 C0	 coverage	 is	 not
unreasonable.	 Achieving	 C1	 coverage	 is	 more	 difficult	 since	 test	 cases	 must	 be	 constructed	 more
carefully	to	ensure	each	branch	is	taken	at	least	once	in	each	direction.	C2	coverage	is	most	difficult	of
all,	 and	 not	 all	 testing	 experts	 agree	 on	 the	 additional	 value	 of	 achieving	 100%	 path	 coverage.
Therefore,	 code	 coverage	 statistics	 are	most	 valuable	 to	 the	 extent	 that	 they	 highlight	 undertested	 or
untested	 parts	 of	 the	 code	 and	 show	 the	 overall	 comprehensiveness	 of	 your	 test	 suite.	 The	 next
screencast	shows	how	to	use	the	SimpleCov	Ruby	gem	(included	in	the	bookware)	to	quickly	check	the

C0	coverage	of	your	RSpec	tests.	 		

Screencast	8.7.1:	Using	SimpleCov	to	check	C0	coverage
The	SimpleCov	tool,	provided	as	a	Ruby	gem,	measures	and	displays	the	C0	coverage	of	your	specs.
You	can	zoom	in	on	each	file	and	see	which	specific	lines	were	covered	by	your	tests.

This	chapter,	and	the	above	discussion	of	coverage,	have	focused	on	unit	tests.	Chapter	7	explained	how
user	 stories	 could	 become	 automated	 acceptance	 tests;	 those	 are	 integration	 tests	 or	 system	 tests
because	 each	 test	 (that	 is,	 each	 scenario)	 exercises	 a	 lot	 of	 code	 in	 many	 different	 parts	 of	 the
application,	 rather	 than	 relying	on	 fake	objects	 such	 as	mocks	 and	 stubs	 to	 isolate	 classes	 from	 their
collaborators.	Integration	tests	are	important,	but	insufficient.	Their	resolution	is	poor:	if	an	integration

https://github.com/colszowka/simplecov
http://vimeo.com/34754907
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/System_test

test	fails,	it	is	harder	to	pinpoint	the	cause	since	the	test	touches	many	parts	of	the	code.	Their	coverage
tends	 to	be	poor	because	even	 though	a	 single	 scenario	 touches	many	classes,	 it	 executes	only	a	 few
code	paths	in	each	class.	For	the	same	reason,	integration	tests	also	tend	to	take	longer	to	run.	On	the
other	hand,	while	unit	tests	run	quickly	and	can	isolate	the	subject	code	with	great	precision	(improving
both	coverage	resolution	and	error	localization),	because	they	rely	on	fake	objects	to	isolate	the	subject
code,	they	may	mask	problems	that	would	only	arise	in	integration	tests.

Somewhere	 in	 between	 these	 levels	 are	 functional	 tests,	which	 exercise	 a	well-defined	 subset	 of	 the
code.	They	rely	on	mocks	and	stubs	to	isolate	a	set	of	cooperating	classes	rather	than	a	single	class	or
method.	For	example,	controller	specs	such	as	Figure	8.9	use	get	and	post	methods	to	submit	URIs	to
the	app,	which	means	they	rely	on	the	routing	subsystem	to	work	correctly	in	routing	those	calls	to	the
appropriate	 controller	 methods.	 (To	 see	 this	 for	 yourself,	 temporarily	 remove	 the	 line
resources	:movies	 from	config/routes.rb	and	 try	 re-running	 the	controller	specs.)	However,	 the
controller	specs	are	still	 isolated	from	the	database	by	stubbing	out	 the	model	method	find_in_tmdb
that	would	normally	communicate	with	the	database.

In	 other	 words,	 high	 assurance	 requires	 both	 good	 coverage	 and	 a	 mix	 of	 all	 three	 kinds	 of	 tests.
Figure	8.21	summarizes	the	relative	strengths	and	weaknesses	of	different	types	of	tests.

Unit Functional Integration/System
What	is	tested One	method/class Several	methods/classes Large	chunks	of	system
Rails	example Model	specs Controller	specs Cucumber	scenarios
Preferred	tool RSpec RSpec Cucumber
Running	time Very	fast Fast Slow

Error	localization Excellent Moderate Poor
Coverage Excellent Moderate Poor

Use	of	mocks	&	stubs Heavy Moderate Little/none

Figure	8.21:	Summary	of	the	differences	among	unit	tests,	functional	tests,	and	integration	or	whole-system	tests.

Summary
Static	and	dynamic	measures	of	coverage,	including	code-to-test	ratio	(reported	by	rake	stats),
C0	coverage	(reported	by	SimpleCov),	and	C1–C2	coverage,	measure	the	extent	to	which	your	test
suite	exercises	different	paths	in	your	code.
Unit,	 functional,	 and	 integration	 tests	 differ	 in	 terms	of	 their	 running	 time,	 resolution	 (ability	 to
localize	errors),	ability	to	exercise	a	variety	of	code	paths,	and	ability	to	“sanity-check”	the	whole
application.	All	three	are	vital	to	software	assurance.

Self-Check	8.7.1.	Why	does	high	test	coverage	not	necessarily	imply	a	well-tested	application?
	 Coverage	 says	 nothing	 about	 the	 quality	 of	 the	 tests.	 However,	 low	 coverage	 certainly	 implies	 a

poorly-tested	application.

Self-Check	8.7.2.	What	is	the	difference	between	C0	code	coverage	and	code-to-test	ratio?

http://en.wikipedia.org/wiki/Functional_testing

	C0	coverage	is	a	dynamic	measurement	of	what	fraction	of	all	statements	are	executed	by	a	test	suite.
Code-to-test	 ratio	 is	 a	 static	 measurement	 comparing	 the	 total	 number	 of	 lines	 of	 code	 to	 the	 total
number	of	lines	of	tests.

Self-Check	8.7.3.	Why	 is	 it	 usually	a	bad	 idea	 to	make	extensive	use	of	mock	 or	stub	 in	Cucumber
scenarios	such	as	those	described	in	Chapter	7?
	Cucumber	is	a	tool	for	full-system	testing	and	acceptance	testing.	Such	testing	is	specifically	intended

to	exercise	the	entire	system,	rather	than	“faking”	certain	parts	of	it	as	we	have	done	using	seams	in	this
chapter.	(However,	if	the	“full	system”	includes	interacting	with	outside	services	we	don’t	control,	such
as	 the	interaction	with	TMDb	in	this	example,	we	do	need	a	way	to	“fake”	their	behavior	for	 testing.
That	topic	is	the	subject	of	Exercise	8.3.)

8.8	Other	Testing	Approaches	and	Terminology

The	 field	 of	 software	 testing	 is	 as	 broad	 and	 long-lived	 as	 software	 engineering	 and	 has	 its	 own
literature.	 Its	 range	 of	 techniques	 includes	 formalisms	 for	 proving	 things	 about	 coverage,	 empirical
techniques	 for	 selecting	 which	 tests	 to	 create,	 and	 directed-random	 testing.	 Depending	 on	 an
organization’s	 “testing	 culture,”	 you	may	hear	 different	 terminology	 than	we’ve	 used	 in	 this	 chapter.
Ammann	and	Offutt’s	Introduction	 to	Software	Testing	 (Ammann	and	Offutt	2008)	 is	 one	 of	 the	 best
comprehensive	references	on	the	subject.	Their	approach	is	to	divide	a	piece	of	code	into	basic	blocks,
each	of	which	executes	from	the	beginning	 to	 the	end	with	no	possibility	of	branching,	and	 then	 join
these	basic	blocks	 into	a	graph	 in	which	conditionals	 in	 the	code	 result	 in	graph	nodes	with	multiple
out-edges.	We	can	then	think	of	testing	as	“covering	the	graph”:	each	test	case	tracks	which	nodes	in	the
graph	 it	 visits,	 and	 the	 fraction	 of	 all	 nodes	 visited	 at	 the	 end	 of	 the	 test	 suite	 is	 the	 test	 coverage.
Ammann	and	Offutt	go	on	to	analyze	various	structural	aspects	of	software	from	which	such	graphs	can
be	 extracted,	 and	 present	 systematic	 automated	 techniques	 for	 achieving	 and	measuring	 coverage	 of
those	graphs.

One	 insight	 that	 emerges	 from	 this	 approach	 is	 that	 the	 levels	 of	 testing	 described	 in	 the	 previous
section	refer	to	control	flow	coverage,	since	they	are	only	concerned	with	whether	specific	parts	of	the
code	are	executed	or	not.	Another	important	coverage	criterion	is	define–use	coverage	or	DU-coverage:
given	a	variable	x	 in	 some	program,	 if	we	consider	 every	place	 that	x	 is	 assigned	 a	 value	 and	 every
place	that	the	value	of	x	is	used,	DU-coverage	asks	what	fraction	of	all	pairs	of	define	and	use	sites	are
exercised	 by	 a	 test	 suite.	 This	 condition	 is	 weaker	 than	 all-paths	 coverage	 but	 can	 find	 errors	 that
control-flow	coverage	alone	would	miss.

Another	 testing	 term	 distinguishes	 black-box	 tests,	 whose	 design	 is	 based	 solely	 on	 the	 software’s
external	 specifications,	 from	 white-box	 tests	 (also	 called	 glass-box	 tests),	 whose	 design	 reflects
knowledge	 about	 the	 software’s	 implementation	 that	 is	 not	 implied	 by	 external	 specifications.	 For
example,	the	external	specification	of	a	hash	table	might	just	state	that	when	we	store	a	key/value	pair
and	later	read	that	key,	we	should	get	back	the	stored	value.	A	black-box	test	would	specify	a	random
set	of	key/value	pairs	to	test	this	behavior,	whereas	a	white-box	test	might	exploit	knowledge	about	the
hash	function	to	construct	worst-case	test	data	that	results	in	many	hash	collisions.	Similarly,	white-box
tests	might	focus	on	boundary	values—parameter	values	likely	to	exercise	different	parts	of	the	code.	In
our	TMDb	example,	we	saw	that	themoviedb	gem	raises	an	unusual	exception	when	an	invalid	key	is
supplied,	 so	 that	 code	 path	 needs	 to	 be	 tested	 separately.	Conversely,	we	 can	 test	 the	 “nonblank	 but
invalid”	 codepath	 with	 any	 representative	 nonblank	 invalid	 key—we	 won’t	 learn	 anything	 new	 by

http://en.wikipedia.org/wiki/Basic_block
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/White-box_testing

testing	with	several	different	nonblank	invalid	keys.

Mutation	testing,	 invented	by	Ammann	and	Offutt,	 is	a	 test-automation	 technique	 in	which	small	but
syntactically	legal	changes	are	automatically	made	to	the	program’s	source	code,	such	as	replacing	a+b
with	a-b	or	replacing	if	(c)	with	if	(!c).	Most	such	changes	should	cause	at	least	one	test	to	fail,	so
a	mutation	that	causes	no	test	to	fail	indicates	either	a	lack	of	test	coverage	or	a	very	strange	program.
The	Ruby	gem	mutant	performs	mutation	testing	in	conjunction	with	RSpec,	but	as	of	the	publication
date	of	this	edition,	the	mutant-rails	gem	that	integrates	it	seamlessly	with	Rails	is	not	yet	working.
Given	the	importance	of	testing	in	the	Ruby	community,	this	will	likely	change	soon.

Fuzz	testing	consists	of	throwing	random	data	at	your	application	and	seeing	what	breaks.	About	1/4	of
common	Unix	utilities	can	be	made	to	crash	by	fuzz	 testing,	and	Microsoft	estimates	 that	20–25%	of
their	bugs	 are	 found	 this	way.	Dumb	fuzzing	 generates	 completely	 random	 data,	while	 smart	 fuzzing
includes	knowledge	about	the	app’s	structure.	For	example,	smart	fuzzing	for	a	Rails	app	might	include
randomizing	the	variables	and	values	occurring	in	form	postings	or	in	URIs	embedded	in	page	views,
creating	URIs	 that	 are	 syntactically	 valid	 but	might	 expose	 a	 bug.	 Smart	 fuzzing	 for	 SaaS	 can	 also
include	 attacks	 such	 as	 cross-site	 scripting	 or	 SQL	 injection,	 which	 we’ll	 discuss	 in	 Chapter	 12.
Tarantula	(a	fuzzy	spider	that	crawls	your	site)	is	a	Ruby	gem	for	fuzz-testing	Rails	applications.

Summary	of	other	testing	approaches:	We	can	think	of	testing	as	“covering	a	graph”	of	possible
software	 behaviors.	 The	 graph	 can	 represent	 control	 flow	 (basic	 block	 coverage),	 variable
assignment	and

usage	 (DU-coverage),	 a	 space	 of	 random	 inputs	 (fuzz	 testing),	 or	 a	 space	 of	 possible	 tests	with
respect	 to	 specific	 errors	 in	 the	 code	 (mutation	 testing).	 The	 different	 approaches	 are
complementary	and	tend	to	catch	different	types	of	bugs.

Self-Check	8.8.1.	The	Microsoft	Zune	music	player	had	an	infamous	bug	that	caused	all	Zunes	to	“lock
up”	on	December	31,	2008.	Later	analysis	showed	that	the	bug	would	be	triggered	on	the	last	day	of	any
leap	year.	What	kinds	of	 tests—black-box	vs.	glass-box	(see	Section	 	1.8),	mutation,	or	 fuzz—would
have	been	likely	to	catch	this	bug?
	A	glass-box	test	for	the	special	code	paths	used	for	leap	years	would	have	been	effective.	Fuzz	testing

might	have	been	effective:	since	the	bug	occurs	roughly	once	in	every	1460	days,	a	few	thousand	fuzz
tests	would	likely	have	found	it.

8.9	The	Plan-And-Document	Perspective

The	 project	manager	 takes	 the	 Software	Requirements	 Specification	 from	 the	 requirements	 planning
phase	and	divides	it	into	the	individual	program	units.	Developers	then	write	the	code	for	each	unit,	and
then	perform	unit	tests	to	make	sure	they	work.	In	many	organizations,	quality	assurance	staff	performs
the	rest	of	the	higher-level	tests,	such	as	module,	integration,	system,	and	acceptance	tests.

There	are	three	options	on	how	to	integrate	the	units	and	perform	integration	tests:
	

http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Fuzz_testing
https://github.com/relevance/tarantula

1.	 Top-down	integration	starts	with	the	top	of	tree	structure	showing	the	dependency	among	all	the
units.	The	advantage	of	top-down	is	that	you	quickly	get	some	of	the	high	level	functions	working,
such	as	the	user	interface,	which	allows	stakeholders	to	offer	feedback	for	the	app	in	time	to	make
changes.	The	downside	is	that	you	have	to	create	many	stubs	to	get	the	app	to	limp	along	in	this
nascent	form.

2.	 Bottom-up	integration	starts	at	the	bottom	of	the	dependency	tree	and	works	up.	There	is	no	need
for	stubs,	as	you	can	 integrate	all	 the	pieces	you	need	for	a	module.	Alas,	you	don’t	get	an	 idea
how	the	app	will	look	until	you	get	all	the	code	written	and	integrated.

3.	 Sandwich	integration,	not	surprisingly,	tries	to	get	the	best	of	both	worlds	by	integrating	from	both
ends	simultaneously.	Thus,	you	try	to	reduce	the	number	of	stubs	by	selectively	integrating	some
units	bottom-up	and	try	to	get	the	user	interface	operational	sooner	by	selectively	integrating	some
units	top-down.

The	next	step	for	 the	QA	testers	after	 integration	tests	 is	 the	system	test,	as	 the	full	app	should	work.
This	is	the	last	step	before	showing	it	to	customers	for	them	to	try	out.	Note	that	system	tests	both	non-
functional	 requirements,	such	as	performance,	as	well	as	 functional	 requirements	of	 features	 found	 in
the	SRS.

One	 question	 for	 plan-and-document	 is	 how	 to	 decide	 when	 testing	 is	 complete.	 Typically,	 an
organization	will	enforce	a	standard	level	of	testing	coverage	before	a	product	is	ready	for	the	customer.
Examples	 might	 be	 statement	 coverage	 (all	 statements	 executed	 at	 least	 once),	 or	 all	 user	 input
opportunities	are	tested	with	both	good	input	and	problematic	input.

In	 the	 plan	 and	 document	 process,	 the	 final	 test	 is	 for	 the	 customers	 to	 try	 the	 product	 in	 their
environment	to	decide	whether	they	will	accept	the	product	or	not.	That	is,	the	aim	is	validation,	not	just
verification.	In	Agile	development,	the	customer	is	involved	in	trying	prototypes	of	the	app	early	in	the
process,	so	there	is	no	separate	system	test	before	running	the	acceptance	tests.

As	you	should	expect	 from	the	plan-and-document	process,	documentation	plays	an	 important	 role	 in
testing.	Figure	8.22	gives	an	outline	for	test	plan	based	on	IEEE	Standard	829-2008.

Master	Test	Plan	Outline
1.	Introduction

1.1.	Document	identifier
1.2.	Scope

1.3.	References
1.4.	System	overview	and	key	features

1.5.	Test	overview
1.5.1	Organization

1.5.2	Master	test	schedule
1.5.3	Integrity	level	schema
1.5.4	Resources	summary
1.5.5	Responsibilities

1.5.6	Tools,	techniques,	methods,	and	metrics

2.	Details	of	the	Master	Test	Plan
2.1.	Test	processes	including	definition	of	test	levels

2.1.1	Process:	Management
2.1.1.1	Activity:	Management	of	test	effort

2.1.2	Process:	Acquisition
2.1.2.1	Activity:	Acquisition	support	test

2.1.3	Process:	Supply
2.1.3.1	Activity:	Planning	test
2.1.4	Process:	Development
2.1.4.1	Activity:	Concept

2.1.4.2	Activity:	Requirements
2.1.4.3	Activity:	Design

2.1.4.4	Activity:	Implementation
2.1.4.5	Activity:	Test

2.1.4.6	Activity:	Installation/checkout
2.1.5	Process:	Operation

2.1.5.1	Activity:	Operational	test
2.1.6	Process:	Maintenance

2.1.6.1	Activity:	Maintenance	test
2.2.	Test	documentation	requirements
2.3.	Test	administration	requirements
2.4.	Test	reporting	requirements

3.	General
3.1.	Glossary

3.2.	Document	change	procedures	and	history

Figure	8.22:	Outline	of	Master	Test	Plan	Documentation	that	follows	the	IEEE	Standard	829-2008.

While	testing	is	fundamental	to	software	engineering,	quoting	another	Turing	Award	winner:

Program	testing	can	be	used	to	show	the	presence	of	bugs,	but	never	to	show	their	absence!
—Edsger	W.	Dijkstra

			Edsger	W.	Dijkstra	(1930–2002)	received	the	1972	Turing	Award	for	fundamental
contributions	to	developing	programming	languages.

Thus,	 there	has	been	a	great	deal	of	 research	 investigating	approaches	 to	verification	beyond	 testing.
Collectively,	 these	 techniques	 are	 known	 as	 formal	methods.	 The	 general	 strategy	 is	 to	 start	 with	 a
formal	specification	and	prove	that	the	behavior	of	the	code	follows	the	behavior	of	that	spec.	These	are
mathematical	proofs,	 either	done	by	a	person	or	done	by	a	computer.	The	 two	options	are	automatic
theorem	proving	or	model	checking.	Theorem	proving	uses	a	set	of	inference	rules	and	a	set	of	logical
axioms	 to	 produce	 proofs	 from	 scratch.	 Model	 checking	 verifies	 selected	 properties	 by	 exhaustive
search	of	all	possible	states	that	a	system	could	enter	during	execution.

Because	formal	methods	are	so	computationally	intensive,	 they	tend	to	be	used	only	when	the	cost	 to
repair	errors	is	very	high,	the	features	are	very	hard	to	test,	and	the	item	being	verified	is	not	too	large.
Examples	include	vital	parts	of	hardware	like	network	protocols	or	safety	critical	software	systems	like
medical	equipment.	For	 formal	methods	 to	actually	work,	 the	 size	of	 the	design	must	be	 limited:	 the
largest	formally	verified	software	to	date	is	an	operating	system	kernel	that	is	less	than	10,000	lines	of
code,	and	its	verification	cost	about	$500	per	line	of	code		(Klein	et	al.	2010).

To	put	the	cost	of	formal	methods	in	perspective,	NASA	spent	$35M	per	year	to	maintain	420,000	lines	of	code	for	the	space	shuttle,	or
about	$80	per	line	of	code	per	year.

Hence,	 formal	methods	are	not	good	matches	 to	high-function	software	 that	changes	 frequently,	as	 is
generally	the	case	for	Software	as	a	Service.

Tasks In	Plan	and	Document In	Agile
Test	Plan	and
Documentation Software	Test	Documentation	such	as	IEEE	Standard	829-2008 User	stories

Order	of	Coding	and
Testing

1.	Code	units
2.	Unit	test

3.	Module	test
4.	Integration	test
5.	System	test

6.	Acceptance	test

1.	Acceptance
test

2.	Integration
test

3.	Module	test
4.	Unit	test
5.	Code	units

Testers Developers	for	unit	tests;	QA	testers	for	module,	integration,
system,	and	acceptance	tests Developers

When	Testing	Stops Company	policy	(e.g.,	statement	coverage,	happy	and	sad	user
inputs)

All	tests	pass
(green)

Figure	8.23:	The	relationship	between	the	testing	tasks	of	Plan-and-Document	versus	Agile	methodologies.

Summary:	Testing	and	formal	methods	reduce	the	risks	of	errors	in	designs.
	

Unlike	BDD/TDD,	 the	plan-and-document	process	 starts	with	writing	code	before	you	write	 the
tests.
Developers	then	perform	unit	tests.

http://en.wikipedia.org/wiki/formal_methods
http://en.wikipedia.org/wiki/automatic_theorem_proving
http://en.wikipedia.org/wiki/model_checking
http://www.fastcompany.com/magazine/06/writestuff.html

Especially	 in	 large	projects,	 different	people	perform	 the	higher-level	 tests.	The	 integration	 tests
options	of	putting	the	units	together	are	top-down,	bottom-up,	or	sandwich.
Testers	do	a	separate	system	test	 to	ensure	the	product	passes	both	functional	and	non-functional
requirements	before	exposing	it	to	customers	for	the	final	acceptance	test.
Formal	methods	rely	on	formal	specifications	and	automated	proofs	or	exhaustive	state	search	to
verify	more	than	what	testing	can	do,	but	they	are	so	expensive	to	perform	that	today	they	are	only
applicable	to	small,	stable,	critical	portions	of	hardware	or	software.
Figure	8.23	shows	the	resulting	different	tests	tasks	for	plan-and-document	versus	Agile	processes.

Self-Check	 8.9.1.	 Compare	 and	 contrast	 integration	 strategies	 including	 top-down,	 bottom-up,	 and
sandwich	integration.
	 Top-down	 needs	 stubs	 to	 perform	 the	 tests,	 but	 it	 lets	 stakeholders	 get	 a	 feeling	 for	 how	 the	 app

works.	Bottom-up	does	not	need	stubs,	but	needs	potentially	everything	written	before	stakeholders	see
it	work.	Sandwich	integration	works	from	both	ends	to	try	to	get	both	benefits.

8.10	Fallacies	and	Pitfalls

			Fallacy:	100%	test	coverage	with	all	tests	passing	means	no	bugs.

There	 are	many	 reasons	 this	 statement	 can	 be	 false.	 Complete	 test	 coverage	 says	 nothing	 about	 the
quality	 of	 the	 individual	 tests.	As	well,	 some	 bugs	may	 require	 passing	 a	 certain	 value	 as	 a	method
argument	(for	example,	to	trigger	a	divide-by-zero	error),	and	control	flow	testing	often	cannot	reveal
such	 a	 bug.	There	may	 be	 bugs	 in	 the	 interaction	 between	 your	 app	 and	 an	 external	 service	 such	 as
TMDb;	stubbing	out	the	service	so	you	can	perform	local	testing	might	mask	such	bugs.

			Pitfall:	Dogmatically	insisting	on	100%	test	coverage	all	passing	(green)	before	you	ship.

As	we	saw	above,	100%	test	coverage	is	not	only	difficult	to	achieve	at	levels	higher	than	C1,	but	gives
no	guarantees	of	bug-freedom	even	if	you	do	achieve	it.	Test	coverage	is	a	useful	tool	for	estimating	the
overall	comprehensiveness	of	your	test	suite,	but	high	confidence	requires	a	variety	of	testing	methods
—integration	 as	well	 as	 unit,	 fuzzing	 as	well	 as	 hand-constructing	 test	 cases,	 define-use	 coverage	 as
well	as	control-flow	coverage,	mutation	testing	to	expose	additional	holes	in	the	test	strategy,	and	so	on.
Indeed,	in	Chapter	12	we	will	discuss	operational	issues	such	as	security	and	performance,	which	call
for	additional	testing	strategies	beyond	the	correctness-oriented	ones	described	in	this	chapter.

			Fallacy:	You	don’t	need	much	test	code	to	be	confident	in	the	application.

While	 insisting	 on	 100%	 coverage	may	 be	 counterproductive,	 so	 is	 going	 to	 the	 other	 extreme.	 The
code-to-test	 ratio	 in	 production	 systems	 (lines	 of	 noncomment	 code	 divided	 by	 lines	 of	 tests	 of	 all
types)	is	usually	less	than	1,	that	is,	there	are	more	lines	of	test	than	lines	of	app	code.	As	an	extreme
example,	 the	 SQLite	 database	 included	 with	 Rails	 contains	 over	 1200	 times	 as	 much	 test	 code	 as
application	code	because	of	 the	wide	variety	of	ways	in	which	it	can	be	used	and	the	wide	variety	of
different	kinds	of	systems	on	which	it	must	work	properly!	While	there	is	controversy	over	how	useful	a

http://en.wikipedia.org/wiki/Formal_methods
http://www.sqlite.org/testing.html

measure	 the	 code-to-test	 ratio	 is,	 given	 the	 high	 productivity	 of	 Ruby	 and	 its	 superior	 facilities	 for
DRYing	out	your	test	code,	a	rake	stats	ratio	between	0.2	and	0.5	is	a	reasonable	target.

			Pitfall:	Relying	too	heavily	on	just	one	kind	of	test	(unit,	functional,	integration).

Even	 100%	 unit	 test	 coverage	 tells	 you	 nothing	 about	 interactions	 among	 classes.	 You	 still	 need	 to
create	 tests	 to	exercise	 the	 interactions	between	classes	(functional	or	module	 testing)	and	to	exercise
complete	 paths	 through	 the	 application	 that	 touch	 many	 classes	 and	 change	 state	 in	 many	 places
(integration	testing).	Conversely,	integration	tests	touch	only	a	tiny	fraction	of	all	possible	application
paths,	and	therefore	exercise	only	a	few	behaviors	in	each	method,	so	they	are	not	a	substitute	for	good
unit	test	coverage	to	get	assurance	that	your	lower-level	code	is	working	correctly.	A	common	rule	of
thumb	used	at	Google	and	elsewhere	(Whittaker	et	al.	2012)	is	“70–20–10”:	70%	short	and	focused	unit
tests,	20%	functional	tests	that	touch	multiple	classes,	10%	full-stack	or	integration	tests.

			Pitfall:	Undertested	integration	points	due	to	over-stubbing.

Mocking	and	 stubbing	confer	many	benefits,	but	 they	can	also	hide	potential	problems	at	 integration
points—places	where	one	class	or	module	interacts	with	another.	Suppose	Movie	has	some	interactions
with	 another	 class	 Moviegoer,	 but	 for	 the	 purposes	 of	 unit	 testing	 Movie,	 all	 calls	 to	 Moviegoer
methods	 are	 stubbed	 out,	 and	 vice	 versa.	 Because	 stubs	 are	 written	 to	 “fake”	 the	 behavior	 of	 the
collaborating	class(es),	we	no	longer	know	if	Movie	“knows	how	to	talk	to”	Moviegoer	correctly.	Good
coverage	with	 functional	 and	 integration	 tests,	which	don’t	 stub	out	 all	 calls	 across	 class	boundaries,
avoids	this	pitfall.

			Pitfall:	Writing	tests	after	the	code	rather	than	before.

Thinking	about	“the	code	we	wish	we	had”	from	the	perspective	of	a	test	for	that	code	tends	to	result	in
code	that	is	 testable.	This	seems	like	an	obvious	tautology	until	you	try	writing	the	code	first	without
testability	in	mind,	only	to	discover	that	surprisingly	often	you	end	up	with	mock	trainwrecks	(see	next
pitfall)	when	you	do	try	to	write	the	test.

In	 addition,	 in	 the	 traditional	 Waterfall	 lifecycle	 described	 in	 Chapter	 1,	 testing	 comes	 after	 code
development,	but	with	SaaS	that	can	be	in	“public	beta”	for	months,	no	one	would	suggest	that	testing
should	only	begin	after	the	beta	period.	Writing	the	tests	first,	whether	for	fixing	bugs	or	creating	new
features,	eliminates	this	pitfall.

			Pitfall:	Mock	Trainwrecks.

Mocks	 exist	 to	 help	 isolate	 your	 tests	 from	 their	 collaborators,	 but	 what	 about	 the	 collaborators’
collaborators?	Suppose	our	Movie	 object	 has	 a	pics	 attribute	 that	 returns	 a	 list	 of	 images	 associated
with	the	movie,	each	of	which	is	a	Picture	object	that	has	a	format	attribute.	You’re	trying	to	mock	a
Movie	object	for	use	in	a	test,	but	you	realize	that	the	method	to	which	you’re	passing	the	Movie	object
is	going	to	expect	to	call	methods	on	its	pics,	so	you	find	yourself	doing	something	like	this:

http://pastebin.com/N3UdnZq1

http://pastebin.com/N3UdnZq1

	1				movie	=	mock(’Movie’,	:pics	=>	[mock(’Picture’,	:format	=>	’gif’)])

	2				Movie.count_pics(movie).should	==	1

This	is	called	a	mock	trainwreck,	and	it’s	a	sign	that	the	method	under	test	(count_pics)	has	excessive
knowledge	of	 the	 innards	of	a	Picture.	 In	 the	Chapters	9	and	11	we’ll	 encounter	 a	 set	of	 additional
guidelines	to	help	you	detect	and	resolve	such	code	smells.

			Pitfall:	Inadvertently	creating	dependencies	regarding	the	order	in	which	specs	are	run,	for
example	by	using	before(:all).

If	you	specify	actions	 to	be	performed	only	once	 for	a	whole	group	of	 test	cases,	you	may	 introduce
dependencies	 among	 those	 test	 cases	without	 noticing.	 For	 example,	 if	 a	before	 :all	 block	 sets	 a
variable	 and	 test	 example	A	changes	 the	variable’s	value,	 test	 example	B	could	 come	 to	 rely	on	 that
change	if	A	is	usually	run	before	B.	Then	B’s	behavior	in	the	future	might	suddenly	be	different	if	B	is
run	 first,	which	might	happen	because	autotest	 prioritizes	 running	 tests	 related	 to	 recently-changed
code.	Therefore	it’s	best	to	use	before	:each	and	after	:each	whenever	possible.

			Pitfall:	Forgetting	to	re-prep	the	test	database	when	the	schema	changes.

Remember	that	tests	run	against	a	separate	copy	of	the	database,	not	the	database	used	in	development
(Section	4.2).	Therefore,	whenever	you	modify	the	schema	by	applying	a	migration,	you	must	also	run
rake	 db:test:prepare	 to	 apply	 those	 changes	 to	 the	 test	 database;	 otherwise	 your	 tests	 may	 fail
because	the	test	code	doesn’t	match	the	schema.

8.11	Concluding	Remarks:	TDD	vs.	Conventional	Debugging

In	this	chapter	we’ve	used	RSpec	to	develop	a	method	using	TDD	with	unit	tests.	Although	TDD	may
feel	 strange	 at	 first,	 most	 people	 who	 try	 it	 quickly	 realize	 that	 they	 already	 use	 the	 unit-testing
techniques	 it	 calls	 for,	 but	 in	 a	 different	workflow.	Often,	 a	 typical	 developer	will	write	 some	 code,
assume	 it	 probably	 works,	 test	 it	 by	 running	 the	 whole	 application,	 and	 hit	 a	 bug.	 As	 an	 MIT
programmer	lamented	at	the	first	software	engineering	conference	in	1968:	“We	build	systems	like	the
Wright	 brothers	 built	 airplanes—build	 the	whole	 thing,	 push	 it	 off	 a	 cliff,	 let	 it	 crash,	 and	 start	 over
again.”

Once	a	bug	has	been	hit,	if	inspecting	the	code	doesn’t	reveal	the	problem,	the	typical	developer	would
next	try	inserting	print	statements	around	the	suspect	area	to	print	out	the	values	of	relevant	variables	or
indicate	which	path	of	a	conditional	was	followed.	The	TDD	developer	would	instead	write	assertions
using	should	or	expect.

If	the	bug	still	can’t	be	found,	the	typical	developer	might	isolate	part	of	the	code	by	carefully	setting	up
conditions	to	skip	over	method	calls	he	doesn’t	care	about	or	change	variable	values	to	force	the	code	to
go	 down	 the	 suspected	 buggy	 path.	 For	 example,	 he	 might	 do	 this	 by	 setting	 a	 breakpoint	 using	 a
debugger	 and	 manually	 inspecting	 or	 manipulating	 variable	 values	 before	 continuing	 past	 the
breakpoint.	In	contrast,	the	TDD	developer	would	isolate	the	suspect	code	path	using	stubs	and	mocks
to	control	what	happens	when	certain	methods	are	called	and	which	direction	conditionals	will	go.

http://en.wikipedia.org/wiki/code_smells

By	now,	the	typical	developer	is	absolutely	convinced	that	he’ll	certainly	find	the	bug	and	won’t	have	to
repeat	this	tedious	manual	process,	though	this	usually	turns	out	to	be	wrong.	The	TDD	developer	has
isolated	each	behavior	in	its	own	spec,	so	repeating	the	process	just	means	re-running	the	spec,	which
can	even	happen	automatically	using	autotest.

In	other	words:	If	we	write	 the	code	first	and	have	 to	fix	bugs,	we	end	up	using	the	same	techniques
required	in	TDD,	but	less	efficiently	and	more	manually,	hence	less	productively.

But	if	we	use	TDD,	bugs	can	be	spotted	immediately	as	the	code	is	written.	If	our	code	works	the	first
time,	using	TDD	still	gives	us	a	regression	test	to	catch	bugs	that	might	creep	into	this	part	of	the	code
in	the	future.

8.12	To	Learn	More
	

How	Google	Tests	Software	(Whittaker	et	al.	2012)	is	a	rare	glimpse	into	how	Google	has	scaled	up
and	 adapted	 the	 techniques	 described	 in	 this	 chapter	 to	 instill	 a	 culture	 of	 testing	 that	 is	widely
admired	by	its	competitors.
The	online	RSpec	documentation	gives	complete	details	and	additional	features	used	in	advanced
testing	scenarios.
The	 RSpec	 Book	 (Chelimsky	 et	 al.	 2010)	 is	 the	 definitive	 published	 reference	 to	 RSpec	 and
includes	examples	of	features,	mechanisms	and	best	practices	that	go	far	beyond	this	introduction.

	 P.	Ammann	and	J.	Offutt.	Introduction	to	Software	Testing.	Cambridge	University	Press,	2008.	ISBN0521880386.

	
D.	Chelimsky,	D.	Astels,	B.	Helmkamp,	D.	North,	Z.	Dennis,	and	A.	Hellesøy.	The	RSpec	Book:
Behaviour	Driven	Development	with	Rspec,	Cucumber,	and	Friends	(The	Facets	of	Ruby	Series).
Pragmatic	Bookshelf,	2010.	ISBN	1934356379.
	 M.	Feathers.	Working	Effectively	with	Legacy	Code.	Prentice	Hall,	2004.	ISBN	9780131177055.

	
G.	Klein,	K.	Elphinstone,	G.	Heiser,	J.	Andronick,	D.	Cock,	P.	Derrin,	D.	Elkaduwe,	K.	Engelhardt,
R.	Kolanski,	M.	Norrish,	T.	Sewell,	H.	Tuch,	and	S.	Winwood.	seL4:	Formal	verification	of	an	OS
kernel.	Communications	of	the	ACM	(CACM),	53(6):107–115,	June	2010.

	 J.	A.	Whittaker,	J.	Arbon,	and	J.	Carollo.	How	Google	Tests	Software.	Addison-Wesley	Professional,
2012.	ISBN	0321803027.

8.13	Suggested	Projects

		

Project	 8.1.	 (Discussion)	 Describe	 the	 role	 that	 formal	 methods	 can	 play	 in	 the	 development	 of
complex	software	and	compare	their	use	as	validation	and	verification	techniques	with	testing.

		

Project	8.2.	Compare	and	contrast	integration	strategies	including	top-down,	bottom-up,	and	sandwich
integration.

http://rspec.info

Project	8.3.

Complete	the	happy	path	of	the	Cucumber	scenario	started	in	Chapter	7	for	retrieving	movie	info	from
TMDb.	To	keep	the	scenario	Independent	of	the	real	TMDb	service,	you’ll	need	to	download	and	use
the	FakeWeb	gem	to	“stub	out”	calls	to	the	TMDb	service.

Project	8.4.

Write	specs	and	code	to	test	the	implicit	requirement	that	an	empty	collection	is	returned	when	a	request
is	made	with	a	valid	API	key	but	no	results	match	in	TMDb.

Project	 8.5.	 In	Section	8.3,	we	 stubbed	 the	method	find_in_tmdb	 both	 to	 isolate	 the	 testing	 of	 the
controller	 from	other	classes	and	because	 the	method	did	not	yet	exist.	How	would	such	stubbing	be
handled	in	Java?

Project	8.6.	Based	on	the	specfile	below,	to	what	method(s)	must	instances	of	Foo	respond	in	order	for
the	tests	to	pass?

http://pastebin.com/CugB7gup

	1				require	’foo’

	2				describe	Foo	do

	3						describe	"a	new	foo"	do

	4								before	:each	do	;	@foo	=	Foo.new	;	end

	5								it	"should	be	a	pain	in	the	butt"	do

	6										@foo.should	be_a_pain_in_the_butt

	7								end

	8								it	"should	be	awesome"	do

	9										@foo.should	be_awesome

10								end

11								it	"should	not	be	nil"	do

12										@foo.should_not		be_nil

13								end

14								it	"should	not	be	the	empty	string"	do

15										@foo.should_not	==	""

16								end

17						end

18				end

Project	8.7.	 In	Chapter	7,	we	created	a	“Find	 in	TMDb”	button	on	 the	 index	page	of	RottenPotatoes
that	would	post	 to	search_tmdb,	but	we	never	wrote	a	spec	 that	verifies	 that	 the	button	routes	 to	 the
correct	action.	Write	 this	spec	using	RSpec’s	route_to	 assertion	matcher	and	add	 it	 to	 the	controller
spec.	(Hint:	since	this	route	doesn’t	correspond	to	a	basic	CRUD	action,	you	won’t	be	able	to	use	the
built-in	 RESTful	 URI	 helpers	 to	 specify	 the	 route,	 but	 you	 can	 use	 the	 :controller	 and	 :action
arguments	to	route_to	to	specify	the	action	explicitly.)

Project	8.8.	Increase	the	C0	coverage	of	movies_controller.rb	to	100%	by	creating	additional	specs
in	movies_controller_spec.rb.

Project	8.9.

http://pastebin.com/CugB7gup

In	 1999,	 the	 $165	 million	 Mars	 Climate	 Orbiter	 spacecraft	 burned	 up	 while	 entering	 the	 Martian
atmosphere	 because	 one	 team	working	on	 thruster	 software	 had	 expressed	 thrust	 in	metric	 (SI)	 units
while	another	team	working	on	a	different	part	of	the	thruster	software	had	expressed	them	in	Imperial
units.	What	kind(s)	of	correctness	tests—unit,	functional,	or	integration—would	have	been	necessary	to
catch	this	bug?

Project	8.10.

Ruby	Rod	has	just	filled	in	his	username	and	password	and	is	about	to	click	the	Login	button	on	Ben
Bitdiddle’s	Rails	app.	The	desired	result,	if	his	login	arguments	are	correct,	would	be	a	page	displaying
a	“Welcome,	Ruby	Rod.”

Consider	each	of	the	steps	that	occurs	as	a	result	of	this	interaction.	For	each	one,	determine	whether	it
could	be	tested	by:
	

a	unit	test	for	a	model
a	functional	test	for	a	controller/view	pair
a	functional	test	for	a	route
a	headless-browser-based	full-stack	test	(Cucumber	+	Capybara	in	headless	mode)
a	remote-control-browser-based	full-stack	test	(Cucumber	+	Capybara	using	Webdriver)

	

1.	 Rod	clicks	the	Login	button
2.	 A	URL	is	generated	as	a	result	of	the	button	click
3.	 The	URL	is	received	by	the	server	hosting	Ben’s	app
4.	 The	URL	is	converted	into	a	route
5.	 A	controller	method	is	called	according	to	the	route
6.	 The	username	and	password	are	verified
7.	 The	‘welcome’	view	is	selected	for	rendering
8.	 Rod’s	name	is	interpolated	into	the	text	of	the	welcome	view
9.	 The	welcome	view	is	rendered	in	Rod’s	browser

Project	8.11.

In	 the	 San	 Francisco	 Bay	 Area,	 public	 transportation	 users	 can	 purchase	 a	 card	 called	 Clipper	 that
serves	as	a	common	fare	medium	across	transit	agencies	that	currently	have	their	own	media.	Among
other	 things,	 it’s	 supposed	 to	 do	 calculations	 of	 discounts	when	 transferring	 between	 agencies,	 since
many	agencies	 have	 such	 agreements.	But	when	 it	was	 first	 deployed,	 there	were	 software	bugs	 that
sometimes	resulted	in	computing	these	discounts	incorrectly.	Here	is	a	scenario	similar	to	one	that	really
happened	in	2011.	Two	of	the	rules	for	computing	interagency	discounts	are:

	

1.	 A	Muni	bus	ticket	costs	$2,	and	is	valid	for	90	minutes	to	transfer	to	any	bus.
2.	 A	BART	train	ticket	costs	$1.75.

Consider	the	following	boundary	condition	scenario.

http://www.akit.org/2011/06/clipper-could-be-overcharging-you-for.html

	

1.	 A	rider	starts	her	trip	on	Muni,	paying	$2.00.
2.	 She	transfers	from	Muni	to	BART,	paying	an	additional	$1.75	to	ride	BART.
3.	 When	she	exits	BART	less	than	90	minutes	later,	she	transfers	to	another	Muni	bus.	She	should	not

be	charged	anything,	because	her	original	Muni	fare	is	valid	for	90	minutes	on	any	bus.	But	in	fact
she	is	charged	$2.00—a	new	Muni	fare.

If	step	3	had	occurred	more	than	90	minutes	after	step	1,	it	would	have	been	correct	to	charge	her	$2.00.
Use	TDD	and	RSpec	to	develop	a	testing	strategy	that	would	check	the	behavior	of	both	cases.

9.	 Software	 Maintenance:	 Enhancing	 Legacy	 Software	 Using
Refactoring	and	Agile	Methods

			Butler	Lampson	(1943–)	was	the	intellectual	leader	of	the	legendary	Xerox	Palo
Alto	Research	Center	(Xerox	PARC),	which	during	its	heyday	in	the	1970s	invented	graphical	user
interfaces,	object-oriented	programming,	laser	printing,	and	Ethernet.	Three	PARC	researchers

eventually	won	Turing	Awards	for	their	work	there.	Lampson	received	the	1994	Turing	Award	for
contributions	to	the	development	and	implementation	of	distributed	personal	computing	environments:
workstations,	networks,	operating	systems,	programming	systems,	displays,	security,	and	document

publishing.

There	probably	isn’t	a	“best”	way	to	build	the	system,	or	even	any	major	part	of	it;	much	more
important	is	to	avoid	choosing	a	terrible	way,	and	to	have	clear	division	of	responsibilities	among	the

parts.
—Butler	Lampson,	Hints	for	Computer	System	Design,	1983

9.1	What	Makes	Code	“Legacy”	and	How	Can	Agile	Help?
9.2	Exploring	a	Legacy	Codebase
9.3	Establishing	Ground	Truth	With	Characterization	Tests
9.4	Comments
9.5	Metrics,	Code	Smells,	and	SOFA
9.6	Method-Level	Refactoring
9.7	The	Plan-And-Document	Perspective
9.8	Fallacies	and	Pitfalls
9.9	Concluding	Remarks:	Continuous	Refactoring
9.10	To	Learn	More
9.11	Suggested	Projects

Concepts

Like	a	shark	that	must	keep	moving	to	live,	software	must	change	to	remain	viable.	The	big	concepts	in
this	chapter	are	 that	Agile	development	 is	a	good	approach	to	both	maintain	software	and	to	enhance
legacy	code,	and	that	refactoring	is	necessary	on	all	development	processes	to	keep	code	maintainable.

When	 writing	 code,	 software	 metrics	 and	 code	 smells	 can	 identify	 code	 that	 is	 hard	 to	 read.
Transforming	 the	 code	 by	 refactoring	 should	 improve	 software	 metrics	 and	 eliminate	 code	 smells.
Methods	should	be	Short,	do	One	thing,	have	Few	arguments,	and	maintain	a	single	level	of	Abstraction
(SOFA).

To	enhance	legacy	code	using	the	Agile	lifecycle	:
	

Understand	 the	code	at	 the	change	points,	where	you	can	plausibly	make	changes.	Reading	and
enhancing	comments	is	one	way	to	understand	the	code.
Explore	 how	 it	 works	 from	 all	 stakeholders’	 perspective,	 which	 involves	 reading	 tests,	 design
documents,	and	inspecting	code.
Write	characterization	tests	to	beef	up	test	coverage	before	making	changes	to	the	code.

For	the	Plan	and	Document	lifecycle:
	

A	 maintenance	 manager	 runs	 the	 project	 during	 maintenance	 and	 estimates	 cost	 of	 change
requests.
Using	cost-benefit	analysis,	a	Change	Control	Committee	triages	change	requests.
Like	 Agile,	 maintenance	 relies	 on	 regression	 testing	 to	 ensure	 new	 releases	 work	 well	 and
refactoring	to	make	the	code	easier	to	maintain.

Surprisingly,	 the	 Agile	 process	 matches	 many	 needs	 of	 the	 maintenance	 phase	 of	 Plan-and-
Development	lifecycle.

Agile	 and	 Plan-and-Document	 processes	 have	 the	 same	 maintenance	 goals	 and	 many	 of	 the	 same
techniques,	but	Agile	suggests	getting	there	by	constant	incremental	refactoring	rather	than	recoding	all
up	front.

http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/software_metrics
http://en.wikipedia.org/wiki/code_smells
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/characterization_tests
http://en.wikipedia.org/wiki/Change_request
http://en.wikipedia.org/wiki/regression_testing
http://en.wikipedia.org/wiki/Code_refactoring

9.1	What	Makes	Code	“Legacy”	and	How	Can	Agile	Help?

1.	Continuing	Change:	[software]	systems	must	be	continually	adapted	or	they	become	progressively
less	satisfactory

—Lehman’s	first	law	of	software	evolution

	 	 	As	Chapter	1	explained,	 legacy	code	 stays	 in	use	because	 it	still	meets	a	customer	need,	even
though	its	design	or	implementation	may	be	outdated	or	poorly	understood.	In	this	chapter	we	will	show
how	to	apply	Agile	techniques	to	enhance	and	modify	legacy	code.	Figure	9.1	highlights	this	topic	in
the	context	of	the	overall	Agile	lifecycle.

http://en.wikipedia.org/wiki/legacy_code

Figure	9.1:	The	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book.	This	chapter	covers	how	Agile	techniques	can	be
helpful	when	enhancing	legacy	apps.

Maintainability	 is	 the	 ease	 with	 which	 a	 product	 can	 be	 improved.	 In	 software	 engineering,
maintenance	consists	of	four	categories	(Lientz	et	al.	1978):
	

Corrective	maintenance:	repairing	defects	and	bugs
Perfective	maintenance:	expanding	the	software’s	functionality	to	meet	new	customer	requirements

Adaptive	 maintenance:	 coping	 with	 a	 changing	 operational	 environment	 even	 if	 no	 new
functionality	is	added;	for	example,	adapting	to	changes	in	the	production	hosting	environment
Preventive	maintenance:	improving	the	software’s	structure	to	increase	future	maintainability.

Practicing	 these	 kinds	 of	maintenance	 on	 legacy	 code	 is	 a	 skill	 learned	 by	 doing:	we	will	 provide	 a
variety	of	techniques	you	can	use,	but	there	is	no	substitute	for	mileage.	That	said,	a	key	component	of
all	 these	maintenance	activities	 is	refactoring,	a	process	 that	changes	 the	structure	of	code	(hopefully
improving	it)	without	changing	the	code’s	functionality.	The	message	of	this	chapter	is	that	continuous
refactoring	improves	maintainability.	Therefore,	a	large	part	of	this	chapter	will	focus	on	refactoring.

Any	piece	of	software,	however	well-designed,	can	eventually	evolve	beyond	what	its	original	design
can	 accommodate.	This	process	 leads	 to	maintainability	 challenges,	 one	of	which	 is	 the	 challenge	of
working	with	 legacy	code.	Some	developers	use	 the	 term	“legacy”	when	 the	 resulting	code	 is	poorly
understood	 because	 the	 original	 designers	 are	 long	 gone	 and	 the	 software	 has	 accumulated	 many
patches	 not	 explained	 by	 any	 current	 design	 documents.	 A	 more	 jaded	 view,	 shared	 by	 some
experienced	practitioners	(Glass	2002),	 is	 that	such	documents	wouldn’t	be	very	useful	anyway.	Once
development	starts,	necessary	design	changes	cause	 the	system	to	drift	away	from	the	original	design
documents,	which	don’t	get	updated.	In	such	cases	developers	must	rely	on	informal	design	documents
such	as	those	that	Figure	9.2	lists.

Highly-readable	unit,	functional	and
integration	tests	(Chapter	8) Git	commit	log	messages	(Chapter	10)

Lo-fi	UI	mockups	and	Cucumber-style	user
stories	(Chapter	7)

Comments	and	RDoc-style	documentation	embedded	in
the	code	(Section	9.4)

Photos	of	whiteboard	sketches	about	the
application	architecture,	class	relationships,
etc.	(Section	9.2)

Archived	email,	wiki/blog,	notes,	or	video	recordings	of
code	and	design	reviews,	for	example	in	Campfire	or
Basecamp	(Chapter	10)

Figure	9.2:	While	up-to-date	formal	design	documents	are	valuable,	Agile	suggests	we	should	place	relatively	more	value	on
documentation	that	is	“closer	to”	the	working	code.

How	 can	 we	 enhance	 legacy	 software	 without	 good	 documentation?	 As	Michael	 Feathers	 writes	 in
Working	Effectively	With	Legacy	Code	(Feathers	2004),	there	are	two	ways	to	make	changes	to	existing
software:	Edit	and	Pray	or	Cover	and	Modify.	The	 first	method	 is	 sadly	all	 too	common:	 familiarize
yourself	with	some	small	part	of	the	software	where	you	have	to	make	your	changes,	edit	the	code,	poke
around	manually	to	see	if	you	broke	anything	(though	it’s	hard	to	be	certain),	then	deploy	and	pray	for
the	best.

In	contrast,	Cover	and	Modify	calls	 for	creating	 tests	 (if	 they	don’t	already	exist)	 that	cover	 the	code
you’re	going	to	modify	and	using	them	as	a	“safety	net”	to	detect	unintended	behavioral	changes	caused
by	your	modifications,	just	as	regression	tests	detect	failures	in	code	that	used	to	work.	The	cover	and
modify	point	of	view	leads	to	Feathers’s	more	precise	definition	of	“legacy	code”,	which	we	will	use:
code	that	lacks	sufficient	tests	to	modify	with	confidence,	regardless	of	who	wrote	it	and	when.	In	other
words,	code	 that	you	wrote	 three	months	ago	on	a	different	project	and	must	now	revisit	and	modify
might	as	well	be	legacy	code.

http://en.wikipedia.org/wiki/refactoring
http://en.wikipedia.org/wiki/Patch_(computing)
http://campfirenow.com
http://basecamphq.com

Happily,	 the	Agile	 techniques	we’ve	already	 learned	 for	developing	new	software	can	also	help	with
legacy	code	.	Indeed,	the	task	of	understanding	and	evolving	legacy	software	can	be	seen	as	an	example
of	 “embracing	 change”	 over	 longer	 timescales.	 If	 we	 inherit	 well-structured	 software	 with	 thorough
tests,	we	can	use	BDD	and	TDD	to	drive	addition	of	functionality	 in	small	but	confident	steps.	If	we
inherit	poorly-structured	or	undertested	code,	we	need	to	“bootstrap”	ourselves	into	the	desired	situation
in	four	steps:
	

1.	 Identify	the	change	points,	or	places	where	you	will	need	to	make	changes	in	the	legacy	system.
Section	 9.2	 describes	 some	 exploration	 techniques	 that	 can	 help,	 and	 introduces	 one	 type	 of
Unified	Modeling	Language	 (UML)	 diagram	 for	 representing	 the	 relationships	 among	 the	main
classes	in	an	application.

2.	 If	 necessary,	 add	 characterization	 tests	 that	 capture	 how	 the	 code	 works	 now,	 to	 establish	 a
baseline	“ground	truth”	before	making	any	changes.	Section	9.3	explains	how	to	do	this	using	tools
you’re	already	familiar	with.

3.	 Determine	whether	the	change	points	require	refactoring	to	make	the	existing	code	more	testable
or	accommodate	the	required	changes,	for	example,	by	breaking	dependencies	that	make	the	code
hard	 to	 test.	 Section	 9.6	 introduces	 a	 few	 of	 the	 most	 widely-used	 techniques	 from	 the	 many
catalogs	of	refactorings	that	have	evolved	as	part	of	the	Agile	movement.

4.	 Once	 the	 code	 around	 the	 change	 points	 is	 well	 factored	 and	 well	 covered	 by	 tests,	 make	 the
required	changes,	using	your	newly-created	tests	as	regressions	and	adding	tests	for	your	new	code
as	in	Chapters	7	and	8.

Summary	of	how	Agile	can	help	legacy	code:
	

Maintainability	is	the	ease	with	which	software	can	be	enhanced,	adapted	to	a	changing	operating
environment,	 repaired,	 or	 improved	 to	 facilitate	 future	 maintenance.	 A	 key	 part	 of	 software
maintenance	 is	 refactoring,	 a	 central	 part	 of	 the	 Agile	 process	 that	 improves	 the	 structure	 of
software	 to	 make	 it	 more	 maintainable.	 Continuous	 refactoring	 therefore	 improves	 software
maintainability.
Working	with	legacy	code	begins	with	exploration	to	understand	the	code	base,	and	in	particular	to
understand	the	code	at	the	change	points	where	we	expect	to	make	changes.
Without	 good	 test	 coverage,	 we	 lack	 confidence	 that	 refactoring	 or	 enhancing	 the	 code	 will
preserve	 its	 existing	 behavior.	 Therefore,	we	 adopt	 Feathers’s	 definition—“Legacy	 code	 is	 code
without	 tests”—and	create	characterization	 tests	where	necessary	 to	beef	up	 test	coverage	before
refactoring	or	enhancing	legacy	code.

ELABORATION:	Embedded	documentation
RDoc	 is	 a	 documentation	 system	 that	 looks	 for	 specially	 formatted	 comments	 in	 Ruby	 code	 and	 generates	 programmer
documentation	from	them.	It	is	similar	to	and	inspired	by	JavaDoc.	RDoc	syntax	is	easily	learned	by	example	and	from	the	Ruby
Programming	wikibook.	The	 default	HTML	output	 from	RDoc	 can	 be	 seen,	 for	 example,	 in	 the	Rails	 documentation.	 Consider
adding	RDoc	documentation	as	you	explore	and	understand	 legacy	code;	 running	rdoc	.	 (that’s	a	dot)	 in	 the	 root	directory	of	a
Rails	app	generates	RDoc	documentation	from	every	.rb	file	in	the	current	directory,	rdoc	–help	shows	other	options,	and	rake	-
T	doc	in	a	Rails	app	directory	lists	other	documentation-related	Rake	tasks.

http://en.wikipedia.org/wiki/characterization_tests
http://en.wikipedia.org/wiki/refactoring
http://en.wikibooks.org/wiki/Ruby_Programming/RubyDoc
http://api.rubyonrails.org

		

Self-Check	9.1.1.

Why	do	many	software	engineers	believe	that	when	modifying	legacy	code,	good	test	coverage	is	more
important	than	detailed	design	documents	or	well-structured	code?

	Without	 tests,	 you	 cannot	 be	 confident	 that	 your	 changes	 to	 the	 legacy	 code	 preserve	 its	 existing
behaviors.

9.2	Exploring	a	Legacy	Codebase

If	you’ve	chosen	the	right	data	structures	and	organized	things	well,	the	algorithms	will	almost	always
be	self-evident.	Data	structures,	not	algorithms,	are	central	to	programming.

—Rob	Pike

The	goal	of	exploration	is	to	understand	the	app	from	both	the	customers’	and	the	developers’	point	of
view.	The	specific	techniques	you	use	may	depend	on	your	immediate	aims:
	

You’re	brand	new	to	the	project	and	need	to	understand	the	app’s	overall	architecture,	documenting
as	you	go	so	others	don’t	have	to	repeat	your	discovery	process.
You	need	to	understand	just	the	moving	parts	that	would	be	affected	by	a	specific	change	you’ve
been	asked	to	make.
You’re	 looking	 for	 areas	 that	 need	 beautification	 because	 you’re	 in	 the	 process	 of	 porting	 or
otherwise	updating	a	legacy	codebase.

Just	 as	we	 explored	SaaS	 architecture	 in	Chapter	 2	 using	 height	 as	 an	 analogy,	we	 can	 follow	 some
“outside-in”	steps	to	understand	the	structure	of	a	legacy	app	at	various	levels:

	

1.	 Check	out	a	scratch	branch	to	run	the	app	in	a	development	environment
2.	 Learn	and	replicate	the	user	stories,	working	with	other	stakeholders	if	necessary
3.	 Examine	the	database	schema	and	the	relationships	among	the	most	important	classes
4.	 Skim	all	the	code	to	quantify	code	quality	and	test	coverage

Since	operating	on	the	live	app	could	endanger	customer	data	or	the	user	experience,	the	first	step	is	to
get	the	application	running	in	a	development	or	staging	environment	in	which	perturbing	its	operation
causes	no	inconvenience	to	users.	Create	a	scratch	branch	of	 the	repo	that	you	never	intend	to	check
back	in	and	can	therefore	be	used	for	experimentation.	Create	a	development	database	if	there	isn’t	an
existing	one	used	for	development.	An	easy	way	to	do	this	is	to	clone	the	production	database	if	it	isn’t
too	large,	thereby	sidestepping	numerous	pitfalls:
	

The	app	may	have	relationships	such	as	has-many	or	belongs-to	that	are	reflected	in	the	table	rows.
Without	 knowing	 the	 details	 of	 these	 relationships,	 you	might	 create	 an	 invalid	 subset	 of	 data.

Using	 RottenPotatoes	 as	 an	 example,	 you	 might	 inadvertently	 end	 up	 with	 a	 review	 whose
movie_id	and	moviegoer_id	refer	to	nonexistent	movies	or	moviegoers.
Cloning	 the	 database	 eliminates	 possible	 differences	 in	 behavior	 between	 production	 and
development	 resulting	 from	 differences	 in	 database	 implementations,	 difference	 in	 how	 certain
data	types	such	as	dates	are	represented	in	different	databases,	and	so	on.
Cloning	gives	you	realistic	valid	data	to	work	with	in	development.

If	you	can’t	clone	the	production	database,	or	you	have	successfully	cloned	it	but	it’s	too	unwieldy	to
use	in	development	all	the	time,	you	can	create	a	development	database	by	extracting	fixture	data	from
the	real	database	using	the	steps	in	Figure	9.3.

http://pastebin.com/gMFCF02W

	1	#	on	production	computer:

	2	RAILS_ENV=production	rake	db:schema:dump

	3	RAILS_ENV=production	rake	db:fixtures:extract

	4	#	copy	db/schema.rb	and	test/fixtures/*.yml	to	development	computer

	5	#	then,	on	development	computer:

	6	rake	db:create								#	uses	RAILS_ENV=development	by	default

	7	rake	db:schema:load

	8	rake	db:fixtures:load

Figure	9.3:	You	can	create	an	empty	development	database	that	has	the	same	schema	as	the	production	database	and	then	populate	it	with
fixtures.	Although	Chapter	8	cautions	against	the	abuse	of	fixtures,	in	this	case	we	are	using	them	to	replicate	known	behavior	from	the
production	environment	in	your	development	environment.

Once	the	app	is	running	in	development,	have	one	or	two	experienced	customers	demonstrate	how	they
use	the	app,	indicating	during	the	demo	what	changes	they	have	in	mind	(Nierstrasz	et	al.	2009).	Ask
them	to	talk	through	the	demo	as	they	go;	although	their	comments	will	often	be	in	terms	of	the	user
experience	 (“Now	 I’m	 adding	 Mona	 as	 an	 admin	 user”),	 if	 the	 app	 was	 created	 using	 BDD,	 the
comments	may	 reflect	 examples	of	 the	original	 user	 stories	 and	 therefore	 the	 app’s	 architecture.	Ask
frequent	questions	during	the	demo,	and	if	the	maintainers	of	the	app	are	available,	have	them	observe
the	demo	as	well.	In	Section	9.3	we	will	see	how	these	demos	can	form	the	basis	of	“ground	truth”	tests
to	underpin	your	changes.

Once	you	have	an	 idea	of	how	the	app	works,	 take	a	 look	at	 the	database	schema;	Fred	Brooks,	Rob
Pike,	and	others	have	all	acknowledged	the	importance	of	understanding	the	data	structures	as	a	key	to
understanding	the	app	logic.	You	can	use	an	interactive	database	GUI	to	explore	the	schema,	but	you
might	 find	 it	 more	 efficient	 to	 run	 rake	 db:schema:dump,	 which	 creates	 a	 file	 db/schema.rb
containing	the	database	schema	in	the	migrations	DSL	introduced	in	Section	4.2.	The	goal	is	to	match
up	the	schema	with	the	app’s	overall	architecture.

Figure	 9.4	 shows	 a	 simplified	 Unified	 Modeling	 Language	 (UML)	 class	 diagram	 generated	 by	 the
railroady	 gem	 that	 captures	 the	 relationships	 among	 the	 most	 important	 classes	 and	 the	 most
important	attributes	of	those	classes.	While	the	diagram	may	look	overwhelming	initially,	since	not	all
classes	play	an	equally	 important	structural	 role,	you	can	 identify	“highly	connected”	classes	 that	are

http://paulschreiber.com/blog/2010/06/15/rake-task-extracting-database-contents/
http://pastebin.com/gMFCF02W

probably	central	to	the	application’s	functions.	For	example,	in	Figure	9.4,	the	Customer	and	Voucher
classes	 are	 connected	 to	 each	 other	 and	 to	 many	 other	 classes.	 You	 can	 then	 identify	 the	 tables

corresponding	to	these	classes	in	the	database	schema.	 		

Figure	9.4:	This	simplified	Unified	Modeling	Language	(UML)	class	diagram,	produced	automatically	by	the	railroady	gem,	shows	the
models	in	a	Rails	app	that	manages	ticket	sales,	donations,	and	performance	attendance	for	a	small	theater.	Edges	with	arrowheads	or
circles	show	relationships	between	classes:	a	Customer	has	many	Visits	and	Vouchers	(open	circle	to	arrowhead),	has	one
most_recent_visit	(solid	circle	to	arrowhead),	and	a	has	and	belongs	to	many	Labels	(arrowhead	to	arrowhead).	Plain	edges	show
inheritance:	Donation	and	Voucher	are	subclasses	of	Item.	(All	of	the	important	classes	here	inherit	from	ActiveRecord::Base,	but
railroady	draws	only	the	app’s	classes.)	We	will	see	other	types	of	UML	diagrams	in	Chapter	11.

Having	 familiarized	 yourself	 with	 the	 app’s	 architecture,	 most	 important	 data	 structures,	 and	 major
classes,	you	are	ready	to	look	at	the	code.	The	goal	of	inspecting	the	code	is	to	get	a	sense	of	its	overall
quality,	test	coverage,	and	other	statistics	that	serve	as	a	proxy	for	how	painful	it	may	be	to	understand
and	modify.	Therefore,	before	diving	into	any	specific	file,	run	rake	stats	to	get	the	total	number	of
lines	 of	 code	 and	 lines	 of	 tests	 for	 each	 file;	 this	 information	 can	 tell	 you	 which	 classes	 are	 most
complex	 and	 therefore	 probably	 most	 important	 (highest	 LOC),	 best	 tested	 (best	 code-to-test	 ratio),
simple	“helper”	classes	(low	LOC),	and	so	on,	deepening	the	understanding	you	bootstrapped	from	the
class	diagram	and	database	schema.	(Later	in	this	chapter	we’ll	show	how	to	evaluate	code	with	some
additional	quality	metrics	 to	give	you	a	heads	up	of	where	the	hairiest	efforts	might	be.)	If	 test	suites
exist,	 run	 them;	 assuming	most	 tests	 pass,	 read	 the	 tests	 to	 help	 understand	 the	 original	 developers’
intentions.	 Then	 spend	 one	 hour	 (Nierstrasz	 et	 al.	 2009)	 inspecting	 the	 code	 in	 the	 most	 important
classes	 as	well	 as	 those	 you	 believe	 you’ll	 need	 to	modify	 (the	 change	 points),	 which	 by	 now	 you
should	be	getting	a	good	sense	of.

Summary	of	legacy	code	exploration:
	

The	goal	of	exploration	is	to	understand	how	the	app	works	from	multiple	stakeholders’	points	of
view,	including	the	customer	requesting	the	changes	and	the	designers	and	developers	who	created
the	original	code.
Exploration	can	be	 aided	by	 reading	 tests,	 reading	design	documents	 if	 available,	 inspecting	 the
code,	 and	drawing	or	 generating	UML	class	 diagrams	 to	 identify	 relationships	 among	 important
entities	(classes)	in	the	app.
Once	you	have	successfully	seen	the	app	demonstrated	in	production,	 the	next	steps	are	 to	get	 it

running	in	development	by	either	cloning	or	fixturing	the	database	and	to	get	the	test	suite	running
in	development.

Figure	9.5:	A	3-by-5	inch	(or	A7	size)	Class–Responsibility–Collaborator	(CRC)	card	representing	the	Voucher	class	from	Figure	9.4.
The	left	column	represents	Voucher’s	responsibilities—things	it	knows	(instance	variables)	or	does	(instance	methods).	Since	Ruby
instance	variables	are	always	accessed	through	instance	methods,	we	can	determine	responsibilities	by	searching	the	class	file	voucher.rb
for	instance	methods	and	calls	to	attr_accessor.	The	right	column	represents	Voucher’s	collaborator	classes;	for	Rails	apps	we	can
determine	many	of	these	by	looking	for	has_many	and	belongs_to	in	voucher.rb.

ELABORATION:	Class--Responsibility--Collaborator	(CRC)	cards
CRC	cards	 (Figure	9.5)	were	proposed	 in	 1989	 as	 a	way	 to	 help	with	 object-oriented	 design.	Each	 card	 identifies	 one	 class,	 its
responsibilities,	 and	 collaborator	 classes	 with	 which	 it	 interacts	 to	 complete	 tasks.	 As	 this	 external	 screencast	 shows,	 a	 team
designing	new	code	selects	a	user	story	(Section	7.1).	For	each	story	step,	 the	 team	identifies	or	creates	 the	CRC	card(s)	 for	 the
classes	that	participate	in	that	step	and	confirms	that	the	classes	have	the	necessary	Responsibilities	and	Collaborators	to	complete
the	step.	If	not,	the	collection	of	classes	or	responsibilities	may	be	incomplete,	or	the	division	of	responsibilities	among	classes	may
need	to	be	changed.	When	exploring	legacy	code,	you	can	create	CRC	cards	to	document	the	classes	you	find	while	following	the
flow	from	the	controller	action	that	handles	a	user	story	step	through	the	models	and	views	involved	in	the	other	story	steps.

Self-Check	9.2.1.

What	are	some	reasons	it	is	important	to	get	the	app	running	in	development	even	if	you	don’t	plan	to
make	any	code	changes	right	away?

	A	few	reasons	include:
1.	 For	SaaS,	 the	 existing	 tests	may	need	access	 to	 a	 test	 database,	which	may	not	 be	 accessible	 in

production.
2.	 Part	of	your	exploration	might	involve	the	use	of	an	interactive	debugger	or	other	tools	that	could

slow	down	execution,	which	would	be	disruptive	on	the	live	site.
3.	 For	part	of	your	exploration	you	might	want	 to	modify	data	 in	 the	database,	which	you	can’t	do

with	live	customer	data.

9.3	Establishing	Ground	Truth	With	Characterization	Tests

If	there	are	no	tests	(or	too	few	tests)	covering	the	parts	of	the	code	affected	by	your	planned	changes,
you’ll	need	to	create	some	tests.	How	do	you	do	this	given	limited	understanding	of	how	the	code	works
now?	One	way	to	start	 is	to	establish	a	baseline	for	“ground	truth”	by	creating	characterization	 tests:
tests	written	after	the	fact	that	capture	and	describe	the	actual,	current	behavior	of	a	piece	of	software,
even	if	 that	behavior	has	bugs.	By	creating	a	Repeatable	automatic	 test	 (see	Section	8.2)	 that	mimics
what	 the	code	does	 right	now,	you	can	ensure	 that	 those	behaviors	 stay	 the	 same	as	you	modify	and
enhance	the	code,	like	a	high-level	regression	test.

It’s	 often	 easiest	 to	 start	with	 an	 integration-level	 characterization	 test	 such	 as	 a	Cucumber	 scenario,
since	 these	 make	 the	 fewest	 assumptions	 about	 how	 the	 app	 works	 and	 focus	 only	 on	 the	 user
experience.	 Indeed,	 while	 good	 scenarios	 ultimately	 make	 use	 of	 a	 “domain	 language”	 rather	 than
describing	detailed	user	interactions	in	imperative	steps	(Section	7.9),	at	this	point	it’s	fine	to	start	with
imperative	 scenarios,	 since	 the	 goal	 is	 to	 increase	 coverage	 and	 provide	 ground	 truth	 from	which	 to
create	more	detailed	tests.	Once	you	have	some	green	integration	tests,	you	can	turn	your	attention	to
unit-	or	functional-level	tests,	just	as	TDD	follows	BDD	in	the	outside-in	Agile	cycle.

Whereas	integration-level	characterization	tests	just	capture	behaviors	that	we	observe	without	requiring
us	to	understand	how	 those	behaviors	happen,	a	unit-level	characterization	 test	seems	to	require	us	 to

http://c2.com/doc/oopsla89/paper.html
https://vimeo.com/24668095
http://en.wikipedia.org/wiki/characterization_tests

understand	the	implementation.	For	example,	consider	the	code	in	Figure	9.6.	As	we’ll	discuss	in	detail
in	 the	 next	 section,	 it	 has	many	 problems,	 not	 least	 of	which	 is	 that	 it	 contains	 a	 bug.	 The	method
convert	 calculates	 the	current	year	given	a	 starting	year	 (in	 this	 case	1980)	and	 the	number	of	days
elapsed	since	January	1	of	that	year.	If	0	days	have	elapsed,	then	it	is	January	1,	1980;	if	365	days	have
elapsed,	it	is	December	31,	1980,	since	1980	was	a	leap	year;	if	366	days	have	elapsed,	it	is	January	1,
1981;	and	so	on.	How	would	we	create	unit	tests	for	convert	without	understanding	the	method’s	logic
in	detail?

http://pastebin.com/fvDf8t31

	1	#	WARNING!	This	code	has	a	bug!	See	text!

