
1

A Way to Practice Competitive Programming

- From Rating 1000 to 2400+ -

May 7th, 2019

Masataka Yoneda / E869120

2

0. INDEX

⚫ 0. Index ………………………………………………………………………… p. 2

⚫ 1. Introduction ………………………………………………………………… p. 3

⚫ 2. A knowledge – some contest systems ……………………………………… p. 5

⚫ 3-0. Introduction to practice method ………………………………………… p. 8

⚫ 3-1. Practice Skills - From Rating 1000 to 1400 ……………………… p. 9

⚫ 3-2. Practice Skills - From Rating 1400 to 1900 ……………………… p. 11

⚫ 3-3. Practice Skills - From Rating 1900 to 2200 ……………………… p. 13

⚫ 3-4. Practice Skills - From Rating 2200 to 2400 ……………………… p. 14

⚫ 4. Practice Mental …………………………………………………………… p. 16

⚫ 5. A recommendation for Virtual Contests ……………………………… p. 17

⚫ 6. Future Vision ……………………………………………………………… p. 18

⚫ 7. Conclusion ………………………………………………………………… p. 19

3

1. Introduction

Dear Codeforces community.

On April 20, 2019, finally I reached a grandmaster with rating 2426, by participating 14

contests. Before last contest, I was very regretful because my rating was 2399, only 1 to

become a red. So last contest (Forethought Future Cup Elimination Round) was one of my

most memorable contests ever. Thank you for Codeforces to hold such contests, and thank

you for kind, great and impressive Codeforces community for accepting my blog.

Today, I want to contribute to Codeforces community, because I received much benefit

from Codeforces and I appreciate for them. I thought about “how to contribute to

Codeforces”, or the proper way to contribute to Codeforces, for long hours. I found a way: to

tell and explain a way of practice from a beginner to a grandmaster.

Today, I will explain how to become a red-ranked coder.

In July 2017, I wrote a blog that explains how to become purple.

(http://codeforces.com/blog/entry/53341) Though it gets 181 upvotes, there are many

grammatical mistakes and some points that were insufficient for explaining. I’m sorry for

this because I am not good at English and not a good writer. This time there may be some

mistakes, but I made efforts to be easier to read, and to be easier to understand. Thank you

for your corporation.

This time, I will explain in some steps, because there are many rating-ranges, and most

http://codeforces.com/blog/entry/53341

4

people cannot reach a grandmaster from a beginner in a single step. So do I. So, this time, I

broke down into 4 parts as follows:

⚫ Rating 1000 → 1400, from a beginner to a specialist

⚫ Rating 1400 → 1900, from a specialist to a top 10% coder

⚫ Rating 1900 → 2200, from a top 10% coder to a well-played Div1 player

⚫ Rating 2200 → 2400, from a well-played Div1 player to red

In addition, before explaining about how to practice, since there are many people in

Codeforces and some do not understand about other online judge systems, I’d like to explain

about other contest sites. (AtCoder, TopCoder, etc.)

Again, I am very glad to be read this blog. Thank you for Codeforces.

Masataka Yoneda

5

2. A knowledge – Some kinds of contest sites

Recently, there are many online judges in the world. To be a grandmaster, I solved many

problems from many online judges. This time, to explain the post sections, I’d like to explain

about some kind of contests.

2-1. Codeforces [http://codeforces.com/]

Codeforces is one of the most famous online judges in the world. Currently, there are

5000+ problems.

One of the best ways to use Codeforces is “Problem Rating”. For example, the rating of

problem 1146H – Satanic Panic is 2800, which means you should solve in the contest if you

are rating 2800 or more.

In addition, there are three division in Codeforces (Div1, Div2, Div3).

After next section, I will use these two representations:

⚫ Div1A, Div2E, etc: Div1A means problem A of Div1 contest. Div2E means problem

E of Div2 contest. Usually, the first problem is the easiest, and the last problem is

the hardest.

