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Abstract— We consider the reconfiguration problem in multi-
fiber WDM optical networks. In a network with evolving traffic,
the virtual topology may not remain optimal, leading to degra-
dation of network performance. However, adapting the virtual
topology to the changing traffic may lead to service disruption.
This optimization problem hence captures the trade-off between
network performance and number of reconfigurations applied
to the virtual topology. This trade-off is considered via a multi-
metrics approach.

The above problem is solved through a Mixed Integer Linear
Programming (MILP) formulation with a multivariate objective
function. However the problem is NP-hard and such an approach
is unable to solve large problem instances in a reasonable time.
Therefore we propose a simulated annealing (SA) based heuristic
approach for solving problems of higher complexity.

We compare the performance and the computation time of
solving the MILP model and the heuristic approach considering
different test instances. We can find near optimal solutions for
instances of medium complexity using the MILP model. The SA
scheme can be used as a heuristic to arrive at near optimal
solutions when the run-time of the MILP becomes practically
infeasible. It also appears that the trade-off’s involved in the
reconfiguration problem cannot be left aside, as a little flexibility
with respect to one metric allows to drastically improve the
quality of the solution with respect to other metrics.

Index Terms— Reconfiguration, WDM networks, Optimiza-
tion, MILP, Simulated annealing.

I. INTRODUCTION

The optical technology, and more specifically the Wave-
length Division Multiplexing (WDM) technology is the key
component of large-scale and long-distance data transmission.
Used in core networks, this technology still evolves and offers
capacity to cope with the ever increasing traffic demand [1].

Installing a large-scale telecommunication network is ex-
pensive. For instance the cost of a North-American network
covering 15 cities was estimated to 200 millions dollars [2].
An important part of the expense comes from the infrastructure
operations: digging and installing cables. The thinness of an
optical fiber allows a single cable to contain tens of fibers.
Consequently companies generally install many optical fibers
at the same time, even if it is not required, resulting in
multifiber networks.

The bandwidth offered by optical technology is very high,
and one limitation comes from the electronic part of the
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transmission scheme. The devices that are able to deal with
tens of Gigabits per seconds are very expensive. The optical
technology makes possible the definition of an optical layer
over a physical layer, called virtual topology or logical topol-
ogy, where no electronic processing is performed. It is defined
through the configuration of the optical cross-connects (OXC)
installed in each network node and can be modified [3].

Since the logical topology represents the effective commu-
nication graph, the virtual topology has a direct impact on the
data traffic routing efficiency. From this point of view, each
modification in the traffic pattern should trigger a redefinition
of the virtual topology. However, changing the virtual topology
means modifying the configuration of the OXC’s, which may
lead to total or partial network disruption [4].

The virtual topology is constituted of lightpaths. A lightpath
is a path on the physical topology, and it corresponds to a
link in the virtual topology. A lightpath is established using
the same wavelength from the source to the demand, thus
obeying the wavelength continuity constraint. If the network
is equipped with wavelength converters, such restriction can
be avoided. However the technology for optical wavelength
conversion is not yet matured enough for most commercial
applications. Optical-electronic-optical converters are still very
expensive and generate delay in the overall transmission time.

In the present work we consider core optical networks.
Such networks carry highly aggregated traffic coming from
the various subnetworks connected through the core network.
It provides a certain stability in the traffic and the evolutions,
if any, occur slowly and smoothly, and thus can be discretized.
Other consequences of the traffic aggregation, is that each node
sends data to each other node and receive data from every other
nodes. Moreover, the traffic evolution is quite predictable,
since it follows large-scale trends. Such assumptions are
reasonable in a core network.

To summarize, we consider multifiber WDM networks.
The virtual topology is constituted of lightpaths obeying the
wavelength continuity constraints. The traffic follows a all-to-
all pattern. The traffic evolutions are discretized.

We deal with the network reconfiguration problem. It is an
extension of the static Routing and Wavelength Assignment
(RWA) problem, which is proven to be a NP-hard [5]. Hence
the reconfiguration problem is also NP-hard. Remember that
the static RWA problem can be stated as, given a network and a
traffic matrix, we need to determine the logical topology to be
imposed on the physical topology, hence routing the lightpaths



over the physical topology and assigning a wavelength to each
lightpath [6]. At the same time the RWA problem is solved, it
is common to route the packet traffic over the logical topology
obtained.

