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Abstract 
 
Salient stimuli, such as color or motion contrasts, attract human 
attention, thus providing a fast heuristic for focusing limited 
neural resources on behaviorally relevant sensory inputs. Here we 
address the following questions: What types of saliency attract 
attention and how do they compare to each other during natural 
vision? We asked human participants to inspect scene-shuffled 
video clips, tracked their instantaneous eye-position, and 
quantified how well a battery of computational saliency models 
predicted overt attentional selections (saccades). Saliency effects 
were measured as a function of total viewing time, proximity to 
abrupt scene transitions (jump cuts), and inter-participant 
consistency. All saliency models predicted overall attentional 
selection well above chance, with dynamic models being equally 
predictive to each other, and up to 3.6 times more predictive than 
static models. The prediction accuracy of all dynamic models was 
twice higher than their average for saccades that were initiated 
immediately after jump cuts, and led to maximal inter-participant 
consistency. Static models showed mixed results in these 
circumstances, with some models having weaker prediction 
accuracy than their average. These results demonstrate that 
dynamic visual cues play a dominant causal role in attracting 
attention, while static visual cues correlate with attentional 
selection mostly due to top-down causes.   

Keywords: Attention; Eye-movements; Natural Vision; 
Computational Modeling; Saliency 

1. Introduction 
Attentional selections are the result of complex interactions 
between bottom-up and top-down influences [Findlay and Walker 
1999; Henderson 2003; Hernandez-Peon et al. 1956; James 1890]. 
Among bottom-up influences, dynamic stimuli are very effective 
in attracting human attention, as indicated by converging 
evidence from neurophysiological [Fecteau et al. 2004; Gottlieb et 
al. 1998], psychophysical [Folk et al. 1992; Jonides and Yantis 
1988] and developmental [Atkinson and Braddick 2003; Finlay 
and Ivinskis 1984] studies. Nevertheless, the common 
computational approach for studying the impact of bottom-up 
influences on attentional selection (henceforth, saliency effects) is 
to analyze the visual correlates of fixation selections during 
inspection of still images [Itti and Koch 2000; Krieger et al. 2000; 
Mannan et al. 1997; Oliva et al. 2003; Parkhurst et al. 2002; 
Parkhurst and Niebur 2003; Peters et al. 2005; Reinagel and 
Zador 1999; Tatler et al. 2005; Torralba 2003]. Such studies 

provide valuable accounts of saliency effects during visual 
exploration of static scenes, but the scalability of their 
conclusions to more dynamic environments is an open question. 
Furthermore, the typical focus of these computational accounts on 
correlation rather than causation weakens their explanatory and 
predictive powers.  

A general obstacle to characterizing bottom-up influences is that 
any observed effects (or lack thereof) may actually reflect top-
down effects [Yantis and Egeth 1999]. Thus, the prevailing 
psychophysical approach to characterizing the types of stimuli 
that attract attention is to identify task-irrelevant bottom-up cues 
that increase reaction time when participants search for synthetic 
targets embedded in multi-element arrays [Abrams and Christ 
2005; Folk et al. 1992; Franconeri et al. 2005; Hillstrom and 
Yantis 1994; Jonides and Yantis 1988; Theeuwes 1994; Yantis 
and Egeth 1999]. Such studies are instrumental for identifying 
strong bottom-up influences that capture attention involuntarily in 
the context of competing top-down influences. However, the 
focus on experimental conditions that discourage participants 
from paying attention to salient stimuli may underestimate 
saliency effects in real world environments, which are likely to 
involve stronger correlations between saliency and behavioral 
relevance. More generally, it is unclear whether psychophysical 
stimuli, which are typically highly simplified, lead to the same 
behavioral patterns as real world stimuli.  

To reduce the potential interference from top-down influences 
without sacrificing real world relevance, we generated scene-
shuffled clips that contain jump cuts every couple of seconds. 
Such jump cuts repeatedly break any expectations that observers 
may have formed based on the recent input history (top-down 
influences). Consequently, they temporarily bias observers to 
select targets based on the instantaneous input (bottom-up 
influences). While jump cuts may not be common in the natural 
world, they are nonetheless ubiquitous in motion pictures, even 
though people are often not aware of their occurrence [Anderson 
1996; Hochberg 1986].  The use of jump cuts was pioneered by 
Jean-Luc Godard in his 1960 movie Breathless, and later 
popularized by MTV in the 1980s [Thompson and Bordwell 
2003]. Contrary to earlier predictions [Gibson 1979/1986], a 
continuous perceptual experience is rarely disrupted by jump cuts. 
Moreover, humans seem to be particularly drawn to stimuli 
containing jump cuts. A possible explanation is that such rapidly 
changing stimuli lead to faster information uptake than continuous 
stimuli, which may become boring once all the pertinent 
information is extracted. Be that as it may, the important point in 
this context is that humans seem to behave naturally during visual 
exploration of MTV-style stimuli. 