⚫ Difficulty R2800 etc: “Difficulty R2800” means that problem difficulty which tagged

2800. For example, 1146G – Zoning Restriction is difficulty R2600, 1146A – Love

“A” is difficulty R600.

http://codeforces.com/

6

2-2. AtCoder [https://atcoder.jp/]

AtCoder is a contest site that there are many good problems. It is only “my opinion”, but

if you want to be better, you should solve AtCoder.

There are 3 types of contests in AtCoder:

⚫ AtCoder Beginner Contest (ABC): There are 4 problems.

➢ The difficulty in ABC is generally R500 – R700 – R900 – R1400 in Codeforces

difficulty.

⚫ AtCoder Regular Contest (ARC): There are 4 problems. Usually, the first two

problems of ARC and the last two problems of ABC are the same.

➢ The difficulty in ARC is generally R900 – R1400 – R2100 – R2600 in Codeforces

difficulty, but it may differ by contest.

⚫ AtCoder Grand Contest (AGC): There are 6 problems.

➢ The difficulty in AGC is generally R1200 – R1900 – R2200 – R2500 – R3000 –

R3300 in Codeforces difficulty,

There is a convenient website – AtCoder problems.

(https://kenkoooo.com/atcoder#/table//)

In this website, you can know list of problems and what problem did you solve or not.

Solved problems are green and attempted problems are yellow.

https://atcoder.jp/
https://kenkoooo.com/atcoder#/table//

7

2-3. TopCoder

TopCoder is also a famous contest site. Single Round Match (SRM) has two divisions:

⚫ Division 2: There are 3 problems and difficulties are R600 – R1300 – R2100 in

Codeforces difficulty. Each problem is called Div2Easy, Div2Medium, Div2Hard.

⚫ Division 1: There are 3 problems and difficulties are R1800 – R2400 – R3000 in

Codeforces difficulty. Each problem is called Div1Easy, Div1Medium, Div1Hard.

I also use TopCoder for training, and to become a red-ranked coder. Though the

problems are mainly math-heavy, but the problems (especially I like SRM600-699) are good.

2-4. Conclusion of this part

I mainly used 3 online judges: Codeforces, AtCoder and TopCoder. If you know 3 online

judges, you are ready to read next section. Training in these contest sites is very important

and effective, and I think that it is the fastest way to improve.

From part 3, I will write many essential points. But this is only my opinion, and it is OK

to not to trust me. There are many people who followed my way and improved much, but

there are also far many people who did not follow my way and improved much. Use my

method to practice is good, but it is not true that my way is effective for every people.

8

3-0. Introduction to practice method

There may be many people who read my previous tutorial blog. But now and 2 years ago

is different. There are a lot of things that I regret in 2 years. There are a lot of things that I

did not do but I’m thinking that if I did this way, I could improve faster. So, there can be

many different points between my previous blog and this blog.

In addition, my practice method will be completely different before rating 2200 and after

rating 2200.

I want to say one more thing. This blog is only my opinion, and ways to practice is differ

by people. So, I don’t think you must do in this way. But I think that this way is one of the

most effective way for some people.

If you understand this, you are ready to read. Go to the essence… 3, 2, 1, GO!

9

3-1. Practice Skills – From Rating 1000 to 1400

There are many gray/green coders in Codeforces. They are wanting to be a cyan/blue

coder, but actually struggling for it.

Despite this fact, only three things are needed for being rating 1400.

⚫ You can write straight-forward simulation fast. (within 5-10 minutes)

⚫ You can write brute force fast. (within 5-10 minutes)

⚫ You can divide the problem into some cases in your brain or in your paper. (e.g.

N=2, N=3, or N>=4)

For example, in Codeforces Round #556, if you can do these three things above,

surprisingly you can get even 200th place in Div2. This is very exaggerated example, but in

Codeforces Round #554 (Div. 2), you can also get 3400th place, which participants whose

rating less than 1250 increases rating.