	2	class	TimeSetter

	3			def	self.convert(d)

	4					y	=	1980

	5					while	(d	>	365)	do

	6							if	(y	%	400	==	0	||

	7											(y	%	4	==	0	&&	y	%	100	!=	0))

	8									if	(d	>	366)

	9											d	-=	366

10											y	+=	1

11									end

12							else

13									d	-=	365

14									y	+=	1

15							end

16					end

17					return	y

18			end

19	end

Figure	9.6:	This	method	is	hard	to	understand,	hard	to	test,	and	therefore,	by	Feathers’s	definition	of	legacy	code,	hard	to	modify.	In	fact,
it	contains	a	bug—this	example	is	a	simplified	version	of	a	bug	in	the	Microsoft	Zune	music	player	that	caused	any	Zune	booted	on
December	31,	2008,	to	freeze	permanently,	and	for	which	the	only	resolution	was	to	wait	until	the	first	minute	of	January	1,	2009,	before
rebooting.	Screencast	9.3.1	shows	the	bug	and	fix.

http://pastebin.com/ZWb9QZRE

	1	require	’simplecov’

	2	SimpleCov.start

	3	require	’./time_setter’

	4	describe	TimeSetter	do

	5			{	365	=>	1980,	366	=>	1981,	900	=>	1982	}.each_pair	do	|arg,result|

	6					it	"#{arg}	days	puts	us	in	#{result}"	do

	7							TimeSetter.convert(arg).should	==	result

	8					end

	9			end

10	end

http://pastebin.com/fvDf8t31
http://pastebin.com/ZWb9QZRE

Figure	9.7:	This	simple	spec,	resulting	from	the	reverse-engineering	technique	shown	in	Screencast	9.3.1,	achieves	100%	C0	coverage
and	helps	us	find	a	bug	in	Figure	9.6.

Feathers	describes	a	useful	technique	for	“reverse	engineering”	specs	from	a	piece	of	code	we	don’t	yet
understand:	create	a	spec	with	an	assertion	that	we	know	will	probably	fail,	run	the	spec,	and	use	the
information	in	the	error	message	to	change	the	spec	to	match	actual	behavior.	Screencast	9.3.1	shows
how	we	do	this	for	convert,	resulting	in	the	specs	in	Figure	9.7	and	even	finding	a	bug	in	the	process!

Screencast	9.3.1:	Creating	characterization	specs	for	TimeSetter
We	create	specs	that	assert	incorrect	results,	then	fix	them	based	on	the	actual	test	behavior.	Our	goal	is
to	 capture	 the	 current	 behavior	 as	 completely	 as	 possible	 so	 that	 we’ll	 immediately	 know	 if	 code
changes	break	the	current	behavior,	so	we	aim	for	100%	C0	coverage	(even	though	that’s	no	guarantee
of	bug-freedom!),	which	is	challenging	because	the	code	as	presented	has	no	seams.	Our	effort	results	in
finding	a	bug	that	crippled	thousands	of	Microsoft	Zune	players	on	December	31,	2008.

Summary	of	characterization	tests:
To	Cover	and	Modify	when	we	lack	tests,	we	first	create	characterization	tests	that	capture	how	the
code	works	now.
Integration-level	characterization	tests,	such	as	Cucumber	scenarios,	are	often	easier	 to	start	with
since	they	only	capture	externally	visible	app	behavior.
To	create	unit-	and	functional-level	characterization	 tests	 for	code	we	don’t	 fully	understand,	we
can	write	a	spec	that	asserts	an	incorrect	result,	fix	the	assertion	based	on	the	error	message,	and
repeat	until	we	have	sufficient	coverage.

Self-Check	9.3.1.

State	whether	each	of	 the	following	is	a	goal	of	unit	and	functional	 testing,	a	goal	of	characterization
testing,	or	both:a
	

Improve	coverage
Test	boundary	conditions	and	corner	cases
Document	intent	and	behavior	of	app	code
Prevent	regressions	(reintroduction	of	earlier	bugs)

	(i)	and	(iii)	are	goals	of	unit,	functional,	and	characterization	testing.	(ii)	and	(iv)	are	goals	of	unit	and
functional	testing,	but	non-goals	of	characterization	testing.

ELABORATION:	What	about	specs	that	should	pass,	but	don't?

If	the	test	suite	is	out-of-date,	some	tests	may	be	failing	red.	Rather	than	trying	to	fix	the	tests	before	you	understand	the	code,	mark
them	as	“pending”	(for	example,	using	RSpec’s	pending	method)	with	a	comment	that	reminds	you	to	come	back	to	them	later	to
find	 out	 why	 they	 fail.	 Stick	 to	 the	 current	 task	 of	 preserving	 existing	 functionality	 while	 improving	 coverage,	 and	 don’t	 get
distracted	trying	to	fix	bugs	along	the	way.

http://vimeo.com/47043669

9.4	Comments

Not	only	does	legacy	code	often	lack	tests	and	good	documentation,	but	its	comments	are	often	missing
or	inconsistent	with	the	code.	Thus	far,	we	have	not	offered	advice	on	how	to	write	good	comments,	as
we	assume	you	already	know	how	 to	write	good	code	 in	 this	book.	We	now	offer	a	brief	 sermon	on
comments,	so	that	once	you	write	successful	characterization	tests	you	can	capture	what	you’ve	learned
by	adding	comments	to	the	legacy	code.

Ideally,	 you	write	 comments	 as	you	 code;	 if	 you	 come	back	 later	you	will	 have	 forgotten	 the	design
ideas,	so	the	comments	will	just	mimic	the	code.	Alas,	this	mistake	is	common	with	legacy	code.

http://pastebin.com/c7FTpZxQ

	1	#	Add	one	to	i.

	2	i	+=	1

	3	

	4	#	Lock	to	protect	against	concurrent	access.

	5	mutex	=	SpinLock.new

	6	

	7	#	This	method	swaps	the	panels.

	8	def	swap_panels(panel_1,	panel_2)

	9			#	...

10	end

Figure	9.8:	Examples	of	bad	comments,	which	state	the	obvious.	You’d	be	surprised	how	often	comments	just	mimic	code	even	in
otherwise	well-written	apps.	(These	examples	and	the	advice	on	comments	comes	from	John	Ousterhout).

http://pastebin.com/7PthRNCW

	1	#	Good	Comment:

	2	#	Scan	the	array	to	see	if	the	symbol	exists

	3	

	4	#	Much	better	than:

	5	#	Loop	through	every	array	index,	get	the

	6	#	third	value	of	the	list	in	the	content	to

	7	#	determine	if	it	has	the	symbol	we	are	looking

	8	#	for.	Set	the	result	to	the	symbol	if	we

	9	#	find	it.

Figure	9.9:	Example	of	comments	that	raises	the	level	of	abstraction	compared	to	comments	that	describe	how	you	implement	it.	(These
examples	and	the	advice	on	comments	comes	from	John	Ousterhout).

Comments	 should	 describe	 things	 that	 aren’t	 obvious	 from	 the	 code.	 This	 advice	 is	 a	 double-edged
sword,	as	it	means
	

http://pastebin.com/c7FTpZxQ
http://pastebin.com/7PthRNCW

Don’t	just	repeat	what’s	obvious	from	the	code.	Figure	9.8	gives	examples	of	bad	comments.
Do	think	about	what’s	not	obvious	at	both	the	low	level	and	the	high	level.	Figure	9.9	gives	a	better
example.

Obvious	 refers	 to	 someone	 who	 will	 come	 along	 later	 and	 read	 your	 code,	 not	 the	 original	 coder.
Examples	of	what	 is	not	obvious	 include	 the	units	 for	variables,	code	 invariants,	and	subtle	problems
that	required	a	particular	implementation.	It	is	particularly	important	to	document	the	design	issues	that
went	through	your	mind	while	you	were	writing	the	code,	explaining	why	the	code	is	written	this	way.
In	this	case	you	are	trying	to	document	what	went	through	another	programmer’s	mind;	once	you	figure
it	out,	be	sure	to	write	it	down	before	you	forget!

In	general,	comments	should	raise	the	level	of	abstraction	from	the	code.	The	programmer’s	goal	is	to
write	classes	and	other	code	that	hides	complexity;	that	is,	to	make	the	code	easier	to	use	than	to	make	it
easier	 to	write.	Abstraction	may	 not	 be	 obvious	 from	 implementation;	 comments	 should	 capture	 the
abstraction.	For	example,	what	do	I	need	to	know	to	invoke	a	method?	I	shouldn’t	have	to	read	the	code
of	a	method	before	calling	it.

One	 reason	 we	 are	 excited	 about	 the	 material	 in	 this	 book	 is	 that	 virtually	 every	 other	 software
engineering	sermons	in	 this	book	are	paired	with	a	 tool	 that	makes	it	easy	for	you	to	stay	on	the	true
path	and	for	others	 to	check	 to	see	 if	you	have	strayed.	Alas,	such	 is	not	 the	case	for	 this	sermon	on
comments.	The	only	enforcement	mechanism	beyond	self-discipline	is	inspection,	which	Section	10.7
describes.

Summary	of	comments:
Comments	are	best	written	at	the	same	time	as	the	code,	not	as	an	afterthought.
Comments	should	not	repeat	what	is	obvious	from	the	code.	For	example,	explain	why	the	code	is
written	this	way.
Comments	should	raise	the	level	of	abstraction	from	the	code.

Self-Check	9.4.1.	True	or	False:	One	reason	legacy	code	is	long	lasting	is	because	it	typically	has	good
comments.
	False.	We	wish	it	were	true.	Comments	are	often	missing	or	inconsistent	with	the	code,	which	is	one

reason	it	is	called	legacy	code	rather	than	beautiful	code.

9.5	Metrics,	Code	Smells,	and	SOFA

7.	Declining	Quality	-	The	quality	of	[software]	systems	will	appear	to	be	declining	unless	they	are
rigorously	maintained	and	adapted	to	operational	environment	changes.

—Lehman’s	seventh	law	of	software	evolution

			A	key	theme	of	this	book	is	that	engineering	software	is	about	creating	not	just	working	code,	but
beautiful	working	code.	This	chapter	 should	make	clear	why	we	believe	 this:	beautiful	code	 is	 easier
and	less	expensive	to	maintain.	Given	that	software	can	live	much	longer	than	hardware,	even	engineers

whose	 aesthetic	 sensibilities	 aren’t	moved	 by	 the	 idea	 of	 beautiful	 code	 can	 appreciate	 the	 practical
economic	advantage	of	reducing	lifetime	maintenance	costs.

How	can	you	tell	when	code	is	less	than	beautiful,	and	how	do	you	improve	it?	We’ve	all	seen	examples
of	 code	 that’s	 less	 than	 beautiful,	 even	 if	 we	 can’t	 always	 pin	 down	 the	 specific	 problems.	We	 can
identify	 problems	 in	 two	 ways:	 quantitatively	 using	 software	 metrics	 and	 qualitatively	 using	 code
smells.	Both	are	useful	and	tell	us	different	things	about	the	code,	and	we	apply	both	to	the	ugly	code	in
Figure	9.6.

Software	metrics	are	quantitative	measurements	of	code	complexity,	which	is	often	an	estimate	of	the
difficulty	of	thoroughly	testing	a	piece	of	code.	Dozens	of	metrics	exist,	and	opinion	varies	widely	on
their	 usefulness,	 effectiveness,	 and	 “normal	 range”	 of	 values.	Most	metrics	 are	 based	 on	 the	control
flow	graph	of	the	program,	in	which	each	graph	node	represents	a	basic	block	(a	set	of	statements	that
are	always	executed	together),	and	an	edge	from	node	A	to	node	B	means	that	there	is	some	code	path
in	which	B’s	basic	block	is	executed	immediately	after	A’s.

Plan-and-Document	software	projects	sometimes	include	specific	contractual	requirements	based	on	software	metrics.

Figure	9.10	shows	 the	control	 flow	graph	corresponding	 to	Figure	9.6,	which	we	can	use	 to	compute
two	widely-used	indicators	of	method-level	complexity:

	

1.	 Cyclomatic	 complexity	 measures	 the	 number	 of	 linearly-independent	 paths	 through	 a	 piece	 of
code.

2.	 ABC	score	is	a	weighted	sum	of	the	number	of	Assignments,	Branches	and	Conditionals	in	a	piece
of	code.

Software	engineer	Frank	McCabe	Sr.	invented	the	cyclomatic	complexity	metric	in	1976.

Figure	9.10:	The	node	numbers	in	this	control	flow	graph	correspond	to	line	numbers	in	Figure	9.6.	Cyclomatic	complexity	is	E	-N	+2P
where	E	is	the	number	of	edges,	N	the	number	of	nodes,	and	P	the	number	of	connected	components.	convert	scores	a	cyclomatic
complexity	of	4	as	measured	by	saikuro	and	an	ABC	score	(Assignments,	Branches,	Conditionals)	of	23	as	measured	by	flog.
Figure	9.11	puts	these	scores	in	context.

http://en.wikipedia.org/wiki/software_metrics
http://en.wikipedia.org/wiki/code_smells
http://en.wikipedia.org/wiki/Software_metrics
http://en.wikipedia.org/wiki/control_flow_graph
http://en.wikipedia.org/wiki/basic_block
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/ABC_score

These	analyses	are	usually	performed	on	source	code	and	were	originally	developed	for	statically-typed
languages.	 In	 dynamic	 languages,	 the	 analyses	 are	 complicated	 by	 metaprogramming	 and	 other
mechanisms	that	may	cause	changes	to	the	control	flow	graph	at	runtime.	Nonetheless,	they	are	useful
first-order	metrics,	and	as	you	might	expect,	the	Ruby	community	has	developed	tools	to	measure	them.
saikuro	computes	a	simplified	version	of	cyclomatic	complexity	and	flog	computes	a	variant	of	 the
ABC	score	that	is	weighted	in	a	way	appropriate	for	Ruby	idioms.	Both	of	these	and	more	are	included
in	 the	 metric_fu	 gem	 (part	 of	 the	 courseware).	 Running	 rake	 metrics	 on	 a	 Rails	 app	 computes
various	metrics	including	these,	and	highlights	parts	of	the	code	in	which	multiple	metrics	are	outside
their	 recommended	ranges.	 In	addition,	CodeClimate	provides	many	of	 these	metrics	as	a	service:	by
creating	an	account	there	and	linking	your	GitHub	repository	to	it,	you	can	view	a	“report	card”	of	your
code	metrics	 anytime,	 and	 the	 report	 is	 automatically	 updated	when	 you	 push	 new	 code	 to	GitHub.
Figure	9.11	summarizes	useful	metrics	we’ve	seen	so	far	that	speak	to	testability	and	therefore	to	code

beauty.	 		

Metric Tool Target	score Book	Reference
Code-to-test	ratio rake	stats ≤	1	:	2 Section	8.7
C0	coverage SimpleCov ≥	90% Section	8.7
ABC	score flog	(rake	metrics) <	20/method Section	9.5
Cyclomatic saikuro	(rake	metrics) <	10/method Section	9.5

Figure	9.11:	A	summary	of	useful	metrics	we’ve	seen	so	far	that	highlight	the	connection	between	beauty	and	testability,	including	Ruby
tools	that	compute	them	and	suggested	“normal”	ranges.	(The	recommended	value	for	cyclomatic	complexity	comes	from	NIST,	the	U.S.
National	Institute	of	Standards	and	Technologies.)	The	metric_fu	gem	includes	flog,	saikuro,	and	additional	tools	for	computing	metrics
we’ll	meet	in	Chapter	11.

The	second	way	to	spot	code	problems	is	by	looking	for	code	smells,	which	are	structural	characteristics
of	source	code	not	readily	captured	by	metrics.	Like	real	smells,	code	smells	call	our	attention	to	places
that	may	be	problematic.	Martin	Fowler’s	classic	book	on	refactoring	(Fowler	et	al.	1999)	lists	22	code
smells,	four	of	which	we	show	in	Figure	9.12,	and	Robert	C.	Martin’s	Clean	Code	 (Martin	2008)	has
one	of	the	more	comprehensive	catalogs	with	an	amazing	63	code	smells,	of	which	three	are	specific	to
Java,	nine	are	about	testing,	and	the	remainder	are	more	general.

Design	smells	(see	Chapter	11)	tell	us	when	something’s	wrong	in	the	way	classes	interact,	rather	than	within	the	methods	of	a	specific
class.

Name Symptom Possible	refactorings

Shotgun
Surgery

Making	a	small	change	to	a
class	or	method	results	in	lots
of	little	changes	rippling	to
other	classes	or	methods.

Use	Move	Method	or	Move	Field	to	bring	all	the	data	or
behaviors	into	a	single	place.

Data	Clump

The	same	three	or	four	data
items	seem	to	often	be	passed
as	arguments	together	or

Use	Extract	Class	or	Preserve	Whole	Object	to	create	a
class	that	groups	the	data	together,	and	pass	around

http://codeclimate.org
http://en.wikipedia.org/wiki/code_smells

manipulated	together. instances	of	that	class.

Inappropriate
Intimacy

One	class	exploits	too	much
knowledge	about	the

implementation	(methods	or
attributes)	of	another.

Use	Move	Method	or	Move	Field	if	the	methods	really
need	to	be	somewhere	else,	use	Extract	Class	if	there	is
true	overlap	between	two	classes,	or	introduce	a	Delegate

to	hide	the	implementation.

Repetitive
Boilerplate

You	have	bits	of	code	that	are
the	same	or	nearly	the	same
in	various	different	places

(non-DRY).

Use	Extract	Method	to	pull	redundant	code	into	its	own
method	that	the	repetitive	places	can	call.	In	Ruby,	you
can	even	use	yield	to	extract	the	“enclosing”	code	and

having	it	yield	back	to	the	non-repetitive	code.

Figure	9.12:	Four	whimsically-named	code	smells	from	Fowler’s	list	of	22,	along	with	the	refactorings	(some	of	which	we’ll	meet	in	the
next	section)	that	might	remedy	the	smell	if	applied.	Refer	to	Fowler’s	book	for	the	refactorings	mentioned	in	the	table	but	not	introduced
in	this	book.

Four	 particular	 smells	 that	 appear	 in	Martin’s	Clean	Code	 are	 worth	 emphasizing,	 because	 they	 are
symptoms	of	other	problems	that	you	can	often	fix	by	simple	refactorings.	These	four	are	identified	by
the	acronym	SOFA,	which	states	that	a	well-written	method	should:
	

be	Short,	so	that	its	main	purpose	is	quickly	grasped;
do	only	One	thing,	so	testing	can	focus	on	thoroughly	exercising	that	one	thing;
take	Few	arguments,	so	that	all-important	combinations	of	argument	values	can	be	tested;
maintain	a	consistent	level	of	Abstraction,	so	that	it	doesn’t	jump	back	and	forth	between	saying
what	to	do	and	saying	how	to	do	it.

Figure	9.6	violates	at	least	the	first	and	last	of	these,	and	exhibits	other	smells	as	well,	as	we	can	see	by

running	reek	on	it:	 		

http://pastebin.com/ybbRJHG0

	1				time_setter.rb	--	5	warnings:

	2					TimeSetter#self.convert	calls	(y	+	1)	twice	(Duplication)

	3					TimeSetter#self.convert	has	approx	6	statements	(LongMethod)

	4					TimeSetter#self.convert	has	the	parameter	name	’d’	(UncommunicativeName)

	5					TimeSetter#self.convert	has	the	variable	name	’d’	(UncommunicativeName)

	6					TimeSetter#self.convert	has	the	variable	name	’y’	(UncommunicativeName)

Not	DRY	(line	2).	Admittedly	this	is	only	a	minor	duplication,	but	as	with	any	smell,	it’s	worth	asking
ourselves	why	the	code	turned	out	that	way.

Uncommunicative	names	 (lines	4–6).	Variable	y	 appears	 to	be	 an	 integer	 (lines	6,	 7,	 10,	 14)	 and	 is
related	to	another	variable	d—what	could	those	be?	For	that	matter,	what	does	the	class	TimeSetter	set
the	time	to,	and	what	is	being	converted	to	what	in	convert?	Four	decades	ago,	memory	was	precious
and	so	variable	names	were	kept	short	to	allow	more	space	for	code.	Today,	there’s	no	excuse	for	poor
variable	names;	Figure	9.13	provides	suggestions.

http://pastebin.com/ybbRJHG0

What Guideline Example
Variable	or	class	name Noun	phrase PopularMovie,	top_movies
Method	with	side	effects Verb	phrase pay_for_order,	charge_credit_card!
Method	that	returns	a	value Noun	phrase movie.producers,	actor_list
Boolean	variable	or	method Adjective	phrase already_rated?,	@is_oscar_winner

Figure	9.13:	variable-naming	guidelines	based	on	simple	English,	excerpted	from	Green	and	Ledgard	2011.	Given	that	disk	space	is	free
and	modern	editors	have	auto-completion	that	saves	you	retyping	the	full	name,	your	colleagues	will	thank	you	for	writing
@is_oscar_winner	instead	of	OsWin.

Too	long	 (line	3).	More	 lines	of	code	per	method	means	more	places	for	bugs	 to	hide,	more	paths	 to
test,	and	more	mocking	and	stubbing	during	testing.	However,	excessive	length	is	really	a	symptom	that
emerges	from	more	specific	problems—in	this	case,	failure	to	stick	to	a	single	level	of	Abstraction.	As
Figure	9.14	shows,	convert	really	consists	of	a	small	number	of	high-level	steps,	each	of	which	could
be	divided	into	sub-steps.	But	in	the	code,	there	is	no	way	to	tell	where	the	boundaries	of	steps	or	sub-
steps	would	be,	making	 the	method	harder	 to	understand.	 Indeed,	 the	nested	conditional	 in	 lines	6–8
makes	it	hard	for	a	programmer	to	mentally	“walk	through”	the	code,	and	complicates	testing	since	you
have	to	select	sets	of	test	cases	that	exercise	each	possible	code	path.

The	ancient	wisdom	that	a	method	shouldn’t	exceed	one	screenful	of	code	was	based	on	text-only	terminals	with	24	lines	of	80
characters.	A	modern	22-inch	monitor	shows	10	times	that	much,	so	guidelines	like	SOFA	are	more	reliable	today.

http://pastebin.com/xP9B1iEy

	1	start	with	Year	=	1980

	2	while	(days	remaining	>	365)

	3			if	Year	is	a	leap	year

	4					then	if	possible,	peel	off	366	days	and	advance	Year	by	1

	5			else

	6					peel	off	365	days	and	advance	Year	by	1

	7	return	Year

	8	

	9	

Figure	9.14:	The	computation	of	the	current	year	given	the	number	of	days	since	the	beginning	of	a	start	year	(1980)	is	much	more	clear
when	written	in	pseudocode.	Notice	that	what	the	method	does	is	quick	to	grasp,	even	though	each	step	would	have	to	be	broken	down
into	more	detail	when	turned	into	code.	We	will	refactor	the	Ruby	code	to	match	the	clarity	and	conciseness	of	this	pseudocode.

As	a	result	of	these	deficiencies,	you	probably	had	to	work	hard	to	figure	out	what	this	relatively	simple
method	does.	(You	might	blame	this	on	a	lack	of	comments	in	the	code,	but	once	the	above	smells	are
fixed,	there	will	be	hardly	any	need	for	them.)	Astute	readers	usually	note	the	constants	1980,	365,	and
366,	 and	 infer	 that	 the	method	has	 something	 to	do	with	 leap	years	 and	 that	1980	 is	 special.	 In	 fact,
convert	calculates	the	current	year	given	a	starting	year	of	1980	and	the	number	of	days	elapsed	since
January	1	of	that	year,	as	Figure	9.14	shows	using	simple	pseudocode.	In	Section	9.5,	we	will	make	the
Ruby	code	as	transparent	as	the	pseudocode	by	refactoring	it—applying	transformations	that	improve

http://pastebin.com/xP9B1iEy
http://en.wikipedia.org/wiki/refactoring

its	structure	without	changing	its	behavior.

Summary
Software	metrics	provide	a	quantitative	measure	of	code	quality.	While	opinion	varies	on	which
metrics	are	most	useful	and	what	their	“normal”	values	should	be	(especially	in	dynamic	languages
such	as	Ruby),	metrics	such	as	cyclomatic	complexity	and	ABC	score	can	be	used	to	guide	your
search	 toward	 code	 that	 is	 in	 particular	 need	 of	 attention,	 just	 as	 low	 C0	 coverage	 identifies
undertested	code.
Code	smells	provide	qualitative	but	specific	descriptions	of	problems	that	make	code	hard	to	read.
Depending	on	which	catalog	you	use,	over	60	specific	code	smells	have	been	identified.
The	acronym	SOFA	names	four	desirable	properties	of	a	method:	it	should	be	Short,	do	One	thing,
have	Few	arguments,	and	maintain	a	single	level	of	Abstraction.

Self-Check	9.5.1.

Give	an	example	of	a	dynamic	language	feature	in	Ruby	that	could	distort	metrics	such	as	cyclomatic
complexity	or	ABC	score.

	 Any	 metaprogramming	 mechanism	 could	 do	 this.	 A	 trivial	 example	 is	 s=”if	 (d>=366)

[...]”;	eval	s,	since	the	evaluation	of	the	string	would	cause	a	conditional	to	be	executed	even	though
there’s	no	conditional	in	the	code	itself,	which	contains	only	an	assignment	to	a	variable	and	a	call	to
the	 eval	 method.	 A	 subtler	 example	 is	 a	 method	 such	 as	 before_filter	 (Section	 5.1),	 which
essentially	adds	a	new	method	to	a	list	of	methods	to	be	called	before	a	controller	action.

Self-Check	9.5.2.

Which	 SOFA	 guideline—be	 Short,	 do	One	 thing,	 have	 Few	 arguments,	 stick	 to	 a	 single	 level	 of
Abstraction—do	you	think	is	most	important	from	a	unit-testability	point	of	view?

	Few	 arguments	 implies	 fewer	ways	 that	 code	 paths	 in	 the	method	 can	 depend	 on	 the	 arguments,
making	 testing	 more	 tractable.	 Short	 methods	 are	 certainly	 easier	 to	 test,	 but	 this	 property	 usually
follows	when	the	other	three	are	observed.

9.6	Method-Level	Refactoring:	Replacing	Dependencies	With	Seams

2.	Increasing	Complexity	-	As	[a	software]	system	evolves,	its	complexity	increases	unless	work	is
done	to	maintain	or	reduce	it.

—Lehman’s	second	law	of	software	evolution

With	the	characterization	specs	developed	in	Section	9.3,	we	have	a	solid	foundation	on	which	to	base
our	refactoring	to	repair	the	problems	identified	in	Section	9.5.	The	term	refactoring	refers	not	only	to	a
general	process,	but	also	to	an	instance	of	a	specific	code	transformation.	Thus,	just	as	with	code	smells,
we	 speak	 of	 a	 catalog	 of	 refactorings,	 and	 there	 are	many	 such	 catalogs	 to	 choose	 from.	We	 prefer
Fowler’s	catalog,	so	the	examples	in	this	chapter	follow	Fowler’s	terminology	and	are	cross-referenced

to	 Chapters	 6,	 8,	 9,	 and	 10	 of	 his	 book	 Refactoring:	 Ruby	 Edition	 (Fields	 et	 al.	 2009).	 While	 the
correspondence	between	code	smells	and	refactorings	is	not	perfect,	 in	general	each	of	those	chapters
describes	 a	 group	 of	 method-level	 refactorings	 that	 address	 specific	 code	 smells	 or	 problems,	 and
further	chapters	describe	refactorings	that	affect	multiple	classes,	which	we’ll	learn	about	in	Chapter	11.

Each	refactoring	consists	of	a	descriptive	name	and	a	step-by-step	process	for	transforming	the	code	via
small	 incremental	 steps,	 testing	 after	 each	 step.	Most	 refactorings	 will	 cause	 at	 least	 temporary	 test
failures,	since	unit	tests	usually	depend	on	implementation,	which	is	exactly	what	refactoring	changes.
A	key	goal	of	the	refactoring	process	is	to	minimize	the	amount	of	time	that	tests	are	failing	(red);	the
idea	is	that	each	refactoring	step	is	small	enough	that	adjusting	the	tests	to	pass	before	moving	on	to	the
next	step	 is	not	difficult.	 If	you	find	 that	getting	from	red	back	 to	green	 is	harder	 than	expected,	you
must	 determine	 if	 your	 understanding	 of	 the	 code	 was	 incomplete,	 or	 if	 you	 have	 really	 broken
something	while	refactoring.

Getting	 started	with	 refactoring	 can	 seem	overwhelming:	without	 knowing	what	 refactorings	 exist,	 it
may	 be	 hard	 to	 decide	 how	 to	 improve	 a	 piece	 of	 code.	Until	 you	 have	 some	 experience	 improving
pieces	of	code,	it	may	be	hard	to	understand	the	explanations	of	the	refactorings	or	the	motivations	for
when	 to	 use	 them.	 Don’t	 be	 discouraged	 by	 this	 apparent	 chicken-and-egg	 problem;	 like	 TDD	 and
BDD,	what	seems	overwhelming	at	first	can	quickly	become	familiar.

As	a	start,	Figure	9.15	shows	four	of	Fowler’s	refactorings	that	we	will	apply	to	our	code.	In	his	book,
each	refactoring	is	accompanied	by	an	example	and	an	extremely	detailed	list	of	mechanical	steps	for
performing	the	refactoring,	in	some	cases	referring	to	other	refactorings	that	may	be	necessary	in	order
to	apply	this	one.	For	example,	Figure	9.16	shows	the	first	few	steps	for	applying	the	Extract	Method
refactoring.	With	these	examples	in	mind,	we	can	refactor	Figure	9.6.

Name
(Chapter) Problem Solution

Extract	method
(6)

You	have	a	code	fragment	that
can	be	grouped	together.

Turn	the	fragment	into	a	method	whose	name	explains
the	purpose	of	the	method.

Decompose
Conditional	(9)

You	have	a	complicated
conditional	(if-then-else)

statement.

Extract	methods	from	the	condition,	“then”	part,	and
“else”	part(s).

Replace
Method	with
Method	Object

(6)

You	have	a	long	method	that
uses	local	variables	in	such	a
way	that	you	cannot	apply

Extract	Method.

Turn	the	method	into	its	own	object	so	that	all	the	local
variables	become	instance	variables	on	that	object.	You
can	then	decompose	the	method	into	other	methods	on

the	same	object.
Replace	Magic
Number	with
Symbolic

Constant	(8)

You	have	a	literal	number	with
a	particular	meaning.

Create	a	constant,	name	it	after	the	meaning,	and
replace	the	number	with	it.

Figure	9.15:	Four	example	refactorings,	with	parentheses	around	the	chapter	in	which	each	appears	in	Fowler’s	book.	Each	refactoring
has	a	name,	a	problem	that	it	solves,	and	an	overview	of	the	code	transformation(s)	that	solve	the	problem.	Fowler’s	book	also	includes
detailed	mechanics	for	each	refactoring,	as	Figure	9.16	shows.

Figure	9.16:	Fowler’s	detailed	steps	for	the	Extract	Method	refactoring.	In	his	book,	each	refactoring	is	described	as	a	step-by-step	code
transformation	process	that	may	refer	to	other	refactorings.

Long	method	is	the	most	obvious	code	smell	in	Figure	9.6,	but	that’s	just	an	overall	symptom	to	which
various	specific	problems	contribute.	The	high	ABC	score	(23)	of	convert	suggests	one	place	to	start
focusing	our	attention:	the	condition	of	the	if	in	lines	6–7	is	difficult	to	understand,	and	the	conditional
is	nested	two-deep.	As	Figure	9.15	suggests,	a	hard-to-read	conditional	expression	can	be	improved	by
applying	the	very	common	refactoring	Decompose	Conditional,	which	in	turn	relies	on	Extract	Method.
We	move	some	code	 into	a	new	method	with	a	descriptive	name,	as	Figure	9.17	shows.	Note	 that	 in
addition	to	making	the	conditional	more	readable,	the	separate	definition	of	leap_year?	makes	the	leap
year	calculation	separately	 testable	and	provides	a	seam	at	 line	6	where	we	could	stub	 the	method	 to
simplify	 testing	 of	 convert,	 similar	 to	 the	 example	 in	 the	 Elaboration	 at	 the	 end	 of	 Section	 8.6.	 In
general,	when	a	method	mixes	code	that	says	what	to	do	with	code	that	says	how	to	do	it,	this	may	be	a
warning	 to	 check	whether	you	need	 to	use	Extract	Method	 in	order	 to	maintain	 a	 consistent	 level	of
Abstraction.

http://pastebin.com/N90nw3bu

	1	#	NOTE:	line	7	fixes	bug	in	original	version

	2	class	TimeSetter

	3			def	self.convert(d)

	4					y	=	1980

	5					while	(d	>	365)	do

	6							if	leap_year?(y)

	7									if	(d	>=	366)

	8											d	-=	366

	9											y	+=	1

10									end

11							else

12									d	-=	365

13									y	+=	1

14							end

15					end

http://pastebin.com/N90nw3bu

16					return	y

17			end

18			private

19			def	self.leap_year?(year)

20					year	%	400	==	0	||

21							(year	%	4	==	0	&&	year	%	100	!=	0)

22			end

23	end

Figure	9.17:	Applying	the	Extract	Method	refactoring	to	lines	3–4	of	Figure	9.6	makes	the	conditional’s	purpose	immediately	clear	(line
6)	by	replacing	the	condition	with	a	well-named	method	(lines	19–22),	which	we	declare	private	to	keep	the	class’s	implementation
details	well	encapsulated.	For	even	more	transparency,	we	could	apply	Extract	Method	again	to	leap_year?	by	extracting	methods
every_400_years?	and	every_4_years_except_centuries?.	Note:	Line	7	reflects	the	bug	fix	described	in	Screencast	9.3.1.

The	conditional	is	also	nested	two-deep,	making	it	hard	to	understand	and	increasing	convert’s	ABC
score.	The	Decompose	Conditional	refactoring	also	breaks	up	the	complex	condition	by	replacing	each
arm	of	the	conditional	with	an	extracted	method.	Notice,	 though,	that	 the	two	arms	of	the	conditional
correspond	 to	 lines	4	and	6	of	 the	pseudocode	 in	Figure	9.14,	both	of	which	have	 the	side	effects	 of
changing	the	values	of	d	and	y	(hence	our	use	of	!	in	the	names	of	the	extracted	methods).	In	order	for
those	 side	 effects	 to	 be	 visible	 to	 convert,	 we	 must	 turn	 the	 local	 variables	 into	 class	 variables
throughout	TimeSetter,	 giving	 them	more	 descriptive	 names	@@year	 and	 @@days_remaining	 while
we’re	at	 it.	Finally,	 since	@@year	 is	now	a	class	variable,	we	no	 longer	need	 to	pass	 it	 as	 an	explicit
argument	to	leap_year?.	Figure	9.18	shows	the	result.

http://pastebin.com/gdT1DzjG

	1	#	NOTE:	line	7	fixes	bug	in	original	version

	2	class	TimeSetter

	3			ORIGIN_YEAR	=	1980

	4			def	self.calculate_current_year(days_since_origin)

	5					@@year	=	ORIGIN_YEAR

	6					@@days_remaining	=	days_since_origin

	7					while	(@@days_remaining	>	365)	do

	8							if	leap_year?

	9									peel_off_leap_year!

10							else

11									peel_off_regular_year!

12							end

13					end

14					return	@@year

15			end

16			private

17			def	self.peel_off_leap_year!

18					if	(@@days_remaining	>=	366)

19							@@days_remaining	-=	366	;	@@year	+=	1

20					end

21			end

22			def	self.peel_off_regular_year!

23					@@days_remaining	-=	365	;	@@year	+=	1

24			end

25			def	self.leap_year?

26					@@year	%	400	==	0	||

http://pastebin.com/gdT1DzjG

27							(@@year	%	4	==	0	&&	@@year	%	100	!=	0)

28			end

29	end

Figure	9.18:	We	decompose	the	conditional	in	line	7	by	replacing	each	branch	with	an	extracted	method.	Note	that	while	the	total	number
of	lines	of	code	has	increased,	convert	itself	has	become	Shorter,	and	its	steps	now	correspond	closely	to	the	pseudocode	in	Figure	9.14,
sticking	to	a	single	level	of	Abstraction	while	delegating	details	to	the	extracted	helper	methods.

As	 long	as	we’re	cleaning	up,	 the	code	 in	Figure	9.18	also	 fixes	 two	minor	 code	 smells.	The	 first	 is
uncommunicative	variable	names:	convert	doesn’t	describe	very	well	what	this	method	does,	and	the
parameter	name	d	is	not	useful.	The	other	is	the	use	of	“magic	number”	literal	constants	such	as	1980	in
line	4;	we	apply	Replace	Magic	Number	with	Symbolic	Constant	(Fowler	chapter	8)	to	replace	it	with
the	more	descriptive	constant	name	STARTING_YEAR.	What	about	 the	other	constants	such	as	365	and
366?	In	this	example,	they’re	probably	familiar	enough	to	most	programmers	to	leave	as-is,	but	if	you
saw	351	rather	than	365,	and	if	line	26	(in	leap_year?)	used	the	constant	19	rather	than	4,	you	might
not	 recognize	 the	 leap	 year	 calculation	 for	 the	Hebrew	 calendar.	 Remember	 that	 refactoring	 only
improves	the	code	for	human	readers;	the	computer	doesn’t	care.	So	in	such	cases	use	your	judgment	as
to	how	much	refactoring	is	enough.

In	our	case,	re-running	flog	on	the	refactored	code	in	Figure	9.18	brings	the	ABC	score	for	the	newly-
renamed	calculate_current_year	 from	23.0	down	to	6.6,	which	 is	well	below	the	suggested	NIST
threshold	of	10.0.	Also,	reek	now	reports	only	 two	smells.	The	first	 is	“low	cohesion”	for	 the	helper
methods	 peel_off_leap_year	 and	 peel_off_regular_year;	 this	 is	 a	 design	 smell,	 and	 we	 will
discuss	what	it	means	in	Chapter	11.	The	second	smell	is	declaration	of	class	variables	inside	a	method.
When	we	 applied	 Decompose	 Conditional	 and	 Extract	Method,	 we	 turned	 local	 variables	 into	 class
variables	 @@year	 and	 @@days_remaining	 so	 that	 the	 newly-extracted	 methods	 could	 successfully
modify	 those	 variables’	 values.	 Our	 solution	 is	 effective,	 but	 clumsier	 than	 Replace	 Method	 with
Method	Object	 (Fowler	chapter	6).	 In	 that	 refactoring,	 the	original	method	convert	 is	 turned	 into	an
object	 instance	 (rather	 than	 a	 class)	 whose	 instance	 variables	 capture	 the	 object’s	 state;	 the	 helper
methods	then	operate	on	the	instance	variables.

http://pastebin.com/V9pfQtkg

	1	#	An	example	call	would	now	be:

	2	#		year	=	TimeSetter.new(367).calculate_current_year

	3	#	rather	than:

	4	#		year	=	TimeSetter.calculate_current_year(367)

	5	class	TimeSetter

	6			ORIGIN_YEAR	=	1980

	7			def	initialize(days_since_origin)

	8					@year	=	ORIGIN_YEAR

	9					@days_remaining	=	days_since_origin

10			end

11			def	calculate_current_year

12					while	(@days_remaining	>	365)	do

13							if	leap_year?

14									peel_off_leap_year!

15							else

http://en.wikipedia.org/wiki/Hebrew_calendar
http://pastebin.com/V9pfQtkg

16									peel_off_regular_year!

17							end

18					end

19					return	@year

20			end

21			private

22			def	peel_off_leap_year!

23					if	(@days_remaining	>=	366)

24							@days_remaining	-=	366	;	@year	+=	1

25					end

26			end

27			def	peel_off_regular_year!

28					@days_remaining	-=	365	;	@year	+=	1

29			end

30			def	leap_year?

31					@year	%	400	==	0	||

32							(@year	%	4	==	0	&&	@year	%	100	!=	0)

33			end

34	end

Figure	9.19:	If	we	use	Fowler’s	recommended	refactoring,	the	code	is	cleaner	because	we	now	use	instance	variables	rather	than	class
variables	to	track	side	effects,	but	it	changes	the	way	calculate_current_year	is	called	because	it’s	now	an	instance	method.	This	would
break	existing	code	and	tests,	and	so	might	be	deferred	until	later	in	the	refactoring	process.

Figure	9.19	 shows	 the	 result	 of	 applying	 such	 a	 refactoring,	 but	 there	 is	 an	 important	 caveat.	So	 far,
none	of	our	refactorings	have	caused	our	characterization	specs	to	fail,	since	the	specs	were	just	calling
TimeSetter.convert.	But	applying	Replace	Method	With	Method	Object	changes	the	calling	interface
to	convert	in	a	way	that	makes	tests	fail.	If	we	were	working	with	real	legacy	code,	we	would	have	to
find	every	site	that	calls	convert,	change	it	to	use	the	new	calling	interface,	and	change	any	failing	tests
accordingly.	In	a	real	project,	we’d	want	to	avoid	changes	that	needlessly	break	the	calling	interface,	so
we’d	 need	 to	 consider	 carefully	 whether	 the	 readability	 gained	 by	 applying	 this	 refactoring	 would
outweigh	the	risk	of	introducing	this	breaking	change.

Summary	of	refactoring:
	

A	 refactoring	 is	 a	 particular	 transformation	of	 a	 piece	 of	 code,	 including	 a	 name,	 description	of
when	to	use	the	refactoring	and	what	it	does,	and	detailed	sequence	of	mechanical	steps	to	apply
the	refactoring.	Effective	refactorings	should	improve	software	metrics,	eliminate	code	smells,	or
both.
Although	most	 refactorings	will	 inevitably	 cause	 some	 existing	 tests	 to	 fail	 (if	 not,	 the	 code	 in
question	is	probably	undertested),	a	key	goal	of	the	refactoring	process	is	to	minimize	the	amount
of	time	until	those	tests	are	modified	and	once	again	passing	green.
Sometimes	applying	a	 refactoring	may	 result	 in	 recursively	having	 to	apply	 simpler	 refactorings
first,	as	Decompose	Conditional	may	require	applying	Extract	Method.

ELABORATION:	Refactoring	and	language	choice

Some	 refactorings	 compensate	 for	 programming	 language	 features	 that	 may	 encourage	 bad	 code.	 For	 example,	 one	 suggested
refactoring	for	adding	seams	is	Encapsulate	Field,	 in	which	direct	access	 to	an	object’s	 instance	variables	 is	 replaced	by	calls	 to
getter	and	setter	methods.	This	makes	sense	in	Java,	but	as	we’ve	seen,	getter	and	setter	methods	provide	the	only	access	to	a	Ruby
object’s	 instance	 variables	 from	 outside	 the	 object.	 (The	 refactoring	 still	 makes	 sense	 inside	 the	 object’s	 own	 methods,	 as	 the
Elaboration	at	the	end	of	Section	3.4	suggests.)	Similarly,	the	Generalize	Type	refactoring	suggests	creating	more	general	types	to
improve	code	sharing,	but	Ruby’s	mixins	and	duck	typing	make	such	sharing	easy.	As	we’ll	see	in	Chapter	11,	it’s	also	the	case	that
some	design	patterns	are	simply	unnecessary	in	Ruby	because	the	problem	they	solve	doesn’t	arise	in	dynamic	languages.

Self-Check	9.6.1.	Which	 is	not	 a	goal	of	method-level	 refactoring:	 (a)	 reducing	code	complexity,	 (b)
eliminating	code	smells,	(c)	eliminating	bugs,	(d)	improving	testability?
	(c).	While	debugging	is	important,	the	goal	of	refactoring	is	to	preserve	the	code’s	current	behavior

while	changing	its	structure.

9.7	The	Plan-And-Document	Perspective

One	reason	for	the	term	lifecycle	from	Chapter	1	is	that	a	software	product	enters	a	maintenance	phase
after	 development	 completes.	Roughly	 two-thirds	of	 the	 costs	 are	 in	maintenance	versus	one-third	 in
development.	 One	 reason	 that	 companies	 charge	 roughly	 10%	 of	 the	 price	 of	 software	 for	 annual
maintenance	is	to	pay	the	team	that	does	the	maintenance.

Organizations	following	Plan-And-Document	processes	typically	have	different	teams	for	development
and	maintenance,	with	 developers	 being	 redistributed	 onto	 new	projects	 once	 the	 project	 is	 released.
Thus,	we	now	have	a	maintenance	manager	who	 takes	over	 the	 roles	of	 the	project	manager	during
development,	 and	 we	 have	 maintenance	 software	 engineers	 working	 on	 the	 team	 that	 make	 the
changes	to	 the	code.	Sadly,	maintenance	engineering	has	an	unglamorous	reputation,	so	 it	 is	 typically
performed	by	either	the	newest	or	least	accomplished	managers	and	engineers	in	an	organization.	Many
organizations	use	different	people	for	Quality	Assessment	to	do	the	testing	and	for	user	documentation.

For	 software	 products	 developed	 using	 Plan-And-Document	 processes,	 the	 environment	 for
maintenance	is	very	different	from	the	environment	for	development:
	

Working	software—A	working	software	product	 is	 in	 the	 field	during	 this	whole	phase,	and	new
releases	must	not	interfere	with	existing	features.
Customer	 collaboration—Rather	 than	 trying	 to	meet	 a	 specification	 that	 is	 part	 of	 a	 negotiated
contract,	 the	 goal	 for	 this	 phase	 is	 to	work	with	 customers	 to	 improve	 the	 product	 for	 the	 next
release.
Responding	to	change—Based	on	use	of	the	product,	customers	send	a	stream	of	change	requests,
which	 can	 be	 new	 features	 as	 well	 as	 bug	 fixes.	 One	 challenge	 of	 the	 maintenance	 phase	 is
prioritizing	whether	to	implement	a	change	request	and	in	which	release	should	it	appear.

Change	requests	are	called	maintenance	requests	in	IEEE	standards.

Regression	 testing	 plays	 a	 much	 bigger	 role	 in	 maintenance	 to	 avoid	 breaking	 old	 features	 when
developing	 new	 ones.	 Refactoring	 also	 plays	 a	 much	 bigger	 role,	 as	 you	 may	 need	 to	 refactor	 to
implement	a	change	request	or	simply	to	make	the	code	more	maintainable.	There	is	less	incentive	for
the	extra	cost	and	time	to	make	the	product	easier	to	maintain	in	Plan-And-Document	processes	initially

http://en.wikipedia.org/wiki/Product_lifecycle
http://en.wikipedia.org/wiki/Change_request

if	the	company	developing	the	software	is	not	the	one	that	maintains	it,	which	is	one	reason	refactoring
plays	a	smaller	role	during	development.

As	mentioned	above,	change	management	 is	based	on	change	requests	made	by	customers	and	other
stakeholders	to	fix	bugs	or	to	improve	functionality	(see	Section	10.7).	They	typically	fill	out	change
request	forms,	which	are	tracked	using	a	ticket	tracking	system	so	that	each	request	is	responded	to	and
resolved.	A	key	tool	for	change	management	is	a	version	control	system,	which	tracks	all	modifications
to	all	objects,	as	we	describe	in	Sections	10.4	and	10.5.

The	prior	paragraphs	should	sound	familiar,	for	we	are	describing	Agile	development;	in	fact,	the	three
bullets	are	copied	from	the	Agile	Manifesto	(see	Section	1.3).	Thus,	maintenance	is	essentially	an	Agile
process.	 Change	 requests	 are	 like	 user	 stories;	 the	 triaging	 of	 change	 requests	 is	 similar	 to	 the
assignment	of	points	and	using	Pivotal	Tracker	to	decide	how	to	prioritize	stories;	and	new	releases	of
the	software	product	act	as	Agile	iterations	of	the	working	prototype.	Plan-and-document	maintenance
even	follows	the	same	strategy	of	breaking	a	large	change	request	into	many	smaller	ones	to	make	them
easier	 to	 assess	 and	 implement,	 just	 as	we	 do	with	 user	 stories	 assigned	more	 than	 eight	 points	 (see
Section	7.2).	Hence,	if	the	same	team	is	developing	and	maintaining	the	software,	nothing	changes	after
the	first	release	of	the	product	when	using	the	Agile	lifecycle.

Although	one	paper	reports	successfully	using	an	Agile	process	to	maintain	software	developed	using
Plan-And-Document	processes	(Poole	and	Huisman	2001),	normally	an	organization	that	follows	Plan-
And-Document	 for	 development	 also	 follows	 it	 for	maintenance.	As	we	 saw	 in	 earlier	 chapters,	 this
process	expects	a	strong	project	manager	who	makes	the	cost	estimate,	develops	the	schedule,	reduces
risks	to	the	project,	and	formulates	a	careful	plan	for	all	the	pieces	of	the	project.	This	plan	is	reflected
in	 many	 documents,	 which	 we	 saw	 in	 Figures	 7.13	 and	 8.22	 and	 will	 see	 in	 the	 next	 chapter	 in
Figures	10.9,	 	10.10,	and	 	10.11.	Thus,	 the	 impact	of	change	 in	Plan-And-Document	processes	 is	not
just	the	cost	to	change	the	code,	but	also	to	change	the	documentation	and	testing	plan.	Given	the	many
more	 objects	 of	 Plan-And-Document,	 it	 takes	more	 effort	 to	 synchronize	 to	 keep	 them	 all	 consistent
when	a	change	is	made.

A	change	control	board	examines	all	significant	requests	to	decide	if	the	changes	should	be	included	in
the	next	version	of	the	system.	This	group	needs	estimates	of	the	cost	of	a	change	to	decide	whether	or
not	 to	 approve	 the	 change	 request.	 The	 maintenance	 manager	 must	 estimate	 the	 effort	 and	 time	 to
implement	each	change,	much	as	the	project	manager	did	for	the	project	initially	(see	Section	7.10).	The
group	 also	 asks	 the	 QA	 team	 for	 the	 cost	 of	 testing,	 including	 running	 all	 the	 regression	 tests	 and
developing	 new	 ones	 (if	 needed)	 for	 a	 change.	 The	 documentation	 group	 also	 estimates	 the	 cost	 to
change	the	documentation.	Finally,	the	customer	support	group	checks	whether	there	is	a	workaround	to
decide	 if	 the	 change	 is	 urgent	 or	 not.	 Besides	 cost,	 the	 group	 considers	 the	 increased	 value	 of	 the
product	after	the	change	when	deciding	what	to	do.

Tasks In	Plan	and	Document In	Agile

Customer	change	request Change	request	forms User	story	on	3x5	cards	in	Connextra
format

Change	request	cost/time
estimate By	Maintenance	Manager Points	by	Development	Team

Development	team	with	customer

http://en.wikipedia.org/wiki/change_management
http://en.wikipedia.org/wiki/Change_request

Triage	of	change	requests Change	Control	Board participation

Maintenance	Manager N.A.
Maintenance	SW

Engineers
Roles QA	team Development	team

Documentation	teams
Customer	support	group

Figure	9.20:	The	relationship	between	the	maintenance	related	tasks	of	Plan-and-Document	versus	Agile	methodologies.

To	help	keep	track	what	must	be	done	in	Plan-And-Document	processes,	you	will	not	be	surprised	to
learn	that	IEEE	offers	standards	to	help.	Figure	9.21	shows	the	outline	of	a	maintenance	plan	from	the
IEEE	Maintenance	Standard	1219-1998.

Table	of	Contents
1.	Introduction
2.	References
3.	Definitions

4.	Software	Maintenance	Overview
			4.1	Organization

			4.2	Scheduling	Priorities
			4.3	Resource	Summary
			4.4	Responsibilities

			4.5	Tools,	Techniques,	and	Methods
5.	Software	Maintenance	Process

			5.1	Problem/modification	identification/classification,	and	prioritization
			5.2	Analysis
			5.3	Design

			5.4	Implementation

			5.5	System	Testing
			5.6	Acceptance	Testing

			5.7	Delivery
6.	Software	Maintenance	Reporting	Requirements

7.	Software	Maintenance	Administrative	Requirements
			7.1	Anomaly	Resolution	and	Reporting

			7.2	Deviation	Policy
			7.3	Control	Procedures

			7.4	Standards,	Practices,	and	Conventions
			7.5	Performance	Tracking

			7.6	Quality	Control	of	Plan
8.	Software	Maintenance	Documentation	Requirements

Figure	9.21:	Maintenance	plan	outline	from	the	IEEE	1219-1998	Standard	for	Maintenance	in	Systems	and	Software	Engineering.

Ideally,	changes	can	all	be	scheduled	to	keep	the	code,	documents,	and	plans	all	in	synchronization	with
an	upcoming	release.	Alas,	some	changes	are	so	urgent	that	everything	else	is	dropped	to	try	to	get	the
new	version	to	the	customer	as	fast	as	possible.	For	example:
	

The	software	product	crashes.
A	 security	 hole	 has	 been	 identified	 that	 makes	 the	 data	 collected	 by	 the	 product	 particularly
vulnerable.
New	releases	of	the	underlying	operating	system	or	libraries	force	changes	to	the	product	for	it	to
continue	to	function.
A	competitor	brings	out	product	or	feature	that	if	not	matched	will	dramatically	affect	the	business
of	the	customer.
New	laws	are	passed	that	affect	the	product.

Backfilling	is	the	term	maintenance	engineers	use	to	describe	getting	code	back	in	synch	after	emergencies.

While	 the	 assumption	 is	 that	 the	 team	 will	 update	 the	 documentation	 and	 plans	 as	 soon	 as	 the
emergency	 is	 over,	 in	 practice	 emergencies	 can	 be	 so	 frequent	 that	 the	maintenance	 team	 can’t	 keep
everything	 in	synch.	Such	a	buildup	 is	called	a	 technical	debt.	Such	procrastination	can	 lead	 to	code
that	is	increasingly	difficult	to	maintain,	which	in	turn	leads	to	an	increasing	need	to	refactor	the	code	as
the	code’s	“viscosity”	makes	it	more	and	more	difficult	to	add	functionality	cleanly.	While	refactoring	is
a	natural	part	of	Agile,	it	less	likely	for	the	Change	Control	Committee	to	approve	changes	that	require
refactoring,	as	these	changes	are	much	more	expensive.	That	is–as	the	name	is	intended	to	indicate–if
you	don’t	repay	your	technical	debt,	it	grows:	the	“uglier”	the	code	gets,	the	more	error-prone	and	time-
consuming	it	is	to	refactor!

In	 addition	 to	 estimating	 the	 cost	 of	 each	 potential	 change	 for	 the	 Change	 Control	 Board,	 an
organization’s	 management	 may	 ask	 what	 will	 be	 the	 annual	 cost	 of	 maintenance	 of	 a	 project.	 The
maintenance	manager	may	base	this	estimate	on	software	metrics,	just	as	the	project	manager	may	use
metrics	 to	 estimate	 the	 cost	 to	 develop	 a	 project	 (see	 Section	 7.10).	 The	 metrics	 are	 different	 for
maintenance,	 as	 they	 are	measuring	 the	maintenance	 process.	Examples	 of	metrics	 that	may	 indicate
increased	difficulty	of	maintenance	include	the	average	time	to	analyze	or	implement	a	change	request
and	increases	in	the	number	of	change	requests	made	or	approved.

At	some	point	in	the	lifecycle	of	a	software	product,	the	question	arises	whether	it	is	time	for	it	to	be
replaced.	An	alternative	that	is	related	to	refactoring	is	called	reengineering.	Like	refactoring,	the	idea
is	to	keep	functionality	the	same	but	to	make	the	code	much	easier	to	maintain.	Examples	include:
	

Changing	the	database	schema.
Using	a	reverse	engineering	tool	to	improve	documentation.

http://en.wikipedia.org/wiki/technical_debt

Using	a	structural	analysis	tool	to	identify	and	simplify	complex	control	structures.
Using	 a	 language	 translation	 tool	 to	 change	 code	 from	 a	 procedure-oriented	 language	 like	C	 or
COBOL	to	an	object-oriented	language	like	C++	or	Java.

The	 hope	 is	 that	 reengineering	 will	 be	 much	 less	 expensive	 and	 much	more	 likely	 to	 succeed	 than
reimplementing	the	software	product	from	scratch.

Summary:	The	insight	from	this	section	is	that	you	can	think	of	Agile	as	a	maintenance	process,
in	that	change	is	the	norm,	you	are	in	continuous	contact	with	the	customer,	and	that	new	iterations
of	 the	product	are	 routinely	deployed	 to	 the	customer	as	new	releases.	Hence,	 regression	 testing
and	refactoring	are	standard	in	the	Agile	process	just	as	they	are	the	maintenance	phase	of	Plan-
and-Document.	In	Plan-and-Document	processes:

	

Maintenance	managers	 play	 the	 role	of	project	managers:	 they	 interface	with	 the	customer	and
upper	management,	make	 the	cost	and	schedule	estimates,	documents	 the	maintenance	plan,	and
manage	the	maintenance	software	engineers.
Customers	 and	 other	 stakeholders	 issue	 change	 requests,	 which	 a	Change	 Control	 Committee
triages	based	on	the	benefit	of	 the	change	and	cost	estimates	from	the	maintenance	manager,	 the
documentation	team,	and	the	QA	team.
Regression	testing	plays	a	bigger	role	in	maintenance	to	ensure	that	new	features	do	not	interfere
with	old	ones.
Refactoring	plays	a	bigger	role	as	well,	in	part	because	there	is	often	less	refactoring	in	Plan-and-
Document	processes	during	product	development	than	in	Agile	development.
An	 alternative	 to	 starting	 over	 when	 the	 code	 becomes	 increasingly	 difficult	 to	 maintain	 is	 to
reengineer	the	code	to	lower	the	cost	of	having	a	much	more	maintainable	system.

One	argument	for	Agile	development	 is	 therefore	as	follows:	 if	 two-thirds	of	 the	cost	of	product
are	 in	 the	 maintenance	 phase,	 why	 not	 use	 the	 same	 maintenance-compatible	 software
development	process	for	the	whole	lifecycle?

Self-Check	9.7.1.	True	or	False:	The	cost	of	maintenance	usually	exceeds	the	cost	of	development.
	True.

Self-Check	9.7.2.	True	or	False:	Refactoring	and	reengineering	are	synonyms.
	False:	While	related	terms,	reengineering	often	relies	on	automatic	tools	and	occurs	as	software	ages

and	 maintainability	 becomes	 more	 difficult,	 yet	 refactoring	 is	 a	 continuous	 process	 of	 code
improvement	that	happens	during	both	development	and	maintenance.

Self-Check	9.7.3.	Match	the	Plan-and-Document	maintenance	 terms	on	the	 left	 to	 the	Agile	 terms	on
the	right:

Change	request Iteration
Change	request	cost	estimate Icebox,	Active	columns	in	Pivotal	Tracker

Change	request	triage Points

http://en.wikipedia.org/wiki/Change_request
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Code_refactoring

Release User	story

	Change	request	⇐⇒	User	story;	Change	request	cost	estimate	⇐⇒	Points;	Release	⇐⇒	Iteration;	and
Change	request	triage	⇐⇒	Icebox,	Active	columns	in	Pivotal	Tracker.

9.8	Fallacies	and	Pitfalls

			Pitfall:	Conflating	refactoring	with	enhancement.

When	you’re	 refactoring	 or	 creating	 additional	 tests	 (such	 as	 characterization	 tests)	 in	 preparation	 to
improve	legacy	code,	there	is	a	great	temptation	to	fix	“little	things”	along	the	way:	methods	that	look
just	 a	 little	messy,	 instance	 variables	 that	 look	 obsolete,	 dead	 code	 that	 looks	 like	 it’s	 never	 reached
from	anywhere,	“really	simple”	features	that	look	like	you	could	quickly	add	while	doing	other	tasks.
Resist	these	temptations!	First,	 the	reason	 to	establish	ground-truth	 tests	ahead	of	 time	 is	 to	bootstrap
yourself	 into	 a	 position	 from	which	you	 can	make	 changes	with	 confidence	 that	 you’re	not	 breaking
anything.	Trying	 to	make	such	“improvements”	 in	 the	absence	of	good	 test	 coverage	 invites	disaster.
Second,	as	we’ve	said	before	and	will	repeat	again,	programmers	are	optimists:	tasks	that	look	trivial	to
fix	may	sidetrack	you	for	a	long	time	from	your	primary	task	of	refactoring,	or	worse,	may	get	the	code
base	into	an	unstable	state	from	which	you	must	backtrack	in	order	to	continue	refactoring.	The	solution
is	simple:	when	you’re	refactoring	or	laying	groundwork,	focus	obsessively	on	completing	those	steps
before	trying	to	enhance	the	code.

			Fallacy:	It’ll	be	faster	to	start	from	a	clean	slate	than	to	fix	this	design.

Putting	aside	the	practical	consideration	that	management	will	probably	wisely	forbid	you	from	doing
this	anyway,	there	are	many	reasons	why	this	belief	is	almost	always	wrong.	First,	if	you	haven’t	taken
the	time	to	understand	a	system,	you	are	in	no	position	to	estimate	how	hard	it	will	be	to	redesign,	and
probably	will	underestimate	the	effort	vastly,	given	programmers’	incurable	optimism.	Second,	however
ugly	it	may	be,	the	current	system	works;	a	main	tenet	of	doing	short	Agile	iterations	is	“always	have
working	code,”	and	by	starting	over	you	are	immediately	throwing	that	away.	Third,	 if	you	use	Agile
methods	 in	your	 redesign,	you’ll	have	 to	develop	user	 stories	and	scenarios	 to	drive	 the	work,	which
means	you’ll	need	to	prioritize	them	and	write	up	quite	a	few	of	them	to	make	sure	you’ve	captured	at
least	 the	 functionality	of	 the	current	 system.	 It	would	probably	be	 faster	 to	use	 the	 techniques	 in	 this
chapter	 to	write	scenarios	for	 just	 those	parts	of	 the	system	to	be	 improved	and	drive	new	code	from
there,	rather	than	doing	a	complete	rewrite.

Does	this	mean	you	should	never	wipe	the	slate	clean?	No.	As	Rob	Mee	of	Pivotal	Labs	points	out,	a
time	may	come	when	the	current	codebase	is	such	a	poor	reflection	of	the	original	design	intent	that	it
becomes	a	liability,	and	starting	over	may	well	be	the	best	thing	to	do.	(Sometimes	this	results	from	not
refactoring	 in	 a	 timely	way!)	 But	 in	 all	 but	 the	most	 trivial	 systems,	 this	 should	 be	 regarded	 as	 the
“nuclear	 option”	 when	 all	 other	 paths	 have	 been	 carefully	 considered	 and	 determined	 to	 be	 inferior
ways	to	meet	the	customer’s	needs.

			Pitfall:	Rigid	adherence	to	metrics	or	“allergic”	avoidance	of	code	smells.

In	Chapter	 8	we	warned	 that	 correctness	 cannot	 be	 assured	 by	 relying	 on	 a	 single	 type	 of	 test	 (unit,
functional,	integration/acceptance)	or	by	relying	exclusively	on	quantitative	code	coverage	as	a	measure
of	test	thoroughness.	Similarly,	code	quality	cannot	be	assured	by	any	single	code	metric	or	by	avoiding
any	specific	code	smells.	Hence	the	metric_fu	gem	inspects	your	code	for	multiple	metrics	and	smells
so	 you	 can	 identify	 “hot	 spots”	 where	 multiple	 problems	 with	 the	 same	 piece	 of	 code	 call	 for
refactoring.

9.9	Concluding	Remarks:	Continuous	Refactoring

A	ship	in	port	is	safe,	but	that’s	not	what	ships	are	built	for.
—Grace	Murray	Hopper

As	we	said	in	the	opening	of	the	chapter,	modifying	legacy	code	is	not	a	task	to	be	undertaken	lightly,
and	 the	 techniques	 required	must	 be	 honed	 by	 experience.	 The	 first	 time	 is	 always	 the	 hardest.	 But
fundamental	skills	such	as	refactoring	help	with	both	legacy	code	and	new	code,	and	as	we	saw,	there	is
a	deep	connection	among	legacy	code,	refactoring,	and	testability	and	test	coverage.	We	took	code	that
was	neither	good	nor	 testable—it	scored	poorly	on	complexity	metrics	and	code	smells,	and	 isolating
behaviors	for	unit	testing	was	awkward—and	refactored	it	into	code	that	has	much	better	metric	scores,
is	easier	to	read	and	understand,	and	is	easier	to	test.	In	short,	we	showed	that	good	methods	are	testable
and	testable	methods	are	good.	We	used	refactoring	to	beautify	existing	code,	but	the	same	techniques
can	 be	 used	 when	 performing	 the	 enhancements	 themselves.	 For	 example,	 if	 we	 need	 to	 add
functionality	 to	 an	 existing	 method,	 rather	 than	 simply	 adding	 a	 bunch	 of	 lines	 of	 code	 and	 risk
violating	one	or	more	SOFA	guidelines,	we	can	apply	Extract	Method	to	place	the	functionality	in	a	new
method	that	we	call	from	the	existing	method.	As	you	can	see,	this	technique	has	the	nice	benefit	that
we	already	know	how	to	develop	new	methods	using	TDD!

This	observation	explains	why	TDD	leads	naturally	to	good	and	testable	code—it’s	hard	for	a	method
not	 to	be	 testable	 if	 the	 test	 is	written	first—and	 illustrates	 the	rationale	behind	 the	“refactor”	step	of
Red–Green–Refactor.	If	you	are	refactoring	constantly	as	you	code,	each	individual	change	is	likely	to
be	 small	 and	 minimally	 intrusive	 on	 your	 time	 and	 concentration,	 and	 your	 code	 will	 tend	 to	 be
beautiful.	 When	 you	 extract	 smaller	 methods	 from	 larger	 ones,	 you	 are	 identifying	 collaborators,
describing	the	purpose	of	code	by	choosing	good	names,	and	inserting	seams	that	help	testability.	When

you	rename	a	variable	more	descriptively,	you	are	documenting	design	intent.	 		

But	 if	you	continue	 to	encrust	your	code	with	new	functionality	without	 refactoring	as	you	go,	when
refactoring	finally	does	become	necessary	(and	it	will),	it	will	be	more	painful	and	require	the	kind	of
significant	scaffolding	described	in	Sections	9.2	and	9.3.	In	short,	refactoring	will	suddenly	change	from
a	background	 activity	 that	 takes	 incremental	 extra	 time	 to	 a	 foreground	 activity	 that	 commands	your

focus	and	concentration	at	the	expense	of	adding	customer	value.	 		

Since	 programmers	 are	 optimists,	we	 often	 think	 “That	won’t	 happen	 to	me;	 I	wrote	 this	 code,	 so	 I
know	it	well	enough	that	refactoring	won’t	be	so	painful.”	But	in	fact,	your	code	becomes	legacy	code
the	moment	it’s	deployed	and	you	move	on	to	focusing	on	another	part	of	the	code.	Unless	you	have	a
time-travel	 device	 and	 can	 talk	 to	 your	 former	 self,	 you	might	 not	 be	 able	 to	 divine	what	 you	were
thinking	when	you	wrote	the	original	code,	so	the	code’s	clarity	must	speak	for	itself.

This	Agile	view	of	continuous	refactoring	should	not	surprise	you:	just	as	with	development,	testing,	or
requirements	gathering,	refactoring	is	not	a	one-time	“phase”	but	an	ongoing	process.	In	Chapter	12	we
will	see	that	the	view	of	continuous	vs.	phased	also	holds	for	deployment	and	operations.

It	may	 be	 a	 surprise	 that	 the	 fundamental	 characteristics	 of	Agile	make	 it	 an	 excellent	match	 to	 the
needs	of	software	maintenance.	In	fact,	we	can	think	of	Agile	as	not	having	a	development	phase	at	all,
but	being	in	maintenance	mode	from	the	very	start	of	its	lifecycle!

9.10	To	Learn	More

Working	with	legacy	code	isn’t	exclusively	about	refactoring,	but	as	we’ve	seen,	refactoring	is	a	major
part	of	the	effort.	The	best	way	to	get	better	at	refactoring	is	to	do	it	a	lot.	Initially,	we	recommend	you
browse	 through	Fowler’s	 refactoring	book	 just	 to	get	an	overview	of	 the	many	refactorings	 that	have
been	cataloged.	We	recommend	 the	Ruby-specific	version	(Fields	et	al.	2009),	since	not	all	 smells	or
refactorings	 that	 arise	 in	 statically-typed	 languages	 occur	 in	 Ruby;	 versions	 are	 available	 for	 other
popular	languages,	including	Java.	We	introduced	only	a	few	in	this	chapter;	Figure	9.22	lists	more.	As
you	become	more	experienced,	you’ll	recognize	refactoring	opportunities	without	consulting	the	catalog
each	time.

Code	smells	came	out	of	the	Agile	movement.	Again,	we	introduced	only	a	few	from	a	more	extensive
catalog;	Figure	9.23	lists	more.	We	also	introduced	some	simple	software	metrics;	over	four	decades	of
software	engineering,	many	others	have	been	produced	to	capture	code	quality,	and	many	analytical	and
empirical	 studies	 have	 been	 done	 on	 the	 costs	 and	 benefits	 of	 software	 maintenance.	 Robert
Glass	 (Glass	 2002)	 has	 produced	 a	 pithy	 collection	 of	 Facts	 &	 Fallacies	 of	 Software	 Engineering,
informed	 by	 both	 experience	 and	 the	 scholarly	 literature	 and	 focusing	 in	 particular	 on	 the	 perceived
vs.	actual	costs	and	benefits	of	maintenance	activities.

Category Refactorings

Composing Extract	method Replace	temp	with
method Introduce	explaining	variable

Methods Replace	method	with	method
object

Inline	temp Split	temp	variable

Remove	parameter
assignments Substitute	algorithm

Organizing self-encapsulate	field replace	data	value	with
object change	value	to	reference

Data replace	array/hash	with
Object Replace	magic	number	with	symbolic	constant

Simplifying Decompose	Conditional Consolidate	Conditional Introduce	Assertion

Conditionals Replace	Conditional	with
Polymorphism

Replace	Type	Code	with
Polymorphism

Replace	Nested	Conditional
with	Guard	Clauses

Consolidate	Duplicate
Conditional	Fragments Remove	Control	Flag Introduce	Null	Object

Simplifying Rename	Method Add	Parameter Separate	Query	from	Modifier

Method
Calls

Replace	Parameter	with
Explicit	Methods

Preserve	Whole	Object Replace	Error	Code	with
Exception

Figure	9.22:	Several	more	of	Fowler’s	refactorings,	with	the	ones	introduced	in	this	chapter	in	italics.

Duplicated	Code Temporary	Field Large	Class Long	Parameter	List
Divergent	Change Feature	Envy Primitive	Obsession Metaprogramming	Madness

Data	Class Lazy	Class Speculative	Generality Parallel	Inheritance	Hierarchies
Refused	Bequest Message	Chains Middle	Man Incomplete	Library	Class

Too	Many	Comments Case	Statements Alternative	Classes	with	Different	Interfaces

Figure	9.23:	Several	of	Fowler’s	and	Martin’s	code	smells,	with	the	ones	introduced	in	this	chapter	in	italics.

	 M.	Feathers.	Working	Effectively	with	Legacy	Code.	Prentice	Hall,	2004.	ISBN	9780131177055.

	 J.	Fields,	S.	Harvie,	M.	Fowler,	and	K.	Beck.	Refactoring:	Ruby	Edition.	Addison-Wesley
Professional,	2009.	ISBN	0321603508.

	 M.	Fowler,	K.	Beck,	J.	Brant,	W.	Opdyke,	and	D.	Roberts.	Refactoring:	Improving	the	Design	of
Existing	Code.	Addison-Wesley	Professional,	1999.	ISBN	0201485672.

	 R.	L.	Glass.	Facts	and	Fallacies	of	Software	Engineering.	Addison-Wesley	Professional,	2002.	ISBN
0321117425.

	 R.	Green	and	H.	Ledgard.	Coding	guidelines:	Finding	the	art	in	the	science.	Communications	of	theACM,	54(12):57–63,	Dec	2011.

