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Abstract 

This work presents a method to compute communi- 
cation cost b y  applying Petri nets. This cost is being 
used to guide the hardware/software partitioning in a 
methodology for ha rdw a re/so f t  ware codesign context , 
which is being developed. 

Petri nets are a family of formalisms sharing basic 
principles. Although for each purpose or detail level 
one appropriated formalism have to be chosen from the 
family, the transformation from one formalism to an- 
other could be sound. The use of Petri makes the par- 
titioning method independent on a specific description 
mechanism. Additionally, Petri net as an intermedi- 
ate format allows to analyse behavioral properties of 
the specification and formally to compute performance 
indices which are used in the partitioning process. 

1 Introduction 
Hardware/Software codesign is the design of sys- 

tems comprising two kinds of components: specific ap- 
plication components and general programmable ones. 
The system functionality is implemented by using a in- 
terconnected components set , where these components 
may be microprocessors, memory, ASIC chips, etc. 
Combined implementation in hardware/software has 
been more common today, The software is executed 
in microprocessors, cheap programmable components. 
In the case where an implementation on a micropro- 
cessor does not meet the time constraints, a hardware 
implementation must be done, i.e. inadequate com- 
ponents to be implemented in software must be im- 
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plemented in hardware. Although such systems have 
been designed since hardware and software exist, there 
is a lack of CAD tools supporting the development of 
such heterogeneous systems. The progress obtained 
by the CAD tools at the level of algorithm synthesis, 
the advance in some key enabling technologies, the in- 
creasing diversity and complexity of applications em- 
ploying embedded systems and the need for decreasing 
the costs of designing and testing such systems, make 
techniques for supporting hardware/software codesign 
an important research topic. 

The main tasks when implementing such systems 
are the choice of the components set (definition of a 
target architecture) and the partitioning of the de- 
scription. 

An essential aid for hardware/software codesign is 
the availability of approaches to hardware/software 
partitioning. 

Some partitioning approaches have been proposed 
by Soininen [ 111 , De Micheli [ 121, Ernst [ 101 and Barros 
[9]. One of the main challenges of approaches for hard- 
ware/software partitioning is the increasing number 
of implementation alternatives to be analysed. Some 
approaches consider only a subset of alternatives by 
restricting the analysis to some particular language 
constructors like loops [lo] or delay independent com- 
mands [ 121. 

The approach proposed by Barros [6, 91 partitions 
a description written in unity into hardware compo- 
nents and software components by using a clustering 
algorithm, which considers the distinct implementa- 
tion alternatives. This work has been adapted for oc- 
cam [8]and when generating the set of implementa- 
tion alternatives for a particular process, various fea- 
tures are considered such as: parallelism level, data 
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dependency and multiplicity. By considering a par- 
ticular implementation alternative as the current one 
the clustering is done, observing criteria like similar- 
ity among processes. The analysis of distinct imple- 
mentation alternatives during the partitioning allows 
the choice of the best implementation with respect to 
time constraints and area allocation. However, this 
approach does not treat loops in a general form and 
communication cost as well. 

This paper aims to propose the use of a formal tech- 
nique to compute communication cost in order to deal 
with this deficiency. The proposed method uses Petri 
net as an intermediate format for the partitioning pro- 
cess. Additionally, this work presents an approach to 
translate programs written in Occam [56] to Petri net 

The use of the Petri nets [16, 17, 18, 19, 27, 11 still 
allows qualitative analysis of the properties as well as: 
deadlock freedom, boundedness, safeness, liveness and 
so on [33, 35, 16, 27, 37, 39, 40, 42, 43, 44, 46, 47, 48, 
491. 

The next section gives an overview of the hard- 
ware/software partitioning approach. The section 3 
presents an introduction into Petri nets [I, 57, 50, 
51, 521. The section 4 describes the occam/Petri net 
translation method. The seciton 5 presents the pro- 
posed method to compute communication cost. The 
section 6 presents an example and finally some conclu- 
sions are presented as well as perspectives for future 
works. 

