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Abstract— Wireless Mesh Networks are a scalable and cost-
effective solution for next-generation wireless networking. In the
present work, we consider the Round Weighting Problem (RWP)
which solves a joint routing and scheduling problem to satisfy a
given demand subjected to the multi-access interferences.

We propose a multiobjective approach that deals with two
objectives. The first one is to balance the load in the routers,
increasing the security in case of failure. The second objective is
to minimize the communication time. We aim to find the Pareto
set of the problem, as it captures the trade-off generated by using
these two conflicting objective functions.

We make experiments with some networks with different
number of gateways. The column generation method is used to
solve efficiently the test instances. Our approach finds out the
relationship between the objective functions, corresponding to a
convex piecewise linear function.

I. INTRODUCTION

There is an increasing interest in using Wireless Mesh
Networks (WMNs) as broadband backbone for next-generation
wireless networking. A WMN is a scalable and cost-effective
solution. Mesh networking, in which information is routed
from origin to destination over multiple wireless links, has
potential advantages over traditional single-hop networking,
especially for back-haul communication [1].

WMNs are composed of wireless mesh routers and clients.
Wireless mesh routers, working as access points, constitute a
multihop wireless network that serves as backbone providing
network access for the mesh clients. A special kind of routers,
called gateway, interfaces with other networks as illustrated in
figure 1. The wireless mesh routers are usually stationary [2].
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Fig. 1. Wireless Mesh Network.

In wireless networks, the communication channels are
shared by the terminals. Thus, one of the major problems faced

is the reduction of capacity due to interferences caused by
simultaneous transmissions [3]. In this work, we call a round
a collection of links that can be simultaneously activated in
the network.

We focus on a joint routing and scheduling problem in
wireless networks subjected to the multiaccess interferences,
so called Round Weighting Problem (RWP) [4]. A column
generation approach is used to select the rounds improving
the objective function, avoiding the generation of the whole
set of rounds that is exponential.

We propose a multiobjective approach for the RWP, con-
sidering two objectives. The first one is to balance the load
in the routers (MinMaxLoad). It increases the security in
case of failure. The second objective is to minimize the
communication time (MinTime). It corresponds to the time
required to route all router demands.

Multiobjective optimization does not compute an unique
solution, but a set of “best” solutions, called the Pareto optimal
set, capturing the trade-offs between the different metrics.
Solving a multiobjective problem consists in finding the Pareto
optimal set, from which the decision maker choose the solution
that fits the best his needs. In this work, each point of the
Pareto set is obtained by solving an optimization problem.

The main contribution of this work is to give a multicriteria
vision of the Round Weighting Problem. As far as we know
there is no multiobjective analysis in this subject. The model
in this article can be useful as a benchmark for networks
with distributed scheduling, like in IEEE 802.11s. It can also
be useful in a context where centralized scheduling can be
adopted, like in IEEE 802.16d, that can directly take advantage
of our analysis. These IEEE standards are specific to wireless
mesh networks.

This paper is organized as follows. In the next section,
we discuss the related works. In section III, we present the
RWP formulation, its decomposition for the column generation
method and our multiobjective approach with ε-restricted tech-
nique. In section IV are presented some of the experimental
results we obtained. We conclude the paper and give the future
directions in section V.

II. RELATED WORKS

The joint routing and scheduling optimization in the WMNs
is a recent topic. A key issue in wireless networks is the inter-
ferences produced between neighboring routers. Interference
models have been introduced using either conflict graphs or



signal to noise ratio [5]. Their impact on shortest path routing
has been investigated in [6] and [7].

In order to deal with interferences, it is important to know
what are the sets of transmissions that can be active at the
same time (the rounds). The Round Weighting Problem was
treated in [4] with the objective to minimize the round number.
The authors make dual analysis and propose approximation
algorithms for some specific graphs. They show the NP-
hardness of this problem by proving that the well-known NP-
hard problem of finding the Fractional Coloring on unit graphs
reduces to it. The Fractional Coloring was proved NP-hard
by [8] and [9].

An algorithm enumerating a tractably large subset of simul-
taneous transmission rounds has been developed in order to
compute an approximated solution for maximum throughput
using linear programming (LP) in [10]. Solving the full LP
problem means generating an exponential set of scenarios
which is intractable even for small networks. Several works
use column generation method as in [11] and [12]. In [12], this
method is associated with set covering formulations to model
the resource allocation problem in ad-hoc radio networks.