We measured saliency effects for different saccade populations 
defined by their likelihood of being bottom-up driven, such as 
saccades initiated shortly after jump cuts. The rationale for this 
focus is based on the trade-off between bottom-up and top-down 
influences [Henderson and Hollingworth 1999; Hernandez-Peon 
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et al. 1956; James 1890], which suggests that the magnitude of 
saliency effects should be highest when top-down effects are 
minimized. In contrast, visual correlates of attentional selection 
that reflect top-down causes are expected to show the opposite 
trend, namely: relatively low correlations when top-down effects 
are minimized. Indeed, our results show that the correlations 
between human attentional selection and certain visual cues, 
including intensity variance and orientation contrast, reflect top-
down causes. Other visual cues, including intensity contrast, color 
contrast, and to a greater extent: flicker contrast, motion contrast, 
and integrated saliency, are shown to causally attract attention.    

2. Methods 

2.1 Participants 
Paid participants (3 women and 5 men), 23- to 32-years old, 
provided written informed consent.  All participants were healthy, 
had normal or corrected-to-normal vision, and were naïve as to 
the purpose of the experiment. 

2.2 Stimuli 
50 video clips (30 Hz, 640x480 pixels/frame, 4.5-30 seconds 
long, mean ± s.d.: 21.83 ± 8.41 s, no audio) from 12 
heterogeneous sources, including indoor/outdoor 
daytime/nighttime scenes, video games, television programs, 
commercials, and sporting events. These continuous clips were 
cut every 1-3 s (2.09 ± 0.57 s) into 523 clip snippets (clippets), 
which were re-assembled into 50 scene-shuffled (MTV-style) 
clips (Fig. 1a and Video S3 in Supplemental Material). The range 
of clippet lengths was chosen based on previous results showing 
that inter-participants consistency in attentional selection diverges 
significantly within this time frame [Mannan et al. 1997]. We thus 
hypothesized that the relative impact of bottom-up influences may 
also change significantly within this time frame. The clippet 
lengths were randomized within the chosen range to minimize the 
ability of participants to anticipate the exact timing of jump cuts. 
Continuous and MTV-style clips were matched in length, and 
each MTV-style clip contained at most one clippet from a given 
continuous clip. This MTV-style manipulation was inspired by 
the cinematic practice of introducing jump cuts to compress time 
while preserving semantic continuity [Anderson 1996; Hochberg 
1986; Thompson and Bordwell 2003]. The critical difference is 
that our MTV-style clips were deliberately designed to maximize 
semantic unrelatedness between adjacent scenes depicted in 
different clippets, and no attempt was made to hide the scene 
transitions.  

2.3 Experimental design 
Participants inspected MTV-style video clips while sitting with 
their chin supported in front of a 22'' color monitor (60 Hz refresh 
rate) at a viewing distance of 80 cm (28° x 21° usable field-of-
view). Their task was: “follow the main actors and actions, and 
expect to be asked general questions after the eye-tracking session 
is over”. Participants were told that the questions will not pertain 
to small details, such as specific small objects, or the content of 
text messages, but would instead help the experimenters evaluate 
their general understanding of what they had watched.  The 
purpose of the task was to let participants engage in natural visual 
exploration, while encouraging them to pay close attention to the 
display throughout the viewing session. The motivation for 
providing a task came from preliminary testing, which revealed 

that instructionless free viewing sometimes led to idiosyncratic 
patterns of eye movements over time as observers lost interest and 
disengaged from the display.  

2.4 Data acquisition and processing 
Instantaneous position of the right eye was recorded using an 
infrared-video-based eye tracker (ISCAN RK-464, 240 Hz, <1° 
spatial error), which tracks the pupil and corneal reflection. 
Calibration and saccade extraction procedures have been 
described elsewhere [Itti 2005]. A total of 10221 saccades were 
extracted from the raw eye-position data. 34 saccades (0.3% of 
the total number) either started or ended outside of the display 
bounds, and were thus excluded from the data analysis (see 
below), which was based on the remaining 10187 saccades.  

2.5 Bottom-up attention-priority maps 
Instantaneous 2D attention-priority maps (240Hz, 40x30 
pixels/frame) based on 7 computational models: intensity 
variance1, integrated saliency, and individual saliency 
components (contrasts in color, intensity, orientation, flicker, and 
motion) were generated using a Linux-based computer cluster 
(total run time: 792 processor hours).  

The intensity variance map was computed based on the variance 
of pixel intensities in an image patch:  
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Where p refers to an image patch, m=16, n=16 are the width and 
height, respectively, of the patch in pixels (corresponding to 
0.7°x0.7° in our display), I is the intensity of a pixel, and pI  is 
the mean intensity of the patch. The motivation for using this 
particular model comes from studies that demonstrated its 
correlation with perceptual contrast in natural images [Bex and 
Makous 2002], particularly in the context of attentional selection 
[Parkhurst and Niebur 2003; Reinagel and Zador 1999]. The 
particular scale of attention-priority maps was chosen such that 
local measurements (0.7°x0.7°) corresponded to the largest effect 
size reported for visual correlates of attentional selection 
[Parkhurst and Niebur 2003].   

