

Redes de Kohonen ou Self-organizing Maps (SOM)

- Germano Vasconcelos
- Centro de Informática
- Universidade Federal de Pernambuco

Introdução

Desenvolvidos por Kohonen em 1982

 Baseada em aprendizagem nãosupervisionada, diferente das RNA na época

Forte inspiração neurofisiológica

Baseado em Aprendizagem Competitiva

Tipos de Aprendizagem I (pelo grau de feedback)

- Supervisionada: um "professor" diz quanto a resposta dada pelo sistema se aproxima da resposta desejada. (e. g. nota de um aluno numa prova)
- Por Reforço: um "professor" diz apenas se a resposta dada pelo sistema está certa ou errada. (e. g. punição/recompensa no treinamento de animais)
- Não-Supervisionada: o sistema tenta se auto-organizar baseado nas similaridades entre os exemplos a ele apresentados. (e. g. desenvolvimento das células simples do córtex visual estriado)

Tipos de Aprendizagem II (pelo grau de feedback)

Supervisionada:

- Conjunto de treinamento s = $\{(x_1, f(x_1)), (x_2, f(x_2)), ..., (x_n, f(x_n))\}$
- Convergência rápida

Por Reforço:

- Conjunto de treinamento $s = \{(x_1, sgn[f(x_1)]), (x_2, sgn[f(x_2)]),..., (x_n, sgn[f(x_n)])\}$
- Convergência média

Não-Supervisionada:

- Conjunto de treinamento $s = \{(x_1,), (x_2,), ..., (x_n,)\}$
- Convergência lenta

Características Gerais das Redes de Kohonen

- Inspiração biológica
- Aprendizagem n\u00e3o supervisionada (clustering)
 - a aprendizagem agrupa padrões de características comuns
 - a rede é capaz de identificar as características comuns ao longo do domínio dos padrões de entrada
- Memória associativa
- Mapa topográfico de características
 - Quantização vetorial (compressão de dados)
 - Relações de vizinhança preservadas (transformações
 conformes)
 - Representação de espaços N-Dimensionais em 2-D

Inspiração Biológica

- Codificação distribuída em camadas (redes planas)
- Funções de ativação (vizinhança)
- Mapas topográficos
 - visão (ice cube, fóvea etc.)
 - tato
 - audição
- Aprendizagem biologicamente plausível
 - processo WinnerTakes All (canto de acasalamento)
 - liberação de óxido nítrico pelos neurônios ativos
 - membro fantasma (reaprendizagem dos córtices somatosensorial e motor)

Inspiração Neurofisiológica

- Observação de imagens
 - Ressonância magnética (MRI)
 - TomografiaComputadorizada (CT)
- Diferentes estímulos geram
 - Regiões de excitação
 - Organização topográfica

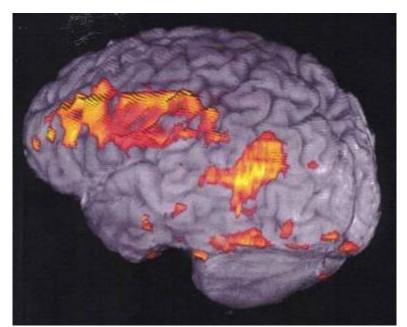
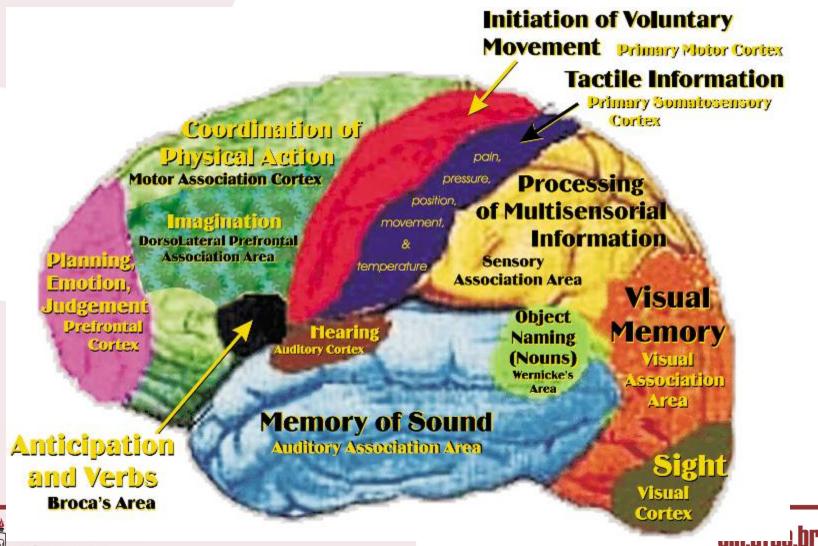


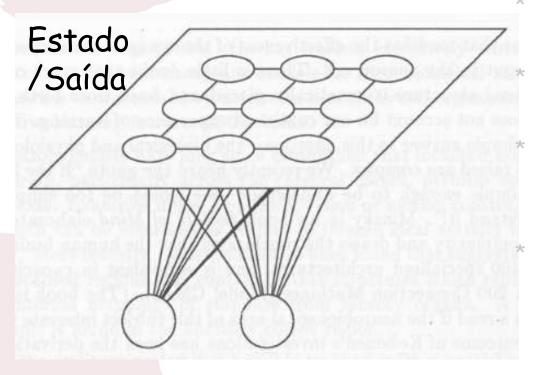
Figura: Regiões ativas durante aplicação de acupuntura no ponto LI-5

Fonte: Neuro-imaging of Acupunture Project

Inspiração Neurofisiológica



Rede de Kohonen



Entrada

Camada de saída plana: grade 2-D

Os estados dos neurônios são as próprias saídas

Camadas de entrada e saída totalmente conectadas

Feedback na camada de saída apenas numa vizinhança de cada neurônio (excitação / inibição lateral)

Aprendizagem Competitiva

- Neurônios de saída da RNA competem entre si para se tornar ativos
- Apenas um neurônio de saída fica ativo em um determinado instante
 - Três elementos básicos:
 - Neurônios com mesma estrutura, com pesos diferentes, produzindo respostas diferentes a uma entrada
 - Um limite imposto sobre a força de cada neurônio
 - Mecanismo de competição entre neurônios, de forma que apenas um neurônio é vencedor em um dado instante

Aprendizagem Competitiva

- Em cada momento o neurônio vencedor:
 - aprende a se especializar em agrupamentos de padrões similares
 - tornam-se detectores de características para classes diferentes de padrões de entrada
- O número de unidades de entrada define a dimensionalidade dos dados