2 The Hard ware/ S oft ware Partition- 

[57, 53, 55, 201. 

ing Approach 
In this section we describe the partitioning ap- 

proach used in this work, which takes into account 
systems described in Occam [8]. In order to preserve 
the semantics of the original description, the parti- 
tioning process is done as the application of a set of 
transformation rules in an Occam program. An in- 
formal description of some rules applied during the 
partitioning phase is given in this section. These rules 
include the splitting of an Occam description into a 
set of communicating simple processes. Once some 
process is chosen to be implemented in software, the 
clustering process takes place. During the clustering 
phase, rules for joining processes in clusters according 
to their similarity, the minimisation of communication 
costs and the minimisation of the area-delay cost func- 
tion are applied. 

The clustering process is guided by a time analysis 
[14] performed in the Petri net model of the processes, 
which was obtained by the translation method. 

The t.arget architecture is specified by the user by 

using previously defined components stored in a li- 
brary. The architecture generator provides an graph- 
ical interface in which the user connects the compo- 
nents used in the architecture. Each component of the 
library is formally specified by using high level Petri 
net. The formal model allows to analyse qualitative 
aspects and quantitative high level constraints of the 
proposed architecture. 

The use of a family of formalisms (high level Petri 
nets, P/T net, timed Petri nets etc ...) sharing basic 
principles in a consistent way permits if not a formal 
qualitativelquantitative analysis and a transformation 
from one formalism to another, a rigorous transforma- 
tion and analysis of several aspects observed in the de- 
sign, which makes easy the interrelation betsween them 

2.1 The  Partitioning Phases 
The hardware/software partitioning is based on the 

approach proposed by Barros. This approach was 
developed initially by considering unity specifications 
but it can be applied to other description languages 
and an adaptation for Occam is being developed. In 
order to take into account the target architecture pre- 
sented earlier, some modifications have been made in 
the cost functions guiding the clustering process. One 
of them is the consideration of communication cost 
due to the message passing. 

The main tasks associated with the partitioning ap- 
proach are depicted in figure 1. 

The set of implementation alternatives is generated 
during the Classification phase by considering distinct 
degrees of parallelism when implementing the original 
program. The set of implementation alternatives is 
represented by a set of class values concerning some 
features of the program, such as degree of parallelism, 
pipeline implementation and communication cost. 

The choice of some implementation alternative as 
the current one can be made manually or automati- 
cally. When choosing automatically, the alternatives 
leading to a balanced degree of parallelism among the 
various statements and minimising the area-delay cost 
function ( F  = aln(Area) + ,Bln(Aren)) will be taken 
as the current one. 

Before the classification to be performed, the origi- 
nal description is split into a set of concurrent simple 
processes. A simple process can be an assignment, 
a sequence of one assignment and input and/or out- 
put operations, as well as the constructors if, alt, par 
whose body is a simple process. The split process is 
performed by applying a set of transformation rules [8] 
which preserves the semantic of the original descrip- 
tion in order to implement the partitioning. 

~ 3 1 .  
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Figure 1: Task Diagram 

In the initial allocation phase, the processes are 
analysed and the best suited processes to be imple- 
mented in the software components are chosen con- 
sidering the communication cost. After that, the allo- 
cation the clustering takes place. 

The clustering process takes into account only one 
alternative, for instance, a fully parallel implementa- 
tion for each simple process presented previously. 

The partitioning process is done by using a multi- 
stage hierarchical Clustering algorithm. The clustering 
algorithm builds a clustering tree by using a matrix 
distance. This matrix provides the similarity distance 
between each two objects. After the construction of 
the clustering tree, it is cut by a cutline. The cut- 
line makes clusters according to a cutfunction which 
observes the possibility of resource sharing and the 
area-delay cost function. 