In the reconfiguration problem, we consider a physical
topology and a succession of traffic matrices. For each traffic
matrix, we solve the associated RWA problem and we route
the packet traffic, obtaining a succession of virtual topologies
and packet routings. The main difference between a succession
of RWA problems and the reconfiguration problem is that the
latter takes into consideration the fact it will be required to
switch from a virtual topology and the associated routing to the
next one. As mentioned earlier, such operation may generate
network disruption, which is not desired. When two virtual
topologies are similar, it is easy to switch from one to the other.
The reconfiguration problem involves a trade-off between the
virtual topology quality and the network disruption that may
occur each time it is re-defined.

The network reconfiguration problem is well known in
literature. However, there are not too many satisfying methods
to solve it. Some works restrict themselves to very-specific
cases. In [7], the authors develop reconfiguration algorithm for
ring networks. The proposed algorithm is based on branch-
exchange techniques. In [4] a Markovian process is used
to study the trade-offs involved in reconfiguration in single-
hop broadcast WDM networks. The work in [8], [9], [10]
considers the reconfiguration problem in the case of a unique
traffic evolution, and not as a succession of traffic evolutions,
and use as input an existing virtual topology and routing.

Different Mixed Integer Linear Programming (MILP) ap-
proaches has been developed in literature which addresses
short-term, mid-term and long-term network reconfiguration
issues with respect to evolving traffic in WDM optical net-
works [11], [12], [13].

The problem has been also addressed in [14], [15] under
the context of “dynamic traffic grooming”. In both works, the
authors modify the initial network graph. The modifications
consist of splitting nodes to represent different part of the
optical devices (electronic processing, purely optical router,
and so on). That allows to use quite simple algorithms based
on the shortest path [14] solving the problem with elegant
mathematical models [15]. However, these works focus on the
grooming aspect and does not consider the adaptation of the
virtual topology to meet the ever increasing traffic demands
across multiple periods of network evolution.

Our approach takes into account the trade-off between the
network configuration quality and the network disruption,
which is generally absent in the articles found in the literature.
Since this trade-off is the essence of the reconfiguration
problem, we believe it cannot be left aside. The practical
objective of this work is to make the best virtual topology
reconfigurations in relation to predicted traffic evolution.

We present a Mixed Integer Linear Programming (MILP)
formulation to solve this problem, similar to the approaches
developed in [16]. However, the MILP approach is unable to
solve large network instances within reasonable time limits.

Meta-heuristics, such as the simulated annealing (SA), are
generally able to find good solutions to optimization problems
for an affordable computational cost [17]. As we compare the
results obtained with a MILP approach and a SA approach,
we can use the information provided by the solver to make a
pertinent evaluation of the SA performance.

This paper is organized as follows: We describe formally
the problem solved in section II. In section III, the MILP
model is developed for solving the virtual topology reconfigu-
ration problem. We describe the simulated annealing heuristic
algorithm in section IV. Some experimental results are given
and analyzed in section V. We finally conclude the paper in
section VI.

II. PROBLEM DESCRIPTION AND NOTATIONS

We consider a WDM network P , constituted of a set of N
nodes and a set of L links. The maximum number of fibers
between nodes n1 to node n2 is given by F(n1,n2). Each
fiber carries a maximum number of W wavelengths. Each
wavelength has a maximum capacity of C Mbps. We assume
that W and C are the same throughout the entire network.
Many technological parameters (range of frequency used, type
of optical fiber, and so on) are involved, and we believe that
few telecommunication providers would build heterogeneous
networks.

Each node routes the lightpaths without any restrictions.
However, two distinct lightpaths cannot use the same wave-
length in an optical fiber. Lightpaths are set up between the
end points of the demands. In our network model, we allow
multihop packet routing, i.e traffic from A to B can first use
a lightpath from A to C, and then another lightpath from C
to B. We call a time period the period of time between two
traffic evolutions. In other words, the overall time window
is divided into T periods t1, . . . , tT , and data changes occur
each time a time period ends and another begins. The traffic
remains constant during a whole time period. We note Ds,d(t),
expressed in Mbps, as the demand for the source-demand
pair (s, d) ∈ N 2 during time period t.