On average, if you can do three things above, your rating will reach 1400.

[[How to practice]]

At first, I suggest you to solve AtCoder Beginner Contests.

Though there are many good problems in Codeforces, but if you want to practice to code

more simply, you should solve AtCoder.

Especially, I recommend to solve problem B or C in AtCoder Beginner Contest. In

problem B, you can learn how to write simulations and brute force faster. In problem C, you

can learn how to consider the solution and the efficient way to use paper (or notebook) to

think about solution.

From AtCoder Beginner Contest 042, English problem statement is added. Since the

newest contest is AtCoder Beginner Contest 125, there are 84 Beginner Contests in

AtCoder. If you solve all problems of B and C, you would learn much and you will be much

stronger.

To solve problems in AtCoder, you can use AtCoder Problems, in which you can know

what problem did you solve.

https://kenkoooo.com/atcoder#/table//

10

There are some important points when you solve problems in AtCoder.

⚫ If you cannot reach the solution, you should read editorial after 15 minutes’ thinking

if problem B, and 30 minutes’ thinking if problem C. Sadly, in recent ABCs, there

could be no English editorial. But you can read sample solution (there are some links

of sample code with high probability) to know how to solve this problem.

⚫ Even you can solve a problem, until you get used to code faster, there may be

something to learn if you look some source codes written by high-rated coders. So, I

recommend to look some simple source codes.

⚫ Especially, when you solve problem C, I recommend you to use paper to consider.

For example, in Codeforces Round #556 (Div.2) in C, you can write memo like this:

About this is not paper but whiteboard. Using whiteboard instead of paper is also good.

Since I am a leader of computer club in a high-school, so I have many clubmates, and

there are a lot of clubmates which uses this method and improved.

11

3-2. Practice Skills – From Rating 1400 to 1900

One of the most major rating range in Codeforces is [1400, 1500]. They are wanting to

improve rating, but from rating 1500 is difficult and many people gave up here. But there

are also many people who practiced without giving up and gained rating.

To be rating 1900, skills as follows are needed:

⚫ You know and can use major algorithms like these:

Brute force DP DFS BFS Dijkstra

Binary Indexed Tree nCr, nPr Mod inverse Bitmasks Binary Search

Note: I think that segment tree is not needed to be rating 1800. I knew segment tree

when I was a purple-rated coder.

⚫ You can code faster (For example, 5 minutes for R1100 problems, 10 minutes for

R1400 problems) Fast coding is very important for Codeforces because generally, if

there is a wide gap of difficulty in a contest, fast coding affects rating very much.

[[How to Practice]]

If you are not good at fast-coding and fast-debugging, you should solve AtCoder

problems. Actually, and statistically, many Japanese are good at fast-coding relatively while

not so good at solving difficult problems. I think that’s because of AtCoder.

I recommend to solve problem C and D in AtCoder Beginner Contest. On average, if you

can solve problem C of AtCoder Beginner Contest within 10 minutes and problem D within

20 minutes, you are Div1 in FastCodingForces :)

If you are not good at solving more than R1400 in Codeforces, you should learn some

algorithms above and solve typical problems in Codeforces. For example, if you felt that you

are not good at DP, solve DP-tagged problem in Codeforces which is R1200-R1400.

Surprisingly, there are only ~50 problems which tagged DP and less than or equal to R1400.

Interestingly, typical problems are concentrated in Div2-only round problems. If you are

not good at Div2-only round, it is likely that you are not good at using typical algorithms,

especially 10 algorithms that are written above.

12

If you can use some typical problem but not good at solving more than R1500 in

Codeforces, you should begin TopCoder. This type of practice is effective for people who are

good at Div.2 only round but not good at Div.1+Div.2 combined or Div.1+Div.2 separated

round.

Sometimes, especially in Div1+Div2 round, some problems need mathematical concepts

or thinking. Since there are a lot of problems which uses them (and also light-

implementation!) in TopCoder, you should solve TopCoder problems.