Rede de Kohonen

- Espaço vetorial de entrada com dimensão d
- Cada amostra é um padrão representado por um vetor x = [x₁, x₂, ..., x_d]
- A arquitetura consiste de 2 camadas de neurônios
 - Camada de entrada composta por d neurônios
 - Camada de saída (ou de Kohonen) formada por N neurônios denotados por: $A = \{c_1, c_2, ..., c_N\}$
 - O vetor peso do neurônio j é representado por:

-
$$w = [\omega_{j1}, \omega_{j2}, ..., \omega_{jd}]$$
 $j = 1, ..., N$

Mapas Auto-Organizáveis (Arquitetura)

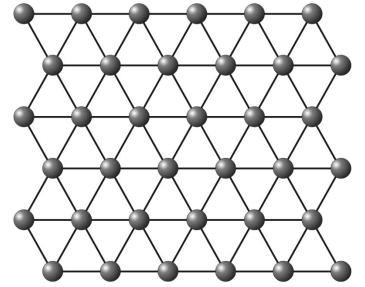
- O vetor peso sináptico de cada neurônio da grade tem a mesma dimensão que o espaço de entrada
 - O vetor peso do neurônio j é representado por:

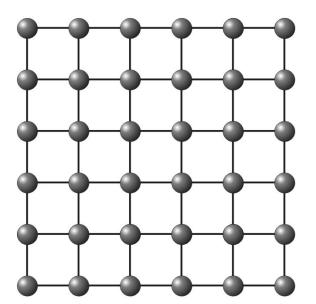
-
$$w = [\omega_{i1}, \omega_{i2}, ..., \omega_{id}]$$
 $j = 1, ..., N$

 este vetor indica as coordenadas de sua localização no espaço de entrada d dimensional

Grades

- No caso bidimensional, dois tipos de grade são empregados: hexagonal ou retangular
 - Na hexagonal, cada neurônio possui 6 vizinhos diretos
 - Na retangular, cada neurônio possui 4 vizinhos diretos

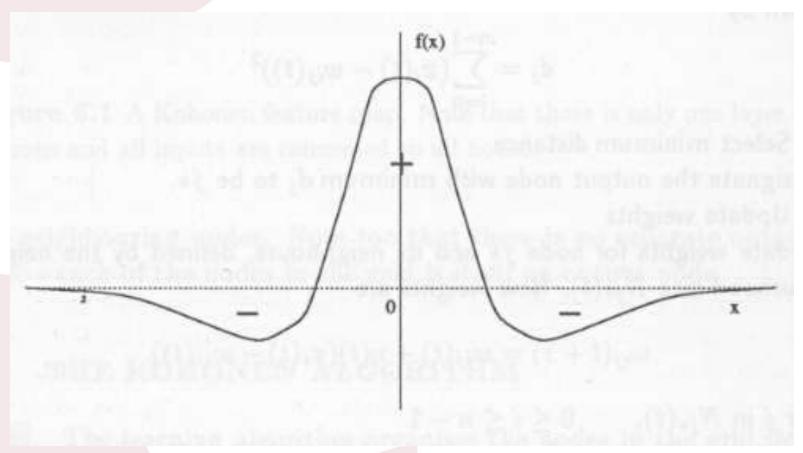




Aspectos do Treinamento

- Agrupamentos dos neurônios em vizinhanças que funcionam como detectores de características
- Mapa topográfico auto-organizado por processo cíclico de comparação dos padrões de entrada com pesos dos neurônios
- A partir de regiões aleatoriamente setadas, rede cria uma representação local e auto-organizada da informação
- Seleciona o neurônio de maior resposta ao padrão de entrada e aumenta a resposta desse neurônio e da sua vizinhança

Função de Ativação Chapéu de Mexicano

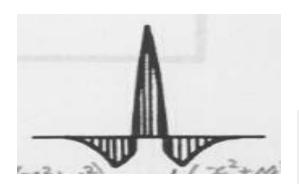


O óxido nítrico liberado pelas células ativas é uma das substâncias que fazem esse papel. cin.ufpe.br

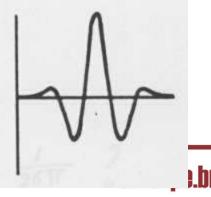
Funções Chapéu de Mexicano no Sistema Visual

Retina

Núcleo Geniculado Lateral



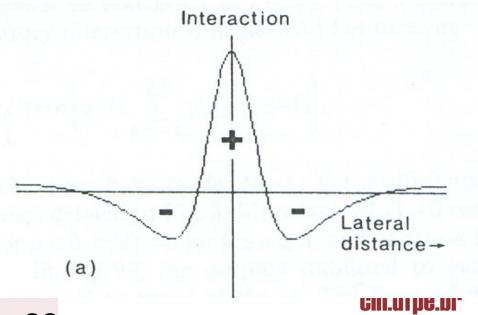
Córtex Estriado



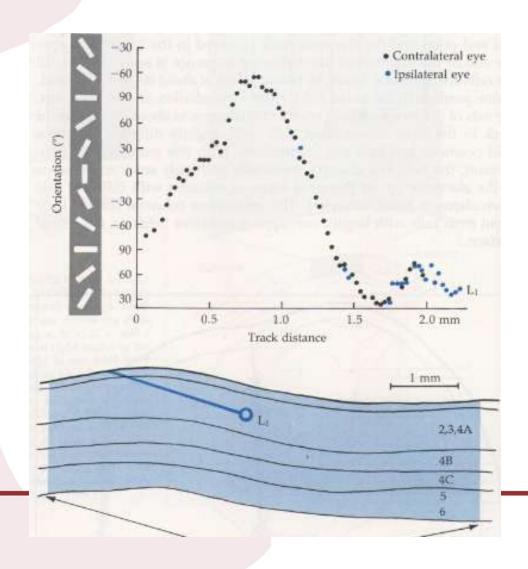
Inspiração Neurofisiológica

- Quando um neurônio é excitado, uma área ao redor entre 50 e 100 µm também sofre excitação
- Além disso, uma área sofre inibição para impedir a propagação do sinal a áreas não relacionadas

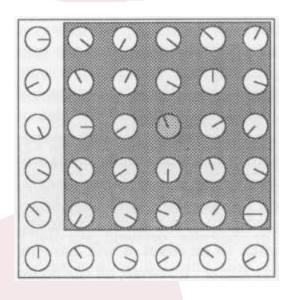
 A figura ilustra a iteração lateral entre os neurônios