The traffic is known a priori. Our objective is to find a
virtual topology that is adapted to the traffic for each time
period. We solve the problem keeping in mind the trade-
off’s involved in the reconfiguration problem mentioned above.
Since the traffic matrices are known in advance, we focus on
minimizing the amount of network resources but simultane-
ously intend to reduce the number of reconfigurations needed
in the virtual topology. The resources can be measured by the
number of optical links or the number of lightpaths used. The
former metric is usual and represents directly the load of the
network. The latter one represents the number of lightpaths
required to implement the defined virtual topology. For each
used lightpath, a transmitter and a receiver is required. This
has a direct influence on the cost of the network nodes.

A solution S corresponds to a set of virtual topologies; one
for each time period. Let us call PS the sum of the number
of used optical links and LS the sum of the number of used



lightpaths for each time period. We also take into account the
number of reconfigurations ∆PS incurred by a solution.

The objective function used to reflect this trade-off between
minimal network resource usage and minimal network recon-
figuration is given by (1) if the network resources are measured
as number of optical links, and by (2) if the resources are
measured in terms of number of lightpaths.

FS = βP PS + β∆P ∆PS (1)
FS = βLLS + β∆P ∆PS (2)

where βP , βL and β∆P are parameters that allows to create
a multi-variate objective function. Depending on the value of
each parameter, more weight is given to one or another aspect.

III. MILP MODEL

We present a MILP model for the reconfiguration problem.
With such a model, the reconfiguration problem is seen as a
succession of flow problems - one flow problem for each time
period - coupled by reconfiguration constraints.

We tried to come up with the most concise model possible.
To do so, we aggregated all commodities from a given node.
This led us to a source formulation of the reconfiguration
problem. Such source formulation, already used in a virtual
topology design problem in [18], significantly reduces the
memory occupancy overhead while solving the problem.

We define the following variables:
• pi

(m,n),w(t) ∈ N is the number of optical links of
wavelength w used by lightpaths having node i as source
on physical link (m,n) ∈ L during time period t.

• l
(i,j)
w (t) is the number of lightpaths from node i to node j

using wavelength w during time period t.
• l(i,j)(t) is the number of lightpaths from node i to node j

during time period t.
• fs

(i,j)(t) is the flow from source s using lightpath (i, j)
during time period t.

• δpi
(m,n),w(t) is the number of changes for the number of

optical links of wavelength w used by lightpaths having
node i as a source on physical link (m,n) ∈ L, between
time period t− 1 and t.

The variables pi
(m,n),w(t) have to be integer, but the

other ones will have integer values at the end of the
optimization process. The number of integer variables is
O

(
|N |3WT

)
, and the number of continuous variables is

O
((
|N 2|W + |N |3

)
T

)
. Even for small networks and consid-

ering only a few time periods, the program generates thousands
of integer variables and constraints, thus making it infeasible
to solve large problem instances.

A. Virtual topology constraints

The constraints associated with the virtual topology design
problem are the following:

X
(i,n)∈L

WX
w=1

pi
(i,n),w(t) =

X
j∈N

l(i,j)(t),
∀i ∈ N
1 6 t 6 T (3)

X
(m,n)∈L

pi
(m,n),w(t)−

X
(n,p)∈L

pi
(n,p),w(t) = l

(i,n)
w (t),

∀i, n ∈ N 2

i 6= n
1 6 w 6 W
1 6 t 6 T

(4)
WX

w=1

l
(i,j)
w (t) = l(i,j)(t),

∀i, j ∈ N 2

i 6= j
1 6 t 6 T

(5)

X
i∈N ,i6=n

pi
(m,n),w(t) 6 F(m,n),

∀ (m, n) ∈ L
1 6 w 6 W
1 6 t 6 T

(6)

Constraints (3) corresponds to the flow conservation for
each source node i: It corresponds to the sum of all lightpaths
having node i as source. Constraints (4) corresponds to the
flow conservation in demand nodes n, for each wavelength:
The difference between the number of lightpaths entering
node n and the number of lightpaths leaving node n cor-
responds to the number of lightpaths having n as endpoint.
Constraints (5) corresponds to the number of lightpath conser-
vation. Constraints (6) corresponds to the capacity limitation:
It is not possible to have more lightpaths using a given
wavelength than there are fibers installed on a given link.