	 B.	P.	Lientz,	E.	B.	Swanson,	and	G.	E.	Tompkins.	Characteristics	of	application	software	maintenance.Communications	of	the	ACM,	21(6):466–471,	1978.

	 R.	C.	Martin.	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship.	Prentice	Hall,	2008.	ISBN
9780132350884.

	 O.	Nierstrasz,	S.	Ducasse,	and	S.	Demeyer.	Object-Oriented	Reengineering	Patterns.	Square	BracketAssociates,	2009.	ISBN	395233412X.
	 C.	Poole	and	J.	W.	Huisman.	Using	extreme	programming	in	a	maintenance	environment.	Software,
IEEE,	18(6):42–50,	2001.

9.11	Suggested	Projects

Project	9.1.	You’re	tasked	with	designing	a	RESTful	API	for	a	hypothetical	legacy	enrollment	system
(Berkeley’s	is	called	TeleBears).	An	outside-in	description	of	the	system	(that	is,	without	examining	its
database	schema)	is	as	follows:

A	 course	 has	 a	 department,	 course	 number,	 and	 title,	 for	 example,	 “Computer	 Science,	 169,
Software	Engineering”.
An	offering	of	a	course	specifies	additional	information:

the	semester	(Fall,	Spring	or	Summer)	and	year	that	the	course	is	taught,
the	building	and	room	number,
the	day(s)	and	time(s)	of	lectures	each	week,
the	day(s)	and	time(s)	of	small-section	meetings	each	week	(not	all	courses	have	these),

the	instructor,
the	limit	on	how	many	students	may	enroll.

Each	offering	has	a	unique	ID	called	the	control	number.

Sketch	a	UML	diagram	describing	the	design	of	such	a	system,	and	a	set	of	RESTful	routes	(in	the	form
of	either	a	 simplified	routes.rb	 file	 or	 a	 table	 similar	 to	 that	 in	Figure	5.19)	 to	 support	 at	 least	 the
following	operations:
	

Search	 for	 course	 offerings	 by	 any	 combination	 of	 department	 name,	 instructor	 name	 (partial
match	OK),	semester	being	offered
Get	meeting	times	for	a	course	offering	(lecture	sections,	recitation	sections,	etc.,	each	with	unique
timeslot-ID,	day	and	time)
Enroll	a	student	in	a	course	offering

Project	 9.2.	 	 	 	Given	 your	 design	 for	 Project	 9.1,	 estimate	 the	 impact	 of	 a	 change	 request	 that
would	allow	multiple	simultaneous	“sections”	of	a	course	to	be	taught	in	the	same	semester.	The	change
may	affect	the	schema,	class	interactions,	how	searches	are	handled,	and	so	on.

Project	9.3.	Select	an	existing	external	Web	service	that	has	a	relatively	straightforward	user	interface,
and	 use	 Cucumber	 to	 create	 some	 integration-level	 characterization	 tests	 for	 it.	 You	 can	 use	 the
mechanize	gem	to	allow	Cucumber	to	run	against	a	remote	site.

Project	9.4.	Identify	a	working	legacy	software	system	that	you	will	inspect.	For	suggestions,	you	could
use	the	list	of	open-source	Rails	projects	at	Open	Source	Rails,	or	you	could	select	one	of	two	projects
created	by	students	who	have	used	this	book:	ResearchMatch,	which	helps	match	students	with	research
opportunities	 at	 their	 university,	 and	VisitDay,	 which	 helps	 organize	meetings	 between	 students	 and
faculty	members.

Pick	 one	 of	 these	 projects,	 clone	 or	 fork	 the	 repo,	 and	 get	 the	 application	 running	 in	 a	 development
environment.	 This	 will	 probably	 require	 creating	 a	 development	 database,	 setting	 up
config/development.rb	to	match,	and	creating	the	database	schema	from	db/schema.rb.

Project	9.5.	Continuing	Project	9.4,	try	to	get	the	test	suites	running	in	development.	Once	the	tests	are
running,	use	SimpleCov	 to	 evaluate	 the	 test	 coverage.	 (Hint:	 as	described	 in	Chapter	8,	 you	 can	 add
SimpleCov	in	the	RSpec	configuration	file	spec/spec_helper.rb.)

Project	9.6.	Continuing	Project	9.4,	gather	some	metrics	on	code	quality	and	code	smells.	You	can	use
the	 tools	 described	 in	 this	 chapter	 such	 as	reek	 and	metric_fu,	 or	 you	 can	 try	 using	CodeClimate,
which	offers	code	review	as	a	service.

http://www.opensourcerails.com/
http://github.com/ucberkeley/researchmatch
http://github.com/vinsonchuong/meetinglibs
http://codeclimate.com

Project	 9.7.	 	 	 	 Continuing	 Project	 9.4,	 pick	 one	 subsystem	 (for	 example,	 the	 model,	 view	 and
controller	associated	with	one	 type	of	 resource)	of	 the	app	and	conduct	a	design	review.	 Identify	one
weakness	in	the	current	design,	and	remove	it	through	refactoring.	Make	sure	you	have	test	coverage	in
place	to	ensure	that	your	refactoring	doesn’t	change	existing	functionality.

Project	 9.8.	Continuing	Project	 9.4,	 conduct	 a	 detailed	 code	 inspection	 and	 review	of	 one	nontrivial
source	file.	Identify	one	or	more	code	smells	in	the	file	and	remove	them	by	refactoring.	Make	sure	you
have	test	coverage	in	place	to	ensure	that	your	refactoring	doesn’t	change	existing	functionality.

10.	 Project	 Management:	 Scrum,	 Pair	 Programming,	 and	 Version
Control	Systems

			Fred	Brooks,	Jr.	(1931–)	is	the	author	of	the	classic	software	engineering	book
The	Mythical	Man-Month,	based	on	his	years	leading	the	IBM	OS/360	operating	system	effort	after

managing	the	System/360	project	and	reporting	directly	to	IBM	Chairman	T.J.	Watson	Jr.	The
System/360	was	the	first	family	of	computers	that	had	an	instruction-set-compatible	architecture

across	a	product	family,	so	many	have	argued	that	it	is	the	first	system	to	which	the	term	“computer
architecture”	could	be	meaningfully	applied.	Brooks	received	the	1999	Turing	Award	for	landmark

contributions	to	computer	architecture,	operating	systems,	and	software	engineering.

There	are	no	winners	on	a	losing	team,	and	no	losers	on	a	winning	team.
—Fred	Brooks,	quoting	North	Carolina	basketball	coach	Dean	Smith,	1990

10.1	It	Takes	a	Team:	Two-Pizza	and	Scrum
10.2	Pair	Programming
10.3	Agile	Design	and	Code	Reviews?
10.4	Version	Control	for	the	Two-Pizza	Team:	Merge	Conflicts
10.5	Using	Branches	Effectively
10.6	Reporting	and	Fixing	Bugs:	The	Five	R’s
10.7	The	Plan-And-Document	Perspective
10.8	Fallacies	and	Pitfalls
10.9	Concluding	Remarks:	Teams,	Collaboration,	and	Four	Decades	of	Version	Control
10.10	To	Learn	More
10.11	Suggested	Projects

Concepts

The	big	concepts	of	this	chapter	are	team	size	and	organization	and	configuration	management	to	keep
track	of	the	artifacts	that	a	team	builds.

The	version	of	these	concepts	for	the	Agile	lifecycle	is:
	

“Two-pizza”	teams	are	four	to	nine	people	in	size.
Self-organizing	teams	follow	the	Scrum	model,	which	relies	on	one	teammate	to	act	as	the	Product
Owner,	who	 represents	 the	 customer,	 and	 one	 to	 act	 as	 the	ScrumMaster,	who	 acts	 as	 a	 buffer
between	 the	 team	 and	 external	 distractions.	 These	 roles	 rotate	 between	 the	 team	members	 over
time.
Pair	 programming	 is	 a	 way	 to	 increase	 communication	 among	 members	 of	 the	 team	 and	 to
improve	code	quality	by	having	two	sets	of	eyeballs	examining	it	when	the	tests	and	the	code	are
being	developed.
Good	 version	 control	 practices,	 supported	 by	 tools	 such	 as	 Git,	 address	 code	 management
challenges	of	a	project	that	includes	four	to	nine	software	engineers.

For	the	Plan	and	Document	lifecycle,	you	will	become	familiar	with	the	same	concepts	from	a	different
perspective:
	

The	 project	manager	 writes	 the	 contract,	 interfaces	 with	 the	 customer	 and	 upper	management,
recruits	 and	 manages	 the	 development	 team,	 resolves	 conflicts,	 and	 documents	 the	 plans	 for
managing	configurations	and	the	project	itself.
While	 group	 sizes	 are	 similar	 to	Agile,	 large	 teams	 can	 be	 created	 by	 combining	 groups	 into	 a
hierarchy	under	the	project	manager,	with	each	group	having	its	own	leader.
Inspections	let	outsiders	give	feedback	on	the	current	design	and	future	plans	and	check	to	see	if
good	practices	are	being	followed.
Configuration	 management	 includes	 version	 control	 of	 software	 components	 during
development,	 system	 building	 of	 a	 coherent	 working	 program	 from	 those	 components,	 release
management	 to	 ship	 new	 versions	 of	 products,	 and	 change	management	 while	 maintaining	 a
shipped	product.

http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/project_manager
http://en.wikipedia.org/wiki/Configuration_management
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/release_management
http://en.wikipedia.org/wiki/change_management

Programming	 is	 now	 primarily	 a	 team	 sport	 no	 matter	 what	 the	 lifecycle,	 and	 this	 chapter	 covers
techniques	that	can	help	teams	succeed.

10.1	It	Takes	a	Team:	Two-Pizza	and	Scrum

The	Six	Phases	of	a	Project:
	

1.	 Enthusiasm
2.	 Disillusionment
3.	 Panic
4.	 Search	for	the	Guilty
5.	 Punishment	of	the	Innocent
6.	 Praise	for	non-participants

—Dutch	Holland(Holland	2004)

As	we’ve	said	many	times	in	this	book,	the	Agile	lifecycle	uses	iterations	of	typically	one	to	two	weeks
that	start	and	end	with	a	working	prototype.	Each	iteration	implements	some	user	stories,	which	act	as
acceptance	tests	or	 integration	tests.	The	stakeholders	examine	the	product	after	 the	 iteration	 to	see	 if
this	is	what	everyone	wants,	and	then	prioritize	the	remaining	user	stories.

The	 days	 of	 the	 hero	 programmer	 are	 now	 past.	 Whereas	 once	 a	 brilliant	 individual	 could	 create
breakthrough	software,	the	rising	bar	on	functionality	and	quality	means	software	development	now	is
primarily	a	team	sport.	Hence,	success	today	means	that	not	only	do	you	have	great	design	and	coding
skills,	but	that	you	work	well	with	others	and	can	help	make	your	team	succeed.	As	the	opening	quote
from	Fred	Brooks	states,	you	cannot	win	if	your	team	loses,	and	you	cannot	fail	if	your	team	wins.

Jeff	Bezos,	the	CEO	of	Amazon	who	received	his	college	degree	in	computer	science,	coined	the	two-pizza	characterization	of	team	size.

Hence,	the	first	step	of	a	software	development	project	is	to	form	and	organize	a	team.	As	to	its	size,
“two-pizza”	 teams—the	 group	 that	 can	 be	 fed	 by	 two	 pizzas	 in	 a	 meeting—typically	 develop	 SaaS
projects.	Our	discussions	with	senior	software	engineers	suggest	the	typical	team	size	range	varies	by
company,	but	the	inclusive	range	of	the	typical	ranges	is	from	four	to	nine	people.

While	 there	 are	 many	 ways	 to	 organize	 a	 two-pizza	 software	 development,	 a	 popular	 one	 today	 is
Scrum	 (Schwaber	 and	Beedle	2001).	 Its	 frequent	 short	meetings—15	minutes	 every	day	 at	 the	 same
place	and	time—inspire	the	name,	when	each	team	member	answers	three	questions:
	

1.	 What	have	you	done	since	yesterday?
2.	 What	are	you	planning	to	do	today?
3.	 Are	there	any	impediments	or	stumbling	blocks?

The	benefit	of	these	daily	scrums	is	that	by	understanding	what	each	team	member	was	doing,	the	team
can	identify	work	that	would	help	others	make	progress	that	is	more	rapid.

http://en.wikipedia.org/wiki/Scrum

			A	scrum	is	held	on	every	minor	infraction	in	rugby.	The	game	stops	to	bring	the
players	together	for	a	quick	“meeting”	in	order	to	restart	the	game.

When	combined	with	the	weekly	or	biweekly	iteration	model	of	Agile	to	collect	the	feedback	from	all
the	stakeholders,	 the	Scrum	organization	makes	 it	more	 likely	 that	 the	rapid	progress	will	be	 towards
what	the	customers	want.	Rather	than	use	the	Agile	term	iteration,	Scrum	uses	the	term	sprint.

A	Scrum	has	three	main	roles:
	

1.	 Team—A	two-pizza	size	team	that	delivers	the	software.
2.	 ScrumMaster—A	team	member	who	acts	as	buffer	between	 the	Team	and	external	distractions,

keeps	 the	 team	focused	on	 the	 task	at	hand,	 enforces	 team	rules,	 and	 removes	 impediments	 that
prevent	 the	 team	 from	making	progress.	One	example	 is	 enforcing	coding	standards,	which	 are
style	guidelines	that	improve	the	consistency	and	readability	of	the	code.

Coding	standards	or	style	sheets	are	available	for	Rails,	Python,	JavaScript,	C++,	and	most	other	programming	languages.

3.	 Product	 Owner—A	 team	 member	 (not	 the	 ScrumMaster)	 who	 represents	 the	 voice	 of	 the
customer	and	prioritizes	user	stories.

Scrum	relies	on	self-organization,	and	team	members	often	rotate	through	different	roles.	For	example,
we	recommend	that	each	member	rotate	through	the	Product	Owner	role,	changing	on	every	iteration	or
sprint.

In	any	group	working	together,	conflicts	can	occur	around	which	technical	direction	the	group	should
go.	Depending	in	part	on	the	personalities	of	the	members	of	the	team,	they	may	not	be	able	to	quickly
reach	agreement.	One	approach	to	resolving	conflicts	is	to	start	with	a	list	on	all	the	items	on	which	the
sides	agree,	as	opposed	to	starting	with	the	list	of	disagreements.	This	technique	can	make	the	sides	see
that	perhaps	they	are	closer	together	than	they	thought.	Another	approach	is	for	each	side	to	articulate
the	other’s	arguments.	This	technique	makes	sure	both	sides	understand	what	the	arguments	are,	even	if
they	don’t	agree	with	some	of	them.	This	step	can	reduce	confusion	about	terms	or	assumptions,	which
may	be	the	real	cause	of	the	conflict.

Summary:	SaaS	is	a	good	match	to	two-pizza	teams	and	Scrum,	a	self-organized	small	team	that
meets	 daily.	 Two	 team	 members	 take	 on	 the	 additional	 roles	 of	 ScrumMaster,	 who	 removes
impediments	and	keeps	the	team	focused,	and	Product	Owner,	who	speaks	for	the	customer.	It	can
be	helpful	to	follow	structured	strategies	to	resolve	conflicts	when	they	occur.

ELABORATION:	Coding	standards
are	style	guidelines	that	everyone	on	the	team	is	expected	to	follow.	The	goal	is	to	improve	the	consistency	and	readability	of	the
code.	For	example,	here	is	one	for	Rails,	and	Google	offers	them	for	Python,	JavaScript,	and	several	other	languages.

http://en.wikipedia.org/wiki/Scrum_(development)#Sprint
http://en.wikipedia.org/wiki/coding_standards
https://github.com/bbatsov/rails-style-guide
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
https://github.com/bbatsov/rails-style-guide
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

Self-Check	10.1.1.	True	or	False:	Scrum	is	at	its	best	when	it	is	difficult	to	plan	ahead.
	 True:	 Scrum	 relies	 more	 on	 real-time	 feedback	 than	 on	 the	 traditional	 management	 approach	 of

central	planning	with	command	and	control.

Given	a	team	organization,	we	are	now	ready	to	start	programming.

10.2	Pair	Programming

Q:	At	Google,	you	share	an	office,	and	you	even	code	together.
Sanjay:	We	usually	sit,	and	one	of	us	is	typing	and	the	other	is	looking	on,	and	we’re	chatting	all	the

time	about	ideas,	going	back	and	forth.	
—Interview	with	Jeff	Dean	and	Sanjay	Ghemawat,	creators	of	MapReduce	(Hoffmann	2013)

The	 name	Extreme	Programming	 (XP),	which	 is	 the	 variant	 of	 the	Agile	 lifecycle	we	 follow	 in	 this
book,	suggests	a	break	from	the	way	software	was	developed	in	the	past.	One	new	option	in	this	brave
new	software	world	is	pair	programming.	The	goal	is	improved	software	quality	by	having	more	than
one	 person	 developing	 the	 same	 code.	 As	 the	 name	 suggests,	 two	 software	 developers	 share	 one
computer.	Each	takes	on	a	different	role:

The	driver	enters	the	code	and	thinks	tactically	about	how	to	complete	the	current	task,	explaining
his	or	her	thoughts	out	loud	as	appropriate	while	typing.
The	observer	or	navigator—following	the	automobile	analogy	more	closely—reviews	each	line	of
code	 as	 it	 is	 typed	 in,	 and	 acts	 as	 a	 safety	 net	 for	 the	 driver.	 The	 observer	 is	 also	 thinking
strategically	about	 future	problems	 that	will	need	 to	be	addressed,	and	makes	 suggestions	 to	 the
driver.

Normally	 a	 pair	will	 take	 alternate	 driving	 and	 observing	 as	 they	 perform	 tasks.	 Figure	 10.1,	 shows
engineers	 at	 Pivotal	 Labs—makers	 of	 Pivotal	 Tracker—who	 spend	 most	 of	 the	 day	 doing	 pair
programming.(Moore	2011)

Dilbert	on	Pair	Programming	The	comic	strip	Dilbert	comments	humorously	on	pair	programming	in	these	two	strips.

http://en.wikipedia.org/wiki/pair_programming
http://dilbert.com/strips/comic/2003-01-09/
http://dilbert.com/strips/comic/2003-01-11/

Figure	10.1:	Sarah	Mei	and	JR	Boyens	at	Pivotal	Labs	engaged	in	pair	programming.	Sarah	is	driving	and	JR	is	observing.	Although	two
keyboards	are	visible,	only	Sarah	is	coding;	the	computer	in	front	of	JR	is	for	documentation	and	other	relevant	information	such	as
Pivotal	Tracker,	as	you	can	see	in	the	right-hand	photo.	All	the	pairing	stations	(visible	in	the	background)	are	identical	and	don’t	have
email	or	other	software	installed;	other	computers	away	from	the	pairing	stations	are	provided	for	checking	email.	Photo	by	Tonia	Fox,
courtesy	of	Pivotal	Labs.

Pair	 programming	 is	 cooperative,	 and	 should	 involve	 a	 lot	 of	 talking.	 It	 focuses	 effort	 to	 the	 task	 at
hand,	 and	 two	 people	 working	 together	 increases	 the	 likelihood	 of	 following	 good	 development
practices.	 If	 one	 partner	 is	 silent	 or	 checking	 email,	 then	 it’s	 not	 pair	 programming,	 just	 two	 people
sitting	near	each	other.

Pair	 programming	 has	 the	 side	 effect	 of	 transferring	 knowledge	 between	 the	 pair,	 including
programming	idioms,	tool	tricks,	company	processes,	customer	desires,	and	so	on.	Thus,	to	widen	the
knowledge	 base,	 some	 teams	 purposely	 swap	 partners	 per	 task	 so	 that	 eventually	 everyone	 is	 paired
together.	For	example,	promiscuous	pairing	of	a	team	of	four	leads	to	six	different	pairings.

The	studies	of	pair	programming	versus	solo	programming	support	the	claim	of	reduced	development
time	and	improvement	in	software	quality.	For	example,	(Cockburn	and	Williams	2001)	found	a	20%	to
40%	 decrease	 in	 time	 and	 that	 the	 initial	 code	 failed	 to	 15%	 of	 the	 tests	 instead	 of	 30%	 by	 solo
programmers.	 However,	 it	 took	 about	 15%	 more	 hours	 collectively	 for	 the	 pair	 of	 programmers	 to
complete	the	tasks	versus	the	solo	programmers.	The	majority	of	professional	programmers,	testers,	and
managers	with	 10	 years	 of	 experience	 at	Microsoft	 reported	 that	 pair	 programming	worked	well	 for
them	 and	 produced	 higher-quality.(Begel	 and	Nagappan	 2008)	 A	 study	 of	 pair	 programming	 studies
concludes	 that	pair	programming	 is	quicker	when	programming	 task	complexity	 is	 low—perhaps	one
point	tasks	on	the	Tracker	scale—and	yields	code	solutions	of	higher	quality	when	task	complexity	is
high,	or	three	points	on	our	Tracker	scale.	In	both	cases,	it	took	more	effort	than	do	solo	programmers.
(Hannay	et	al.	2009)

The	 experience	 at	 Pivotal	 Labs	 suggests	 that	 these	 studies	may	 not	 factor	 in	 the	 negative	 impact	 on
productivity	 of	 the	 distractions	 of	 our	 increasingly	 interconnected	 modern	 world:	 email,	 Twitter,
Facebook,	and	so	on.	Pair	programming	forces	both	programmers	to	pay	attention	to	the	task	at	hand	for
hours	at	a	time.	Indeed,	new	employees	at	Pivotal	Labs	go	home	exhausted	since	they	were	not	used	to

concentrating	for	such	long	stretches.

Even	if	pair	programming	takes	more	effort,	one	way	to	leverage	the	productivity	gains	from	Agile	and
Rails	is	to	“spend”	it	on	pair	programming.	Having	two	heads	develop	the	code	can	reduce	the	time	to
market	for	new	software	or	improve	quality	of	end	product.	We	recommend	you	try	pair	programming
to	see	if	you	like	it,	which	some	developers	love.

Summary:	When	it’s	time	to	start	coding,	one	approach	is	pair	programming,	which	promises	in
higher	 quality	 and	 shorter	 development	 time	 but	 perhaps	 higher	 programming	 costs	 due	 to	 two
people	 doing	 the	 work.	 The	 pair	 splits	 into	 a	 driver	 and	 an	 observer,	 with	 the	 former	 working
tactically	to	complete	the	task	at	hand	and	the	latter	thinking	strategically	about	future	challenges
and	making	suggestions	to	the	driver.

Self-Check	 10.2.1.	 True	 or	 False:	 Research	 suggests	 that	 pair	 programming	 is	 quicker	 and	 less
expensive	than	solo	programming.
	False:	While	there	have	not	been	careful	experiments	that	would	satisfy	human	subject	experts,	and	it

is	 not	 clear	 whether	 they	 account	 for	 the	 lack	 of	 distractions	 when	 pair	 programming,	 the	 current
consensus	 of	 researchers	 is	 that	 pair	 programming	 is	 more	 expensive—more	 programmer	 hours	 per
tasks—than	solo	programming.

Self-Check	10.2.2.	True	or	False:	A	pair	will	eventually	figure	out	who	is	the	best	driver	and	who	is	the
best	observer,	and	then	stick	primarily	to	those	roles.
	False:	An	effective	pair	will	alternate	between	the	two	roles,	as	it’s	more	beneficial	(and	more	fun)

for	the	individuals	to	both	drive	and	observe.

For	a	 team	to	work	 together	on	a	common	code	base	with	many	revisions	and	 interdependent	pieces,
you	need	tools	to	help	manage	the	effort.

10.3	Agile	Design	and	Code	Reviews?

Section	10.7	 describes	 the	 use	 of	 design	 reviews	or	 code	 reviews	 to	 improve	quality	 of	 the	 software
product.	Most	companies	using	Agile	methods	do	not	perform	design	or	code	reviews.

For	example,	 the	conventional	wisdom	at	Pivotal	Labs	 is	 that	pair	programming	makes	 such	 reviews
superfluous,	as	the	code	is	continuously	being	reviewed	during	development.	At	GitHub,	formal	code
reviews	 are	 replaced	by	pull	requests,	 in	which	 a	 developer	 requests	 that	 her	 latest	 code	 changes	 be
integrated	 into	 the	main	codebase,	as	we	describe	 in	 the	next	section.	All	developers	on	 the	 team	see
each	such	request	and	determine	how	it	might	affect	their	own	code.	If	anyone	has	a	concern,	an	online
discussion	coalesces	around	 the	pull	 request,	perhaps	facilitated	by	 tools	such	as	Campfire	or	GitHub
Issue	tracking	(see	Section	10.6),	which	might	result	in	changes	to	the	code	in	question	before	the	pull
request	 is	 completed.	 Since	 many	 pull	 requests	 occur	 each	 day,	 these	 “mini-reviews”	 are	 occurring
continuously,	so	there	is	no	need	for	special	meetings.

10.4	Version	Control	for	the	Two-Pizza	Team:	Merge	Conflicts

There	is	a	really	interesting	group	of	people	in	the	United	States	and	around	the	world	who	do	social
coding	now.	The	most	interesting	stuff	is	not	what	they	do	on	Twitter,	it’s	what	they	do	on	GitHub.

—Al	Gore,	former	US	Vice	President,	2013

This	section	and	the	next	one	assume	familiarity	with	basic	version	control	practices	in	Git.	Section	A.6	summarizes	the	basics	and
Section	10.10	suggests	in-depth	resources.

Good	 version	 control	 practices	 are	 even	 more	 critical	 for	 a	 team	 than	 for	 individuals.	 How	 is	 the
repository	managed?	What	happens	if	team	members	accidentally	make	conflicting	changes	to	a	set	of
files?	Which	lines	in	a	given	file	were	changed	when,	and	by	whom	were	they	changed?	How	does	one
developer	 work	 on	 a	 new	 feature	 without	 introducing	 problems	 into	 stable	 code?	When	 software	 is
developed	by	a	 team	rather	 than	an	individual,	version	control	can	be	used	to	address	these	questions
using	merging	and	branching.	Both	tasks	involve	combining	changes	made	by	many	developers	into	a
single	code	base,	a	task	that	sometimes	requires	manual	resolution	of	conflicting	changes.

Small	 teams	 working	 on	 a	 common	 set	 of	 features	 commonly	 use	 a	 shared-repository	 model	 for
managing	 the	 repo:	one	particular	copy	of	 the	 repo	 (the	origin)	 is	designated	as	authoritative,	and	all
developers	agree	to	push	their	changes	to	the	origin	and	periodically	pull	from	the	origin	to	get	others’
changes.	Famously,	Git	itself	doesn’t	care	which	copy	is	authoritative—any	developer	can	pull	changes
from	 or	 push	 changes	 to	 any	 other	 developer’s	 copy	 of	 that	 repo	 if	 the	 repo’s	 permissions	 are
configured	 to	 allow	 it—but	 for	 small	 teams,	 it’s	 convenient	 (and	conventional)	 for	 the	origin	 repo	 to
reside	in	the	cloud,	for	example	on	GitHub	or	ProjectLocker.

Many	earlier	VCSs	such	as	Subversion	supported	only	the	shared-repository	model	of	development,	and	the	“one	true	repo”	was	often
called	the	master,	a	term	that	means	something	quite	different	in	Git.

Team	members	clone	 the	 repo	onto	 their	development	machines,	do	 their	work,	make	 their	 commits,
and	push	the	commits	to	origin.

http://pastebin.com/ZNhAt2RR

	1	Roses	are	red,

	2	Violets	are	blue.

	3	<<<<<<<	HEAD:poem.txt

	4	I	love	GitHub,

	5	=======

	6	ProjectLocker	rocks,

	7	>>>>>>>	77976da35a11db4580b80ae27e8d65caf5208086:poem.txt

	8	and	so	do	you.

Figure	10.2:	When	Bob	tries	to	merge	Amy’s	changes,	Git	inserts	conflict	markers	in	poem.txt	to	show	a	merge	conflict.	Line	3	marks
the	beginning	of	the	conflicted	region	with	<<<;	everything	until	===	(line	5)	shows	the	contents	of	the	file	in	HEAD	(the	latest	commit	in
Bob’s	local	repo)	and	everything	thereafter	until	the	end-of-conflict	marker	>>>(line	7)	shows	Amy’s	changes	(the	file	as	it	appears	in
Amy’s	conflicting	commit,	whose	commit-ID	is	on	line	7).	Lines	1,2	and	8	were	either	unaffected	or	merged	automatically	by	Git.

http://en.wikipedia.org/wiki/Merge_(revision_control)
http://en.wikipedia.org/wiki/Branching_(software)
http://pastebin.com/ZNhAt2RR

We	already	know	that	git	push	and	git	pull	 can	be	used	 to	back	up	your	copy	of	 the	 repo	 to	 the
cloud,	 but	 in	 the	 context	 of	 a	 team,	 these	 operations	 acquire	 additional	 important	meanings:	 if	Amy
commits	her	changes	to	her	repo,	those	changes	aren’t	visible	to	her	teammate	Bob	until	she	does	a	push
and	Bob	does	a	pull.	This	raises	the	possibility	of	a	merge	conflict	scenario:
	

1.	 Amy	and	Bob	each	have	a	current	copy	of	the	origin	repo.
2.	 Amy	makes	and	commits	a	set	of	changes	to	file	A.
3.	 Amy	makes	and	commits	a	separate	set	of	changes	to	file	B.
4.	 Amy	pushes	her	commits	to	origin.
5.	 Bob	makes	and	commits	his	own	changes	to	file	A,	but	doesn’t	touch	file	B.
6.	 Bob	 tries	 to	push	his	commits,	but	 is	prevented	 from	doing	so	because	additional	commits	have

occurred	in	the	origin	repo	since	Bob	last	pulled.	Bob	must	bring	his	copy	of	the	repo	up-to-date
with	respect	to	the	origin	before	he	can	push	his	changes.

git	pull	actually	combines	the	separate	commands	git	fetch,	which	copies	new	commits	from	the	origin,	and	git	merge,	which	tries
to	reconcile	them	with	the	local	repo.

Note	 that	 the	presence	of	 additional	 commits	doesn’t	 necessarily	mean	 that	 conflicting	changes	were
made—in	particular,	Bob	 is	unaffected	by	Amy’s	 commit	 to	 file	B	 (step	3).	 In	our	example,	 though,
steps	2	and	5	do	represent	conflicting	changes	to	the	same	file.	When	Bob	performs	git	pull,	Git	will
try	to	merge	Bob’s	and	Amy’s	changes	to	file	A.	If	Amy	and	Bob	had	edited	different	parts	of	file	A,
Git	would	 automatically	 incorporate	 both	 sets	 of	 changes	 into	 file	A	 and	 commit	 the	merged	 file	 in
Bob’s	repo.	However,	if	Amy	and	Bob	edited	parts	of	file	A	that	are	within	a	few	lines	of	each	other,	as
in	Figure	10.2,	Git	will	conclude	that	there	is	no	safe	way	to	automatically	create	a	version	of	the	file
that	reflects	both	sets	of	changes,	and	it	will	leave	a	conflicted	and	uncommitted	version	of	 the	file	 in
Bob’s	repo,	which	Bob	must	manually	edit	and	commit.

In	either	case,	once	Bob	has	committed	file	A,	he	can	now	push	his	changes,	after	which	the	origin	repo
successfully	reflects	both	Amy’s	and	Bob’s	changes.	The	next	time	Amy	pulls,	she	will	get	the	merge	of
her	changes	and	Bob’s.

This	example	shows	an	important	rule	of	thumb:	always	commit	before	merging	(and	therefore	before
pulling,	which	 implicitly	 performs	 a	merge).	Committing	 ensures	 that	 you	 have	 a	 stable	 snapshot	 of
your	own	work	before	attempting	to	merge	changes	made	by	others.	Git	warns	you	if	you	try	to	merge
or	 pull	 with	 uncommitted	 files,	 and	 even	 provides	mechanisms	 to	 recover	 from	 this	 scenario	 if	 you
choose	to	proceed	anyway	(see	Figure	10.3);	but	your	life	will	be	easier	if	you	commit	early	and	often,
making	it	easier	to	undo	or	recover	from	mistakes.

Git’s	advanced	features	like	rebasing	and	commit	squashing	can	merge	many	small	commits	into	a	few	larger	ones	to	keep	the	publicly-
visible	change	history	clean.

Since	working	in	a	team	means	that	multiple	developers	are	changing	the	contents	of	files,	Figure	10.4
lists	some	useful	Git	commands	to	help	keep	track	of	who	did	what	and	when.	Figure	10.5	shows	some
convenient	notational	alternatives	to	the	cumbersome	40-digit	Git	commit-IDs.

http://en.wikipedia.org/wiki/Merge_(revision_control)

git	reset	--hard	ORIG_HEAD

Revert	your	repo	to	last	committed	state	just	before	the	merge.
git	reset	--hard	HEAD

Revert	your	repo	to	last	committed	state.
git	checkout	commit	--	[file]
Restore	a	file,	or	if	omitted	the	whole	repo,	to	its	state	at	commit	(see	Figure	10.5	for	ways	to	refer	to	a
commit	besides	its	40-digit	SHA-1	hash).	Can	be	used	to	recover	files	that	were	previously	deleted

using	git	rm.
git	revert	commit
Reverts	the	changes	introduced	by	commit.	If	that	commit	was	the	result	of	a	merge,	effectively	undoes
the	merge	and	leaves	the	current	branch	in	the	state	it	was	in	before	the	merge.	Git	tries	to	back	out	just
the	changes	introduced	by	that	commit	without	disturbing	other	changes	since	that	commit,	but	if	the

commit	happened	a	long	time	ago,	manual	conflict	resolution	may	be	required.

Figure	10.3:	When	a	merge	goes	awry,	these	commands	can	help	you	recover	by	undoing	all	or	part	of	the	merge.

git	blame	[file]
Annotate	each	line	of	a	file	to	show	who	changed	it	last	and	when.

git	diff	[file]
Show	differences	between	current	working	version	of	file	and	last	committed	version.

git	diff	branch	[file]
Show	differences	between	current	version	of	file	and	the	way	it	appears	in	the	most	recent	commit	on

branch	(see	Section	10.5).
git	log	[ref	..ref]	[files]

Show	log	entries	affecting	all	files	between	the	two	commits	specified	by	the	ref	s	(which	must	be
separated	by	exactly	two	dots),	or	if	omitted,	entire	log	history	affecting	those	files.

git	log	--since=”date”	files
Show	the	log	entries	affecting	all	files	since	the	given	date	(examples:	”25-Dec-2011”,	”2	weeks

ago”).

Figure	10.4:	Git	commands	to	help	track	who	changed	what	file	and	when.	Many	commands	accept	the	option	--oneline	to	produce	a
compact	representation	of	their	reports.	If	an	optional	[file]	argument	is	omitted,	default	is	“all	tracked	files.”	Note	that	all	these
commands	have	many	more	options,	which	you	can	see	with	git	help	command.

HEAD the	most	recently	committed	version	on	the	current	branch.
HEAD˜ the	prior	commit	on	the	current	branch	(HEAD˜n	refers	to	the	n’th	previous	commit).

ORIG_HEAD

When	a	merge	is	performed,	HEAD	is	updated	to	the	newly-merged	version,	and
ORIG_HEAD	refers	to	the	commit	state	before	the	merge.	Useful	if	you	want	to	use

git	diff	to	see	how	each	file	changed	as	a	result	of	the	merge.
1dfb2c˜2 2	commits	prior	to	the	commit	whose	ID	has	1dfb2c	as	a	unique	prefix.

The	last	commit	prior	to	date	(see	Figure	10.4	for	date	format)	on	branch,	where

”branch@{date}” HEAD	refers	to	the	current	branch.

Figure	10.5:	Convenient	ways	to	refer	to	certain	commits	in	Git	commands,	rather	than	using	a	full	40-digit	commit-ID	or	a	unique	prefix
of	one.	git	rev-parse	expr	resolves	any	of	the	above	expressions	into	a	full	commit-ID.

Summary	of	merge	management	for	small	teams:
1.	 Small	 teams	 typically	 use	 a	 “shared-repo”	 model,	 in	 which	 pushes	 and	 pulls	 use	 a	 single

authoritative	copy	of	the	repo.	In	Git,	the	authoritative	copy	is	referred	to	as	the	origin	repo	and	is
often	stored	in	the	cloud	on	GitHub	or	on	an	internal	company	server.

2.	 Before	 you	 start	 changing	 files,	 commit	 your	 own	 changes	 locally	 and	 then	merge	 the	 changes
made	by	others	while	you	were	away.	In	Git,	the	easiest	way	to	merge	changes	from	the	origin	repo
is	git	pull.

3.	 If	changes	cannot	be	automatically	merged,	you	must	manually	edit	the	conflicted	file	by	looking
for	the	conflict	markers	in	the	merged	file,	and	then	commit	and	push	the	fixed	version.	With	Git,	a
conflict	is	considered	resolved	when	the	conflicted	file	is	re-committed.

ELABORATION:	Remote	collaboration:	fork-and-pull	for	public	repos
Git	 was	 designed	 to	 support	 very-large-scale	 projects	 with	 many	 developers,	 such	 as	 the	 Linux	 kernel.	 The	 fork-and-pull
management	model	allows	subgroups	to	work	on	independent	and	possibly	divergent	sets	of	changes	without	interfering	with	each
others’	efforts.	A	remote	subgroup	can	fork	your	repo,	which	creates	their	own	copy	of	it	on	GitHub	to	receive	their	pushes.	When
they	are	ready	to	contribute	stable	code	back	to	your	repo,	the	subgroup	creates	a	pull	request	asking	you	to	merge	selected	commits
from	their	forked	repo	back	into	your	origin	repo.	Pull	requests	therefore	allow	selective	merging	of	two	repos	that	otherwise	remain
separate.

Self-Check	10.4.1.	True	or	false:	If	you	attempt	git	push	and	it	 fails	with	a	message	such	as	“Non-
fast-forward	(error):	failed	to	push	some	refs,”	this	means	some	file	contains	a	merge	conflict	between
your	repo’s	version	and	the	origin	repo’s	version.
	False.	It	just	means	that	your	copy	of	the	repo	is	missing	some	commits	that	are	present	in	the	origin

copy,	and	until	you	merge	in	those	missing	commits,	you	won’t	be	allowed	to	push	your	own	commits.
Merging	in	these	missing	commits	may	lead	to	a	merge	conflict,	but	frequently	does	not.

10.5	Using	Branches	Effectively

Besides	taking	snapshots	of	your	work	and	backing	it	up,	version	control	also	lets	you	manage	multiple
versions	of	a	project’s	code	base	simultaneously,	for	example,	to	allow	part	of	the	team	to	work	on	an
experimental	 new	 feature	 without	 disrupting	 working	 code,	 or	 to	 fix	 a	 bug	 in	 a	 previously-released
version	of	the	code	that	some	customers	are	still	using.

Branches	 are	 designed	 for	 such	 situations.	 Rather	 than	 thinking	 of	 commits	 as	 just	 a	 sequence	 of
snapshots,	we	should	instead	think	of	a	graph	of	commits:	a	branch	is	started	by	creating	a	logical	copy
of	the	code	tree	as	it	exists	at	some	particular	commit.	Unlike	a	real	tree	branch,	a	repo	branch	not	only
diverges	from	the	“trunk”	but	can	also	be	merged	back	into	it.

From	that	point	on,	 the	new	branch	and	the	one	from	which	it	was	split	are	separate:	commits	to	one
branch	 don’t	 affect	 the	 other,	 though	 depending	 on	 project	 needs,	 commits	 in	 either	may	 be	merged
back	 into	 the	 other.	 Indeed,	 branches	 can	 even	 be	 split	 off	 from	other	 branches,	 but	 overly	 complex

http://help.github.com/fork-a-repo/
http://help.github.com/send-pull-requests/
http://en.wikipedia.org/wiki/Branching_(software)

branching	structures	offer	few	benefits	and	are	difficult	to	maintain.

Figure	10.6:	Each	circle	represents	a	commit.	Amy,	Bob	and	Dee	each	start	branches	based	on	the	same	commit	(a)	to	work	on	different
RottenPotatoes	features.	After	several	commits,	Bob	decides	his	feature	won’t	work	out,	so	he	deletes	his	branch	(b);	meanwhile	Amy
completes	her	tests	and	code	and	merges	her	feature	branch	back	into	the	master	branch,	creating	the	merge-commit	(c).	Finally,	Dee
completes	her	feature,	but	since	the	master	branch	has	changed	due	to	Amy’s	merge-commit	(c),	Dee	has	to	do	some	manual	conflict
resolution	to	complete	her	merge-commit	(d).

We	highlight	two	common	branch	management	strategies	that	can	be	used	together	or	separately,	both
of	which	strive	to	ensure	that	the	master	branch	always	contains	a	stable	working	version	of	the	code.
Figure	 10.6	 shows	 a	 feature	 branch,	 which	 allows	 a	 developer	 or	 sub-team	 to	 make	 the	 changes
necessary	 to	 implement	a	particular	 feature	without	 affecting	 the	master	branch	until	 the	changes	are
complete	and	tested.	If	the	feature	is	merged	into	the	master	and	a	decision	is	made	later	to	remove	it
(perhaps	it	failed	to	deliver	the	expected	customer	value),	the	specific	commits	related	to	the	merge	of
the	feature	branch	can	sometimes	be	undone,	as	long	as	there	haven’t	been	many	changes	to	the	master
that	depend	on	the	new	feature.

Flickr	developers	now	use	a	repository	with	no	feature	branches	at	all—commits	always	go	to	the	master	branch!

http://code.flickr.com/blog/2009/12/02/flipping-out/

Figure	10.7:	(a)	A	new	release	branch	is	created	to	“snapshot”	version	1.3	of	RottenPotatoes.	A	bug	is	found	in	the	release	and	the	fix	is
committed	in	the	release	branch	(b);	the	app	is	redeployed	from	the	release	branch.	The	commit(s)	containing	the	fix	are	merged	into	the
master	branch	(c),	but	the	code	in	the	master	has	evolved	sufficiently	from	the	code	in	the	release	that	manual	adjustments	to	the	bug	fix
need	to	be	made.	Meanwhile,	the	dev	team	working	on	master	finds	a	critical	security	flaw	and	fixes	it	with	one	commit	(d).	The	specific
commit	containing	the	security	fix	can	be	merged	into	the	release	branch	(e)	using	git	cherry-pick,	since	we	don’t	want	to	apply	any
other	master	branch	changes	to	the	release	branch	except	for	this	fix.

Figure	10.7	shows	how	release	branches	are	used	to	fix	problems	found	in	a	specific	release.	They	are
widely	used	for	delivering	non-SaaS	products	such	as	libraries	or	gems	whose	releases	are	far	enough
apart	 that	 the	 master	 branch	 may	 diverge	 substantially	 from	 the	 most	 recent	 release	 branch.	 For
example,	 the	 Linux	 kernel,	 for	 which	 developers	 check	 in	 thousands	 of	 lines	 of	 code	 per	 day,	 uses
release	 branches	 to	 designate	 stable	 and	 long-lived	 releases	 of	 the	 kernel.	 Release	 branches	 often
receive	multiple	merges	from	the	development	or	master	branch	and	contribute	multiple	merges	 to	 it.
Release	 branches	 are	 less	 common	 in	 delivering	 SaaS	 because	 of	 the	 trend	 toward	 continuous
integration/continuous	deployment	 (Section	1.8):	 if	 you	deploy	 several	 times	 per	week,	 the	 deployed
version	won’t	have	time	to	get	out	of	sync	with	the	master	branch,	so	you	might	as	well	deploy	directly
from	the	master	branch.	We	discuss	continuous	deployment	further	in	Chapter	12.

GitFlow,	a	branch	management	strategy	that	captures	many	best	practices,	may	be	useful	for	larger	projects	with	long-lived	branches.

Figure	10.8	shows	some	commands	 for	manipulating	Git	branches.	Newly-created	Git	 repos	start	out
with	 a	 single	branch	called	master.	At	 any	given	 time,	 the	current	branch	 is	whichever	 one	 you’re
working	on	in	your	copy	of	the	repo.	Since	in	general	each	copy	of	the	repo	contains	all	the	branches,
you	can	quickly	switch	back	and	forth	between	branches	in	the	same	repo	(but	see	Screencast	10.5.1	for
an	important	caveat	about	doing	so).

git	branch

List	existing	branches	in	repo,	indicating	current	branch	with	*.	If	you’re	using	sh	or	a	bash-derived
shell	on	a	Unix-like	system,	putting	this	code	in	the	file	˜/.profile	will	make	the	shell	prompt

http://nvie.com/posts/a-successful-git-branching-model/
http://pastebin.com/8JkAQDx0

display	the	current	Git	branch	when	you’re	in	a	Git	repo	directory.

git	checkout	name
Switch	to	existing	branch	name.

git	branch	name
If	branch	name	exists,	switch	to	it;	otherwise	create	a	new	branch	called	name	without	switching	to	it.
The	shortcut	git	checkout	-b	name	[commit-id]	creates	and	switches	to	a	new	branch	based	on

commit-id,	which	defaults	to	most	recent	commit	in	the	current	branch.
git	push	[repo]	[branch]

Push	the	changes	(commits)	on	branch	to	remote	repository	repo.	(The	first	time	you	do	this	for	a
given	branch,	it	creates	that	branch	on	the	remote	repo.)	With	no	arguments,	pushes	the	current	local

branch	to	the	current	branch’s	remote,	or	the	remote	called	origin	by	default.
git	pull	[repo]	[branch]
Fetches	and	merges	commits	from	branch	branch	on	the	remote	repo	into	your	local	repo’s	current
branch	(even	if	the	current	branch’s	name	doesn’t	match	the	branch	name	you’re	pulling	from—

beware!).	To	fetch	a	remote	branch	foo	for	which	you	have	no	corresponding	local	branch,	first	use
git	checkout	-b	foo	to	create	a	local	branch	by	that	name	and	switch	to	it,	then	git	pull	origin

foo.	With	no	arguments,	repo	and	branch	default	to	the	values	of	git	config
branch.currentbranch.remote	and	git	config	branch.currentbranch.merge	respectively,	which
are	automatically	set	up	by	certain	Git	commands	and	can	be	changed	with	git	branch	--track.	If

you	setup	a	new	repo	in	the	usual	way,	repo	defaults	to	origin	and	branch	defaults	to	master.
git	remote	show	[repo]
If	repo	omitted,	show	a	list	of	existing	remote	repos.	If	repo	is	the	name	of	an	existing	remote	repo,
shows	branches	located	at	repo	and	which	of	your	local	branches	are	set	up	to	track	them.	Also	shows

which	local	branches	are	not	up-to-date	with	respect	to	repo.
git	merge	branch

Merge	all	changes	from	branch	into	the	current	branch.
git	cherry-pick	commits
Rather	than	merging	all	changes	(commits)	from	a	given	branch,	apply	only	the	changes	introduced	by

each	of	the	named	commits	to	the	current	branch.
git	checkout	branch	file1	file2...
For	each	file,	merge	the	differences	in	branch’s	version	of	that	file	into	the	current	branch’s	version	of

that	file.

Figure	10.8:	Common	Git	commands	for	handling	branches	and	merging.	Branch	management	involves	merging;	Figure	10.3	tells	how
to	undo	merges	gone	awry.

When	multiple	branches	are	present,	how	do	you	specify	which	one	should	receive	pushes	or	pulls?	As
Figure	 10.8	 shows,	 the	 git	 push	 and	 git	 pull	 commands	 we’ve	 been	 using	 so	 far	 are	 actually
abbreviated	special	cases—these	commands	handle	pushes	and	pulls	using	branches	as	well.

Screencast	10.5.1:	Using	Branches	with	Git
This	screencast	shows	how	to	create	and	manage	a	new	branch	in	Git	(for	example,	to	develop	a	new

http://vimeo.com/41257323

feature),	how	 to	merge	 the	branch’s	changes	back	 into	 the	 trunk	 from	which	 it	was	split,	 and	how	 to
undo	the	merge	of	the	branch	if	something	goes	wrong	(for	example,	if	it	turns	out	the	feature	had	bugs
and	needs	to	be	backed	out).	It	also	emphasizes	an	important	caveat	and	shows	why	you	should	always
commit	your	changes	in	the	current	branch	before	switching	to	a	different	branch.

Summary	of	branching:
Branches	allow	variation	in	a	code	base.	For	example,	feature	branches	support	the	development	of
new	 features	 without	 destabilizing	 working	 code,	 and	 release	 branches	 allow	 fixing	 bugs	 in
previous	releases	whose	code	has	diverged	from	the	main	line	of	development.
Merging	changes	from	one	branch	into	another	(for	example,	from	a	feature	branch	back	into	the
master	branch)	may	result	in	conflict	merges	for	certain	files,	so	always	commit	before	you	merge
and	before	switching	to	a	different	branch	to	work	on.
With	Agile	+	SaaS,	feature	branches	are	usually	short-lived	and	release	branches	uncommon.

ELABORATION:	Long-lived	Branches	and	Rebasing

While	you’re	working	on	a	feature	branch,	its	commits	will	diverge	from	the	trunk;	if	you	work	on	it	for	too	long,	the	“big	merge”
when	you’re	done	may	be	very	painful	with	many	conflicts.	The	pain	can	be	mitigated	by	frequent	rebasing,	an	operation	in	which
you	incrementally	merge	some	recent	changes	from	another	branch,	then	tell	Git	to	rearrange	things	to	look	as	if	your	branch	had
originated	from	a	later	commit.	While	rebasing	is	useful	for	long-lived	branches	such	as	release	branches	or	long-lived	experimental
branches,	 if	 you’re	 breaking	 down	 your	 user	 stories	 into	 manageable	 sizes	 (Section	 7.2)	 and	 doing	 frequent	 deployments
(Section	12.3),	rebasing	should	rarely	be	necessary	in	agile	SaaS	development.

Self-Check	 10.5.1.	Describe	 a	 scenario	 in	 which	merges	 could	 go	 in	 both	 directions—changes	 in	 a
feature	 branch	merged	back	 into	 the	master	 branch,	 and	 changes	 in	 the	master	 branch	merged	 into	 a
feature	branch.	(In	Git,	this	is	called	a	crisscross	merge.)
	Diana	starts	a	new	branch	to	work	on	a	feature.	Before	she	completes	the	feature,	an	important	bug	is

fixed	and	the	fix	is	merged	into	the	master	branch.	Because	the	bug	is	in	a	part	of	the	code	that	interacts
with	Diana’s	 feature,	 she	merges	 the	 fix	 from	master	 into	her	 own	 feature	branch.	Finally,	when	 she
finishes	the	feature,	her	feature	branch	is	merged	back	into	master.

10.6	Reporting	and	Fixing	Bugs:	The	Five	R’s

Inevitably,	 bugs	 happen.	 If	 you’re	 lucky,	 they	 are	 found	 before	 the	 software	 is	 in	 production,	 but
production	bugs	happen	too.	Everyone	on	the	team	must	agree	on	processes	for	managing	the	phases	of
the	bug’s	lifecycle:
	

1.	 Reporting	a	bug
2.	 Reproducing	the	problem,	or	else	Reclassifying	it	as	“not	a	bug”	or	“won’t	be	fixed”
3.	 creating	a	Regression	test	that	demonstrates	the	bug
4.	 Repairing	the	bug
5.	 Releasing	the	repaired	code

Any	stakeholder	may	find	and	report	a	bug	 in	server-side	or	client-side	SaaS	code.	A	member	of	 the
development	 or	 QA	 team	 must	 then	 reproduce	 the	 bug,	 documenting	 the	 environment	 and	 steps
necessary	 to	 trigger	 it.	 This	 process	 may	 result	 in	 reclassifying	 the	 bug	 as	 “not	 a	 bug”	 for	 various

reasons:
	

This	is	not	a	bug	but	a	request	to	make	an	enhancement	or	change	a	behavior	that	 is	working	as
designed
This	bug	is	in	a	part	of	the	code	that	is	being	undeployed	or	is	otherwise	no	longer	supported
This	bug	occurs	only	with	an	unsupported	user	environment,	such	as	a	very	old	browser	 lacking
necessary	features	for	this	SaaS	app
This	bug	is	already	fixed	in	the	latest	version	(uncommon	in	SaaS,	whose	users	are	always	using
the	latest	version)

Once	the	bug	is	confirmed	as	genuine	and	reproducible,	it’s	entered	into	a	bug	management	system.	A
plethora	of	 such	 systems	exists,	 but	 the	needs	of	many	 small	 to	medium	 teams	can	be	met	by	a	 tool
you’re	 already	 using:	 Pivotal	 Tracker	 allows	marking	 a	 story	 as	 a	Bug	 rather	 than	 a	 Feature,	which
assigns	the	story	zero	points	but	otherwise	allows	it	to	be	tracked	to	completion	just	like	a	regular	user
story.	 An	 advantage	 of	 this	 tool	 is	 that	 Tracker	 manages	 the	 bug’s	 lifecycle	 for	 you,	 so	 existing
processes	for	delivering	user	stories	can	be	readily	adapted	to	fixing	bugs.	For	example,	fixing	the	bug
must	be	prioritized	relative	to	other	work;	in	a	waterfall	process,	this	may	mean	prioritization	relative	to
other	 outstanding	 bugs	 while	 in	 the	 maintenance	 phase,	 but	 in	 an	 agile	 process	 it	 usually	 means
prioritization	relative	to	developing	new	features	from	user	stories.	Using	Tracker,	the	Product	Manager
can	move	 the	 bug	 story	 above	 or	 below	other	 stories	 based	 on	 the	 bug’s	 severity	 and	 impact	 on	 the

customer.	For	example,	bugs	that	may	cause	data	loss	in	production	will	get	prioritized	very	high.	 		

“Severity	1”	bugs	at	Amazon.com	require	the	responsible	engineers	to	initiate	a	conference	call	within	15	minutes	of	learning	of	the	bug
—a	stricter	responsiveness	requirement	than	for	on-call	physicians!	(Bodík	et	al.	2006)

The	next	step	is	repair,	which	always	begins	with	first	creating	the	simplest	possible	automated	test	that
fails	in	the	presence	of	the	bug,	and	then	changing	the	code	to	make	the	test(s)	pass	green.	This	should
sound	 familiar	 to	 you	 by	 now	 as	 a	 TDD	 practitioner,	 but	 this	 practice	 is	 true	 even	 in	 non-TDD
environments:	no	 bug	 can	 be	 closed	 out	without	 a	 test.	Depending	 on	 the	 bug,	 unit	 tests,	 functional
tests,	integration	tests,	or	a	combination	of	these	may	be	required.	Simplest	means	that	the	tests	depend
on	as	few	preconditions	as	possible,	tightly	circumscribing	the	bug.	For	example,	simplifying	an	RSpec
unit	 test	 would	 mean	 minimizing	 the	 setup	 preceding	 the	 test	 action	 or	 in	 the	 before	 block,	 and
simplifying	a	Cucumber	scenario	would	mean	minimizing	the	number	of	Given	or	Background	steps.
These	tests	usually	get	added	to	the	regular	regression	suite	to	ensure	the	bug	doesn’t	recur	undetected.
A	complex	bug	may	require	multiple	commits	to	fix;	a	common	policy	in	BDD+TDD	projects	is	 that
commits	with	 failing	or	missing	 tests	 shouldn’t	 be	merged	 to	 the	main	development	branch	until	 the
tests	pass	green.

Many	 bug	 tracking	 systems	 can	 automatically	 cross-reference	 bug	 reports	 with	 the	 commit-IDs	 that
contain	the	associated	fixes	and	regression	tests.	For	example,	using	GitHub’s	service	hooks,	a	commit
can	 be	 annotated	 with	 the	 story	 ID	 of	 the	 corresponding	 bug	 or	 feature	 in	 Tracker,	 and	 when	 that
commit	 is	 pushed	 to	 GitHub,	 the	 story	 is	 automatically	 marked	 as	 Delivered.	 Depending	 on	 team
protocol	and	 the	bug	management	system	in	use,	 the	bug	may	be	“closed	out”	either	 immediately	by

noting	which	release	will	contain	the	fix	or	after	the	release	actually	occurs.	 		

http://github.com/

As	 we	 will	 see	 in	 Chapter	 12,	 in	 most	 agile	 teams	 releases	 are	 very	 frequent,	 shortening	 the	 bug
lifecycle.

Summary:	the	5	R’s	of	bug	fixing
A	bug	must	be	reported,	reproduced,	demonstrated	in	a	regression	test,	and	repaired,	all	before	the
bug	fix	can	be	released.
No	bug	can	be	closed	out	without	an	automated	test	demonstrating	that	we	really	understand	the
bug’s	cause.
Bugs	 that	 are	 really	 enhancement	 requests	 or	 occur	 only	 in	 obsolete	 versions	 of	 the	 code	 or	 in
unsupported	environments	may	be	reclassified	to	indicate	they’re	not	going	to	be	fixed.

Self-Check	10.6.1.	Why	do	you	 think	“bug	fix”	stories	are	worth	zero	points	 in	Tracker	even	 though
they	follow	the	same	lifecycle	as	regular	user	stories?
	 A	 team’s	 velocity	 would	 be	 artificially	 inflated	 by	 fixing	 bugs,	 since	 they’d	 get	 points	 for

implementing	the	feature	in	the	first	place	and	then	more	points	for	actually	getting	the	implementation
right.

Self-Check	 10.6.2.	 True	 or	 false:	 a	 bug	 that	 is	 triggered	 by	 interacting	 with	 another	 service	 (for
example,	 authentication	 via	 Twitter)	 cannot	 be	 captured	 in	 a	 regression	 test	 because	 the	 necessary
conditions	would	require	us	to	control	Twitter’s	behavior.
	False:	integration-level	mocking	and	stubbing,	for	example	using	the	FakeWeb	gem	or	the	techniques

described	 in	 Section	 8.6,	 can	 almost	 always	 be	 used	 to	 mimic	 the	 external	 conditions	 necessary	 to
reproduce	the	bug	in	an	automated	test.

Self-Check	10.6.3.	True	or	false:	a	bug	in	which	the	browser	renders	the	wrong	content	or	layout	due	to
JavaScript	problems	might	be	reproducible	manually	by	a	human	being,	but	it	cannot	be	captured	in	an
automated	regression	test.
	False:	tools	such	as	Jasmine	and	Webdriver	(Section	6.7)	can	be	used	to	develop	such	tests.

10.7	The	Plan-And-Document	Perspective

In	 Plan-And-Document	 processes,	 project	 management	 starts	 with	 the	 project	 manager.	 Project
managers	are	the	bosses	of	the	projects:
	

They	write	the	contract	to	win	the	project	from	the	customer.
They	recruit	the	development	team	from	existing	employees	and	new	hires.
They	typically	write	team	members’	performance	reviews,	which	shape	salary	increases.
From	 a	 Scrum	 perspective	 (Section	 10.1),	 they	 act	 as	 Product	 Owner—the	 primary	 customer
contact—and	 they	 act	 as	ScrumMaster,	 as	 they	 are	 the	 interface	 to	 upper	management	 and	 they
procure	resources	for	the	team.
As	we	saw	in	Section		7.10,	project	managers	also	estimate	costs,	make	and	maintain	the	schedule,
and	decide	which	risks	to	address	and	how	to	overcome	or	avoid	them.
As	you	would	 expect	 for	Plan-And-Document	 processes,	 project	managers	must	 document	 their
project	 management	 plan.	 Figure	 10.9	 gives	 an	 outline	 of	 Project	Management	 Plans	 from	 the

http://fakeweb.rubyforge.org

corresponding	IEEE	standard.

1.	Project	overview 			5.2	Project	work	plans
			1.1	Project	summary 						5.2.1	Work	activities

						1.1.1	Purpose,	scope	and	objectives 						5.2.2	Schedule	allocation
						1.1.2	Assumptions	and	constraints 						5.2.3	Resource	allocation

						1.1.3	Project	deliverables 						5.2.4	Budget	allocation
						1.1.4	Schedule	and	budget	summary 						5.2.5	Procurement	plan

			1.2	Evolution	of	the	plan 6.	Project	assessment	and	control
2.	References 			6.1	Requirements	management	plan
3.	Definitions 			6.2	Scope	change	control	plan

4.	Project	context 			6.3	Schedule	control	plan
			4.1	Process	model 			6.4	Budget	control	plan

			4.2	Process	improvement	plan 			6.5	Quality	assurance	plan
			4.3	Infrastructure	plan 			6.6	Subcontractor	management	plan

			4.4	Methods,	tools	and	techniques 			6.7	Project	closeout	plan
			4.5	Product	acceptance	plan 7.	Product	delivery
			4.6	Project	organization 8.	Supporting	process	plans
						4.6.1	External	interfaces 			8.1	Project	supervision	and	work	environment
						4.6.2	Internal	interfaces 			8.2	Decision	management

						4.6.3	Authorities	and	responsibilities 			8.3	Risk	management
5.	Project	planning 			8.4	Configuration	management

			5.1	Project	initiation 			8.5	Information	management
						5.1.1	Estimation	plan 						8.5.1	Documentation
						5.1.2	Staffing	plan 						8.5.2	Communication	and	publicity

						5.1.3	Resource	acquisition	plan 			8.6	Quality	assurance
						5.1.4	Project	staff	training	plan 			8.7	Measurement

			8.8	Reviews	and	audits
			8.9	Verification	and	validation

Figure	10.9:	Format	of	a	project	management	plan	from	the	IEEE	16326-2009	ISO/IEC/IEEE	Systems	and	Software	Engineering–Life
Cycle	Processes–Project	Management	standard.

As	a	result	of	all	the	these	responsibilities,	project	managers	receive	much	of	the	blame	if	projects	have
problems.	Quoting	a	textbook	author	from	his	introduction	to	project	management:

However,	if	a	post	mortem	were	to	be	conducted	for	every	[problematic]	project,	it	is	very	likely	that	a
consistent	theme	would	be	encountered:	project	management	was	weak.

—	Pressman	2010
We	cover	four	major	tasks	for	project	managers	to	increase	their	chances	of	being	successful:
1.	 Team	size,	roles,	space,	communication

2.	 Managing	people	and	conflicts
3.	 Inspections	and	metrics
4.	 Configuration	management

1.	Team	size,	roles,	space,	and	communication.	The	Plan-and-Document	processes	can	scale	to	larger
sizes,	where	group	 leaders	 report	 to	 the	project	manager.	However,	 each	 subgroup	 typically	 stays	 the
size	of	the	two-pizza	teams	we	saw	in	Section		10.1.	Size	recommendations	are	three	to	seven	people
(Braude	and	Berstein	2011)	to	no	more	than	ten	(Sommerville	2010).	Fred	Brooks	gave	us	the	reason	in
Chapter	7:	the	more	people	you	add	to	a	team	increases	the	number	of	people	who	can	work	in	parallel,
but	it	also	increases	the	amount	of	time	each	person	must	spend	communicating.	These	team	sizes	are
reasonable	considering	the	fraction	of	time	spent	communicating.

Given	we	know	the	size	of	the	team,	members	of	a	subgroup	in	Plan-and-Document	processes	can	be
given	different	roles	in	which	they	are	expected	to	lead.	For	example	(Pressman	2010):
	

Configuration	management	leader
Quality	assurance	leader
Requirements	management	leader
Design	leader
Implementation	leader

One	surprising	result	is	that	the	type	of	space	for	the	team	to	work	in	affects	project	management.	One
study	found	that	collocating	the	team	in	open	space	could	double	productivity.(Teasley	et	al.	2000)	The
reasons	 include	 that	 team	members	had	easy	access	 to	each	other	 for	both	coordination	of	 their	work
and	 for	 learning,	 and	 they	 could	post	 their	work	 artifacts	 on	 the	walls	 so	 that	 all	 could	 see.	Another
study	of	teams	in	open	space	concludes:

One	of	the	main	drivers	of	success	was	the	fact	that	the	team	members	were	at	hand,	ready	to	have	a
spontaneous	meeting,	advise	on	a	problem,	teach/learn	something	new,	etc.	We	know	from	earlier	work
that	the	gains	from	being	at	hand	drops	off	significantly	when	people	are	first	out	of	sight,	and	then

most	severely	when	they	are	more	than	30	meters	apart.
—	Allen	and	Henn	2006

While	the	team	relies	on	email	and	texting	for	communicating	and	shares	information	in	wikis	and	the
like,	 there	 is	also	 typically	a	weekly	meeting	 to	help	coordinate	 the	project.	Recall	 that	 the	goal	 is	 to
minimize	the	time	spent	communicating	unnecessarily,	so	it	is	important	that	the	meetings	be	effective.
Below	 is	 our	 digest	 of	 advice	 from	 the	many	guidelines	 found	on	 the	Web	on	how	 to	 have	 efficient
meetings.	We	use	 the	acronym	SAMOSAS	as	a	memory	device;	 surely	bringing	a	plate	of	 them	will
make	for	an	effective	meeting!

			Samosas	are	a	popular	stuffed	deep-fried	snack	from	India.

Start	and	stop	meeting	on	time.
Agenda	created	in	advance	of	meeting;	if	there	is	no	agenda,	then	cancel	the	meeting.
Minutes	must	be	recorded	so	everyone	can	recall	results	afterwards;	the	first	agenda	item	is	finding
a	note	taker.
One	speaker	at	a	time;	no	interruptions	when	another	is	speaking.
Send	material	in	advance,	since	people	read	much	faster	than	speakers	talk.
Action	items	at	end	of	meeting,	so	people	know	what	they	should	do	as	a	result	of	the	meeting.
Set	the	date	and	time	of	the	next	meeting.

2.	Managing	 people	 and	 conflicts.	 Thousands	 of	 books	 have	 been	 written	 on	 how	 to	management
people,	but	the	two	most	useful	ones	that	we	have	found	are	The	One	Minute	Manager	and	How	to	Win
Friends	and	Influence	People.(Blanchard	and	Johnson	1982;	Carnegie	1998)	What	we	 like	about	 the
first	book	is	that	it	offers	short	quick	advice.	Be	clear	about	the	goals	of	what	you	want	done	and	how
well	it	should	be	done,	but	leave	it	up	to	the	team	member	how	to	do	it	to	encourage	creativity.	When
meeting	with	 individuals	 to	 review	progress,	start	with	 the	good	 things	 to	help	build	 their	confidence
and	 to	give	 them	time	 to	 learn	 the	 tasks	at	hand.	At	 the	same	 time,	you	need	 to	be	honest	with	 them
about	what	is	not	going	well,	and	what	they	need	to	do	to	fix	it.	What	we	like	about	the	second	book	is
that	 it	 helps	 teach	 the	 art	 of	 persuasion,	 to	 get	 people	 to	 do	what	 you	 think	 should	 be	 done	without
ordering	them	to	do	it.	These	skills	also	help	persuade	people	you	cannot	command:	your	customers	and
your	management.

Both	books	are	helpful	when	it	comes	to	resolving	conflicts	within	a	team.	Conflicts	are	not	necessarily
bad,	in	that	it	can	be	better	to	have	the	conflict	than	to	let	the	project	crash	and	burn.	Intel	Corporation
labels	this	attitude	constructive	confrontation.	 If	you	have	a	strong	opinion	 that	a	person	 is	proposing
the	wrong	thing	technically,	you	are	obligated	to	bring	it	up,	even	to	your	bosses.	The	Intel	culture	is
speak	up	even	if	you	disagree	with	the	highest	ranked	people	in	the	room.

If	conflict	continues,	given	that	Plan-and-Document	processes	have	a	project	manager,	that	person	can
make	the	final	decision.	One	reason	the	US	made	it	to	the	moon	in	the	1960s	is	that	a	leader	of	NASA,
Wernher	von	Braun,	had	a	knack	for	quickly	resolving	conflicts	on	close	decisions.	His	view	was	that
picking	an	option	arbitrarily	but	quickly	was	frequently	better,	since	the	choice	was	roughly	50-50,	so
that	the	project	could	move	ahead	rather	than	take	the	time	to	carefully	collect	all	 the	evidence	to	see
which	choice	was	slightly	better.

However,	once	a	decision	is	made,	the	teams	needs	to	embrace	it	and	move	ahead.	The	Intel	motto	for
this	resolution	is	disagree	and	commit:	“I	disagree,	but	I	am	going	to	help	even	if	I	don’t	agree.”

3.	Inspections	and	metrics.	 Inspections	 like	design	reviews	and	code	reviews	 allow	 feedback	on	 the
system	 even	 before	 everything	 is	 working.	 The	 idea	 is	 that	 once	 you	 have	 a	 design	 and	 initial
implementation	plan,	you	are	ready	for	feedback	from	developers	beyond	your	team.	Design	and	code
reviews	follow	the	Waterfall	 lifecycle	in	 that	each	phase	is	completed	in	sequence	before	going	on	to
the	next	phase,	or	at	least	for	the	phases	of	a	single	iteration	in	Spiral	or	RUP	development.

A	 design	 review	 is	 a	 meeting	 where	 the	 authors	 of	 program	 present	 its	 design	 with	 the	 goal	 of
improving	software	quality	by	benefiting	 from	 the	experience	of	 the	people	attending	 the	meeting.	A
code	review	is	held	once	the	design	has	been	implemented.	This	peer-oriented	feedback	also	helps	with
knowledge	 exchange	 within	 the	 organization	 and	 offers	 coaching	 that	 can	 help	 the	 careers	 of	 the
presenters.

http://en.wikipedia.org/wiki/Design_review
http://en.wikipedia.org/wiki/code_reviews

Shalloway	 suggests	 that	 formal	 design	 code	 reviews	 are	 often	 too	 late	 in	 the	 process	 to	make	 a	 big
impact	on	the	result.(Shalloway	2002)	He	recommends	to	instead	have	earlier,	smaller	meetings	that	he
calls	“approach	reviews.”	The	idea	is	to	have	a	few	senior	developers	assist	the	team	in	coming	up	with
an	approach	to	solve	the	problem.	The	group	brainstorms	about	different	approaches	to	help	find	a	good
one.

If	you	plan	to	do	a	formal	design	review,	Shalloway	suggests	that	you	first	hold	a	“mini-design	review”
after	the	approach	has	been	selected	and	the	design	is	nearing	completion.	It	involves	the	same	people
as	before,	but	the	purpose	is	to	prepare	for	the	formal	review.

The	 formal	 review	 itself	 should	 start	with	a	high-level	description	of	what	 the	customers	want.	Then
give	 the	 architecture	 of	 the	 software,	 showing	 the	 APIs	 of	 the	 components.	 It	 will	 be	 important	 to
highlight	the	design	patterns	used	at	different	levels	of	abstraction	(see	Chapter	11).	You	should	expect
to	explain	why	you	made	the	decisions,	and	whether	you	considered	plausible	alternatives.	Depending
on	the	amount	of	time	and	the	interests	of	those	at	the	meeting,	the	final	phase	would	be	to	go	through
the	code	of	the	implemented	methods.	At	all	these	phases,	you	can	get	more	value	from	the	review	if
you	have	a	concrete	list	of	questions	or	issues	that	you	would	like	to	hear	about.

One	 advantage	 of	 code	 reviews	 is	 that	 they	 encourage	 people	 outside	 your	 team	 to	 look	 at	 your
comments	as	well	as	your	code.	As	we	don’t	have	a	 tool	 that	can	enforce	 the	advice	 from	Chapter	9
about	making	 sure	 the	 comments	 raise	 the	 level	 of	 abstraction,	 the	 only	 enforcing	mechanism	 is	 the
code	review.

In	addition	to	reviewing	the	code	and	the	comments,	inspections	can	give	feedback	on	every	part	of	the
project	in	Plan-and-Document	processes:	the	project	plan,	schedule,	requirements,	testing	plan,	and	so
on.	This	feedback	helps	with	verification	and	validation	of	the	whole	project,	to	ensure	that	it	is	on	a
good	course.	There	is	even	an	IEEE	standard	on	how	to	document	the	verification	and	validation	plan
for	the	project,	which	Figure	10.10	shows.