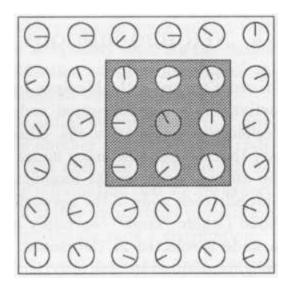


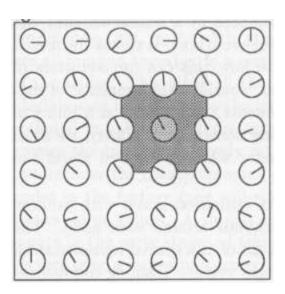
Auto-Organização Biológica (Detecção de Bordas) Seletividade à Orientação no Córtex



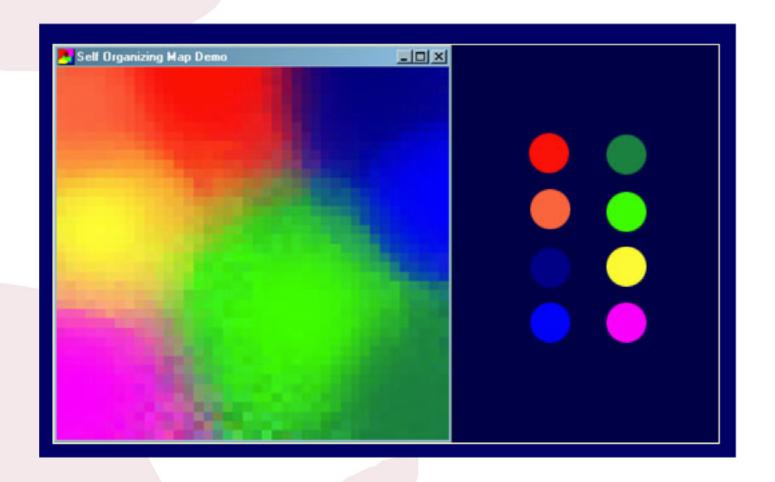
Vizinhança Adaptável para Detecção de Bordas







Representação das Cores a Partir dos 3 Componentes



Algoritmo de Aprendizagem

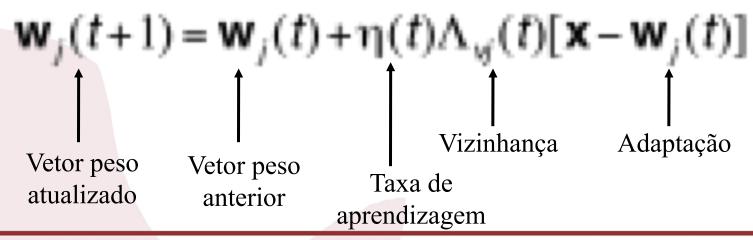
- 1. Inicializa-se a rede:
 - pesos (aleatórios entre [0,1]), raio da vizinhança, taxa de aprendizagem e taxa de redução da vizinhança
- 2. Apresenta-se padrão de entrada
- 3. Calcula-se distância Euclideana do vetor de entrada a cada neurônio j de saída
- 4. Seleciona-se o neurônio n_{i*} de menor distância d_{i*}
- 5 Adapta-se os pesos do neurônio n_{j^*} e da sua vizinhança N_{j^*} , segundo a regra:

-
$$w_{ij}(t+1) = w_{ij}(t) + \eta(t)[x_i(t)-w_{ij}(t)]. \Lambda_{i,i*}$$

- 6. Retorna-se a 2 enquanto existirem padrões
- 7. Reduz-se vizinhança e taxa de aprendizagem (convergência)
- 8. Retorna-se a 2 até total de iterações

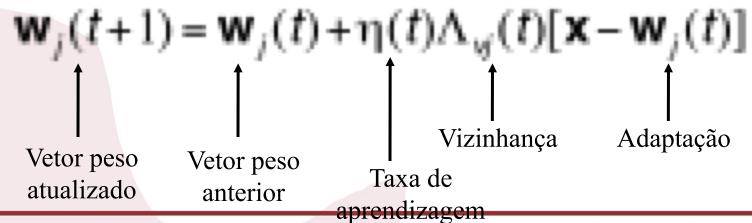
Aprendizagem

- Assume-se que a rede de influência lateral produz uma distribuição gaussiana centrada no neurônio vencedor
- Aplica-se como regra de aprendizagem:



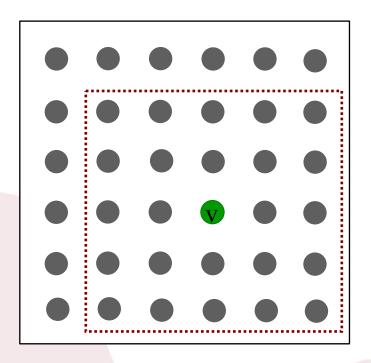
Aprendizagem

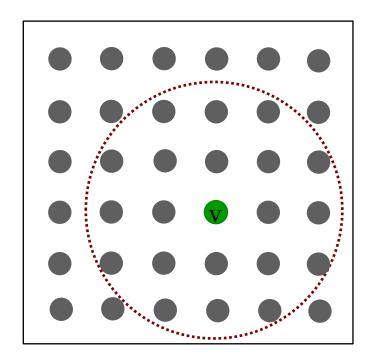
Equação aplicada a todos os neurônios da grade dentro da região de vizinhança h_{vi}



Exemplos de Vizinhanças

Tipo bolha (neurônios são atualizados igualmente)





Aprendizagem

- Normalmente taxa de aprendizagem e vizinhança diminuem no tempo
- Função de vizinhança \(\Lambda \) é normalmente uma gaussiana:

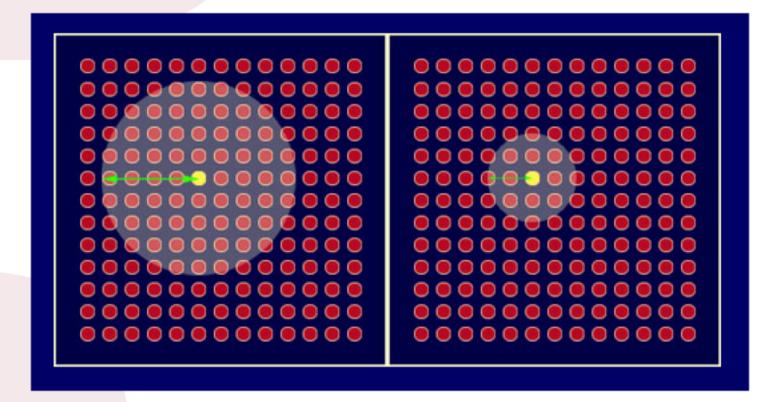
$$\Lambda_{i,i^*}(n) = \exp\left(\frac{-d_{i,i^*}^2}{2\sigma^2(n)}\right)$$

 Com uma variância que decresce com a iteração. Inicialmente cobre todo o mapa e reduz progressivamente a próximo de zero (somente o vencedor é atualizado)