III. HYPOTHESES AND PROBLEM DEFINITION

In this section we give some definitions that will help to
understand the problem. The RWP can be modeled as a graph
problem. A wireless topology is represented as a digraph G =
(V,E). The set of routers is represented by the set of nodes V .
The set of edges E ⊆ V×V corresponds to the communication
links from the real network. If a router j is located within the
transmission range tri of a router i, considering range distance,
obstacles, etc, then there is an edge (i, j) ∈ E.

We consider the link (i, j) active when the router i is
transmitting data to j. In this case, it interferes with another
links located within the interference range iti of router i. The
set Iu,v is composed by all links interfering with the link
(u, v). Consequently flexible binary interference models can
be adopted.

A round in a wireless network corresponds to a set of
links that can be active at the same time without making
interferences between them. The size of the complete set
of rounds is exponential. We consider a column generation
approach to select as required the rounds to improve the
solution of the problem. The round definition guarantees that
the communication will be multiaccess interferences free in
G.

We focus on router-gateway traffic pattern, naturally mod-
eled by a multicommodity flow problem. The commodities
are going from the set of nodes Vr to the set of gateways Vg

(Vr ∪ Vg = V and Vr ∩ Vg = ∅).
Given a graph G(Vr ∪ Vg, E), a set of router demands

dv with v ∈ Vr and an interference model, the Round
Weighting Problem (RWP) is to find the set of rounds to
satisfy the given demand. From this set of rounds can be
deduced the paths followed by the data. We deal with two
objectives: MinMaxLoad and MinTime. In MinMaxLoad we
try to balance the load in the routers and in MinTime the goal is

to minimize the communication time. More precise definitions
of the objective functions will be given in section III-B.

A. Column Generation Method

The problems considered are the RWP+MinMaxLoad and
the RWP+MinTime taking into account the complete set of
rounds. As the number of rounds is exponential, the number
of columns of the constraint matrix is exponential. The key
idea of the column generation is that it is not needed to list
explicitly all of the columns of the problem formulation, but
rather to generate them only “as required” [13]. The problem
is decomposed into a master problem and a sub-problem. We
solve the master problem with a small subset of columns,
which serves as an initial basis. The sub-problem is then solved
to check the optimality of the solution under the current master
basis and to generate new columns for the master problem.
This procedure repeats until the master problem contains all
columns necessary to find the optimal solution of the original
problem. Each column corresponds to one round.
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Fig. 2. Column generation algorithm and data flow diagram.

In each iteration, if the sub-problem can find a new column
that may improve the master solution, this column is inserted
in the master basis and a new master solution is computed.
If the sub-problem cannot find a new column, it means that
the solution of the problem is optimal. This algorithm is
represented on figure 2. This column generation approach
is close to the one proposed by Gilmore and Gomory [14].
The notation and the decomposition of the problem in master
model and sub-model are based in [11]. We adapted the master
model to the WMNs context.

1) Master problem formulation: We define the following
variables: Let the variable xv

i,j denotes the flow from the router
v over link i, j. The demand from each router v is represented
by the parameter dv . Let the binary parameter ar

i,j be 1 if link
(i, j) is active in the round r, and 0 otherwise.



Recall that set Iu,v is composed by all links interfering with
(u, v). We define F (i,j)

(u,v) = 0 if (i, j) ∈ Iu,v and 1, otherwise.
We define wr as the fraction of time that round r ∈ R is
scheduled. Consequently, there is an induced edges capacity
ci,j =

∑
r∈R a

r
i,jwr,∀ (i, j) ∈ E.

The master problem can be defined as follow: Given a graph
G(Vr ∪ Vg, E), a set of routers demand dv with v ∈ Vr and
a set of rounds R, the problem is to assign a weight wr to
each round r ∈ R. The weights represent the amount of time
a round will be activated. The total amount of time needed to
satisfy all demand will be wR =

∑
r∈R w(r). From the edges

of the rounds can be deduced the paths followed by the data as
illustrated in figure 3. It may happen that some of the rounds
r have a weight equal to zero. The load in each router i ∈ Vr

is given by li =
∑

v∈Vr

∑
j∈V/(i,j)∈E x

v
i,j .
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Fig. 3. Path deduction from a set of rounds.

The constraints of the master problem expressed as a linear
programming model are the following:

∑
i∈V/(v,i)∈E

xv
v,i = dv,∀v ∈ Vr (1)

∑
j∈Vg

∑
i∈Vr/(i,j)∈E

xv
i,j = dv,∀v ∈ Vr (2)

∑
i∈Vr/(i,j)∈E

xv
i,j −

∑
k∈V/(j,k)∈E

xv
j,k = 0,∀j, v ∈ Vr (3)

∑
r∈R

ar
i,j .wr −

∑
v∈Vr

xv
i,j > 0,∀i, j ∈ E (4)

Constraints (1-3) correspond to the flow constraints. Con-
straints (1) define the flow leaving its source router and
constraints (2) define the flow arriving in a gateway. Con-
straints (3) represent the flow conservation, that is, the flow
entering an intermediate router equals the flow leaving that
router. Constraints (4) assign weights to the rounds to satisfy
the flow in the edges.