B. Routing constraints

X
j∈N ,j 6=s

fs
(s,j)(t) =

X
d∈N ,d 6=s

Ds,d(t), ∀s ∈ N , 1 6 t 6 T (7)

X
i∈N ,i6=s

fs
(i,k)(t)−

X
j∈N ,j 6=s

fs
(k,j)(t) = Ds,k(t),

∀(s, k) ∈ N 2

k 6= s
1 6 t 6 T

(8)

X
s∈N ,s 6=j

fs
(i,j)(t) 6 C

WX
w=1

l
(i,j)
w (t),

∀ (i, j) ∈ N 2

1 6 t 6 T (9)

Constraints (7) corresponds to the flow conservation at source
node s: The sum of the flow leaving node s corresponds to
the sum of the demands having s as source. Constraints (8)
corresponds to flow conservation at demand nodes k: The flow
entering node k minus the flow leaving node k corresponds
to the demands to k. Finally, (9) is the lightpath capacity
limitation.

C. Reconfiguration constraints

pi
(m,n),w(t)− pi

(m,n),w(t− 1) 6 δpi
(m,n),w(t),

∀i ∈ N
(m, n) ∈ L
i 6= n
1 6 w 6 W
2 6 t 6 T

(10)

pi
(m,n),w(t− 1)− pi

(m,n),w(t) 6 δpi
(m,n),w(t),

∀i ∈ N
(m, n) ∈ L
i 6= n
1 6 w 6 W
2 6 t 6 T

(11)

We consider that each variation of the allocation variables
(the pi

(m,n),w(t) variable) from one time period to another is a
change of the virtual topology. Hence, it has to be taken into
account. This is done by (10) and (11).



D. Objective functions

P (t) =
X
i∈N

X
(m,n)∈L

WX
w=1

pi
(m,n),w(t), 1 6 t 6 T (12)

L(t) =
X
i∈N

X
j∈N

l(i,j)(t), 1 6 t 6 T (13)

∆P (t) =
X
i∈N

X
(m,n)∈L

WX
w=1

δpi
(m,n),w(t), 2 6 t 6 T (14)

Equation (12) computes the overall number of used optical
links. Equation (13) computes the overall number of defined
lightpaths. The overall number of changes is given by (14).

Consequently, the objective function of our optimization
model is the following:

minF = βP

T∑
t=1

P (t) + βL

T∑
t=1

L(t) + β∆P

T∑
t=2

∆P (t) (15)

IV. SIMULATED ANNEALING ALGORITHM

Simulated annealing is a Monte Carlo metaheuristic for
minimizing multivariate functions [19]. It develops an analogy
between optimization and statistical mechanics, which is the
central discipline of condensed matter physics. When a system
temperature decreases, the behavior of atoms is a major con-
cern in statistical mechanics. Whether the matter will solidify
as a crystal or as a glass not only depends on the temperature,
but also on the way the temperature is decreased. Decreasing
the temperature too quickly will lead to a crystal with many
defects or a glass with no crystalline order and only local
optimal structure.

Finding the best low-temperature state of a matter is similar
to search for a local optimal solution of an optimization
problem. A temperature for the system is defined. The al-
gorithm progresses by lowering gradually this temperature
until the system freezes. At each temperature, a large number
of different solutions for the problem is computed, allowing
the system to reach a steady state. This process is called
thermalization.

The system is initialized with a particular configuration.
Each new solution is constructed by imposing a displacement.
If the energy of this new state is lower than the previous
one, this new solution is kept. If not, this new solution is
accepted with a given probability. The acceptance probability
decreases with the temperature of the system, allowing to
explore large portions of the solution space at the beginning of
the process. As the temperature decreases, the probability of
accepting a bad solution decreases, leading to a local search
converging towards the nearest local optima. The probability of
acceptance is generally given by ρ = exp−δ/KT , where K is
the Boltzmann’s constant, T the temperature and δ the solution
variation or the variation between two successive solution
states. With the execution of the algorithm, the temperature
decreases, leading to a more stable system.

There are different possible annealing schemes to update
the temperature T . We may use an annealing scheme where

the temperature varies as Tn = α × Tn−1, where Tn is
the temperature at the nth temperature update, and α is an
arbitrary constant between 0 and 1. The parameter α decides
how slowly T decreases. Typical values of α lie between 0.9
and 0.95. The parameter α and the value of T0, the initial
value, plays a critical role for the performance of the SA. An
annealing scheme where the temperature update is made as
Tn = T0/(1 + α × Tn−1) can also be defined. We choose
to use this update scheme. The typical values of α can be of
the order of 0.01 to 0.1 to have a graceful degradation of the
temperature. We call transition the fact that the temperature
decreases, and sub-transition each time a problem is solved
without any modification of the temperature.