Aprendizagem

- Conforme vizinhança é reduzida rede movese de competição "muito soft" (quase todo neurônio é atualizado) para competição "hard" (somente vencedor atualizado)
- SOM cria um espaço de saída discreto onde relações topológicas dentro das vizinhanças do espaço de entrada são preservadas

Redução de vizinhança



Aprendizagem

- Seleção de parâmetros é crucial para preservação de topologia
- Experiência mostrou que há duas fases na aprendizagem SOM:
 - Fase de ordenação topológica dos pesos, ou seja, definição das vizinhanças
 - Fase de convergência com o ajuste fino da distribuição de entrada

Fase de Ordenação

 Com T iterações, função de vizinhança decresce em geral linearmente com um raio (d) definido por (N₀=inicial):

$$d(t) = 1 + (N_0 - 1)(1 - \frac{t}{T})$$

 Normalmente a taxa de aprendizagem é alta (acima de 0.1) para permitir à rede se autoorganizar. Ela também é linearmente ajustada:

$$\boldsymbol{\eta}(t) = \boldsymbol{\eta}_T + (\boldsymbol{\eta}_0 - \boldsymbol{\eta}_T)(1 - \frac{t}{T})$$

— nº é taxa de aprendizagem inicial e nt é taxa final

Fase de Ordenação Centro de Informática

Também pode ser usada uma função exponencial decrescente para a taxa de aprendizagem:

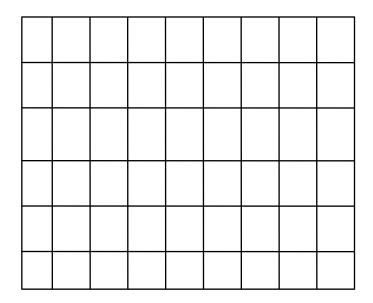
$$\eta(t) = \eta_0 \exp\left(-\frac{t}{\tau_2}\right)$$

onde τ_2 é o número total de iterações

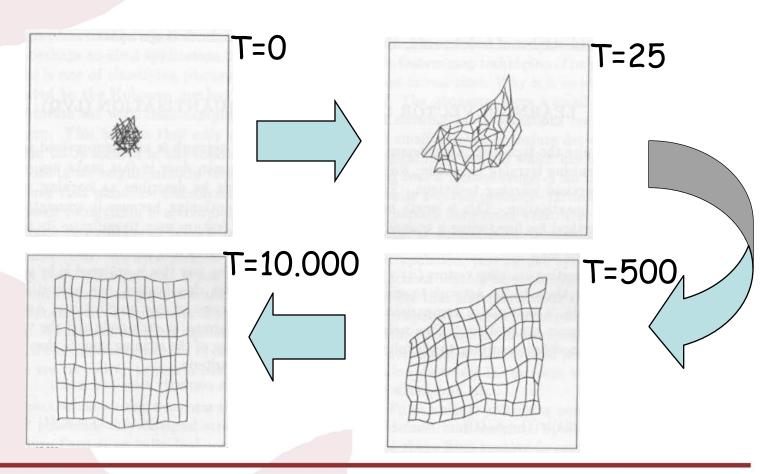
Fase de Convergência

- Fase mais demorada, se mantém taxa de aprendizagem pequena (0.01) e usa-se menor vizinhança (somente neurônio ou seus vizinhos mais próximos)
- Escolha do número de neurônios é experimental.
 Número de saídas afeta a precisão do mapeamento e tempo de treinamento
- Aumento do número de neurônios aumenta a resolução mas aumenta muito tempo de treinamento

Exemplo: treinamento de uma rede para representar uma grade de pontos



Formação do Mapa Topográfico Uniforme



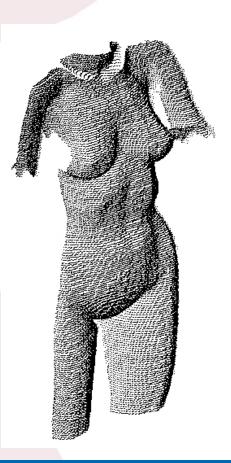
Aplicações

- Organização de dados
 - Redução de dimensionalidade
 - Reconstrução de Superfícies
- Agrupamentos de dados
 - Segmentação de Imagens
 - Mineração de dados
 - Classificação de documentos
- Classificação de dados
 - Reconhecimento de Caracteres
 - Reconhecimento de Fala

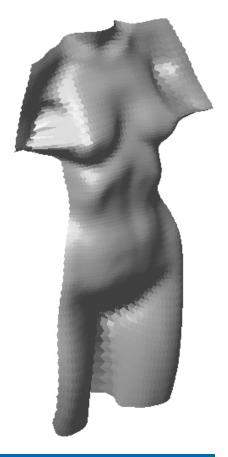
Aplicações

Reconstrução de superfícies

nuvem de pontos



mapa 3D do objeto reconstruído



MARI, J.F. Reconstrução de superfícies 3D a partir de nuvens de pontos usando redes neurais auto-organizáveis. Projeto Mestrado. 2006

Aplicações

Segmentação de Imagens

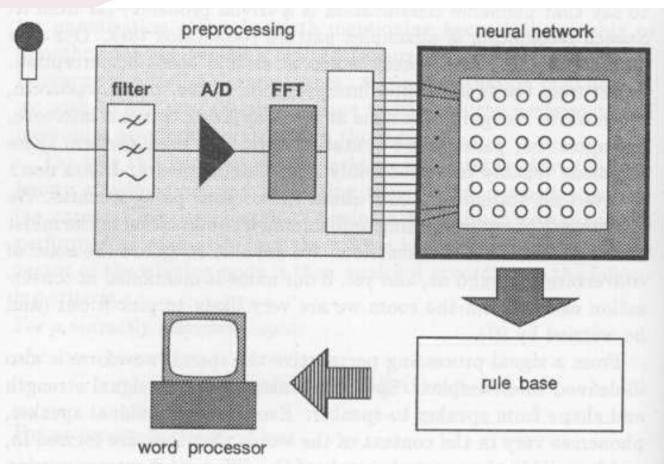
Imagem Original

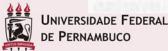
Imagem Segmentada

Y. Jiang, et.al. SOM Based Image Segmentation. Lecture Notes in Artificial Intelligence 2639, 2003, pp.640-643

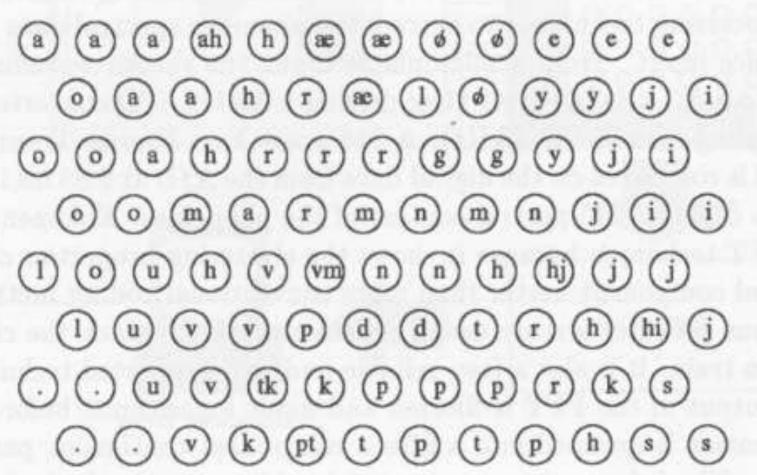
ptp://citeseer.ist.psu.edu/jiang03som.html