I recommend to solve Div1Easy of recent 100 SRMs. But some problems are really

difficult, (e.g. even red-ranked coder could not solve) so before you solve, you should check

how many percent of people did solve this problem. You can use

https://competitiveprogramming.info/ to know some informations.

Unfortunately, I don’t know the good website which you can know what problem did you

solve in TopCoder SRM, like AtCoder Problems. So, if you want to record what problem did

you solve, you should make spreadsheets or tables. This is my brother’s spreadsheets which

he used two years ago. (Sorry for Japanese, but there are no Japanese in Div1Medium page,

so you can refer to it)

https://drive.google.com/file/d/1mSy9PM4Km8EVv8Lp4nhitorOe2HbAS1e/view?usp

=sharing

When I was a blue, I was also very bad at mathematical thinking. When I solve 50

Div1Easys, I became yellow in TopCoder and purple in Codeforces.

If you are good at solving problems but did not perform well in real contests, you should do

virtual contests more. Do you know Virtual Contest system in Codeforces? You can do

virtual participation!

https://competitiveprogramming.info/
https://drive.google.com/file/d/1mSy9PM4Km8EVv8Lp4nhitorOe2HbAS1e/view?usp=sharing
https://drive.google.com/file/d/1mSy9PM4Km8EVv8Lp4nhitorOe2HbAS1e/view?usp=sharing

13

3-3. Practice Skills – From Rating 1900 to 2200

If you want to be rating 2200, at first, you should be Div1 and compete in Div1 contests.

It means you should solve a lot of difficult problems. (e.g. R1900 or more in Codeforces)

Even if you are good at fast-solving or solving typical problems very much, competing in

Div1 is very different. Sadly, there was a lot of coders which travelling between blue and

purple.

To be rating 2200, skills as follows are needed:

⚫ You know and can use 10 algorithms which I stated in pp.11 and segment trees

(including lazy propagations)

⚫ You can solve problems very fast: For example, 5 mins for R1100, 10 mins for

R1500, 15 mins for R1800, 40 mins for R2000.

⚫ You have decent skills for mathematical-thinking or considering problems

⚫ Strong mental which can think about the solution more than 1 hours, and don’t give

up even if you are below average in Div1 in the middle of the contest

[[How to Practice]]

This is only my way to practice, but I did many virtual contests when I was rating 2000.

In this page, virtual contest does not mean “Virtual Participation” in Codeforces. It means

choosing 4 or 5 problems which the difficulty is near your rating (For example, if you are

rating 2000, choose R2000 problems in Codeforces) and solve them within 2 hours.

You can use https://vjudge.net/. In this website, you can make virtual contests from

problems on many online judges. (e.g. AtCoder, Codeforces, Hackerrank, Codechef, POJ,

…)

If you cannot solve problem within the virtual contests and could not be able to find the

solution during the contest, you should read editorial. Google it. (e.g. If you want to know

editorial of Codeforces Round #556 (Div. 1), search “Codeforces Round #556 editorial” in

google)

There is one more important thing to gain rating in Codeforces. To solve problem fast,

you should equip some coding library (or template code). For example, I think that

equipping segment tree libraries, lazy segment tree libraries, modint library, FFT library,

geometry library, etc. is very effective.

https://vjudge.net/

14

3-4. Practice Skills – From Rating 2200 to 2400

This is the last part of practice skills in this blog. Actually, I had been orange for long

time, and also in virtual contests my average performance had been orange for a long time.

That’s because my practice method that I did before got stuck when I reached orange.

Rating 2200 and 2400 is actually very different – if you have average performance of

rating 2200, if you participate contest more, touch at red-rating (it means reaching max

rating 2400) seems like not hard. But getting average performance of rating 2400 is much

more difficult than you think. If your rating is exactly 2400, in Div.1 contest, generally you

should get around 80-percentile rank (e.g. If 525 people participated, you should get 105th)

to gain 1 rating or more.