In the first stage, clusters are built according to 

the similarity of the process functionality, implemen- 
tation alternative and communication cost. To build 
the cluster tree, a metric upon Occam constructors 
and their corresponding implementation alternatives 
was defined. 

In the second stage, a new distance matrix for the 
clusters (resulting from stage 1) is calculated and from 
it a new cluster tree is built. The goal of the clustering 
in the second stage is to keep together processes that 
should share resources. 

After the translation of an Occam program into 
Petri nets, a timing analysis is performed by calcu- 
lating the minimum execution time of the global pro- 
cess as well as of the set of sub-processes [55]  and the 
communication cost, which are used in the cluster- 
ing process. The advantage of using Petri net as an 
intermediate format is the possibility of applying for- 
mal techniques for qualitative and quantitative anal- 
ysis as well as the use of a family of formalism [13] 
which shares the same basic principles in the archi- 
tecture specification allowing a sound transformation 
steps between the different aspects of the design. 

As our approach is based on Petri net as interme- 
diate format, in the next section a brief introduction 
into Petri nets is given. 

3 A Brief Introduction into Petri Nets 
Petri net is a formal specification technique that al- 

lows a graphical, mathematical representation and has 
powerful methods which allow to perform qualitative 
and quantitative analysis [27, 17, 18, 161. In this sec- 
tion a brief introduction into Place/Transitions nets, 
Deterministic Timed Petri nets and High Level Petri 
net is given. 
3.1 Place/Transition Nets 

Place/Transition Nets are bipartite graphs repre- 
sented by two types of vertices called places (cir- 
cles) and transitions (rectangles) , interconnected by 
directed arcs. 

Place/Transition nets can be defined in terms of 
matrix as follow: 

Definition 3.1 Place Transition Net is defined as 
5-tuple M = ( P , T ,  I ,  0 ,  M O ) ,  where P is a finite set of 
places which represents the state variables, T is a set 
of transitions which represents the set of actions, I : 
P x T + IN is the input matrix which represents the 
pre-conditions, 0 : P x T -+ IN is the output matrix 
which represents the post-conditions and MO : P + IN 
is the initial marking which represents the initial state. 

'In this case, only the Occam subset for representing simple 
processes is considered 
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The execution of actions is represented by the tran- 
sition firing. 

Definition 3.2 Firing Rule - One transition ti; is 
enabled to fire if, only ih all its input places ( p  E P )  
has M ( p )  2 I ( p ,  t j ) .  The transition firing changes the 
marking of the net ( h l o [ t j  > M‘). The new murk- 
ing is obtained as follow: hl’(p) = h f o ( p )  - I(p,tj) + 
O b ,  t j ) ,  V P  E p 

Using the matrix representation, the structure of 
the net is represented by a set of place, a set of transi- 
tions, an input matrix (pre-conditions) and an output 
matrix (pos-conditions). When one transition t fires, 
the difference between the markings is represented by 
O ( p , t )  - I(p,t),Vp E P. The matrix C = 0 - 1 is 
called incidence matrix. This matrix represents the 
structure of the net, if the net does not have self-loop. 

Definition 3.3 Incidence Matrix - Let u net N = 
(P ,  T ,  I ,  0) .  The incidence matrix represents the re- 
lation C : P x T -+ Z,Vp E P defined by: C(p , t )  = 
O b ,  t )  - I ( P ,  t )  , V P  E p .  

One net that has self-loop, may be represented by 
the incidence matrix if the self-loop is refined using 
dummy pair [27]. 

The state equation describes the behaviour of the 
system, as well as allows to analyse properties of the 
models. 

M ’ ( p )  = hfo(p) + C.a, 

where 3 = ~ ( t ~ ) ~ ,  s(t l)”,  ..., ~ ( t , ) ~  is called Parikh 
vector. 