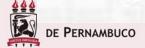
Máquina de Escrever Fonética de Kohonen



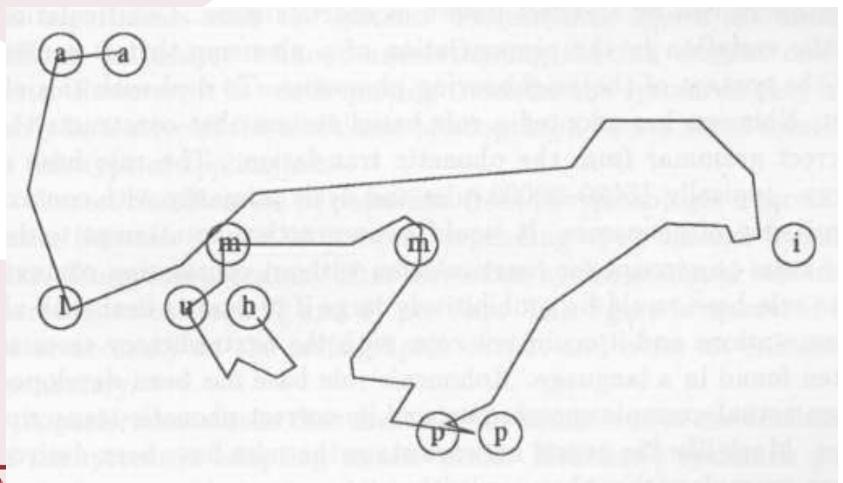


Máquina de Escrever Fonética Mapa Fonotópico

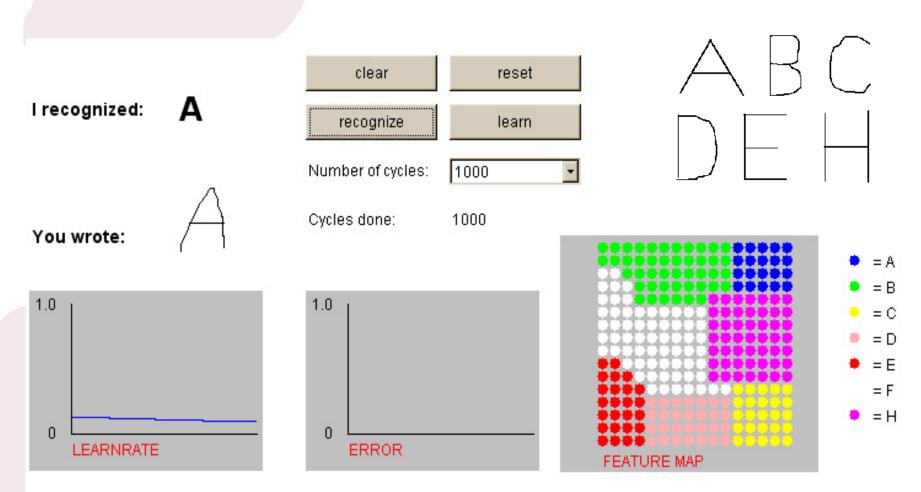




Máquina de Escrever Fonética Seqüência Fonética



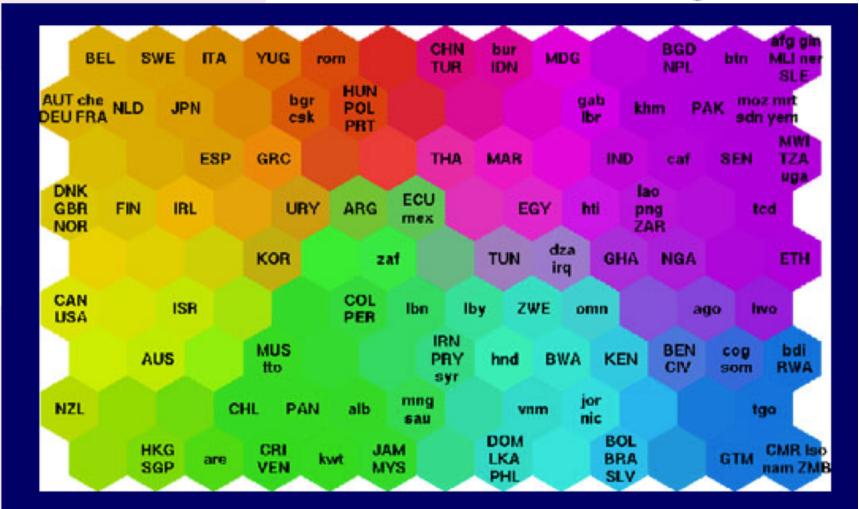
Reconhecimento de Caracteres



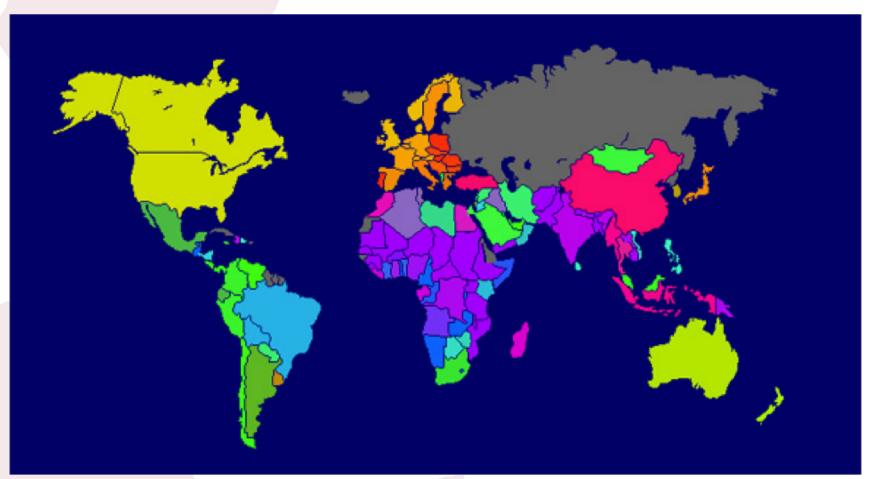
http://fbim.fh-regensburg.de/~saj39122/begrolu/kohonen.html
UNIVERSIDADE FEDERAL
DE PERNAMBUCO

