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Abstract— We deal with the classical virtual topology design
and routing problems in optical WDM (Wavelength Division
Multiplexing) networks. We propose a multiobjective based
algorithm to compute the Pareto set of solutions of the problem.
Although the computational cost may be high, such approach
permits the decision maker to have a better perception of the
gain and the loss of choosing any given solution.

We describe briefly the treated problem, and the MILP (Mixed
Integer Linear Programing) model used. We present the method
applied to obtain the Pareto set. We report some computational
results and they fully justify the interest of carrying out a
multiobjective study.
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I. INTRODUCTION

Optical technology is a very flexible and powerful solution
for transmitting information. It offers very large bandwidth,
low energy consumption and dissipation. The use of WDM
(Wavelength Division Multiplexing) technology allows the
transmission of various signals in the same medium; each
signal being modulated in an independent wavelength.

The measure of the efficiency in the use of a network
is a key point. However, various metrics can be used; and
improving performance with a given metric can lead to a
decrease of performance with other metrics. Various criteria
are used depending on the problem considered, and as far
as we know there is no “universal” metric. Up until now the
choice of a metric is made a priori, before the beginning of the
optimization process. This method lacks of flexibility and lets
the decision maker face a problem to be solved - the choice
of a metric - before knowing the results of the optimization
process.

Multiobjective optimization avoids this drawback: it does
not compute an unique solution, but a set of solutions. Each
one belongs to the Pareto frontier which represents the set
of all “best” (non-dominated) points. Carrying out such an
analysis can provide a significant amount of information - the
relationship between metrics, after the optimization process.
As far as we know there are few multiobjective works in
telecommunication network field.

In the second section, we describe quickly the considered
problem and the mathematical formulation we use. We then
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describe how we identify the Pareto frontier and which tests
are carried out.

Il. THE VTDR PROBLEM

The Virtual Topology Design and Routing (VTDR) problem
is one of the key problems in the design of a WDM network.
It consists of defining the virtual topology, the wavelength
allocation and the routing of the demands [1], [2], [3].

A. Description and hypothesis

A WDM network is composed of different layers: the
physical layer and the logical (or virtual) layer. The latter
is composed by lightpaths, which are direct or indirect con-
nections between a pair of nodes. The virtual topology is the
communication graph used to transport the traffic. Lightpaths,
and consequently the virtual topology, are set through the
configuration of the devices of the physical layer.

The Virtual Topology Design problem consists of defining
a virtual topology by finding a set of lightpaths adapted to our
needs. The routing problem consists of routing traffic between
sources and destinations on the communication graph, and
interacts deeply with the virtual topology design problem [4].
There are mathematical models addressing both problems at
the same time [1].

We consider a network as a multi-graph G = (V, £) of |V
nodes. Each node v € V corresponds to a telecommunication
center. Each edge e € & corresponds to a cable contain-
iNg F(m,n) optical fibers from telecommunication center m
to n. The topology considered is arbitrary (mesh) and not
necessary symmetrical: we can have F(p, n) # F(n,m)- Each
optical fiber can transport simultaneously W wavelengths
li,...,lw. Each one can transport a bandwidth C, expressed
in Mbps. For technological reasons, we consider that W/ and
C are the same on the entire network. We believe that few
telecommunication operator would build an heterogeneous net-
work. However, it is quite simple modify our model to consider
heterogeneous lightpath capacity. For each pair (s,d) € V2 a
demand request D, 4, expressed in Mbps, is defined.

When defining a virtual topology, our aim is to define a
set of lightpaths £. We denote 1$9) an elementary path on
G from i to j using wavelength w of each edge supporting
the lightpath. There can be many lightpaths going from a
node s to a node d and they may not follow the same route



on the physical network. The set of nodes V and the set of
lightpaths £ define a multi-graph 7 = (V, £) corresponding
to the virtual topology. The routing problem consists of finding
a flow of the demands on the graph 7. We make multi-
hop routing: the demands may reach their destination going
through more that one lightpaths. We also allow the demands
to be split.

B. MILP model

A common formulation for such problem is a source-
destination flow formulation [1], in which there is a variable
making the association between each commaodity and each
link. In our case, there is a high number of commaodities going
through the network. The number of generated variables and
constraints is very high.

It can be reduced by aggregating all commodities from a
given node. If the cost associated with each edge does not
depend on the commaodity, both approaches are equivalent [5].
This leads us to a source flow formulation of the VTDR
problem. Such a formulation is used for the virtual topology
design problem in [6]. Such formulation allows to reduce the
computer memory occupation of the problem.

C. Variables

We define the following variables:

. pémm),w is the number of lightpaths from node 7 using
wavelength w of link (m,n) € £.

o ¢ is the number of lightpaths from node ¢ to node j
using wavelength w.