3.1.1 Analysis 

This sections describes shortly the Petri net analy- 
sis methods. These methods are used to analyse be- 
havioural and structural properties. The first method 
is a graph-based and it builds on the reachability 
graph (reachability tree). The reachability graph is 
initial marking dependent and so it is used to analyse 
behavioural properties. The second method is based 
on the state equation. This method allows to analyse 
structural properties and necessary or sufficient condi- 
tions for behavioural properties in general Petri nets. 
The third method is based on reductions laws. In this 
method, a set of reductions rules are applied to the net 
looking for the size reduction of the model. The set 
of rules must preserve characteristics such as liveness 
and boundedness of the systems. 

In order to build the reachability tree is necessary 
to enumerate all the possible rea,chable markings from 

the initial marking. It is quite possible that the tree 
could grow indefinitely. In this case the system is un- 
bounded. Even for bounded systems, the main prob- 
lem in the using of reachability tree is the high compu- 
tational complexity even if some interesting techniques 
are used such as: reduced graphs, graph symmetries, 
symbolic graph etc [25, 261. 

One approach used to keep the size of the tree fi- 
nite to unbounded systems is called coverability tree 
[17]. In this method one special symbol “U?’ is used 
to represent the number of tokens which can be stored 
largely in the places. The use of that symbol implies 
in lose of information, but this method still allows to 
analyse properties such as: coverability, boundedness, 
safeness and conservation. 

The analysis method based on matrix algebra has 
some advantages over the reachability graph method 
[24, 27, 191. The advantage is the existence of sim- 
ple linear algebraic equations that aid in determining 
properties of the nets. 

The main problem of this method is that it gives 
only necessary or sufficient condition to the analysis 
of properties when it is applied to general Petri nets. 
This method is particularly interesting if it is applied 
to some subclasses of Petri nets such as: marked graph 
and state machine, where it aids to analyse necessary 
and sufficient conditions. 

The analysis methods of large dimensions nets is 
not a trivial problem, therefore methods which aids 
the transformation of the models preserving the prop- 
erties of the original models has been proposed [27, 281 

The reduction laws based methods provides a set 
of transformation rules which reduces the size of the 
models preserving the properties. However, it is pos- 
sible that for a given system and some set of rules, the 
reduction can not be completed. 

In the pragmatic point of view, it is fair to suggest 
that a better, more efficient and more comprehensive 
analysis can be done by a cooperative use of these 
techniques. Nevertheless, necessary and sufficient con- 
ditions can be obtained by applying the matrix algebra 
for some subclasses of Petri nets. 

3.2 High Level Nets 
The term High Level Net is usually applied for the 

whole class of nets. In most of the approaches, the 
main characteristics are of a high level net are the fact 
that it can be unfolded into a low level net and that 
the tokens represent data items as opposed to  boolean 
conditions as in the elementary nets systems [5, 501. 
Structured tokens permits the concise representation 
of complex systems, such as data base and flexible 
manufacturing systems. 
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Large system models are only comprehensible if the 
hierarchy concepts are applied. In Petri net context, 
these concepts represent the transition and place re- 
finements. Under the theoretical view point, hierarchy 
is only a graphical convenience and it does not pro- 
vide any computational power in relation with non- 
hierarchical models [50]. 

The hierarchy concept permits the inspection of the 
systems considering levels of details and re-use of the 
sub-models. One high level object (place or transi- 
tion) is represented as a sub-net (page) which allows a 
structured description taking into account abstraction 
levels. 

4 The Occam - Petri Net Translation 
Method 

The occarrt-Petri-net translation method [55] re- 
ceives an occam description and translates it into 
Petri-nets. The Occam programming language is de- 
rived from CSP [54], and allows the specification of 
parallel algorithms as a set of concurrent proccsses. 
An Occam program is constructed by using primitive 
processes and process combiners. 