1.	Purpose 			5.4	Hardware	V&V	Processes,	Activities	and
Tasks

2.	Referenced	documents 						5.4.1Hardware	Concept
3.	Definitions 						5.4.2	Hardware	Requirements

4.	V&V	overview 						5.4.3	Hardware	Design
			4.1	Organization 						5.4.4	Hardware	Fabrication

			4.2	Master	schedule 						5.4.5	Hardware	Integration	Test
			4.3	Integrity	level	scheme 						5.4.6	Hardware	Qualification	Test
			4.4	Resources	summary 						5.4.7	Hardware	Acceptance	Test
			4.5	Responsibilities 						5.4.8	Hardware	Transition

			4.6	Tools,	techniques,	and	methods 						5.4.9	Hardware	Operation
5.	V&V	processes 						5.4.10	Hardware	Maintenance

			5.1	Common	V&V	Processes,	Activities	and	Tasks 						5.4.11	Hardware	Disposal
			5.2	System	V&V	Processes,	Activities	and	Tasks 6.	V&V	reporting	requirements

						5.2.1	Acquisition	Support 			6.1	Task	reports

http://en.wikipedia.org/wiki/Verification_and_validation_(software)

						5.2.2	Supply	Planning 			6.2	Anomaly	reports
						5.2.3	Project	Planning 			6.3	V&V	final	report

						5.2.4	Configuration	Management 			6.4	Special	studies	reports	(optional)
						5.2.5	Stakeholder	Requirements	Definition 			6.5	Other	reports	(optional)

						5.2.6	Requirements	Analysis 7.	V&V	administrative	requirements
						5.2.7	Architectural	Design 			7.1	Anomaly	resolution	and	reporting
						5.2.8	Implementation 			7.2	Task	iteration	policy
						5.2.9	Integration 			7.3	Deviation	policy
						5.2.10	Transition 			7.4	Control	procedures
						5.2.11	Operation 			7.5	Standards,	practices,	and	conventions

						5.2.12	Maintenance 8.	V&V	test	documentation	requirements
						5.2.13	Disposal

			5.3	Software	V&V	Processes,	Activities	and	Tasks
						5.3.1	Software	Concept

						5.3.2	Software	Requirements
						5.3.3	Software	Design

						5.3.4	Software	Construction
						5.3.5	Software	Integration	Test
						5.3.6	Software	Qualification	Test
						5.3.7	Software	Acceptance	Test

						5.3.8	Software	Installation	and	Checkout
(Transition)

						5.3.9	Software	Operation
						5.3.10	Software	Maintenance
						5.3.11	Software	Disposal

Figure	10.10:	Outline	of	a	plan	for	System	and	Software	Verification	and	Validation	from	the	IEEE	1012-2012	Standard.

Like	 the	algorithmic	models	 for	 cost	 estimation	 (see	Section	7.10),	 some	 researchers	 have	 advocated
that	software	metrics	could	 replace	 inspections	or	 reviews	 to	assess	project	quality	and	progress.	The
idea	 is	 to	collect	metrics	across	many	projects	 in	organization	over	 time,	establish	a	baseline	for	new
projects,	and	then	see	how	the	project	is	doing	compared	to	baseline.	This	quote	captures	the	argument
for	metrics:

Without	metrics,	it	is	difficult	to	know	how	a	project	is	executing	and	the	quality	level	of	the	software.
—	Braude	and	Berstein	2011

Below	are	sample	metrics	that	can	be	automatically	collected:
	

Code	size,	measured	in	thousands	of	lines	of	code	(KLOC)	or	in	function	points	(Section	7.10).
Effort,	measured	in	person	months	spent	on	project.

Project	milestones	planned	versus	fulfilled.
Number	of	test	cases	completed.
Defect	discovery	rate,	measured	in	defects	discovered	via	testing	per	month.
Defect	repair	rate,	measured	in	defects	fixed	per	month.

Other	metrics	can	be	derived	from	these	so	as	to	normalize	the	numbers	to	help	compare	results	from
different	projects:	KLOC	per	person	month,	defects	per	KLOC,	and	so	on.

The	problem	with	this	approach	is	that	there	is	little	evidence	of	correlation	between	these	metrics	that
we	can	automatically	collect	and	project	outcomes.	 Ideally,	 the	metrics	would	correlate	and	we	could
have	much	finer	grain	understanding	than	comes	from	the	occasional	and	time	consuming	inspections.
This	quote	captures	the	argument	de-emphasizing	metrics:

However,	we	are	still	quite	a	long	way	from	this	ideal	situation,	and	there	are	no	signs	that	automated
quality	assessment	will	become	a	reality	in	the	foreseeable	future

—	Sommerville	2010

4.	Configuration	management.	Configuration	management	includes	four	varieties	of	changes,	three	of
which	we	have	seen	before.	The	first	is	version	management,	which	we	saw	above	in	Sections	10.4	and
10.5.	 This	 variety	 keeps	 track	 of	 versions	 of	 components	 as	 they	 are	 changed.	 The	 second,	 system
building,	is	closely	related	to	the	first.	Tools	like	make	assemble	the	compatible	versions	of	components
into	an	executable	program	for	the	target	system.	The	third	variety	is	release	management,	which	we
cover	 in	Chapter	 12.	 The	 last	 is	 change	management,	 which	 comes	 from	 change	 requests	made	 by
customers	and	other	stakeholders	to	fix	bugs	or	to	improve	functionality	(see	Section	9.7).

As	you	surely	expect	by	now,	IEEE	has	a	standard	for	Configuration	Management.	Figure	10.11	shows
its	table	of	contents.

Table	of	Contents
1.	Overview
			1.1	Scope
			1.2	Purpose

2.	Definitions,	acronyms,	and	abbreviations
			2.1	Definitions

			2.2	Acronyms	and	abbreviations
3.	Tailoring
4.	Audience

5.	The	configuration	management	process
6.	CM	planning	lower-level	process

			6.1	Purpose
			6.2	Activities	and	tasks

7.	CM	management	lower-level	process
			7.1	Purpose

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/release_management,
http://en.wikipedia.org/wiki/change_management

			7.2	Activities	and	tasks
8.	Configuration	identification	lower-level	process

			8.1	Purpose
			8.2	Activities	and	tasks

9.	Configuration	change	control	lower-level	process
			9.1	Purpose

			9.2	Activities	and	Tasks
10.	Configuration	status	accounting	lower-level	process

			10.1	Purpose
			10.2	Activities	and	tasks

11.	CM	configuration	auditing	lower-level	process
			11.1	Purpose

			11.2	Activities	and	Tasks
12.	Interface	control	lower-level	process

			12.1	Purpose
			12.2	Activities	and	Tasks

13.	Supplier	configuration	item	control	lower-level	process
			13.1	Purpose

			13.2	Activities	and	Tasks
14.	Release	management	lower-level	process

			14.1	Purpose
			14.2	Activities	and	tasks

Figure	10.11:	A	table	of	contents	for	the	IEEE	828-2012	Standard	for	Configuration	Management	in	Systems	and	Software	Engineering.

Summary:	In	Plan-and-Document	processes:
	

Project	managers	 are	 in	 charge:	 they	write	 the	 contract,	 recruit	 the	 team,	 and	 interface	with	 the
customer	and	upper	management.
The	project	manager	documents	the	project	plan	and	configuration	plan,	along	with	the	verification
and	validation	plan	that	ensures	that	other	plans	are	followed!
To	 limit	 time	 spent	 communicating,	 groups	 are	 three	 to	 ten	 people.	They	 can	be	 composed	 into
hierarchies	to	form	larger	teams	reporting	to	the	project	manager,	with	each	group	having	its	own
leader.
Guidelines	 for	 managing	 people	 include	 giving	 them	 clear	 goals	 but	 empowering	 them,	 and
starting	with	 the	positive	 in	 reviews	but	being	honest	 about	 shortcomings	and	how	 to	overcome
them.
While	 conflicts	 need	 to	 be	 resolved,	 they	 can	 be	 helpful	 in	 finding	 the	 best	 path	 forward	 for	 a
project.
Inspections	like	design	reviews	and	code	reviews	let	outsiders	give	feedback	on	the	current	design
and	future	plans,	which	lets	the	team	benefit	from	the	experience	of	others.	They	are	also	a	good

way	to	check	if	good	practices	are	being	followed	and	if	the	plans	and	documents	are	sensible.
Configuration	 management	 is	 a	 broad	 category	 that	 includes	 change	 management	 while
maintaining	 a	 product,	 version	 control	 of	 software	 components,	 system	 building	 of	 a	 coherent
working	 program	 from	 those	 components,	 and	 release	 management	 to	 ship	 the	 product	 to
customers.

Self-Check	10.7.1.	Compare	the	size	of	teams	in	Plan-and-Document	processes	versus	Agile	processes.
	Plan-and-Document	processes	can	form	hierarchies	of	subgroups	to	create	a	much	larger	project,	but

each	subgroup	is	basically	the	same	size	as	a	“two-pizza”	team	for	Agile.

Self-Check	10.7.2.	True	or	False:	Design	reviews	are	meetings	intended	to	improve	the	quality	of	the
software	 product	 using	 the	 wisdom	 of	 the	 attendees,	 but	 they	 also	 result	 in	 technical	 information
exchange	and	can	be	highly	educational	for	junior	members	of	the	organization,	whether	presenters	or
just	attendees.
	True.

10.8	Fallacies	and	Pitfalls

			Pitfall:	Always	watching	the	master	while	pair	programming.

If	one	member	of	the	pair	has	much	more	experience,	the	temptation	is	to	let	the	more	senior	member
do	 all	 the	 driving,	 with	 the	more	 junior	member	 becoming	 essentially	 the	 permanent	 observer.	 This
relationship	is	not	healthy,	and	will	likely	lead	to	disengagement	by	the	junior	member.

			Pitfall:	Dividing	work	based	on	the	software	stack	rather	than	on	features.

It’s	 less	common	than	 it	used	 to	be	 to	divide	 the	 team	into	a	front-end	specialist,	back-end	specialist,
customer	 liaison,	and	so	 forth,	but	 it	 still	happens.	Your	authors	and	others	believe	 that	better	 results
come	 from	 having	 each	 team	 member	 deliver	 all	 aspects	 of	 a	 chosen	 feature	 or	 story—Cucumber
scenarios,	RSpec	 tests,	 views,	 controller	 actions,	model	 logic,	 and	 so	 on.	Especially	when	 combined
with	 pair	 programming,	 having	 each	 developer	 maintain	 a	 “full	 stack”	 view	 of	 the	 product	 spreads
architectural	knowledge	around	the	team.

			Pitfall:	Accidentally	stomping	on	changes	after	merging	or	switching	branches.

If	you	do	a	pull	or	merge,	or	if	you	switch	to	a	different	branch,	some	files	may	suddenly	have	different
contents	on	disk.	If	any	such	files	are	already	loaded	into	your	editor,	the	versions	being	edited	will	be
out	of	date,	and	even	worse,	if	you	now	save	those	files,	you	will	either	overwrite	merged	changes	or
save	 a	 file	 that	 isn’t	 in	 the	 branch	 you	 think	 it	 is.	 The	 solution	 is	 simple:	before	 you	 pull,	merge	 or
switch	branches,	make	sure	you	commit	all	current	changes;	after	you	pull,	merge	or	switch	branches,
reload	any	files	in	your	editor	that	may	be	affected—or	to	be	really	safe,	just	quit	your	editor	before	you
commit.	Be	careful	too	about	the	potentially	destructive	behavior	of	certain	Git	commands	such	as	git
reset,	as	described	in	“Gitster”	Scott	Chacon’s	informative	and	detailed	blog	post.

http://progit.org/2011/07/11/reset.html

			Pitfall:	Letting	your	copy	of	the	repo	get	too	far	out	of	sync	with	the	origin	(authoritative)
copy.

It’s	best	not	to	let	your	copy	of	the	repo	diverge	too	far	from	the	origin,	or	merges	(Section	10.5)	will	be
painful.	You	should	always	git	pull	before	starting	to	work,	and	git	push	as	soon	as	your	locally-
committed	changes	are	stable	enough	to	inflict	on	your	teammates.	If	you’re	working	on	a	long-lived
feature	 branch	 that	 is	 at	 risk	 of	 getting	 out	 of	 sync	with	 the	master,	 see	 the	 documentation	 for	 git
rebase	to	periodically	“re-sync”	your	branch	without	merging	it	back	into	master	until	it’s	ready.

			Fallacy:	It’s	fine	to	make	simple	changes	on	the	master	branch.

Programmers	are	optimists.	When	we	set	out	to	change	our	code,	we	always	think	it	will	be	a	one-line
change.	Then	it	turns	into	a	five-line	change;	then	we	realize	the	change	affects	another	file,	which	has
to	be	changed	as	well;	 then	it	 turns	out	we	need	to	add	or	change	existing	 tests	 that	relied	on	the	old
code;	 and	 so	on.	For	 this	 reason,	always	 create	 a	 feature	branch	when	 starting	new	work.	Branching
with	Git	 is	nearly	 instantaneous,	and	if	 the	change	truly	does	 turn	out	 to	be	small,	you	can	delete	 the
branch	after	merging	to	avoid	having	it	clutter	your	branch	namespace.

			Fallacy:	Since	each	subteam	is	working	on	its	own	branch,	we	don’t	need	to	communicate
regularly	or	merge	frequently.

Branches	are	a	great	way	for	different	team	members	to	work	on	different	features	simultaneously,	but
without	 frequent	merges	 and	 clear	 communication	 of	who’s	working	 on	what,	 you	 risk	 an	 increased
likelihood	 of	 merge	 conflicts	 and	 accidental	 loss	 of	 work	 when	 one	 developer	 “resolves”	 a	 merge
conflict	by	deleting	another	developer’s	changes.

10.9	 Concluding	 Remarks:	 Teams,	 Collaboration,	 and	 Four	 Decades	 of	 Version
Control

The	first	90%	of	the	code	accounts	for	the	first	10%	of	the	development	time.	The	remaining	10%	of
the	code	accounts	for	the	other	90%	of	the	development	time.

—Tom	Cargill,	quoted	in	Programming	Pearls,	1985

The	history	of	version	control	systems	mirrors	the	movement	towards	distributed	collaboration	among
“teams	of	teams,”	with	two-pizza	teams	emerging	as	a	popular	unit	of	cohesiveness.	From	about	1970–
1985,	the	original	Unix	Source	Code	Control	System	(SCCS)	and	its	longer-lived	descendant	Revision
Control	System	 (RCS)	 allowed	only	one	developer	 at	 a	 time	 to	 “lock”	 a	 particular	 file	 for	 editing—
others	could	only	read	but	not	edit	the	file	until	the	first	developer	checked	the	file	back	in,	releasing	the
lock.	SCCS	and	RCS	also	required	all	developers	to	use	the	same	(then	timeshared)	computer,	whose
file	 system	 held	 the	 repo.	 In	 a	 project	 with	 many	 files,	 this	 locking	 mechanism	 quickly	 became	 a
bottleneck,	so	in	1986	the	Concurrent	Versions	System	(CVS)	finally	allowed	simultaneous	editing	of
the	same	file	with	automatic	merging,	and	allowed	the	master	repo	to	be	on	a	different	computer	than
the	developer’s	copy,	 facilitating	distributed	development.	Subversion,	 introduced	 in	2001,	had	much
better	 support	 for	 branches,	 allowing	 developers	 to	 independently	 work	 on	 different	 versions	 of	 a

http://en.wikipedia.org/wiki/Source_Code_Control_System
http://en.wikipedia.org/wiki/Revision_Control_System
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Apache_Subversion

project,	but	still	assumed	all	developers	working	on	a	particular	code	tree	would	push	their	changes	to	a
single	“master”	copy	of	the	repo.	Git	completed	the	decentralization	by	allowing	any	copy	of	a	repo	to
push	 or	 pull	 from	 any	 other,	 enabling	 completely	 decentralized	 “teams	 of	 teams,”	 and	 by	 making
branching	and	merging	much	quicker	and	easier	than	its	predecessors.	Today,	distributed	collaboration
is	the	norm:	rather	than	a	large	distributed	team,	fork-and-pull	allows	a	large	number	of	agile	two-pizza
teams	to	make	independent	progress,	and	the	use	of	Git	to	support	such	efforts	has	become	ubiquitous.
This	new	two-pizza	team	size	makes	it	easier	for	a	team	to	stay	organized	than	the	giant	programming
teams	possible	in	Plan-and-Document.

Despite	 these	 improvements,	 software	projects	 are	 still	 infamous	 for	being	 late	 and	over	budget.	The
techniques	in	this	chapter	can	help	an	agile	team	avoid	those	pitfalls.	Checking	in	with	all	stakeholders
on	 each	 iteration	guides	your	 team	 into	 spending	 its	 resources	most	 effectively	 and	 is	more	 likely	 to
result	 in	 software	 that	 makes	 customers	 happy	 within	 the	 time	 and	 cost	 budget.	 The	 Scrum	 team
organization	 fits	well	with	Agile	 lifecycle	 and	 the	 challenges	of	developing	SaaS.	Disciplined	use	of
version	control	allows	developers	to	make	progress	on	many	fronts	simultaneously	without	interfering
with	each	others’	work,	and	also	allows	disciplined	and	systematic	management	of	the	bug	lifecycle.

The	Plan-and-Document	 processes	 rely	 on	 the	 project	manager	 to	make	 the	 time	 and	 cost	 estimates,
assess	risks,	and	to	run	the	project	so	that	it	delivers	the	product	on	time	and	on	budget	with	the	required
functionality.	 This	 more	 autocratic	 approach	 is	 in	 contrast	 with	 the	 egalitarian	 approach	 of	 Scrum,
where	 the	 ScrumMaster	 and	 Product	 Owner	 roles	 rotate	 between	 the	 members	 of	 the	 Agile	 team.
Everything	is	documented	in	Plan-and-Document	lifecycles,	including	the	project	management	plan,	the
configuration	management	plan,	and	the	plan	on	how	to	verify	and	validate	that	the	project	is	following
the	plans.	Inspections	from	developers	outside	the	team	give	feedback	on	the	plans	and	the	code,	and
help	assess	the	project’s	progress.

Once	a	project	is	completed	in	any	lifecycle,	it	is	important	to	take	the	time	to	think	about	on	what	you
learned	on	 this	project	before	 leaping	head	 first	 into	your	next	one.	Reflect	on	what	went	well,	what
didn’t	go	well,	and	what	you	would	do	differently.	It	is	not	a	sin	to	make	a	mistake,	as	long	as	you	learn
from	it;	the	sin	is	making	the	same	mistake	repeatedly.

10.10	To	Learn	More
	

You	 can	 find	 very	 detailed	 descriptions	 of	 Git’s	 powerful	 features	 in	Version	 Control	 With	 Git
(Loeliger	2009),	which	takes	a	more	tutorial	approach,	and	in	the	free	Git	Community	Book,	which
is	also	useful	as	a	 thorough	 reference	on	Git.	For	detailed	help	on	a	 specific	command,	use	git
help	 command,	 for	 example,	 git	 help	 branch;	 but	 be	 aware	 that	 these	 explanations	 are	 for
reference,	not	tutorial.
Many	medium-sized	projects	that	don’t	use	Pivotal	Tracker,	or	whose	bug-management	needs	go
somewhat	beyond	what	Tracker	provides,	rely	on	the	Issues	feature	built	into	every	GitHub	repo.
The	 Issues	 system	 allows	 each	 team	 to	 create	 appropriate	 “labels”	 for	 different	 bug	 types	 and
priorities	 and	 create	 their	 own	 “bug	 lifecycle”	 process.	 Large	 projects	 with	 wide	 software
distribution	use	considerably	more	sophisticated	(and	complex)	bug	tracking	systems	such	as	the
open-source	Bugzilla.

ACM	IEEE-Computer	Society	Joint	Task	Force.	Computer	science	curricula	2013,	Ironman	Draft

http://book.git-scm.com
http://mozilla.org

	 (version	1.0).	Technical	report,	February	2013.	URL	http:	//ai.stanford.edu/users/sahami/CS2013/.

	 T.	J.	Allen	and	G.	Henn.	The	Organization	and	Architecture	of	Innovation:	Managing	the	Flow	ofTechnology.	Butterworth-heinemann,	2006.

	
A.	Begel	and	N.	Nagappan.	Pair	programming:	What’s	in	it	for	me?	In	Proceedings	of	the	Second
ACM-IEEE	international	symposium	on	Empirical	software	engineering	and	measurement,	pages
120–128,	Kaiserslautern,	Germany,	October	2008.
	 K.	H.	Blanchard	and	S.	Johnson.	The	One	Minute	Manager.	William	Morrow,	Cambridge,	MA,	1982.

	
P.	Bodík,	A.	Fox,	M.	I.	Jordan,	D.	Patterson,	A.	Banerjee,	R.	Jagannathan,	T.	Su,	S.	Tenginakai,
B.	Turner,	and	J.	Ingalls.	Advanced	tools	for	operators	at	Amazon.com.	In	First	Workshop	on	Hot
Topics	in	Autonomic	Computing	(HotAC’06),	Dublin,	Ireland,	June	2006.

	 E.	Braude	and	M.	Berstein.	Software	Engineering:Modern	Approaches,	Second	Edition.	John	Wiley
and	Sons,	2011.	ISBN	9780471692089.
	 D.	Carnegie.	How	to	Win	Friends	and	Influence	People.	Pocket,	1998.

	 A.	Cockburn	and	L.	Williams.	The	costs	and	benefits	of	pair	programming.	Extreme	Programming
Examined,	pages	223–248,	2001.

	 J.	Hannay,	T.	Dyba,	E.	Arisholm,	and	D.	Sjoberg.	The	effectiveness	of	pair	programming:	A	meta-analysis.	Information	and	Software	Technology,	51(7):	1110–1122,	July	2009.
	 L.	Hoffmann.	Q&a:	Big	challenge.	Communications	of	the	ACM	(CACM),	56(9):	112–ff,	Sept.	2013.
	 D.	Holland.	Red	Zone	Management.	WinHope	Press,	2004.	ISBN	0967140188.

	 J.	Loeliger.	Version	Control	with	Git:	Powerful	Tools	and	Techniques	for	Collaborative	SoftwareDevelopment.	O’Reilly	Media,	2009.	ISBN	0596520123.

	 J.	Moore.	ipad	2	as	a	remote	presence	device?	Pivotal	Blabs,	2011.	URL
http://pivotallabs.com/blabs/categories/pair-programming.

	 R.	Pressman.	Software	Engineering:	A	Practitioner’s	Approach,	Seventh	Edition.	McGraw	Hill,	2010.
ISBN	0073375977.

	 K.	Schwaber	and	M.	Beedle.	Agile	Software	Development	with	Scrum	(Series	in	Agile	Software
Development).	Prentice	Hall,	2001.	ISBN	0130676349.

	 A.	Shalloway.	Agile	Design	and	Code	Reviews.	2002.	URL	http://www.netobjectives.com/download/designreviews.pdf.
	 I.	Sommerville.	Software	Engineering,	Ninth	Edition.	Addison-Wesley,	2010.	ISBN	0137035152.

	
S.	Teasley,	L.	Covi,	M.	S.Krishnan,	and	J.	S.	Olson.	How	does	radical	collocation	help	a	team
succeed?	In	Proceedings	of	the	2000	ACM	conference	on	Computer	supported	cooperative	work,
pages	339–346,	Philadelphia,	Pennsylvania,	December	2000.

10.11	Suggested	Projects

Project	 10.1.	Select	 several	 exercises	 from	 the	 book,	 assign	 points	 to	 them	 and	 then	 measure	 your
velocity	as	you	work	through	them.

Project	10.2.	Think	about	a	website	that	you	frequently	visit,	or	a	web	app	that	you	often	use;	list	some
user	stories	that	would	guide	you	to	create	a	similar	application	from	the	ground	up.

Project	10.3.	 (Discussion)	Think	about	 the	 last	project	you	worked	on	 in	a	group.	How	many	of	 the

http://ai.stanford.edu/users/sahami/CS2013/
http://pivotallabs.com/blabs/categories/pair-programming
http://www.netobjectives.com/download/designreviews.pdf

ideas	and	practices	discussed	in	the	chapter	did	you	and	your	group	use?	Of	those	that	were	used,	which
did	you	find	the	most	useful?	Which	unused	methods	do	you	think	would	have	been	the	most	helpful?

Project	 10.4.	 (Discussion)	A	 suggested	 project	 in	Chapter	 1	was	 to	make	 a	 list	 of	 the	 Top	 10	most
important	applications.	Given	such	a	list,	which	would	best	be	developed	and	maintained	using	a	two-
pizza	sized	team	with	a	Scrum	organization?	Which	ones	would	not?	List	your	reasons	for	each	choice.

Project	 10.5.	 (Discussion)	 Why	 do	 you	 think	 did	 Pivotal	 added	 Epics	 to	 Tracker?	 What	 was	 the
problem	that	they	were	solving	with	this	new	feature?

Project	 10.6.	 (Discussion)	 Find	 a	 nearby	 programming	 colleague	 to	 try	 pair	 programming	 for	 a	 few
days.	Several	of	the	suggested	projects	in	the	early	chapters	are	good	candidates	for	pair	programming.
How	hard	was	it	 to	find	a	place	where	you	could	sit	side-by-side?	Do	you	find	it	forces	you	both	the
concentrate	more	 to	create	higher	quality	code,	 in	part	 setting	distractions	aside,	or	does	 it	 seem	 less
productive	since	essentially	only	one	person	is	doing	any	work?

Project	10.7.	With	a	programming	partner,	come	up	with	a	simple	website	or	application	that	you	could
build.	 Ideally,	 it	 should	 be	 no	 more	 complicated	 than	 RottenPotatoes!	 Using	 the	 methods	 and	 tools
described	 in	 this	 chapter–pair	 programming,	 velocity,	 version	 control–work	 on	 and	 complete	 your
project.	Which	of	the	tools	or	methods	were	the	most	helpful?

Project	 10.8.	 (Discussion)	 Next	 time	 you	 go	 to	 a	 meeting,	 keep	 track	 how	 many	 of	 SAMOSA
guidelines	 are	 being	 violated.	 If	 there	 are	 several,	 suggest	 as	 an	 experiment	 that	 you	 try	 following
SAMOSA.	What	did	you	notice	about	the	differences	between	the	two	meetings?	Did	SAMOSA	help	or
hurt	the	meeting?

Project	10.9.	 			Undertake,	as	part	of	a	team	activity,	an	inspection	of	a	medium-size	code	segment.
Note:	 The	margin	 icon	 identifies	 projects	 from	 the	ACM/IEEE	 2013	 Software	 Engineering	 standard
(ACM	IEEE-Computer	Society	Joint	Task	Force	2013).

Project	 10.10.	 (Discussion)	 Subversion	 (svn)	 was	 a	 popular	 version	 control	 system	 developed	 by
CollabNet	five	years	before	Linus	Torvalds	created	git.	What	were	the	problems	with	svn	that	Torvalds
was	trying	to	solve	with	git?	How	well	did	he	succeed?	What	do	you	think	are	the	pros	and	cons	of	svn
versus	git?

Project	10.11.	 			Describe	the	difference	between	centralized	and	distributed	software	configuration
management.

Project	10.12.	 			Identify	configuration	items	and	use	a	source	code	control	tool	like	GitHub	in	a
small	team-based	project.

Project	10.13.	 			Create	and	follow	an	agenda	for	a	team	meeting.

Project	10.14.	 			Select	and	use	a	defined	coding	standard	in	a	small	software	project.

		

Project	 10.15.	 Identify	 and	 justify	 necessary	 roles	 in	 a	 software	 development	 team	 for	 a	 Plan-and-
Document	process.

Project	10.16.	 			List	the	sources,	hazards,	and	potential	benefits	of	team	conflict.

Project	10.17.	 			Apply	a	conflict	resolution	strategy	in	a	team	setting.

Project	10.18.	 			Following	a	Plan-and-Document	lifecycle,	prepare	a	project	plan	for	a	software
project	that	includes	estimates	of	size	and	effort,	a	schedule,	resource	allocation,	configuration	control,
change	management,	and	project	risk	identification	and	management.

Project	10.19.	 			Demonstrate	your	capability	to	select	and	use	software	tools–including	Cucumber,
RPSEC,	 Pivotal	 Tracker–in	 support	 of	 the	 development	 of	 a	 software	 product	 described	 in	 Exercise
10.18.

11.	Design	Patterns	for	SaaS	Classes

			William	Kahan	(1933–)	received	the	1989	Turing	Award	for	his	fundamental
contributions	to	numerical	analysis.	Kahan	dedicated	himself	to	“making	the	world	safe	for	numerical

computations.”

Things	are	genuinely	simple	when	you	can	think	correctly	about	what’s	going	on	without	having	a	lot
of	extraneous	or	confusing	thoughts	to	impede	you.	Think	of	Einstein’s	maxim,	“Everything	should	be

made	as	simple	as	possible,	but	no	simpler.”	
—“A	Conversation	with	William	Kahan,”	Dr.	Dobbs’	Journal,	1997

11.1	Patterns,	Antipatterns,	and	SOLID	Class	Architecture
11.2	Just	Enough	UML
11.3	Single	Responsibility	Principle
11.4	Open/Closed	Principle
11.5	Liskov	Substitution	Principle
11.6	Dependency	Injection	Principle
11.7	Demeter	Principle
11.8	The	Plan-And-Document	Perspective
11.9	Fallacies	and	Pitfalls
11.10	Concluding	Remarks:	Frameworks	Capture	Design	Patterns
11.11	To	Learn	More
11.12	Suggested	Projects

Concepts

The	big	concept	of	this	chapter	is	that	design	patterns	can	improve	the	quality	of	the	classes.	A	design
pattern	captures	proven	solutions	to	problems	by	separating	the	things	that	change	from	those	that	don’t.

Five	 object-oriented	 design	 principles	 identified	 by	 the	 acronym	 SOLID	 describe	 sound	 design	 of
interactions	 among	 classes.	 An	 antipattern	 indicates	 poor	 class	 design,	 which	 a	 design	 smell	 can
identify.	Thus,	using	design	smells	to	detect	violations	to	the	SOLID	principles	for	good	class	design	is
analogous	 to	 using	code	smells	 to	 detect	 violations	 of	 the	SOFA	 principles	 for	 good	method	 design
(Section	9.7).

The	five	letters	of	the	SOLID	acronym	stand	for:
	

1.	 Single	Responsibility	Principle:	a	class	should	have	one	and	only	one	responsibility;	that	is,	only
one	reason	to	change.	The	Lack	of	Cohesion	Of	Methods	metric	 indicates	 the	antipattern	of	 too
large	a	class.

2.	 Open/Closed	Principle:	a	class	should	be	open	for	extension,	but	closed	against	modification.	The
Case	Statement	design	smell	suggests	a	violation.

3.	 Liskov	Substitution	Principle:	a	method	designed	to	work	on	an	object	of	type	T	should	also	work
on	an	object	of	any	subtype	of	T.	That	is,	all	of	T’s	subtypes	should	preserve	T’s	“contract.”	The
refused	bequest	design	smell	often	indicates	a	violation.

4.	 Dependency	 Injection	Principle:	 if	 two	 classes	 depend	on	 each	other	 but	 their	 implementations
may	change,	it	would	be	better	for	them	to	both	depend	on	a	separate	abstract	interface	which	is
“injected”	between	them.

5.	 Demeter	Principle:	a	method	can	call	other	methods	in	its	own	class,	and	methods	on	the	classes
of	its	own	instance	variables;	everything	else	is	taboo.	A	design	smell	that	indicates	a	violation	is
inappropriate	intimacy.

For	Agile,	refactoring	 is	 the	vehicle	 for	 improving	 the	design	of	classes	and	methods;	 in	some	cases
refactoring	 may	 allow	 you	 to	 apply	 an	 appropriate	 design	 pattern.	 In	 contrast,	 for	 the	 Plan-and-
Document	lifecycles:
	

http://en.wikipedia.org/wiki/design_patterns
http://en.wikipedia.org/wiki/antipattern
http://en.wikipedia.org/wiki/design_smell
http://en.wikipedia.org/wiki/code_smells
http://en.wikipedia.org/wiki/Open/Closed_Principle
http://en.wikipedia.org/wiki/Liskov_Substitution_Principle
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/refactoring
http://en.wikipedia.org/wiki/design_pattern

The	 early	 design	 phase	 makes	 it	 easier	 to	 select	 a	 good	 initial	 software	 architecture	 and	 class
designs.
The	specification	is	broken	into	problems	and	then	into	subproblems,	where	developers	try	to	use
patterns	to	solve	them.
As	design	precedes	coding,	design	reviews	can	offer	early	feedback.
One	concern	is	whether	the	design	must	change	once	coding	begins.

http://en.wikipedia.org/wiki/Design_review

11.1	Patterns,	Antipatterns,	and	SOLID	Class	Architecture

Figure	11.1:	The	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book.	This	chapter	covers	design	patterns,	which
influence	BDD	and	TDD	for	new	apps	and	for	enhancing	legacy	code.

In	Chapter	 2,	we	 introduced	 the	 idea	 of	 a	 design	 pattern:	 a	 reusable	 structure,	 behavior,	 strategy,	 or
technique	 that	captures	a	proven	solution	 to	a	collection	of	similar	problems	by	separating	 the	 things
that	 change	 from	 those	 that	 stay	 the	 same.	 Patterns	play	 a	major	 role	 in	helping	us	 achieve	our	 goal
throughout	this	book:	producing	code	that	is	not	only	correct	(TDD)	and	meets	a	customer	need	(BDD),

but	 is	 also	 concise,	 readable,	DRY,	 and	generally	 beautiful.	 Figure	11.1	 highlights	 the	 role	 of	 design

patterns	in	the	Agile	lifecycle	as	covered	in	this	chapter.	 		

While	we	have	already	seen	architectural	patterns	such	as	Client–Server	and	structural	patterns	such	as
Model–View–Controller,	 this	 chapter	 examines	 design	 patterns	 that	 apply	 to	 classes	 and	 class
architecture.	As	Figure	11.2	shows,	we	will	 follow	a	similar	approach	as	we	did	in	Chapter	9.	Rather
than	 simply	 listing	 a	 catalog	 of	 design	 patterns,	 we’ll	 motivate	 their	 use	 by	 starting	 from	 some
guidelines	 about	 what	 makes	 a	 class	 architecture	 good	 or	 bad,	 identifying	 smells	 and	 metrics	 that
indicate	possible	problem	spots,	and	showing	how	some	of	these	problems	can	be	fixed	by	refactoring
—both	within	classes	and	by	moving	code	across	classes—to	eliminate	the	problems.	In	some	cases,	we
can	 refactor	 to	 make	 the	 code	 match	 an	 existing	 and	 proven	 design	 pattern.	 In	 other	 cases,	 the
refactoring	doesn’t	necessarily	result	in	major	structural	changes	to	the	class	architecture.

Chapter	9 Chapter	11
Code	smells	warn	of	problems	in	methods
of	a	class

Design	smells	warn	of	problems	in	relationships	among
classes

Many	catalogs	of	code	smells	and
refactorings;	we	use	Fowler’s	as	definitive

Many	catalogs	of	design	smells	and	design	patterns;	we	use
Ruby-specific	versions	of	the	Gang	of	Four	(GoF)	design
patterns	as	definitive

ABC,	Cyclomatic	Complexity	metrics
complement	code	smells	with	quantitative
warnings

LCOM	(Lack	of	Cohesion	of	Methods)	metric	complements
design	smells	with	quantitative	warnings

Refactoring	by	extracting	methods	and
moving	code	within	a	class

Refactoring	by	extracting	classes	and	moving	code	between
classes

SOFA	guidelines	for	good	methods	(Short,
do	One	thing,	Few	arguments,	single
Abstraction	level)

SOLID	guidelines	for	good	class	architecture	(Single
responsibility,	Open/Closed,	Liskov	substitution,
dependency	Injection,	Demeter)

Some	code	smells	don’t	apply	in	Ruby Some	design	smells	don’t	apply	in	Ruby	or	SaaS

Figure	11.2:	The	parallels	between	the	warning	symptoms	and	remedies	introduced	for	individual	classes	and	methods	in	Chapter	9	and
those	introduced	for	inter-class	relationships	in	this	chapter.	For	reasons	explained	in	the	text,	whereas	most	books	use	the	I	in	SOLID	for
Interface	Segregation	(a	smell	that	doesn’t	arise	in	Ruby)	and	D	for	injecting	Dependencies,	we	instead	use	I	for	Injecting	dependencies
and	D	for	the	Demeter	principle,	which	arises	frequently	in	Ruby.

As	 with	 method-level	 refactoring,	 application	 of	 design	 patterns	 is	 best	 learned	 by	 doing,	 and	 the
number	of	 design	patterns	 exceeds	what	we	 can	 cover	 in	one	 chapter	 of	 one	book.	 Indeed,	 there	 are
entire	 books	 just	 on	 design	 patterns,	 including	 the	 seminal	Design	 Patterns:	 Elements	 of	 Reusable
Object-Oriented	Software	(Gamma	et	al.	1994),	whose	authors	became	known	as	the	“Gang	of	Four”	or
GoF,	and	their	catalog	known	as	 the	“GoF	design	patterns.”	The	23	GoF	design	patterns	are	divided
into	 Creational,	 Structural,	 and	 Behavioral	 design	 patterns,	 as	 Figure	 11.3	 shows.	 As	 with	 Fowler’s
original	 book	 on	 refactoring,	 the	 GoF	 design	 patterns	 book	 gave	 rise	 to	 other	 books	 with	 examples
tailored	to	specific	languages	including	Ruby	(Olsen	2007).

Since	the	GoF	design	patterns	evolved	in	the	context	of	statically	typed	languages,	some	of	them	address	problems	that	don’t	arise	in

http://en.wikipedia.org/wiki/Software_design_pattern

Ruby.	For	example,	patterns	that	eliminate	type	signature	changes	that	would	trigger	recompilation	are	rarely	used	in	Ruby,	which	isn’t
compiled	and	doesn’t	use	types	to	enforce	contracts.

The	GoF	authors	cite	two	overarching	principles	of	good	object-oriented	design	that	inform	most	of	the
patterns:
	

Prefer	Composition	and	Delegation	over	Inheritance.
Program	to	an	Interface,	not	an	Implementation.

We	will	learn	what	these	catch-phrases	mean	as	we	explore	some	specific	design	patterns.

Creational	patterns	

Abstract	Factory,	Factory	Method:	Provide	an	interface	for	creating	families	of	related	or	dependent
objects	without	specifying	their	concrete	classes	
Singleton:	Ensure	a	class	has	only	one	instance,	and	provide	a	global	point	of	access	to	it.	
Prototype:	Specify	the	kinds	of	objects	to	create	using	a	prototypical	instance,	and	create	new	objects
by	 copying	 this	 prototype.	 As	 we’ll	 see	 in	 Chapter	 6,	 prototype-based	 inheritance	 is	 part	 of	 the
JavaScript	language.	
Builder:	 Separate	 the	 construction	 of	 a	 complex	 object	 from	 its	 representation	 allowing	 the	 same
construction	process	to	create	various	representations	

Structural	patterns	

Adapter,	Proxy,	Façade,	Bridge:	Convert	the	programming	interface	of	a	class	into	another	(sometimes
simpler)	interface	that	clients	expect,	or	decouple	an	abstraction’s	interface	from	its	implementation,	for
dependency	injection	or	performance	
Decorator:	 Attach	 additional	 responsibilities	 to	 an	 object	 dynamically,	 keeping	 the	 same	 interface.
Helps	with	“Prefer	composition	or	delegation	over	inheritance.”	
Composite:	Provide	operations	that	work	on	both	an	individual	object	and	a	collection	of	that	type	of
object	
Flyweight:	Use	sharing	to	support	large	numbers	of	similar	objects	efficiently	

Behavioral	patterns	

Template	Method,	Strategy:	Uniformly	encapsulate	multiple	varying	strategies	for	same	task	
Observer:	One	or	more	entities	need	to	be	notified	when	something	happens	to	an	object	
Iterator,	Visitor:	Separate	 traversal	of	a	data	structure	 from	operations	performed	on	each	element	of
the	data	structure	
Null	Object:	(Doesn’t	appear	in	GoF	catalog)	Provide	an	object	with	defined	neutral	behaviors	that	can
be	safely	called,	to	take	the	place	of	conditionals	guarding	method	calls	
State:	Encapsulate	an	object	whose	behaviors	(methods)	differ	depending	on	which	of	a	small	number
of	internal	states	the	object	is	in	

Chain	of	Responsibility:	Avoid	coupling	the	sender	of	a	request	to	its	receiver	by	giving	more	than	one
object	a	chance	to	handle	the	request,	passing	request	up	the	chain	until	someone	handles	it	
Mediator:	Define	an	object	that	encapsulates	how	a	set	of	objects	interact	without	those	objects	having
to	refer	to	each	other	explicitly,	allowing	decoupling	
Interpreter:	 Define	 a	 representation	 for	 a	 language	 along	 with	 an	 interpreter	 that	 executes	 the
representation	
Command:	Encapsulate	an	operation	request	as	an	object,	thereby	letting	you	parameterize	clients	with
different	requests,	queue	or	log	requests,	and	support	undoable	operations	

Figure	11.3:	The	23	GoF	design	patterns	spanning	three	categories,	with	italics	showing	a	subset	we’ll	encounter	as	we	illustrate	and	fix
SOLID	violations	and	with	closely-related	patterns	grouped	into	a	single	entry,	as	with	Abstract	Factory	and	Factory	Method.	Whenever
we	introduce	a	design	pattern,	we’ll	explain	the	pattern’s	goal,	show	a	Unified	Modeling	Language	representation	(introduced	in	the	next
section)	of	the	class	architecture	before	and	after	refactoring	to	that	pattern,	and	when	possible,	give	an	example	of	how	the	pattern	is
used	“in	the	wild”	in	Rails	itself	or	in	a	Ruby	gem.

In	an	ideal	world,	all	programmers	would	use	design	patterns	tastefully,	continuously	refactoring	their
code	as	Chapter	9	suggests,	and	all	code	would	be	beautiful.	Needless	to	say,	this	is	not	always	the	case.
An	antipattern	is	a	piece	of	code	that	seems	to	want	to	be	expressed	in	terms	of	a	well-known	design
pattern,	 but	 isn’t—often	 because	 the	 original	 (good)	 code	 has	 evolved	 to	 fill	 new	 needs	 without
refactoring	along	the	way.	Design	smells,	similar	to	the	code	smells	we	saw	in	Chapter	9,	are	warning
signs	that	your	code	may	be	headed	towards	an	antipattern.	In	contrast	to	code	smells,	which	typically
apply	 to	 methods	 within	 a	 class,	 design	 smells	 apply	 to	 relationships	 between	 classes	 and	 how
responsibilities	 are	 divided	 among	 them.	 Therefore,	 whereas	 refactoring	 a	 method	 involves	 moving
code	around	within	 a	class,	 refactoring	a	design	 involves	moving	code	between	classes,	creating	new
classes	or	modules	 (perhaps	by	extracting	commonality	 from	existing	ones),	or	 removing	classes	 that
aren’t	pulling	their	weight.

Similar	to	SOFA	in	Chapter	9,	the	mnemonic	SOLID	(credited	to	Robert	C.	Martin)	stands	for	a	set	of
five	design	principles	 that	clean	code	should	 respect.	As	 in	Chapter	9,	design	smells	and	quantitative
metrics	can	tell	us	when	we’re	in	danger	of	violating	one	or	more	SOLID	guidelines;	the	fix	is	often	a
refactoring	that	eliminates	the	problem	by	bringing	the	code	in	line	with	one	or	more	design	patterns.

“Uncle	Bob”	Martin,	an	American	software	engineer	and	consultant	since	1970,	is	a	founder	of	Agile/XP	and	a	leading	member	of	the
Software	Craftsmanship	movement,	which	encourages	programmers	to	see	themselves	as	creative	professionals	learning	a	disciplined
craft	in	an	apprenticeship	model.

Figure	11.4	shows	the	SOLID	mnemonics	and	what	they	tell	us	about	good	composition	of	classes.	In
our	discussion	of	selected	design	patterns,	we’ll	see	violations	of	each	one	of	these	guidelines,	and	show
how	 refactoring	 the	bad	code	 (in	 some	cases,	with	 the	goal	of	 applying	a	design	pattern)	 can	 fix	 the
violation.	In	general,	the	SOLID	principles	strive	for	a	class	architecture	that	avoids	various	problems
that	thwart	productivity:
	

1.	 Viscosity:	it’s	easier	to	fix	a	problem	using	a	quick	hack,	even	though	you	know	that’s	not	the	right
thing	to	do.

2.	 Immobility:	it’s	hard	to	be	DRY	and	because	the	functionality	you	want	to	reuse	is	wired	into	the

http://en.wikipedia.org/wiki/Software_design_patterns
http://butunclebob.com
http://en.wikipedia.org/wiki/Software_Craftsmanship

app	in	a	way	that	makes	extraction	difficult.
3.	 Needless	 repetition:	 possibly	 as	 a	 consequence	 of	 immobility,	 the	 app	 has	 similar	 functionality

duplicated	 in	multiple	places.	As	a	 result,	a	change	 in	one	part	of	 the	app	often	 ripples	 to	many
other	parts	of	the	app,	so	that	a	small	change	in	functionality	requires	a	lot	of	little	changes	to	code
and	tests,	a	process	sometimes	called	shotgun	surgery.

4.	 Needless	complexity:	the	app’s	design	reflects	generality	that	was	inserted	before	it	was	needed.

Principle Meaning Warning	smells Refactoring	fix

Single
Responsibility

A	class	should	have
one	and	only	one
reason	to	change

Large	class,	poor	LCOM	(Lack	of
Cohesion	Of	Methods)	score,	data

clumps
Extract	class,	move	methods

Open/Closed

Classes	should	be
open	for	extension	but

closed	for
modification

Conditional	complexity,	case-
based	dispatcher

Use	Strategy	or	Template
Method,	possibly	combined

with	Abstract	Factory
pattern;	use	Decorator	to

avoid	explosion	of
subclasses

Liskov
Substitution

Substituting	a	subclass
for	a	class	should
preserve	correct
program	behavior

Refused	bequest:	subclass
destructively	overrides	an

inherited	method

Replace	inheritance	with
delegation

Injection	of
Dependencies

Collaborating	classes
whose	implementation
may	vary	at	runtime
should	depend	on	an

intermediate
“injected”	dependency

Unit	tests	that	require	ad	hoc
stubbing	to	create	seams;

constructors	that	hardwire	a	call	to
another	class’s	constructor,	rather

than	allowing	runtime
determination	of	which	other	class

to	use

Inject	a	dependency	on	a
shared	interface	to	isolate	the
classes;	use	Adapter,	Façade,
or	Proxy	patterns	as	needed

to	make	the	interface
uniform	across	variants

Demeter
Principle

Speak	only	to	your
friends;	treat	your
friends’	friends	as

strangers

Inappropriate	intimacy,	feature
envy,	mock	trainwrecks

(Section	8.10)

Delegate	behaviors	and	call
the	delegate	methods	instead

Figure	11.4:	The	SOLID	design	guidelines	and	some	smells	that	may	suggest	your	code	violates	one	or	more	of	them.	We	diverge	a	little
bit	from	standard	usage	of	SOLID:	we	use	I	for	Injecting	dependencies	and	D	for	the	Demeter	principle,	whereas	most	books	use	I	for
Interface	Segregation	(which	doesn’t	apply	in	Ruby)	and	D	for	injecting	Dependencies.

As	with	refactoring	and	legacy	code,	seeking	out	design	smells	and	addressing	them	by	refactoring	with
judicious	use	of	design	patterns	is	a	skill	learned	by	doing.	Therefore,	rather	than	presenting	“laundry
lists”	of	design	 smells,	 refactorings,	 and	design	patterns,	we	 focus	our	discussion	 around	 the	SOLID
principles	 and	give	 a	 few	 representative	 examples	of	 the	overall	 process	of	 identifying	design	 smells
and	assessing	the	alternatives	for	addressing	them.	As	you	tackle	your	own	applications,	perusing	the
more	detailed	resources	listed	in	Section	11.11	is	essential.

Summary	of	patterns,	antipatterns	and	SOLID:
	

Good	 code	 should	 accommodate	 evolutionary	 change	 gracefully.	 Design	 patterns	 are	 proven
solutions	 to	 common	 problems	 that	 thwart	 this	 goal.	 They	 work	 by	 providing	 a	 clean	 way	 to
separate	 the	 things	 that	may	change	or	evolve	 from	 those	 that	 stay	 the	same	and	a	clean	way	 to
accommodate	those	changes.
Just	 as	with	 individual	methods,	 refactoring	 is	 the	 process	 of	 improving	 the	 structure	 of	 a	 class
architecture	to	make	the	code	more	maintainable	and	evolvable	by	moving	code	across	classes	as
well	 as	 refactoring	within	 the	 class.	 In	 some	 cases,	 these	 refactorings	 lead	 us	 to	 one	 of	 the	 23
“Gang	of	Four”	(GoF)	design	patterns.
Just	 as	 with	 individual	 methods,	 design	 smells	 and	 metrics	 can	 serve	 as	 early	 warnings	 of	 an
antipattern—a	piece	of	code	that	would	be	better	structured	if	it	followed	a	design	pattern.

ELABORATION:	Other	types	of	patterns

As	 we’ve	 emphasized	 since	 the	 beginning	 of	 this	 book,	 judicious	 use	 of	 patterns	 pervades	 good	 software	 engineering.	 To
complement	class-level	design	patterns,	others	have	developed	catalogs	of	architectural	patterns	for	enterprise	applications	(we	met
some	 in	Chapter	2),	parallel	programming	patterns,	 computational	 patterns	 (to	 support	 specific	 algorithm	 families	 such	 as	 graph
algorithms,	linear	algebra,	circuits,	grids,	and	so	on),	Concurrency	patterns,	and	user	interface	patterns.

Self-Check	11.1.1.

True	or	 false:	one	measure	of	 the	quality	of	a	piece	of	software	 is	 the	degree	 to	which	 it	uses	design
patterns.

	False:	while	design	patterns	provide	proven	solutions	to	some	common	problems,	code	that	doesn’t
exhibit	such	problems	may	not	need	those	patterns,	but	that	doesn’t	make	it	poor	code.	The	GoF	authors
specifically	warn	against	measuring	code	quality	in	terms	of	design	pattern	usage.

11.2	Just	Enough	UML

			Grady	Booch	(1955–),	internationally	recognized	for	his	work	in	software
engineering	and	collaborative	development	environments,	developed	UML	with	Ivar	Jacobson	and

James	Rumbaugh.
The	Unified	Modeling	 Language	 or	UML	 is	 not	 a	 textual	 language,	 but	 a	 set	 of	 graphical	 notation
techniques	 to	 “specify,	 visualize,	modify,	 construct,	 and	 document	 the	 artifacts	 of	 an	 object-oriented
software-intensive	 system	 under	 development.”	 UML	 evolved	 from	 1995	 to	 the	 present	 through	 the

http://martinfowler.com/eaaCatalog
http://www.cs.uiuc.edu/homes/snir/PPP/
http://en.wikipedia.org/wiki/Concurrency_pattern
http://ui-patterns.com
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://foldoc.org/index.cgi?query=UML&action=Search

unification	of	 previously-distinct	modeling	 language	 standards	 and	diagram	 types,	which	Figure	11.5
lists.

Structure	diagrams

Class Describes	the	structure	of	a	system	by	showing	the	system’s	classes,	their	attributes,	and
the	relationships	among	the	classes.

Component Describes	how	a	software	system	is	split	up	into	components	and	shows	the	dependencies
among	these	components.

Composite
structure

Describes	the	internal	structure	of	a	class	and	the	collaborations	that	this	structure	makes
possible.

Deployment Describes	the	hardware	used	in	system	implementations	and	the	execution	environments
and	artifacts	deployed	on	the	hardware.

Object Shows	a	complete	or	partial	view	of	the	structure	of	an	example	modeled	system	at	a
specific	time.

Package Describes	how	a	system	is	split	up	into	logical	groupings	by	showing	the	dependencies
among	these	groupings.

Profile Describes	reusable	domain-specific	“stereotype”	objects	from	which	specific	object	types
can	be	derived	for	use	in	a	particular	application.

Interaction	diagrams

Communication
Shows	the	interactions	between	objects	or	parts	in	terms	of	sequenced	messages.	They
represent	a	combination	of	information	taken	from	Class,	Sequence,	and	Use	Case
Diagrams	describing	both	the	static	structure	and	dynamic	behavior	of	a	system.

Interaction
overview Provides	an	overview	in	which	the	nodes	represent	communication	diagrams.

Sequence Shows	how	objects	communicate	with	each	other	in	terms	of	a	sequence	of	messages.
Also	indicates	the	lifespans	of	objects	relative	to	those	messages.

Timing
diagrams A	specific	type	of	interaction	diagram	where	the	focus	is	on	timing	constraints.

Behavior	diagrams

Activity Describes	the	business	and	operational	step-by-step	workflows	of	components	in	a	system.	Anactivity	diagram	shows	the	overall	flow	of	control.
State

machine Describes	the	states	and	state	transitions	of	the	system.

Use
Case

Describes	the	functionality	provided	by	a	system	in	terms	of	actors,	their	goals	represented	as
use	cases,	and	any	dependencies	among	those	use	cases.

Figure	11.5:	The	fourteen	types	of	diagrams	defined	by	UML	2.2	for	describing	a	software	system.	These	descriptions	are	based	on	the
excellent	Wikipedia	summary	of	UML,	which	also	shows	an	example	of	each	diagram	type.	Use	case	diagrams	are	similar	to	Agile	user
stories,	but	lack	the	level	of	detail	that	allows	tools	like	Cucumber	to	bridge	the	gap	between	user	stories	and	integration/acceptance	tests.

http://en.wikipedia.org/wiki/Unified_Modeling_Language

Figure	11.6:	This	UML	class	diagram	shows	a	subset	of	the	classes	in	the	theater-ticketing	app	consistent	with	Figures	9.4	and	9.5.	Each
box	represents	a	class	with	its	most	important	methods	and	attributes	(responsibilities).	Inheritance	is	represented	by	an	arrow.	Classes
with	associations	are	connected	by	lines	whose	endpoints	are	annotated	with	a	multiplicity	and	optionally	a	diamond—open	for
aggregations,	filled	for	compositions,	absent	otherwise.

While	this	book	focuses	on	more	lightweight	Agile	modeling—indeed,	UML-based	modeling	has	been
criticized	as	being	too	“bloated”	and	heavyweight—some	types	of	UML	diagrams	are	widely	used	even
in	Agile	modeling.	Figure	11.6	shows	a	UML	class	diagram,	which	depicts	each	actual	class	in	the	app,
its	most	important	class	and	instance	variables	and	methods,	and	its	relationship	to	other	classes,	such	as
has-many	 or	 belongs-to	 associations.	 Each	 end	 of	 the	 line	 connecting	 two	 associated	 classes	 is
annotated	with	the	minimum	and	maximum	number	of	instances	that	can	participate	in	that	“side”	of	the
association,	 called	 the	 association’s	multiplicity,	 using	 the	 symbol	*	 for	 “unlimited”.	 For	 example,	 a
multiplicity	1..*	means	“one	or	more”,	0..*	means	“zero	or	more”,	and	1	means	“exactly	one.”	UML
distinguishes	two	kinds	of	“owning”	(has-one	or	has-many)	associations.	In	an	aggregation,	the	owned
objects	 survive	 destruction	 of	 the	 owning	 object.	 For	 example,	 Course	 has	 many	 Students	 is	 an
aggregation	because	the	students	happily	don’t	get	destroyed	when	the	course	is	over!	In	a	composition,
the	owned	objects	are	usually	destroyed	when	the	owning	object	is	destroyed.	For	example,	Movie	has
many	Reviews	is	a	composition	since	deleting	a	Movie	should	cause	all	of	its	reviews	to	be	deleted.

Class	diagrams	are	popular	even	among	software	engineers	who	don’t	use	the	other	parts	of	UML.	With
this	 introduction	 to	 UML	 in	 hand,	 we	 can	 use	 class	 diagrams	 to	 illustrate	 “before	 and	 after”	 class
architecture	when	we	improve	code	using	the	SOLID	guidelines	and	design	patterns.

Summary	of	Unified	Modeling	Language	(UML):
	

UML	comprises	a	 family	of	diagram	 types	 to	 illustrate	various	aspects	of	a	 software	design	and
implementation.
UML	class	diagrams	are	widely	used	even	by	engineers	who	don’t	use	other	UML	features.	They
show	 a	 class’s	 name,	 its	 most	 important	 public	 and	 private	 methods	 and	 attributes,	 and	 its
relationship	to	other	classes.

http://en.wikipedia.org/wiki/class_diagram
http://en.wikipedia.org/wiki/class_diagram

ELABORATION:	When	to	use	UML?

While	 heavyweight,	 UML	 is	 useful	 for	 modeling	 very	 large	 applications	 divided	 into	 subsystems	 being	 worked	 on	 by	 widely-
distributed	teams.	Also,	since	UML	notation	is	language-neutral,	it	can	be	helpful	for	coordinating	international	teams.	Because	of
UML’s	maturity,	many	tools	support	its	use;	the	challenge	is	keeping	the	diagrams	“in	sync”	with	the	code	and	the	design,	which	is
why	most	such	tools	try	to	go	in	both	directions,	synthesizing	code	skeletons	from	UML	and	extracting	UML	diagrams	from	code.
One	 such	 tool	 useful	 for	 learning	 UML	 is	 UMPLE,	 a	 domain-specific	 language	 developed	 at	 the	 University	 of	 Ottawa	 for
expressing	class	 relationships.	The	Try	Umple	web	site	can	generate	UML	class	diagrams	from	UMPLE	code,	generate	UMPLE
code	 from	 diagrams	 you	 draw	 yourself,	 or	 generate	 executable	 code	 in	 various	 programming	 languages	 corresponding	 to	 your
UMPLE	code	or	UML	diagrams.	It’s	a	great	tool	for	exploring	UML	and	class	diagrams,	but	we	don’t	recommend	using	the	Ruby
code	it	generates,	which	is	non-DRY	and	somewhat	non-idiomatic.

		

Self-Check	 11.2.1.	 In	 a	 UML	 class	 diagram	 depicting	 the	 relationship	 “University	 has	 many
Departments,”	what	multiplicities	would	be	allowable	on	each	side	of	the	association?
	The	University	side	has	multiplicity	1,	because	a	Department	must	belong	to	exactly	one	University.

The	 Department	 side	 has	 multiplicity	 1..*,	 because	 one	 or	 more	 Departments	 can	 belong	 to	 a
University.

Self-Check	 11.2.2.	 Should	 the	 relationship	 “University	 has	 many	 Departments”	 be	 modeled	 as	 an
aggregation	or	a	composition?
	It	should	be	a	composition,	since	departments	wouldn’t	survive	the	closing	of	a	university.

11.3	Single	Responsibility	Principle

The	Single	Responsibility	Principle	(SRP)	of	SOLID	states	that	a	class	should	have	one	and	only	one
responsibility—that	is,	only	one	reason	to	change.	For	example,	in	Section	5.2,	when	we	added	single
sign-on	 to	RottenPotatoes,	we	created	a	new	SessionsController	 to	handle	 the	sign-on	 interaction.
An	 alternate	 strategy	 would	 be	 to	 augment	 MoviegoersController,	 since	 sign-on	 is	 an	 action
associated	with	moviegoers.	Indeed,	before	the	single	sign-on	approach	described	in	Chapter	5,	this	was
the	recommended	way	to	implementing	password-based	authentication	in	earlier	versions	of	Rails.	But
such	a	 scheme	would	 require	 changing	 the	Moviegoer	model	 and	 controller	whenever	we	wanted	 to
change	the	authentication	strategy,	even	though	the	“essence”	of	a	Moviegoer	doesn’t	really	depend	on
how	 he	 or	 she	 signs	 in.	 In	MVC,	 each	 controller	 should	 specialize	 in	 dealing	with	 one	 resource;	 an
authenticated	user	session	 is	a	distinct	 resource	from	the	user	himself,	and	deserves	 its	own	RESTful
actions	and	model	methods.	As	a	rule	of	thumb,	if	you	cannot	describe	the	responsibility	of	a	class	in	25
words	or	less,	it	may	have	more	than	one	responsibility,	and	the	new	ones	should	be	split	out	into	their
own	classes.

In	 statically	 typed	 compiled	 languages,	 the	 cost	 of	 violating	 SRP	 is	 obvious:	 any	 change	 to	 a	 class
requires	recompilation	and	may	also	trigger	recompilation	or	relinking	of	other	classes	that	depend	on
it.	Because	we	don’t	pay	this	price	in	interpreted	dynamic	languages,	it’s	easy	to	let	classes	get	too	large
and	violate	SRP.	One	tip-off	is	lack	of	cohesion,	which	is	the	degree	to	which	the	elements	of	a	single
logical	entity,	in	this	case	a	class,	are	related.	Two	methods	are	related	if	they	access	the	same	subset	of
instance	 or	 class	 variables	 or	 if	 one	 calls	 the	 other.	 The	 LCOM	 metric,	 for	 Lack	 of	 Cohesion	 Of
Methods,	 measures	 cohesion	 for	 a	 class:	 in	 particular,	 it	 warns	 you	 if	 the	 class	 consists	 of	multiple
“clusters”	 in	 which	methods	 within	 a	 cluster	 are	 related,	 but	 methods	 in	 one	 cluster	 aren’t	 strongly
related	to	methods	in	other	clusters.	Figure	11.7	shows	two	of	the	most	commonly	used	variants	of	the

http://cruise.site.uottawa.ca/umple/
http://try.umple.org
http://en.wikipedia.org/wiki/Single_Responsibility_Principle
http://en.wikipedia.org/wiki/Cohesion_(computer_science)

LCOM	metric.

In	Section	9.6,	after	successfully	refactoring	convert,	reek	reported	“low	cohesion”	in	the	TimeSetter	class	because	we	used	class
variables	rather	than	instance	variables	for	maintaining	what	was	actually	instance	state,	as	that	section	described.

LCOM
variant Scores Interpretation

Revised
Henderson-
Sellers
LCOM

0
(best)
to	
1

(worst)

0	means	all	instance	methods	access	all	instance	variables.	1	means	any	given
instance	variable	is	used	by	only	one	instance	method,	that	is,	the	instance	methods

are	fairly	independent	of	each	other.

LCOM-4

1
(best)
to	
n

(worst)

Estimates	number	of	responsibilities	in	your	class	as	number	of	connected
components	in	a	graph	in	related	methods’	nodes	are	connected	by	an	edge.	A
score	n	>	1	suggests	that	up	to	n	-	1	responsibilities	could	be	extracted	into	their

own	classes.

Figure	11.7:	The	“recommended”	lack	of	cohesion	of	methods	(LCOM)	score	depends	heavily	on	which	LCOM	variant	is	used.	The
table	shows	two	of	the	most	widely-used	variants.

The	Data	Clumps	design	smell	is	one	warning	sign	that	a	good	class	is	evolving	toward	the	“multiple
responsibilities”	 antipattern.	 A	Data	 Clump	 is	 a	 group	 of	 variables	 or	 values	 that	 are	 always	 passed
together	as	arguments	to	a	method	or	returned	together	as	a	set	of	results	from	a	method.	This	“traveling
together”	is	a	sign	that	the	values	might	really	need	their	own	class.	Another	symptom	is	that	something
that	used	to	be	a	“simple”	data	value	acquires	new	behaviors.	For	example,	suppose	a	Moviegoer	has
attributes	 phone_number	 and	 zipcode,	 and	 you	 want	 to	 add	 the	 ability	 to	 check	 the	 zip	 code	 for
accuracy	or	canonicalize	the	formatting	of	the	phone	number.	If	you	add	these	methods	to	Moviegoer,
they	 will	 reduce	 its	 cohesion	 because	 they	 form	 a	 “clique”	 of	 methods	 that	 only	 deal	 with	 specific
instance	variables.	The	alternative	 is	 to	use	 the	Extract	Class	 refactoring	 to	put	 these	methods	 into	 a
new	Address	class,	as	Figure	11.8	shows.

http://pastebin.com/hi5175Wr

	1	class	Moviegoer

	2			attr_accessor	:name,	:street,	:phone_number,	:zipcode

	3			validates	:phone_number,	#	...

	4			validates	:zipcode,	#	...

	5			def	format_phone_number	;	...	;	end

	6			def	verify_zipcode	;	...	;	end

	7			def	format_address(street,	phone_number,	zipcode)	#	data	clump

	8					#	do	formatting,	calling	format_phone_number	and	verify_zipcode

	9			end

10	end

11	#	After	applying	Extract	Class:

12	class	Moviegoer

http://pastebin.com/hi5175Wr

13			attr_accessor	:name

14			has_one	:address

15	end

16	class	Address

17			belongs_to	:moviegoer

18			attr_accessor	:phone_number,	:zipcode

19			validates	:phone_number,	#	...

20			validates	:zipcode,	#	...

21			def	format_address	;	...	;	end	#	no	arguments	-	operates	on	’self’

22			private		#	no	need	to	expose	these	now:

23			def	format_phone_number	;	...	;	end

24			def	verify_zipcode	;	...	;	end

25	end

Figure	11.8:	To	perform	Extract	Class,	we	identify	the	group	of	methods	that	shares	a	responsibility	distinct	from	that	of	the	rest	of	the
class,	move	those	methods	into	a	new	class,	make	the	“traveling	together”	data	items	on	which	they	operate	into	instance	variables	of	the
class,	and	arrange	to	pass	an	instance	of	the	class	around	rather	than	the	individual	items.

Summary	of	Single	Responsibility	Principle:
A	class	should	have	one	and	only	one	reason	to	change,	that	is,	one	responsibility.
A	poor	LCOM	(Lack	of	Cohesion	Of	Methods)	score	and	the	Data	Clump	design	smell	are	both
warnings	 of	 possible	 SRP	 violations.	 The	 Extract	 Class	 refactoring	 can	 help	 remove	 and
encapsulate	additional	responsibilities	in	a	separate	class.

ELABORATION:	Interface	Segregation	Principle
Related	to	SRP	is	the	Interface	Segregation	Principle	(ISP,	and	the	original	I	in	SOLID),	which	states	that	if	a	class’s	API	is	used
by	multiple	quite	different	types	of	clients,	the	API	probably	should	be	segregated	into	subsets	useful	to	each	type	of	clients.	For
example,	the	Movie	class	might	provide	both	movie	metadata	(MPAA	rating,	release	date,	and	so	on)	and	an	interface	for	searching
TMDb,	but	it’s	unlikely	that	a	client	using	one	of	those	two	sets	of	services	would	care	about	the	other.	The	problem	solved	by	ISP
arises	 in	 compiled	 languages	 in	which	changes	 to	 an	 interface	 require	 recompiling	 the	class,	 thereby	 triggering	 recompilation	or
relinking	of	classes	that	use	that	interface.	While	documenting	separate	interfaces	for	distinct	sets	of	functionality	is	good	style,	ISP
rarely	arises	in	Ruby	since	there	are	no	compiled	classes,	so	we	won’t	discuss	it	further.

Self-Check	 11.3.1.	Draw	 the	 UML	 class	 diagrams	 showing	 class	 architecture	 before	 and	 after	 the
refactoring	in	Figure	11.8.
	Figure	11.9	shows	the	UML	diagrams.

Figure	11.9:	UML	class	diagrams	before	(left)	and	after	(right)	extracting	the	Address	class	from	Moviegoer.

http://en.wikipedia.org/wiki/Interface_Segregation_Principle

11.4	Open/Closed	Principle

The	Open/Closed	 Principle	 (OCP)	 of	 SOLID	 states	 that	 classes	 should	 be	 “open	 for	 extension,	 but
closed	 against	modification.”	That	 is,	 it	 should	be	possible	 to	 extend	 the	behavior	of	 classes	without
modifying	existing	code	on	which	other	classes	or	apps	depend.

While	adding	subclasses	that	inherit	from	a	base	class	is	one	way	to	extend	existing	classes,	it’s	often
not	 enough	 by	 itself.	 Figure	 11.10	 shows	 why	 the	 presence	 of	 case-based	 dispatching	 logic—one
variant	of	the	Case	Statement	design	smell—suggests	a	possible	OCP	violation.

http://pastebin.com/xxHCeLzV

	1	class	Report

	2			def	output

	3					formatter	=

	4							case	@format

	5							when	:html

	6									HtmlFormatter.new(self)

	7							when	:pdf

	8									PdfFormatter.new(self)

	9									#	...etc

10							end

11			end

12	end

Figure	11.10:	The	Report	class	depends	on	a	base	class	Formatter	with	subclasses	HtmlFormatter	and	PdfFormatter.	Because	of	the
explicit	dispatch	on	the	report	format,	adding	a	new	type	of	report	output	requires	modifying	Report#output,	and	probably	requires
changing	other	methods	of	Report	that	have	similar	logic—so-called	shotgun	surgery.

http://pastebin.com/HZsLHVcc

	1	class	Report

	2			def	output

	3					formatter_class	=

	4							begin

	5									@format.to_s.classify.constantize

	6							rescue	NameError

	7									#	...handle	’invalid	formatter	type’

	8							end

	9					formatter	=	formatter_class.send(:new,	self)

10					#	etc

11			end

12	end

Figure	11.11:	Ruby’s	metaprogramming	and	duck	typing	enable	an	elegant	implementation	of	the	abstract	factory	pattern.	classify	is
provided	by	Rails	to	convert	snake_case	to	UpperCamelCase.	constantize	is	syntactic	sugar	provided	by	Rails	that	calls	the	Ruby
introspection	method	Object#const_get	on	the	receiver.	We	also	handle	the	case	of	an	invalid	value	of	the	formatter	class,	which	the	bad
code	doesn’t.

http://en.wikipedia.org/wiki/Open/Closed_Principle
http://pastebin.com/xxHCeLzV
http://en.wikipedia.org/wiki/shotgun_surgery
http://pastebin.com/HZsLHVcc

Figure	11.12:	In	Template	Method	(left),	the	extension	points	are	header,	body,	and	footer,	since	the	Report#output	method	calls
@formatter.header,	@formatter.body,	and	so	on,	each	of	which	delegates	to	a	specialized	counterpart	in	the	appropriate	subclass.	(Light
gray	type	indicates	methods	that	just	delegate	to	a	subclass.)	In	Strategy	(right),	the	extension	point	is	the	output	method	itself,	which
delegates	the	entire	task	to	a	subclass.	Delegation	is	such	a	common	ingredient	of	composition	that	some	people	refer	to	it	as	the
delegation	pattern.

Depending	on	the	specific	case,	various	design	patterns	can	help.	One	problem	that	the	smelly	code	in
Figure	11.10	is	trying	to	solve	is	that	the	desired	subclass	of	Formatter	isn’t	known	until	runtime,	when
it	is	stored	in	the	@format	instance	variable.	The	abstract	factory	pattern	provides	a	common	interface
for	 instantiating	 an	 object	whose	 subclass	may	 not	 be	 known	until	 runtime.	Ruby’s	 duck	 typing	 and
metaprogramming	enable	a	particularly	elegant	implementation	of	this	pattern,	as	Figure	11.11	shows.
(In	statically-typed	languages,	to	“work	around”	the	type	system,	we	have	to	create	a	factory	method	for
each	subclass	and	have	them	all	implement	a	common	interface—hence	the	name	of	the	pattern.)