Saliency maps were computed based on a series of nonlinear 
integrations of center-surround differences across several scales 
and feature channels. Maps for individual saliency components 
were generated by consecutive runs of the integrated saliency 
model, in which all feature channels but one were inactivated. 
The computations in this model have already been described 
extensively elsewhere [Itti 2005; Itti and Koch 2000]. They are 
motivated by neurophysiological [Bisley and Goldberg 2003; 
Frost and Nakayama 1983; Gottlieb et al. 1998; Sillito et al. 
1995], psychophysical [Polat and Sagi 1994; Treisman and 
Gelade 1980], and computational [Koch and Ullman 1985] 
studies. An earlier version of the integrated saliency model was 
published as part of a larger framework for simulating attention 
shifts [Itti and Koch 2000], which also included winner-take-all 
and inhibition-of-return. These operations may be useful for an 
upstream saccade generation module that integrates bottom-up 
and top-down influences. As such, they are outside the scope of 

                                                                 
1 The square root of intensity variance is also known as RMS contrast. 
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the current investigation that relies on attention-priority maps as 
probes for the potential availability of bottom-up influences.  

2.6 Bottom-up prediction of single saccades 
For each human saccade, we generated a concurrent random 
saccade by sampling its target from a spatially uniform 
distribution of possible locations. Such random saccades ensure 
that both hit rate and target specificity are taken into account 
when evaluating the prediction accuracy of attention-priority 
maps. In the absence of a specificity criterion, models that 
generate uniform attention-priority maps will achieve optimal hit 
rates and will be deemed maximally predictive. With the random 
baseline, such useless models would be considered minimally 
predictive, because both human and random saccades will have 
exactly the same hit rate. An important advantage of calculating 
the random baseline per saccade is that it eliminates potential 
artifacts due to varying distributions of saliency values in 
different attention-priority maps (e.g., across scenes or over time).    

The role of random saccades is to reflect the chance levels of 
landing on different saliency values. Saccadic tendencies, such as 
biases for making short saccades [Melcher and Kowler 2001], 
were not included in either the model or the baseline. The 
rationale for this decision is that saccadic tendencies may reflect 
bottom-up influences, such as due to centrally-biased distribution 
of saliency values [Parkhurst and Niebur 2003; Reinagel and 
Zador 1999; Tatler et al. 2005]. In this case, the underlying cause 
for saccadic tendencies should already be included implicitly in 
bottom-up models, and including them explicitly in the baseline 
as well would lead to underestimating the actual magnitude of 
bottom-up influences. Alternatively, saccadic tendencies may 
reflect motor constraints that are independent of the actual 
stimulus content or related internal representations. In this case, 
saliency comparisons between human and random saccades 
would be contaminated by motor constraints that may lead to 
misestimating the actual magnitude of saliency effects. 
Unfortunately, the extent to which saccadic tendencies are 
influenced by saliency distribution versus motor constraints 
during natural vision is unknown, so introducing them explicitly 
would involve unwarranted assumptions about their origin. In any 
case, the analyses presented here do not depend on estimating the 
actual magnitude of bottom-up versus top-down influences during 
natural vision, which is a fascinating research question in its own 
right. Rather, we only compare the prediction accuracy of 
different bottom-up models in identical conditions, or of the same 
model across different conditions. For such comparisons, saccadic 
tendencies, regardless of their origin, are not expected to bias the 
results in any consistent way.  

Normalized prediction for all saccades was calculated by 
sampling the attention-priority map at the saccade target, and 
dividing that local value by the global maximal value in the 
instantaneous attention-priority map. Local sampling was done by 
calculating the maximal local value in an aperture around each 
saccade target, thus compensating for potential inaccuracies in 
human saccade targeting and the eye-tracking apparatus. The 
fixed aperture size (r=3.15°) minimizes false negatives and false 
positives based on our subjective evaluation of where several 
randomly chosen human saccades were actually targeted. We did 
not try to optimize the aperture size (e.g., based on cortical 
magnification and saccade length), under the assumption that any 
errors in the human saccade sampling would be offset by 
corresponding errors in the random saccade sampling. To 

establish causal rather than correlational effects, measurements 
were taken at the end of the fixation period prior to saccade 
initiation, as defined by a standard saccade extraction procedure 
[Itti 2005]. The timing of such measurements does not explicitly 
take into account known sensory-motor delays in saccade 
execution [Caspi et al. 2004], because such delays are already 
included in the internal dynamics of the saliency model [Itti and 
Koch 2000]. The rationale for choosing this particular timing was 
two-fold: first, it is independent of fixation duration; second, 
attentional selection during natural vision is likely to be 
influenced most strongly by visual information accrued during the 
preceding fixation [Caspi et al. 2004; Najemnik and Geisler 2005; 
Parkhurst et al. 2002]. Optimizing the timing of saliency sampling 
for individual saccades is not crucial here, because the focus of 
the current investigation is on characterizing differences in 
saliency effects between groups of saccades. 