To be rating 2400, skills as follows are needed:

⚫ You should have skills that stated in previous section (rating 2200)

⚫ You should solve difficult problems which are only solved by less than 100 people in

Div1 contests

If you want to solve difficult problems, ad-hoc problems. According to

TozanSoutherPacks’ comment from my previous tutorial blog

(http://codeforces.com/blog/entry/53341?#comment-373965), “To reach more than 2600,

you should solve boss problems and all these are ad-hoc problems or many-steps

consideration problems.” I think that it’s true, but for me I felt like even if you want to reach

rating 2400, solving some part of many-steps ad-hoc problems are needed.

[[How to Practice]]

The most secure way to reach 2400 is “Solve 4000 problems”. I solved more than 4000

problems including TopCoder, AtCoder, Codeforces, and problems from some Japanese

online judges.

Actually, there is a legend (or actually truth) that one of the greatest coder tourist solved

10000+ problems in his life.

But there may be a lot of people who think they have no time. So I will give you some

effective ways.

http://codeforces.com/blog/entry/53341?#comment-373965

15

At first, there are a lot of educational problems in AtCoder. I recommend you should

solve problem E and F (especially 700-900 points problem in AtCoder) of AtCoder Regular

Contest, especially ARC058-ARC090. Though old AtCoder Regular Contests are balanced

for “considering” and “typical”, but sadly, AtCoder Grand Contest and recent AtCoder

Regular Contest problems are actually too biased for considering I think, so I don’t

recommend if your goal is gain rating in Codeforces. (Though if you want to gain rating

more than 2600, you should solve problems from AtCoder Grand Contest)

For me, actually, after solving AtCoder Regular Contests, my average performance in CF

virtual contest increased from 2100 to 2300 (I could not reach 2400 because start was early)

If you cannot solve problems, I recommend to give up and read editorial as follows:

Point value 600 700 800 900 1000-

CF rating R2000 R2200 R2400 R2600 R2800

Time to editorial 40 min 50 min 60 min 70 min 80 min

If you solve AtCoder educational problems, your skills of competitive programming will

be increased. But there is one more problem. Without practical skills, you rating won’t

increase.

So, you should do 50+ virtual participations (especially Div.1) in Codeforces. In virtual

participation, you can learn how to compete as a purple/orange-ranked coder (e.g. strategy)

and how to use skills in Codeforces contests that you learned in AtCoder. I strongly

recommend to read editorial of all problems except too difficult one (e.g. Less than 30 people

solved in contest) after the virtual contest. I also recommend to write reflections about

strategy, learns and improvements after reading editorial on notebooks after the

contests/virtual.

In addition, about once a week, I recommend you to make time to think about much

difficult problem (e.g. R2800 in Codeforces) for couple of hours. If you could not reach the

solution after thinking couple of hours, I recommend you to read editorial because you can

learn a lot. Solving high-level problems may give you chance to gain over 100 rating in a

single contest, but also can give you chance to solve easier problems faster.

Lastly, I guess that this method works over 30% of people because I reached Codeforces

red by using this method, and my twin brother square1001 reached TopCoder red by using

the method extended for TopCoder. Hope new red-ranked coders will be born by using my

method :)

16

3. Practice Mental

Problems about mental are one of the most common problem in competitors. Even for

me, until just 2 months ago, because of the fear of dropping 100+ rating in a single contest,

I could not participate in any rated CF contest for more than 9 months. Also, there were

several contests that I could not even read latter problems because I could not solve easier

problem and lost my cool.

I found a way to practice mental recently.

⚫ Make a routine that you will do just before the contest. It directly leads to the

concentration during the contest.

➢ Actually, for me, my routine is to watch the countdown from very near distance

to PC before the contests starts. Legendary grandmaster yutaka1999 actually sit

in Zen meditation (religious meditation) before IOI competition starts.

⚫ If you are not in good condition in contests (e.g. Cannot solve problem B within 20

minutes) not looking current standings is also a good idea.