« (%7 is the number of lightpaths from node i to node ;.

o fGi) is the flow from source s using lightpath (4, 7).

The overall number of variables is O (|V|*W).

D. Virtual topology design constraints

The constraints associated with the virtual topology design
problem are the following:
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Constraints (1) corresponds to the flow conservation for
each source node 4. Constraints (2) corresponds to the flow
conservation in destination nodes n, for each wavelengths.
Constraints (3) corresponds to the number of lightpath conser-
vation. Constraints (4) corresponds to the capacity constraints.
As we consider multi-fiber networks, we have to consider such
capacity wavelength by wavelength: We cannot allow twice the
same wavelength in a given fiber, and consequently we cannot

allow each wavelength more than there are fibers installed. The
number of constraints generated for the virtual topology design
problem is O ([V[*W).

E. Routing constraints
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Constraints (5) corresponds to the flow conservation con-
straints in source node s. Constraint (6) corresponds to flow
conservation in destination node k. Finally, constraints (7) is
the capacity constraint. The number of constraints generated
for the routing is O (|V|?).

F. Additional cuts

1) Number of lightpaths required: The sum of the demands
from node s is a lower bound for the overall traffic leaving
s. Similarly, the sum of the demands to node d is a lower
bound for the overall traffic arriving in d. As the capacity of
each lightpath is defined, this gives us a lower bound on the
number of lightpaths from s (traffic leaving s - constraints (8))
and to d (traffic reaching d - constraints (9)). These cuts are
commonly used for flow problems.
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2) Flow and number of lightpaths. An equation linking the
flow variables and the number of lightpaths can be defined.
It “helps” making the 9 being equal to zero if the flow
variable is equal to zero [1]. This cut can be expressed this
way:
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G. Metrics

For the VTDR problem, various metrics can be used.

a) Number of wavelengths: The number of used wave-
lengths is a commonly used metric and represents the number
of transmitters and receivers needed. It has direct influence on
the cost of the switches used. We can express this metric in
the following way:

(10)
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b) Maximumlink load in number of lightpaths: Minimiz-
ing the maximum link load in number of lightpaths allows to
distribute the lightpaths between all the links. That avoids hav-
ing a small set of links carrying all lightpaths. Well-distributed
lightpaths make network evolution and management more
flexible, since some capacity remains available in all links. It
allows to perform easily load balancing, to allocate dedicated
protection paths, and so on. Let us call fo = M; the maximum
link load. We need to include the following constraint:
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c) Average number of hops. The average number of

hops has a direct influence on the transmission time [1],

[7]. In our model, we consider that a signal goes through

electronic devices only when it enters or leaves a lightpath.

Such operation is considered as “slow”, as it requires optical-

electronic conversions. The number of hops of a demand from

s to d is the number of lightpaths that the signal goes through.

We can express this metric with the following constraint.
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H. Integrality constraints

Some of the variables considered have to be integer:
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However, we can relax this integrality constraint for some
variables. cSy’ will necessary be integer since they are the
sum of integer variables. This is also the case of ¢(%7). Doing

so, the number of integer variables is O (|V|*WV), and the
number of continuous variables is O ((|V2|W + |V|?)).

I1l. DETERMINATION OF THE PARETO FRONTIER
A. The Pareto frontier

We selected three metrics. Each one gives interesting infor-
mations about the performance of the network. To have an idea
of the relationships between these metrics, we have to carry
out a multiobjective analysis of the problem. This means that
we will search for the Pareto frontier of the problem [8]. It is
a set of “best” solutions.

We define our multiobjective optimization problem in the
following way:
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where P is the set of feasible solutions. We denote F;(z)
the 4™ component of F(x).
The objective function of our optimization problem is in
R™. There are probably no solution z* such that Vx €
P, F(z*) < F(z). Note that if such solution exists, it has to

be chosen by the decision maker, since there is no solution
performing better with any metrict. We say that a point
F(z) € R™ dominates a point F(y) € R™ if Vi, Fi(z) <
Fi(y) and 35/ F;(x) < F;(y). The Pareto frontier is the set of
non-dominated points. Informally speaking, a point belongs to
the Pareto frontier if and only if the only way to improve the
performance with one metric is to decrease the performance
with other metrics.

B. Methodology

The problem considered has the following characteristics:
The Pareto frontier is discrete, as the set of feasible solutions
of the problem is discrete. The number of constraints and
variables generated by an instance of our problem is high.
The use of non-linear constraints would increase the difficulty
of solving the problem.