2.7 Ideal prediction of attentional selection 
Theoretically, the largest possible difference between model 
responses at human vs. random saccade targets would occur if 
human and random saccades always land on the maximal and 
minimal model response, respectively. However, even if assuming 
an ideal model that always generates a single response at saccade 
target, and 0 everywhere else (Fig. 2a), a certain fraction of 
random saccades would land on the maximal model response by 
chance. The probability of chance hits is given by 

0408.0/ == mt NNp , where 49=tN  is the number of pixels in 
an aperture around the saccade target (approximated by 9 adjacent 
rows: 1,5,7,7,9,7,7,5,1 pixels), and 1200=×= mmm HWN  is the 
number of pixels in the attention-priority map (40x30). 

 
Figure 2.  Hypothetical predictions of attentional selection. 
(a) An ideal attention-priority map prior to the initiation of 
a human saccade. It contains a positive value at the saccade 
target, and zero elsewhere. Eye-position prior to saccade 
initiation (filled circle), saccade trajectory (arrow), and 
saccade target (ring) are depicted in light gray. Dark gray 
ring depicts a random saccade target.  
(b) Saccade probability as a function of map values at 
saccade targets for the ideal scenario. The ideal scenario 
leads to the maximal rightward shift of the human 
histogram relative to the random histogram. 
(c) A null attention-priority map prior to saccade initiation. 
Any map that contains positive values at random locations 
would qualify as a null map, but in this case, only one 
random location is set to a non-zero value to facilitate 
direct comparisons to the ideal scenario.  
(d) Same as b, but for the null scenario. Human and 
random saccades are just as likely to land on positive 
values, leading to no rightward shift of the human 
histogram relative to the random histogram. 
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In the ideal scenario, the human histogram (saccade probability as 
a function of model response) will only contain saccades in the 
highest bin (90-100% of the max response), while the random 
histogram will have 1-p saccades in the lowest bin (0-10% of the 
max response), and p saccades in the highest bin (Fig. 2b). In 
comparison, the null scenario occurs when a model is 
unpredictive of attentional selection (Fig. 2c), in which case 
human and random saccades would be just as likely to target high 
priority targets, leading to no rightward shift between the human 
and random histograms (Fig. 2d). 

2.8 DOH metric 
The difference of histograms (DOH) metric outputs a scalar that 
quantifies the human tendency to initiate saccades towards high 
priority targets by measuring the rightward shift of the human 
saccade histogram relative to the random saccade histogram:  
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Where Hi and Ri are the fractions of human and random saccades, 
respectively, which fall in bin i with boundaries nini /,/)1( − , 
where n=10 is the number of bins, and niWi /)5.0( −=  is the 
mid-value of bin i. 

The weighting vector ensures that deviations from the baseline for 
high priority candidates, as defined by the attention-priority map, 
receive higher weights than corresponding deviations for low 
priority candidates. This is important because high priority 
candidates are more likely to attract attention than low priority 
candidates, and thus are more informative for measuring 
prediction accuracy.  

DOH values are expressed as percentages of IDOH , which 
reflects the ideal rightward shift of the human saccade histogram 
relative to the random saccade histogram (Fig. 2b):  

8633.0)1()( 1 =−×−= pWWDOH nI  

Hence, the expected range of DOH values is from 0 (chance) to 
100 (ideal). Models that are worse predictors than chance would 
lead to negative DOH values.  

The DOH metric has several advantages compared to previously 
suggested metrics [Itti 2005; Krieger et al. 2000; Mannan et al. 
1997; Oliva et al. 2003; Parkhurst et al. 2002; Parkhurst and 
Niebur 2003; Reinagel and Zador 1999; Tatler et al. 2005; 
Torralba 2003], namely: linearity, meaningful upper bound, 
intuitiveness, priority weighting, directionality, and sensitivity to 
high-order statistics. The most advanced alternatives to DOH are 
KL-divergence [Itti 2005] and ROC analysis [Tatler et al. 2005]. 
The main advantage of the KL-divergence and ROC metrics 
relative to the DOH metric is their grounding in information 
theory and signal detection theory, respectively. However, both of 
these metrics are inferior to DOH in the specific context of 
measuring saliency effects. For example: both KL-divergence and 
DOH estimate the overall dissimilarity between different 
probability density functions, but KL-divergence suffers from the 
following relative disadvantages: non-linearity (i.e., metric values 
cannot be compared as interval variables), infinite upper-bound, 
no priority weighting, and bi-directionality (i.e., no distinction 
between instances in which models are more predictive versus 
less predictive than chance). In contrast, the ROC metric [Tatler 
et al. 2005] estimates the overall discriminability between 

different probability density functions. As such, it does not 
include any priority weighting. Furthermore, it introduces 
unwarranted assumptions about linear discriminability, which are 
not required when using dissimilarity-based metrics, such as KL-
divergence or DOH. 