NA DE DE STATE DE LA COMMUNICIPATION DEL COMMUNICIPATION DE LA COMMUNICIPATION DE LA COMMUNICIPATION D

Mapa Mundial da Pobreza (saúde, nutrição, educação, etc)



Mapa Mundial da Pobreza (saúde, nutrição, educação, etc)



Mineração de Textos

ANALYZING AUTHORS AND ARTICLES USING KEYWORD EXTRACTION, SELF-ORGANIZING MAP AND GRAPH ALGORITHMS

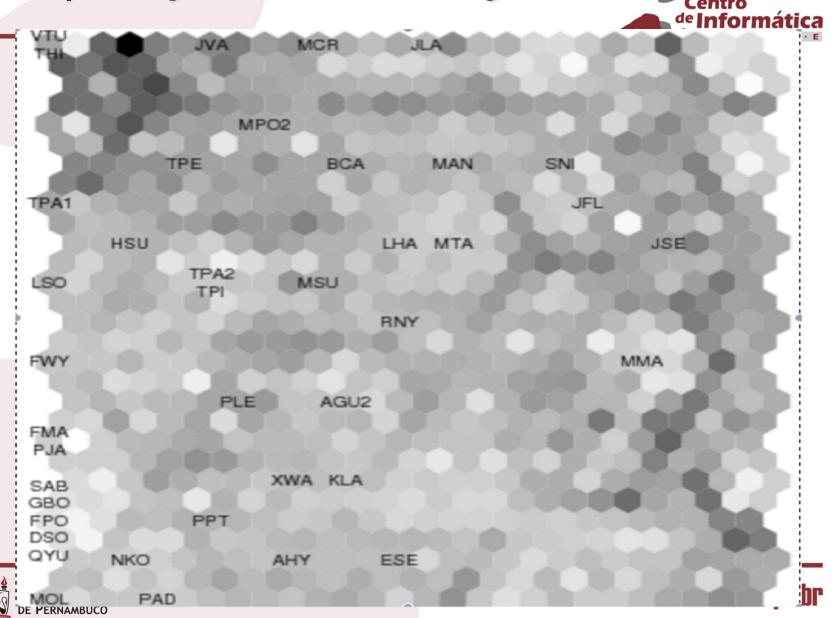
Tommi Vatanen, Mari-Sanna Paukkeri, Ilari T. Nieminen and Timo Honkela

Adaptive Informatics Research Centre, Helsinki University of Technology, P.O.Box 5400, FIN-02015 TKK, FINLAND, E-mail: first.last@tkk.fi

Mineração de Textos

ACO	Andrew Coward, Tom Gedeon: Physiological Representation of Concepts in the Brain (AKRR'05)				
AHY	Aapo Hyvärinen, Patrik Hoyer, Jarmo Hurri, Michael Gutman: Statistical Models of Images and Early Vision (AKRR'05)				
BCA	Basilio Calderone: Unsupervised Decomposition of Morphology a Distributed Representation of the Italian Verb System (AKRR'08)				
EGR	Eric Grégoire: About the Limitations of Logic-Based Approaches to the Formalisation of Belief Fus (AKRR'05)				
DST1	Dimitrios Stamovlasis: A Catastrophe Theory Model For The Working-Memory Overload Hypothe Methodological Issues (AKRR'08)				
DST2	David Stracuzzi: Scalable Knowledge Acquisition Through Memory Organization (AKRR'05)				
HSU	Hanna Suominen, Tapio Pahikkala, Tapio Salakoski: Critical Points in Assessing Learning Performance via Cross-Validation (AKRR'08)				
JFL	John Flanagan: Context Awareness in a Mobile Device: Ontologies versus Unsupervised/Supervised Learning (AKRR'05)				
JLA	Jorma Laaksonen, Ville Viitaniemi, Markus Koskela: Emergence of Semantic Concepts in Visual Databases (AKRR'05)				
JSE	Jan Sefranek: Knowledge Representation For Animal Reasoning (AKRR'08)				
JVA	Jaakko Väyrynen, Timo Honkela: Comparison of Independent Component Analysis and Singular Value Decomposition in Word Context Analysis (AKRR'05)				
LHA	Lars Kai Hansen, Peter Ahrendt, Jan Larsen: Towards Cognitive Component Analysis (AKRR'05)				
KLA	Krista Lagus, Esa Alhoniemi, Jeremias Seppä, Antti Honkela, Paul Wagner: Independent Variable Group Analysis in Learning Compact Representations for Data (AKRR'05)				
MAN	Mark Andrews, Gabriella Vigliocco, David Vinson: Integrating Attributional and Distributional Information in a Probabilistic Model of Meaning Representation (AKRR'05)				
MCR	Mathias Creutz, Krista Lagus: Inducing the Morphological Lexicon of a Natural Language from Unannotated Text (AKRR'05)				
MMA	Michael Malý: Cognitive Assembler (AKRR'08)				
MPO1	Matti Pöllä, Tiina Lindh-Knuutila, Timo Honkela: Self-Refreshing SOM as a Semantic Memory Model (AKRR'05)				
MPO2	Matti Pöllä: Change Detection Of Text Documents Using Negative First-Order Statistics (AKRR'08)				
MTA	Martin Takac: Developing Episodic Semantics (AKRR'08)				
NRU	Nicolas Ruh, Richard P. Cooper, Denis Mareschal: A Reinforcement Model of Sequential Routine Action				

Aplicação em Mineração de Textos



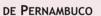
Uso de redes de Kohonen para identificação de perfis de jogadores no World of Warcraft

Lia C. R. Lopes *Pollyana N. Mustaro

Instituto de Pesquisas em Tecnologia e Inovação (IPTI), Brazil *Universidade Presbiteriana Mackenzie, Programa de Pós-Graduação em Engenharia Elétrica, Brazil

Esta seleção resultou em um grupo de 591 jogadores de ambas as facções. Estes jogadores constituíram a matriz de entrada do treinamento, juntamente com as variáveis escolhidas. As variáveis selecionadas para o treinamento incluiram as nove classes existentes, o número de relacionamentos encontrados no jogo e a pontuação do jogador. A