The ~ c c a m  subset is described in BNF format: 

P::=SI<TP 11 STOP ( 1  2 : = e  

[ (  ch?z ( (  ch!e 
I1 IF(ClP1, ..., CnPn) IIALT(g1p1, ..., snPn) 
IISEQ(p1 1 ..., pn)llPAR(pl, " ' 1  ~ n )  

Occam programs are constructed by combining 
primitive processes. The simplest Occam processes are 
the assignment, the input action, the output action, 
the skip process and the stop process. 

This section presents the translation method from a 
subset of Occam process into Petri net by using an ex- 
ample. The Petri net models obtained represent both 
control and data flow. Due to the space restrictions 
only two primitive process as well a s  one combiner will 
be described in this section 
4.1 Assignment 

The assignment primitive process assigns an ex- 
pression evaluation to a variable (vu, := e z p ) .  For 
instance, lets consider : 2 := y + 1. The figure 2 
presents a Petri net model. 

For convenience, each part (control and data) are 
represented as a separated model, however places, 
which interconnect both models, are represented as 
guards attached to the transitions, that is, these 
guards are places interconnected to the transitions by 
input and output arcs. The figure 2 shows both mod- 
els. 

i; J 

"iL': ""' 
"' ? 0 JTo 

Control Data 

Figure 2: Assignment 

4.2 Primitive Communication Process: 

Occam processes can send and receive message syn- 
chronously through channels by using input (?) and 
output (!) operations. When a process receives a value 
through a channel, this value is assigned to a variable. 

The figure 3.b gives a net representing the input 
and the output primitive processes of the example in 
the figure 3.a. The synchronous communicatiori is cor- 
rectly represented by the net. The reader should ob- 
serve that the communication action is represented by 
the transition t o  and it is only fired when both the 
sender and the receiver processes are ready, which are 
represented by tokens in the places po and pl.  When 
an value is sent by an output primitive process through 
chl, it is received and assigned to the variable E, being 
represented in the net by the data part of the model. 
Observe that the transition t l  can only be fired when 
the places p2 and p3 have tokens. After that ,  both 
processes become enabled to execute the next actions. 
4.3 Parallelism 

The combiner Par  is one of most powerful of the 
Occam language. It permits the concurrent process ex- 
ecution. The combined processes are executed simul- 
taneously and only finish when every one has finished. 

The Figure 4.a shows a program containing three 
processes E, I< and S. The figure 4.b shows a net that 
represents the control of this program. 

One token in the place po enables the transition t o .  
Firing this transition, the tokens are removed from the 
input place ( P O  and one token is stored in the output 
places (p1, pa and p 3 ) .  This marking enables the con- 
current firings of the transitions E,Ti and S .  After 
the firing of these transitions, one token is stored in 

Input and Output 
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Figure 3: Communication 

RI Q 
PAR 

E 
K 
S 

Figure 4: Parallel 

the places p4 ,p5  and pG1 respectively. This marking 
allows to fires the transition t l ,  which represents the 
end of the parallel execution. 

5 Computing Communication Cost 
This section presents the method proposed to com- 

pute communication cost between process by using 
Petri nets. The communication cost related to a pro- 
cess depend on two metrics: the number of transfered 
bit by each communication action and the execution 
nunber that action. 

Considering that we are dealing with behavioral de- 
scriptions that are translated into Petri nets, we al- 
ready have defined, in each communication action, the 
number of transfered bits in each communication ac- 
tions execution. 

Definition 5.1 Number of Transfered Bits by 

Communication Action - Nbb : nbc -+ 1711, where 
#Nbb = T and T is the set of transitions. Each com- 
ponent (nbc), associated to a transition that represents 
a communication action, defines the number of trans- 
fered bits by the respective communication action, 0th- 
erwise is zero. 

However, we have to define a method to compute 
the communication action execution number related 
to each process, the communication cost for each pro- 
cess, the description communication cost, the commu- 
nication cost between two sets of process and finally 
to compute the normalized communication cost. 