It is important to realize that the DOH values reported here 
provide a conservative estimate for the overall impact of bottom-
up versus top-down influences on attentional selection. This is 
because inter-participant consistency in attentional selection is 
imperfect, indicating that even the ideal attention-priority map 
should sometimes contain more than one potential candidate. 
Consequently, the probability of random saccades landing on 
valid attention candidates would be higher than reported here, 
leading to a lower DOH upper bound. Our conclusions are 
immune to this fact because they only depend on differences in 
prediction accuracy. The normalizing factor is interesting as a 
first step towards quantifying the relative contribution of bottom-
up versus top-down influences, which is outside the scope of the 
current investigation. 

3. Results 

3.1 Overall saliency effects 
We compared the accuracy of different bottom-up models in 
predicting attentional selection, which is strongly coupled with 
saccade target selection during natural vision [Findlay 2004; 
Kustov and Robinson 1996; Sheinberg and Logothetis 2001; 
Sperling and Weichselgartner 1995]. Table 1 shows the overall 
accuracy of different bottom-up models in predicting attentional 
selection.  

Table 1. Overall accuracy of different bottom-up models in 
predicting attentional selection in the MTV-style experiment. 
Models are rank ordered by DOH from low to high. 
Significance values for pairs of adjacent DOH values are 
based on 2-tail t-tests 

 DOH Mean DOH SE* t[10185], p value

Intensity Variance 12.3602 0.22155 - 

Orientation Contrast 13.3311 0.33725 3.10, <0.005** 

Intensity Contrast 13.4708 0.35572 0.29, >0.2 

Color Contrast 14.6101 0.38036 2.26, <0.05* 

Intensity Transient 20.3957 0.38582 10.75, <0.0001**

Motion Contrast 20.6382 0.37502 0.44, >0.2 

Integrated Saliency 21.3771 0.34837 1.39, <0.2 
 

* based on 1000 bootstrap subsamples [Efron and Tibshirani 1993] 

DOH values clearly dissociate into 2 main groups of static versus 
dynamic models. To conserve space, we only show detailed 
analyses for 2 representative models from each group:  intensity 
variance, color contrast, motion contrast, and integrated saliency.  

Fig. 1b (see color plate) shows examples of human saccades and 
model responses. Fig. 3 shows the overall human and random 
saccade histograms (saccade probability as a function of model 
response). The random saccade histograms reflect the probability 
density function of model responses, while the human saccade 
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histograms demonstrate how much human selection of attention 
targets is biased towards locations with high model responses. As 
Figs. 1b and 3 demonstrate, different models generate diverse 
attention-priority maps, in terms of location and density of 
candidate targets. For example: the intensity variance model 
generates the densest maps, with only 2% of random saccades 
landing on minimal priority candidates (0-10% of the max). In 
contrast, the motion contrast model generates the sparsest maps, 
with 50% of random saccades landing on the lowest possible 
model response bin. 

 

 
Figure 3: Overall bottom-up predictions of attentional 
selection. Different panels show the random and human 
saccade probabilities for different models as a function of 
map value at saccade target prior to saccade initiation. Dark 
gray and light gray vertical bars represent the random and 
human saccade histograms, respectively. Numbers above 
histograms show the DOH values. 

In the text, we particularly focus on differences in prediction 
accuracy between intensity variance and integrated saliency. 
Intensity variance was chosen as a representative static model 
because it has been shown to correlate with detectability and 
attentional selection in natural images [Bex and Makous 2002; 
Parkhurst and Niebur 2003; Reinagel and Zador 1999]. Integrated 
saliency was chosen as the representative dynamic model because 
of its relatively broad applicability to both static and dynamic 
stimuli (the other dynamic models - intensity transient and motion 
contrast - require a minimum of 2 consecutive frames to produce 
an output). This choice did not matter here, because none of the 
circumstances we examined led to any statistically significant 
differences in prediction accuracy between different dynamic 
models. Fig. 3 and table 1 demonstrate that all the tested bottom-
up models were significantly better than chance (DOH=0) in 
predicting attentional selection (z>1.96, p<0.01), with integrated 
saliency being 1.7 times more predictive than intensity variance 
(t[10185]=21.8406, p<<0.01).  