Another	 approach	 is	 to	 take	 advantage	 of	 the	 Strategy	 pattern	 or	 Template	 Method	 pattern.	 Both
support	 the	case	in	which	there	is	a	general	approach	to	doing	a	task	but	many	possible	variants.	The
difference	 between	 the	 two	 is	 the	 level	 at	 which	 commonality	 is	 captured.	With	 Template	 Method,
although	the	implementation	of	each	step	may	differ,	the	set	of	steps	is	the	same	for	all	variants;	hence	it
is	usually	implemented	using	inheritance.	With	Strategy,	the	overall	task	is	the	same,	but	the	set	of	steps
may	 be	 different	 in	 each	 variant;	 hence	 it	 is	 usually	 implemented	 using	 composition.	 Figure	 11.12
shows	how	either	pattern	could	be	applied	to	the	report	formatter.	If	every	kind	of	formatter	followed
the	 same	 high-level	 steps—for	 example,	 generate	 the	 header,	 generate	 the	 report	 body,	 and	 then
generate	the	footer—we	could	use	Template	Method.	On	the	other	hand,	 if	 the	steps	themselves	were
quite	different,	it	would	make	more	sense	to	use	Strategy.

An	example	of	the	Strategy	pattern	in	the	wild	is	OmniAuth	(Section	5.2):	many	apps	need	third-party
authentication,	 and	 the	 steps	are	quite	different	depending	on	 the	auth	provider,	but	 the	API	 to	all	of
them	is	the	same.	Indeed,	OmniAuth	even	refers	to	its	plug-ins	as	“strategies.”

A	 different	 kind	 of	 OCP	 violation	 arises	 when	 we	 want	 to	 add	 behaviors	 to	 an	 existing	 class	 and
discover	that	we	cannot	do	so	without	modifying	it.	For	example,	PDF	files	can	be	generated	with	or
without	 password	 protection	 and	 with	 or	 without	 a	 “Draft”	 watermark	 across	 the	 background.	 Both

http://en.wikipedia.org/wiki/delegation_pattern
http://en.wikipedia.org/wiki/abstract_factory_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Template_Method_pattern

features	 amount	 to	 “tacking	on”	 some	extra	behavior	 to	what	PdfFormatter	 already	does.	 If	 you’ve
done	a	lot	of	object-oriented	programming,	your	first	thought	might	therefore	be	to	solve	the	problem
using	inheritance,	as	the	UML	diagram	in	Figure	11.13	(left)	shows,	but	there	are	four	permutations	of
features	so	you’d	end	up	with	four	subclasses	with	duplication	across	them—hardly	DRY.	Fortunately,
the	decorator	pattern	can	help:	we	“decorate”	a	class	or	method	by	wrapping	it	in	an	enhanced	version
that	has	the	same	API,	allowing	us	to	compose	multiple	decorations	as	needed.	Figure	11.14	shows	the
code	 corresponding	 to	 the	 more	 elegant	 decorator-based	 design	 of	 the	 PDF	 formatter	 shown	 in
Figure	11.13	(right).

Figure	11.13:	(Left)	The	multiplication	of	subclasses	resulting	from	trying	to	solve	the	Formatter	problem	using	inheritance	shows	why
your	class	designs	should	“prefer	composition	over	inheritance.”	(Right)	A	more	elegant	solution	uses	the	Decorator	design	pattern.

http://pastebin.com/u8aYdwEL

	1	class	PdfFormatter

	2			def	initialize	;	...	;	end

	3			def	output	;	...	;	end

	4	end

	5	class	PdfWithPasswordFormatter	<	PdfFormatter

	6			def	initialize(base)	;	@base	=	base	;	end

	7			def	protect_with_password(original_output)	;	...	;	end

	8			def	output	;	protect_with_password	@base.output	;	end

	9	end

10	class	PdfWithWatermarkFormatter	<	PdfFormatter

11			def	initialize(base)	;	@base	=	base	;	end

12			def	add_watermark(original_output)	;	...	;	end

13			def	output	;	add_watermark	@base.output	;	end

14			end

15	end

16	#	If	we	just	want	a	plain	PDF

17	formatter	=	PdfFormatter.new

18	#	If	we	want	a	"draft"	watermark

19	formatter	=	PdfWithWatermarkFormatter.new(PdfFormatter.new)

20	#	Both	password	protection	and	watermark

21	formatter	=	PdfWithWatermarkFormatter.new(

22			PdfWithPasswordFormatter.new(PdfFormatter.new))

http://en.wikipedia.org/wiki/decorator_pattern
http://pastebin.com/u8aYdwEL

Figure	11.14:	To	apply	Decorator	to	a	class,	we	“wrap”	class	by	creating	a	subclass	(to	follow	the	Liskov	Substitution	Principle,	as	we’ll
learn	in	Section	11.5).	The	subclass	delegates	to	the	original	method	or	class	for	functionality	that	isn’t	changed,	and	implements	the	extra
methods	that	extend	the	functionality.	We	can	then	easily	“build	up”	just	the	version	of	PdfFormatter	we	need	by	“stacking”	decorators.

http://pastebin.com/rdyrjyAN

	1	#	reopen	Mailer	class	and	decorate	its	send_email	method.

	2	class	Mailer

	3			alias_method_chain	:send_email,	:cc

	4			def	send_email_with_cc(recipient,body)	#	this	is	our	new	method

	5					send_email_without_cc(recipient,body)	#	will	call	original	method

	6					copy_sender(body)

	7			end

	8	end

	9	#	now	we	have	two	methods:

10	send_email(...)												#	calls	send_email_with_cc

11	send_email_with_cc(...)				#	same	thing

12	send_email_without_cc(...)	#	call	(renamed)	original	method

Figure	11.15:	To	decorate	an	existing	method	Mailer#send_email,	we	reopen	its	class	and	use	alias_method_chain	to	decorate	it.
Without	changing	any	classes	that	call	send_email,	all	calls	now	use	the	decorated	version	that	sends	email	and	copies	the	sender.

Python’s	“decorators”	are,	unfortunately,	completely	unrelated	to	the	Decorator	design	pattern.

In	 the	 wild,	 the	 ActiveSupport	 module	 of	 Rails	 provides	 method-level	 decoration	 via
alias_method_chain,	which	is	very	useful	 in	conjunction	with	Ruby’s	open	classes,	as	Figure	11.15
shows.	A	more	interesting	example	of	Decorator	in	the	wild	is	the	Rack	application	server	we’ve	been
using	since	Chapter	2.	The	heart	of	Rack	is	a	“middleware”	module	that	receives	an	HTTP	request	and
returns	a	three-element	array	consisting	of	an	HTTP	response	code,	HTTP	headers,	and	a	response	body.
A	Rack-based	application	 specifies	a	 “stack”	of	middleware	components	 that	 all	 requests	 traverse:	 to
add	 a	 behavior	 to	 an	HTTP	 request	 (for	 example,	 to	 intercept	 certain	 requests	 as	OmniAuth	 does	 to
initiate	an	authentication	flow),	we	decorate	the	basic	HTTP	request	behavior.	Additional	decorators	add
support	for	SSL	(Secure	Sockets	Layer),	measuring	app	performance,	and	some	types	of	HTTP	caching.

Summary	of	Open/Closed	Principle:
To	make	 a	 class	 open	 for	 extension	 but	 closed	 against	modification,	 we	 need	mechanisms	 that
enable	specific	extension	points	at	places	we	think	extensions	might	be	needed	in	the	future.	The
Case	Statement	design	smell	is	one	symptom	of	a	possible	OCP	violation.
If	 the	 extension	 point	 takes	 the	 form	 of	 a	 task	with	 varying	 implementations	 for	 the	 steps,	 the
Strategy	 and	Template	Method	 patterns	may	 apply.	Both	 are	 often	 used	 in	 conjunction	with	 the
Abstract	Factory	pattern,	since	the	variant	to	create	may	not	be	known	until	runtime.
If	 the	 extension	 point	 takes	 the	 form	 of	 selecting	 different	 subsets	 of	 features	 that	 “add	 on”	 to
existing	class	behaviors,	the	Decorator	pattern	may	apply.	The	Rack	application	server	is	designed

http://pastebin.com/rdyrjyAN
http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators

this	way.

ELABORATION:	Closed	against	what?

“Open	for	extension	but	closed	for	modification”	presupposes	that	you	know	in	advance	what	the	useful	extension	points	will	be,	so
you	can	leave	the	class	open	for	the	“most	likely”	changes	and	strategically	close	it	against	changes	that	might	break	its	dependents.
In	our	example,	since	we	already	had	more	than	one	way	to	do	something	(format	a	report),	it	seemed	reasonable	to	allow	additional
formatters	to	be	added	later,	but	you	don’t	always	know	in	advance	what	extension	points	you’ll	want.	Make	your	best	guess,	and
deal	with	change	as	it	comes.

Self-Check	11.4.1.	Here	are	two	statements	about	delegation:
1.	 A	subclass	delegates	a	behavior	to	an	ancestor	class
2.	 A	class	delegates	a	behavior	to	a	descendant	class

Looking	 at	 the	 examples	 of	 the	 Template	 Method,	 Strategy,	 and	 Decorator	 patterns	 (Figures	 11.12
and	11.13),	which	statement	best	describes	how	each	pattern	uses	delegation?

	 In	 Template	 Method	 and	 Strategy,	 the	 ancestor	 class	 provides	 the	 “basic	 game	 plan”	 which	 is
customized	 by	 delegating	 specific	 behaviors	 to	 different	 subclasses.	 In	 Decorator,	 each	 subclass
provides	 special	 functionality	 of	 its	 own,	 but	 delegates	 back	 to	 the	 ancestor	 class	 for	 the	 “basic”
functionality.

11.5	Liskov	Substitution	Principle

The	Liskov	Substitution	Principle	(LSP)	is	named	for	Turing	Award	winner	Barbara	Liskov,	who	did
seminal	work	on	subtypes	that	heavily	influenced	object-oriented	programming.	Informally,	LSP	states
that	a	method	designed	to	work	on	an	object	of	type	T	should	also	work	on	an	object	of	any	subtype	of
T.	That	is,	all	of	T’s	subtypes	should	preserve	T’s	“contract.”

http://pastebin.com/hr0DqtWt

	1	class	Rectangle

	2			attr_accessor	:width,	:height,	:top_left_corner

	3			def	new(width,height,top_left)	...	;	end

	4			def	area	...	;	end

	5			def	perimeter	...	;	end

	6	end

	7	#	A	square	is	just	a	special	case	of	rectangle...right?

	8	class	Square	<	Rectangle

	9			#	ooops...a	square	has	to	have	width	and	height	equal

10			attr_reader	:width,	:height,	:side

11			def	width=(w)		;	@width	=	@height	=	w	;	end

12			def	height=(w)	;	@width	=	@height	=	w	;	end

13			def	side=(w)			;	@width	=	@height	=	w	;	end

14	end

15	#	But	is	a	Square	really	a	kind	of	Rectangle?

16	class	Rectangle

17			def	make_twice_as_wide_as_high(dim)

18					self.width	=	2*dim

19					self.height	=	dim											#	doesn’t	work!

http://en.wikipedia.org/wiki/Liskov_Substitution_Principle
http://pastebin.com/hr0DqtWt

20			end

21	end

Figure	11.16:	Behaviorally,	rectangles	have	some	capabilities	that	squares	don’t	have—for	example,	the	ability	to	set	the	lengths	of	their
sides	independently,	as	in	Rectangle#make_twice_as_wide_as_high.

This	may	seem	like	common	sense,	but	it’s	subtly	easy	to	get	wrong.	Consider	the	code	in	Figure	11.16,
which	suffers	from	an	LSP	violation.	You	might	think	a	Square	is	just	a	special	case	of	Rectangle	and
should	 therefore	 inherit	 from	 it.	 But	 behaviorally,	 a	 square	 is	 not	 like	 a	 rectangle	when	 it	 comes	 to
setting	 the	 length	 of	 a	 side!	 When	 you	 spot	 this	 problem,	 you	 might	 be	 tempted	 to	 override
Rectangle#make_twice_as_wide_as_high	 within	 Square,	 perhaps	 raising	 an	 exception	 since	 this
method	doesn’t	make	sense	to	call	on	a	Square.	But	that	would	be	a	refused	bequest—a	design	smell
that	often	 indicates	an	LSP	violation.	The	symptom	 is	 that	a	 subclass	either	destructively	overrides	a
behavior	inherited	from	its	superclass	or	forces	changes	to	the	superclass	to	avoid	the	problem	(which
itself	 should	 indicate	 a	 possible	 OCP	 violation).	 The	 problem	 is	 that	 inheritance	 is	 all	 about
implementation	sharing,	but	if	a	subclass	won’t	take	advantage	of	its	parent’s	implementations,	it	might
not	deserve	to	be	a	subclass	at	all.

http://pastebin.com/1hJ4bYsM

	1	#	LSP-compliant	solution:	replace	inheritance	with	delegation

	2	#	Ruby’s	duck	typing	still	lets	you	use	a	square	in	most	places	where

	3	#		rectangle	would	be	used	-	but	no	longer	a	subclass	in	LSP	sense.

	4	class	Square

	5			attr_accessor	:rect

	6			def	initialize(side,	top_left)

	7					@rect	=	Rectangle.new(side,	side,	top_left)

	8			end

	9			def	area						;	rect.area						;	end

10			def	perimeter	;	rect.perimeter	;	end

11			#	A	more	concise	way	to	delegate,	if	using	ActiveSupport	(see	text):

12			#		delegate	:area,	:perimeter,	:to	=>	:rectangle

13			def	side=(s)	;	rect.width	=	rect.height	=	s	;	end

14	end

Figure	11.17:	As	with	some	OCP	violations,	the	problem	arises	from	a	misuse	of	inheritance.	As	Figure	11.17	shows,	preferring
composition	and	delegation	to	inheritance	fixes	the	problem.	Line	12	shows	a	concise	syntax	for	delegation	available	to	apps	using
ActiveSupport	(and	all	Rails	apps	do);	similar	functionality	for	non-Rails	Ruby	apps	is	provided	by	the	Forwardable	module	in	Ruby’s
standard	library.

http://pastebin.com/1hJ4bYsM

Figure	11.18:	Left:	The	UML	class	diagram	representing	the	original	LSP-violating	code	in	Figure	11.16,	which	destructively	overrides
Rectangle#make_twice_as_wide_as_high.	Right:	the	class	diagram	for	the	refactored	LSP-compliant	code	in	Figure	11.17.

The	fix,	 therefore,	 is	 to	again	use	composition	and	delegation	rather	than	inheritance,	as	Figure	11.17
shows.	Happily,	because	of	Ruby’s	duck	typing,	this	use	of	composition	and	delegation	still	allows	us	to
pass	an	instance	of	Square	to	most	places	where	a	Rectangle	would	be	expected,	even	though	it’s	no
longer	a	subclass;	a	statically-typed	language	would	have	to	introduce	an	explicit	interface	capturing	the
operations	common	to	both	Square	and	Rectangle.

Summary	of	the	Liskov	Substitution	Principle:
LSP	 states	 that	 a	method	 that	 operates	 on	 objects	 of	 some	 class	 should	 also	work	 correctly	 on
objects	of	any	subclass	of	that	class.	When	a	subclass	differs	behaviorally	from	one	of	its	parents,
an	LSP	violation	can	arise.
The	refused	bequest	design	smell,	in	which	a	subclass	destructively	overrides	a	parent	behavior	or
forces	 changes	 to	 the	 parent	 class	 so	 that	 the	 behavior	 is	 not	 inherited—often	 signals	 an	 LSP
violation.
Many	 LSP	 violations	 can	 be	 fixed	 by	 using	 composition	 of	 classes	 rather	 than	 inheritance,
achieving	reuse	through	delegation	rather	than	through	subclassing.

Self-Check	11.5.1.	Why	is	Forwardable	in	the	Ruby	standard	library	provided	as	a	module	rather	than
a	class?
	Modules	allow	the	delegation	mechanisms	to	be	mixed	in	to	any	class	that	wants	to	use	them,	which

would	 be	 awkward	 if	 Forwardable	 were	 a	 class.	 That	 is,	 Forwardable	 is	 itself	 an	 example	 of
preferring	composition	to	inheritance!

11.6	Dependency	Injection	Principle

The	dependency	 injection	 principle	 (DIP),	 sometimes	 also	 called	 dependency	 inversion,	 states	 that	 if
two	classes	depend	on	each	other	but	their	implementations	may	change,	it	would	be	better	for	them	to
both	depend	on	a	separate	abstract	interface	that	is	“injected”	between	them.

Suppose	 RottenPotatoes	 now	 adds	 email	 marketing—interested	 moviegoers	 can	 receive	 emails	 with
discounts	on	their	favorite	movies.	RottenPotatoes	integrates	with	the	external	email	marketing	service
MailerMonkey	to	do	this	job:

http://pastebin.com/ZdhcYb7w

	1				class	EmailList

	2						attr_reader	:mailer

	3						delegate	:send_email,	:to	=>	:mailer

	4						def	initialize

	5								@mailer	=	MailerMonkey.new

	6						end

	7				end

	8				#	in	RottenPotatoes	EmailListController:

	9				def	advertise_discount_for_movie

10						moviegoers	=	Moviegoer.interested_in	params[:movie_id]

11						EmailList.new.send_email_to	moviegoers

12				end

Suppose	the	feature	is	so	successful	that	you	decide	to	extend	the	mechanism	so	that	moviegoers	who
are	on	the	Amiko	social	network	can	opt	to	have	these	emails	forwarded	to	their	Amiko	friends	as	well,
using	 the	 new	 Amiko	 gem	 that	 wraps	 Amiko’s	 RESTful	 API	 for	 friend	 lists,	 posting	 on	 walls,
messaging,	and	so	on.	There	are	two	problems,	however.

First,	 EmailList#initialize	 has	 a	 hardcoded	 dependency	 on	 MailerMonkey,	 but	 now	 we	 will
sometimes	 need	 to	 use	 Amiko	 instead.	 This	 runtime	 variation	 is	 the	 problem	 solved	 by	 dependency
injection—since	 we	 won’t	 know	 until	 runtime	 which	 type	 of	 mailer	 we’ll	 need,	 we	 modify
EmailList#initialize	so	we	can	“inject”	the	correct	value	at	runtime:

http://pastebin.com/8PHBpm5k

	1				class	EmailList

	2						attr_reader	:mailer

	3						delegate	:send_email,	:to	=>	:mailer

	4						def	initialize(mailer_type)

	5								@mailer	=	mailer_type.new

	6						end

	7				end

	8				#	in	RottenPotatoes	EmailListController:

	9				def	advertise_discount_for_movie

10						moviegoers	=	Moviegoer.interested_in	params[:movie_id]

11						mailer	=	if	Config.has_amiko?	then	Amiko	else	MailerMonkey	end

12						EmailList.new(mailer).send_email_to	moviegoers

13				end

You	 can	 think	 of	DIP	 as	 injecting	 an	 additional	 seam	 between	 two	 classes,	 and	 indeed,	 in	 statically
compiled	languages	DIP	helps	with	testability.	This	benefit	is	less	apparent	in	Ruby,	since	as	we’ve	seen
we	can	create	 seams	almost	anywhere	we	want	at	 runtime	using	mocking	or	 stubbing	 in	conjunction
with	Ruby’s	dynamic	language	features.

http://pastebin.com/ZdhcYb7w
http://pastebin.com/8PHBpm5k

ActiveRecord	has	been	criticized	for	configuring	the	database	at	startup	from	database.yml	rather	than	using	DIP.	Presumably	the
designers	judged	that	the	database	wouldn’t	change	while	the	app	was	running.	While	DIP-induced	seams	also	help	with	stubbing	and
mocking,	Chapter	8	shows	that	Ruby’s	open	classes	and	metaprogramming	let	you	insert	test	seams	wherever	needed.

The	 second	 problem	 is	 that	 Amiko	 exposes	 a	 different	 and	 more	 complex	 API	 than	 the	 simple
send_email	method	provided	by	MailerMonkey	 (to	which	EmailList#send_email	 delegates	 in	 line
3),	yet	our	controller	method	 is	already	set	up	 to	call	send_email	on	 the	mailer	object.	The	Adapter
pattern	 can	help	us	here:	 it’s	designed	 to	 convert	 an	existing	API	 into	one	 that’s	 compatible	with	 an
existing	caller.	In	this	case,	we	can	define	a	new	class	AmikoAdapter	that	converts	the	more	complex
Amiko	API	into	the	simpler	one	that	our	controller	expects,	by	providing	the	same	send_email	method
that	MailerMonkey	provides:

http://pastebin.com/Eimsw8ZF

	1				class	AmikoAdapter

	2						def	initialize	;	@amiko	=	Amiko.new(...)	;	end

	3						def	send_email

	4								@amiko.authenticate(...)

	5								@amiko.send_message(...)

	6						end

	7				end

	8				#	Change	the	controller	method	to	use	the	adapter:

	9				def	advertise_discount_for_movie

10						moviegoers	=	Moviegoer.interested_in	params[:movie_id]

11						mailer	=	if	Config.has_amiko?	then	AmikoAdapter	else	MailerMonkey	end

12						EmailList.new(mailer).send_email_to	moviegoers

13				end

When	 the	Adapter	 pattern	not	 only	 converts	 an	 existing	API	but	 also	 simplifies	 it—for	 example,	 the
Amiko	 gem	 also	 provides	 many	 other	 Amiko	 functions	 unrelated	 to	 email,	 but	 AmikoAdapter	 only
“adapts”	the	email-specific	part	of	that	API—it	is	sometimes	called	the	Façade	pattern.

http://pastebin.com/js6C67mJ

	1	class	Config

	2			def	self.email_enabled?	;	...	;	end

	3			def	self.emailer	;	if	has_amiko?	then	Amiko	else	MailerMonkey	end	;	end

	4	end

	5	def	advertise_discount_for_movie

	6			if	Config.email_enabled?

	7					moviegoers	=	Moviegoer.interested_in(params[:movie_id])

	8					EmailList.new(Config.emailer).send_email_to(moviegoers)

	9			end

10	end

http://pastebin.com/avRQAgZc

	1	class	Config

	2			def	self.emailer

	3					if	email_disabled?	then	NullMailer	else

http://en.wikipedia.org/wiki/Adapter_pattern
http://pastebin.com/Eimsw8ZF
http://en.wikipedia.org/wiki/Facade_pattern
http://pastebin.com/js6C67mJ
http://pastebin.com/avRQAgZc

	4							if	has_amiko?	then	AmikoAdapter	else	MailerMonkey	end

	5					end

	6			end

	7	end

	8	class	NullMailer

	9			def	initialize	;	end

10			def	send_email	;	true	;	end

11	end

12	def	advertise_discount_for_movie

13			moviegoers	=	Moviegoer.interested_in(params[:movie_id])

14			EmailList.new(Config.emailer).send_email_to(moviegoers)

15			end

16	end

Figure	11.19:	Top:	a	naive	way	to	disable	a	behavior	is	to	“condition	it	out”	wherever	it	occurs.	Bottom:	the	Null	Object	pattern
eliminates	the	conditionals	by	providing	“dummy”	methods	that	are	safe	to	call	but	don’t	do	anything.

Lastly,	 even	 in	 cases	where	 the	 email	 strategy	 is	 known	when	 the	 app	 starts	 up,	what	 if	we	want	 to
disable	email	sending	altogether	from	time	to	time?	Figure	11.19	(top)	shows	a	naive	approach:	we	have
moved	 the	 logic	 for	 determining	which	 emailer	 to	 use	 into	 a	 new	Config	 class,	 but	we	 still	 have	 to
“condition	out”	 the	email-sending	 logic	 in	 the	controller	method	 if	email	 is	disabled.	But	 if	 there	are
other	places	in	the	app	where	a	similar	check	must	be	performed,	the	same	condition	logic	would	have
to	be	 replicated	 there	 (shotgun	 surgery).	A	better	 alternative	 is	 the	Null	Object	 pattern,	 in	which	we
create	a	“dummy”	object	that	has	all	the	same	behaviors	as	a	real	object	but	doesn’t	do	anything	when
those	 behaviors	 are	 called.	 Figure	 11.19	 (bottom)	 applies	 the	 Null	 Object	 pattern	 to	 this	 example,
avoiding	the	proliferation	of	conditionals	throughout	the	code.

Figure	11.20	shows	the	UML	class	diagrams	corresponding	to	the	various	versions	of	our	DIP	example.

Figure	11.20:	Left:	Without	dependency	injection,	EmailList	depends	directly	on	MailerMonkey.	Center:	With	dependency	injection,
@mailer	can	be	set	at	runtime	to	use	any	of	MailerMonkey,	NullMailer	(which	implements	the	Null	Object	pattern	to	disable	email),	or
AmikoAdapter	(which	implements	the	Adapter/Façade	pattern	over	Amiko),	all	of	which	have	the	same	API.	Right:	In	statically	typed
languages,	the	abstract	superclass	GenericMailer	formalizes	the	fact	that	all	three	mailers	have	compatible	APIs,	but	in	Ruby	this
superclass	is	often	omitted	if	it	consists	entirely	of	abstract	methods	(as	is	the	case	here),	since	abstract	methods	and	classes	aren’t	part	of
the	language.

http://en.wikipedia.org/wiki/Null_Object_pattern

An	 interesting	 relative	of	 the	Adapter	 and	Façade	patterns	 is	 the	Proxy	pattern,	 in	which	 one	 object
“stands	in”	for	another	that	has	the	same	API.	The	client	talks	to	the	proxy	instead	of	the	original	object;
the	proxy	may	forward	some	requests	directly	to	the	original	object	(that	is,	delegate	them)	but	may	take
other	actions	on	different	requests,	perhaps	for	reasons	of	performance	or	efficiency.

A	 classic	 example	 of	 this	 pattern	 is	 ActiveRecord	 associations	 (Section	 5.3).	 Recall	 that	 under	 the
relationship	Movie	has	many	Reviews,	we	could	write	r=@movie.reviews.	What	kind	of	object	 is	r?
Although	we’ve	seen	that	we	can	treat	r	as	an	enumerable	collection,	it’s	actually	a	proxy	object	that
responds	to	all	the	collection	methods	(length,	<<,	and	so	on),	but	without	querying	the	database	except
when	 it	 has	 to.	 Another	 example	 of	 a	 use	 for	 the	 proxy	 pattern	 would	 be	 for	 sending	 email	 while
disconnected	 from	 the	 Internet.	 If	 the	 real	 Internet-based	email	 service	 is	 accessed	via	a	send_email
method,	a	proxy	object	could	provide	a	send_email	method	that	just	stores	an	email	on	the	local	disk
until	the	next	time	the	computer	is	connected	to	the	Internet.	This	proxy	shields	the	client	(email	GUI)
from	having	to	change	its	behavior	when	the	user	isn’t	connected.

Summary	of	Dependency	Injection:
Dependency	injection	inserts	a	seam	between	two	classes	by	passing	in	(injecting)	a	dependency
whose	value	may	not	be	known	until	runtime,	rather	than	hardwiring	a	dependency	into	the	source
code.
Because	dependency	 injection	 is	 often	used	 to	 vary	which	of	 a	 collection	of	 implementations	 is
used	at	runtime,	it’s	often	seen	together	with	the	Adapter	pattern,	in	which	a	class	converts	one	API
into	another	that	a	client	expects	to	use.
Variations	on	Adapter	 include	Façade,	 in	which	 the	API	 is	not	only	adapted	but	also	 simplified,
and	 Proxy,	 in	 which	 the	 API	 is	 exactly	 imitated	 but	 the	 behaviors	 changed	 to	 accommodate
different	usage	conditions	without	the	client	(caller	of	the	API)	having	to	change	its	behavior.
The	 Null	 Object	 pattern	 is	 another	 mechanism	 for	 replacing	 unwieldy	 conditionals	 with	 safe
“neutral”	behaviors	as	a	way	of	disabling	a	feature.

ELABORATION:	Did	injecting	a	dependency	violate	the	Open/Closed	Principle?

You	might	wonder	whether	our	“fix”	to	add	a	second	type	of	mailer	service	violates	OCP,	because	adding	support	for	a	third	mailer
would	 then	 require	 modifying	 advertise_discount_for_movie.	 If	 you	 had	 reason	 to	 believe	 you	 might	 indeed	 need	 to	 add
additional	mailers	 later,	you	could	combine	 this	with	 the	Abstract	Factory	pattern	 introduced	 in	Section	11.4.	This	scenario	is	an
example	of	making	a	judgment	call	about	whether	the	possibility	of	handling	additional	mailers	is	an	extension	point	you	want	to
leave	open,	or	a	change	you	feel	the	app	wouldn’t	accommodate	well	and	should	therefore	be	strategically	closed	against.

Self-Check	11.6.1.	Why	does	proper	use	of	DIP	have	higher	impact	in	statically	typed	languages?
	In	such	languages,	you	cannot	create	a	runtime	seam	to	override	a	“hardwired”	behavior	as	you	can

in	dynamic	languages	like	Ruby,	so	the	seam	must	be	provided	in	advance	by	injecting	the	dependency.

11.7	Demeter	Principle

The	name	comes	from	the	Demeter	Project	on	adaptive	and	aspect-oriented	programming,	which	in	turn	is	named	for	the	Greek	goddess

http://en.wikipedia.org/wiki/Proxy_pattern

of	agriculture	to	signify	a	“from	the	ground	up”	approach	to	programming.

The	Demeter	Principle	or	Law	of	Demeter	states	informally:	“Talk	to	your	friends—don’t	get	intimate
with	 strangers.”	 Specifically,	 a	method	 can	 call	 other	methods	 in	 its	 own	 class,	 and	methods	 on	 the
classes	 of	 its	 own	 instance	 variables;	 everything	 else	 is	 taboo.	 Demeter	 isn’t	 originally	 part	 of	 the
SOLID	guidelines,	as	Figure	11.4	explains,	but	we	include	it	here	since	it	is	highly	applicable	to	Ruby
and	SaaS,	and	we	opportunistically	hijack	the	D	in	SOLID	to	represent	it.

The	Demeter	Principle	 is	 easily	 illustrated	by	example.	Suppose	RottenPotatoes	has	made	deals	with
movie	theaters	so	that	moviegoers	can	buy	movie	tickets	directly	via	RottenPotatoes	by	maintaining	a
credit	balance	(for	example,	by	receiving	movie	theater	gift	cards).

http://pastebin.com/iaNeSeCJ

	1	#	This	example	is	adapted	from	Dan	Manges’s	blog,	dcmanges.com

	2	class	Wallet	;	attr_accessor	:credit_balance	;	end

	3	class	Moviegoer

	4			attr_accessor	:wallet

	5			def	initialize

	6					#	...setup	wallet	attribute	with	correct	credit	balance

	7			end

	8	end

	9	class	MovieTheater

10			def	collect_money(moviegoer,	amount)

11					#	VIOLATION	OF	DEMETER	(see	text)

12					if	moviegoer.wallet.credit_balance	<	amount

13							raise	InsufficientFundsError

14					else

15							moviegoer.wallet.credit_balance	-=	due_amount

16							@collected_amount	+=	due_amount

17					end

18			end

19	end

20	#	Imagine	testing	the	above	code:

21	describe	MovieTheater	do

22			describe	"collecting	money"	do

23					it	"should	raise	error	if	moviegoer	can’t	pay"	do

24							#	"Mock	trainwreck"	is	a	warning	of	a	Demeter	violation

25							wallet	=	mock(’wallet’,	:credit_balance	=>	5.00)

26							moviegoer	=	mock(’moviegoer’,	:wallet	=>	wallet)

27							lambda	{	@theater.collect_money(moviegoer,	10.00)	}.

28									should	raise_error(...)

29					end

30			end

31	end

Figure	11.21:	Line	12	contains	a	Demeter	violation:	while	it’s	reasonable	for	MovieTheater	to	know	about	Moviegoer,	it	also	knows
about	the	implementation	of	Wallet,	since	it	“reaches	through”	the	wallet	attribute	to	manipulate	the	wallet’s	credit_balance.	Also,
we’re	handling	the	problem	of	“not	enough	cash”	in	MovieTheater,	even	though	logically	it	seems	to	belong	in	Wallet.

Figure	11.21	shows	an	implementation	of	this	behavior	that	contains	a	Demeter	Principle	violation.	A

http://en.wikipedia.org/wiki/Law_of_Demeter
http://pastebin.com/iaNeSeCJ

problem	 arises	 if	 we	 ever	 change	 the	 implementation	 of	 Wallet—for	 example,	 if	 we	 change
credit_balance	 to	 cash_balance,	 or	 add	 points_balance	 to	 allow	 moviegoers	 to	 accumulate
PotatoPoints	 by	 becoming	 top	 reviewers.	All	 of	 a	 sudden,	 the	MovieTheater	 class,	which	 is	 “twice
removed”	from	Wallet,	would	have	to	change.

Two	design	 smells	 can	 tip	 us	 off	 to	 possible	Demeter	 violations.	One	 is	 inappropriate	 intimacy:	 the
collect_money	 method	manipulates	 the	 credit_balance	 attribute	 of	 Wallet	 directly,	 even	 though
managing	 that	 attribute	 is	 the	 Wallet	 class’s	 responsibility.	 (When	 the	 same	 kind	 of	 inappropriate
intimacy	occurs	repeatedly	throughout	a	class,	it’s	sometimes	called	feature	envy,	because	Moviegoer
“wishes	 it	 had	 access	 to”	 the	 features	managed	 by	Wallet.)	Another	 smell	 that	 arises	 in	 tests	 is	 the
mock	trainwreck,	which	occurs	in	lines	25–27	of	Figure	11.21:	to	test	code	that	violates	Demeter,	we
find	ourselves	setting	up	a	“chain”	of	mocks	that	will	be	used	when	we	call	the	method	under	test.

Once	 again,	 delegation	 comes	 to	 the	 rescue.	 A	 simple	 improvement	 comes	 from	 delegating	 the
credit_balance	 attribute,	 as	 Figure	 11.22	 (top)	 shows.	 But	 the	 best	 delegation	 is	 that	 in
Figure	11.22	(bottom),	since	now	the	behavior	of	payment	is	entirely	encapsulated	within	Wallet,	as	is
the	decision	of	when	to	raise	an	error	for	failed	payments.

http://pastebin.com/QtxWkUy6

	1	#	Better:	delegate	credit_balance	so	MovieTheater	only	accesses	Moviegoer

	2	class	Moviegoer

	3			def	credit_balance

	4					self.wallet.credit_balance		#	delegation

	5			end

	6	end

	7	class	MovieTheater

	8			def	collect_money(moviegoer,amount)

	9					if	moviegoer.credit_balance	>=	amount

10							moviegoer.credit_balance	-=	due_amount

11							@collected_amount	+=	due_amount

12					else

13							raise	InsufficientFundsError

14					end

15			end

16	end

http://pastebin.com/rgB4LnMk

	1	class	Wallet

	2			attr_reader	:credit_balance	#	no	longer	attr_accessor!

	3			def	withdraw(amount)

	4						raise	InsufficientFundsError	if	amount	>	@credit_balance

	5						@credit_balance	-=	amount

	6						amount

	7			end

	8	end

	9	class	Moviegoer

10			#	behavior	delegation

11			def	pay(amount)

12					wallet.withdraw(amount)

http://en.wikipedia.org/wiki/inappropriate_intimacy
http://en.wikipedia.org/wiki/feature_envy
http://pastebin.com/QtxWkUy6
http://pastebin.com/rgB4LnMk

13			end

14	end

15	class	MovieTheater

16			def	collect_money(moviegoer,	amount)

17					@collected_amount	+=	moviegoer.pay(amount)

18			end

19	end

Figure	11.22:	(Top)	If	Moviegoer	delegates	credit_balance	to	its	wallet,	MovieTheater	no	longer	has	to	know	about	the	implementation
of	Wallet.	However,	it	may	still	be	undesirable	that	the	payment	behavior	(subtract	payment	from	credit	balance)	is	exposed	to
MovieTheater	when	it	should	really	be	the	responsibility	of	Moviegoer	or	Wallet	only.	(Bottom)	Delegating	the	behavior	of	payment,
rather	than	the	attributes	through	which	it’s	accomplished,	solves	the	problem	and	eliminates	the	Demeter	violation.

Inappropriate	 intimacy	 and	 Demeter	 violations	 can	 arise	 in	 any	 situation	 where	 you	 feel	 you	 are
“reaching	 through”	 an	 interface	 to	 get	 some	 task	 done,	 thereby	 exposing	 yourself	 to	 dependency	 on
implementation	 details	 of	 a	 class	 that	 should	 really	 be	 none	 of	 your	 business.	 Three	 design	 patterns
address	common	scenarios	that	could	otherwise	lead	to	Demeter	violations.	One	is	the	Visitor	pattern,	in
which	a	data	structure	is	traversed	and	you	provide	a	callback	method	to	execute	for	each	member	of
the	data	structure,	allowing	you	to	“visit”	each	element	while	remaining	 ignorant	of	 the	way	 the	data
structure	 is	 organized.	 Indeed,	 the	 “data	 structure”	 could	 even	 be	materialized	 lazily	 as	 you	 visit	 the
different	nodes,	rather	than	existing	statically	all	at	once.	An	example	of	this	pattern	in	the	wild	is	the
Nokogiri	gem,	which	supports	traversal	of	HTML	and	XML	documents	organized	as	a	tree:	in	addition
to	searching	for	a	specific	element	in	a	document,	you	can	have	Nokogiri	traverse	the	document	and	call
a	visitor	method	you	provide	at	each	document	node.

A	 simple	 special	 case	 of	 Visitor	 is	 the	 Iterator	 pattern,	 which	 is	 so	 pervasive	 in	 Ruby	 (you	 use	 it
anytime	 you	 use	 each)	 that	 many	 Rubyists	 hardly	 think	 of	 it	 as	 a	 pattern.	 Iterator	 separates	 the
implementation	 of	 traversing	 a	 collection	 from	 the	 behavior	 you	 want	 to	 apply	 to	 each	 collection
element.	Without	 iterators,	 the	 behavior	would	 have	 to	 “reach	 into”	 the	 collection,	 thereby	 knowing
inappropriately	intimate	details	of	how	the	collection	is	organized.

Observer	was	first	implemented	in	the	MVC	framework	of	Smalltalk,	from	which	Ruby	inherits	its	object	model.

The	 last	design	pattern	 that	 can	help	with	 some	cases	of	Demeter	violations	 is	 the	Observer	 pattern,
which	is	used	when	one	class	(the	observer)	wants	to	be	kept	aware	of	what	another	class	is	doing	(the
subject)	 without	 knowing	 the	 details	 of	 the	 subject’s	 implementation.	 The	 Observer	 design	 pattern
provides	a	canonical	way	for	the	subject	to	maintain	a	list	of	its	observers	and	notify	them	automatically
of	 any	 state	 changes	 in	 which	 they	 have	 indicated	 interest,	 using	 a	 narrow	 interface	 to	 separate	 the
concept	of	observation	from	the	specifics	of	what	each	observer	does	with	the	information.

http://pastebin.com/zznALkdt

	1	class	EmailList

	2			observe	Review

	3			def	after_create(review)

	4					moviegoers	=	review.moviegoers	#	from	has_many	:through,	remember?

http://nokogiri.org
http://en.wikipedia.org/wiki/Iterator_pattern
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Observer_pattern
http://pastebin.com/zznALkdt

	5					self.email(moviegoers,	"A	new	review	for	#{review.movie}	is	up.")

	6			end

	7			observe	Moviegoer

	8			def	after_create(moviegoer)

	9					self.email([moviegoer],	"Welcome,	#{moviegoer.name}!")

10			end

11			def	self.email	;	...	;	end

12	end

Figure	11.23:	An	email	list	subsystem	observes	other	models	so	it	can	generate	email	in	response	to	certain	events.	The	Observer	pattern
is	an	ideal	fit	since	it	collects	all	the	concerns	about	when	to	send	email	in	one	place.

While	the	Ruby	standard	library	includes	a	mixin	called	Observable,	Rails’	ActiveSupport	provides	a
more	concise	Observer	 that	 lets	you	observe	any	model’s	ActiveRecord	 lifecycle	hooks	 (after_save
and	so	on),	introduced	in	Section	5.1.	Figure	11.23	shows	how	easy	it	is	to	add	an	EmailList	class	to
RottenPotatoes	that	“subscribes”	to	two	kinds	of	state	changes:
	

1.	 When	 a	 new	 review	 is	 added,	 it	 emails	 all	 moviegoers	 who	 have	 already	 reviewed	 that	 same
movie.

2.	 When	a	new	moviegoer	signs	up,	it	sends	her	a	“Welcome”	email.

In	addition	to	ActiveRecord	lifecycle	hooks,	Rails	caching,	which	we	will	encounter	in	Chapter	12,	 is
another	example	of	 the	Observer	pattern	 in	 the	wild:	 the	cache	 for	each	 type	of	ActiveRecord	model
observes	 the	 model	 instance	 in	 order	 to	 know	 when	 model	 instances	 become	 stale	 and	 should	 be
removed	from	the	cache.	The	observer	doesn’t	have	to	know	the	implementation	details	of	the	observed
class—it	just	gets	called	at	the	right	time,	like	Iterator	and	Visitor.

To	 close	 out	 this	 section,	 it’s	worth	 pointing	 out	 an	 example	 that	 looks	 like	 it	 violates	Demeter,	 but
really	doesn’t.	It’s	common	in	Rails	views	(say,	for	a	Review)	to	see	code	such	as:

http://pastebin.com/s9X4Eiq3

	1				%p	Review	of:			#{@review.movie.title}

	2				%p	Written	by:		#{@review.moviegoer.name}

Aren’t	 these	Demeter	violations?	It’s	a	 judgment	call:	strictly	speaking,	a	review	 shouldn’t	know	the
implementation	 details	 of	 movie,	 but	 it’s	 hard	 to	 argue	 that	 creating	 delegate	 methods
Review#movie_title	 and	 Review#moviegoer_name	 would	 enhance	 readability	 in	 this	 case.	 The
general	 opinion	 in	 the	Rails	 community	 is	 that	 it’s	 acceptable	 for	 views	whose	purpose	 is	 to	 display
object	relationships	to	also	expose	those	relationships	in	the	view	code,	so	examples	like	this	are	usually
allowed	to	stand.

Summary	of	Demeter	Principle:
The	Demeter	Principle	states	that	a	class	shouldn’t	be	aware	of	the	details	of	collaborator	classes
from	which	it	 is	further	away	than	“once	removed.”	That	 is,	you	can	access	instance	methods	in

http://www.ruby-doc.org/stdlib-1.9.3/libdoc/observer/rdoc/Observable.html
http://pastebin.com/s9X4Eiq3

your	 own	 class	 and	 in	 the	 classes	 corresponding	 to	 your	 nearest	 collaborators,	 but	 not	 on	 their
collaborators.
The	 Inappropriate	 Intimacy	 design	 smell,	which	 sometimes	manifests	 as	 a	Mock	Trainwreck	 in
unit	 tests,	 may	 signal	 a	 Demeter	 violation.	 If	 a	 class	 shows	 many	 instances	 of	 Inappropriate
Intimacy	with	another	class,	 it	 is	 sometimes	said	 to	have	Feature	Envy	with	 respect	 to	 the	other
class.
Delegation	is	the	key	mechanism	for	resolving	these	violations.
Design	 patterns	 cover	 some	 common	 manipulations	 of	 classes	 without	 violating	 Demeter,
including	 Iterator	 and	Visitor	 (separating	 traversal	 of	 an	 aggregate	 from	behavior)	 and	Observer
(separating	notification	of	“interesting”	events	from	the	details	of	the	class	being	observed).

ELABORATION:	Observers,	Visitors,	Iterators,	and	Mixins

Because	of	duck	typing	and	mixins,	Ruby	can	express	many	design	patterns	with	far	less	code	than	statically-typed	languages,	as	the
Wikipedia	 entries	 for	Observer,	 Iterator	 and	Visitor	 clearly	 demonstrate	 by	 using	 Java-based	 examples.	 In	 contrast	 to	 Ruby’s
internal	 iterators	based	on	each,	 statically-typed	 languages	usually	provide	external	 iterators	and	visitors	 in	which	you	set	up	 the
iterator	over	a	collection	and	ask	the	iterator	explicitly	whether	the	collection	has	any	more	elements,	sometimes	requiring	various
contortions	to	work	around	the	 type	system.	Similarly,	Observer	usually	requires	modifying	the	subject	class(es)	so	 that	 they	can
implement	 an	 Observable	 interface,	 but	 Ruby’s	 open	 classes	 allow	 us	 to	 skip	 that	 step,	 as	 Figure	 11.23	 showed:	 from	 the
programmer’s	point	of	view,	all	of	the	logic	is	in	the	observing	class,	not	the	subjects.

Self-Check	11.7.1.	Ben	Bitdiddle	is	a	purist	about	Demeter	violations,	and	he	objects	to	the	expression
@movie.reviews.average_rating	 in	the	movie	details	view,	which	shows	a	movie’s	average	review
score.	How	would	you	placate	Ben	and	fix	this	Demeter	violation?
	http://pastebin.com/z5zdp8MY

	1				#	naive	way:

	2				class	Movie

	3						has_many	:reviews

	4						def	average_rating

	5								self.reviews.average_rating	#	delegate	to	Review#average_rating

	6						end

	7				end

	8				#	Rails	shortcut:

	9				class	Movie

10						has_many	:reviews

11						delegate	:average_rating,	:to	=>	:review

12				end

Self-Check	 11.7.2.	Notwithstanding	 that	 “delegation	 is	 the	 key	 mechanism”	 for	 resolving	 Demeter
violations,	why	should	you	be	concerned	if	you	find	yourself	delegating	many	methods	from	class	A	to
class	B	just	to	resolve	Demeter	violations	present	in	class	C?
	You	might	ask	yourself	whether	there	should	be	a	direct	relationship	between	class	C	and	class	B,	or

whether	class	A	has	“feature	envy”	for	class	B,	indicating	that	the	division	of	responsibilities	between	A
and	B	might	need	to	be	reengineered.

11.8	The	Plan-And-Document	Perspective

http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Iterator_pattern
http://en.wikipedia.org/wiki/Visitor_pattern
http://pastebin.com/z5zdp8MY

A	strength	of	Plan-and-Document	 is	 that	careful	upfront	planning	can	result	 in	a	product	with	a	good
software	architecture	that	uses	design	patterns	well.	This	preplanning	is	reflected	in	the	alternative	catch
phrase	for	these	processes	of	Big	Design	Up	Front,	as	Chapter	1	mentions.

A	Plan-and-Document	development	 team	starts	with	 the	Software	Requirements	Specification	 (SRS)
(see	Section	7.10),	which	the	 team	breaks	 into	a	series	of	problems.	For	each	one,	 the	 team	looks	for
one	or	more	architecture	patterns	 that	might	solve	the	problem.	The	team	then	goes	down	to	 the	next
level	of	subproblems,	and	looks	for	design	patterns	that	match	them.	The	philosophy	is	to	learn	from	the
experience	of	others	 captured	 as	patterns	 so	 as	 to	 avoid	 repeating	 the	mistakes	of	your	predecessors.
Another	 way	 to	 get	 feedback	 from	 more	 experienced	 engineers	 is	 to	 hold	 a	 design	 review	 (see
Section	10.7).	Note	that	design	reviews	can	be	done	before	any	code	is	written	in	Plan-and-Document
processes.

Thus,	compared	to	Agile,	there	is	considerably	more	effort	in	starting	with	a	good	design	in	Plan-and-
Document.	As	Martin	Fowler	points	out	in	his	article	Is	Design	Dead?,	a	frequent	critique	of	Agile	is
that	 it	 encourages	 developers	 to	 jump	 in	 and	 start	 coding	without	 any	 design,	 and	 rely	 too	much	 on
refactoring	to	fix	things	later.	As	the	critics	sometimes	say,	you	can	build	a	doghouse	by	slapping	stuff
together	and	planning	as	you	go,	but	you	can’t	build	a	skyscraper	that	way.

Agile	 supporters	 counter	 that	 Plan-and-Document	methods	 are	 just	 as	 bad:	 by	 disallowing	 any	 code
until	the	design	is	complete,	it’s	impossible	to	be	confident	that	the	design	will	be	implementable	or	that
it	really	captures	the	customer’s	needs.	This	critique	especially	holds	when	the	architects/designers	will
not	be	writing	the	code	or	may	be	out	of	touch	with	current	coding	practices	and	tools.	As	a	result,	say
Agile	proponents,	when	coding	starts,	the	design	will	have	to	change	anyway.

Both	sides	have	a	point,	but	the	critique	can	be	phrased	in	a	more	nuanced	way	as	“How	much	design
makes	sense	up	front?”	For	example,	Agile	developers	plan	for	persistent	storage	as	part	of	their	SaaS
apps,	even	though	the	first	BDD	and	TDD	tests	they	write	will	not	touch	the	database.	A	more	subtle
example	is	horizontal	scaling.	As	we	alluded	to	in	Chapter	2,	and	will	discuss	more	fully	in	Chapter	12,
designers	of	 successful	SaaS	must	 think	about	horizontal	 scalability	early	on.	Even	 though	 it	may	be
months	 before	 scalability	matters,	 design	 decisions	 early	 in	 the	 project	 can	 cripple	 scalability,	 and	 it
may	be	difficult	to	change	them	without	major	rewriting	and	refactoring.

A	possible	 solution	 to	 the	conundrum	 is	captured	by	a	 rule	of	 thumb	 in	Fowler’s	article.	 If	you	have
previously	done	a	project	 that	has	 some	design	constraint	or	 element,	 it’s	OK	 to	plan	 for	 it	 in	a	new
project	that	is	similar,	because	your	previous	experience	will	likely	lead	to	reasonable	design	decisions
this	time.

Summary:	Plan-and-Document	processes	have	an	explicit	design	phase	that	is	a	natural	fit	to	the
use	of	design	patterns	in	the	software	development	process.	One	potential	drawback	is	uncertainty
as	to	whether	the	initial	architecture	and	design	patterns	will	need	to	change	as	the	code	is	written
and	as	the	system	evolves.	In	contrast,	the	Agile	process	relies	on	refactoring	to	incorporate	design
patterns	 as	 the	 code	 evolves,	 although	 experienced	 developers	 may	 lay	 plans	 for	 software
architectures	and	design	patterns	that	they	expect	to	need	based	on	previous,	similar	projects.

Self-Check	11.8.1.	True	or	False:	Agile	design	is	an	oxymoron.

http://en.wikipedia.org/wiki/Big_Design_Up_Front
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/design_review
http://www.martinfowler.com/articles/designDead.html

	False.	Although	 there	 is	no	separate	design	phase	 in	Agile	development,	 the	 refactoring	 that	 is	 the
norm	in	Agile	can	incorporate	design	patterns.

11.9	Fallacies	and	Pitfalls

			Pitfall:	Over-reliance	or	under-reliance	on	patterns.

As	with	every	 tool	and	methodology	we’ve	seen,	slavishly	following	design	patterns	 is	a	pitfall:	 they
can	help	point	the	way	when	your	problem	could	take	advantage	of	a	proven	solution,	but	they	cannot
by	 themselves	 ensure	 beautiful	 code.	 In	 fact,	 the	 GoF	 authors	 specifically	 warn	 against	 trying	 to
evaluate	 the	 soundness	of	a	design	based	on	 the	number	of	patterns	 it	uses.	 In	addition,	 if	you	apply
design	patterns	too	early	in	your	design	cycle,	you	may	try	to	implement	a	pattern	in	its	full	generality
even	 though	you	may	not	 need	 that	 generality	 for	 solving	 the	 current	 problem.	That	will	 complicate
your	design	because	most	design	patterns	call	for	more	classes,	methods,	and	levels	of	indirection	than
the	same	code	would	require	without	 this	 level	of	generality.	 In	contrast,	 if	you	apply	design	patterns
too	late,	you	risk	falling	into	antipatterns	and	extensive	refactoring.

What	to	do?	Develop	taste	and	judgment	through	learning	by	doing.	You	will	make	some	mistakes	as
you	go,	but	your	judgment	on	how	to	deliver	working	and	maintainable	code	will	quickly	improve.

			Pitfall:	Over-reliance	on	UML	or	other	diagrams.

A	diagram’s	purpose	is	communication	of	intent.	Reading	UML	diagrams	is	not	necessarily	easier	than
reading	 user	 stories	 or	 well-factored	 TDD	 tests.	 Create	 a	 diagram	 when	 it	 helps	 to	 clarify	 a	 class
architecture;	don’t	rely	on	them	as	a	crutch.

			Fallacy:	SOLID	principles	aren’t	needed	in	dynamic	languages.

As	we	saw	in	this	chapter,	some	of	the	problems	addressed	by	SOLID	don’t	really	arise	in	dynamically-
typed	 languages	 like	 Ruby.	 Nonetheless,	 the	 SOLID	 guidelines	 still	 represent	 good	 design;	 in	 static
languages,	there	is	simply	a	much	more	tangible	up-front	cost	to	ignoring	them.	In	dynamic	languages,
while	the	opportunity	exists	to	use	dynamic	features	to	make	your	code	more	elegant	and	DRY	without
the	extra	machinery	required	by	some	of	the	SOLID	guidelines,	the	corresponding	risk	is	that	it’s	easier
to	fall	into	sloth	and	end	up	with	ugly	antipattern	code.

			Pitfall:	Lots	of	private	methods	in	a	class.

You	may	have	already	discovered	that	methods	declared	private	are	hard	to	test,	because	by	definition
they	can	only	be	called	from	within	an	instance	method	of	that	class—meaning	they	cannot	be	called
directly	 from	 an	 RSpec	 test.	 Although	 you	 can	 use	 a	 hack	 to	 temporarily	 make	 the	 method	 public
(MyClass.send(:public,:some_private_method)),	 private	methods	 complex	 enough	 to	 need	 their
own	tests	should	be	considered	a	smell:	 the	methods	 themselves	may	be	too	 long,	violating	the	Short
guideline	of	SOFA,	and	the	class	containing	these	methods	may	be	violating	the	Single	Responsibility
Principle.	In	this	case,	consider	extracting	a	collaborator	class	whose	methods	are	public	(and	therefore
easy	 to	 test	 and	 easy	 to	 shorten	 by	 refactoring)	 but	 are	 only	 called	 from	 the	 original	 class,	 thereby

http://en.wikipedia.org/wiki/Single_Responsibility_Principle

improving	maintainability	and	testability.

			Pitfall:	Using	initialize	to	implement	factory	patterns.

In	 Section	 11.4,	 we	 showed	 an	 example	 of	 Abstract	 Factory	 pattern	 in	 which	 the	 correct	 subclass
constructor	 is	 called	 directly.	 Another	 common	 scenario	 is	 one	 in	 which	 you	 have	 a	 class	 A	 with
subclasses	 A1	 and	 A2,	 and	 you	 want	 calls	 to	 A’s	 constructor	 to	 return	 a	 new	 object	 of	 the	 correct
subclass.	 You	 usually	 cannot	 put	 the	 factory	 logic	 into	 the	 initialize	 method	 of	 A,	 because	 that
method	must	 by	 definition	 return	 an	 instance	 of	 class	A.	 Instead,	 give	 the	 factory	method	 a	 different
name	such	as	create,	make	it	a	class	method,	and	call	it	from	A’s	constructor:

http://pastebin.com/Xv7iY4kd

	1				class	A

	2						def	self.create(subclass,	*args)	#	subclass	must	be	either	’A1’	or	’A2’

	3								return	Object.const_get(subclass).send(:new,	*args)

	4						end

	5				end

11.10	Concluding	Remarks:	Frameworks	Capture	Design	Patterns

The	process	of	preparing	programs	for	a	digital	computer	is	especially	attractive,	not	only	because	it
can	be	economically	and	scientifically	rewarding,	but	also	because	it	can	be	an	aesthetic	experience

much	like	composing	poetry	or	music.
—Donald	Knuth

The	 original	 23	 design	 patterns	 from	 the	Gang	 of	 Four	 have	 been	 expanded	 dramatically	 since	 their
book	 appeared.	 There	 are	 numerous	 repositories	 of	 design	 patterns	 (Cunningham	 2013;	 Noble	 and
Johnson	 2013),	 with	 some	 tailored	 to	 specific	 problem	 areas	 such	 as	 user
interfaces	(Griffiths	2013;	Toxboe	2013).

A	 problem	 for	 novice	 developers	 is	 that	 even	 if	 you	 read	 the	 Gang	 of	 Four	 book	 or	 study	 these
repositories,	 it	 is	 hard	 to	know	which	pattern	 to	 apply.	 If	 you	don’t	 have	previous	 experience	with	 a
given	design	pattern,	and	you	try	to	design	for	it	in	an	anticipatory	manner,	you’re	more	likely	to	get	it
wrong,	so	you	should	instead	wait	to	add	it	later	when	and	if	it’s	really	needed.

The	 good	 news	 is	 that	 frameworks	 like	 Rails	 encapsulate	 others’	 design	 experience	 to	 provide
abstractions	and	design	constraints	that	have	been	proven	through	reuse.	For	example,	it	may	not	occur
to	you	to	design	your	app’s	actions	around	REST,	but	it	turns	out	that	doing	so	results	in	a	design	that	is
more	 consistent	with	 the	 scalability	 success	 stories	of	 the	Web.	While	 the	Gang	of	Four	went	out	 of
their	way	to	differentiate	design	patterns	from	frameworks	to	try	to	make	it	clear	what	design	patterns
are—more	abstract,	narrower	in	focus,	and	not	targeted	to	a	problem	domain—today	frameworks	are	a
great	way	for	a	novice	to	get	started	with	design	patterns.	By	examining	the	patterns	in	a	framework	that
are	 instantiated	 as	 code,	 you	 can	 gain	 experience	 on	 how	 to	 create	 your	 own	 code	 based	 on	 design
patterns.

http://pastebin.com/Xv7iY4kd

11.11	To	Learn	More

Design	 Patterns	 (Gamma	 et	 al.	 1994)	 is	 the	 classic	 Gang	 of	 Four	 text	 on	 design	 patterns.	 While
canonical,	 it’s	a	bit	slower	reading	 than	some	other	sources,	and	 the	examples	are	heavily	oriented	 to
C++.	Design	Patterns	in	Ruby	(Olsen	2007)	treats	a	subset	of	the	GoF	patterns	in	detail	showing	Ruby
examples.	 It	 also	 discusses	 patterns	 made	 unnecessary	 by	 Ruby	 language	 features.	 Clean
Code	 (Martin	 2008)	 has	 a	 more	 thorough	 exposition	 of	 both	 the	 SOFA	 and	 SOLID	 guidelines	 that

motivate	the	use	of	design	patterns.	 		

Rather	than	presenting	a	“laundry	list”	of	patterns,	we	tried	to	motivate	a	subset	of	patterns	by	showing
the	design	smells	they	fix.	Rails	Antipatterns	(Pytel	and	Saleh	2010)	gives	great	examples	of	how	real-
life	 code	 that	 starts	 with	 a	 good	 design	 can	 become	 cluttered	 over	 time,	 and	 how	 to	 beautify	 and
streamline	 it	by	 refactoring,	often	using	one	or	more	of	 the	appropriate	design	patterns.	Figure	11.24
shows	 a	 few	 examples	 of	 those	 refactorings,	 largely	 drawn	 from	Martin	 Fowler’s	 online	 catalog	 of
refactorings	and	comprehensive	book	(Fields	et	al.	2009).

Smell Description Fix
Comment
deodorant,
inappropriate

name

Obfuscated	variable	or	method	names	make
lots	of	comments	necessary

Reduce	need	for	comments	through
descriptive	names	and	(as	necessary)	by

addressing	other	smells	within	the
offending	code

Lazy	class,
data	class

A	class	does	too	little,	for	example,	providing
nothing	but	getters	and	setters	for	some

object	but	no	other	logic

Merge	methods	that	encapsulate	the	data
object	into	another	class

Duplicated
code,

combinatorial
explosion

Nearly	the	same	code	repeated	with	subtle
changes	in	multiple	methods,	in	same	class

Extract	common	parts	using	DRY
mechanisms	like	blocks	and	yield

(Section	3.8),	extracting	helper	methods
(Section	9.6),	using	Template	or	Strategy

design	pattern	(Section	11.4).

Parallel
inheritance
hierarchy

Nearly	the	same	code	repeated	with	subtle
changes	in	different	classes	that	inherit	from
different	ancestors;	for	example,	numerous
pieces	of	code	using	slightly	different
combinations	of	data	or	behavior

Extract	commonality	into	its	own	class
and	delegate	to	that	class	(Section	11.7).	If
classes	with	different	ancestors	need	the
functionality,	try	extracting	it	into	a

module	that	can	be	mixed	in.

Figure	11.24:	Some	smells	are	relatively	easily	fixed	by	a	local	modification.	These	are	excerpted	from	Fowler’s	Refactoring,	Ruby
Edition	(Fields	et	al.	2009).

Finally,	M.V.	Mäntyllä	and	C.	Lassenius	have	created	an	online	 taxonomy	of	code	and	design	smells
grouped	into	descriptively-named	categories	such	as	“The	Bloaters”,	“The	Change	Preventers”,	and	so
on,	summarizing	their	2006	journal	article	on	this	topic.

	 ACM	IEEE-Computer	Society	Joint	Task	Force.	Computer	science	curricula	2013,	Ironman	Draft
(version	1.0).	Technical	report,	February	2013.	URL	http:	//ai.stanford.edu/users/sahami/CS2013/.

http://martinfowler.com/refactoring/catalog
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/~mmantyla/ESE_2006.pdf
http://ai.stanford.edu/users/sahami/CS2013/

	 W.	Cunningham.	Portland	pattern	repository,	2013.	URL	http://c2.com/ppr/.

	 J.	Fields,	S.	Harvie,	M.	Fowler,	and	K.	Beck.	Refactoring:	Ruby	Edition.	Addison-Wesley
Professional,	2009.	ISBN	0321603508.

	 E.	Gamma,	R.	Helm,	R.	Johnson,	and	J.	M.	Vlissides.	Design	Patterns:	Elements	of	Reusable	Object-
Oriented	Software.	Addison-Wesley	Professional,	1994.	ISBN	0201633612.
	 R.	Griffiths.	HCI	design	patterns,	2013.	URL	http://www.hcipatterns.org/	patterns.

	 R.	C.	Martin.	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship.	Prentice	Hall,	2008.	ISBN
9780132350884.
	 J.	Noble	and	R.	Johnson.	Design	patterns	library,	2013.	URL	http://hillside.	net/patterns.
	 R.	Olsen.	Design	Patterns	in	Ruby.	Addison-Wesley	Professional,	2007.	ISBN	9780321490452.

	 C.	Pytel	and	T.	Saleh.	Rails	AntiPatterns:	Best	Practice	Ruby	on	Rails	Refactoring	(Addison-WesleyProfessional	Ruby	Series).	Addison-Wesley	Professional,	2010.	ISBN	9780321604811.
	 A.	Toxboe.	UI	patterns,	2013.	URL	http://ui-patterns.com/.

11.12	Suggested	Projects

Project	11.1.	Describe	a	design	that	would	allow	adding	a	feature	to	RottenPotatoes	wherein	customers
could	buy	movie	ticket	vouchers	online.	To	keep	it	simple,	assume	the	customer	buys	a	voucher	for	a
ticket	to	a	particular	movie	via	RottenPotatoes,	and	that	voucher	can	be	exchanged	at	any	movie	theater
showing	 that	movie.	 (This	way	RottenPotatoes	 doesn’t	 have	 to	 know	 about	 specific	movie	 theaters.)
Assume	 you	 don’t	 know	 in	 advance	 which	 payment	 service	 will	 be	 used	 for	 processing	 credit	 card
charges,	but	that	it	will	have	a	RESTful	API	of	some	kind.	After	creating	user	stories	and	lo-fi	mockups
for	the	new	feature,	your	design	will	need	to	address	at	least	the	following:

Determining	how	to	model	 the	resources	and	relationships	among	 them	(associations)	 to	support
the	new	feature
Determining	how	to	encapsulate	interaction	with	the	payment	service,	even	though	you	don’t	yet
know	which	service	will	be	used

For	 the	 following	projects,	 you	will	 need	 to	 identify	 a	working	 legacy	 software	 system	 that	you	will
inspect.	For	suggestions,	you	could	use	the	list	of	open-source	Rails	projects	at	Open	Source	Rails,	or
you	 could	 select	 one	 of	 two	 projects	 created	 by	 students	who	 have	 used	 this	 book:	 ResearchMatch,
which	helps	match	students	with	 research	opportunities	at	 their	university,	and	VisitDay,	which	helps
organize	meetings	between	students	and	faculty	members.

Project	11.2.	 			Describe	one	or	more	design	patterns	that	could	be	applicable	to	the	design	of	the
software	 system.	 Note:	 The	 margin	 icon	 identifies	 projects	 from	 the	 ACM/IEEE	 2013	 Software
Engineering	standard	(ACM	IEEE-Computer	Society	Joint	Task	Force	2013).

Project	 11.3.	 	 	 	 For	 a	 simple	 system	 suitable	 for	 a	 given	 user	 story,	 discuss	 and	 select	 an
appropriate	design	paradigm.

Project	11.4.	 			Apply	simple	examples	of	patterns	in	the	software	design.

Project	11.5.	 	 	 	Discuss	and	select	an	appropriate	 software	architecture	 suitable	 for	a	given	user
story	in	this	system.	Does	the	system’s	implementation	of	that	user	story	reflect	your	own	architectural

http://c2.com/ppr/
http://www.hcipatterns.org/patterns
http://hillside.net/patterns
http://ui-patterns.com/
http://www.opensourcerails.com/
http://github.com/ucberkeley/researchmatch
http://github.com/vinsonchuong/meetinglibs

recommendation?

Project	11.6.	 			Analyze	the	software	design	from	the	perspective	of	a	significant	internal	quality
attribute	such	as	maintainability	and	lack	of	viscosity.

12.	 Non-functional	 Requirements	 for	 SaaS:	 Performance,	 Releases,
Reliability,	and	Practical	Security

			Barbara	Liskov	(1939–),	one	of	the	first	women	in	the	USA	to	receive	a	Ph.D.	in
computer	science	(in	1968),	received	the	2008	Turing	Award	for	foundational	innovations	in

programming	language	design.	Her	inventions	include	abstract	data	types	and	iterators,	both	of	which
are	central	to	Ruby.

You	never	need	optimal	performance,	you	need	good-enough	performance	...Programmers	are	far	too
hung	up	with	performance.

—Barbara	Liskov,	2011

12.1	From	Development	to	Deployment
12.2	Quantifying	Responsiveness
12.3	Continuous	Integration	and	Continuous	Deployment
12.4	Releases	and	Feature	Flags
12.5	Quantifying	Availability
12.6	Monitoring	and	Finding	Bottlenecks
12.7	Improving	Rendering	and	Database	Performance	With	Caching
12.8	Avoiding	Abusive	Database	Queries
12.9	Security:	Defending	Customer	Data	in	Your	App
12.10	The	Plan-And-Document	Perspective
12.11	Fallacies	and	Pitfalls
12.12	Concluding	Remarks:	Performance,	Reliability,	Security,	and	Leaky	Abstractions
12.13	To	Learn	More
12.14	Suggested	Projects

Concepts

The	big	concept	of	 this	chapter	 is	how	to	avoid	 the	following	headaches	when	your	app	 is	deployed:
crashes,	becoming	unresponsive	if	it	experiences	a	surge	in	popularity,	or	compromising	customer	data.
Such	 non-functional	 characteristics	 can	 be	 more	 important	 than	 functional	 features	 since	 such
headaches	can	drive	users	away.

In	the	Agile	lifecycle:
	

The	 difficult	 performance	 challenge	 for	 a	 SaaS	 app	 is	 latency,	 which	 can	 be	 helped	 by
overprovisioning	 in	 limited	 cases.	 The	Apdex	 metric	 is	 a	 standard	measure	 to	 see	 if	 an	 app	 is
meeting	its	Service	Level	Objective	(SLO).
You	 increase	 the	 chances	of	meeting	 the	SLO	by	keeping	your	 app	 running	on	 a	Platform	as	 a
Service,	which	manages	much	of	the	administration	and	scaling	for	you.
The	backend	database	is	often	the	reason	an	app	has	to	abandon	the	PaaS	solution,	but	you	can	stay
on	 the	 database	 longer	 by	using	caching,	 by	 creating	 indices,	 and	 by	 avoiding	 unnecessary	 and
expensive	database	queries.
Releases	are	more	challenging	 in	SaaS	since	you	normally	need	 to	deploy	new	versions	without
first	taking	down	old	ones.	Feature	flags	make	it	easier	to	quickly	deploy	and	remove	new	features
should	the	need	arise.
Security	 can	 be	 enhanced	 by	 following	 the	 principles	 of	 least	 privilege	 and	 fail-safe	 defaults,
which	 limit	 access	 to	 assets	 on	 a	 “need-to-know”	 basis,	 and	 the	 principle	 of	 psychological
acceptability,	 which	 states	 that	 the	 user	 interface	 must	 not	 be	 more	 difficult	 with	 protection
features	than	without	them.
Defensive	programming	anticipates	flaws	before	they	appear	and	can	lead	to	systems	that	are	both
more	reliable	and	more	secure.

For	Plan-and-Document	lifecycles:
	

Performance	is	just	a	possible	non-functional	requirement.

http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Apdex
http://en.wikipedia.org/wiki/Service_Level_Objective
http://en.wikipedia.org/wiki/Service_Level_Objective
http://en.wikipedia.org/wiki/Platform_as_a_Service
http://en.wikipedia.org/wiki/caching
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Defensive_programming

Releases	are	less	frequent,	larger	events	than	in	Agile.
The	Mean	Time	to	Failure	 is	a	holistic	measure,	 including	errors	by	the	hardware,	 the	software,
and	 the	operators.	Reducing	Mean	Time	 to	Repair	 can	 be	 just	 as	 effective	 as	 trying	 to	 increase
MTTF,	and	it	is	easier	to	measure	than	MTTF.
Security	can	be	enhanced	by	making	the	system	robust	against	software	flaws	that	leave	it	open	to
attacks,	such	as	buffer	overflows,	arithmetic	overflows,	and	data	races.

http://en.wikipedia.org/wiki/Mean_Time_to_Failure
http://en.wikipedia.org/wiki/Mean_Time_to_Repair
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/arithmetic_overflow
http://en.wikipedia.org/wiki/data_race

12.1	From	Development	to	Deployment

Users	are	a	terrible	thing.	Systems	would	be	infinitely	more	stable	without	them.
—Michael	Nygard,	Release	It!	(Nygard	2007)

The	moment	a	SaaS	app	is	deployed,	its	behavior	changes	because	it	has	actual	users.	If	it	is	a	public-
facing	app,	it	is	open	to	malicious	attacks	as	well	as	accidental	success,	but	even	private	apps	such	as
internal	billing	systems	must	be	designed	for	deployability	and	monitorability	in	order	to	ensure	smooth
deployment	and	operations.	Fortunately,	as	Figure	12.1	reminds	us,	deployment	is	part	of	every	iteration
in	the	Agile	lifecycle—indeed,	many	Agile	SaaS	companies	deploy	several	times	per	day—so	you	will
quickly	become	practiced	in	“routine”	deployments.

Figure	12.1:	The	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book.	This	chapter	covers	deploying	the	app	into	the
cloud	so	that	the	customer	can	evaluate	this	Agile	iteration.

SaaS	deployment	is	much	easier	than	it	used	to	be.	Just	a	few	years	ago,	SaaS	developers	had	to	learn
quite	a	bit	about	system	administration	in	order	to	manage	their	own	production	servers.	For	small	sites
they	were	 typically	 hosted	 on	 shared	 Internet	 Service	 Providers	 (“managed-hosting	 ISP”),	 on	virtual
machines	 running	 on	 shared	 hardware	 (Virtual	 Private	 Server	 or	VPS),	 or	 on	 one	 or	more	 dedicated
computers	physically	 located	at	 the	ISP’s	datacenter	(“hosting	service”).	Today,	 the	horizontal	scaling

enabled	 by	 cloud	 computing	 (Section	 2.4)	 has	 given	 rise	 to	 companies	 like	 Heroku	 that	 provide	 a
Platform	as	a	Service	(PaaS):	a	curated	software	stack	ready	for	you	to	deploy	your	app,	with	much	of
the	 administration	 and	 scaling	 responsibility	 managed	 for	 you,	 making	 deployment	 much	 more
developer-friendly.	PaaS	providers	may	either	run	their	own	datacenters	or,	increasingly,	rely	on	lower-
level	 Infrastructure	 as	 a	 Service	 (IaaS)	 providers	 such	 as	 the	Amazon	 public	 cloud,	 as	Heroku	 does.
Other	 emerging	 PaaS’s	 are	 CloudFoundry,	 a	 PaaS	 software	 layer	 that	 can	 be	 deployed	 on	 either	 a
company’s	existing	servers	or	a	public	cloud,	and	Microsoft	Azure,	a	set	of	managed	services	based	on
Windows	Server	and	running	in	Microsoft’s	cloud.