2) Sub-problem formulation: The sub-problem
generates a round r with the minimal reduced cost(

1−∑(i,j)∈E p(i,j).a
r
i,j

)
to enter the master basis. To

express the sub-problem as a linear programming model, we
have to define some additional notations. Let the parameter
p(i,j) be given by the dual variable associated with the
constraints (4) of the master problem. Consider the binary
variable u(i,j) = 1 indicating if the edge (i, j) enters the
round to be added to R, u(i,j) = 0 otherwise. The sub-
problem can be seen as the Maximum Weighted Independent
Set Problem which is NP-hard [15]. The parameter p(i,j)

corresponds to the weight of the edges. The objective function
is to maximize the sum of the weights of all active edges
respecting interferences.

The formulation of the sub-problem is the following:

max
∑

(i,j)∈E

p(i,j)u(i,j) (5)

u(i,j) + u(k,l) 6 1 + F
(k,l)
(i,j) ,∀ (i, j) ∈ E,∀ (k, l) ∈ E (6)

The objective function (5) searches the maximum weight,
which is equivalent to the minimum reduced cost. The pa-
rameter p(i,j) guides the column generation to select the best
round. Constraints (6) avoid interferences according to the
interference model in F .

If the value of the objective function in the sub-problem
is strictly greater than 1 (e.g. the reduced cost is negative), a
new column u(i,j) is found and the master basis is expanded.
Otherwise, the master problem already gives the optimal
solution to the original problem.

B. Multiobjective Formulation

To evaluate the overall quality of our solutions, we use the
following metrics:
• MinMaxLoad (f1): Balancing the quantity of flow in the

routers. The rounds are chosen in a way to minimize the
maximum load lv in the routers Vr.

• MinTime (f2): Minimizing the time of the communi-
cation. It chooses the rounds in a way that the round
activations time will be minimum, that is, it minimizes
the total weight wR of the schedule.

The objective function of the master problem with objective
MinMaxLoad and MinTime are the following, respectively

min(f1 = max
v∈Vr

(lv)) (7)

min(f2 = wR) (8)

To study the trade-offs between these two metrics, we
consider the problem as a multiobjective one. The main idea of
multiobjective optimization is to find out all the possible non-
dominated solutions of an optimization problem. A solution
is dominated if there is another solution improving simultane-
ously all the metrics. A solution is non-dominated if there is
no other solution dominating it. Informally speaking, it means
that if a solution is non-dominated within the whole solution
space, it is not possible to improve one of the metrics without



worsening at least one of the other metrics. The set of all
non-dominated solutions is the Pareto set [16].

In multiobjective optimization, the solution space is a part
of Rm where m is the number of metrics. In our case m = 2.
The optimization is performed on the plane and as there is no
total order relation in R2, there is not a single but many “best
solutions”.

A multiobjective optimization problem can be defined in the
following way:

F̄=

{
minx F (x)
x ∈ P where F :

 P → R2

x 7→
(
f1(x)
f2(x)

)
(9)

P is the set of feasible solutions, defined by constraints (1)
to (4).

C. ε-restricted technique

The idea of the ε-restricted technique is to add additional
constraints preventing the solver to return one of the optimum
solution of one of the induced mono-objective problems, as de-
scribed in [17] and [18]. More precisely, the ε−restricted tech-
nique corresponds to generating and solving mono-objective
problems under the form: minx f

i

x ∈ P
f j 6 εj ; j 6= i

(10)

The εi are chosen such that f̄ i 6 εi, where f̄ i corresponds to
the optimum value of the mono-objective problem minimizing
objective f i. Figure 4 illustrates the key idea of the ε−method:
Solving the classical mono-objective problem minimizing f1

gives f̄1. If the restriction f2(x) 6 ε2 is added to the problem,
minimizing f1 will not return f̄1 anymore but another points
of the Pareto optimal set. The same can be applied when
minimizing f2.

The Pareto set provides to the decision maker the trade-offs,
allowing him to choose the solution that he considers as the
best one.