The method used to search for the Pareto frontier have to
take into account those facts. We based our method on an
e—restricted method [8].

e—restricted method corresponds in solving problems of the
following format, called e—problems:
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Figure 1 illustrates the key idea of the e—method: minimiz-
ing f1 will return F3. If the restriction fa(z) < e2 is added
to the problem, minimizing f1 will not return Fy*, but one of
the points of the Pareto frontier.
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Fig. 1. ¢ based method minimizing f1

We first need to solve each mono-objective problem to get
f the value of the optimal solution for metric f;. F** is the
vector of all those best values (ideal point). We then build the
vector F', vector of worst values reached for each objective.
This point is called Nadir point. With F* and F, we know
the possible variation, for each metric, of the points belonging
to the Pareto frontier: each point F'(x) of the Pareto frontier
necessary verify F* < F(z) < F (see figure 2).

To obtain points belonging to the Pareto frontier, we solve
e—problems (15). We choose the €; such that f < €; <

1such a solution is called ideal point
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Fig. 2. Pareto set for combinatorial optimization

Fj. We solve the associated problem to get a point of the
Pareto frontier. It is worth noting that if we consider three or
more metric at the same time, the e—problem generated can
be empty.

IV. EXPERIMENTS AND RESULTS

We applied this method for finding the Pareto frontier of
three networks: two small networks (6 nodes) and a medium
network (11 nodes). Those networks are represented on fig-
ures 3, 4 and 5. For all network, the traffic matrix has been
randomly generated.

® 9‘

Fig. 4. Small network 2

Fig. 5. Medium network

Both mono-objective and e—problems have been solved
using the commercial software Cpl ex?, on PC platform.

A. First small network

For each pair (s, d), the demand request Dy, 4y is randomly
and independently chosen between 0 and 200 Gbps. The others
parameter are the following: V (i, 7) € £, F(; ;) = 20. W =8
and C = 40Gbps.

We first focus on two metrics at the same time. We compute
the Pareto frontier of objectives (f1, f2). The ¢; have been
randomly generated, such that f* < €; < Fj. For each

2Copyright (©llog 1997-2001. Cplex is a registered trademark of llog.

e—vector, we generate a e—problem that we solve, giving us
a point of the Pareto frontier. The results are represented on
figure 6.
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Fig. 7. Pareto frontier (f1, f3)

We then consider the three metrics at the same time. We also
generate the e—vectors randomly. However, many generated
problems turn out to be empty. The following table gives the
Pareto points that we obtained.

‘ Wavelengths | Phys. load Hops Wavelengths | Phys. load Hops
330 18 1.189592 303 24 1.067792
329 26 1.000000 311 25 1.032060
303 25 1.055696 301 24 1.099203

B. Medium network

For each pair (s, d), the demand request Dy, 4y is randomly
and independently chosen between 20 and 150 Gbps. The
other parameters are the following: V (i, 5) € &, F; ;) = 3.
W = 32 and C = 20Gbps.

We restrict ourselves to two objective functions. In the
experiments made with the first small network, we choose
randomly the e—vectors. We make many experiments and we
obtain many times the same solution. In these experiments, we
choose the e—vectors “manually” in order to cover the whole
domain. This allowed us to avoid useless computation and
to guide the exploration of the Pareto frontier. The obtained
results are represented on figure 7.

C. Second small network

For each pair (s, d), the demand request Dy, 4y is randomly
and independently chosen between 20 and 150 Gbps. The
other parameters are the following: V (i, 5) € &, F; ;) = 4.
W = 32 and C = 20Gbps. Again, we chose the e—vectors to
explore more smartly the Pareto frontier.
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D. Results analysis

The first small network has a diameter higher than the
second small network. In this case, decreasing the maximum
link load is not compatible with decreasing the number of
wavelengths used; since some links carry almost all the short
paths. With the second small network, which is almost a
complete graph, the trade-off is not so strong.

For the second small network, we were able to map com-
pletely the Pareto frontier: The value of the maximum physical
load has to be integer. We obtained a solution for each possible
value of the maximum link load.

The more visible trade-off between the metrics is the
number of wavelengths against the average number of hops.
This is intuitive: to get a low number of hops, it is required to
add dedicated paths for all demands, which increases the use
of network resources. But our multiobjective approach, allows
us to quantify this trade-off.

Choosing randomly the values of the ¢; is quite simple.
However, letting the decision maker (or any other clever
decision process) choose these values is better: it avoids
unnecessary (the results obtained are sufficient) or useless
computation (solving two e—problems almost equal, giving
the same point of the Pareto frontier.

V. CONCLUSION AND FUTURE WORKS

We applied multiobjective optimization techniques to a
classical telecommunication network problem. We present the
mathematical model, different metrics, and a method to iden-
tify the Pareto frontier. Instead of requiring the best solution
for a given metric, leaving a small margin with a metric allows
to improve greatly the quality of the solution in relation with

other metrics. This also justifies the interest of performing such
multiobjective analysis.

The method proposed needs to be improved. However,

we believe that such an approach gives the decision maker
valuable data about the way how he can configure the network.
We are currently performing more tests and working with
reoptimization techniques to improve the overall efficiency of
our method.
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