3.2 Saliency effects as function of viewing time 
and inter-participant consistency 
While establishing the overall superiority of dynamic over static 
features in attracting attention, Fig. 3 may in fact underestimate 
this superiority, because not all saccades are equally informative 
indicators of saliency effects. Specifically, top-down guided 
saccades are generally uninformative for estimating the relative 

impact of different types of saliency on attentional selection, 
while bottom-up driven saccades are particularly informative for 
this purpose. Unfortunately, tools to unambiguously label 
particular saccades performed during visual exploration of real 
world scenes as "top-down guided" or "bottom-up driven" are 
currently unavailable. Nevertheless, the two following heuristics 
may be used to approximate such labeling: First, bottom-up 
influences are faster acting than top-down influences [Henderson 
2003; Wolfe et al. 2000]. Hence, saccades that occur shortly after 
exposure to novel scenes may be more bottom-up driven than 
later saccades. The evidence for this hypothesis is mixed: one 
study [Parkhurst et al. 2002] found relatively stronger saliency 
effects early after stimulus onset than later on, but another study 
found no interaction between saliency effects and viewing time 
[Tatler et al. 2005]. Second, top-down influences depend critically 
on prior knowledge and specific expectations that may be quite 
different for different participants, for example: Native English 
speakers tend to read from left to right, while native Hebrew 
speakers tend to read from right to left. In contrast, bottom-up 
influences depend more exclusively on the instantaneous stimulus 
content, which is physically identical for different participants. 
Thus, saccades that lead to increased inter-participant consistency 
in attentional selection may have been driven more strongly by 
bottom-up rather than top-down influences [Mannan et al. 1997]. 
Alternatively, changes in inter-participant consistency may 
simply reflect cross-participant divergence in top-down influences 
[Tatler et al. 2005], in which case no interaction is expected 
between inter-participant consistency in attentional selection and 
saliency effects.   

To test for potential interactions between viewing time and 
saliency effects, we examined the accuracy of different bottom-up 
models in predicting attentional selection as a function of saccade 
index between adjacent jump cuts (Fig. 4a, see color plate). We 
also performed a similar analysis by actual time (based on 
consecutive 250 ms bins), which led to practically identical 
results. To facilitate direct comparisons to previous studies that 
examined the same issue [Parkhurst et al. 2002; Tatler et al. 
2005], we only show the saccade index plot. As explained below, 
there are at least two methodological advantages to focusing the 
analysis on proximity to jump cuts rather than clip onsets, which 
may also cause surges in saliency effects [Henderson 2003; 
Parkhurst et al. 2002] (but see [Tatler et al. 2005]). One such 
advantage is the proper elimination of central bias artifacts, which 
may arise due to a combination of factors [Parkhurst et al. 2002; 
Parkhurst and Niebur 2003; Reinagel and Zador 1999; Tatler et al. 
2005] 2: First, the distribution of saliency values and objects of 
interest in photographs is often spatially biased towards the center 
of the display. Second, viewing sessions traditionally begin with a 
central fixation cross. Third, humans tend to make short saccades. 
                                                                 
2 Center bias and previous approaches for dealing with it have led to 

misestimating saliency effects. Overestimation may occur when saliency 
effects are measured at the beginning of a viewing session that was 
preceded by a central fixation cross [Itti 2005; Parkhurst et al. 2002]. 
Underestimation may occur either by simply ignoring the earliest and 
strongest saliency effects [Reinagel and Zador 1999], or by introducing 
fixation-dependent biases into the baseline [Parkhurst and Niebur 2003; 
Tatler et al. 2005]. The problem with the latter approach is the 
unwarranted assumption that the observed tendency to fixate towards 
the center of the display is mainly driven by motor biases rather than the 
actual distribution of saliency, which is indeed centrally biased in 
photography-based stimuli [Parkhurst et al. 2002; Reinagel and Zador 
1999; Tatler et al. 2005]. 

15



Acting together, these factors may introduce an artifactual peak in 
saliency effects immediately after clip onsets, simply because 
participants were artificially induced to fixate more salient stimuli 
at the beginning of viewing sessions. We avoided this potential 
artifact by measuring saliency effects after jump cuts, which are 
not preceded by an artificial central fixation. Another advantage 
of analyzing saliency effects following jump cuts rather than clip 
onsets is signal to noise ratio (SNR): Each participant is exposed 
to approximately 10 times more jump cuts than clip onsets. 
Consequently, participants perform approximately 10 times more 
saccades following jump cuts compared to clip onsets, leading to 
relatively higher SNR for measuring saliency effects. Fig. 4a 
demonstrates that integrated saliency was 2.7 times better than 
intensity variance in predicting attentional selection 
(t[10185]=18.1212, p<<0.01), when the analysis was based on the 
first saccade initiated after jump cuts. It also indicates that the 
impact of motion contrast and integrated saliency peaks 
immediately after jump cuts, followed by slow decreases. Color 
contrast displays a similar pattern, but only for up to 5 saccades, 
while intensity variance displays a bell-shaped trend. We also 
performed the same analysis for clip onsets, which mirrored the 
initial trends of the jump cuts analysis (from the 1 s and saccade 4 
onwards, saliency effects appeared constant in the clip onsets 
analysis, probably due to artifactual masking introduced by the 
asynchrony of jump cuts across clips). In summary, we observed 
decreased saliency effects with viewing time for all tested models, 
except the intensity variance model.  