⚫ Another important thing is “don’t care about rating during contest”.

➢ I think that even if my rating dropped, the probability that I gain rating next

time increases. That’s why I don’t care about rating during contest.

⚫ Don’t care about mistakes. Mistakes are also a good chance to learn, and there is no

person who don’t make any mistake. Even tourist made a mistake in AtCoder World

Tour Finals.

➢ I think that the there is a correlation between “rating” and “how many mistakes

did you made and reviewed”.

These method above works not only in contests, but also in virtual participations. Be

careful: do not have too much pressure in contests and have fun!

17

4. Recommendation of virtual contests

Before writing about recommendation of virtual contests, I think that there are two types

of virtual contests as follows:

⚫ Virtual Participation: Choose the contests and solve problems as if it is a real

contest. As same as Codeforces Virtual Participation system.

⚫ Virtual Contest: Use https://vjudge.net/ or some other judges. Choose some

problems which fit your rating from Codeforces, and upsolve within 2-3 hours.

At first, I will recommend both types of virtual contests.

For virtual participation, I think that you can learn about strategy, mental, and some

other kinds of contest skills. For virtual contest, I think that you can concentrate more than

solving single problem, so the efficiency of solving/reviewing will increase.

That’s why when I upsolve some difficult problems in Codeforces, I always use

https://vjudge.net/ and make virtual contests.

If you want to do virtual contests in AtCoder, use https://not-522.appspot.com/ (sadly it

is Japanese, use google translate if you are not Japanese sorry…)

https://vjudge.net/
https://vjudge.net/
https://not-522.appspot.com/

18

5. Future Vision

Luckily, at April 29th, 2019, I reached rating 2585 in Codeforces and it was very close to

being International Grandmaster. I’m very glad about it and I really appreciate for

Codeforces admins and Codeforces community.

I actually determined my future goal! : Be a legendary grandmaster.

Actually, recently I am doing many contests/virtual participations in Codeforces. My

recent 10 performances on CF contests including virtual are: 2865, 2661, 3029, 2890, 2858,

2875, 2318, 2717, 2506, 2891. (ave = 2761.0)

So, I should gain skills of ~250 rating to be a legendary grandmaster. What I am doing to

achieve my dream is as follows:

[[How to Practice]]

⚫ Almost every day, do Codeforces virtual participation for 2-3 hours. After the

contest, read the editorial and solution of legendary grandmasters, and write reviews

for 1 hours.

⚫ Sometimes (around once a week), choose ~5 problem from Codeforces (Difficulties

are R2200-R2800) and solve within 2-4 hours.

⚫ Although I experienced competitive programming for 3 years, I think that I don’t

know many techniques (not actually as same as typical) so I always read editorial if I

could not solve problems which had solved by >20 people during actual contest.

➢ I think that if I could solve almost all problems which had solved by >20 people

during the contest, I would be LGM.

19

6. Conclusion

That’s all that I can tell about the practice method to the Codeforces community. Really

thank you for reading my blog.

I’m using and participating Codeforces for a long year and grew up in this community.

So, I think that I should contribute to Codeforces community for something. There are

many ways to contribute, but I decided to tell and report how to practice many skills that are

usable for gaining rating in Codeforces. I think that this is one of the best ways to contribute

with real-meaning in Codeforces.

Finally, I suggest that steps and practice methods to improve your competitive

programming skills. But ways to practice differs by person. So, I don’t think that my way is

always the most effective way, and also, I don’t think you must do this way.

But I think that this is one of the most effective way for some people. Hope this blog is

useful even a little.

Since I’m only a Japanese 11th grader, there may be many grammar mistakes and my

English is poor. I have to apologize about that but conversely, I have to appreciate to the

readers. Thank you for reading.

Finally, I hope good luck and high rating in your Codeforces life, and having fun in

competitive programming. This is the conclusion of my blog. Thank you.

Masataka Yoneda