We associate to each link e = (n1, n2) of the network a
weight ωe, creating the link weight vector Ω. Depending on
the weights, different routes will be found by the shortest path
algorithm. The weights of the edges are mutated by a factor
γ between each transition of the SA algorithm.

The SA algorithm is given by Algorithm 1. Our algorithm
transforms the set of traffic matrices into an ordered list of re-
quests, and then assign resources to each request. The Solve
algorithm used to generate solution is given by Algorithm 2.

Algorithm 1 Simulated annealing for the Reconfiguration
problem

Initialize an empty ordered list of requests R
{Transformation of the demands into a set of requests}
for ∀i, j, t do

Add to R bDi,j(t)
C c requests of size C and one request

with the remaining traffic (lower than C)
end for
Initialize the link weight vector Ω to 1
Initialize temperature T0

Compute the initial solution: S∗ = Solve(P,Ω,R)
for Y transitions do

for X sub-transitions do
Evaluate the hop number hr of each request r ∈ R
Reorder the requests r ∈ R by decreasing hr

S = Solve(P,Ω,R)
if Compute FS < FS∗ then

S∗ = S (update the best solution found)
else

S∗ = S with a probability of e−
δ

KTn

end if
end for
Update the link weights with ωl = ωl (1− γ) ,∀l ∈ L
Scale down temperature: Tn+1 = T0

1+αTn

end for

The complexity of the Solve algorithm is O
(
|N |4WT

)
.

Thus the overall complexity of the SA algorithm is
O

(
|N |4WT XY

)
.



Algorithm 2 Solve(P,Ω,R) algorithm
Require: A network P , a link weight vector Ω and an ordered

list of requests R
for all request r ∈ R do

Let sr, dr, tr and vr be respectively the source node, the
demand node, the time period and the size of r
if vr = C then

Find the shortest path from sr to dr considering the
wavelengths available during time period tr. The cost
of a link corresponds to its weight.
Make wavelengths allocation avoiding wavelength
changes
Update available wavelengths for the time period tr

else
if Exist paths pr from sr to dr at time period tr using
only available capacity within the lightpaths able to
transport a request of size vr then

Use the shortest of the possible pr

else
Find the shortest path from sr to dr considering
the wavelengths available during time period tr. The
cost of a link corresponds to its weight.
Make wavelengths allocation avoiding wavelength
changes

end if
end if
Update the available capacity in used links
Update the used link weights with remaining capacity:
ωl = ωl ∗ vi

end for
Ensure: A virtual topology for each time period

V. EXPERIMENTAL RESULTS

A. Experimental parameters

We performed experimental simulations on a hypothetical
small network SN2, represented on figure 1, on the COST239
network [20], represented on figure 2, on the NSFNET net-
work, represented on figure 3, and on N20, N30 and N40
topologies, having respectively 20 nodes and 68 edges, 30
nodes and 160 edges, 40 nodes and 240 edges.

We consider the following parameters: For all existing
links (n1, n2), F(n1,n2) = 5, and we solve each instance
considering W = 8, C = 40Mbps and W = 16, C = 20Mbps.

The traffic is generated the following way: we first generate
an initial traffic matrix. The initial demand from a node n1

to a node n2 is randomly chosen between 20 and 60Mbps.
We then compute the evolution of the demand for each time
period, based on the value of the demand at previous time
period. This evolution is between -10 (that is, the traffic can
decrease) and +10 Mbps (increasing traffic). For instance, it is
possible to have the following evolution of traffic from node A
to node B, over five time period: 57Mbps, 67Mbps, 75Mbps,
68Mbps 77Mbps.

The MILP model is solved using the commercial software

Fig. 1. Small network 2 (SN2)

Fig. 2. COST239 network

Cplex1 version 9, on a desktop PC with one gigabyte of RAM.
We limit the computation time of our tests to ten hours in the
vast majority of our experiments. When the solver hit the time-
limit, its search process is interrupted and it returns the best
solution found. This solution may not be the optimal and the
solver provides a solution gap giving the maximum relative
difference between the solution returned and the theoretical
optimal solution.

For the SA experiments, the total number of sub-transitions
at a given temperature is chosen between 10-15 and the
transitions across different temperatures is considered to be
between 30-40 based on the size of the demand sets. These
numbers are chosen empirically. They are moderate but allows
the SA algorithm to explore a solution space large enough to
find good solutions. Further increasing of these numbers didn’t
yield any better results.