To test for potential interactions between inter-participant 
consistency and saliency effects, we examined the accuracy of 
different bottom-up models in predicting attentional selection as a 
function of inter-participant consistency. Fig. 4b demonstrates 
that integrated saliency was 2.5 times better than intensity 
variance in predicting attentional selection (t[10185]=14.0763, 
p<<0.01), when the analysis was based on saccades that brought 
the eye-position of a given participant closest to the instantaneous 
eye-position of other participants (area of bounding rectangle: 0°-
4.8°). Fig. 4b further demonstrates a positive relationship between 
inter-participant consistency and saliency effects for all tested 
models, except the intensity variance model. Similarly, Fig. 4c 
shows the accuracy of different bottom-up models in predicting 
attentional selection as a function of inter-participant consistency, 
but only for the fastest 1st saccades (initiated within 250 ms after 
jump cuts). Finally, table 2 shows values of the first data point in 
Fig. 4c.  

Table 2. Same as table 1, but based on a subset of saccades 
that were initiated within 250 ms after jump cuts and led to 
the highest inter-participant consistency 

 DOH Mean DOH SE* t[10185], p value

Orientation Contrast 9.4893 2.6632 - 

Intensity Variance 11.2693 1.584 0.47, >0.2 

Intensity Contrast 20.5364 3.0515 4.14, <0.0001** 

Color Contrast 23.975 2.7901 0.80, >0.2 

Integrated Saliency 40.0302 2.3546 4.07, <0.0001** 

Motion Contrast 41.1012 2.976 0.32, >0.2 

Intensity Transient 43.5548 2.933 0.58, >0.2 
 

* based on 1000 bootstrap subsamples [Efron and Tibshirani 1993] 

It demonstrates that integrated saliency was 3.6 times better than 
intensity variance in predicting attentional selection 
(t[10185]=10.1349, p<<0.01), when the analysis was based most 
exclusively on bottom-up driven saccades. 

4. Discussion 
For the first time, our study establishes causal links between 
saliency and attentional selection during natural vision. This 
predictive power is attributable to the MTV-style manipulation, 
and the particular timing in which saliency effects were measured 
(i.e., prior to saccade initiation). The observed superiority of 
dynamic over static saliency in attracting human attention likely 
reflects an evolutionary adaptation to real world environments: 
important events in everyday life, such as the approach of 
predators or mates, may be detected more rapidly and selectively 
based on dynamic rather than static features. Moreover, biological 
camouflage strategies typically involve seamless blending into the 
background in terms of static features, such as shape and color 
[Curio 1976]3. In such circumstances, attentional selection 
mechanisms based on static features are rendered useless, and 
organisms must rely on dynamic features for rapid detection of 
behaviorally relevant information, such as the location of 
predators or prey. Among bottom-up models based on static 
features, we found superior prediction accuracy for color versus 
intensity. This result may reflect an evolutionary adaptation for 
detecting color contrasts, such as when searching for colorful 
fruits embedded in foliage [Regan et al. 2001]. The following 
subsections address the methodological innovations that made this 
study possible, and discuss further implications of the results in 
light of previous studies, as well as promising future directions: 

4.1 Stimuli 
The stimulus set used here consists of 50 video clips from 12 
different sources [Itti 2005], and is substantially larger and richer 
compared to the collections of still images [Itti and Koch 2000; 
Krieger et al. 2000; Mannan et al. 1997; Oliva et al. 2003; 
Parkhurst et al. 2002; Parkhurst and Niebur 2003; Peters et al. 
2005; Reinagel and Zador 1999; Tatler et al. 2005; Torralba 2003] 
and synthetic search arrays [Abrams and Christ 2005; Folk et al. 
1992; Franconeri et al. 2005; Hillstrom and Yantis 1994; Jonides 
and Yantis 1988; Theeuwes 1994; Yantis and Egeth 1999] used in 
previous studies.  

It should be noted that visual exploration of video clips does not 
capture the full complexity of sensory stimulation experienced in 
real world environments, which often involve wider fields of 
view, multi-sensory stimulation, and egomotion. Unfortunately, 
the computational tools at our disposal are not powerful enough to 
handle unconstrained real world stimuli. We think that the use of 
motion pictures as stimuli strikes a reasonable balance between 
real world relevance and computational power.  

4.2 Saliency modeling 
Neural grounding, spatial interactions between local detectors, 
and detection of dynamic saliency are critical elements that 
distinguish the integrated saliency model and its components from 

                                                                 
3 Examples of dynamic camouflage, as employed by dragonflies during 

territorial aerial manoeuvres [Mizutani et al. 2003], can also be found in 
nature, but they are rare compared to static camouflage.  
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the available alternatives [Krieger et al. 2000; Mannan et al. 1997; 
Oliva et al. 2003; Parkhurst and Niebur 2003; Reinagel and Zador 
1999; Tatler et al. 2005; Torralba 2003]. Extracting dynamic 
features from natural time varying stimuli requires a 
computational leap compared to extracting static features from 
still images. Our results demonstrate that this methodological 
advance led to dramatically improved model accuracy in 
predicting human attentional selection.  

