

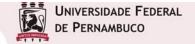
Generative Adversarial Networks (GANs) From Ian Goodfellow et al.

A short tutorial by: Binglin, Shashank & Bhargav

Mágica das GANs

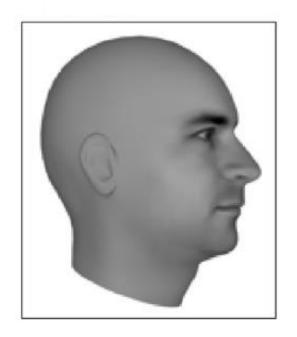
Qual das imagens é gerada?

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arXiv preprint arXiv:1609.04802 (2016).

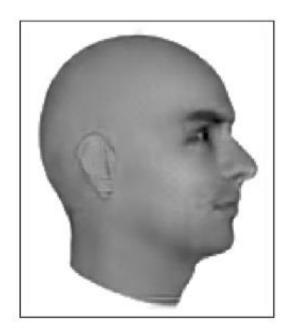


Mágica das GANs

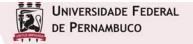
real



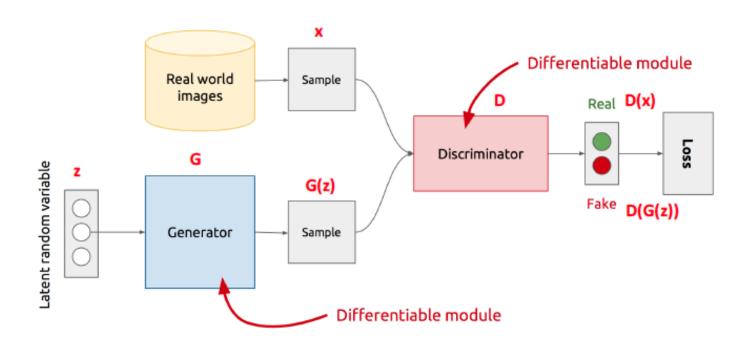
adversarial



Lotter, William, Gabriel Kreiman, and David Cox. "Unsupervised learning of visual structure using predictive generative networks." arXiv preprint arXiv:1511.06380 (2015).



Arquitetura da GAN



Z é um ruído Gaussiano (Gaussiano/Uniforme)

Z é pensado como uma representação latente da imagem (*n* dimensional)

Formulação da GAN

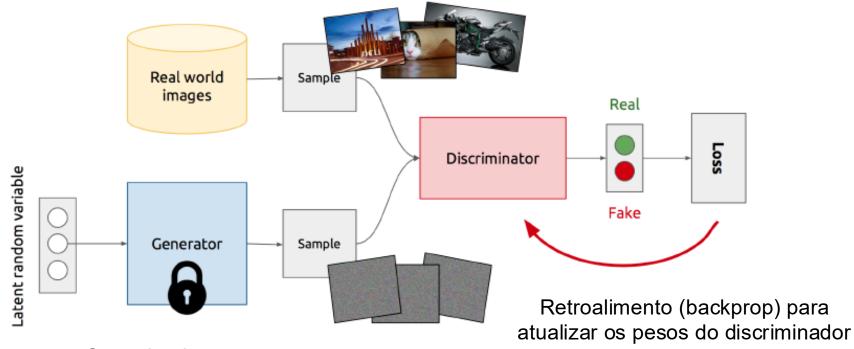
$$\min_{G} \max_{D} V(D,G)$$

Como um jogo de Min-Max, onde:

- O discriminador tenta maximizar sua recompensa (ou seja, reduzir seu erro)
- O gerador tenta minimizar a recompensa do discriminador (ou sej,a maximizar sua perda)

 $V(D,G) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \mathbb{E}_{z \sim q(z)}[\log (1 - D(G(z)))]$ Erro para o discriminador Erro para o gerador

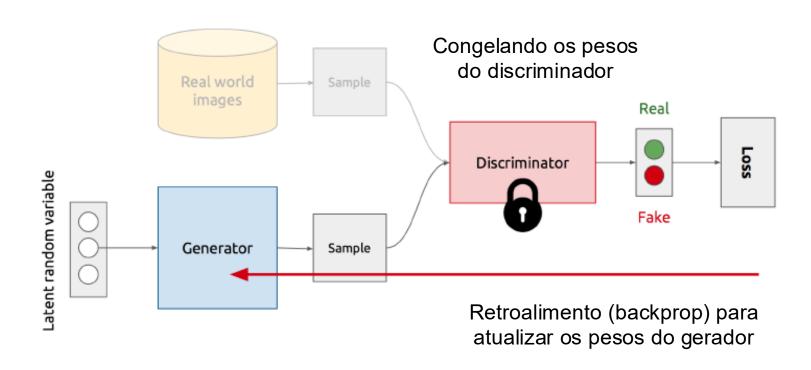
Treinando o Discriminador



Congelando os pesos do gerador

share.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Treinando o Gerador



https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Algoritmo

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

atualização do gerador

Log Loss

Quais são as probabilidades corrigidas?