For	 early-stage	 and	many	mature	SaaS	apps,	PaaS	 is	now	 the	preferred	way	 to	deploy:	basic	 scaling
issues	and	performance	tuning	are	handled	for	you	by	professional	SaaS	administrators	who	are	more
experienced	 at	 operations	 than	 most	 developers.	 Of	 course,	 when	 a	 site	 becomes	 large	 enough	 or
popular	 enough,	 its	 technical	 needs	may	outgrow	what	PaaS	can	provide,	 or	 economics	may	 suggest
bringing	operations	“in-house”,	which	as	we	will	see	is	a	major	undertaking.	Therefore	one	goal	of	this
chapter	 is	 to	help	your	app	stay	within	 the	PaaS-friendly	usage	 tier	 for	as	 long	as	possible.	 Indeed,	 if
your	app	is	internally-facing,	so	that	its	maximum	user	base	is	bounded	and	it	runs	in	a	more	protected
and	less	hostile	environment	than	public-facing	apps,	you	may	have	the	good	fortune	to	stay	in	that	tier
indefinitely.

As	we	will	 see,	 a	key	 to	managing	 the	growth	of	your	 app	 is	 controlling	 the	demands	placed	on	 the
database,	which	is	harder	to	scale	horizontally.	One	insight	of	this	chapter	is	that	the	performance	and
security	problems	you	 face	are	 the	 same	 for	both	 small-	 and	 large-scale	SaaS	apps,	but	 the	 solutions
differ	because	PaaS	providers	can	be	very	helpful	in	solving	some	of	the	problems,	saving	you	the	work
of	a	custom-built	solution.

Notwithstanding	the	title	of	this	chapter,	the	terms	performance	and	security	are	often	overused	and	ill
defined.	Here	is	a	more	focused	list	of	key	operational	criteria	we	will	address.
	

Responsiveness:	 How	 long	 do	 most	 users	 wait	 before	 the	 app	 delivers	 a	 useful	 response?
(Section	12.2)
Release	 management:	 how	 can	 you	 deploy	 or	 upgrade	 your	 app	 “in	 place”	 without	 reducing
availability	and	responsiveness?	(Sections	12.3	and	12.4)
Availability:	what	percentage	of	the	time	is	your	app	correctly	serving	requests?	(Section	12.5)
Scalability:	 as	 the	number	of	users	 increases,	 either	gradually	 and	permanently	or	 as	 a	one-time
surge	of	popularity,	can	your	app	maintain	its	steady-state	availability	and	responsiveness	without
increasing	 the	 operational	 cost	 per	 user?	 Chapter	 2	 noted	 that	 three-tier	 SaaS	 apps	 on	 cloud
computing	have	excellent	potential	horizontal	scalability,	but	good	design	alone	doesn’t	guarantee
that	your	app	will	scale	(though	poor	design	guarantees	that	it	won’t).	Caching	(Section	12.7)	and
avoiding	abuse	of	the	database	(Section	12.8)	can	help.
Privacy:	is	important	customer	data	accessible	only	to	authorized	parties,	such	as	the	data’s	owner
and	perhaps	the	app’s	administrators?
Authentication:	can	the	app	ensure	that	a	given	user	is	who	he	or	she	claims	to	be,	by	verifying	a
password	or	using	third-party	authentication	such	as	Facebook	Connect	or	OpenID	in	such	a	way
that	an	impostor	cannot	successfully	impersonate	another	user	without	having	obtained	the	user’s
credentials?
Data	integrity:	can	the	app	prevent	customer	data	from	being	tampered	with,	or	at	least	detect	when

http://en.wikipedia.org/wiki/Platform_as_a_Service

tampering	has	occurred	or	data	may	have	been	compromised?

The	first	three	items	in	the	above	list	might	be	collectively	referred	to	as	performance	stability,	while
the	last	three	collectively	make	up	security,	which	we	discuss	in	Section	12.9.

Summary
High	 availability	 and	 responsiveness,	 release	 management	 without	 downtime,	 and	 scalability
without	 increasing	per-user	costs	are	 three	key	performance	stability	concerns	of	SaaS	apps,	and
defending	your	customers’	data	is	the	app’s	key	security	concern.
Good	PaaS	providers	can	provide	infrastructure	mechanisms	to	automatically	handle	some	of	the
details	of	maintaining	performance	stability	and	security,	but	as	a	developer	you	must	also	address
these	concerns	in	various	aspects	of	your	app’s	design	and	implementation,	using	mechanisms	we
will	discuss	in	this	chapter.
Compared	 to	 shrink-wrapped	 software,	 SaaS	 developer-operators	 are	 typically	 much	 more
involved	with	deploying,	 releasing,	 and	upgrading	 their	 apps	 and	monitoring	 them	 for	problems
with	performance	or	security.

Self-Check	12.1.1.

Which	aspects	of	application	scalability	are	not	automatically	handled	for	you	in	a	PaaS	environment?

	 If	your	app	“outgrows”	 the	capacity	of	 the	 largest	database	offered	by	 the	PaaS	provider,	you	will
need	 to	manually	build	 a	 solution	 to	 split	 it	 into	multiple	 distinct	 databases.	This	 task	 is	 highly	 app-
specific	so	PaaS	providers	cannot	provide	a	generic	mechanism	to	do	it.

12.2	Quantifying	Responsiveness

Performance	is	a	feature.
—Jeff	Atwood,	co-founder	of	StackOverflow

Speed	is	a	feature.
—Adam	De	Boor,	Gmail	software	engineer,	Google

Responsiveness	is	the	perceived	delay	between	when	a	user	takes	an	action	such	as	clicking	on	a	link
and	 when	 the	 user	 perceives	 a	 response,	 such	 as	 new	 content	 appearing	 on	 the	 page.	 Technically,
responsiveness	 has	 two	 components:	 latency,	 the	 initial	 delay	 to	 start	 receiving	 new	 content,	 and
throughput,	 the	 time	 it	 takes	 for	all	 the	content	 to	be	delivered.	As	 recently	as	 the	mid-1990s,	many
home	 users	 connected	 to	 the	 Internet	 using	 telephone	 modems	 that	 took	 100	 ms	 (milliseconds)	 to
deliver	the	first	packet	of	information.	They	could	sustain	at	most	56	Kbps	(56	×	103	bits	per	second)
while	transferring	the	rest,	so	a	Web	page	or	image	50	KBytes	in	size	or	400	Kbits	could	take	more	than
eight	 seconds	 to	 deliver.	 However,	 today’s	 home	 customers	 increasingly	 use	 broadband	 connections
whose	throughput	is	1–20	Mbps,	so	responsiveness	for	Web	pages	is	dominated	by	latency	rather	than

http://en.wikipedia.org/wiki/Responsiveness
http://en.wikipedia.org/wiki/latency
http://en.wikipedia.org/wiki/throughput

throughput.

Since	 responsiveness	 has	 such	 a	 large	 effect	 on	 user	 behavior,	 SaaS	 operators	 carefully	monitor	 the
responsiveness	of	 their	 sites.	Of	 course,	 in	practice,	not	 every	user	 interaction	with	 the	 site	 takes	 the
same	amount	of	time,	so	evaluating	performance	requires	appropriately	characterizing	a	distribution	of
response	times.	Consider	a	site	on	which	8	out	of	10	requests	complete	in	100	ms,	1	out	of	10	completes
in	250	ms,	and	the	remaining	1	out	of	10	completes	in	850	ms.	If	the	user	satisfaction	threshold	T	for
this	site	is	200	ms,	it	is	true	that	the	average	response	time	of	(8(100)	+	1(250)	+	1(850))⁄10	=	190ms	is
below	the	satisfaction	threshold.	But	on	the	other	hand,	20%	of	requests	(and	therefore,	up	to	20%	of
users)	are	 receiving	unsatisfactory	service.	Two	definitions	are	used	 to	measure	 latency	 in	a	way	 that
makes	it	impossible	to	ignore	the	bad	experience	of	even	a	small	number	of	users:
	

A	 service	 level	 objective	 (SLO)	 usually	 takes	 the	 form	 of	 a	 quantitative	 statement	 about	 the
quantiles	of	the	latency	distribution	over	a	time	window	of	a	given	width.	For	example,	“95%	of
requests	within	any	5-minute	window	should	have	a	 latency	below	100	ms.”	 In	statistical	 terms,
the	95th	quantile	of	the	latency	distribution	must	not	exceed	100	ms.

SLA	vs.	SLO:	A	service	level	agreement	(SLA)	is	a	contract	between	a	service	provider	and	its	customers	that	provides	for
customer	consideration	if	the	SLO	is	not	met.

The	Apdex	score	(Application	Performance	Index)	is	an	open	standard	that	computes	a	simplified
SLO	as	a	number	between	0	and	1	 inclusive	representing	 the	fraction	of	satisfied	users.	Given	a
user	satisfaction	threshold	latency	T	selected	by	the	application	operator,	a	request	is	satisfactory	if
it	completes	within	time	T,	tolerable	if	it	takes	longer	than	T	but	less	than	4T,	and	unsatisfactory
otherwise.	The	Apdex	score	 is	 then	 (Satisfactory	+0.5(Tolerable))	 /	 (Number	of	 samples).	 In	 the
example	above,	the	Apdex	score	would	be	(8	+	0.5(1))⁄10	=	0.85.

Of	course,	the	total	response	time	perceived	by	the	users	includes	many	factors	beyond	your	SaaS	app’s
control.	It	includes	DNS	lookup,	time	to	set	up	the	TCP	connection	and	send	the	HTTP	request	to	the
server,	and	Internet-induced	latency	in	receiving	a	response	containing	enough	content	that	the	browser
can	 start	 to	 draw	 something	 (so-called	 “time	 to	 glass,”	 a	 term	 that	 will	 soon	 seem	 as	 quaint	 as
“counterclockwise”).	 Especially	 when	 using	 curated	 PaaS,	 SaaS	 developer/operators	 have	 the	 most
control	over	the	code	paths	in	their	own	apps:	routing	and	dispatch,	controller	actions,	model	methods,
and	 database	 access.	 We	 will	 therefore	 focus	 on	 measuring	 and	 improving	 responsiveness	 in	 those
components.

Google	believes	that	this	fact	puts	them	under	even	more	pressure	to	be	responsive,	so	that	getting	a	response	from	any	Google	service	is
no	slower	than	contacting	the	service	to	begin	with.

For	 small	 sites,	 a	 perfectly	 reasonable	 way	 to	 mitigate	 latency	 is	 to	 overprovision	 (provide	 excess
resources	relative	to	steady-state)	at	one	or	more	tiers,	as	Section	2.4	suggested	for	the	presentation	and
logic	tiers.	A	few	years	ago,	overprovisioning	meant	purchasing	additional	hardware	that	might	sit	idle,
but	 pay-as-you-go	 cloud	 computing	 lets	 you	 “rent”	 the	 extra	 servers	 for	 pennies	per	 hour	only	when
needed.	Indeed,	companies	like	RightScale	offer	just	this	service	on	top	of	Amazon	EC2.

As	we	will	 see,	a	key	 insight	 that	helps	us	 is	 that	 the	 same	problems	 that	push	us	out	of	 the	“PaaS-
friendly”	tier	are	the	ones	that	will	hinder	scalability	of	our	post-PaaS	solutions,	so	understanding	what

http://en.wikipedia.org/wiki/service_level_objective
http://en.wikipedia.org/wiki/service_level_agreement
http://en.wikipedia.org/wiki/Apdex
http://apdex.org
http://code.google.com/speed
http://rightscale.com

kinds	of	problems	they	are	and	how	to	solve	them	will	serve	you	well	in	either	situation.

What	are	the	thresholds	for	user	satisfaction	on	responsiveness?	A	classic	1968	study	from	the	human-
computer	 interaction	 literature	 (Miller	1968)	 found	 three	 interesting	 thresholds:	 if	 a	 computer	 system
responds	to	a	user	action	within	100	ms,	it’s	perceived	as	instantaneous;	within	1	second,	the	user	will
still	perceive	a	cause-and-effect	connection	between	their	action	and	the	response,	but	will	perceive	the
system	 as	 sluggish;	 and	 after	 about	 8	 seconds,	 the	 user’s	 attention	 drifts	 away	 from	 the	 task	 while
waiting	 for	 a	 response.	 Surprisingly,	 more	 than	 thirty	 years	 later,	 a	 scholarly	 study	 in	 2000	 (Bhatti
et	al.	2000)	and	another	by	independent	firm	Zona	Research	in	2001	affirmed	the	“eight	second	rule.”
While	many	believe	that	a	faster	Internet	and	faster	computers	have	raised	users’	expectations,	the	eight-
second	rule	is	still	used	as	a	general	guideline.	New	Relic,	whose	monitoring	service	we	introduce	later,
reported	in	March	2012	that	the	average	page	load	for	all	pages	they	monitor	worldwide	is	5.3	seconds
and	the	average	Apdex	score	is	0.86.

Summary
Responsiveness	measures	how	“snappy”	an	interactive	app	feels	to	users.	Given	today’s	high-speed
Internet	 connections	 and	 fast	 computers,	 responsiveness	 is	 dominated	 by	 latency.	 Service	 Level
Objectives	(SLOs)	quantify	responsiveness	goals	with	statements	such	as	“99%	of	requests	within
any	5-minute	window	should	have	a	latency	below	100	ms.”
The	Apdex	score	is	a	simple	SLO	measure	between	0.0	and	1.0	in	which	a	site	gets	“full	credit”	for
requests	 that	 complete	 within	 a	 site-specific	 latency	 threshold	 T,	 “half	 credit”	 for	 requests	 that
complete	within	4T,	and	no	credit	for	requests	taking	longer	than	that.
The	problems	that	 threaten	availability	and	responsiveness	are	 the	same	whether	we	use	PaaS	or
not,	but	it’s	worth	trying	to	stay	within	the	PaaS	tier	because	it	provides	machinery	to	help	mitigate
those	problems.

Self-Check	12.2.1.

True	or	False:	From	the	perspective	of	responsiveness,	faster	is	better.

	 False.	 Faster	 than	 100	 ms	 is	 not	 perceptible	 to	 people,	 and	 people	 abandon	 sites	 only	 when
responsiveness	is	slows	to	8	seconds	or	worse.

12.3	Continuous	Integration	and	Continuous	Deployment

As	we	discussed	in	Section	1.2,	prior	to	SaaS,	software	releases	were	major	and	infrequent	milestones
after	which	 product	maintenance	 responsibility	 passed	 largely	 to	 the	Quality	Assurance	 or	Customer
Service	 department.	 In	 contrast,	Many	Agile	 companies	 deploy	 new	 versions	 frequently	 (sometimes
several	times	per	day)	and	the	developers	stay	close	to	operations	and	to	customer	needs.

	 	 	 In	Agile	development,	making	deployment	a	non-event	 requires	 complete	 automation,	 so	 that
typing	one	command	triggers	all	the	actions	to	deploy	a	new	version	of	the	software,	including	cleanly
aborting	the	deploy	without	modifying	the	released	version	if	anything	goes	wrong.	As	with	iteration-
based	TDD	and	BDD,	by	deploying	frequently	you	become	good	at	it,	and	by	automating	deployment

you	 ensure	 that	 it’s	 done	 consistently	 every	 time.	 As	 you’ve	 seen,	 Heroku	 provides	 support	 for
deployment	automation,	though	automation	tools	such	as	Capistrano	help	automate	Rails	deployments

in	non-PaaS	environments.	 		

Of	 course,	 deployment	 can	 only	 be	 successful	 if	 the	 app	 is	 well	 tested	 and	 stable	 in	 development.
Although	we’ve	already	focused	heavily	on	testing	in	this	book,	two	things	change	in	deployment.	First,
behavioral	or	performance	differences	between	the	deployed	and	development	versions	of	your	app	may
arise	 from	differences	between	 the	development	and	production	environments	or	differences	between
users’	browsers	(especially	for	JavaScript-intensive	apps).	Second,	deployment	also	requires	testing	the
app	 in	ways	 it	 was	never	meant	 to	 be	 used—users	 submitting	 nonsensical	 input,	 browsers	 disabling
cookies	or	JavaScript,	miscreants	trying	to	turn	your	site	into	a	distributor	of	malware	(as	we	describe
further	in	Section	12.9)—and	ensuring	that	it	survives	those	conditions	without	compromising	customer
data	or	responsiveness.

A	key	technology	in	improving	assurance	for	deployed	code	is	continuous	integration	 (CI),	 in	which
every	change	pushed	to	the	code	base	triggers	a	set	of	integration	tests	to	make	sure	nothing	has	broken.

With	compiled	languages	such	as	Java,	CI	usually	means	building	the	app	and	then	testing	it.

The	 idea	 is	 similar	 to	how	we	used	autotest	 in	Chapter	8,	 except	 that	 the	complete	 integration	 test
suite	may	include	tests	that	a	developer	might	not	normally	run	on	his	own,	such	as:

Browser	compatibility:	correct	behavior	across	different	browsers	that	have	differences	in	CSS	or
JavaScript	implementations
Version	 compatibility:	 correct	 behavior	 on	 different	 versions	 of	 the	Ruby	 interpreter	 (Ruby	 1.9,
JRuby,	and	so	on),	the	Rack	application	server,	or	for	software	that	may	be	hosted	in	a	variety	of
environments,	different	versions	of	Ruby	gems
Service-oriented	architecture	integration:	correct	behavior	when	external	services	on	which	the	app
depends	behave	in	unexpected	ways	(very	slow	connection,	return	a	flood	of	garbage	information,
and	so	on)
Stress:	performance	and	stress	tests	such	as	those	described	in	Section	12.6
Hardening:	testing	for	protection	against	malicious	attacks	such	as	those	described	in	Section	12.9

	 	 	 CI	 systems	 are	 typically	 integrated	 into	 the	 overall	 development	 process	 rather	 than	 simply
running	tests	passively.	For	example,	Salesforce’s	CI	system	runs	150,000+	tests	in	parallel	across	many
machines,	and	if	any	test	fails,	 it	performs	binary	searches	across	checkins	to	pinpoint	 the	culprit	and
automatically	opens	a	bug	report	for	the	developer	responsible	for	that	checkin	(Hansma	2011).	Travis,
an	open-source	hosted	CI	system	for	Ruby	apps,	runs	integration	tests	whenever	it	is	notified	of	a	new
code	push	via	GitHub’s	post-receive	URI	 repo;	 it	 then	uses	OAuth	 (which	we	met	 in	Section	5.2)	 to
check	 out	 the	 code	 runs	 rake	 test,	 another	 demonstration	 of	 using	 rake	 tasks	 for	 automation.
SauceLabs	provides	hosted	CI	focused	on	cross-browser	testing:	your	app’s	Webdriver-based	Cucumber
scenarios	are	run	against	a	variety	of	browsers	and	operating	systems,	with	each	test	run	captured	as	a
screencast	so	you	can	visually	inspect	what	the	browser	looked	like	for	tests	that	failed.

Although	 deployment	 is	 a	 non-event,	 there	 is	 still	 a	 role	 for	 release	 milestones:	 they	 reassure	 the
customer	 that	 new	 work	 is	 being	 deployed.	 For	 example,	 a	 customer-requested	 feature	 may	 require

http://github.com/capistrano
http://en.wikipedia.org/wiki/malware
http://en.wikipedia.org/wiki/continuous_integration
http://travis-ci.org
http://saucelabs.com

multiple	 commits	 to	 implement,	 each	 of	 which	 may	 include	 a	 deployment,	 but	 the	 overall	 feature
remains	“hidden”	in	the	user	interface	until	all	changes	are	completed.	“Turning	on”	the	feature	would
be	a	useful	release	milestone.	For	this	reason,	many	continuous-deployment	workflows	assign	distinct
and	 often	 whimsical	 labels	 to	 specific	 release	 points	 (such	 as	 “Bamboo”	 and	 “Cedar”	 for	 Heroku’s
software	 stacks),	but	 just	use	 the	Git	 commit-id	 to	 identify	deployments	 that	don’t	 include	customer-
visible	changes.

Summary	of	Continuous	Integration	(CI):
CI	consists	of	running	a	set	of	integration	tests	prior	to	deployment	that	are	usually	more	extensive
than	what	a	single	developer	would	run	on	his	own.
CI	relies	heavily	on	automation.	Workflows	can	be	constructed	that	automatically	trigger	CI	when
commits	are	pushed	to	a	specific	repo	or	branch.
Continuous	deployment	(automatic	deployment	to	production	when	all	CI	tests	pass)	may	result	in
several	 deployments	 per	 day,	 many	 of	 which	 include	 changes	 not	 visible	 to	 the	 customer	 that
“build	towards”	a	feature	that	will	be	unveiled	at	a	Release	milestone.

ELABORATION:	Staging

Many	companies	maintain	an	additional	environment	besides	development	and	production	called	the	staging	site.	The	staging	site	is
usually	identical	to	production	except	that	it	is	usually	smaller	in	scale,	uses	a	separate	database	with	test	data	(possibly	extracted
from	real	customer	data),	and	is	closed	to	outside	users.	The	rationale	is	that	stress	testing	and	integration	testing	a	staging	version	is
the	closest	possible	experience	to	the	production	site.	Another	use	is	to	test	out	migrations	on	a	database	that	closely	resembles	the
production	database	before	deploying	 the	migrations	 to	production.	Rails	 and	 its	 associated	 tools	 support	 staging	by	defining	an
additional	staging:	environment	in	config/environments/staging.rb	and	config/database.yml.

Self-Check	12.3.1.

Given	 the	 prevalence	 of	 continuous	 deployment	 in	 Agile	 software	 companies,	 how	 would	 you
characterize	the	difference	between	a	deployment	and	a	release?

	A	release	typically	contains	new	features	visible	to	the	customer,	whereas	a	deploy	might	contain	new
code	that	builds	toward	those	features	incrementally.

12.4	Releases	and	Feature	Flags

As	we	know	from	Chapter	4,	app	changes	sometimes	require	migrations	to	change	the	database	schema.
The	challenge	arises	when	the	new	code	does	not	work	with	the	old	schema	and	vice-versa.	To	make	the
example	concrete,	suppose	RottenPotatoes	currently	has	a	moviegoers	 table	with	a	name	column,	but
we	want	 to	 change	 the	 schema	 to	 have	 separate	first_name	 and	last_name	 columns	 instead.	 If	we
change	the	schema	before	changing	the	code,	the	app	will	break	because	methods	that	expect	to	find	the
name	column	will	fail.	If	we	change	the	code	before	changing	the	schema,	the	app	will	break	because
the	new	methods	will	look	for	first_name	and	last_name	columns	that	don’t	exist	yet.

http://pastebin.com/T32gfwVL

http://pastebin.com/T32gfwVL

	1	class	ChangeNameToFirstAndLast	<	ActiveRecord::Migration

	2			def	up

	3					add_column	’moviegoers’,	’first_name’,	:string

	4					add_column	’moviegoers’,	’last_name’,	:string

	5					Moviegoer.all.each	do	|m|

	6							m.update_attributes(:first	=>	$1,	:last	=>	$2)	if

	7									m.name	=~	/^(.*)\s+(.*)$/

	8					end

	9					remove_column	’moviegoers’,	’name’

10			end

11	end

Figure	12.2:	A	migration	that	changes	the	schema	and	modifies	the	data	to	accommodate	the	change.	In	Section	12.4	we	explain	why
there	is	no	down-migration	method.	(Use	Pastebin	to	copy-and-paste	this	code.)

http://pastebin.com/NsarhWSE

	1	class	SplitName1	<	ActiveRecord::Migration

	2			def	up

	3					add_column	’moviegoers’,	’first_name’,	:string

	4					add_column	’moviegoers’,	’last_name’,	:string

	5					add_column	’moviegoers’,	’migrated’,	:boolean

	6					add_index	’moviegoers’,	’migrated’

	7			end

	8	end

Figure	12.3:	A	partial	migration	that	only	adds	columns	but	doesn’t	change	or	remove	any.	Section	12.8	explains	why	the	index	(line	6)	is
a	good	idea.

http://pastebin.com/5B8KcNze

	1	class	Moviegoer	<	ActiveRecord::Base

	2			#	here’s	version	n+1,	using	Setler	gem	for	feature	flag:

	3			scope	:old_schema,	where	:migrated	=>	false

	4			scope	:new_schema,	where	:migrated	=>	true

	5			def	self.find_matching_names(string)

	6					if	Featureflags.new_name_schema

	7							Moviegoer.new_schema.where(’last_name	LIKE	:s	OR	first_name	LIKE	:s’,

	8									:s	=>	"%#{string}%")	+

	9									Moviegoer.old_schema.where(’name	like	?’,	"%#{string}%")

10					else	#	use	only	old	schema

11							Moviegoer.where(’name	like	?’,	"%#{string}%")

12					end

13			end

14			#	automatically	update	records	to	new	schema	when	they	are	saved

15			before_save	:update_schema,	:unless	=>	lambda	{	|m|	m.migrated?	}

16			def	update_schema

17					if	name	=~	/^(.*)\s+(.*)$/

18							self.first_name	=	$1

19							self.last_name	=	$2

http://pastebin.com/NsarhWSE
http://pastebin.com/5B8KcNze

20					end

21					self.migrated	=	true

22			end

23	end

24	

Figure	12.4:	Feature-flag	wrapping	for	a	model	method	that	finds	moviegoers	by	matching	a	string	against	their	first	or	last	names.	Lines
15–22	install	a	before-save	callback	that	will	automatically	update	a	record	to	the	new	schema	whenever	it’s	saved,	so	normal	usage	of
the	app	will	cause	the	records	to	be	migrated	piecemeal.

We	could	 try	 to	 solve	 this	problem	by	deploying	 the	code	and	migration	atomically:	 take	 the	service
offline,	apply	the	migration	in	Figure	12.2	to	perform	the	schema	change	and	copy	the	data	into	the	new
column,	 and	 bring	 the	 service	 back	 online.	 This	 approach	 is	 the	 simplest	 solution,	 but	 may	 cause
unacceptable	unavailability:	a	complex	migration	on	a	database	of	hundreds	of	thousands	of	rows	can
take	tens	of	minutes	or	even	hours	to	run.

The	 second	 option	 is	 to	 split	 the	 change	 across	 multiple	 deployments	 using	 a	 feature	 flag—a
configuration	variable	whose	value	can	be	changed	while	the	app	is	running	to	control	which	code	paths
in	 the	app	are	executed.	Notice	 that	 each	 step	below	 is	nondestructive:	 as	we	did	with	 refactoring	 in
Chapter	9,	if	something	goes	wrong	at	a	given	step	the	app	is	still	left	in	a	working	intermediate	state.
	

1.	 Create	a	migration	that	makes	only	those	changes	to	the	schema	that	add	new	tables	or	columns,
including	a	column	indicating	whether	the	current	record	has	been	migrated	to	the	new	schema	or
not,	as	in	Figure	12.3.

2.	 Create	version	n+1	of	the	app	in	which	every	code	path	affected	by	the	schema	change	is	split	into
two	code	paths,	of	which	one	or	the	other	is	executed	based	on	the	value	of	a	feature	flag.	Critical
to	this	step	is	that	correct	code	will	be	executed	regardless	of	the	feature	flag’s	value	at	any	time,
so	the	feature	flag’s	value	can	be	changed	without	stopping	and	restarting	the	app;	typically	this	is
done	by	storing	the	feature	flag	in	a	special	database	table.	Figure	12.4	shows	an	example.

3.	 Deploy	version	n	+	1,	which	may	require	pushing	the	code	to	multiple	servers,	a	process	that	can
take	several	minutes.

4.	 Once	deployment	is	complete	(all	servers	have	been	updated	to	version	n	+	1	of	the	code),	while
the	app	is	running	set	the	feature	flag’s	value	to	True.	In	the	example	in	Figure	12.4,	each	record
will	be	migrated	to	 the	new	schema	the	next	 time	it’s	modified	for	any	reason.	If	you	wanted	to
speed	things	up,	you	could	also	run	a	low-traffic	background	job	that	opportunistically	migrates	a
few	records	at	a	 time	 to	minimize	 the	additional	 load	on	 the	app,	or	migrates	many	 records	at	a
time	during	hours	when	the	app	is	lightly	loaded,	if	any.	If	something	goes	wrong	at	this	step,	turn
off	 the	 feature	 flag;	 the	code	will	 revert	 to	 the	behavior	of	version	n,	 since	 the	new	schema	 is	a
proper	 superset	 of	 the	 old	 schema	 and	 the	 before_save	 callback	 is	 nondestructive	 (that	 is,	 it
correctly	updates	the	user’s	name	in	both	the	old	and	new	schemata).

5.	 If	 all	 goes	well,	 once	 all	 records	 have	 been	migrated,	 deploy	 code	 version	 n	 +	 2,	 in	which	 the
feature	flag	is	removed	and	only	the	code	path	associated	with	the	new	schema	remains.

6.	 Finally,	 apply	 a	 new	migration	 that	 removes	 the	 old	name	 column	 and	 the	 temporary	migrated
column	(and	therefore	the	index	on	that	column).

What	about	a	schema	change	that	modifies	a	column’s	name	or	format	rather	than	adding	or	removing

http://en.wikipedia.org/wiki/atomic_operation

columns?	The	strategy	is	the	same:	add	a	new	column,	remove	the	old	column,	and	if	necessary	rename
the	new	column,	using	feature	flags	during	each	transition	so	that	every	deployed	version	of	the	code
works	with	both	versions	of	the	schema.

When	we	introduced	migrations	in	Chapter	4,	we	noted	that	a	migration	can	include	both	an	up	and	a
down	method,	yet	the	example	in	Figure	12.3	has	no	down	method.	Shouldn’t	we	include	one	in	case	the
upgrade	 goes	 awry?	 Surprisingly,	 no.	 Down-migrations	 are	 useful	 during	 development,	 but	 risky	 in
production.	 Because	 they	 are	 rarely	 used,	 they	 are	 usually	 less-than-thoroughly	 tested,	 and	 in	 the
inevitable	panic	following	the	discovery	that	something	has	gone	awry,	it	is	difficult	to	be	confident	that
they	will	really	work	without	causing	even	more	damage.

Even	if	you	are	confident	that	the	down-migration	works	correctly,	other	developers	may	have	pushed
irreversible	migrations	after	the	one	you’re	trying	to	down-migrate.	And	at	some	point	you	yourself	will
need	 to	 create	 an	 irreversible	 migration,	 and	 you	 will	 need	 a	 way	 to	 recover	 from	 problems	 when
applying	it.	Feature	flags	can	help:	if	something	is	going	wrong,	revert	the	value	of	the	feature	flag	so
that	the	code	reverts	to	its	previous	behavior,	then	take	your	time	debugging	the	problem.

Summary
To	perform	a	complex	upgrade	that	changes	both	the	app	code	and	the	schema,	use	a	feature	flag
whose	value	can	be	changed	while	the	app	is	running.	Start	with	a	migration	and	code	push	that
include	both	the	old	and	new	versions,	and	when	this	intermediate	version	is	running,	change	the
feature	flag’s	value	to	enable	the	new	code	paths	that	use	the	new	schema.
Once	all	data	has	been	incrementally	migrated	as	a	result	of	changing	the	feature	flag’s	value,	you
can	deploy	a	new	migration	and	code	push	that	eliminate	the	old	code	paths	and	old	schema.	On
the	other	hand,	if	anything	goes	wrong	during	the	rollout,	you	can	change	the	feature	flag’s	value
back	in	order	to	continue	using	the	old	schema	and	code	until	you	determine	what	went	wrong.
Deployed	apps	always	move	forward:	 if	something	goes	wrong,	 fix	 it	with	another	up-migration
that	 undoes	 the	 damage	 rather	 than	 trying	 to	 apply	 a	 down-migration	 that	 hasn’t	 been	 tested	 in
production	and	may	make	things	worse	if	applied.

ELABORATION:	Other	uses	for	feature	flags

Besides	handling	destructive	migrations,	feature	flags	have	other	uses	as	well:
	

Preflight	checking:	roll	out	a	feature	to	a	small	percentage	of	users	only,	in	order	to	make	sure	the	feature	doesn’t	break	anything	or
have	a	negative	effect	on	overall	site	performance.
A/B	 testing:	 roll	 out	 two	 different	 versions	 of	 a	 feature	 to	 two	 different	 sets	 of	 users	 to	 see	which	 version	most	 improves	 user
retention,	purchases,	and	so	on.
Complex	 feature:	 sometimes	 the	 complete	 functionality	 associated	with	 a	 feature	may	 require	multiple	 incremental	 deployment
cycles	such	as	the	one	described	above.	In	this	case,	a	separate	feature	flag	can	be	used	to	keep	the	feature	hidden	from	the	user
interface	until	100%	of	the	new	feature	code	has	been	deployed.

The	rollout	gem	supports	the	use	of	feature	flags	for	all	these	cases.

https://github.com/jamesgolick/rollout

Self-Check	12.4.1.	Which	of	the	following	are	appropriate	places	to	store	the	value	of	a	simple	Boolean
feature	 flag	 and	 why:	 (a)	 a	 YAML	 file	 in	 the	 app’s	 config	 directory,	 (b)	 a	 column	 in	 an	 existing
database	table,	(c)	a	separate	database	table?
	The	point	of	a	feature	flag	is	to	allow	its	value	to	be	changed	at	runtime	without	modifying	the	app.

Therefore	(a)	is	a	poor	choice	because	a	YAML	file	cannot	be	changed	without	touching	the	production
servers	while	the	app	is	running.

12.5	Quantifying	Availability

The	best	performance	improvement	is	the	transition	from	the	nonworking	state	to	the	working	state.
—John	Ousterhout,	designer	of	magic	and	Tcl/Tk

As	we	learned	in	Chapter	1,	availability	refers	to	the	fraction	of	time	your	site	is	available	and	working
correctly.	For	example,	Google	Apps	guarantees	its	enterprise	customers	a	minimum	of	“three	nines”	or
99.9%	availability,	though	Nygard	wryly	notes	(Nygard	2007)	that	less-disciplined	sites	provide	closer
to	“two	eights”	(88.0%).

Overprovisioning	not	only	helps	with	latency,	as	mentioned	above,	but	it	also	lets	you	deal	gracefully
with	server	crashes:	temporarily	losing	one	server	degrades	performance	by	1⁄n,	so	an	easy	solution	is	to
overprovision	 by	 deploying	 n	 +	 1	 servers.	 However,	 at	 large	 scale,	 systematic	 overprovisioning	 is
infeasible:	services	using	1,000	computers	cannot	readily	afford	to	keep	200	additional	servers	turned
on	just	for	overprovisioning.

One	way	to	improve	the	reliability	of	software	is	to	make	it	more	robust.	Defensive	programming	is	a
philosophy	that	tries	to	anticipate	potential	software	flaws	and	write	code	to	handle	them.	Here	are	three
examples:
	

Check	input	values.	A	common	cause	of	problems	is	for	the	user	to	input	values	that	the	developer
doesn’t	expect.	Checking	that	the	input	is	in	a	reasonable	range	for	individual	values,	that	it	is	not
too	big	for	a	series	of	data,	and	that	the	collection	of	inputs	are	logically	consistent	can	reduce	the
chances	of	outages.
Check	input	data	type.	Another	mistake	users	can	make	is	to	enter	an	unexpected	type	of	data	in
response	 to	 a	 query.	Making	 sure	 the	 user	 enters	 a	 valid	 type	 of	 data	 increases	 the	 chances	 of
success	for	the	app.
Catch	 exceptions.	 Modern	 programming	 languages	 offer	 the	 ability	 to	 execute	 code	 when
exceptions	occur,	such	as	arithmetic	overflow.	Offering	code	that	can	catch	any	exception	increases
the	chances	of	the	app	continuing	to	run	well	even	when	unexpected	events	occur.

Another	availability	challenge	is	a	bug	that	lead	to	outages	but	only	appears	after	a	long	time	or	under
heavy	 load.	 A	 classic	 example	 is	 a	 resource	 leak:	 a	 long-running	 process	 eventually	 runs	 out	 of	 a
resource,	 such	 as	memory,	 because	 it	 cannot	 reclaim	 100%	 of	 the	 unused	 resource	 due	 to	 either	 an
application	bug	or	 the	 inherent	design	of	 a	 language	or	 framework.	Software	rejuvenation	 is	 a	 long-
established	way	to	alleviate	a	resource	leak:	the	Apache	web	server	runs	a	number	of	identical	worker
processes,	and	when	a	given	worker	process	has	“aged”	enough,	that	process	stops	accepting	requests
and	dies,	to	be	replaced	by	a	fresh	worker.	Since	only	one	worker	(1⁄n	of	total	capacity)	is	“rejuvenated”

http://en.wikipedia.org/wiki/availability
http://www.google.com/apps/intl/en/business/details.html
http://en.wikipedia.org/wiki/Defensive_programming
http://en.wikipedia.org/wiki/Software_aging

at	a	time,	this	process	is	sometimes	called	rolling	reboot,	and	most	PaaS	platforms	employ	some	variant
of	 it.	Another	example	 is	 running	out	of	session	storage	when	sessions	are	stored	in	a	database	 table,
which	is	why	Rails’	default	behavior	is	to	serialize	each	user’s	session	object	into	a	cookie	stored	at	the
user’s	browser,	although	this	limits	each	user’s	session	object	to	4KiB	in	size.

Summary
Availability	measures	 the	percentage	of	 time	over	 a	 specified	window	 that	your	 app	 is	 correctly
responding	to	user	requests.	Availability	is	usually	measured	in	“nines”	with	the	gold	standard	of
99.999%	 (“five	 nines”,	 corresponding	 to	 five	 minutes	 of	 downtime	 per	 year)	 set	 by	 the	 US
telephone	network	and	rarely	matched	by	SaaS	apps.
Defense	programming	 improves	 availability	 by	 adding	 code	 that	 handles	 potential	 flaws	 before
they	are	known.
Software	rejuvenation	improves	availability	by	restarting	members	of	an	identical	set	of	processes
on	a	rotating	schedule	to	neutralize	resource	leaks.

Self-Check	12.5.1.

For	a	SaaS	app	to	scale	to	large	numbers	of	users,	it	must	maintain	its	____	and	____	as	the	number	of
users	increases,	without	increasing	the	____.

	Availability;	responsiveness;	cost	per	user

12.6	Monitoring	and	Finding	Bottlenecks

If	you’re	not	monitoring	it,	it’s	probably	broken.
—variously	attributed

Given	 the	 importance	 of	 responsiveness	 and	 availability,	 how	 can	 we	measure	 them,	 and	 if	 they’re
unsatisfactory,	 how	 can	 we	 identify	 what	 parts	 of	 our	 app	 need	 attention?	Monitoring	 consists	 of
collecting	 app	 performance	 data	 for	 analysis	 and	 visualization.	 In	 the	 case	 of	 SaaS,	 application
performance	 monitoring	 (APM)	 refers	 to	 monitoring	 the	 Key	 Performance	 Indicators	 (KPIs)	 that
directly	impact	business	value.	KPIs	are	by	nature	app-specific—for	example,	an	e-tailer’s	KPIs	might
include	responsiveness	of	adding	an	item	to	a	shopping	cart	and	percentage	of	user	searches	in	which
the	user	selects	an	item	that	is	in	the	top	5	search	results.

SaaS	 apps	 can	 be	 monitored	 internally	 or	 externally.	 Internal	 or	 passive	 monitoring	 works	 by
instrumenting	your	app,	adding	data	collection	code	to	the	app	itself,	the	environment	in	which	it	runs,
or	both.	Before	cloud	computing	and	the	prominence	of	SaaS	and	highly-productive	frameworks,	such
monitoring	 required	 installing	 programs	 that	 collected	metrics	 periodically,	 inserting	 instrumentation
into	 the	 source	 code	 of	 your	 app,	 or	 both.	 Today,	 the	 combination	 of	 hosted	 PaaS,	 Ruby’s	 dynamic
language	 features,	 and	 well-factored	 frameworks	 such	 as	 Rails	 allows	 internal	 monitoring	 without
modifying	your	app’s	source	code	or	installing	software.	For	example,	New	Relic	unobtrusively	collects
instrumentation	 about	 your	 app’s	 controller	 actions,	 database	 queries,	 and	 so	 on.	Because	 the	 data	 is

http://en.wikipedia.org/wiki/Defense_programming
http://en.wikipedia.org/wiki/Software_aging
http://newrelic.com

sent	back	to	New	Relic’s	SaaS	site	where	you	can	view	and	analyze	it,	 this	architecture	is	sometimes
called	RPM	for	Remote	Performance	Monitoring.	The	free	 level	of	New	Relic	RPM	is	available	as	a
Heroku	add-on	or	a	standalone	gem	you	can	deploy	in	your	own	non-PaaS	production	environment.

Internal	monitoring	can	also	occur	during	development,	when	it	is	often	called	profiling.	New	Relic	and
other	monitoring	solutions	can	be	installed	in	development	mode	as	well.	How	much	profiling	should
you	do?	If	you’ve	followed	best	practices	in	writing	and	testing	your	app,	it	may	be	most	productive	to
just	 deploy	 and	 see	 how	 the	 app	 behaves	 under	 load,	 especially	 given	 the	 unavoidable	 differences
between	the	development	and	production	environments,	such	as	the	lack	of	real	user	activity	and	the	use
of	a	development-only	database	such	as	SQLite3	rather	than	a	highly	tuned	production	database	such	as
PostgreSQL.	 After	 all,	 with	 agile	 development,	 it’s	 easy	 to	 deploy	 incremental	 fixes	 such	 as
implementing	basic	caching	(Section	12.7)	and	fixing	abuses	of	the	database	(Sections	12.8).

A	second	kind	of	monitoring	is	external	monitoring	(sometimes	called	probing	or	active	monitoring),	in
which	 a	 separate	 site	makes	 live	 requests	 to	 your	 app	 to	 check	 availability	 and	 response	 time.	Why
would	you	need	external	monitoring	given	the	detailed	information	available	from	internal	monitoring
that	has	access	to	your	code?	Internal	monitoring	may	be	unable	to	reveal	that	your	app	is	sluggish	or
down	altogether,	especially	 if	 the	problem	is	due	to	factors	other	 than	your	app’s	code—for	example,
performance	problems	 in	 the	presentation	 tier	or	other	parts	of	 the	 software	 stack	beyond	your	 app’s
boundaries.	External	monitoring,	like	an	integration	test,	is	a	true	end-to-end	test	of	a	limited	subset	of
your	 app’s	 code	paths	 as	 seen	by	 actual	 users	 “from	 the	outside.”	Figure	12.5	distinguishes	different

types	of	monitoring	and	some	tools	to	perform	them,	many	delivered	as	SaaS.	 		

What	is	monitored Focus Example
tool

What	is	my	site’s	availability	and	average	response	time,	as	seen
by	users	around	the	world? business-level Pingdom,

SiteScope
What	pages	(views)	in	my	app	are	most	popular	and	what	paths	do

customers	follow	through	the	app? business-level Google
Analytics

What	controller	actions	or	database	queries	are	slowest? app-level New	Relic,
Scout

What	unexpected	exceptions	or	errors	did	customers	experience
and	what	were	they	doing	at	the	moment	the	error	occurred? app-level Exceptional,

AirBrake
What	is	the	health	and	resource	usage	of	the	OS-level	processes
that	support	my	app	(Apache	web	server,	MySQL	DB	server,	and

so	on)?

infrastructure/process-
level god,	monit

Figure	12.5:	Different	types	of	monitoring	and	example	tools	that	provide	them	for	Rails	SaaS	apps.	All	except	the	last	row	(process-
level	health	monitoring)	are	delivered	as	SaaS	and	offer	a	free	service	tier	that	provides	basic	monitoring.

Once	a	monitoring	tool	has	identified	the	slowest	or	most	expensive	requests,	stress	testing	or	longevity
testing	 on	 a	 staging	 server	 can	 quantify	 the	 level	 of	 demand	 at	 which	 those	 requests	 become
bottlenecks.	 The	 free	 and	 widely-used	 command	 line	 tool	 httperf,	 maintained	 by	 Hewlett-Packard
Laboratories,	can	simulate	a	 specified	number	of	users	 requesting	simple	sequences	of	URIs	 from	an

http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://pingdom.com
http://sitescope.com
http://analytics.google.com
http://newrelic.com
http://scoutapp.com
http://exceptional.io
http://airbrake.io
http://godrb.com
http://en.wikipedia.org/wiki/monit
http://en.wikipedia.org/wiki/Stress_testing_(software)
http://en.wikipedia.org/wiki/httperf
http://www.hpl.hp.com/research/linux/httperf

app	 and	 recording	 metrics	 about	 the	 response	 times.	 Whereas	 tools	 like	 Cucumber	 let	 you	 write
expressive	 scenarios	 and	 check	 arbitrarily	 complex	 conditions,	 httperf	 can	 only	 follow	 simple
sequences	of	URIs	and	only	checks	whether	a	successful	HTTP	response	was	received	from	the	server.
In	 a	 typical	 stress	 test,	 the	 test	 engineer	 will	 set	 up	 several	 computers	 running	 httperf	 against	 the
staging	 site	 and	 gradually	 increase	 the	 number	 of	 simulated	 users	 until	 some	 resource	 becomes	 the
bottleneck.

Summary
As	with	testing,	no	single	type	of	monitoring	will	alert	you	of	all	problems:	use	a	combination	of
internal	and	external	(end-to-end)	monitoring.
Hosted	monitoring	 such	 as	 Pingdom	 and	PaaS-integrated	monitoring	 such	 as	New	Relic	 greatly
simplify	monitoring	compared	to	the	early	days	of	SaaS.
Stress	 testing	 and	 longevity	 testing	 can	 reveal	 the	 bottlenecks	 in	 your	 SaaS	 app	 and	 frequently
expose	bugs	that	would	otherwise	remain	hidden.

Self-Check	12.6.1.	Which	of	 the	 following	key	performance	 indicators	 (KPIs)	would	 be	 relevant	 for
Application	 Performance	 Monitoring:	 CPU	 utilization	 of	 a	 particular	 computer;	 completion	 time	 of
slow	database	queries;	view	rendering	time	of	5	slowest	views.
	Query	completion	times	and	view	rendering	times	are	relevant	because	they	have	a	direct	impact	on

responsiveness,	which	is	generally	a	Key	Performance	Indicator	tied	to	business	value	delivered	to	the
customer.	CPU	utilization,	while	useful	to	know,	does	not	directly	tell	us	about	the	customer	experience.

12.7	Improving	Rendering	and	Database	Performance	With	Caching

There	are	only	two	hard	things	in	computer	science:	cache	invalidation	and	naming	things.
—Phil	Karlton,	attributed	by	Martin	Fowler,	who	can’t	find	the	exact	reference

The	idea	behind	caching	is	simple:	information	that	hasn’t	changed	since	the	last	time	it	was	requested
can	simply	be	regurgitated	rather	than	recomputed.	In	SaaS,	caching	can	help	two	kinds	of	computation.
First,	 if	 information	 needed	 from	 the	 database	 to	 complete	 an	 action	 hasn’t	 changed,	 we	 can	 avoid
querying	the	database	at	all.	Second,	if	the	information	underlying	a	particular	view	or	view	fragment
hasn’t	changed,	we	can	avoid	re-rendering	the	view	(recall	that	rendering	is	the	process	of	transforming
Haml	with	embedded	Ruby	code	and	variables	into	HTML).	In	any	caching	scenario,	we	must	address
two	issues:

	

1.	 Naming:	how	do	we	specify	that	the	result	of	some	computation	should	be	cached	for	later	reuse,
and	name	it	in	a	way	that	ensures	it	will	be	used	only	when	that	exact	same	computation	is	called
for?

2.	 Expiration:	 How	 do	 we	 detect	 when	 the	 cached	 version	 is	 out	 of	 date	 (stale)	 because	 the
information	 on	which	 it	 depends	 has	 changed,	 and	 how	 do	we	 remove	 it	 from	 the	 cache?	 The
variant	 of	 this	 problem	 that	 arises	 in	 microprocessor	 design	 is	 often	 referred	 to	 as	 cache

invalidation.

Figure	12.6:	The	goal	of	multiple	levels	of	caching	is	to	satisfy	each	HTTP	request	as	close	to	the	user	as	possible.	(a)	A	Web	browser
that	has	previously	visited	a	page	can	reuse	the	copy	in	its	local	cache	after	verifying	with	the	server	that	the	page	hasn’t	changed.	(b)
Otherwise,	the	Web	server	may	be	able	to	serve	it	from	the	page	cache,	bypassing	Rails	altogether.	(c)	Otherwise,	if	the	page	is	generated
by	an	action	protected	by	a	before-filter,	Rails	may	be	able	to	serve	it	from	the	action	cache	without	querying	the	database	or	rendering
any	templates.	(d)	Otherwise,	some	of	the	fragments	comprised	by	the	view	templates	may	be	in	the	fragment	cache.	(e)	As	a	last	resort,
the	database’s	query	cache	serves	the	results	of	recent	queries	whose	results	haven’t	changed,	such	as	Movie.all.

Figure	12.6	shows	how	caching	can	be	used	at	each	tier	in	the	3-tier	SaaS	architecture	and	what	Rails
entities	 are	 cached	 at	 each	 level.	 The	 simplest	 thing	 we	 could	 do	 is	 cache	 the	 entire	 HTML	 page
resulting	 from	 rendering	 a	 particular	 controller	 action.	 For	 example,	 the	 MoviesController#show
action	and	its	corresponding	view	depend	only	on	the	attributes	of	the	particular	movie	being	displayed
(the	@movie	variable	in	the	controller	method	and	Haml	template).	Figure	12.7	shows	how	to	cache	the
entire	HTML	page	for	a	movie,	so	that	future	requests	to	that	page	neither	access	the	database	nor	re-run
the	Haml	renderer,	as	in	Figure	12.6(b).

Of	course,	this	is	unsuitable	for	controller	actions	protected	by	before-filters,	such	as	pages	that	require
the	user	 to	be	 logged	 in	 and	 therefore	 require	 executing	 the	 controller	 filter.	 In	 such	 cases,	 changing
caches_page	to	caches_action	will	still	execute	any	filters	but	allow	Rails	to	deliver	a	cached	page
without	 consulting	 the	 database	 or	 re-rendering	 views,	 as	 in	 Figure	 12.6(c).	 Figure	 12.9	 shows	 the
benefits	of	page	and	action	caching	for	this	simple	example.	Note	that	in	Rails	page	caching,	the	name
of	 the	 cached	 object	 ignores	 embedded	 parameters	 in	 URIs	 such	 as	 /movies?ratings=PG+G,	 so
parameters	that	affect	how	the	page	would	be	displayed	should	instead	be	part	of	the	RESTful	route,	as
in	/movies/ratings/PG+G.

An	 in-between	 case	 involves	 action	 caching	 in	which	 the	main	 page	 content	 doesn’t	 change,	 but	 the
layout	does.	For	example,	your	app/views/layouts/application.html.haml	may	include	a	message
such	as	“Welcome,	Alice”	containing	the	name	of	the	logged-in	user.	To	allow	action	caching	to	work
properly	in	this	case,	passing	:layout=>false	to	caches_action	will	result	in	the	layout	getting	fully
re-rendered	but	the	action	(content	part	of	the	page)	taking	advantage	of	the	action	cache.	Keep	in	mind

that	since	the	controller	action	won’t	be	run,	any	such	dynamic	content	appearing	in	the	layout	must	be
set	up	in	a	before-filter.

http://pastebin.com/7PycU0MK

	1	class	MoviesController	<	ApplicationController

	2			caches_page	:show

	3			cache_sweeper	:movie_sweeper

	4			def	show

	5					@movie	=	Movie.find(params[:id])

	6			end

	7	end

http://pastebin.com/UzJHx6As

	1	class	MovieSweeper	<	ActionController::Caching::Sweeper

	2			observe	Movie

	3			#	if	a	movie	is	created	or	deleted,	movie	list	becomes	invalid

	4			#			and	rendered	partials	become	invalid

	5			def	after_save(movie)				;	invalidate	;	end

	6			def	after_destroy(movie)	;	invalidate	;	end

	7			private

	8			def	invalidate

	9					expire_action	:action	=>	[’index’,	’show’]

10					expire_fragment	’movie’

11			end

12	end

Figure	12.7:	(Top)	Line	2	specifies	that	Rails	should	cache	the	result	of	the	show	action.	Action	caching	is	implemented	as	a	before-filter
that	checks	whether	a	cached	version	should	be	used	and	an	around-filter	that	captures	and	caches	the	rendered	output,	making	it	an
example	of	the	Decorator	design	pattern	(Section	11.4).	(Bottom)	This	“sweeper,”	referenced	by	line	3	of	the	controller,	uses	the	Observer
design	pattern	(Section	11.7)	to	add	ActiveRecord	lifecycle	hooks	(Section	5.1)	to	expire	any	objects	that	might	become	stale	as	a	result
of	updating	a	particular	movie.

Page-level	caching	isn’t	useful	for	pages	whose	content	changes	dynamically.	For	example,	the	list	of
movies	page	(MoviesController#index	action)	changes	when	new	movies	are	added	or	when	the	user
filters	the	list	by	MPAA	rating.	But	we	can	still	benefit	from	caching	by	observing	that	the	index	page
consists	 largely	 of	 a	 collection	 of	 table	 rows,	 each	 of	 which	 depends	 only	 on	 the	 attributes	 of	 one
specific	movie,	as	Figure	5.2	in	Section	5.1	shows.	Figure	12.8	shows	how	adding	a	single	line	to	the
partial	of	Figure	5.2	caches	the	rendered	HTML	fragment	corresponding	to	each	movie.

http://pastebin.com/XxPdsdQf

	1	-#	A	single	row	of	the	All	Movies	table

	2			-	cache(movie)	do

	3					%tr

	4							%td=	movie.title

	5							%td=	movie.rating

http://pastebin.com/7PycU0MK
http://pastebin.com/UzJHx6As
http://pastebin.com/XxPdsdQf

	6							%td=	movie.release_date

	7							%td=	link_to	"More	about	#{movie.title}",	movie_path(movie)

Figure	12.8:	Compared	to	Figure	5.2	in	Section	5.1,	only	line	2	has	been	added.	Rails	will	generate	a	name	for	the	cached	fragment	based
on	the	pluralized	resource	name	and	primary	key,	for	example,	movies/23.

A	 convenient	 shortcut	 provided	 by	Rails	 is	 that	 if	 the	 argument	 to	cache	 is	 an	ActiveRecord	 object
whose	table	includes	an	updated_at	or	updated_on	column,	the	cache	will	auto-expire	a	fragment	if
its	table	row	has	been	updated	since	the	fragment	was	first	cached.	Nonetheless,	for	clarity,	line	10	of
the	 sweeper	 in	 Figure	 12.7	 shows	 how	 to	 explicitly	 expire	 a	 fragment	 whose	 name	 matches	 the

argument	of	cache	whenever	the	underlying	movie	object	is	saved	or	destroyed.	 		

Unlike	action	caching,	which	avoids	running	 the	controller	action	at	all,	checking	 the	fragment	cache
occurs	after	the	controller	action	has	run.	Given	this	fact,	you	may	already	be	wondering	how	fragment
caching	 helps	 reduce	 the	 load	 on	 the	 database.	 For	 example,	 suppose	we	 add	 a	 partial	 to	 the	 list	 of
movies	page	 to	display	 the	@top_5	movies	based	on	average	 review	scores,	and	we	add	a	 line	 to	 the
index	controller	action	to	set	up	the	variable:

http://pastebin.com/3Ba360Vt

	1				-#	a	cacheable	partial	for	top	movies

	2				-	cache(’top_moviegoers’)	do

	3						%ul#topmovies

	4								-	@top_5.each	do	|movie|

	5										%li=	moviegoer.name

http://pastebin.com/x88niV53

	1				class	MoviegoersController	<	ApplicationController

	2						def	index

	3								@movies	=	Movie.all

	4								@top_5	=	Movie.joins(:reviews).group(’movie_id’).

	5										order("AVG(potatoes)	DESC").limit(5)

	6						end

	7				end

Action	caching	is	now	less	useful,	because	the	index	view	may	change	when	a	new	movie	is	added	or
when	 a	 review	 is	 added	 (which	might	 change	what	 the	 top	5	 reviewed	movies	 are).	 If	 the	 controller
action	 is	 run	 before	 the	 fragment	 cache	 is	 checked,	 aren’t	we	 negating	 the	 benefit	 of	 caching,	 since
setting	@top_5	in	lines	4–5	of	the	controller	method	causes	a	database	query?

Surprisingly,	no.	In	fact,	lines	4–5	don’t	cause	a	query	to	happen:	they	construct	an	object	that	can	do
the	 query	 if	 it’s	 ever	 asked	 for	 the	 result!	 This	 is	 called	 lazy	 evaluation,	 an	 enormously	 powerful
programming-language	 technique	 that	 comes	 from	 the	 lambda	 calculus	 underlying	 functional
programming.	 Lazy	 evaluation	 is	 used	 in	Rails’	ActiveRelation	 (ARel)	 subsystem,	which	 is	 used	 by
ActiveRecord.	The	actual	database	query	doesn’t	happen	until	each	 is	called	in	line	5	of	of	 the	Haml

http://pastebin.com/3Ba360Vt
http://pastebin.com/x88niV53
http://en.wikipedia.org/wiki/lazy_evaluation
http://en.wikipedia.org/wiki/lambda_calculus

template,	because	that’s	the	first	time	the	ActiveRelation	object	is	asked	to	produce	a	value.	But	since
that	line	is	inside	the	cache	block	starting	on	line	2,	 if	 the	fragment	cache	hits,	 the	line	will	never	be
executed	 and	 therefore	 the	database	will	 never	be	queried.	Of	 course,	 you	must	 still	 include	 logic	 in
your	cache	sweeper	to	correctly	expire	the	top-5-movies	fragment	when	a	new	review	is	added.

Earlier	versions	of	Rails	lacked	lazy	query	evaluation,	so	controller	actions	had	to	explicitly	check	the	fragment	cache	to	avoid	needless
queries—	very	non-DRY.

	 	 	 In	 summary,	 both	page-	 and	 fragment-level	 caching	 reward	our	 ability	 to	 separate	 things	 that
change	(non-cacheable	units)	from	those	that	stay	the	same	(cacheable	units).	In	page	or	action	caching,
split	controller	actions	protected	by	before-filters	into	an	“unprotected”	action	that	can	use	page	caching
and	 a	 filtered	 action	 that	 can	 use	 action	 caching.	 (In	 an	 extreme	 case,	 you	 can	 even	 enlist	 a	content
delivery	 network	 (CDN)	 such	 as	 Amazon	 CloudFront	 to	 replicate	 the	 page	 at	 hundreds	 of	 servers
around	the	world.)	In	fragment	caching,	use	partials	to	isolate	each	noncacheable	entity,	such	as	a	single
model	instance,	into	its	own	partial	that	can	be	fragment-cached.

No
cache

Action
cache

Speedup	vs.	no
cache

Page
cache

Speedup	vs.	no
cache

Speedup	vs.	action
cache

449	ms 57	ms 8x 21ms 21x 3x

Figure	12.9:	For	a	PostgreSQL	shared	database	on	Heroku	containing	1K	movies	and	over	100	reviews	per	movie,	the	table	shows	the
time	in	milliseconds	to	retrieve	a	list	of	the	first	100	reviews	sorted	by	creation	date,	with	and	without	page	and	action	caching.	The
numbers	are	from	the	log	files	visible	with	heroku	logs.

Summary	of	caching:

To	 maximize	 the	 benefits	 of	 caching,	 separate	 cacheable	 from	 non-cacheable	 units:	 controller
actions	 can	 be	 split	 into	 cacheable	 and	 non-cacheable	 versions	 depending	 on	whether	 a	 before-
filter	must	be	run,	and	partials	can	be	used	to	break	up	views	into	cacheable	fragments.

ELABORATION:	Where	are	cached	objects	stored?
In	 development,	 cached	 objects	 are	 generally	 stored	 in	 the	 local	 file	 system.	 On	Heroku,	 the	Memcachier	 addon	 stores	 cached
content	 in	 the	 in-memory	database	memcached	 (pronounced	mem-cash-dee;	 the	 suffix	 -d	 reflects	 the	Unix	 convention	 for	naming
daemon	processes	that	run	constantly	in	the	background).	Rails	cache	stores	must	implement	a	common	API	so	that	different	stores
can	be	used	in	different	environments—a	great	example	of	Dependency	Injection,	which	we	encountered	in	Section	11.6.

Self-Check	12.7.1.

We	mentioned	that	passing	:layout=>false	to	caches_action	provides	most	of	the	benefit	of	action
caching	even	when	the	page	layout	contains	dynamic	elements	such	as	the	logged-in	user’s	name.	Why
doesn’t	the	caches_page	method	also	allow	this	option?

	Since	page	caching	is	handled	by	the	presentation	tier,	not	the	logic	tier,	a	hit	in	the	page	cache	means

http://en.wikipedia.org/wiki/content_delivery_network
http://en.wikipedia.org/wiki/daemon_(computing)

that	Rails	is	bypassed	entirely.	The	presentation	tier	has	a	copy	of	the	whole	page,	but	only	the	logic	tier
knows	what	part	of	the	page	came	from	the	layout	and	what	part	came	from	rendering	the	action.

12.8	Avoiding	Abusive	Database	Queries

As	we	saw	in	Section	2.4,	the	database	will	ultimately	limit	horizontal	scaling—not	because	you	run	out
of	space	to	store	tables,	but	more	likely	because	a	single	computer	can	no	longer	sustain	the	necessary
number	of	queries	per	second	while	remaining	responsive.	When	that	happens,	you	will	need	to	turn	to
techniques	such	as	sharding	and	replication,	which	are	beyond	the	scope	of	this	book	(but	see	To	Learn
More	for	some	suggestions).

Even	on	a	single	computer,	database	performance	tuning	is	enormously	complicated.	The	widely-used
open	source	database	MySQL	has	dozens	of	configuration	parameters,	and	most	database	administrators
(DBAs)	 will	 tell	 you	 that	 at	 least	 half	 a	 dozen	 of	 these	 are	 “critical”	 to	 getting	 good	 performance.
Therefore,	we	focus	on	how	to	keep	your	database	usage	within	the	limit	that	will	allow	it	to	be	hosted
by	 a	 PaaS	 provider:	 Heroku,	 Amazon	 Web	 Services,	 Microsoft	 Azure,	 and	 others	 all	 offer	 hosted
relational	databases	managed	by	professional	DBAs	responsible	for	baseline	tuning.	Many	useful	SaaS
apps	 can	 be	 built	 at	 this	 scale—for	 example,	 all	 of	 Pivotal	 Tracker	 fits	 in	 a	 database	 on	 a	 single
computer.

One	way	to	relieve	pressure	on	your	database	is	 to	avoid	needlessly	expensive	queries.	Two	common
mistakes	for	less-experienced	SaaS	authors	arise	in	the	presence	of	associations:

	

1.	 The	 n+1	 queries	 problem	 occurs	 when	 traversing	 an	 association	 performs	 more	 queries	 than
necessary.

2.	 The	 table	 scan	 problem	 occurs	 when	 your	 tables	 lack	 the	 proper	 indices	 to	 speed	 up	 certain
queries.

http://pastebin.com/kN8Fdz2H

	1	#	assumes	class	Moviegoer	with	has_many	:movies,	:through	=>	:reviews

	2	

	3	#	in	controller	method:

	4	@fans	=	Moviegoer.where("zip	=	?",	code)	#	table	scan	if	no	index!

	5	

	6	#	in	view:

	7	-	@fans.each	do	|fan|

	8			-	fan.movies.each	do	|movie|

	9					//	BAD:	each	time	thru	this	loop	causes	a	new	database	query!

10					%p=	movie.title

11	

12	#	better:	eager	loading	of	the	association	in	controller.

13	#	Rails	automatically	traverses	the	through-association	between

14	#	Moviegoers	and	Movies	through	Reviews

15	@fans	=	Moviegoer.where("zip	=	?",	code).includes(:movies)

16	#	GOOD:	preloading	movies	reviewed	by	fans	avoids	N	queries	in	view.

17	

18	#	BAD:	preload	association	but	don’t	use	it	in	view:

19	-	@fans.each	do	|fan|

http://pivotaltracker.com
http://en.wikipedia.org/wiki/database_index
http://pastebin.com/kN8Fdz2H

20			%p=	@fan.name

21			//	BAD:	we	never	used	the	:movies	that	were	preloaded!

Figure	12.10:	The	query	in	the	controller	action	(line	4)	accesses	the	database	once	to	retrieve	rows	of	@fans,	but	each	pass	through	the
loop	in	lines	8–10	causes	another	separate	database	access,	resulting	in	n	+	1	accesses	for	a	fan	who	has	reviewed	n	movies.	Line	15,	in
contrast,	performs	a	single	eager	load	query	that	also	retrieves	all	the	movies,	which	is	nearly	as	fast	as	line	4	since	most	of	the	overhead
of	small	queries	is	in	performing	the	database	access.

Lines	1–17	of	Figure	12.10	 illustrate	 the	so-called	n+1	queries	problem	when	 traversing	associations,
and	also	show	why	the	problem	is	more	likely	to	arise	when	code	creeps	into	your	views:	there	would
be	no	way	for	the	view	to	know	the	damage	it	was	causing.	Of	course,	just	as	bad	is	eager	loading	of
information	 you	 won’t	 use,	 as	 in	 lines	 18–21	 of	 Figure	 12.10.	 The	 bullet	 gem	 helps	 detect	 both

problems.	 		

http://pastebin.com/zrGFXsbt

	1	class	AddEmailIndexToMoviegoers	<	ActiveRecord::Migration

	2			def	up

	3					add_index	’moviegoers’,	’email’,	:unique	=>	true

	4					#	:unique	is	optional	-	see	text	for	important	warning!

	5					add_index	’moviegoers’,	’zip’

	6			end

	7	end

Figure	12.11:	Adding	an	index	on	a	column	speeds	up	queries	that	match	on	that	column.	The	index	is	even	faster	if	you	specify	:unique,
which	is	a	promise	you	make	that	no	two	rows	will	have	the	same	value	for	the	indexed	attribute;	to	avoid	errors	in	case	of	a	duplicate
value,	use	this	in	conjunction	with	a	uniqueness	validation	as	described	in	Section	5.1).

Another	 database	 abuse	 to	 avoid	 is	 queries	 that	 result	 in	 a	 full	 table	 scan.	 Consider	 line	 4	 of
Figure	12.10:	in	the	worst	case,	the	database	would	have	to	examine	every	row	of	the	moviegoers	table
to	find	a	match	on	the	email	column,	so	the	query	will	run	more	and	more	slowly	as	the	table	grows,
taking	 time	 O(n)	 for	 a	 table	 with	 n	 rows.	 The	 solution	 is	 to	 add	 a	 database	 index	 on	 the
moviegoers.email	column,	as	Figure	12.11	shows.	An	index	is	a	separate	data	structure	maintained	by
the	database	that	uses	hashing	techniques	over	the	column	values	to	allow	constant-time	access	to	any
row	when	that	column	is	used	as	the	constraint.	You	can	have	more	than	one	index	on	a	given	table	and
even	have	indices	based	on	the	values	of	multiple	columns.	Besides	obvious	attributes	named	explicitly
in	where	queries,	foreign	keys	(the	subject	of	the	association)	should	usually	be	indexed.	For	example,
in	the	example	in	Figure	12.10,	the	moviegoer_id	field	in	the	reviews	 table	would	need	an	index	in
order	to	speed	up	the	query	implied	by	fan.movies.

Of	course,	indices	aren’t	free:	each	index	takes	up	space	proportional	to	the	number	of	table	rows,	and
since	 every	 index	 on	 a	 table	 must	 be	 updated	 when	 table	 rows	 are	 added	 or	 modified,	 updates	 to
heavily-indexed	tables	may	be	slowed	down.	However,	because	of	the	read-mostly	behavior	of	typical
SaaS	 apps	 and	 their	 relatively	 simple	 queries	 compared	 to	 other	 database-backed	 systems	 such	 as

https://github.com/flyerhzm/bullet
http://pastebin.com/zrGFXsbt
http://en.wikipedia.org/wiki/full_table_scan
http://en.wikipedia.org/wiki/database_index
http://en.wikipedia.org/wiki/Hash_table

Online	 Transaction	 Processing	 (OLTP),	 your	 app	 will	 likely	 run	 into	many	 other	 bottlenecks	 before
indices	 begin	 to	 limit	 its	 performance.	 Figure	 12.12	 shows	 an	 example	 of	 the	 dramatic	 performance
improvement	provided	by	indices.

#	of	reviews: 2000 20,000 200,000
Read	100,	no	indices 0.94 1.33 5.28
Read	100,	FK	indices 0.57 0.63 0.65

Performance 166% 212% 808%
Create	1000,	no	indices 9.69
Create	1000,	all	indices 11.30
Performance –17%

Figure	12.12:	For	a	PostgreSQL	shared	database	on	Heroku	containing	1K	movies,	1K	moviegoers,	and	2K	to	200K	reviews,	this	table
shows	the	benefits	and	penalties	of	indexing.	The	first	part	compares	the	time	in	seconds	to	read	100	reviews	with	no	indices	vs.	with
foreign	key	(FK)	indices	on	movie_id	and	moviegoer_id	in	the	reviews	table.	The	second	part	compares	the	time	to	create	1,000	reviews
in	the	absence	of	indices	and	in	the	presence	of	indices	over	every	possible	pair	of	reviews	columns,	showing	that	even	in	this
pathological	case,	the	penalty	for	using	indices	is	slight.

Summary	of	avoiding	abusive	queries:
The	n	+	1	queries	problem,	 in	which	 traversing	a	1-to-n	 association	 results	 in	n+1	 short	queries
rather	than	a	single	large	query,	can	be	avoided	by	judicious	use	of	eager	loading.
Full-table	 scans	 in	 queries	 can	 be	 avoided	 by	 judicious	 use	 of	 database	 indices,	 but	 each	 index
takes	up	space	and	slows	down	update	performance.	A	good	starting	point	is	to	create	indices	for
all	foreign	key	columns	and	all	columns	referenced	in	the	where	clause	of	frequent	queries.

ELABORATION:	SQL	EXPLAIN
Many	SQL	databases,	including	MySQL	and	PostgreSQL	(but	not	SQLite),	support	an	EXPLAIN	command	that	describes	the	query
plan:	 which	 tables	 will	 be	 accessed	 to	 perform	 a	 query	 and	 which	 of	 those	 tables	 have	 indices	 that	 will	 speed	 up	 the	 query.
Unfortunately,	the	output	format	of	EXPLAIN	is	database-specific.	Starting	with	Rails	3.2,	EXPLAIN	is	automatically	run	on	queries
that	take	longer	than	a	developer-specified	threshold	in	development	mode,	and	the	query	plan	is	written	to	development.log.	The
query_reviewer	gem,	which	currently	works	only	with	MySQL,	runs	EXPLAIN	on	all	queries	generated	by	ActiveRecord	and	inserts
the	results	into	a	div	at	the	top	of	every	page	view	in	development	mode.