The parameters related to the Simulated Annealing algo-
rithm were empirically chosen. The K Constant was chosen

1Copyright c©Ilog 1997-2004. Cplex is a registered trademark of Ilog.

Fig. 3. NSFNET network



such that, 0 ≤ exp−δ/(K×ti) ≤ 1 where ti is the temperature
at the ith iteration. The temperature mutation parameter α is
taken to be 0.005 so that that the temperature does not drop
abruptly. Higher values of α leads to a fast convergence for
the SA procedure. We mutated the values of α so that the SA
procedure explores the maximal possible solution states, and
shows no further improvements. The edge weight mutation
parameter γ was chosen to be between 0.5 and 1.0.

B. Performance Analysis

The most representative results we obtain with the MILP
approach and the SA are reported in tables I to VIII.
The +symbol means that the solver hits the time-limit after
having found at least a possible solution. In this case, it returns
the best solution found. The 0symbol means that the solver hit
the time limit without finding any solution. We do not report
the results obtained with the MILP for N30 an N40, since the
solver aborts the process before its end due to lack of memory.

TABLE I
SN2 NETWORK, W = 8, SIMULATION TIME

SN2 network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (312, 292, 452) 36241+ 4.79
(0, 1, 0) (409, 239, 613) 36173+ 3.59
(0, 0, 1) (1190, 875, 0) 15.75 0
(1, 0, 1) (318, 304, 5) 36135+ 5.05
(0, 1, 1) (5137, 250, 8) 36060+ 8.1

Simulated annealing
(1, 0, 0) (307, 297, 454) 234
(0, 1, 0) (392, 246, 606) 298
(0, 0, 1) (1228, 896, 1) 18
(1, 0, 1) (324, 307, 5) 302
(0, 1, 1) (5188, 253, 8) 337

TABLE II
SN2 NETWORK, W = 16, SIMULATION TIME

SN2 network, W = 16
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (603, 542, 885) 36333+ 1.63
(0, 1, 0) (691, 447, 1040) 36238+ 1.66
(0, 0, 1) (1900, 1440, 0) 54.44 0
(1, 0, 1) (611, 544, 11) 36110+ 1.58
(0, 1, 1) (953, 459, 5) 36045+ 2.07

Simulated annealing
(1, 0, 0) (599, 556, 891) 304
(0, 1, 0) (682, 469, 1043) 331
(0, 0, 1) (1945, 1523, 4) 41
(1, 0, 1) (616, 584, 13) 358
(0, 1, 1) (874, 533, 6) 390

The computation time depends on the instance size - which
is expected - but also on the metric used. Mixing the resource
and reconfiguration objectives turns the problem much more
difficult to solve than considering a single objective. This can
be observed for both the MILP and for the SA approach.

We had difficulties to solve the MILP model within a
bounded time limit even for small network instances. For some

TABLE III
COST239 NETWORK, W = 8, SIMULATION TIME

COST239 network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (944, 780, 1308) 36309+ 1.90
(0, 1, 0) (1179, 591, 1698) 36086+ 3.24
(0, 0, 1) (4220, 2335, 0) 767.8 0
(1, 0, 1) (−,−,−) 361710 -
(0, 1, 1) (−,−,−) 361930 -

Simulated annealing
(1, 0, 0) (933, 784, 1331) 642
(0, 1, 0) (1119, 585, 1702) 620
(0, 0, 1) (4304, 2389, 1) 221
(1, 0, 1) (1136, 884, 1304) 600
(0, 1, 1) (1236, 778, 8) 443

TABLE IV
COST239 NETWORK, W = 16, SIMULATION TIME

COST239 network, W = 16
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (1871, 1406, 2744) 36299+ 1.00
(0, 1, 0) (2252, 1110, 3364) 36093+ 1.14
(0, 0, 1) (5215, 3305, 0) 2243 0
(1, 0, 1) (−,−,−) 360340 -
(0, 1, 1) (−,−,−) 360470 -

Simulated annealing
(1, 0, 0) (2102, 1410, 2473) 800
(0, 1, 0) (1304, 1194, 3001) 813
(0, 0, 1) (5367, 3381, 8) 340
(1, 0, 1) (1069, 863, 11) 832
(0, 1, 1) (1322, 699, 12) 849