 Log Loss é a métrica de classificação mais importante baseada em probabilidades

ID	Actual	Predicted Probabilities	Corrected Probabilities	Log
ID6	1	0.94	0.94	-0.02687
ID1	1	0.9	0.9	-0.04576
ID7	1	0.78	0.78	-0.10791
ID8	0	0.56	0.44	-0.35655
ID2	0	0.51	0.49	-0.3098
ID3	1	0.47	0.47	-0.3279
ID4	1	0.32	0.32	-0.49485
ID5	0	0.1	0.9	-0.04576

Média negativa

Como se vê, os valores de log são negativos. Para lidar com isso, se toma o negativo da média dos log de probabilidades

$$log \ loss = -1/N \sum_{i=1}^{N} (log (Pi))$$

Log Loss

 Log Loss é a métrica de classificação mais importante baseada em probabilidades

- 1. Calcula-se as probabilidades
- 2. Tira-se o log das probabilidades
- Calcula-se o negativo da média do passo 2

$$-\frac{1}{N}\sum_{i=1}^{N} y_{i} \cdot log(p(y_{i})) + (1 - y_{i}) \cdot log(1 - p(y_{i}))$$

Binary Cross-Entropy / Log Loss

yi representa a classe real e p(yi) a probabilidade daquela classe.

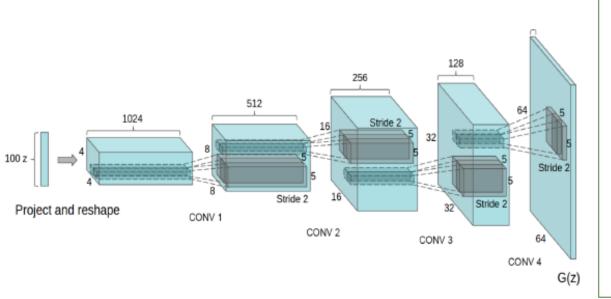
p(yi) é a probabilidade da classe 1 1-p(yi) é a probabilidade da classe 0

Log Loss

 Log Loss é a métrica de classificação mais importante baseada em probabilidades

https://www.analyticsvidhya.com/blog/2020/11/binary-cross-entropy-aka-log-loss-the-cost-function-used-in-logistic-regression/

GANs Convolucionais Profundas (DCGANs)



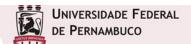
Key ideas:

- Replace FC hidden layers with Convolutions
 - Generator: Fractional-Strided convolutions
- Use Batch Normalization after each layer
- Inside Generator
 - · Use ReLU for hidden layers
 - · Use Tanh for the output layer

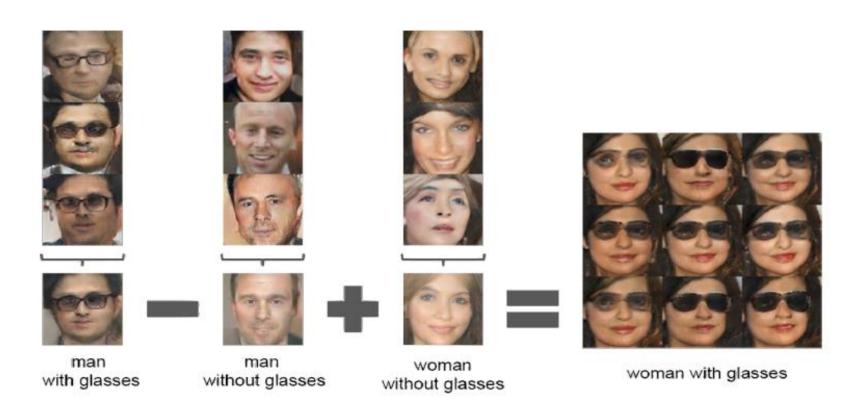
Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).

DCGAN: Bedroom images

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).



Latent vectors capture interesting patterns...



Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).

A Friendly Introduction to Generative Adversarial Networks (GANs)

https://www.youtube.com/watch?v=8L11aMN5KY8

Luis Serrano. Serrano. Academy