Self-Check	12.8.1.	An	 index	on	a	database	 table	usually	 speeds	up	____	at	 the	expense	of	____	and
____.
	Query	performance	at	the	expense	of	space	and	table-update	performance

12.9	Security:	Defending	Customer	Data	in	Your	App

My	response	was	“Congratulations,	Ron,	that	should	work.”
—Len	Adleman,	reacting	to	Ron	Rivest’s	encryption	proposal,	1977

http://en.wikipedia.org/wiki/query_plan
http://weblog.rubyonrails.org/2011/12/6/what-s-new-in-edge-rails-explain
http://github.com/nesquena/query_reviewer

			Ronald	Rivest	(1947–),	Adi	Shamir	(1952–),	and	Leonard	Adleman	(1945–)
received	the	2002	Turing	Award	for	making	public-key	cryptography	useful	in	practice.	In	the

eponymous	RSA	algorithm,	the	security	properties	of	keypairs	are	based	on	the	difficulty	of	factoring
large	integers	and	performing	modular	exponentiation,	that	is,	determining	m	such	that	C	=	mE	mod	N.
As	security	is	its	own	field	in	computing,	there	is	no	shortage	of	material	to	review	or	topics	to	study.
Perhaps	as	a	result,	security	experts	have	boiled	down	their	advice	into	principles	that	developers	can
follow.	Here	are	three:

The	principle	of	least	privilege	states	that	a	user	or	software	component	should	be	given	no	more
privilege—that	is,	no	further	access	information	and	resources—than	what	is	necessary	to	perform
its	assigned	task.	This	is	analogous	to	the	“need-to-know”	principle	for	classified	information.	One
example	of	this	principle	in	the	Rails	world	is	that	the	Unix	processes	corresponding	to	your	Rails
app,	your	database,	and	the	Web	server	(presentation	tier)	should	run	with	low	privilege	and	in	an
environment	where	 they	 cannot	 even	 create	 new	 files	 in	 the	 file	 system.	Good	 PaaS	 providers,
including	Heroku,	offer	a	deployment	environment	configured	in	just	this	way.
The	principle	of	fail-safe	defaults	states	that	unless	a	user	or	software	component	is	given	explicit
access	to	an	object,	it	should	be	denied	access	to	the	object.	That	is,	the	default	should	be	denial	of
access.	Proper	use	of	attr_accessible	as	described	in	Section	5.2	follows	this	principle.
The	principle	of	psychological	acceptability	states	that	the	protection	mechanism	should	not	make
the	app	harder	to	use	than	if	there	were	no	protection.	That	is,	the	user	interface	needs	to	be	easy	to
use	so	that	the	security	mechanisms	are	routinely	followed.

The	rest	of	this	section	covers	five	specific	security	vulnerabilities	that	are	particularly	relevant	for	SaaS
applications:	protecting	data	using	encryption,	cross-site	 request	 forgery,	SQL	injection	and	cross-site
scripting,	prohibiting	calls	to	private	controller	methods,	and	self-denial-of-service.

Protecting	Data	Using	Encryption.	 Since	 competent	 PaaS	 providers	make	 it	 their	 business	 to	 stay
abreast	 of	 security-related	 issues	 in	 the	 infrastructure	 itself,	 developers	 who	 use	 PaaS	 can	 focus
primarily	 on	 attacks	 that	 can	 be	 thwarted	 by	 good	 coding	 practices.	 Data-related	 attacks	 on	 SaaS
attempt	 to	compromise	one	or	more	of	 the	 three	basic	elements	of	security:	privacy,	authenticity,	and
data	 integrity.	The	goal	of	Transport	Layer	Security	 (TLS)	and	 its	predecessor	Secure	Sockets	Layer
(SSL)	 is	 to	 encrypt	 all	 HTTP	 traffic	 by	 transforming	 it	 using	 cryptographic	 techniques	 driven	 by	 a
secret	(such	as	a	password)	known	only	to	the	two	communicating	parties.	Running	HTTP	over	such	a
secure	connection	is	called	HTTPS.

Establishing	 a	 shared	 secret	with	 a	 site	 you’ve	 never	 visited	 before	 is	 a	 challenging	 problem	whose
practical	solution,	public	key	cryptography,	 is	 credited	 to	Ron	Rivest,	Adi	Shamir	 and	Len	Adleman
(hence	RSA).	A	principal	or	communicating	entity	generates	a	keypair	consisting	of	two	matched	parts,
one	of	which	is	made	public	(accessible	to	everyone	in	the	world)	and	the	other	of	which	is	kept	secret.

A	keypair	has	two	important	properties:
	

1.	 A	message	encrypted	using	the	private	key	can	only	be	decrypted	using	the	public	key,	and	vice-
versa.

2.	 The	private	key	cannot	be	deduced	from	the	public	key,	and	vice-versa.

http://en.wikipedia.org/wiki/principle_of_least_privilege
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/encrypt
http://en.wikipedia.org/wiki/public_key_cryptography
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Principal_(computer_security)

Section	A.5	introduces	the	ssh	(Secure	Shell)	tools	included	with	the	bookware.

Property	 1	 provides	 the	 foundation	 of	 SSL:	 if	 you	 receive	 a	message	 that	 is	 decryptable	with	Bob’s
public	key,	only	someone	possessing	Bob’s	private	key	could	have	created	it.	A	variation	is	the	digital
signature:	to	attest	to	a	message,	Bob	generates	a	one-way	digest	of	the	message	(a	short	“fingerprint”
that	would	change	if	the	message	were	altered)	and	encrypts	the	digest	using	his	private	key	as	a	way	of
attesting	“I,	Bob,	vouch	for	the	information	in	the	message	represented	by	this	digest.”

Alice	and	Bob	are	the	archetypal	principals	who	appear	in	security	scenarios,	along	with	eavesdropper	Eve,	malicious	Mallory,	and
other	colorful	characters.

To	offer	SSL-secured	access	to	his	site	rottenpotatoes.com,	Bob	generates	a	keypair	consisting	of	a
public	 part	 KU	 and	 a	 private	 part	 KP.	 He	 proves	 his	 identity	 using	 conventional	 means	 such	 as
government-issued	 IDs	 to	 a	 certificate	 authority	 (CA)	 such	 as	 VeriSign.	 The	 CA	 then	 uses	 its	 own
private	key	CP	 to	sign	an	SSL	certificate	 that	states,	 in	effect,	“rottenpotatoes.com	has	public	key
KU.”	Bob	installs	the	certificate	on	his	server	and	enables	his	SaaS	stack	to	accept	SSL	connections—
usually	trivial	in	a	PaaS	environment.	Finally,	he	enables	SSL	in	his	Rails	app	by	adding	force_ssl	to
any	controller	to	force	all	its	actions	to	use	SSL,	or	using	the	:only	or	:except	filter	options	to	limit
which	actions	are	affected.

force_ssl	is	implemented	as	a	before-filter	that	causes	an	immediate	redirect	from	http://site/action	to	https://site/action.

The	CA’s	public	key	CU	 is	 built	 into	most	Web	browsers,	 so	when	Alice’s	 browser	 first	 connects	 to
https://rottenpotatoes.com	and	requests	the	certificate,	it	can	verify	the	CA’s	signature	and	obtain
Bob’s	public	key	KU	from	the	certificate.	Alice’s	browser	then	chooses	a	random	string	as	the	secret,
encrypts	it	using	KU,	and	sends	it	to	rottenpotatoes.com,	which	alone	can	decrypt	it	using	KP.	This
shared	secret	 is	 then	used	to	encrypt	HTTP	traffic	using	much	faster	symmetric-key	cryptography	 for
the	 duration	 of	 the	 session.	 At	 this	 point,	 any	 content	 sent	 via	 HTTPS	 is	 reasonably	 secure	 from
eavesdroppers,	 and	 Alice’s	 browser	 believes	 the	 server	 it’s	 talking	 to	 is	 the	 genuine	 RottenPotatoes
server,	since	only	a	server	possessing	KP	could	have	completed	the	key	exchange	step.

It’s	 important	 to	 recognize	 that	 this	 is	 the	 limit	 of	what	 SSL	 can	 do.	 In	 particular,	 the	 server	 knows
nothing	about	Alice’s	identity,	and	no	guarantees	can	be	made	about	Alice’s	data	other	than	its	privacy
during	transmission	to	RottenPotatoes.

Cross-site	 request	 forgery.	A	CSRF	attack	 (sometimes	pronounced	 “sea-surf”)	 involves	 tricking	 the
user’s	browser	into	visiting	a	different	web	site	for	which	the	user	has	a	valid	cookie,	and	performing	an
illicit	 action	 on	 that	 site	 as	 the	 user.	 For	 example,	 suppose	 Alice	 has	 recently	 logged	 into	 her
MyBank.com	 account,	 so	 her	 browser	 now	 has	 a	 valid	 cookie	 for	MyBank.com	 showing	 that	 she	 is
logged	 in.	 Now	 Alice	 visits	 a	 chat	 forum	 where	 malicious	 Mallory	 has	 posted	 a	 message	 with	 the
following	embedded	“image”:

http://pastebin.com/rtzYtTmj

http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/certificate_authority
http://en.wikipedia.org/wiki/SSL_certificate
http://apidock.com/rails/ActionController/ForceSSL/ClassMethods/force_ssl
http://en.wikipedia.org/wiki/symmetric-key_cryptography
http://pastebin.com/rtzYtTmj

	1				<p>Here’s	a	risque	picture	of	me:

	2						

	3				</p>

When	Alice	views	the	blog	post,	or	if	she	receives	an	email	with	this	link	embedded	in	it,	her	browser
will	 try	to	“fetch”	the	image	from	this	RESTful	URI,	which	happens	to	transfer	$5000	into	Mallory’s
account.	Alice	will	see	a	“broken	image”	icon	without	realizing	the	damage.	CSRF	is	often	combined
with	Cross-site	Scripting	(see	below)	to	perform	more	sophisticated	attacks.

There	 are	 two	 steps	 to	 thwarting	 such	 attacks.	The	 first	 is	 to	 ensure	 that	RESTful	 actions	 performed
using	the	GET	HTTP	method	have	no	side	effects.	An	action	such	as	bank	withdrawal	or	completing	a
purchase	should	be	handled	by	a	POST.	This	makes	it	harder	for	the	attacker	to	deliver	the	“payload”
using	embedded	asset	 tags	 like	IMG,	which	browsers	always	 handle	using	GET.	The	 second	 step	 is	 to
insert	 a	 randomly-generated	 string	 based	 on	 the	 current	 session	 into	 every	 page	 view	 and	 arrange	 to
include	its	value	as	a	hidden	form	field	on	every	form.	This	string	will	look	different	for	Alice	than	it
will	 for	Bob,	 since	 their	 sessions	 are	 distinct.	When	 a	 form	 is	 submitted	without	 the	 correct	 random
string,	 the	 submission	 is	 rejected.	 Rails	 automates	 this	 defense:	 all	 you	 need	 to	 do	 is	 render
csrf_meta_tags	 in	 every	 such	 view	 and	 add	 protect_from_forgery	 to	 any	 controller	 that	 might
handle	a	form	submission.	Indeed,	when	you	use	rails	new	to	generate	a	new	app,	these	defenses	are
included	 in	 app/views/layouts/application.html.haml	 and
app/controllers/application_controller.rb	respectively.

http://pastebin.com/h1spRdpd

	1	class	MoviesController

	2			def	search

	3					movies	=	Movie.where("name	=	’#{params[:title]}’")	#	UNSAFE!

	4					#	movies	=	Movie.where("name	=	?",	params[:title])			#	safe

	5			end

	6	end

Figure	12.13:	Code	that	is	vulnerable	to	a	SQL	injection	attack.	Uncommenting	line	4	and	deleting	line	3	would	thwart	the	attack	using	a
prepared	statement,	which	lets	ActiveRecord	“sanitize”	malicious	input	before	inserting	it	in	the	query.

params[:title] SQL	statement
Aladdin SELECT	”movies”.*	FROM	”movies”	WHERE	(title=’Aladdin’)

’);	DROP	TABLE

”movies”;	--

SELECT	”movies”.*	FROM	”movies”	WHERE	(title=”);	DROP	TABLE

”movies”;	--

Figure	12.14:	If	Mallory	enters	the	text	in	the	second	row	of	the	table	as	a	movie	title,	line	3	of	Figure	12.13	becomes	a	dangerous	SQL
statement	that	deletes	the	whole	table.	(The	final	--,	the	SQL	comment	character,	avoids	executing	any	SQL	code	that	might	have	come
after	DROP	TABLE.)	SQL	injection	was	often	successful	against	early	frameworks	such	as	PHP,	in	which	queries	were	hand-coded	by
programmers.

SQL	injection	and	cross-site	scripting.	Both	of	these	attacks	exploit	SaaS	apps	that	handle	attacker-
provided	 content	 unsafely.	 In	 SQL	 injection,	 Mallory	 enters	 form	 data	 that	 she	 hopes	 will	 be
interpolated	directly	into	a	SQL	query	statement	executed	by	the	app.	Figure	12.14	shows	an	example

http://pastebin.com/h1spRdpd
http://en.wikipedia.org/wiki/SQL_injection

and	 its	 defense—using	 prepared	 statements.	 In	 cross-site	 scripting,	 Mallory	 prepares	 a	 fragment	 of
JavaScript	code	that	performs	a	harmful	action;	her	goal	is	to	get	RottenPotatoes	to	render	that	fragment
as	 part	 of	 a	 displayed	HTML	 page,	 triggering	 execution	 of	 the	 script.	 Figure	 12.15	 shows	 a	 benign
example	and	 the	defense;	 real	examples	often	 include	JavaScript	code	 that	steals	Alice’s	valid	cookie
and	transmits	it	to	Mallory,	who	can	now	“hijack”	Alice’s	session	by	passing	Alice’s	cookie	as	her	own.
Worse,	even	if	the	XSS	attack	only	succeeds	in	reading	the	page	content	from	another	site	and	not	the
cookie,	 the	 page	 content	 might	 contain	 the	 CSRF-prevention	 token	 generated	 by	 csrf_meta_tags
corresponding	to	Alice’s	session,	so	XSS	is	often	used	to	enable	CSRF.

Security	firm	Symantec	reported	that	XSS	accounted	for	over	80%	of	security	vulnerabilities	in	2007.

JavaScript	is	the	language	of	choice	for	XSS,	but	any	technology	that	mixes	code	into	HTML	pages	is	vulnerable,	including	ActiveX,
VBScript,	and	Flash.

http://pastebin.com/rxwYGwB6

	1	<h2><%=	movie.title	%></h2>

	2	<p>Released	on	<%=	movie.release_date	%>.	Rated	<%=	movie.rating	%>.</p>

http://pastebin.com/ytYnC2h6

	1	<h2><script>alert("Danger!");</script></h2>

	2	<p>Released	on	1992-11-25	00:00:00	UTC.	Rated	G.</p>

http://pastebin.com/QN5KcdTy

	1	<h2><script>alert("Danger!");</script></h2>

	2	<p>	Released	on	1992-11-25	00:00:00	UTC.	Rated	G.</p>

Figure	12.15:	Top:	a	fragment	of	a	view	template	using	Rails’	built-in	eRB	renderer	rather	than	Haml.	Middle:	Mallory	manually	enters	a
new	movie	whose	“title”	is	the	string	<script>alert(”Danger!”);</script>.	When	this	movie’s	Show	action	is	rendered,	the	“title”	will
be	inserted	directly	into	the	HTML	view,	causing	the	JavaScript	code	to	be	executed	when	Alice’s	browser	renders	the	page.	Bottom:	The
defense	is	to	“sanitize”	any	input	that	will	be	interpolated	into	HTML.	Happily,	Haml’s	=	operator	does	this	automatically,	resulting	in
impotent	code	where	the	angle	brackets	have	been	properly	escaped	for	HTML.

Prohibiting	calls	to	private	controller	methods.	It’s	not	unusual	for	controllers	to	include	“sensitive”
helper	methods	that	aren’t	intended	to	be	called	by	end-user	actions,	but	only	from	inside	an	action.	Use
protected	 for	 any	 controller	 method	 that	 isn’t	 the	 target	 of	 a	 user-initiated	 action	 and	 check	 rake
routes	to	make	sure	no	routes	include	wildcards	that	could	match	a	nonpublic	controller	action.

Self-denial-of-service.	A	malicious	denial-of-service	attack	seeks	to	keep	a	server	busy	doing	useless
work,	preventing	access	by	legitimate	users.	You	can	inadvertently	leave	yourself	open	to	these	attacks
if	you	allow	arbitrary	users	to	perform	actions	that	result	in	a	lot	of	work	for	the	server,	such	as	allowing

http://en.wikipedia.org/wiki/cross-site_scripting
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://pastebin.com/rxwYGwB6
http://pastebin.com/ytYnC2h6
http://pastebin.com/QN5KcdTy

the	upload	of	a	large	file	or	generating	an	expensive	report.	(Uploading	files	also	carries	other	risks,	so
you	should	“outsource”	that	responsibility	to	other	services,	such	as	the	Progstr-Filer	Heroku	addon.)	A
defense	is	to	use	a	separate	background	task	such	as	a	Heroku	worker	to	offload	long-running	jobs	from
the	main	app	server.

When	Amazon	put	1000	Xbox	360	units	on	sale	for	just	$100	rather	than	the	list	price	of	$399,	during	the	first	5	minutes	the	site	was
brought	to	its	knees	by	millions	of	users	clicking	“Reload”	to	get	the	deal.

Attack Rails	Defenses

Eavesdropping Install	SSL	certificate	and	use	force_ssl	in	controllers	(optional:	:only=>
or	:except=>	specific	actions)	to	encrypt	traffic	using	SSL

Cross-site	request
forgery	(CSRF)

Render	csrf_meta_tags	in	all	views	(for	example,	by	including	it	in	main
layout)	and	specify	protect_from_forgery	in	ApplicationController

Cross-site	scripting
(XSS) Use	Haml’s	=	to	sanitize	HTML	during	rendering

SQL	injection Use	prepared	queries	with	placeholders,	rather	than	interpolating	strings
directly	into	queries

Mass	assignment	of
sensitive	attributes

Use	attr_protected	or	attr_accessible	to	protect	sensitive	attributes
from	user	assignment	(Section	5.2)

Executing	protected
actions

Use	before_filter	to	guard	sensitive	public	methods	in	controllers;	declare
nonpublic	controller	methods	as	private	or	protected

Self-denial-of-service,
pathologically	slow

clients

Use	separate	background	workers	to	perform	long-running	tasks,	rather	than
tying	up	the	app	server

Figure	12.16:	Some	common	attacks	against	SaaS	apps	and	the	Rails	mechanisms	that	defend	against	them.

A	final	warning	about	security	is	 in	order.	The	“arms	race”	between	SaaS	developers	and	evildoers	is
ongoing,	so	even	a	carefully	maintained	site	isn’t	100%	safe.	In	addition	to	defending	against	attacks	on
customer	 data,	 you	 should	 also	 be	 careful	 about	 handling	 sensitive	 data.	 Don’t	 store	 passwords	 in
cleartext;	 store	 them	 encrypted,	 or	 better	 yet,	 rely	 on	 third-party	 authentication	 as	 described	 in
Section	5.2,	to	avoid	embarrassing	incidents	of	password	theft.	Don’t	even	think	of	storing	credit	card
numbers,	even	encrypted.	The	Payment	Card	Industry	association	imposes	an	audit	burden	costing	tens
of	thousands	of	dollars	per	year	to	any	site	that	does	this	(to	prevent	credit	card	fraud),	and	the	burden	is
only	slightly	less	severe	if	your	code	ever	manipulates	a	credit	card	number	even	if	you	don’t	store	it.
Instead,	offload	this	responsibility	to	sites	like	PayPal	or	Stripe	that	specialize	in	meeting	these	heavy
burdens.

Summary	of	defending	customer	data:
	

Following	the	principles	of	least	privilege,	fail-safe	defaults,	and	psychological	acceptability	can

https://devcenter.heroku.com/articles/progstr-filer
https://devcenter.heroku.com/articles/background-jobs-queueing
http://www.huffingtonpost.com/2012/06/07/eharmony-passwords-leaked-linkedin_n_1577175.html
http://www.huffingtonpost.co.uk/2012/06/08/lastfm-hit-by-password-leak_n_1580012.html?ref=uk
http://www.zdnet.com/blog/btl/26000-email-addresses-and-passwords-leaked-check-this-list-to-see-if-youre-included/50424
http://www.neowin.net/news/main/09/10/05/thousands-of-hotmail-passwords-leaked-online
http://hothardware.com/News/55000-Twitter-Accounts-Hacked-You-Should-Probably-Change-Your-Password/
http://www.businessweek.com/technology/content/jul2009/tc2009076_891369.htm
http://www.msnbc.msn.com/id/17853440/#.T9JsqxztEmY
http://redtape.msnbc.msn.com/_news/2012/03/30/10940640-global-payments-under-15-million-account-numbers-hacked?lite
http://paypal.com
http://stripe.com
http://en.wikipedia.org/wiki/Principle_of_least_privilege

lead	to	more	secure	systems.
SSL	and	TLS	keep	data	private	as	it	travels	over	an	HTTP	connection,	but	provide	no	other	privacy
guarantees.	They	also	assure	the	browser	of	the	server’s	identity	(unless	the	Certificate	Authority
that	originally	certified	the	server’s	identity	has	been	compromised),	but	not	vice-versa.
Developers	 who	 deploy	 on	 a	 well-curated	 PaaS	 should	 focus	 primarily	 on	 attacks	 that	 can	 be
thwarted	by	good	coding	practices.	Figure	12.16	summarizes	some	common	attacks	on	SaaS	apps
and	the	Rails	mechanisms	that	thwart	them.
In	addition	 to	deploying	app-level	defenses,	particularly	sensitive	customer	data	should	either	be
stored	in	encrypted	form	or	not	at	all,	by	outsourcing	its	handling	to	specialized	services.

Self-Check	 12.9.1.	 True	 or	 false:	 If	 a	 site	 has	 a	 valid	 SSL	 certificate,	 Cross-Site	 Request	 Forgery
(CSRF)	and	SQL	Injection	attacks	are	harder	to	mount	against	it.
	 False.	 The	 security	 of	 the	HTTP	 channel	 is	 irrelevant	 to	 both	 attacks.	CSRF	 relies	 only	 on	 a	 site

erroneously	accepting	a	request	 that	has	a	valid	cookie	but	originated	elsewhere.	SQL	injection	relies
only	on	the	SaaS	server	code	unsafely	interpolating	user-entered	strings	into	a	SQL	query.

Self-Check	12.9.2.	Why	can’t	CSRF	attacks	be	thwarted	by	checking	the	Referer:	header	of	an	HTTP
request?
	The	header	can	be	trivially	forged.

12.10	The	Plan-And-Document	Perspective

Non-functional	requirements	can	be	more	important	than	adding	new	features,	as	violations	can	cause
loss	of	millions	of	dollars,	millions	of	users,	or	both.	For	example,	sales	for	Amazon.com	in	the	fourth
quarter	 of	 2012	was	$23.3B,	 so	 the	 loss	of	 income	due	 to	Amazon	being	down	 just	 one	hour	would
average	$10M.	That	same	year	a	break-in	of	the	Nebraska	Student	Information	System	revealed	social
security	numbers	of	anyone	who	applied	to	the	University	of	Nebraska	since	1985,	estimated	as	650,000
people.	If	customers	can’t	trust	a	SaaS	app,	they	will	stop	using	it	no	matter	what	the	set	of	features.

Performance.	Performance	is	not	a	topic	of	focus	in	conventional	software	engineering,	in	part	because
it	has	been	the	excuse	for	bad	practices	and	in	part	because	it	is	well	covered	elsewhere.	Performance
can	be	part	of	 the	non-functional	requirements	and	then	later	 in	acceptance-level	 testing	to	ensure	the
performance	requirement	is	met.

Release	Management.	Plan-and-document	processes	often	produce	software	products	that	have	major
releases	and	minor	releases.	Using	the	Rails	as	an	example,	the	last	number	of	version	3.2.12	is	a	minor
release,	the	middle	number	is	a	major	release,	and	the	first	number	is	such	a	large	change	that	it	breaks
APIs	 so	 that	 apps	 need	 to	 be	 ported	 again	 to	 this	 version.	 A	 release	 includes	 everything:	 code,
configuration	 files,	 any	data,	 and	documentation.	Release	management	 includes	picking	dates	 for	 the
release,	information	on	how	it	will	be	distributed,	and	documenting	everything	so	that	you	know	what
exactly	is	in	the	release	and	how	to	make	it	again	so	that	it	is	easy	to	change	when	you	have	to	make	the
next	 release.	 Release	 management	 is	 considered	 a	 case	 of	 configuration	 management	 in	 Plan-and-
Document	processes,	which	we	review	in	Section	10.7.

Reliability.	 The	main	 tool	 in	 our	 bag	 to	make	 a	 system	 dependable	 is	 redundancy.	By	 having	more
hardware	 than	 the	 absolute	 minimum	 needed	 to	 run	 the	 app	 and	 store	 the	 data,	 the	 system	 has	 the

http://nebraska.edu/security

potential	to	continue	even	if	a	component	fails.	As	all	physical	hardware	has	a	non-zero	failure	rate,	one
redundancy	guideline	is	to	make	sure	there	is	no	single	point	of	failure,	as	it	can	be	the	Achilles’	Heel	of
a	system.	Generally,	the	more	redundancy	the	lower	the	chance	of	failure.	As	highly	redundant	systems
can	be	expensive,	it	is	important	to	have	an	adult	conversation	with	the	customer	to	see	how	dependable
the	app	must	be.

Dependability	is	holistic,	 involving	the	software	and	the	operators	as	well	as	the	hardware.	No	matter
how	 dependable	 the	 hardware	 is,	 errors	 in	 the	 software	 and	 mistakes	 by	 the	 operators	 can	 lead	 to
outages	 that	 reduce	 the	 mean	 time	 to	 failure	 (MTTF)ndexMean	 time	 to	 failure	 (MTTF).	 As
dependency	is	a	 function	of	 the	weakest	 link	 in	 the	chain,	 it	may	be	more	effective	 to	 train	operators
how	to	run	the	app	or	to	reduce	the	flaws	in	the	software	than	to	buy	more	redundant	hardware	to	run
the	 app.	Since	 “to	 err	 is	 human,”	 systems	 should	 include	 safeguards	 to	 tolerate	 and	prevent	 operator
errors	as	well	as	hardware	failures.

A	 foundational	assumption	of	 the	Plan-and-Document	processes	 is	 that	an	organization	can	make	 the
production	of	software	predictable	and	repeatable	by	honing	its	process	of	software	development,	which
should	also	lead	to	more	reliable	software.	Hence,	organizations	commonly	record	everything	they	can
from	projects	to	learn	what	they	can	do	to	improve	their	process.	For	example,	the	ISO	9001	standard	is
granted	 if	 companies	 have	 processes	 in	 place,	 a	method	 to	 see	 if	 the	 process	 is	 being	 followed,	 and
record	 the	 results	 for	 each	 project	 so	 as	 to	 make	 improvements	 in	 their	 process.	 Surprisingly,
standardization	approval	is	not	about	the	quality	of	the	resulting	code,	it	is	just	about	the	development
process.

Finally,	like	performance,	reliability	can	be	measured.	We	can	improve	availability	either	taking	longer
between	failures	(MTTF)	or	by	making	the	app	reboot	faster—mean	time	between	repairs	(MTTR)—as
this	equation	shows:

(12.1)

While	it	is	hard	to	measure	improvements	in	MTTF,	as	it	can	take	a	long	time	to	record	failures,	we	can
easily	measure	MTTR.	We	just	crash	a	computer	and	see	how	long	it	takes	the	app	to	reboot.	And	what
we	can	measure,	we	can	improve.	Hence,	it	may	be	much	more	cost-effective	to	try	to	improve	MTTR
than	to	improve	MTTF	since	it	is	easier	to	measure	progress.	However,	they	are	not	mutually	exclusive,
so	developers	can	try	to	increase	dependability	by	following	both	paths.

Security.	While	reliability	can	depend	on	probability	to	calculate	availability—it	is	unlikely	that	several
disks	will	fail	simultaneously	if	the	storage	system	is	designed	without	hidden	dependencies—this	is	not
the	case	for	security.	Here	there	is	an	human	adversary	who	is	probing	the	corner	cases	of	your	design
for	 weaknesses	 and	 then	 taking	 advantage	 of	 them	 to	 break	 into	 your	 system.	 The	 Common
Vulnerabilities	 and	 Exposures	 database	 lists	 common	 attacks	 to	 help	 developers	 understand	 the
difficulty	of	security	challenges.

Fortunately,	 defensive	 programming	 to	make	 your	 system	more	 robust	 against	 failures	 can	 also	 help
make	your	system	more	secure.	For	example,	in	a	buffer	overflow	attack,	the	adversary	sends	too	much
data	to	a	buffer	to	overwrite	nearby	memory	with	their	own	code	hidden	inside	the	data.	Checking	the
inputs	to	ensure	that	that	the	user	is	not	sending	too	much	data	can	prevent	such	attacks.	Similarly,	the
basis	of	arithmetic	overflow	attack	might	be	 to	supply	such	an	unexpectedly	 large	number	 that	when

http://en.wikipedia.org/wiki/mean_time_to_failure
http://en.wikipedia.org/wiki/mean_time_to_failure
http://en.wikipedia.org/wiki/mean_time_between_repairs
http://en.wikipedia.org/wiki/mean_time_between_repairs
http://cvedetails.com/
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/arithmetic_overflow

added	 to	 another	 number	 it	 will	 look	 small	 due	 to	 the	 wraparound	 nature	 of	 overflow	 with	 32-bit
arithmetic.	Checking	input	values	or	catching	exceptions	might	prevent	this	attack.	As	computers	today
normally	have	multiple	processors	(“multicore”),	an	increasingly	common	attack	is	a	data	race	attack
where	 the	 program	 has	 non-deterministic	 behavior	 depending	 on	 the	 input.	 These	 concurrent
programming	flaws	are	much	harder	to	detect	and	correct.

Testing	is	much	more	challenging	for	security,	but	one	approach	is	use	a	tiger	team	as	the	adversaries
who	perform	penetration	tests.	The	team	reports	back	to	the	developers	the	uncovered	vulnerabilities.

Summary	Given	 the	 importance	of	keeping	 the	users	 trust,	non-functional	 features	can	be	more
important	than	functional	features,	especially	for	SaaS	apps.

	

The	Plan-and-Document	processes	 speak	 little	 about	performance,	 except	 as	 a	potential	piece	of
the	System	Requirement	Specification	that	is	later	validated	as	part	of	the	Master	Test	Plan.
Releases,	 considered	 part	 of	 Configuration	 Management,	 are	 significant	 events	 in	 Plan-and-
Document	 processes.	 A	 release	 wraps	 up	 everything	 about	 the	 project	 at	 that	 time,	 including
documentation	about	how	the	release	was	made	as	well	as	the	code,	configuration	files,	data,	and
product	documentation.
Redundancy	 is	 the	key	 to	dependable	 system,	with	highly	available	 systems	aiming	at	no	 single
point	of	failure.	The	Mean	Time	To	Failure	is	a	function	of	the	whole	system,	including	hardware
and	 operators	 along	 with	 the	 software.	 Another	 way	 to	 improve	 availability	 that	 is	 easier	 to
measure	than	MTTF	is	to	concentrate	on	reducing	Mean	Time	To	Repair.
Unlike	 the	 probabilistic	 basis	 for	 failures	 in	 dependability	 analysis,	 security	 is	 based	 on	 an
intelligent	adversary	who	is	purposely	exploiting	unexpected	events,	such	as	buffer	overflows.

Self-Check	 12.10.1.	 Besides	 buffer	 overflows,	 arithmetic	 overflows,	 and	 data	 races,	 list	 another
potential	bug	 that	can	 lead	 to	security	problem	by	violating	one	of	 the	 three	security	principles	 listed
above.
	One	example	is	improper	initialization,	which	could	violate	the	principle	of	fail-safe	defaults.

12.11	Fallacies	and	Pitfalls

			Fallacy:	All	the	extra	effort	for	testing	very	rare	conditions	in	Continuous	Integration	tests
is	more	trouble	than	it’s	worth.

At	1	million	hits	per	day,	a	“rare”	one-in-a-million	event	is	statistically	likely	every	day.	1	million	hits
per	 day	was	 Slashdot’s	 volume	 in	 2010.	At	 8	billion	 (8	 ×	 109)	 hits	 per	 day,	 which	was	 Facebook’s
volume	in	2010,	8,000	“one-in-a-million”	events	can	be	expected	per	day.	This	is	why	code	reviews	at
companies	such	as	Google	often	 focus	on	corner	 cases:	 at	 large	 scale,	 astronomically-unlikely	 events
happen	all	the	time	(Brewer	2012).	The	extra	resilience	provided	by	error-handling	code	will	help	you
sleep	better	at	night.

http://en.wikipedia.org/wiki/data_race
http://en.wikipedia.org/wiki/tiger_team
http://en.wikipedia.org/wiki/Penetration_test
http://en.wikipedia.org/wiki/Mean_Time_To_Failure
http://en.wikipedia.org/wiki/Mean_Time_To_Repair
http://royal.pingdom.com/2010/01/05/facebook-twitter-myspace-page-views

			Fallacy:	The	app	is	still	in	development,	so	we	can	ignore	performance.

It’s	 true	that	Knuth	said	that	premature	optimization	is	 the	root	of	all	evil	“...about	97%	of	 the	time.”
But	 the	 quote	 continues:	 “Yet	 we	 should	 not	 pass	 up	 our	 opportunities	 in	 that	 critical	 3%.”	 Blindly
ignoring	design	 issues	 such	as	 lack	of	 indices	or	needless	 repeated	queries	 is	 just	 as	bad	as	 focusing
myopically	on	performance	at	an	early	stage.	Avoid	truly	egregious	performance	mistakes	and	you	will
be	able	to	steer	a	happy	path	between	two	extremes.

	 	 	Pitfall:	Thinking	 you	don’t	 have	 to	worry	 about	performance	because	 3-tier	 apps	using
cloud	computing	will	“magically”	scale.

This	 isn’t	 really	 a	 fallacy,	 because	 if	 you’re	 using	 well-curated	 PaaS,	 there	 is	 some	 truth	 to	 this
statement	up	to	a	point.	However,	if	your	app	“outgrows”	PaaS,	the	fundamental	problems	of	scalability
and	load	balancing	are	now	passed	on	to	you.	In	other	words,	with	PaaS	you	are	not	spared	having	to
understand	and	avoid	such	problems,	but	you	are	temporarily	spared	from	rolling	your	own	solutions	to
them.	When	you	 start	 to	 set	 up	your	own	 system	 from	scratch,	 it	 doesn’t	 take	 long	 to	 appreciate	 the
value	of	PaaS.

			Fallacy:	Processor	cycles	are	free	since	computers	have	become	so	fast	and	cheap.

In	 Chapter	 1	 we	 argued	 for	 trading	 today’s	 extra	 compute	 power	 for	 more	 productive	 tools	 and
languages.	 However,	 it’s	 easy	 to	 take	 this	 argument	 too	 far.	 In	 2008,	 performance	 engineer	 Nicole
Sullivan	 reported	 on	 experiments	 conducted	 by	 various	 large	 SaaS	 operators	 about	 how	 additional
latency	affected	 their	sites.	Figure	12.17	clearly	 shows	 that	when	extra	processor	 time	becomes	extra
latency	(and	therefore	reduced	responsiveness)	for	the	end	user,	processor	cycles	aren’t	free	at	all.

Activity Added	latency Measured	effect
Amazon.com	page	view 100	ms 1%	drop	in	sales
Yahoo.com	page	view 400	ms 5–9%	drop	in	full-page	traffic

Google.com	search	results 500	ms 20%	fewer	searches	performed
Bing.com	search	results 2000	ms 4.3%	lower	revenue	per	user

Figure	12.17:	The	measured	effects	of	added	latency	on	users’	interaction	with	various	large	SaaS	apps,	from	Yahoo	performance
engineer	Nicole	Sullivan’s	“Design	Fast	Websites”	presentation	and	a	joint	presentation	at	the	Velocity	2009	conference	by	Jake	Brutlag
of	Google	and	Eric	Schurman	of	Amazon.

			Pitfall:	Optimizing	without	measuring.

Some	 customers	 are	 surprised	 that	 Heroku	 doesn’t	 automatically	 add	 Web	 server	 capacity	 when	 a
customer	app	is	slow	(van	Hardenberg	2012).	The	reason	is	that	without	instrumenting	and	measuring
your	app,	you	don’t	know	why	it’s	slow,	and	the	risk	is	that	adding	Web	servers	will	make	the	problem
worse.	 For	 example,	 if	 your	 app	 suffers	 from	 a	 database	 problem	 such	 as	 lack	 of	 indices	 or	 n	 +	 1
queries,	or	if	relies	on	a	separate	service	like	Google	Maps	that	is	temporarily	slow,	adding	servers	to

http://www.slideshare.net/stubbornella/designing-fast-websites-presentation
http://velocityconf.com/velocity2009/public/schedule/detail/8523

accept	requests	from	more	users	will	only	make	things	worse.	Without	measuring,	you	won’t	know	what
to	fix.

			Pitfall:	Abusing	continuous	deployment,	leading	to	cruft	accumulation.

As	we	have	already	seen,	evolving	apps	may	grow	 to	a	point	where	a	design	change	or	architectural
change	would	be	the	cleanest	way	to	support	new	functionality.	Since	continuous	deployment	focuses
on	 small	 incremental	 steps	 and	 tells	 us	 to	 avoid	 worrying	 about	 any	 functionality	 we	 don’t	 need
immediately,	 the	 app	 has	 the	 potential	 to	 accumulate	 a	 lot	 of	 cruft	 as	 more	 code	 is	 bolted	 onto	 an
obsolete	design.	The	increasing	presence	of	code	smells	(Chapter	9)	is	often	an	early	symptom	of	this
pitfall,	which	can	be	avoided	by	periodic	design	and	architecture	reviews	when	smells	start	to	creep	in.

			Pitfall:	Bugs	in	naming	or	expiration	logic,	leading	to	silently-wrong	caching	behavior.

As	we	noted,	the	two	problems	you	must	tackle	with	any	kind	of	caching	are	naming	and	expiration.	If
you	inadvertently	reuse	 the	same	name	for	different	objects—for	example,	a	non-RESTful	action	that
delivers	different	content	depending	on	the	logged-in	user,	but	is	always	named	using	the	same	URI—
then	a	cached	object	will	be	erroneously	served	when	it	shouldn’t	be.	If	your	sweepers	don’t	capture	all
the	conditions	under	which	a	set	of	cached	objects	could	become	invalid,	users	could	see	stale	data	that
doesn’t	reflect	the	results	of	recent	changes,	such	as	a	movie	list	that	doesn’t	contain	the	most	recently
added	movies.	Unit	tests	should	cover	such	cases	(“Caching	system	when	new	movie	is	added	should
immediately	reflect	new	movie	on	the	home	page	list”).	Follow	the	steps	in	the	Rails	Caching	Guide	to
turn	 on	 caching	 in	 the	 testing	 and	 development	 environments,	 where	 it’s	 off	 by	 default	 to	 simplify
debugging.

	 	 	 Pitfall:	 Slow	 external	 servers	 in	 an	 SOA	 that	 can	 adversely	 affect	 your	 own	 app’s
performance.

If	your	app	communicates	with	external	servers	in	an	SOA,	you	should	be	prepared	for	the	possibility
that	those	external	servers	are	slow	or	unresponsive.	The	easy	case	is	handling	an	unresponsive	server,
since	a	refused	HTTP	connection	will	result	in	a	Ruby	exception	that	you	can	catch.	The	hard	case	is	a
server	 that	 is	 functioning	 but	 very	 slow:	 by	 default,	 the	 call	 to	 the	 server	 will	 block	 (wait	 until	 the
operation	is	complete	or	the	TCP	“slow	timeout”	expires,	which	can	take	up	to	three	minutes),	making
your	 app	slow	down	as	well.	Even	worse,	since	most	Rails	 front	ends	 (thin,	webrick,	mongrel)	 are
single-threaded,	if	you	are	running	N	such	front-ends	(“dynos”	in	Heroku’s	terminology)	it	takes	only	N
simultaneous	 requests	 to	 hang	 your	 application	 completely.	 The	 solution	 is	 to	 use	 Ruby’s	 timeout
library	to	“protect”	the	call,	as	the	code	in	Figure	12.18	shows.

http://pastebin.com/tsvAfTzE

	1	require	’timeout’

	2	#	call	external	service,	but	abort	if	no	answer	in	3	seconds:

	3	Timeout::timeout(3.0)	do

	4			begin

	5					#	potentially	slow	operation	here

	6			rescue	Timeout::Error

http://en.wikipedia.org/wiki/cruft
http://guides.rubyonrails.org/caching_with_rails.html
http://pastebin.com/tsvAfTzE

	7					#	what	to	do	if	timeout	occurs

	8			end

	9	end

Figure	12.18:	Using	timeouts	around	calls	to	an	external	service	protects	your	app	from	becoming	slow	if	the	external	service	is	slow.

	 	 	Fallacy:	My	 app	 is	 secure	 because	 it	 runs	 on	 a	 secure	 platform	 and	 uses	 firewalls	 and
HTTPS.

There’s	no	such	thing	as	a	“secure	platform.”	There	are	certainly	insecure	platforms,	but	no	platform	by
itself	can	assure	the	security	of	your	app.	Security	is	a	systemwide	and	ongoing	concern:	Every	system
has	a	weakest	link,	and	as	new	exploits	and	software	bugs	are	found,	the	weakest	link	may	move	from
one	part	of	the	system	to	the	other.	The	“arms	race”	between	evildoers	and	legitimate	developers	makes
it	 increasingly	 compelling	 to	 use	 professionally-curated	 PaaS	 infrastructure,	 so	 you	 can	 focus	 on
securing	your	app	code

			Fallacy:	My	app	isn’t	a	target	for	attackers	because	it	serves	a	niche	audience,	experiences
low	volume,	and	doesn’t	store	valuable	information.

Malicious	attackers	aren’t	necessarily	after	your	app;	they	may	be	seeking	to	compromise	it	as	a	vehicle
to	a	further	end.	For	example,	if	your	app	accepts	blog-style	comments,	it	will	become	the	target	of	blog
spam,	 in	which	automated	agents	 (bots)	post	spammy	comments	containing	 links	 the	spammer	hopes
users	will	follow,	either	to	buy	something	or	cause	malware	to	be	installed.	If	your	app	is	open	to	SQL
injection	attacks,	one	motive	for	such	an	attack	might	be	to	influence	the	code	that	is	displayed	by	your
views	so	as	to	incorporate	a	cross-site	scripting	attack,	for	example	to	cause	malware	to	be	downloaded
onto	 an	 unsuspecting	 user’s	 machine.	 Even	 without	 malicious	 attackers,	 if	 any	 aspect	 of	 your	 app
becomes	suddenly	popular	because	of	Slashdot	or	Digg,	you’ll	be	suddenly	inundated	with	traffic.	The
lesson	is:	If	your	app	is	publicly	deployed,	it	is	a	target.

12.12	 Concluding	 Remarks:	 Performance,	 Reliability,	 Security,	 and	 Leaky
Abstractions

Performance,	reliability,	and	security	are	systemwide	concerns	that	must	be	constantly	reviewed,	rather
than	 problems	 to	 be	 solved	 once	 and	 then	 set	 aside.	 In	 addition,	 the	 database	 abuses	 described	 in
Section	 12.8	 reveal	 that	 Rails	 and	 ActiveRecord,	 like	 most	 abstractions,	 are	 leaky:	 they	 try	 to	 hide
implementation	 details	 for	 the	 sake	 of	 productivity,	 but	 concerns	 about	 security	 and	 performance
sometimes	require	you	as	a	developer	 to	have	some	understanding	of	how	the	abstractions	work.	For
example,	 the	 n	 +	 1	 select	 problem	 is	 not	 obvious	 from	 looking	 at	Rails	 code,	 nor	 is	 the	 solution	 of
providing	 hints	 like	 :include	 for	 association	 queries,	 nor	 is	 the	 use	 of	 attr_accessible	 or
attr_protected	to	protect	sensitive	attributes	from	being	mass-assigned	by	a	malicious	user.

In	Chapter	4	we	emphasized	the	importance	of	keeping	your	development	and	production	environments
as	similar	as	possible.	This	is	still	good	advice,	but	obviously	if	your	production	environment	involves
multiple	 servers	 and	 a	 huge	 database,	 it	 may	 be	 impractical	 to	 replicate	 in	 your	 development

environment.	 Indeed,	 in	 this	 book	 we	 started	 out	 developing	 our	 apps	 using	 SQLite3	 database	 but
deploying	on	Heroku	with	PostgreSQL.	Given	these	differences,	will	performance	improvements	made
during	 development	 (reducing	 the	 number	 of	 queries,	 adding	 indices,	 adding	 caching)	 still	 apply	 in
production?	Absolutely.	Heroku	and	other	PaaS	sites	do	a	great	job	at	tuning	the	baseline	performance
of	 their	 databases	 and	 software	 stack,	 but	 no	 amount	 of	 tuning	 can	 compensate	 for	 inefficient	 query
strategies	such	as	the	n	+	1	query	problem	or	for	not	deploying	caching	to	ease	the	load	on	the	database.

12.13	To	Learn	More

Given	limited	space,	we	focused	on	aspects	of	operations	that	every	SaaS	developer	should	know,	even
given	the	availability	of	PaaS.	An	excellent	and	more	detailed	book	that	focuses	on	challenges	specific
to	SaaS	and	is	laced	with	real	customer	stories	is	Michael	Nygard’s	Release	It!	(Nygard	2007),	which
focuses	more	on	 the	problems	of	“unexpected	success”	 (sudden	 traffic	surges,	 stability	 issues,	and	so
on)	than	on	repelling	malicious	attacks.

Our	 monitoring	 examples	 are	 based	 on	 aggregating	 metrics	 such	 as	 latency	 over	 many	 requests.	 A
contrasting	approach	is	request	tracing,	which	is	used	in	conjunction	with	metric	aggregation	to	pinpoint
and	diagnose	 slow	 requests.	You	 can	 see	 a	 simplified	version	of	 request	 tracing	 in	 the	 development-
mode	 Rails	 logs,	 which	 by	 default	 will	 report	 the	 database	 query	 time,	 controller	 action	 time,	 and
rendering	time	for	each	request.	True	request	tracing	is	much	finer-grained,	following	a	request	through
every	software	component	 in	every	 tier	and	 timestamping	 it	along	 the	way.	Companies	 that	 run	 large
sites	often	build	their	own	request	tracing,	such	as	Twitter’s	Big	Brother	Bird	and	Google’s	Dapper.	In	a
recent	 article	 (Barroso	 and	Dean	 2012)	 two	Google	 architects	 discuss	 how	 request	 tracing	 identifies
obstacles	 to	 keeping	 Google’s	 massively-parallel	 systems	 highly	 responsive.	 James	 Hamilton,	 an
engineer	 and	 architect	 at	 Amazon	Web	 Services	 who	 previously	 spent	 many	 years	 architecting	 and
tuning	Microsoft	SQL	Server,	writes	an	excellent	blog	that	includes	a	great	article	on	the	cost	of	latency,
gathering	measured	results	from	a	variety	of	industry	practitioners	who	have	investigated	the	topic.

Although	 we	 focused	 on	 monitoring	 for	 performance	 problems,	 monitoring	 can	 also	 help	 you
understand	your	customers’	behavior:
	

Clickstreams:	what	are	the	most	popular	sequences	of	pages	your	users	visit?
Think	times/dwell	times:	how	long	does	a	typical	user	stay	on	a	given	page?
Abandonment:	 if	your	site	contains	a	flow	that	has	a	well-defined	termination,	such	as	making	a
sale,	what	percentage	of	users	“abandon”	the	flow	rather	than	completing	it	and	how	far	do	they
get?

Google	Analytics	provides	free	basic	analytics-as-a-service:	you	embed	a	small	piece	of	JavaScript	 in
every	page	on	your	site	(for	example,	by	embedding	it	on	the	default	layout	template)	that	sends	Google
Analytics	information	each	time	a	page	is	loaded.	To	help	you	use	this	information,	Google’s	“Speed	is
a	Feature”	site	links	to	a	breathtakingly	comprehensive	collection	of	articles	about	all	the	different	ways
you	can	speed	up	your	SaaS	apps,	including	many	optimizations	to	reduce	the	overall	size	of	your	pages
and	improve	the	speed	at	which	Web	browsers	can	render	them.	The	RailsLab	blog	maintained	by	New
Relic	also	collects	best	practices	and	 techniques	 for	 tuning	Rails	apps,	 including	screencasts	on	Rails
tuning	and	how	to	use	New	Relic	in	development	mode	for	profiling.	Be	aware,	though,	that	some	of
the	specific	code	examples,	especially	around	caching,	are	no	longer	valid	because	of	changes	between
Rails	2	and	Rails	3.

http://perspectives.mvdirona.com
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://code.google.com/speed
http://railslab.newrelic.com
http://newrelic.com/demos/developer-mode.html

Understanding	what	happens	during	deployment	and	operations	(especially	automated	deployment)	is	a
prerequisite	to	debugging	more	complex	performance	problems.	The	vast	majority	of	SaaS	apps	today,
including	those	hosted	on	Windows	servers,	run	in	an	environment	based	on	the	original	Unix	model	of
processes	 and	 input/output,	 so	 an	 understanding	 of	 this	 environment	 is	 crucial	 for	 debugging	 any
nontrivial	 performance	 problems.	 The	 Unix	 Programming	 Environment	 (Kernighan	 and	 Pike	 1984),
coauthored	by	one	of	Unix’s	 creators,	 offers	 a	high-bandwidth,	 learn-by-doing	 tour	 (using	C!)	of	 the
Unix	architecture	and	philosophy.

Sharding	 and	 replication	 are	 powerful	 techniques	 for	 scaling	 a	 database	 that	 require	 a	 great	 deal	 of
design	thinking	up	front.	While	there	are	Rails	gems	to	help	with	both,	these	techniques	usually	require
database-level	 configuration	 changes,	 which	 many	 PaaS	 providers	 do	 not	 support.	 Sharding	 and
replication	have	become	particularly	important	with	the	emergence	of	“NoSQL”	databases,	which	trade
the	expressiveness	and	data	format	independence	of	SQL	for	better	scalability.	The	NoSQL	Ecosystem,	a
chapter	contributed	by	Adam	Marcus	 to	The	Architecture	of	Open	Source	Applications	Marcus	2012,
has	a	good	treatment	of	these	topics.

Security	is	an	extremely	broad	topic;	our	goal	has	been	to	help	you	avoid	basic	mistakes	by	using	built-
in	mechanisms	 to	 thwart	 common	 attacks	 against	 your	 app	 and	 your	 customers’	 data.	Of	 course,	 an
attacker	 who	 can’t	 compromise	 your	 app’s	 internal	 data	 can	 still	 cause	 harm	 by	 attacking	 the
infrastructure	on	which	your	app	relies.	Distributed	denial	of	service	(DDoS)	floods	a	site	with	so	much
traffic	that	it	becomes	unresponsive	for	its	intended	users.	A	malicious	client	can	leave	your	app	server
or	Web	 server	 “hanging	 on	 the	 line”	 as	 it	 consumes	 output	 pathologically	 slowly,	 unless	 your	Web
server	(presentation	tier)	has	built-in	timeouts.	DNS	spoofing	 tries	 to	steer	you	to	an	impostor	site	by
supplying	an	incorrect	IP	address	when	a	browser	looks	up	a	host	name,	and	is	often	combined	with	a
man-in-the-middle	attack	that	falsifies	the	certificate	attesting	to	the	server’s	identity.	The	impostor	site
looks	and	behaves	like	the	real	site	but	collects	sensitive	information	from	users.	(In	September	2011,
hackers	impersonated	the	CIA,	MI6,	and	Mossad	sites	by	compromising	DigiNotar,	 the	company	 that
signed	the	original	certificates	for	those	sites,	leading	to	DigiNotar’s	bankruptcy.)	Even	mature	software
such	as	Secure	Shell	and	Apache	are	vulnerable:	the	US	National	Vulnerabilities	Database	lists	10	new
security-related	bugs	in	Apache	just	between	March	and	May	2012,	two	of	which	are	“high	severity”,
meaning	 that	 they	 could	 allow	 an	 attacker	 to	 take	 control	 of	 your	 entire	 server.	Nonetheless,	 despite
occasional	vulnerabilities,	curated	PaaS	sites	are	more	likely	to	employ	experienced	professional	system
administrators	who	stay	abreast	of	the	latest	techniques	for	avoiding	such	vulnerabilities,	making	them
the	best	first	line	of	defense	for	your	SaaS	apps.	The	Basic	Rails	security	guide	at	the	Ruby	on	Rails	site
reviews	many	Rails	 features	 aimed	 at	 thwarting	 common	 attacks	 against	 SaaS	 apps,	 and	 this	 article
from	CodeClimate	 (a	 company	 that	 provides	 code	metrics	 as	 a	 service)	 lists	 a	 number	 of	 important
security	pitfalls	in	Rails	apps.

Finally,	 at	 some	 point	 the	 unthinkable	will	 happen:	 your	 production	 system	will	 enter	 a	 state	where
some	or	all	users	receive	no	service.	Whether	the	app	has	crashed	or	is	“hung”	(unable	to	make	forward
progress),	 from	 a	 business	 perspective	 the	 two	 conditions	 look	 the	 same,	 because	 the	 app	 is	 not
generating	revenue.	In	this	scenario,	the	top	priority	is	to	restore	service,	which	may	require	rebooting
servers	or	doing	other	operations	that	destroy	the	postmortem	state	you	want	to	examine	to	determine
what	 caused	 the	 problem	 in	 the	 first	 place.	 Generous	 logging	 can	 help,	 as	 the	 logs	 provide	 a	 semi-
permanent	record	you	can	examine	closely	after	service	is	restored.

In	The	 Evolution	 of	 Useful	 Things	 (Petroski	 1994),	 engineer	 Henry	 Petroski	 proposes	 changing	 the

http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://en.wikipedia.org/wiki/Database_replication
http://en.wikipedia.org/wiki/denial_of_service
http://en.wikipedia.org/wiki/DNS_spoofing
http://en.wikipedia.org/wiki/man-in-the-middle_attack
http://catless.ncl.ac.uk/Risks/26.56.html#subj6
http://nvd.nist.gov
http://daverecycles.com/post/2858880862/heroku-hacked-dissecting-herokus-critical-security
http://guides.rubyonrails.org/security.html
http://blog.codeclimate.com/blog/2013/03/27/rails-insecure-defaults

maxim	“Form	follows	function”	(originally	 from	the	world	of	architecture)	 to	“Form	follows	failure”
after	demonstrating	that	the	design	of	many	successful	products	was	influenced	primarily	by	failures	in
early	designs	that	led	to	revised	designs.	For	an	example	of	good	design,	read	Netflix’s	technical	blog
post	on	how	their	design	survived	the	Amazon	Web	Services	outage	in	2011	that	crippled	many	other
sites	reliant	on	AWS.

	 ACM	IEEE-Computer	Society	Joint	Task	Force.	Computer	science	curricula	2013,	Ironman	Draft
(version	1.0).	Technical	report,	February	2013.	URL	http:	//ai.stanford.edu/users/sahami/CS2013/.

	 L.	Barroso	and	J.	Dean.	The	tail	at	scale:	Tolerating	variability	in	large-scale	online	services.Communications	of	the	ACM,	2012.

	 N.	Bhatti,	A.	Bouch,	and	A.	Kuchinsky.	Integrating	user-perceived	quality	into	web	server	design.	In9th	International	World	Wide	Web	Conference	(WWW–9),	pages	1–16,	2000.
	 E.	Brewer.	Personal	communication,	May	2012.

	
S.	Hansma.	Go	fast	and	don’t	break	things:	Ensuring	quality	in	the	cloud.	In	Workshop	on	High
Performance	Transaction	Systems	(HPTS	2011),	Asilomar,	CA,	Oct	2011.	Summarized	in	Conference
Reports	column	of	USENIX	;login	37(1),	February	2012.

	 B.	W.	Kernighan	and	R.	Pike.	Unix	Programming	Environment	(Prentice-Hall	Software	Series).
Prentice	Hall	Ptr,	1984.	ISBN	013937681X.

	 A.	Marcus.	The	NoSQL	ecosystem.	In	A.	Brown,	editor,	The	Architecture	of	Open	Source
Applications.	lulu.com,	2012.	ISBN	1257638017.	URL	http:	//www.aosabook.org/en/nosql.html.

	

R.	B.	Miller.	Response	time	in	man-computer	conversational	transactions.	In	Proceedings	of	the
December	9-11,	1968,	fall	joint	computer	conference,	part	I,	AFIPS	’68	(Fall,	part	I),	pages	267–277,
New	York,	NY,	USA,	1968.	ACM.	doi:	10.1145/1476589.1476628.	URL
http://doi.acm.org/10.1145/1476589.1476628.

	 M.	T.	Nygard.	Release	It!:	Design	and	Deploy	Production-Ready	Software	(Pragmatic	Programmers).
Pragmatic	Bookshelf,	2007.	ISBN	0978739213.

	 H.	Petroski.	The	Evolution	of	Useful	Things:	How	Everyday	Artifacts-From	Forks	and	Pins	to	PaperClips	and	Zippers-Came	to	be	as	They	are.	Vintage,	1994.	ISBN	0679740392.
	 P.	van	Hardenberg.	Personal	communication,	April	2012.

12.14	Suggested	Projects

For	many	of	these	exercises,	you	will	find	it	useful	to	create	a	rake	 task	that	creates	a	specified	large
number	of	randomly-generated	instances	of	a	given	model	type.	You	will	also	want	to	deploy	a	’staging’
copy	of	your	app	on	Heroku	so	that	you	can	use	the	staging	database	for	experiments	without	modifying
the	production	database.

SaaS	Performance	and	Scaling:

Project	12.1.

Seed	the	staging	database	with	500	movies	(randomly	generated	is	fine)	 to	RottenPotatoes.	Profile	 its
deployed	 performance	 on	Heroku	 using	New	Relic.	Add	 fragment	 caching	 around	 the	movie	 partial
used	 by	 the	 index	 view	 and	 re-profile	 the	 app.	 How	much	 improvement	 in	 responsiveness	 do	 you
observe	for	the	index	view	once	the	cache	is	warmed	up?

http://techblog.netflix.com/2011/04
http://ai.stanford.edu/users/sahami/CS2013/
http://www.aosabook.org/en/nosql.html
http://doi.acm.org/10.1145/1476589.1476628

Project	12.2.

Continuing	the	previous	exercise,	use	httperf	to	compare	the	throughput	of	a	single	copy	of	your	app
on	 the	index	 action	with	 and	without	 fragment	 caching.	 (On	Heroku,	 by	 default	 any	 apps	 on	 a	 free
account	receive	1	“dyno”	or	one	unit	of	task	parallelism,	so	requests	are	performed	sequentially.)

Project	12.3.	 	 	 	Use	external	monitoring	 to	 analyze	a	 software	design	 from	 the	perspective	of	 a
significant	 external	 quality	 attribute	 such	 as	 functionality,	 performance,	 or	 availability.	 Note:	 The
margin	icon	identifies	projects	from	the	ACM/IEEE	2013	Software	Engineering	standard	(ACM	IEEE-
Computer	Society	Joint	Task	Force	2013).

Project	12.4.

Continuing	the	previous	exercise,	add	action	caching	for	the	index	view	so	that	if	no	sorting	or	filtering
options	are	specified,	the	index	action	just	returns	all	movies.	Compare	the	latency	and	throughput	with
and	without	action	caching.	Summarize	the	results	from	all	three	exercises	in	a	table.

Releases	and	feature	flags:

Project	12.5.

Investigate	 the	 availability	 cost	 of	 doing	 an	 “atomic”	 schema	 update	 and	 migration	 as	 described	 in
Section	12.4.	To	do	this,	repeat	the	following	sequence	of	steps	for	N	=	210,212,214:
	

1.	 Seed	the	staging	database	with	N	randomly-generated	movies	with	random	ratings.
2.	 Run	a	migration	on	the	staging	database	that	changes	the	rating	column	in	the	movies	table	from

a	string	to	an	integer	(1=G,	2=PG,	and	so	on).
3.	 Note	the	time	reported	by	rake	db:migrate.

Suppose	your	uptime	target	was	99.9%	over	any	30-day	window.	Quantify	the	effect	on	availability	of
doing	the	above	migration	without	bringing	your	service	down.

Project	12.6.	 			Outline	the	process	of	regression	testing	and	its	role	in	release	management.

Reliability:

Project	12.7.	 	 	 	List	approaches	to	minimizing	faults	that	can	be	applied	at	each	stage	of	a	Plan-
and-Document	lifecycle.

Project	12.8.

In	Section	5.2	we	integrated	third-party	authentication	into	RottenPotatoes	by	adding	an	authentication
provider	name	and	a	provider-specific	UID	to	the	Moviegoer	model.

Now	we’d	like	to	go	further	and	allow	the	same	moviegoer	to	log	in	to	the	same	account	with	any	one
of	several	authentication	providers.	That	is,	if	Alice	has	both	a	Twitter	account	and	a	Facebook	account,
she	should	be	able	to	log	in	to	the	same	RottenPotatoes	account	with	either	ID.
	

1.	 Describe	the	changes	to	existing	models	and	tables	that	are	necessary	to	support	this	scheme.
2.	 Describe	a	sequence	of	deployments	and	migrations	 that	make	use	of	feature	flags	 to	 implement

the	new	scheme	without	any	application	downtime.

Security:

Project	12.9.	Wired	Magazine’s	ThreatLevel	column	for	July	2012	reported	that	453,000	passwords	for
Yahoo!	Voice	users	were	stolen	by	hackers.	The	hackers	said,	in	a	note	posted	online,	that	the	passwords
were	stored	 in	cleartext	on	Yahoo’s	servers	and	 that	 they	used	a	SQL	injection	attack	 to	gather	 them.
Discuss.

Project	12.10.	 			Describe	secure	coding	and	defensive	coding	practices	in	general.

For	 the	 remaining	projects,	you	will	need	 to	 identify	a	working	 legacy	software	system	 that	you	will
inspect.	For	suggestions,	you	could	use	the	list	of	open-source	Rails	projects	at	Open	Source	Rails,	or
you	 could	 select	 one	 of	 two	 projects	 created	 by	 students	who	 have	 used	 this	 book:	 ResearchMatch,
which	helps	match	students	with	 research	opportunities	at	 their	university,	and	VisitDay,	which	helps
organize	meetings	between	students	and	faculty	members.

Project	12.11.	 			From	the	perspective	of	using	a	relational	database	management	system,	describe
secure	 coding	 and	 defensive	 coding	 practices.	 Does	 the	 system	 you’re	 examining	 follow	 these
practices?

Project	12.12.	From	the	perspective	of	building	a	SaaS	app	using	a	framework	such	as	Rails,	describe
some	specific	defensive	coding	practices.	Looking	at	Rails	security	guides	and	blogs	such	as	the	Basic
Rails	 security	 guide,	 this	 article	 from	 CodeClimate,	 and	 using	 Google	 to	 search	 for	 recent	 security
incidents	in	Rails	SaaS	apps,	which	security	problems	were	caused	by	failure	to	follow	these	practices?

Project	 12.13.	 	 	 	 Rewrite	 a	 simple	 program	 to	 remove	 common	 vulnerabilities,	 such	 as	 buffer
overflows,	integer	overflows,	and	race	conditions.

http://www.wired.com/threatlevel/2012/07/yahoo-breach
http://www.opensourcerails.com/
http://github.com/ucberkeley/researchmatch
http://github.com/vinsonchuong/meetinglibs
http://guides.rubyonrails.org/security.html
http://blog.codeclimate.com/blog/2013/03/27/rails-insecure-defaults

Project	12.14.	 	 	 	State	and	apply	 the	principles	of	 least	privilege	and	fail-safe	defaults.	How	are
these	applied	in	our	RottenPotatoes	app?

13.	Afterword

			Alan	Kay	(1940–)	received	the	2003	Turing	Award	for	pioneering	many	of	the
ideas	at	the	root	of	contemporary	object-oriented	programming	languages.	He	led	the	team	that

developed	the	Smalltalk	language,	from	which	Ruby	inherits	its	approach	to	object-orientation.	He
also	invented	the	“Dynabook”	concept,	the	precursor	of	today’s	laptops	and	tablet	computers,	which	he

conceived	as	an	educational	platform	for	teaching	programming.

The	best	way	to	predict	the	future	is	to	invent	it.
—Alan	Kay

13.1	Perspectives	on	SaaS	and	SOA
13.2	Looking	Backwards
13.3	Looking	Forwards
13.4	Last	Words
13.5	To	Learn	More
A.1	General	Guidance:	Read,	Ask,	Search,	Post
A.2	Overview	of	the	Bookware
A.3	Using	the	Bookware	VM
A.4	Working	With	Code:	Editors	and	Unix	Survival	Skills
A.5	Getting	Started	With	Secure	Shell	(ssh)
A.6	Getting	Started	With	Git	for	Version	Control
A.7	Getting	Started	With	GitHub
A.8	Deploying	to	the	Cloud	Using	Heroku
A.9	Checklist:	Starting	a	New	Rails	App
A.10	Fallacies	and	Pitfalls
A.11	To	Learn	More

13.1	Perspectives	on	SaaS,	SOA,	Ruby,	and	Rails

In	 this	 book	 you’ve	 been	mainly	 a	 user	 of	 a	 successful	 distributed	 architecture	 (the	Web,	 SOA)	 and
framework	(Rails).	As	a	successful	software	engineer	you’ll	likely	need	to	create	such	frameworks,	or
extend	existing	ones.	Paying	careful	attention	to	principles	that	made	these	frameworks	successful	will
help.

In	Chapter	2	we	pointed	out	 that	by	choosing	 to	build	SaaS,	some	architectural	choices	are	made	 for
you.	In	building	different	kinds	of	systems,	other	choices	might	be	appropriate,	but	for	reasons	of	scope,

we	 have	 focused	 on	 this	 one	 set	 of	 choices.	 But	 it’s	 worth	 pointing	 out	 that	 some	 of	 the	 important
architectural	principles	underlying	SaaS	and	SOA	apply	in	other	architectures	as	well,	and	as	Jim	Gray’s
quote	at	the	front	of	Chapter	3	suggests,	great	ideas	take	time	to	mature.

Rails	itself	took	off	with	the	shift	in	the	software	industry	towards	Software	as	a	Service	(SaaS)	using
Agile	development	and	deployed	via	cloud	computing.	Today	virtually	every	traditional	buy-and-install
program	 is	 offered	 as	 a	 service,	 including	 PC	 standard-bearers	 like	 Office	 (see	 Office	 365)	 and
TurboTax	 (see	 TurboTax	Online).	 Tools	 like	Rails	made	Agile	much	 easier	 to	 use	 and	 practice	 than
earlier	 software	 development	 methods.	 Remarkably,	 not	 only	 has	 the	 future	 of	 software	 been
revolutionized,	software	development	is	now	easier	to	learn!

13.2	Looking	Backwards

Figure	13.1:	The	Virtuous	Triangle	of	Engineering	SaaS	is	formed	from	the	three	software	engineering	crown	jewels	of	(1)	SaaS	on
Cloud	Computing,	(2)	Highly	Productive	Framework	and	Tools,	and	(3)	Agile	Development.

Figure	13.1,	first	seen	in	Chapter	1,	shows	the	three	“crown	jewels”	on	which	the	material	in	this	book
is	based.	To	understand	 this	virtuous	 triangle	you	needed	 to	 learn	many	new	 terms;	Figure	13.2	 lists
nearly	120	terms	from	just	the	first	three	chapters!

Figure	13.2:	Terms	introduced	in	the	first	three	chapters	of	this	book.

			Each	pair	of	“jewels”	forms	synergistic	bonds	that	support	each	other,	as	Figure	13.1	shows.	In
particular,	 the	 tools	 and	 related	 services	 of	Rails	makes	 it	much	 easier	 to	 follow	 the	Agile	 lifecycle.
Figure	 13.3	 shows	 our	 oft-repeated	 Agile	 iteration,	 but	 this	 time	 it	 is	 decorated	 with	 the	 tools	 and
services	that	we	use	in	this	book.	These	14	tools	and	services	support	both	following	the	Agile	lifecycle
and	developing	SaaS	apps.	Similarly,	Figure	13.4	summarizes	the	relationship	between	phases	of	Plan-
and-Document	lifecycles	and	their	Agile	equivalents,	showing	how	the	techniques	described	in	detail	in
this	book	play	similar	roles	to	those	in	earlier	software	process	models.

Rails	is	very	powerful	but	has	evolved	tremendously	since	version	1.0,	which	was	originally	extracted
from	 a	 specific	 application.	 Indeed,	 the	 Web	 itself	 evolved	 from	 specific	 details	 to	 more	 general
architectural	patterns:
	

From	static	documents	in	1990	to	dynamic	content	by	1995;
From	opaque	URIs	in	the	early	1990s	to	REST	by	the	early	2000s;
From	session	“hacks”	(fat	URIs,	hidden	fields,	and	so	on)	 in	the	early	1990s	to	cookies	and	real
sessions	by	the	mid	1990s;	and
From	setting	up	and	administering	your	own	ad-hoc	servers	 in	1990	to	deployment	on	“curated”
cloud	platforms	in	the	2000s.

The	programming	 languages	 Java	 and	Ruby	offer	 another	 demonstration	 that	 good	 incremental	 ideas
can	be	embraced	quickly	but	great	radical	ideas	take	time	before	they	are	accepted.

Java	and	Ruby	are	the	same	age,	both	appearing	in	1995.	Within	a	few	years	Java	became	one	of	the
most	popular	programming	languages,	while	Ruby	remained	primarily	of	interest	 to	the	programming
languages	 literati.	 Ruby’s	 popularity	 came	 a	 decade	 later	 with	 the	 release	 of	 Rails.	 Ruby	 and	 Rails
demonstrate	that	big	ideas	in	programming	languages	really	can	deliver	productivity	through	extensive
software	reuse.	Comparing	Java	and	its	frameworks	to	Ruby	and	Rails,	(Stella	et	al.	2008)	and	(Ji	and
Sedano	2011)	found	factors	of	3	to	5	reductions	in	number	of	lines	of	code,	which	is	one	indication	of

productivity.	 		

Figure	13.3:	An	iteration	of	the	Agile	software	lifecycle	and	its	relationship	to	the	chapters	in	this	book,	with	the	supporting	tools
(red/bold	letters)	and	supporting	services	(blue/italic	letters)	identified	with	each	step.

Waterfall/Spiral Agile Chapter
Requirements	gathering	and
analysis

BDD	with	short	iterations	so	customer	participates	in
design 7

Pair	programming	(pairs	constantly	reviewing	each

Periodic	code	reviews others’	code) 10

Periodic	design	reviews Pull	requests	drive	discussions	about	design	changes 10
Test	entire	design	after	building TDD	to	test	continuously	as	you	design 8
Post-implementation	Integration
Testing Continuous	integration	testing 12

Infrequent	major	releases Continuous	deployment 12

Figure	13.4:	While	agile	methods	aren’t	appropriate	for	all	projects,	the	agile	lifecycle	does	embrace	the	same	process	steps	as	traditional
models	such	as	waterfall	and	spiral,	but	reduces	each	step	in	scope	to	a	single	iteration	so	that	they	can	be	done	repeatedly	and	frequently,
constantly	refining	a	working	version	of	the	product.

13.3	Looking	Forwards

I’ve	always	been	more	interested	in	the	future	than	in	the	past.
—Grace	Murray	Hopper

Given	 this	 history	 of	 rapidly-evolving	 tools,	 patterns,	 and	 development	 methodologies,	 what	 might
software	engineers	look	forward	to	in	the	next	few	years?