The most predictive bottom-up model used here (integrated 
saliency) still contains several limitations, and here we focus on 
two of them: First, it fails to account for the variable spatial 
resolution of the primate visual system [Connolly and Van Essen 
1984; Curcio et al. 1987], or for potential differences in saliency 
processing between the fovea and periphery. Such sensory 
asymmetries and processing asymmetries may act in opposite 
directions, assuming that peripheral saliency is more informative 
than foveal saliency for making new attentional selections. If so, 
introducing one without the other [Parkhurst et al. 2002] would 
lead to less realistic modeling of saliency effects than introducing 
neither. Future accounts of processing asymmetries could pave 
the way towards realistic integration of both sensory and 
processing asymmetries into saliency models. Another limitation 
of the integrated saliency model is that it includes no excitatory 
spatial interactions, which can lead to perceptual grouping and 
strongly attract attention [Driver et al. 1992]. Nevertheless, the 
integrated saliency model does include inhibitory spatial 
interactions, and is thus not strictly local, contrary to most other 
saliency models.  

An important step towards integrating bottom-up and top-down 
influences would be the addition of visual short-term memory to 
existing saliency models. The persistence of accrued sensory 
information during natural vision, as well as the nature of 
interactions between old and new visual inputs, are important 
open questions in this context. Additional task-independent top-
down effects may be introduced by weighted cue combination 
based on the relative impact of individual cues on attentional 
selection, as revealed here. Such a scheme would simulate long-
term learning of average cue reliability [Jacobs 2002].    

4.3 DOH metric 
In addition to comparing the performance of competing models in 
different conditions, as we did here, future studies could utilize 
the DOH metric for measuring model performance in the context 
of different activities or people, such as novices versus experts 
[Land and McLeod 2000], or people with autism versus control 
subjects [Klin et al. 2002]. The DOH metric can be used to 
measure the performance of any model that generates attention-
priority maps, regardless of its underlying computations (bottom-
up, top-down, or both).     

4.4 Bottom-up saccade labeling 
Here we promoted the idea that the relative impact of bottom-up 
influences on attentional selection should be measured when top-
down influences are as little involved as possible (without losing 
realism). This approach is diametrically opposed to the 
psychophysical practice of characterizing bottom-up cues based 
on their ability to involuntarily capture attention in the context of 
a competing top-down task [Abrams and Christ 2005; Folk et al. 
1992; Franconeri et al. 2005; Hillstrom and Yantis 1994; Jonides 
and Yantis 1988; Theeuwes 1994; Yantis and Egeth 1999]. As 
rationale, we note that humans spend a lot of time in everyday life 

visually exploring other people or new environments, without 
necessarily being engaged in highly demanding goal-oriented 
behaviors. In such less constrained circumstances, perception and 
action may critically depend on saliency effects, regardless of 
whether the selected stimuli meet the laboratory criterion for 
bottom-up attention capture. Indeed, our data demonstrate that 
certain bottom-up influences, such as color contrasts, play an 
important role in attracting attention during natural vision, even 
though they do not lead to involuntary attention capture in the lab 
[Folk et al. 1992; Jonides and Yantis 1988]. We thus hypothesize 
that purely bottom-up or purely top-down selections are rare in 
real world environments. A key open question is the extent of 
cooperativeness versus competitiveness between bottom-up and 
top-down influences in realistic environments. 
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Figure 1: Jump cuts and attention-priority maps.  
(a) Schematic of the MTV-style scene shuffling. Each 
colored square depicts a video frame. Color changes indicate 
abrupt transitions between semantically unrelated scenes.  
(b) Two consecutive saccades from an MTV-style clip (#11, 
participant MC) that straddle a jump cut. Yellow rings 
depict saccade targets. Filled yellow circles mark eye-
positions prior to saccade initiation. Yellow arrows show 
saccade trajectories. Uppermost filmstrips depict the 
instantaneous input frames at the time of saccade initiation. 
Lower filmstrips depict the corresponding intensity variance, 
color contrast, motion contrast, and saliency maps. 

 

 

Figure 4: Saliency effects as a function of viewing time 
(saccade index) and inter-participant consistency.  
(a) Saliency effects as a function of saccade index between 
adjacent jump cuts, based on pooling saccades across all 
participants and jump cuts. Error bars depict the S.E. for 
1000 bootstrap subsamples. 
(b) Saliency effects as a function of inter-participant 
consistency, which is measured by the area of the smallest 
rectangle bounding the instantaneous eye-positions of 
different participants. DOH values were computed for the 
same areas as in c, based on all available saccades.   
(c) Saliency effects as a function of inter-participant 
consistency, but only for saccades initiated within 250 ms 
after jump cuts. To maximize the reliability of DOH values, 
saccades were divided into quartiles, resulting in the 
following area bins: [0°-4.8°], (4.8°-14.4°]; (14.4°-33.5°]; 
(33.5°-314.3°].  
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