Para concluir este experimento foi utilizada a ferramenta SOM Toolbox 2.0 [SOM Toolbox 2005] para o software MatLab [Vesanto et al. 2000]. A matriz de entrada apresenta linhas que representam cada jogador da amostra e as colunas representam as onze variáveis selecionadas (número de relações, pontuação e as nove classes). Cada classe representa uma variável



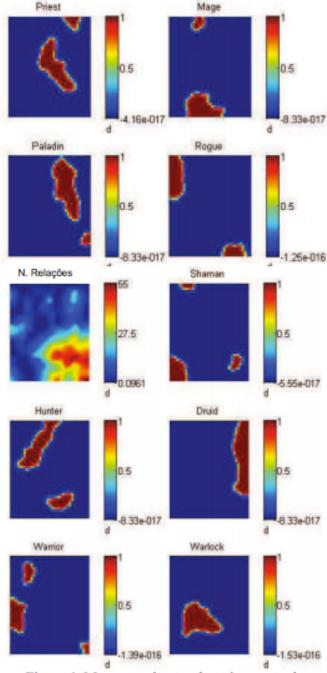


Figura 4: Mapas resultantes do treinamento da Rede de Kohonen

Clusters Formados dos Jogadores



Tabela 2: Análise geral dos agrupamentos encontrados

Tac	Tabela 2: Analise geral dos agrupamentos encontrados							
cluster	classe	pontuação	n. relações	rank	nível	número de jogadores		
8	Druid	0 a 1248	0 a 48	1 a 9	10 a 70	79		
5	Hunter	39 a 1284	0 a 22	1 a 9	15 a 70	52		
14	Hunter	668 a 1242	23 a 54	0 a 7	70	16		
4	Mage	0 a 475	0 a 6	1 a 8	2 a 70	9		
13	Mage	537 a 1266	0 a 48	1 a 8	67 a 70	56		
6	Paladin	0 a 1231	0 a 40	0 a 9	9 a 70	60		
16	Paladin	885 a 1160	40 a 55	0 a 4	70	7		
7	Priest	0 a 321	0 a 26	4 a 7	24 a 70	10		
9	Priest	525 a 1276	0 a 47	1 a 8	63 a 70	52		
1	Rogue	0 a 1272	0 a 18	1 a 9	18 a 70	51		
17	Rogue	717 a 1265	23 a 53	1 a 8	70	19		
2	Shaman	0 a 365	0 a 3	4 a 7	10 a 60	8		
12	Shaman	523 a 1280	0 a 24	1 a 8	64 a 70	46		
15	Shaman	918 a 1075	32 a 50	2 a 4	70	6		
11	Warlock	103 a 1270	0 a 50	1 a 9	23 a 70	55		
10	Warrior	648 a 1287	0 a 26	1 a 9	70	44		
18	Warrior	960 a 1303	37 a 55	2 a 4	70	9		
3	Warrior	88 a 502	0 a 7	2 a 7	25 a 70	12		

Figura 6: Numeração dos agrupamentos encontrados

Mapa Tridimensional – Clusters World of Warcraft

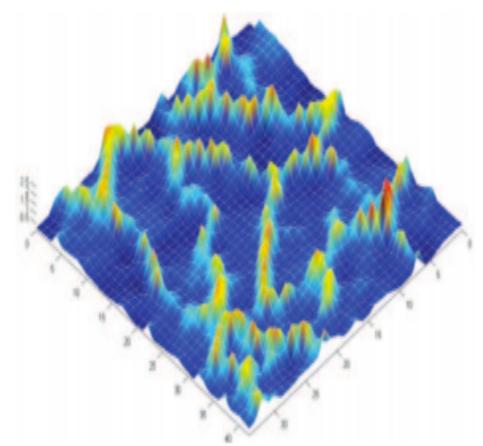


Figura 5: Mapa de saída tridimensional

de Informática

Outra Aplicação

- Seleção do Par Ideal: Casamento, Encontros.
 Pattern match
 - Treinamento da Rede de Kohonen com características dos indivíduos, como idade, altura, educação, interesses, o que buscam nos parceiros, etc.
 - Teste usando uma busca por "par-perfeito"
 - Retorno da Rede pode ser um cluster de "melhorespares"

- Dados de 2008 a 2014
- Estado: Pernambuco
- 41 mil registros mensais
- 95 variáveis iniciais (pré-processamento para tratamento de inconsistências-ruído-ausência)

Tabela 4.1: Valores de configuração da rede SOM.

Configuração	Valor
Topografia	Hexagonal
Tamanho do mapa	15 x 15
Qtd. de épocas total	10.000
Qtd. de épocas na ordenação	1.000
Vizinhança no início da ordenação	5
Taxa de aprendizagem no início da ordenação	0,9
Vizinhança no início da fase de ajustes	1
Taxa de aprendizagem no início da fase de ajustes	0,02

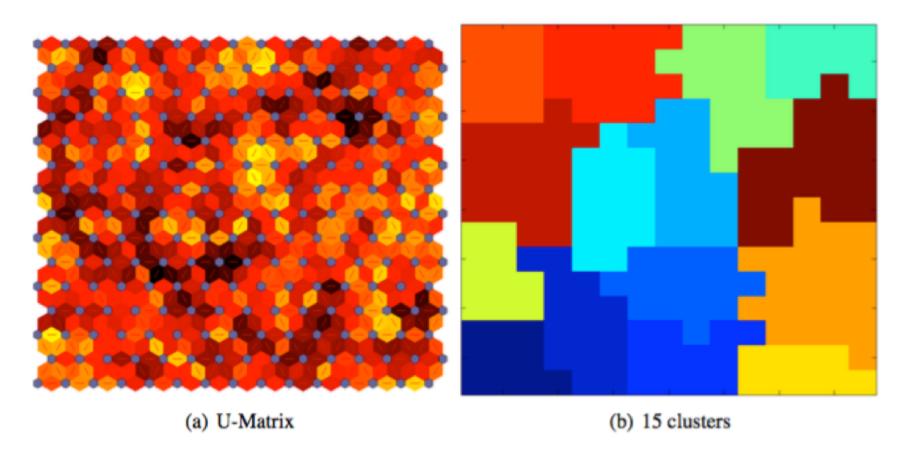


Figura 4.5: U-Matrix e segmentação do mapa treinado.

Tabela 4.2: Índices de Davies-Bouldin para diferentes partições do mapa.