One	 software	engineering	 technique	 that	we	expect	 to	become	popular	 in	 the	next	 few	years	 is	delta
debugging	(Zeller	2002).	It	uses	divide-and-conquer	to	automatically	find	the	smallest	input	change	to
that	will	 cause	 a	 bug	 to	 appear.	Debuggers	 usually	 use	 program	 analysis	 to	 detect	 flaws	 in	 the	 code
itself.	 In	 contrast,	 delta	 debugging	 identifies	 changes	 to	 the	 program	 state	 that	 lead	 to	 the	 bug.	 It
requires	two	runs,	one	with	the	flaw	and	one	without,	and	it	looks	at	the	differences	between	the	sets	of
states.	By	repeatedly	changing	the	inputs	and	re-running	the	program	using	a	binary	search	strategy	and
automated	 testing,	delta	debugging	methodically	narrows	 the	differences	between	 the	 two	runs.	Delta
debugging	discovers	dependencies	that	form	a	cause-effect	chain,	which	it	expands	until	it	identifies	the
smallest	set	of	changes	to	input	variables	that	causes	the	bug	to	appear.	Although	it	requires	many	runs
of	 the	 program,	 this	 analysis	 is	 done	 at	 full	 program	 speed	 and	 without	 the	 intervention	 of	 the
programmer,	so	it	saves	development	time.

Program	synthesis	may	be	ready	for	a	breakthrough.	The	state	of	the	art	today	is	that	given	incomplete
segments	 of	 programs,	 program	 synthesis	 tools	 can	 often	 supply	 the	missing	 code.	One	 of	 the	most
interesting	 uses	 of	 this	 technology	 is	 in	Microsoft	Office	 Excel	 2013,	 called	 the	Flash	Fill	 feature,
which	does	programming	by	example	(Gulwani	et	al.	2012).	You	give	examples	of	what	you	want	to	do
to	rows	or	columns	of	code,	and	Excel	will	attempt	to	repeat	and	generalize	what	you	do.	Moreover,	you
can	correct	its	attempts	to	steer	it	to	what	you	want	(Gantenbein	2012).

This	split	between	Plan-and-Document	and	Agile	development	may	become	more	pronounced	with	the
advances	 in	 practicality	 of	 formal	 methods.	 The	 size	 of	 programs	 that	 can	 be	 formally	 verified	 is
growing	over	 time,	with	 improvements	 in	 tools,	 faster	computers,	and	wider	understanding	of	how	to
write	formal	specifications.	If	the	work	of	careful	specification	in	advance	of	coding	could	be	rewarded
by	 not	 needing	 to	 test	 and	 yet	 have	 thoroughly	 verified	 programs,	 then	 the	 tradeoffs	would	 be	 crisp
around	 change.	 For	 formal	 methods	 to	 work,	 clearly	 change	 needs	 to	 be	 rare.	 When	 change	 is
commonplace,	Agile	is	the	answer,	for	change	is	the	essence	of	Agile.

http://en.wikipedia.org/wiki/Program_synthesis

While	Agile	works	better	than	other	software	methodologies	for	some	types	of	apps	today,	it	is	surely
not	 the	final	answer	 in	software	development.	 If	a	new	methodology	could	simplify	 including	a	good
software	 architecture	 and	 good	 design	 patterns	 while	 maintaining	 Agile’s	 ease	 of	 change,	 it	 could
become	more	popular.	Historically,	 a	 new	methodology	comes	along	every	decade	or	 two,	 so	 it	may
soon	be	time	for	new	one.

This	 book	 itself	 was	 developed	 during	 the	 dawn	 of	 the	 Massive	 Open	 Online	 Course	 (MOOC)
movement,	which	is	another	trend	that	we	predict	will	become	more	significant	in	the	next	few	years.
Like	many	other	advances	 in	 this	modern	world,	we	wouldn’t	have	MOOCs	without	SaaS	and	cloud
computing.	The	enabling	components	were:
	

Scalable	video	distribution	via	services	like	YouTube.
Sophisticated	autograders	running	on	cloud	computing	that	evaluate	assignments	immediately	yet
can	scale	to	tens	of	thousands	of	students.
Discussion	forums	as	a	scalable	solution	to	asking	questions	and	getting	answers	from	both	other
students	and	the	staff.

These	components	combine	 to	form	a	wonderful,	 low-cost	vehicle	for	students	around	 the	world.	For
example,	it	will	surely	improve	continuing	education	of	professionals	in	our	fast	changing	field,	enable
gifted	pre-college	students	to	go	beyond	what	their	schools	can	teach,	and	let	dedicated	students	around
the	world	who	do	not	have	access	 to	great	universities	 still	get	a	good	education.	MOOCs	may	even
have	the	side	effect	of	raising	the	quality	bar	for	traditional	courses	by	providing	viable	alternatives	to
ineffective	 lecturers.	 If	MOOCs	deliver	on	only	half	of	 these	opportunities,	 they	will	still	be	a	potent
force	in	higher	education.

13.4	Last	Words

Ultimately,	it	comes	down	to	taste.	It	comes	down	to	exposing	yourself	to	the	best	things	that	humans
have	done,	and	then	try	to	bring	those	things	into	what	you’re	doing.

—Steve	Jobs

Software	helped	put	humans	on	 the	moon,	 led	 to	 the	 invention	of	 lifesaving	CAT	scans,	 and	enables
eyewitness	citizen	 journalism.	By	working	as	a	software	developer,	you	become	part	of	a	community
that	has	the	power	to	change	the	world.

But	with	great	power	comes	great	responsibility.	Faulty	software	caused	the	loss	of	the	Ariane	V	rocket
and	Mars	Observer	as	well	as	the	deaths	of	several	patients	due	to	radiation	overdoses	from	the	Therac-
25	machine.

While	 the	 early	 stories	 of	 computers	 and	 software	 are	 dominated	 by	 “frontier	 narratives”	 of	 lone
geniuses	 working	 in	 garages	 or	 at	 startups,	 software	 today	 is	 too	 important	 to	 be	 left	 to	 any	 one
individual,	however	talented.	As	we	said	in	Chapter	10,	software	development	is	now	a	team	sport.

We	 believe	 the	 concepts	 in	 this	 book	 increase	 the	 chances	 of	 you	 being	 both	 a	 responsible	 software
developer	 and	 a	 part	 of	 a	 winning	 team.	 There’s	 no	 textbook	 for	 getting	 there;	 just	 keep	 writing,
learning,	and	refactoring	to	apply	your	lessons	as	you	go.

http://en.wikipedia.org/wiki/Massive_Open_Online_Course
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Mars_Observer
http://en.wikipedia.org/wiki/Therac-25

			And	as	we	said	in	the	first	chapter,	we	look	forward	to	becoming	passionate	fans	of	the	beautiful
and	long-lasting	code	that	you	and	your	team	create!

13.5	To	Learn	More

	 D.	Gantenbein.	Flash	fill	gives	Excel	a	smart	charge,	Feb	2012.	URL	http://research.microsoft.com/en-us/news/features/flashfill-020613.aspx.

	 S.	Gulwani,	W.	R.	Harris,	and	R.	Singh.	Spreadsheet	data	manipulation	using	examples.
Communications	of	the	ACM,	55(8):97–105,	2012.

	 F.	Ji	and	T.	Sedano.	Comparing	extreme	programming	and	waterfall	project	results.	Conference	onSoftware	Engineering	Education	and	Training,	pages	482–486,	2011.

	
L.	Stella,	S.	Jarzabek,	and	B.	Wadhwa.	A	comparative	study	of	maintainability	of	web	applications	on
J2EE,	.NET	and	Ruby	on	Rails.	10th	International	Symposium	on	Web	Site	Evolution,	pages	93–99,
October	2008.

	

A.	Zeller.	Isolating	cause-effect	chains	from	computer	programs.	In	Proceedings	of	the	10th	ACM
SIGSOFT	symposium	on	Foundations	of	software	engineering,	pages	1–10,	New	York,	NY,	USA,	Nov
2002.	ACM.	doi:	10.1145/587051.587053.	URL	http://www.st.cs.uni-
saarland.de/papers/fse2002/p201-zeller.pdf.

http://research.microsoft.com/en-us/news/features/flashfill-020613.aspx
http://www.st.cs.uni-saarland.de/papers/fse2002/p201-zeller.pdf

Appendix	A.	Using	the	Bookware

			Frances	Allen	(1932–)	received	the	2006	Turing	Award	for	pioneering
contributions	to	the	theory	and	practice	of	optimizing	compiler	techniques	that	laid	the	foundation	for

modern	optimizing	compilers	and	automatic	parallel	execution.

All	the	things	I	do	are	of	a	piece.	I’m	exploring	the	edges,	finding	new	ways	of	doing	things.	It	keeps
me	very,	very	engaged.

—Fran	Allen,	from	Computer	History	Museum	Fellow	Award	Plaque,	2000

Concepts

Not	only	is	this	book	all	about	creating	SaaS:	it	also	relies	heavily	on	SaaS,	IaaS	(infrastructure	as	a
service),	and	PaaS	(platform	as	a	service),	all	of	which	are	models	of	cloud	computing.	This	appendix
describes	the	cloud	technologies	that	not	only	simplify	your	life	as	a	student,	but	also	are	essential	parts
of	the	ecosystem	you	will	use	when	deploying	your	real	SaaS	apps.

As	of	this	writing,	all	of	these	cloud	services	offer	a	zero-cost	usage	tier	that	is	sufficient	for	doing	the
work	in	this	book.

All	 of	 the	 open-source	 software	 used	 in	 this	 book	 has	 been	 preinstalled	 in	 a	 virtual	 machine
image—a	representation	of	 the	complete	hard	drive	contents	of	a	computer	 that	would	have	 this
software	preinstalled.
To	use	a	virtual	machine	image,	you	deploy	it	on	a	hypervisor.	We	give	instructions	for	deploying
it	on	your	own	computer	using	the	open-source	VirtualBox	hypervisor	or	deploying	it	on	Elastic
Compute	Cloud	(EC2),	an	infrastructure	as	a	service	cloud	computing	product	from	Amazon	Web
Services.
Secure	Shell	 is	 a	widely-used	 protocol	 that	 allows	 secure	 access	 to	 remote	 services	 by	 using	 a
cryptographic	keypair	 rather	 than	a	password.	We	use	 it	 to	access	most	SaaS	services,	 including
GitHub	and	Heroku.
GitHub	is	a	SaaS	site	that	lets	you	back	up	your	version-controlled	projects	as	well	as	collaborate
on	them	with	other	developers.
Heroku	is	a	platform	as	a	service	provider	where	you	can	deploy	your	Rails	apps.

http://en.wikipedia.org/wiki/infrastructure_as_a_service
http://en.wikipedia.org/wiki/platform_as_a_service
http://en.wikipedia.org/wiki/cloud_computing
http://en.wikipedia.org/wiki/open-source_software
http://en.wikipedia.org/wiki/Virtual_appliance
http://en.wikipedia.org/wiki/hypervisor
http://virtualbox.org
http://en.wikipedia.org/wiki/infrastructure_as_a_service
http://en.wikipedia.org/wiki/Secure_Shell
http://github.com
http://en.wikipedia.org/wiki/Version_control
http://heroku.com
http://en.wikipedia.org/wiki/platform_as_a_service

A.1	General	Guidance:	Read,	Ask,	Search,	Post

Although	 we	 take	 steps	 in	 this	 book	 to	minimize	 the	 pain,	 such	 as	 using	 Test-Driven	 Development
(Chapter	8)	to	catch	problems	quickly	and	providing	a	VM	image	with	a	consistent	environment,	errors
will	occur.	You	can	react	most	productively	by	remembering	 the	acronym	RASP:	Read,	Ask,	Search,
Post.

Read	 the	 error	message.	 Error	messages	 can	 look	 disconcertingly	 long,	 but	 a	 long	 error	message	 is
often	your	friend	because	it	gives	a	strong	hint	of	the	problem.	There	will	be	places	to	look	in	the	online
information	associated	with	the	class	given	the	error	message.

Ask	a	coworker.	If	you	have	friends	in	the	class,	or	have	instant	messaging	enabled,	put	the	message	out
there.

Search	for	the	error	message.	You’d	be	amazed	at	how	often	experienced	developers	deal	with	an	error
by	using	a	search	engine	such	as	Google	or	a	programmers’	forum	such	as	StackOverflow	to	 look	up
key	words	or	key	phrases	in	the	error	message.

Post	 a	 question	 on	 a	 site	 like	 StackOverflow	 (after	 searching	 to	 see	 if	 a	 similar	 question	 has	 been
asked!),	 sites	 that	 specialize	 in	 helping	 out	 developers	 and	 allow	 you	 to	 vote	 for	 the	 most	 helpful
answers	to	particular	questions	so	that	they	eventually	percolate	to	the	top	of	the	answer	list.

A.2	Overview	of	the	Bookware

The	bookware	consists	of	three	parts.

The	first	is	a	uniform	development	environment	preloaded	with	all	the	tools	referenced	in	the	book.	For
convenience	and	uniformity,	this	environment	is	provided	as	a	virtual	machine	image.

The	second	comprises	a	set	of	excellent	SaaS	sites	aimed	at	developers:	GitHub,	Heroku,	and	Pivotal
Tracker.	Disclaimer:	At	the	time	of	this	writing,	the	free	offerings	from	the	above	sites	were	sufficient
to	do	the	work	in	this	book.	However,	the	providers	of	those	services	or	tools	may	decide	at	any	time	to
start	charging,	which	would	be	beyond	our	control.

The	third	is	supplementary	material	connected	to	the	book,	which	is	free	whether	you’ve	purchased	the
book	or	not:
	

The	 book’s	web	 site	 (http://saasbook.info)	 contains	 the	 latest	 errata	 for	 each	 book	 version,
links	 to	 supplementary	material	 online,	 a	bug	 reporting	mechanism	 if	you	 find	 errors,	 and	high-
resolution	 renderings	 of	 the	 figures	 and	 tables	 in	 case	 you	 have	 trouble	 reading	 them	 on	 your
ebook	reader
Pastebin	 (http://pastebin.com/u/saasbook)	 contains	 syntax-highlighted,	 copy-and-pastable
code	excerpts	for	every	example	in	the	book
Vimeo	(http://vimeo.com/saasbook)	hosts	all	the	screencasts	referenced	in	the	book

A.3	Using	the	Bookware	VM

http://stackoverflow.com
http://stackoverflow.com
http://en.wikipedia.org/wiki/Virtual_appliance
http://github.com
http://heroku.com
http://pivotaltracker.com
http://saasbook.info
http://pastebin.com/u/saasbook
http://vimeo.com/saasbook

Virtual	machine	(VM)	technology	allows	a	single	physical	computer	to	run	one	or	more	guest	operating
systems	(OS)	“on	top	of”	the	physical	computer’s	built-in	OS,	in	such	a	way	that	each	guest	believes	it
is	running	on	the	real	hardware.	These	virtual	machines	can	be	“powered	on”	and	“powered	off”	at	will,
without	interfering	with	the	host	computer’s	built-in	OS	(the	host	OS).	A	virtual	machine	image	is	a	file
that	contains	the	guest	OS	and	a	collection	of	preinstalled	software.	A	hypervisor	is	an	application	that
facilitates	 running	VMs	 by	 “instantiating”	 a	 virtual	machine	 image.	We	 have	 packaged	 the	 software
needed	to	do	the	work	in	this	book	as	a	VM	image	whose	guest	OS	is	GNU/Linux.	Linux	is	an	open-
source	implementation	of	the	kernel	(core	functionality)	of	Unix,	one	of	the	most	influential	operating
systems	 ever	 created	 and	 the	most	widely-used	 environment	 for	 SaaS	 development	 and	 deployment.
GNU	 (a	 recursive	 acronym	 for	GNU’s	Not	Unix)	 is	 a	 collection	 of	 open-source	 implementations	 of
nearly	all	of	the	important	Unix	applications,	especially	those	used	by	developers.

The	VM	image	can	be	used	in	one	of	two	ways:

	

1.	 On	 your	 own	 computer:	 The	 free	 VirtualBox	 hypervisor	 was	 originally	 developed	 by	 Sun
Microsystems	(now	part	of	Oracle).	You	can	download	and	run	VirtualBox	on	a	Linux,	Windows,
or	Mac	OS	X	host	computer,	as	long	as	the	host	computer	has	an	Intel-compatible	processor.	You
then	download	the	VM	image	file	and	deploy	it	on	VirtualBox.

2.	 On	Amazon’s	cloud:	With	this	method,	you	don’t	download	anything—you	start	an	Amazon	EC2
(Elastic	Compute	Cloud)	virtual	machine	based	on	 the	Amazon	Machine	 Image	 (AMI)	VM	 file
containing	the	bookware.

You	can	find	instructions	for	both	methods	of	VM	deployment	at	http://www.saasbook.info/bookware-
vm-instructions.

If	you’re	thinking	about	installing	the	software	yourself,	be	aware	that	the	explanations	and	examples	in
each	version	of	the	book	have	been	cross-checked	against	the	specific	versions	of	Ruby,	Rails,	and	other
software	included	in	the	VM.	Changes	across	versions	are	significant,	and	running	the	book	examples
with	 the	wrong	 software	versions	may	 result	 in	 syntax	errors,	 incorrect	behavior,	 differing	messages,
silent	failure,	or	other	problems.	To	avoid	confusion,	we	strongly	recommend	you	use	the	VM	until	you
are	 familiar	 enough	with	 the	 environment	 to	 distinguish	 errors	 in	 your	 own	 code	 from	 errors	 arising
from	 incompatible	 versions	 of	 software	 components.	We	prepared	 the	VM	by	 running	 the	vm-setup
shell	 script	 in	 our	 public	GitHub	 repo	 to	populate	 a	 clean	Ubuntu	 image.	You	must	be	 familiar	with
Unix	command	line	utilities	to	attempt	this	process;	there	is	no	GUI.

ELABORATION:	Free	and	Open	Source	Software
Linux	was	originally	created	by	Finnish	programmer	Linus	Torvalds,	who	wanted	to	create	a	free	and	full-featured	version	of	the
famous	Unix	operating	system	for	his	own	use.	The	GNU	project	was	started	by	Richard	Stallman,	creator	of	the	Emacs	editor	and
founder	of	the	Free	Software	Foundation	(which	stewards	GNU),	an	illustrious	developer	with	very	strong	opinions	about	the	role	of
open	 source	 software.	 Both	 Linux	 and	 GNU	 are	 constantly	 being	 improved	 by	 contributions	 from	 thousands	 of	 collaborators
worldwide;	 in	 fact,	 Torvalds	 later	 created	Git	 to	manage	 this	 large-scale	 collaboration.	Despite	 the	 apparent	 lack	 of	 centralized
authority	 in	 their	 development,	 the	 robustness	 of	GNU	and	Linux	 compare	 favorably	 to	 proprietary	 software	 developed	under	 a
traditional	centralized	model.	This	phenomenon	is	explored	in	Eric	Raymond’s	The	Cathedral	and	the	Bazaar,	which	some	consider
the	seminal	manifesto	of	the	Free	and	Open	Source	Software	(FOSS)	movement.

A.4	Working	With	Code:	Editors	and	Unix	Survival	Skills

http://en.wikipedia.org/wiki/hypervisor
http://en.wikipedia.org/wiki/Kernel_(computing)
http://virtualbox.org
http://www.saasbook.info/bookware-vm-instructions
http://github.com/saasbook/courseware
http://catb.org/~esr/writings/homesteading/cathedral-bazaar/

You	will	save	yourself	a	great	deal	of	grief	by	working	with	an	editor	that	supports	syntax	highlighting
and	automatic	indentation	for	the	language	you	use.	You	can	either	edit	files	directly	on	the	VM,	or	use
the	VirtualBox	“shared	folders”	feature	 to	make	some	directories	on	your	VM	available	as	folders	on
your	Mac	or	Windows	PC	so	that	you	can	run	a	native	editor	on	your	Mac	or	PC.

Many	Integrated	Development	Environments(IDEs)	 that	 support	Ruby,	 including	Aptana,	NetBeans,
and	RubyMine,	perform	syntax	highlighting,	indentation	and	other	useful	tasks.	While	these	IDEs	also
provide	a	GUI	for	other	development-related	tasks	such	as	running	tests,	in	this	book	we	use	command-
line	 tools	 for	 these	 tasks	 for	 three	 reasons.	 First,	 unlike	 IDEs,	 the	 command	 line	 tools	 are	 the	 same
across	all	platforms.	Second,	we	place	heavy	emphasis	in	the	book	on	automation	to	avoid	mistakes	and
improve	 productivity;	 GUI	 tasks	 often	 cannot	 be	 automated,	 whereas	 command	 line	 tools	 can	 be
composed	into	scripts,	an	approach	central	to	the	Unix	philosophy.	Third,	understanding	what	tools	are
involved	in	each	aspect	of	development	helps	roll	back	the	“magic	curtain”	of	IDE	GUIs.	We	believe
this	 is	helpful	when	learning	a	new	system	because	if	something	goes	wrong	while	using	the	GUI,	 to
find	the	problem	you	need	some	understanding	of	how	the	GUI	actually	does	the	tasks.

With	this	in	mind,	there	are	two	ways	to	edit	files	on	the	VM.	The	first	is	to	run	an	editor	on	the	VM
itself.	We’ve	 preinstalled	 two	 popular	 editors	 on	 the	VM.	One	 is	vim,	 a	 lighter-weight	 editor	 that	 is
customizable	 enough	 to	 include	 language-aware	 syntax	 highlighting	 and	 auto-indentation.	 Here’s	 a
collection	of	 links	 to	 tutorials	 and	 screencasts	 that	 cover	 this	popular	 editor.	The	other	 is	Emacs,	 the
granddaddy	of	customizable	editors	and	one	of	 the	creations	of	 the	illustrious	Richard	Stallman.	The
canonical	 tutorial	 is	 provided	 by	 the	 Free	 Software	 Foundation,	 though	 many	 others	 are	 available.
We’ve	included	automatic	support	for	editing	Ruby	and	Rails	apps	in	both	vim	and	emacs	on	the	VM.

vim	stands	for	“vi	improved,”	since	it	began	as	a	much-enhanced	version	of	the	early	Unix	editor	vi,	written	in	1976	by	Unix	legend,	Sun
co-founder	and	Berkeley	alum	Bill	Joy.

The	 second	way	 to	 edit	 files	 is	 to	 edit	 natively	 on	 your	Mac	 or	Windows	 computer,	which	 requires
setting	 up	 the	 Shared	 Folders	 feature	 of	 VirtualBox	 as	 explained	 at
http://www.saasbook.info/bookware-vm-instructions.	 Free	 editors	 that	 support	 Ruby	 include
TextWrangler	for	Mac	OS	X	or	Notepad++	for	Windows.

Don’t	 copy	and	paste	 code	 into	or	out	 of	 a	word	processor	 such	as	Microsoft	Word	or	Pages.	Many
word	processors	helpfully	convert	 regular	quotes	 (”)	 to	“smart	quotes,”	sequences	of	hyphens	 (--)	 to
em-dashes	 (—),	 and	 other	 conversions	 that	 will	 make	 your	 code	 incorrect,	 cause	 syntax	 errors,	 and
generally	bring	you	grief.	Don’t	do	it.

A.5	Getting	Started	With	Secure	Shell	(ssh)

The	shell	is	the	Unix	program	that	lets	you	type	commands	and	write	scripts	to	automate	simple	tasks,
and	before	the	widespread	adoption	of	Graphical	User	Interfaces,	the	shell	was	the	only	way	to	interact
with	a	Unix	system.

sh	was	written	by	Steve	Bourne	in	1977	to	replace	Unix	co-creator	Ken	Thompson’s	original	shell.	bash	is	a	portable	and	compatible
GNU	replacement	for	sh	whose	name	stands	for	Bourne-Again	Shell.

http://en.wikipedia.org/wiki/Integrated_Development_Environments
http://aptana.com/
http://en.wikipedia.org/wiki/Vim_(text_editor)
http://code.tutsplus.com/articles/25-vim-tutorials-screencasts-and-resources--net-14631
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/Richard_Stallman
http://www.gnu.org/software/emacs/tour/
http://en.wikipedia.org/wiki/vi
http://en.wikipedia.org/wiki/Bill_Joy
http://www.saasbook.info/bookware-vm-instructions
http://www.barebones.com/products/textwrangler/
http://notepad-plus-plus.org/
http://en.wikipedia.org/wiki/shell
http://en.wikipedia.org/wiki/Bash_(Unix_shell)

When	Unix	was	born,	 there	was	no	Internet;	users	could	only	run	a	shell	by	logging	in	from	a	dumb
terminal	connected	physically	to	the	computer.	By	1983	the	Internet	had	reached	many	universities	and
companies,	 so	 a	 new	 tool	 called	 Remote	 Shell	 or	 rsh	 appeared	 that	 allowed	 you	 to	 login	 or	 run
commands	on	an	Internet-connected	remote	computer	on	which	you	had	an	account.	Here	is	an	example
of	using	rsh	from	the	command	line:	http://pastebin.com/eLDdcDrz

	1				rsh	-l	fox	eecs.berkeley.edu	ps	-ef

This	 command	 would	 attempt	 to	 login	 as	 user	 fox	 on	 the	 computer	 eecs.berkeley.edu,	 run	 the
command	ps	-ef	 (which	gives	 information	 about	which	 applications	 are	 running	on	 that	 computer),
and	print	the	output	locally.	Omitting	ps	-ef	would	establish	an	interactive	shell	session	on	the	remote
computer.

rsh	first	appeared	in	version	4.2	of	the	Berkeley	Software	Distribution	(BSD),	the	open-source	implementation	of	Unix	created	at
UC	Berkeley.

But	 rsh	 is	 insecure:	 access	 to	 the	 remote	 computer	 usually	 required	 transmitting	 your	 password
unencrypted	 or	 “in	 the	 clear”	 over	 the	 Internet,	 leaving	 it	 vulnerable	 to	 “sniffer”	 programs
eavesdropping	on	the	network	to	harvest	passwords.	In	1995,	Tatu	Ylönen	at	the	Helsinki	University	of
Technology	developed	Secure	Shell	 or	ssh	 as	 a	 secure	 “drop-in	 replacement”	 for	rsh.	As	with	rsh,
once	the	connection	to	the	remote	computer	is	established	you	can	either	run	an	interactive	shell	or	run
arbitrary	 commands	 whose	 output	 is	 delivered	 securely	 back	 to	 your	 computer	 over	 the	 encrypted
connection;	in	the	latter	case,	we	sometimes	say	the	data	is	tunnelled	over	ssh.	But	rather	than	relying
on	a	password,	ssh	relies	on	a	keypair	and	key	exchange	using	the	same	techniques	and	algorithms	as
SSL/TLS	(Section	12.9),	so	your	private	key	never	leaves	your	computer.

OpenSSL	is	an	open-source	volunteer-maintained	library	used	by	ssh	and	many	SSL/TLS	implementations.	Fortunately,	ssh	doesn’t	use
the	part	of	OpenSSL	containing	the	catastrophic	Heartbleed	bug	discovered	in	2014.

Because	ssh	 is	 secure,	 ubiquitous,	 and	 doesn’t	 require	 exposing	 your	 password	 or	 any	 other	 secrets,
many	services	rely	on	 it	 for	remote	access,	either	as	 the	default	method	(GitHub)	or	 the	only	method
(Heroku).	Private	and	public	keys	come	in	pairs,	and	both	halves	are	important.	If	you	lose	the	private
key	paired	to	a	given	public	key,	any	resources	that	relied	on	your	possession	of	that	key	will	become
irrevocably	 inaccessible	 forever.	 If	you	 lose	 the	public	key	paired	 to	a	given	private	key,	you	may	be
able	to	retrieve	a	copy	of	it	from	one	of	the	other	services	to	which	you	still	have	access—though	some
services	don’t	even	allow	you	 to	view	public	keys	you’ve	uploaded,	for	added	security.	So	 treat	your
keypairs	like	a	passport:	personal,	valuable,	and	long-lived.

Thus	 a	 key	 step	 in	 preparing	 your	 development	 environment	 is	 generating	 a	 keypair	 (if	 you	 don’t
already	have	one),	ensuring	its	private	key	part	is	on	all	the	computers	you	use	for	development	and	its
public	 key	 part	 is	 added	 to	 all	 the	 services	 that	 support	 convenient	 and	 secure	 access	 via	 ssh.	 As
Figure	A.1	 shows,	 for	 this	 book	 this	means	 keeping	 the	 private	 key	 on	 both	 your	 computer	 and	 the
bookware	VM,	whether	deployed	locally	using	VirtualBox	or	on	Amazon	EC2.

http://en.wikipedia.org/wiki/dumb_terminal
http://en.wikipedia.org/wiki/Remote_Shell
http://pastebin.com/eLDdcDrz
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_shell_tunneling
http://en.wikipedia.org/wiki/Heartbleed

Figure	A.1:	Your	public	key	is	copied	to	the	services	you	want	to	access,	while	your	private	key	is	stored	only	on	the	computer(s)	from
which	you	want	to	access	them.	Public	and	private	keys	for	each	pair	are	shown	in	the	same	color,	with	a	lock	indicating	the	public	key.
(a)	When	running	the	bookware	VM	on	VirtualBox,	you	must	copy	the	private	key	you	created	on	your	computer	to	the	VirtualBox	VM.
(b)	Running	the	bookware	VM	on	Amazon	EC2	also	requires	connecting	to	your	EC2	instance	from	your	computer	via	ssh.	One	way	to
do	this	in	the	EC2	instance	setup	process	is	to	have	Amazon	generate	a	new	keypair	for	this	purpose,	shown	in	grey.	(c)	Another	option
for	EC2	is	to	upload	your	existing	keypair	to	AWS,	so	you	use	the	same	key	for	accessing	both	your	AWS	instance	and	all	the	services.	In
this	last	scenario,	both	the	private	and	the	public	key	end	up	on	the	VM.

ssh	comes	from	the	Unix	world,	so	it	expects	a	Unix-like	command	line	environment.	Both	Mac	OS	X
(via	 the	 Terminal	 app)	 and	 Linux	 (via	 xterm)	 have	 one,	 but	 Windows	 does	 not.	 We	 therefore
recommend	the	use	of	the	free	Git	for	Windows,	which	provides	not	only	superior	support	for	the	Git
version	control	system	(which	we’ll	meet	shortly)	on	Windows,	but	also	provides	a	Windows	version	of
bash,	 the	 Unix	 shell	 program,	 that	 provides	 a	 Unix-like	 environment	 for	 supporting	 ssh	 and	 other
commonly-used	commands.	The	rest	of	this	section,	and	the	online	tutorials	and	resources	to	which	it
refers,	assume	that	Windows	users	have	installed	this	tool.

If	you	don’t	already	have	a	keypair	on	your	computer,	we	recommend	GitHub’s	excellent	instructions
for	generating	a	new	keypair,	which	includes	instructions	for	Mac	OS,	Linux,	and	Windows	(with	Git
for	Windows	 installed),	 and	 adding	 the	 public	 key	 to	 your	 GitHub	 account.	 (We	will	 cover	 GitHub
basics	in	Section	A.7.)

Some	people	use	different	ssh	keypairs	for	different	services,	to	avoid	putting	all	their	eggs	in	one	basket	in	case	one	private	key	is
compromised.

ELABORATION:	What	about	the	Amazon	AWS	keypair?
AWS—see	Amazon	Web	Services

If	you’re	deploying	the	bookware	VM	on	Amazon	Web	Services	(AWS)	(as	described	on	the	book’s	web	site),	you’ll	see	that	the
AWS	setup	console	asks	you	to	either	generate	a	new	keypair	or	use	your	existing	public	key.	In	either	case,	AWS	places	the	public
key	in	the	virtual	machine	(AMI)	image	prior	to	launch,	allowing	you	to	log	into	it	via	ssh	with	the	corresponding	private	key.	If
you	use	AWS’s	Web	interface	to	generate	a	new	keypair,	be	aware	that	all	it’s	really	doing	is	running	ssh-keygen	for	you.

A.6	Getting	Started	With	Git	for	Version	Control

http://www.saasbook.info/bookware-vm-instructions/ec2
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#how-to-generate-your-own-key-and-import-it-to-aws
http://msysgit.github.io/
https://help.github.com/articles/generating-ssh-keys
http://www.saasbook.info/bookware-vm-instructions

Version	control,	also	called	source	code	control	or	 software	configuration	management	 (SCM),	 is	 the
process	of	keeping	track	of	the	history	of	changes	to	a	set	of	files.	It	can	tell	who	made	each	change	and
when,	 reconstruct	one	or	more	 files	as	 they	existed	at	 some	point	 in	 the	past,	 or	 selectively	combine
changes	made	 by	 different	 people.	A	 version	 control	 system	 (VCS)	 is	 a	 tool	 that	 helps	manage	 this
process.	For	 individual	developers,	SCM	provides	a	 timestamped	and	annotated	history	of	changes	to
the	 project	 and	 an	 easy	 way	 to	 undo	 changes	 that	 introduce	 bugs.	 Chapter	 10	 discusses	 the	 many

additional	benefits	of	SCM	for	small	teams.	 		

SCM	or	VCS?	Confusingly,	the	abbreviations	SCM	and	VCS	are	often	used	interchangeably.

We	 will	 be	 using	 Git	 for	 version	 control.	 Cloud-based	 Git	 hosting	 services	 like	 GitHub,	 while	 not
required	for	Git,	are	highly	desirable	because	 they	enable	small	 teams	to	collaborate	conveniently	(as
Chapter	10	describes)	and	give	individual	developers	a	place	to	back	up	their	code.	This	section	covers
the	basics	of	Git.	The	next	section	covers	basic	setup	instructions	for	GitHub,	though	other	cloud-based
Git	services	are	available	as	well.

Linus	Torvalds	invented	Git	to	assist	with	version	control	on	the	Linux	project.	You	should	read	this	section	even	if	you’ve	used	other
VCSs	like	Subversion,	as	Git’s	conceptual	model	is	quite	different.

Like	 all	 version	 control	 systems,	 a	 key	 concept	 in	Git	 is	 the	 project	 repository,	 usually	 shortened	 to
repo,	which	holds	the	complete	change	history	of	some	set	of	files	that	make	up	a	project.	To	start	using
Git	to	track	a	project,	you	first	cd	to	the	project’s	top-level	directory	and	use	the	command	git	init,
which	initializes	an	empty	repo	based	in	that	directory.	Tracked	files	are	those	that	are	a	permanent	part
of	the	repo,	so	their	revision	information	is	maintained	and	they	are	backed	up;	git	add	is	used	to	add	a
file	to	the	set	of	tracked	files.	Not	every	project	file	needs	to	be	tracked—for	example,	intermediate	files
created	automatically	as	part	of	the	development	process,	such	as	log	files,	are	usually	untracked.

Screencast	A.6.1	illustrates	the	basic	Git	workflow.	When	you	start	a	new	project,	git	init	sets	up	the
project’s	root	directory	as	a	Git	repo.	As	you	create	files	in	your	project,	for	each	new	file	you	use	git
add	filename	 to	cause	the	new	file	 to	be	tracked	by	Git.	When	you	reach	a	point	where	you’re	happy
with	the	current	state	of	the	project,	you	commit	 the	changes:	Git	prepares	a	list	of	all	of	the	changes
that	will	be	part	of	this	commit,	and	opens	that	list	in	an	editor	so	you	can	add	a	descriptive	comment.
Which	editor	to	use	is	determined	by	a	configuration	setting,	as	described	below.	Committing	causes	a
snapshot	 of	 the	 tracked	 files	 to	 be	 recorded	 permanently	 along	with	 the	 comments.	 This	 snapshot	 is
assigned	a	commit	ID,	a	40-digit	hexadecimal	number	that,	surprisingly,	is	unique	in	the	universe	(not
just	 within	 this	 Git	 repo,	 but	 across	 all	 repos);	 an	 example	 might	 be
1623f899bda026eb9273cd93c359326b47201f62.	This	commit	ID	is	the	canonical	way	to	refer	to	the
state	of	the	project	at	that	point	in	time,	but	as	we’ll	see,	Git	provides	more	convenient	ways	to	refer	to	a
commit	besides	the	cumbersome	commit	ID.	One	common	way	is	to	specify	a	prefix	of	the	commit	that
is	unique	within	this	repo,	such	as	1623f8	for	the	example	above.

The	SHA-1	algorithm	is	used	to	compute	the	40-digit	one-way	hash	of	a	representation	of	the	entire	tree	representing	the	project	at	that
point	in	time.

To	specify	that	Git	should	use	the	vim	editor	to	let	you	make	your	changes,	you	would	say	git	config

http://en.wikipedia.org/wiki/Repository_(version_control)
http://en.wikipedia.org/wiki/SHA-1

--global	core.editor	'vim'.	It	doesn’t	matter	what	directory	you’re	in	when	you	do	this,	since	--
global	 specifies	 that	 this	 option	 should	 apply	 to	 all	 your	 Git	 operations	 in	 all	 repos.	 (Most	 Git
configuration	 variables	 can	 also	 be	 set	 on	 a	 per-repo	 basis.)	 Other	 useful	 values	 for	 this	 particular
setting	are	'mate	-w'	for	the	TextMate	editor	on	MacOS,	'edit	-w'	for	TextWrangler	on	MacOS,	and
the	rather	unwieldy	”'C:/Program	Files/Notepad++/notepad++.exe'	-multiInst	-notabbar	-
nosession	-noPlugin”	 for	Windows.	 In	all	cases,	 the	various	quote	marks	are	necessary	 to	prevent
spaces	from	dividing	up	the	name	of	the	editor	into	multiple	command-line	arguments.

Unlike	MacOS,	the	Windows	shell	(command	prompt)	diverges	from	Unix	conventions,	so	many	Unix	tools	don’t	work	properly.	We
recommend	you	develop	using	the	Linux-based	VM	rather	than	Windows.

Screencast	A.6.1:	Basic	Git	flow	for	a	single	developer
In	this	simple	workflow,	git	init	is	used	to	start	tracking	a	project	with	Git,	git	add	and	git	commit
are	used	to	add	and	commit	two	files.	One	file	 is	 then	modified,	and	when	git	status	 shows	 that	a
tracked	 file	 has	 some	 changes,	 git	 diff	 is	 used	 to	 preview	 the	 changes	 that	 would	 be	 committed.
Finally	 git	 commit	 is	 used	 again	 to	 commit	 the	 new	 changes,	 and	 git	 diff	 is	 used	 to	 show	 the
differences	between	the	two	committed	versions	of	one	of	the	files,	showing	that	git	diff	can	either
compare	two	commits	of	a	file	or	compare	the	current	state	of	a	file	with	some	previous	commit.

It’s	important	to	remember	that	while	git	commit	permanently	records	a	snapshot	of	the	current	repo
state	 that	can	be	reconstructed	at	any	 time	 in	 the	future,	 it	does	not	create	a	backup	copy	of	 the	repo
anywhere	else,	nor	make	your	changes	accessible	to	fellow	developers.	The	next	section	describes	how
to	use	a	cloud-based	Git	hosting	service	for	those	purposes.

ELABORATION:	Add,	commit,	and	the	Git	index
The	simplified	explanation	of	Git	above	omits	discussion	of	the	index,	a	staging	area	for	changes	to	be	committed.	git	add	is	used
not	only	to	add	a	new	file	to	the	project,	but	also	to	stage	an	existing	file’s	state	for	committing.	So	if	Alice	modifies	existing	file
foo.rb,	she	would	need	to	git	add	foo.rb	to	cause	her	changes	to	be	committed	on	the	next	git	commit.	The	reason	for	separating
the	steps	is	that	git	add	snapshots	the	file	immediately,	so	even	if	the	commit	occurs	later,	the	version	that	is	committed	corresponds
to	the	file’s	state	at	the	time	of	git	add.	(If	you	make	subsequent	changes	to	the	file,	you	should	use	git	add	again	 to	get	 those
changes	into	the	index.)	We	simplified	the	discussion	by	using	-a	option	to	git	commit,	which	means	“commit	all	current	changes
to	tracked	files,	whether	or	not	git	add	was	used	to	add	them.”	(git	add	is	still	necessary	to	add	a	new	file.)

A.7	Getting	Started	With	GitHub

A	variety	of	cloud-based	Git	hosting	services	exist.	We	recommend	and	give	 instructions	for	GitHub.
GitHub’s	free	plan	gives	you	as	many	projects	(repos)	as	you	want,	but	all	are	publicly	readable.	Paid
plans	allow	you	to	have	private	repos.	If	you	are	a	student	or	a	teacher,	you	can	get	a	limited	number	of
private	repos	by	requesting	a	free	educational	account.

To	communicate	with	most	cloud-based	Git	 services,	you	add	your	public	key	 to	 the	service,	usually
through	a	browser-based	interface.	The	corresponding	private	key	on	your	development	computer	then
allows	you	to	create	a	remote	copy	of	a	repo	there	and	push	changes	to	it	from	your	local	repo.	Other
developers	can,	with	your	permission,	both	push	their	own	changes	and	pull	your	changes	and	others’
changes	from	that	remote.

http://vimeo.com/34754947
http://github.com/edu

You’ll	need	to	do	the	following	steps	to	setup	GitHub.	This	section	assumes	you	have	already	setup	an
ssh	keypair	as	directed	in	Section	A.5;	you	should	perform	these	steps	from	any	computer	holding	the

private	key	from	which	you	want	to	access	GitHub.	 		

	

1.	 Using	 the	Mac	or	Linux	Terminal	or	 the	Git	Bash	 terminal	on	Windows,	 tell	Git	your	name	and
email	address,	so	that	in	a	multi-person	project	each	commit	can	be	tied	to	the	committer:

http://pastebin.com/24VYTKR5

	1	git	config	--global	user.name	’Andy	Yao’

	2	git	config	--global	user.email	’yao@acm.org’

2.	 To	create	a	GitHub	repo	that	will	be	a	remote	of	your	existing	project	repo,	fill	out	and	submit	the
New	Repository	form	and	note	the	repo	name	you	chose.	A	good	choice	is	a	name	that	matches	the
top-level	directory	of	your	project,	such	as	myrottenpotatoes.

3.	 Back	on	your	development	computer,	 in	a	 terminal	window	cd	 to	 the	 top	 level	of	your	project’s
directory	(where	you	previously	typed	git	init)	and	 type	 the	following,	 replacing	myusername
with	your	GitHub	username	and	myreponame	with	the	repository	name	you	chose	in	the	previous
step:

http://pastebin.com/K8q7KiYy

	1	git	remote	add	origin	git@github.com:myusername/myreponame.git

	2	git	push	origin	master

Note:	 If	 you’re	 accessing	 GitHub	 from	 within	 an	 organization	 whose	 firewall	 blocks	 ssh
connections	on	TCP	port	22—possible	symptoms	include	error	messages	such	as	“Connection
timed	out”	or	“Connection	refused”	when	you	perform	the	GitHub	access	commands	below
—this	article	explains	how	you	can	instead	perform	these	operations	over	HTTP	and	HTTPS,
which	are	not	blocked	by	most	 firewalls.	The	disadvantage	 is	 that	you’ll	have	 to	 type	your
GitHub	password	for	each	operation,	rather	than	relying	on	ssh	key	exchange.	If	you	find	it
necessary	to	use	this	alternate	method,	you	would	replace	the	first	command	above	with	the
following:

http://pastebin.com/ySXXUG80

	1	git	remote	add	origin	https://github.com/myusername/myreponame.git

The	first	command	tells	Git	that	you’re	adding	a	new	remote	for	your	repo	located	at	GitHub,	and	that
the	short	name	origin	will	be	used	 from	now	on	 to	 refer	 to	 that	 remote.	 (This	name	 is	conventional
among	 Git	 users	 for	 reasons	 explained	 in	 Chapter	 10.)	 The	 second	 command	 tells	 Git	 to	 push	 any
changes	from	your	local	repo	to	the	origin	remote	that	aren’t	already	there.

http://pastebin.com/24VYTKR5
https://github.com/repositories/new
http://pastebin.com/K8q7KiYy
http://en.wikipedia.org/wiki/Firewall_(computing)
https://help.github.com/articles/which-remote-url-should-i-use
http://pastebin.com/ySXXUG80

These	account	setup	and	key	management	steps	only	have	to	be	done	once.	The	process	of	creating	a
new	repo	and	using	git	remote	 to	add	it	must	be	done	for	each	new	project.	Each	time	you	use	git
push	in	a	particular	repo,	you	are	propagating	all	changes	to	the	repo	since	your	last	push	to	the	remote,
which	has	the	nice	side	effect	of	keeping	an	up-to-date	backup	of	your	project.

Figure	A.2	summarizes	the	basic	Git	commands	introduced	in	this	chapter,	which	should	be	enough	to
get	you	started	as	a	solo	developer.	When	you	work	in	a	team,	you’ll	need	to	use	additional	Git	features
and	commands	introduced	in	Chapter	10.

CommandWhat	it	does When	to	use	it

git	pull
Fetch	latest	changes	from	other	developers	and	merge
into	your	repo

Each	time	you	sit	down	to	edit	files
in	a	team	project

git	add

file Stage	file	for	commit When	you	add	a	new	file	that	is	not
yet	tracked

git

status

See	what	changes	are	pending	commit	and	what	files
are	untracked

Before	committing,	to	make	sure	no
important	files	are	listed	as
“untracked”	(if	so,	use	git	add	to
track	them)

git	diff

filename
See	the	differences	between	the	current	version	of	a
file	and	the	last	committed	version

To	see	what	you’ve	changed,	in	case
you	break	something.	This
command	has	many	more	options,
some	described	in	Chapter	10.

git

commit	-a

Commit	changes	to	all	(-a)	tracked	files;	an	editor
window	will	open	where	you	can	type	a	commit
message	describing	the	changes	being	committed

When	you’re	at	a	stable	point	and
want	to	snapshot	the	project	state,	in
case	you	need	to	roll	back	to	this
point	later

git

checkout

filename

Reverts	a	file	to	the	way	it	looked	after	its	last
commit.	Warning:	any	changes	you’ve	made	since
that	commit	will	be	lost.	This	command	has	many
more	options,	some	described	in	Chapter	10.

When	you	need	to	“roll	back”	one
or	more	files	to	a	known-good
version

git	push

remote-
name

Push	changes	in	your	repo	to	the	remote	named
remote-name,	which	if	omitted	will	default	to	origin
if	you	set	up	your	repo	according	to	instructions	in
Section	A.7

When	you	want	your	latest	changes
to	become	available	to	other
developers,	or	to	back	up	your
changes	to	the	cloud

Figure	A.2:	Common	Git	commands.	Some	of	these	commands	may	seem	like	arbitrary	incantations	because	they	are	very	specific	cases
of	much	more	general	and	powerful	commands,	and	many	will	make	more	sense	as	you	learn	more	of	Git’s	features.

A.8	Deploying	to	the	Cloud	Using	Heroku

The	concepts	in	Chapter	4	are	central	to	this	discussion,	so	read	that	chapter	first	if	you	haven’t	already.

New	 cloud	 computing	 technologies	 like	 Heroku	 make	 SaaS	 deployment	 easier	 than	 it’s	 ever	 been.

Create	a	free	Heroku	account	if	you	haven’t	already;	the	free	account	provides	enough	functionality	for
the	projects	in	this	book.	Heroku	supports	apps	in	many	languages	and	frameworks.	For	deploying	Rails
apps,	Heroku	provides	a	gem	called	heroku,	which	is	preinstalled	in	the	bookware	VM.	Once	you’ve
created	a	Heroku	account,	install	the	Heroku	Toolbelt,	a	collection	of	command-line	tools	that	simplifies
Heroku	access.

You	first	need	to	add	your	ssh	public	key	to	Heroku	to	enable	deployment	there.	Heroku’s	instructions
explain	how	to	do	this	once	you’ve	installed	the	Toolbelt.	You	only	need	to	do	this	step	once.

Essentially,	 Heroku	 behaves	 like	 a	 Git	 remote	 (Section	A.7)	 that	 only	 knows	 about	 a	 single	 branch
called	master,	and	pushing	to	that	remote	has	the	side-effect	of	deploying	your	app.

Git	branches	are	discussed	in	Chapter	10.

When	you	do	 such	 a	 push,	Heroku	 detects	which	 framework	 your	 app	 is	 using	 to	 determine	 how	 to
deploy	 the	app.	For	Rails	apps,	Heroku	runs	bundle	 to	 install	your	app’s	gems,	compiles	your	assets
(described	below),	and	starts	the	app.

Chapter	4	describes	the	three	environments	(development,	production,	testing)	defined	by	Rails;	when
you	deploy	to	Heroku	or	any	other	platform,	your	deployed	app	will	run	in	the	production	environment.
There	 are	 two	 changes	 you	 must	 make	 to	 accommodate	 a	 few	 important	 differences	 between	 your
development	environment	and	Heroku’s	production	environment.

First,	Heroku	needs	some	additional	gems	to	support	these	differences.	Heroku	requires	some	specific
configuration	 settings	 for	 your	 app’s	 production	 environment,	 which	 are	 captured	 in	 a	 gem	 called
rails_12factor.	 Furthermore	 Heroku	 uses	 the	 PostgreSQL	 database	 rather	 than	 SQLite.	 The
following	 code	 excerpt	 shows	 how	 to	 change	 your	 app’s	 Gemfile	 to	 accommodate	 these	 two
differences.	You	must	do	 this	 step	 for	each	new	app	you	create	 that	will	be	deployed	on	Heroku.	As
always,	don’t	forget	to	run	bundle	after	changing	your	Gemfile,	and	to	commit	and	push	your	changes
to	both	Gemfile	and	Gemfile.lock.

http://pastebin.com/bfjxEq5r

	1				#	making	your	Gemfile	safe	for	Heroku

	2				ruby	’1.9.3’			#	just	in	case	-	tell	Heroku	which	Ruby	version	we	need

	3				group	:development,	:test	do

	4						#	make	sure	sqlite3	gem	ONLY	occurs	inside	development	&	test	groups

	5						gem	’sqlite3’	#	use	SQLite	only	in	development	and	testing

	6				end

	7				group	:production	do

	8						#	make	sure	the	following	gems	are	in	your	production	group:

	9						gem	’pg’														#	use	PostgreSQL	in	production	(Heroku)

10						gem	’rails_12factor’		#	Heroku-specific	production	settings

11				end

After	installing	any	needed	gems,	Heroku’s	next	action	on	each	deployment	is	to	deal	with	your	app’s
static	assets,	such	as	CSS	files	 (Section	2.3)	and	JavaScript	 files	 (Chapter	6).	Starting	with	Rails	3.1,
Rails	 supports	 the	 higher-level	 language	 SCSS	 for	 creating	 CSS	 stylesheets	 and	 the	 CoffeeScript

http://heroku.com
https://toolbelt.heroku.com/
https://devcenter.heroku.com/articles/keys
https://github.com/heroku/rails_12factor
http://pastebin.com/bfjxEq5r
http://en.wikipedia.org/wiki/Sass_(stylesheet_language)
http://en.wikipedia.org/wiki/CoffeeScript

language	 for	DRYing	 out	 JavaScript.	 Since	 browsers	 consume	CSS	 and	 JavaScript	 but	 not	 SCSS	 or
CoffeeScript,	 a	 sequence	 of	 steps	 collectively	 called	 the	 asset	 pipeline	 performs	 the	 following	 code-

generation	tasks:	 		

	

1.	 All	CoffeeScript	files	in	app/assets,	if	any,	are	converted	to	JavaScript.
2.	 All	JavaScript	files	are	concatenated	into	one	large	JavaScript	file	which	is	then	minified	to	take	up

less	 space	 by	 removing	whitespace	 and	 comments	 and	 perhaps	 renaming	 variables	with	 shorter
names.	The	resulting	large	JavaScript	file	is	placed	in	public/assets.

3.	 All	SCSS	files	in	app/assets,	if	any,	are	translated	to	CSS.
4.	 All	 CSS	 files	 are	 concatenated	 into	 one	 large	 CSS	 file	 which	 is	 minified	 and	 placed	 in

public/assets.
5.	 Rails	 arranges	 for	 the	 name	 of	 each	 of	 these	 single	 large	 files	 to	 include	 a	 “fingerprint”	 that

uniquely	 identifies	 the	file’s	content,	allowing	 the	static	 files	 to	be	cached	by	both	browsers	and
servers	 (Section	 12.7)	 as	 long	 as	 the	 file’s	 content	 doesn’t	 change,	 which	 in	 production
environments	only	happens	when	a	new	version	of	the	app	is	deployed.

6.	 The	behaviors	of	 the	Rails	view	helpers	javascript_include_tag	and	stylesheet_link_tag,
which	usually	appear	in	a	layout	such	as	app/views/application.html.haml	(Section	4.4),	are
modified	to	load	these	auto-generated	files	from	the	public	directory,	which	in	some	production
environments	 can	 be	 redirected	 to	 a	 separate	 static	 asset	 server	 or	 even	 a	Content	Distribution
Network.

The	 second	change	you	must	make	 to	your	app,	 therefore,	 is	 to	 specify	which	of	 three	ways	Heroku
should	manage	the	asset	pipeline.	The	first	way	is	for	you	to	precompile	the	assets	by	running	the	asset
pipeline	 locally	on	your	 computer	 and	versioning	 the	generated	 JavaScript	 and	CSS	 files	 in	Git.	The
second	is	to	have	Heroku	prepare	and	compile	the	assets	at	runtime,	the	first	time	each	type	of	asset	is
requested.	 This	 method	 can	 cause	 unpredictable	 performance	 when	 it	 happens,	 and	 neither	 we	 nor
Heroku	recommend	it.	The	third	method,	which	we	recommend,	is	to	let	Heroku	compile	the	static	files
just	 once	 at	 deploy	 time.	 This	 method	 is	 the	 most	 DRY:	 since	 you	 only	 keep	 your	 original	 files
(JavaScript	 and/or	CoffeeScript,	CSS	 and/or	 SCSS)	 under	 version	 control,	 there	 is	 exactly	 one	 place
where	asset	information	can	be	changed.	It	also	simplifies	configuration	if	you’re	using	Jasmine	to	test

your	JavaScript	or	CoffeeScript	code.	 		

To	 enable	 Heroku	 to	 precompile	 your	 assets	 at	 deploy	 time,	 add	 the	 following	 line	 in
config/environments/production.rb:

http://pastebin.com/7PDq3tid

	1				#	in	config/environments/application.rb:

	2				config.assets.initialize_on_precompile	=	false

This	 line	 prevents	 Heroku	 from	 trying	 to	 initialize	 the	 Rails	 environment	 before	 precompiling	 your
assets:	on	Heroku,	some	environment	variables	on	which	Rails	relies	are	not	initialized	until	later,	and
their	 absence	 would	 cause	 an	 error	 during	 deployment.	 This	 article	 contains	 some	 tips	 on

http://guides.rubyonrails.org/asset_pipeline.html
http://en.wikipedia.org/wiki/Minification_(programming)
http://en.wikipedia.org/wiki/Content_delivery_network
http://pastebin.com/7PDq3tid
http://en.wikipedia.org/wiki/environment_variable
https://devcenter.heroku.com/articles/rails-asset-pipeline

troubleshooting	 asset	 pipeline	 problems	 at	 deploy	 time,	 including	 how	 to	 compile	 the	 asset	 pipeline
locally	 to	 isolate	 problems.	Beware:	 if	 you	 compile	 the	 asset	 pipeline	 locally,	 it	 will	 create	 the	 file
public/assets/manifest.yml;	make	sure	 this	file	 is	not	checked	into	Git,	because	its	presence	will
tell	Heroku	that	you’re	precompiling	your	own	assets	and	don’t	want	Heroku	to	do	it	for	you!

Once	you’ve	made	these	two	one-time	changes	in	your	app	(and	remembered	to	commit	and	push	the
results),	 deployment	 of	 each	 new	 app	 version	 follows	 a	 simple	 recipe,	 starting	 from	 your	 app’s	 root
directory:

	

1.	 Make	sure	your	app	is	running	correctly	and	passing	all	your	tests	locally.	Remote	debugging
is	always	harder.	Before	you	deploy,	maximize	your	confidence	in	your	local	copy	of	the	app!

2.	 If	you	have	added	or	changed	any	gems,	be	sure	you’ve	successfully	run	bundle	to	make	sure	your
app’s	 dependencies	 are	 still	 satisfied,	 and	 that	 you’ve	 committed	 and	 pushed	 any	 changes	 to
Gemfile	and	Gemfile.lock.

3.	 The	 first	 time	 you	 deploy	 an	 app,	 heroku	 apps:create	 appname	 creates	 a	 new	 Heroku
application	container	called	appname;	if	you	omit	the	name,	a	whimsical	name	is	preassigned,	such
as	 luminous-coconut-237.	 In	 any	 case,	 your	 app	 will	 be	 deployed	 at
http://appname.herokuapp.com.	You	 can	 change	 your	 app’s	 name	 later	 by	 logging	 into	 your
Heroku	account	and	clicking	My	Apps.

4.	 Once	you’ve	committed	your	latest	changes,	
git	push	heroku	master	
deploys	the	head	of	your	local	repo’s	master	branch	to	Heroku.	(See	this	article	to	deploy	from	a
branch	other	than	master,	if	you’re	following	the	branch-per-release	methodology	of	Section	10.5.)

5.	 heroku	ps	
checks	the	process	status	(ps)	of	your	deployed	app.	The	State	column	should	say	something	like
“Up	for	10s”	meaning	that	your	app	has	been	available	for	10	seconds.	You	can	also	use	heroku
logs	to	display	the	log	file	of	your	app,	a	useful	technique	if	something	goes	wrong	in	production
that	worked	fine	in	development.

6.	 heroku	run	rake	db:migrate	
On	 any	 deployment	 where	 you	 have	 changed	 the	 database	 schema	 (Sections	 4.2	 and	 12.4),
including	the	first-time	deployment,	this	command	will	cause	the	app’s	database	to	be	created	or
updated.	 If	 there	are	no	pending	migrations,	 the	command	safely	does	nothing.	Heroku	also	has
instructions	 on	 how	 to	 import	 the	 data	 from	 your	 development	 database	 to	 your	 production
database	on	your	first	deployment.

Figure	A.3	summarizes	how	some	of	the	useful	commands	you’ve	been	using	in	development	mode	can
be	applied	to	the	deployed	app	on	Heroku.

Local	(development) Heroku	(production)
rails	server git	push	heroku	master

rails	console heroku	run	console

rake	db:migrate heroku	run	rake	db:migrate

more	log/development.log heroku	logs

Figure	A.3:	How	to	get	the	functionality	of	some	useful	development-mode	commands	for	the	deployed	version	of	your	app	on	Heroku.

https://devcenter.heroku.com/articles/git#deploying-code
http://devcenter.heroku.com/articles/taps

ELABORATION:	Production	best	practices
In	this	streamlined	introduction,	we’re	omitting	two	best	practices	that	Heroku	recommends	for	“hardening”	your	app	in	production.
First,	our	Heroku	deployment	still	uses	WEBrick	as	the	presentation	tier;	Heroku	recommends	using	the	streamlined	thin	webserver
for	 better	 performance.	 Second,	 since	 subtle	 differences	 between	 SQLite3	 and	 PostgreSQL	 functionality	 may	 cause	 migration-
related	 problems	 as	 your	 database	 schemas	 get	 more	 complex,	 Heroku	 advises	 using	 PostgreSQL	 in	 both	 development	 and
production,	which	would	require	installing	and	configuring	PostgreSQL	on	your	VM	or	other	development	computer.	In	general,	it’s
a	good	idea	to	keep	your	development	and	production	environments	as	similar	as	possible	to	avoid	hard-to-debug	problems	in	which
something	works	in	the	development	environment	but	fails	in	the	production	environment.

A.9	Checklist:	Starting	a	New	Rails	App

Throughout	 the	book	we	recommend	several	 tools	 for	developing,	 testing,	deploying,	and	monitoring
the	code	quality	of	your	app.	In	this	section,	we	pull	together	in	one	place	a	step-by-step	list	for	creating
a	new	app	that	takes	advantage	of	all	these	tools.	This	section	will	only	make	sense	after	you	have	read
all	the	referenced	sections,	so	use	it	as	a	reference	and	don’t	worry	if	you	don’t	understand	all	the	steps
now.	Steps	are	annotated	with	the	section	number(s)	in	which	the	tool	or	concept	is	first	introduced.

Set	up	your	app:	(§4.1)

	

1.	 rails	-v	to	ensure	you’re	running	the	desired	version	of	Rails.	If	not	run	gem	install	rails	-
v	x.x.x	with	x.x.x	set	to	the	version	you	want;	3.2.19	for	example.

2.	 rails	new	appname	-T	to	create	the	new	app.	-T	skips	creating	the	test	subdirectory	used	by	the
Test::Unit	testing	framework,	since	we	recommend	using	RSpec	instead.

3.	 cd	appname	 to	 navigate	 into	 your	 new	 app’s	 root	 directory.	 From	 now	 on,	 all	 shell	 commands
should	be	issued	from	this	directory.

4.	 Edit	the	Gemfile	to	lock	the	versions	of	Ruby	and	Rails,	for	example:

http://pastebin.com/6NxFRNrM

	1	#	in	Gemfile:

	2	ruby	’1.9.3’				#	Ruby	version	you’re	running

	3	rails	’3.2.19’		#	Rails	version	for	this	app

If	you	ended	up	changing	the	version(s)	already	present	in	the	Gemfile,	run	bundle	install
--without	production	to	make	sure	you	have	compatible	versions	of	Rails	and	other	gems.

5.	 Make	sure	your	app	runs	by	executing	rails	server	and	visiting	http://localhost:3000.	You
should	see	the	Rails	welcome	page.

6.	 git	init	to	set	up	your	app’s	root	directory	as	a	GitHub	repo.	(§A.6,	Screencast	A.6.1)

Connect	your	app	to	GitHub,	CodeClimate,	and	Heroku:

	

1.	 Create	a	GitHub	repo	via	GitHub’s	web	interface,	and	do	the	initial	commit	and	push	of	your	new

http://devcenter.heroku.com/articles/rails3
http://pastebin.com/6NxFRNrM

app’s	repo.	(§A.7)
2.	 Point	CodeClimate	at	your	app’s	GitHub	repo.	(§9.5)
3.	 Make	the	changes	necessary	to	deploy	to	production	on	Heroku.	(§A.8)
4.	 Run	 bundle	 install	 --without	 production	 if	 you’ve	 changed	 your	 Gemfile.	 Commit	 the

changes	 to	 Gemfile	 and	 Gemfile.lock.	 On	 future	 changes	 to	 the	 Gemfile,	 you	 can	 just	 say
bundle	 with	 no	 arguments,	 since	 Bundler	 will	 remember	 the	 option	 to	 skip	 production	 gems.
(§4.1)

5.	 heroku	apps:create	appname	to	create	your	new	app	on	Heroku	(§A.8)
6.	 git	push	heroku	master	 to	ensure	 the	app	deploys	correctly.	You	should	 then	be	able	 to	visit

your	 app’s	Rails	 splash	page	 at	http://appname.herokuapp.com.	At	 this	 point	 you	 can	 safely
remove	the	default	splash	page:	git	rm	public/index.html.	(§A.8)

Set	up	your	testing	environment:

	

1.	 Add	 support	 in	 your	Gemfile	 for	 Cucumber	 (§7.6),	 RSpec	 (§8.2),	 interactive	 debugging	 (§4.1),
SimpleCov	(§8.7),	Autotest	(§8.2),	FactoryGirl	(§8.5),	Jasmine	if	you	plan	to	use	JavaScript	(§6.7),
and	Metric-Fu	to	keep	track	of	your	code	metrics:

http://pastebin.com/y4MaVP72

	1	#	debugger	is	useful	in	development	mode	too

	2	group	:development,	:test	do

	3			gem	’debugger’

	4			gem	’jasmine-rails’	#	if	you	plan	to	use	JavaScript/CoffeeScript

	5	end

	6	#	setup	Cucumber,	RSpec,	autotest	support

	7	group	:test	do

	8			gem	’rspec-rails’,	’2.14’

	9			gem	’simplecov’,	:require	=>	false

10			gem	’cucumber-rails’,	:require	=>	false

11			gem	’cucumber-rails-training-wheels’	#	basic	imperative	step	defs

12			gem	’database_cleaner’	#	required	by	Cucumber

13			gem	’autotest-rails’

14			gem	’factory_girl_rails’	#	if	using	FactoryGirl

15			gem	’metric_fu’								#	collect	code	metrics

16	end

(See	 Section	 6.7	 for	 additional	 gems	 to	 support	 fixtures	 and	 AJAX	 stubbing	 in	 your
JavaScript	tests.)

2.	 Run	 bundle,	 since	 you’ve	 changed	 your	 Gemfile.	 Commit	 the	 changes	 to	 Gemfile	 and
Gemfile.lock.

3.	 If	all	is	well,	create	the	subdirectories	and	files	used	by	RSpec,	Cucumber,	Jasmine,	and	if	you’re
using	them,	the	basic	Cucumber	imperative	steps:

http://pastebin.com/BvJvHezi

	1	rails	generate	rspec:install

http://pastebin.com/y4MaVP72
http://pastebin.com/BvJvHezi

	2	rails	generate	cucumber:install

	3	rails	generate	cucumber_rails_training_wheels:install

	4	rails	generate	jasmine_rails:install

4.	 If	 you’re	 using	 SimpleCov,	 which	 we	 recommend,	 place	 the	 following	 lines	 at	 the	 top	 of
spec/spec_helper.rb	to	enable	it:

http://pastebin.com/G5BV1efA

	1	#	at	TOP	of	spec/spec_helper.rb:

	2	require	’simplecov’

	3	SimpleCov.start

5.	 If	you’re	using	FactoryGirl	to	manage	factories	(§8.5),	add	its	setup	code:

http://pastebin.com/VDnhECsQ

	1	#	For	RSpec,	create	this	file	as	spec/support/factory_girl.rb

	2	RSpec.configure	do	|config|

	3			config.include	FactoryGirl::Syntax::Methods

	4	end

http://pastebin.com/Wx7veG8E

	1	#	For	Cucumber,	add	at	the	end	of	features/support/env.rb:

	2	World(FactoryGirl::Syntax::Methods)

6.	 git	add	and	then	commit	any	files	created	or	modified	by	these	steps.
7.	 Ensure	Heroku	deployment	still	works:	git	push	heroku	master

You’re	now	ready	to	create	and	apply	the	first	migration	(§4.2),	then	re-deploy	to	Heroku	and	apply	the
migration	in	production	(heroku	run	rake	db:migrate).

Add	other	useful	Gems:

Some	that	we	recommend	include:
	

railroady	 draws	 diagrams	of	 your	 class	 relationships	 such	 as	 has-many,	 belongs-to,	 and	 so	 on
(§5.3)
omniauth	adds	portable	third-party	authentication	(§5.2)
devise	adds	user	self-signup	pages,	and	optionally	works	with	omniauth

A.10	Fallacies	and	Pitfalls

http://pastebin.com/G5BV1efA
http://pastebin.com/VDnhECsQ
http://pastebin.com/Wx7veG8E

			Pitfall:	Making	check-ins	(commits)	too	large.	Git	makes	it	quick	and	easy	to	do	a	commit,	so
you	should	do	them	frequently	and	make	each	one	small,	so	that	if	some	commit	introduces	a	problem,
you	don’t	have	to	also	undo	all	 the	other	changes.	For	example,	if	you	modified	two	files	to	work	on
feature	A	and	three	other	files	to	work	on	feature	B,	do	two	separate	commits	in	case	one	set	of	changes
needs	to	be	undone	later.	In	fact,	advanced	Git	users	use	git	add	to	“cherry	pick”	a	subset	of	changed
files	to	include	in	a	commit:	add	the	specific	files	you	want,	and	omit	the	-a	flag	to	git	commit.

			Pitfall:	Forgetting	to	add	files	to	the	repo.	If	you	create	a	new	file	but	forget	to	add	it	to	the
repo,	your	copy	of	the	code	will	still	work	but	your	file	won’t	be	tracked	or	backed	up.	Before	you	do	a
commit	or	a	push,	use	git	status	to	see	the	list	of	Untracked	Files,	and	git	add	any	files	in	that	list
that	should	be	tracked.	You	can	use	the	.gitignore	 file	 to	avoid	being	warned	about	files	you	never
want	to	track,	such	as	binary	files	or	temporary	files.

			Pitfall:	Confusing	commit	with	push.	git	commit	captures	a	snapshot	of	the	staged	changes	in
your	copy	of	a	repo,	but	no	one	else	will	see	those	changes	until	you	use	git	push	to	propagate	them	to
other	repo(s)	such	as	the	origin.

			Pitfall:	Forgetting	to	reset	VM	networking	when	your	host	computer	moves.	Remember	that
your	VM	relies	on	 the	networking	facilities	of	your	host	computer.	 If	your	host	computer	moves	 to	a
new	network,	for	example	if	you	suspend	it	at	home	and	wake	it	up	at	work,	that’s	like	unplugging	and
reconnecting	 your	 host	 computer’s	 network	 cable.	 The	 VM	 must	 therefore	 also	 have	 its	 (virtual)
network	cable	disconnected	and	reconnected,	which	you	can	do	using	the	Devices	menu	in	VirtualBox.

	 	 	 	 	 	 Pitfall:	 Hidden	 assumptions	 that	 differ	 between	 development	 and	 production
environments.	 Chapter	 4	 explains	 how	Bundler	 and	 the	Gemfile	 automate	 the	management	 of	 your
app’s	 dependencies	 on	 external	 libraries	 and	 how	 migrations	 automate	 making	 changes	 to	 your
database.	Heroku	relies	on	these	mechanisms	for	successful	deployment	of	your	app.	If	you	manually
install	gems	 rather	 than	 listing	 them	 in	your	Gemfile,	 those	gems	will	be	missing	or	have	 the	wrong
version	on	Heroku.	If	you	change	your	database	manually	rather	than	using	migrations,	Heroku	won’t
be	able	to	make	the	production	database	match	your	development	database.	Other	dependencies	of	your
app	include	the	type	of	database	(Heroku	uses	PostgreSQL),	the	versions	of	Ruby	and	Rails,	the	specific
Web	 server	 used	 as	 the	 presentation	 tier,	 and	 more.	 While	 frameworks	 like	 Rails	 and	 deployment
platforms	 like	 Heroku	 go	 to	 great	 lengths	 to	 shield	 your	 app	 from	 variation	 in	 these	 areas,	 using
automation	tools	like	migrations	and	Bundler,	rather	than	making	manual	changes	to	your	development
environment,	maximizes	 the	 likelihood	 that	 you’ve	 documented	 your	 dependencies	 so	 you	 can	 keep
your	development	and	production	environments	in	sync.	If	it	can	be	automated	and	recorded	in	a	file,	it
should	be!

A.11	To	Learn	More
	

The	Git	Community	Book	is	a	good	online	reference	that	can	also	be	downloaded	as	a	PDF	file.

http://book.git-scm.com/4_ignoring_files.html
http://book.git-scm.com/

Table	of	Contents
Contents
Preface
1	Introduction	to	SaaS	and	Agile	Development
2	The	Architecture	of	SaaS	Applications
3	SaaS	Framework:	Introduction	to	Ruby
4	SaaS	Framework:	Introduction	to	Rails
5	SaaS	Framework:	Advanced	Rails
6	SaaS	Client	Framework:	JavaScript	Introduction
7	Requirements:	BDD	and	User	Stories
8	Testing:	Test-Driven	Development
9	Maintenance:	Legacy,	Refactoring,	and	Agile
10	Project	Management:	Scrum,	Pairs,	and	VCS
11	Design	Patterns	for	SaaS	Classes
12	Performance,	Releases,	Reliability,	and	Security
13	Afterword

	Contents
	Preface
	1 Introduction to SaaS and Agile Development
	2 The Architecture of SaaS Applications
	3 SaaS Framework: Introduction to Ruby
	4 SaaS Framework: Introduction to Rails
	5 SaaS Framework: Advanced Rails
	6 SaaS Client Framework: JavaScript Introduction
	7 Requirements: BDD and User Stories
	8 Testing: Test-Driven Development
	9 Maintenance: Legacy, Refactoring, and Agile
	10 Project Management: Scrum, Pairs, and VCS
	11 Design Patterns for SaaS Classes
	12 Performance, Releases, Reliability, and Security
	13 Afterword