IV. RESULTS

The model was coded using the AMPL modeling language
and it was solved using the commercial software Cplex version
10, on a desktop PC with one gigabyte of RAM. We used
the mesh networks instances from [19]. We defined a simple
interference model where each edge interferes with another
one if the distance between them in graph G is lower than 2.

We represent some of the obtained results on figures 5 to 7.
The results are represented in the solution space: The x axis
represents the communication time, and the y axis represents
the maximum load. Each point corresponds to a solution.

This approach using column generation and multiobjective
optimization appears to be quite efficient, as the computation
time to solve any instance is low, of the order of tenths of
seconds. The overall time f1 as well as the maximum load f2

decrease as the number of gateways increases.

min f 1(x)

f 2(x) 6 ǫ2

ǫ2

f2(x) 6 ǫ2

f 1

f 2

F (P)

F̄ 1

Fig. 4. ε based method minimizing f1
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Fig. 5. 39 nodes mesh network (giul69 instance)
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Fig. 6. 65 nodes mesh network (ta2_65 instance)
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As it was expected, the routing generates bottlenecks located
around the gateway(s), because all the flow goes toward them.
We observe that when the routing use distinct paths to route the
flow, it allows to activate different edges in the same round,
reducing the overall transmission time. Informally speaking,
it may be more efficient to follow different routes that do
not interfere one with another than following shorter routes
resulting in more interferences.

Minimizing the time increases the maximum load of the
routers. We observe that the relation between the maximum
load and the transmission time seems convex and piecewise
linear. The linear parts corresponds to the following situations:
As we make tighter the value of the maximum load, an amount
of flow is deported on another path. Using this other path
results in an increase of the overall transmission time. Hence,
for each unit of flow following the second path, the overall
transmission time increases by a given value (the difference
of time between the first path and the second one).

Each disruption in the graphs is due to the happening of a
new bottleneck, forcing a flow transfer on a path that is not
the best possibility. It may activate some path that was not in
use. As a consequence, the rate of time per flow increases.

A disruption situation is illustrated on figure 8, where
routers 2,4 and 5 send data to gateway 1. We assume that each
router has only one unit of traffic to send, dv = 1. For clarity
reason, we consider that the time unit is the second (s) and
the flow unit is the Gigabit (Gb), even if the formulation is
independent from the unit chosen. Let us consider only the
flow from router 4, because routers 2 and 5 send directly
their flow to the gateway. The flow from router 4 follows
three different paths p1 = 4 − 5 − 1, p2 = 4 − 3 − 2 − 1
and p3 = 4 − 3 − 7 − 8 − 6 − 1 to reach the gateway.
When the maximum authorized load is 1.25Gb, the flow from
router 4 is divided the following way: 0.25Gb follow p1,
0.17Gb follow p2 and 0.58Gb follow p3. Router 5 is the only
bottleneck of the network. With a tighter maximum load of

1.2Gb, 0.05Gb of flow are deported from path p1 to paths p2

and p3, resulting in an increase of required time of 0.02s, that
is, with a rate of −0.05/0.02 = −2.5Gb/s. But now there
are two bottlenecks: routers 2 and 5. With a tighter maximum
load of 1.15Gb, flow from paths p1 and p2 are deported to the
path p3, resulting in an increase of required time of 0.1s, that
is, with a rate of −0.05/0.1 = −0.5Gb/s. The overall results
obtained with this example are represented on figure 9.
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Fig. 8. Small example for piecewise linear functions.

V. CONCLUSION AND PERSPECTIVES

In this article, we solve the Round Weighting Problem,
which corresponds to a joint routing and scheduling problem
to satisfy a given demand subjected to the multiaccess inter-
ferences. We propose a multiobjective approach relating the
overall transmission time, expressed in number of rounds, and
the maximum load. The problem is solved using a column
generation approach.

We make experiments with some networks with different
number of gateways. The multiobjective approach allows us
to obtain results about the relationship between the maximum



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 3.4 3.5 3.6 3.7 3.8 3.9  4

M
a
x
im

u
m

 l
o
a
d

Time

Fig. 9. Result obtained with the example from figure 8.

load and the overall transmission time. This relationship corre-
sponds to a convex piecewise linear function. Each linear parts
corresponds to the increase of time resulting by transferring
part of the load from a path to another. Each disruption is due
to the happening of a new bottleneck, forcing a flow transfer
from a path to another.

We are currently working on improvements to the mathe-
matical formulation, to better model wireless mesh networks.
We are taking the multiobjective analysis further and also
making experiments with other network topologies. Our next
step will be to work with a branch and price approach. We
aim for investigate whether the round-up property holds for
the RWP and we also look for interesting cuts for the model.
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