Quantidade de clusters	Índice de Dav	vies-Bouldin
2	4,61	
3	4,68	Davis a Davidia
4	4,80	Davies-Bouldin
5	4,40	$S_i = \left(rac{1}{T_i}\sum_{j=1}^{T_i}\left X_j - A_i ight ^p ight)^{1/p}$
6	4,02	$S_i = \left(rac{T_i}{T_i} \sum_{j=1}^{j-1} A_j - A_i ^2 ight)$
7	4,12	
8	4,21	
9	3,86	
10	3,72	
11	3,70	
12	3,77	
13	3,74	
14	3,71	
15	3,78	ino hr

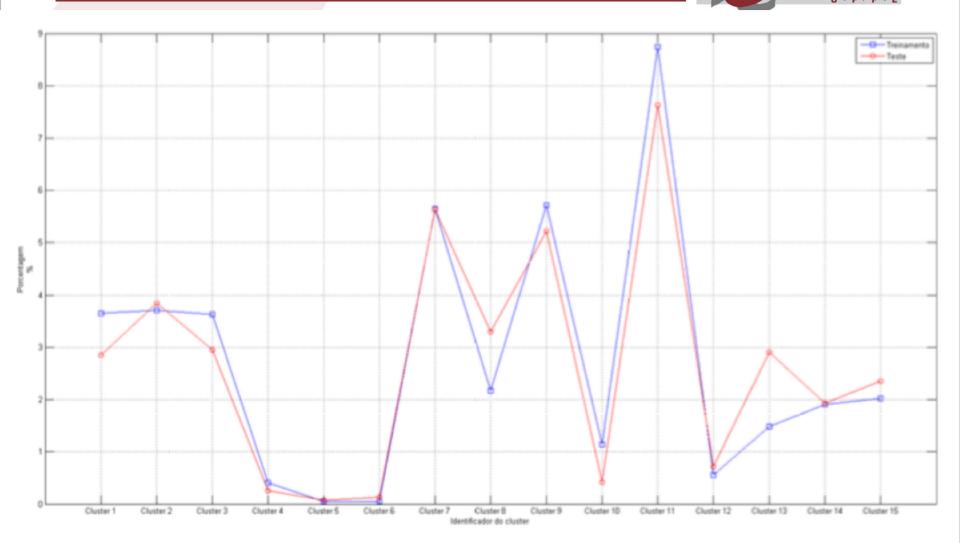


Figura 5.1: Indicador taxa de mortalidade.

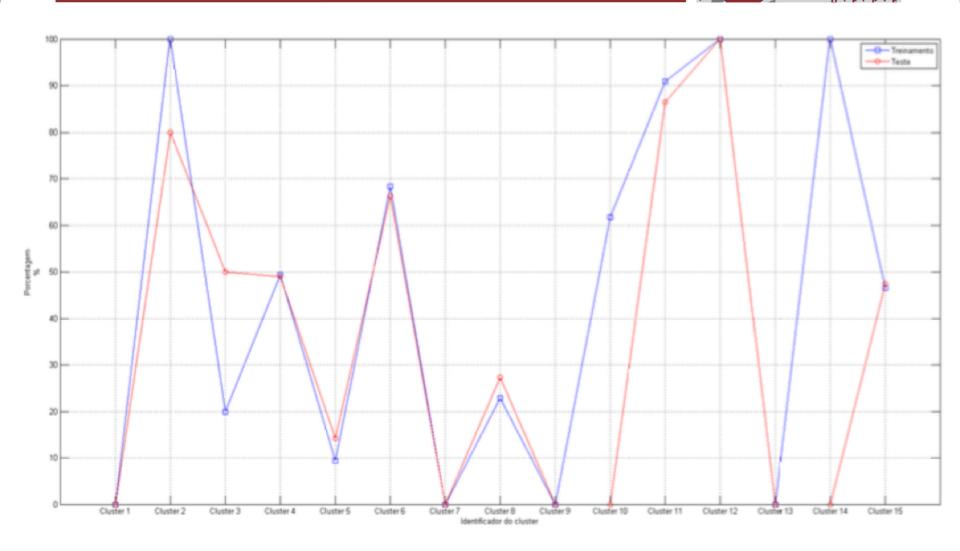


Figura 5.2: Indicador taxa de cesáreas.

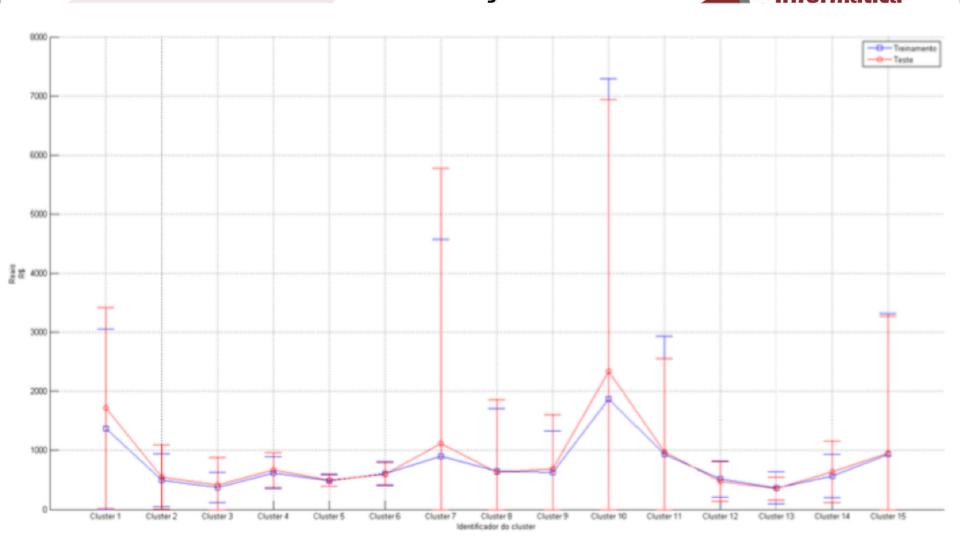


Figura 5.5: Indicador valores totais.

Principais Resultados

- Identificação de padrões discrepantes em certos clusters
- Identificação de valores discrepantes em gastos de unidades de saúde quando usada como referência a tabela do SUS
- Não significa necessariamente irregularidades, a análise indica discrepâncias que possibilitam maior investigação

Outros Aspectos

- Orientação espacial dos vetores é priorizada na avaliação de similaridade: normalização é necessária
- No treinamento, sistema se auto-organiza para mapear topograficamente características. Depois, são associados rótulos a cada região
- Plausibilidade biológica a torna candidata na interpretação de fenômenos biológicos (e.g. distúrbios de aprendizagem, membro fantasma etc.)

Algumas Referências

- http://www.ai-junkie.com/ann/som/som1.html
- Sistema de busca baseado no SOM: http://www.gnod.net/
- https://www.visualcinnamon.com/2013/07/self-organizingmaps-creating-hexagonal/
- Applet SOM 3D: http://fbim.fh-regensburg.de/~saj39122/jfroehl/diplom/e-sample-applet.html