The communication cost for each process (CC,i) is 
the product of the number of transfered bits by com- 
munication action (Arb,) and the communication exe- 
cution number (NC,,). 

Definition 5.2 Communication Cost for each 
Process - Let Nb, the number of transfered bits by  
communication action and NCp,T a vector that repre- 
sents communication execution number. The commu- 
nication cost for each process pi is defined b y  CC,, = 
Nb,  x NCp,7' .  

The used approach to compute the Communica- 
tion Execution Number (NCpc)  for the processes pi is 
preeseted in the following. However first, we present 
some definitions and theorems in Petri net theory 
which are important for the proposed approach [27]. 

A Petri net N is said repetitive if there is a mark- 
ing and a firing sequence from this marking such that 
every transition occurs infinitely often. More formally: 

Definition 5.3 - Repetitive net: Let Ar = (R;  M O )  
a marked Petri net and firing sequence s. N is said 
to be repetitive if there exist a sequence s such that 
Mo[s  > Mi every transition ti E T fires infinitely often 
In s. 

Theorem 5.1 A Petri net N is repetitive ih and only 
if, there exist a vector X of positive intergers such that 
c .x>o,  X f O .  

A Petri net is said to be consistent if there is a 
marking and a firing sequence from this marking back 
to the same marking such that every transition occurs 
at least once. More formally: 

Definition 5.4 - Consistent net: Let AT = (R;  M O )  
a marked Petri net and firing sequence s. N is said 
to be Consistent if there exist a sequence s such that 
MO[S > hfo every transation ti E T fires at least once 
in s .  
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Theorem 5.2 A Petri net AJ I S  consistent i f ,  and 
only i f ,  there exist a vector X of positive intergers such 
t h a t C . X = O ,  X f O .  

The proofs of such theorems can be found in [27]. 
The Communication Execution Number (NC,,) is 

a vector, where each component (nc,i),, associated to 
a transition that represents a communication action 
in the process pi ,  is the execution number related to 
the respective communication action, otherwise, that 
is, the component vector associated to the transition 
which does not represent the communication action in 
the process pi, is zero. More formally: 

Definition 5.5 Communication 
Execution Number - AJC,, : ne,, -+ I N ,  where 
#NC,,  = T and T is the set of transations. Each 
component ne,, = max(ncp,xk) ,  VXk, where Xk zs a 
vector of positave antergers such that either C . X = 0 
or C . X  2 0. 

Definition 5.6 NC,,xk : ncpixk -+ I N ,  where 
#NC,,x, = T and T is the set of transitions. 

Each vector xk is the minimum suport which can 
be obtained by solving either C . X = 0 ( in this case 
Xk are minimum t-invariants) or C . X >_ 0. The ex- 
ecution number related to a communication action a ,  
(represented by a transition t , )  is the respective value 
obtained in the component xi for the correspondent 
Xk. The other components, which do not represent 
communication actions in the process p ,  , are repre- 
sented by zero value. 

According to the results obtained in the qualitative 
analysis, it is possible to choose methods to compute 
the communication execution number (NC,,) regard- 
ing to the complexity of the used method. 

Whether the net (system) is consitent, first we 
have to  compute the minimum t-invariants then the 
NC,,, Vpz E D are obtained. However, if the net is 
not consistent, but it is repetitive, first the minimal 
support to  X k ,  which are obtained by using X in the 
system C . X 2 0 ,  where X # 0 ,  has to be obtained 
then the hlC,,, 'dp, E D are computed. In the case 
of the net do not be repetitive and if it is possible to 
transform it into a repetive or consistent net by in- 
serting one transition t f  such that I ( t f )  = {pf} and 
O(t1 )  = { P O } ,  we apply the same method to compute 
X and then to obtain the N C p t ,  Vp, E D .  These 
places ( P O  and p j )  are well defined, because one token 
in the place po (initial place) enables the execution of 
the process and when one token arrives in the place 
p f  (final place), it means that the execution already 

had finished. Otherwise, if it is not possible to trans- 
form the net into a repetive or consistent one, although 
this system seems do not have interesting properties 
and even so the designer do not intend to modify i t ,  
we can compute the X and then NC,, by using ei- 
ther the reachability graph or by solving the system 
C . X = Mjinal - iW0, where iWjinal and MO are the 
final and the initial markings, respectively. However, 
the reader has to remenber that,  the state equation 
could provides spurious solutions for some Petri nets 
sub-classes [23]. 