TABLE V
NSFNET NETWORK, W = 8, SIMULATION TIME

NSFNET network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (1814, 1310, 2379) 36191+ 1.85
(0, 1, 0) (2559, 965, 3669) 36054+ 2.87
(0, 0, 1) (8100, 3575, 0) 8100 0
(1, 0, 1) (1883, 1249, 12) 36098+ 4.82
(0, 1, 1) (−,−,−) 361910 -

Simulated annealing
(1, 0, 0) (1791, 1343, 2345) 1023
(0, 1, 0) (2512, 968, 3666) 1088
(0, 0, 1) (8168, 3601, 1) 1496
(1, 0, 1) (1798, 1210, 11) 1045
(0, 1, 1) (1801, 1306, 2279) 1292

TABLE VI
NSFNET NETWORK, W = 16, SIMULATION TIME

NSFNET network, W = 16
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (3588, 2365, 4967) 36262+ 0.75
(0, 1, 0) (4038, 1810, 5912) 36060+ 0.69
(0, 0, 1) (−,−,−) 360650 -
(1, 0, 1) (−,−,−) 360400 -
(0, 1, 1) (−,−,−) 360500 -

Simulated annealing
(1, 0, 0) (3601, 2310, 5107) 2044
(0, 1, 0) (4047, 1806, 5934) 2181
(0, 0, 1) (9106, 4408, 3) 2102
(1, 0, 1) (1914, 1223, 11) 2017
(0, 1, 1) (1943, 1405, 2406) 2118



TABLE VII
N20 NETWORK, W = 8, SIMULATION TIME

N20 network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (2655, 1719, 2622) 86799+ 1.34
(0, 1, 0) (−,−,−) 360580 -
(0, 0, 1) (7782, 3339, 0) 12236 0
(1, 0, 1) (−,−,−) 864670 -
(0, 1, 1) (−,−,−) 864640 -

Simulated annealing
(1, 0, 0) (2682, 1668, 2534) 3145
(0, 1, 0) (3189, 1677, 2872) 3089
(0, 0, 1) (7810, 3409, 2) 3278
(1, 0, 1) (2694, 1745, 2676) 3127
(0, 1, 1) (2781, 1783, 2760) 3112

TABLE VIII
N20 NETWORK, W = 16, SIMULATION TIME

N20 network, W = 16
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s) Gap(%)

MILP
(1, 0, 0) (5266, 3139, 5613) 86690+ 0.53
(0, 1, 0) (−,−,−) 360360 -
(0, 0, 1) (−,−,−) 361000 -
(1, 0, 1) (−,−,−) 864440 -
(0, 1, 1) (−,−,−) 864780 -

Simulated annealing
(1, 0, 0) (5307, 3166, 5575) 3578
(0, 1, 0) (5489, 3105, 5891) 3610
(0, 0, 1) (15043, 6465, 4) 3888
(1, 0, 1) (5038, 3104, 5428) 3619
(0, 1, 1) (5120, 3165, 5603) 3624

TABLE IX
N30 NETWORK, W = 8, SIMULATION TIME

N30 network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s)

(1, 0, 0) (3019, 2018, 2834) 3452
(0, 1, 0) (3488, 2011, 3109) 3312
(0, 0, 1) (8311, 3672, 6) 3441
(1, 0, 1) (3096, 2113, 2901) 3376
(0, 1, 1) (3200, 2103, 2944) 3312

TABLE X
N30 NETWORK, W = 16, SIMULATION TIME

N30 network, W = 16
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s)

(1, 0, 0) (5987, 3976, 5811) 3609
(0, 1, 0) (6759, 4000, 6079) 3549
(0, 0, 1) (15835, 7188, 11) 3456
(1, 0, 1) (6192, 4014, 5689) 3599
(0, 1, 1) (6371, 4218, 5763) 3617

TABLE XI
N40 NETWORK, W = 8, SIMULATION TIME

N40 network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s)

(1, 0, 0) (3141, 2231, 2984) 3588
(0, 1, 0) (3790, 2467, 3451) 3455
(0, 0, 1) (8671, 4005, 9) 3491
(1, 0, 1) (3134, 2345, 3024) 3502
(0, 1, 1) (3410, 2409, 3310) 3498

TABLE XII
N40 NETWORK, W = 16, SIMULATION TIME

N40 network, W = 8
(βP , βL, β∆P ) (P, L, ∆P ) Comp. time (s)

(1, 0, 0) (6018, 4151, 5567) 3718
(0, 1, 0) (7211, 4879, 6671) 3655
(0, 0, 1) (16093, 8173, 15) 3722
(1, 0, 1) (6094, 4487, 5831) 3708
(0, 1, 1) (6652, 4674, 6598) 3698

of the larger instances, the solver is unable to find even one
feasible solution. Solving the problem with the SA always
returns a solution, even for larger problem instances.

When the solver returns a non-optimal solution, the obtained
solution gap is quite low (between 0 and 5%). The SA
algorithm returns solutions which are very close to the solution
found by the solver for a computation time significantly lower.
Sometimes the solutions found by the heuristic are even better
than the solutions obtained by the solver after a ten hours
computation, due to the non-optimality of these solutions.

If we optimize only one metric, the results obtained with
the other metrics are generally very bad. On the other hand, if
we consider the performance-reconfiguration trade-off, that is
using at the same time two metrics, we obtain good solutions
in relation with both metrics, even if neither is optimal.
For instance, with the SN2 network (W = 16), minimizing
objective function P gives a solution using 603 optical links,
but triggering 885 reconfigurations. On the other hand, the
solution obtained minimizing ∆P uses 1900 optical links
and triggers 0 reconfigurations. Mixing the objectives with
an equal weight, we obtain a solution using 611 optical links
and triggering only 11 reconfigurations. A little flexibility with
respect to one metric allows to drastically improve the quality
of the solution with respect to other metrics.

We also compare the solutions provided by both the MILP
and the SA approach, given a specified amount of time (see
table XIII for some examples). To do so we measure the
amount of time the SA required and run the solver with this
amount of time as time-limit. When the solver succeeds in
finding a solution, which is only the case for small instances,
it finds good quality solutions that compete with the ones
obtained by the SA algorithm. It confirms the fact that the
solver succeeds in finding a good solution quite easily. The
difficult task is, eventually to find the optimal solution, and to
prove its optimality. When we attempt to solve relatively large
problem instances, the solver is unable to find any solution in
such a short time.

VI. CONCLUSION

In this paper we present two approaches for minimizing
the virtual topology reconfiguration cost and optimizing the
network quality in a network with evolving traffic across
multiple time periods. Our multi-metrics approach allows to
deal with the trade-off between the reconfiguration cost and
the solution quality by considering at the same time two
objectives. We present a MILP model and an heuristic based



TABLE XIII
COMPARISON: GIVEN COMPUTATION TIME REQUIRED BY THE SIMULATED

ANNEALING

instance MILP simulated annealing
sn2_8, (1,0,0) 316 307
sn2_8, (0,1,0) 241 246
sn2_8, (0,0,1) 0 1
sn2_8, (1,0,1) - 329
sn2_8, (0,1,1) - 261
COST239_16 (1,0,0) 1896 2102
COST239_16 (0,1,0) 1115 1305
COST239_16 (0,0,1) - 8
COST239_16 (1,0,1) - 1080
COST239_16 (0,1,1) - 711
NSFNET_8 (1,0,0) - 1791
NSFNET_8 (0,1,0) - 968
NSFNET_8 (0,0,1) - 1
NSFNET_8 (1,0,1) - 1809
NSFNET_8 (0,1,1) - 3585

on the simulated annealing scheme. Both methods are used to
solve the reconfiguration problem with different instances.

Using a MILP model allows to find near optimal solutions
for small and medium instances. The difficult task is to
prove the optimality of the solution found. However, this
approach is computationally expensive for large instances. The
SA algorithm is able to find good solutions with a run-time
significantly lower than the solver run time. Hence the SA
scheme can be used as a heuristic to arrive at near optimal
solutions when the run-time of the MILP becomes practically
infeasible.

The trade-off between the reconfiguration cost and the
solution quality is the essence of the reconfiguration problem
and cannot be left aside. This appears experimentally: Giving a
little flexibility with respect to one metric drastically improves
the quality of the solution with respect to other metrics. On
the contrary, optimizing a single metric does not lead to
balanced solutions, that is, the performance with respect to the
optimized metric is good while the performance with respect
to other metrics are not.

This work considers three different metrics to evaluate the
quality of a solution. However we do not make a compre-
hensive multiobjective study of the problem. Carrying such
analysis could derive useful information such as relationship
between the metrics.
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