Theorem 5.3 Let N a consistent net and X k  a min- 
imum t-invariant in the net. Considering every mini- 
mum t-invariant in the net (VXk N )  the maximum 
value obtained for each component vector is the mini- 
mum transition firing number for each transition. 

Proof: 
Supose a Petri net is consistent. Then there exist an 
X # 0 such that MO = hfo + C . X .  The vectors X 
can be obtained by using the minimum t-invariants 
( x k )  and vice-versa. If the vector X is obtained by 
taking the maximum value of each component 
between every minimum t-invariants Xk , so each X 
component is the minimum transition firing number 
for each transition. 

Theorem 5.4 Let AT a repetitive net and xk a mini- 
mum support in the net which can be obtained by using 
X which solves the equation C . X 1 0 .  Considering 
every minzmum support Xk in the net, the maximum 
value obtained for each component vector is the mini- 
mum transition firzng number for each transitzon. 

Proof: 
Supose a Petri net is repetitive. Then there exist an 
X # 0 such that hf 2 MO + C X .  The vector X can 
be obtained by using the minimum supports (X , )  
and vice-versa. If the vector X is obtained by taking 
the maximum value of each component between 
every minimum supports X k  , so each X component 
is the minimum transition firing number for each 
transit ion. 

The communication cost between two sets of pro- 
cesses pi and pj is the product of the communica- 
tion action execution number between the processes 
for each comunication and the number of transfered 
bits by each communication action. More formally: 

Definition 5.7 Communication Cost between 
Processes - Let N b ,  the number of transfered bits by 

50 



communication action and A'Cbp,p, a vector that rep- 
resents communicatzon execution number between the 
process pa and p J .  The communication cost between 
processes is defined b y  C C b p , p j  = Nh,  x ArCb,,,, . 7' 

The communication execution number between two 
set of process pi  and p j  is represented by a vector, 
where each vector component, associated to a transi- 
tion which represents a communication action between 
both processes, defines the execution number related 
to the respective action. 

Definition 5.8 Communication Exe- 
cution Number Between two set of Process - 
A'cbp,,, : iZcbp,p, + IN,  where # A r C b p , p ,  = T and 
n c b p , p ,  min(ncp,, ne,,). 

The behavioral description communication cost is 
represented by summation of communication cost be- 
tween each pair of processes in the description. More 
formaly : 

Definition 5.9 Description Communi cation 

We have to define two kinds of normalization: lo- 
cal normalization and global normalization [4]. The 
global normalized communication cost between two 
processes is defined by the communication cost be- 
tween both processes diveded by the communication 
cost for the whole description. 

Definition 5.10 Global Normalized Communi- 
cation Cost - Let CCb,,,, the communication cost 
between the processes p I  and p J ,  and CCu the com- 
munication cost in whole behavzoral descraptzon. The 
qlobal normalzzed communication cost is defined by 

The local normalized communication cost between 
two process is defined by the communication cost be- 
tween both processes diveded by the summation of the 
communication cost for each process. 

Definition 5.11 Local Normalized Communica- 
tion Cost - Let CCb,,,, the communzcation cost be- 
tween the processes p a  and p J ,  and CC,, and CC,, 
the communication cost for the process p ,  and p J ,  re- 
spectively. The local normalized communicatzon cost 
1s defined b y  LCCb,,,, ccbp.Q,/(cCp, -k ccp,). 

The algorithm to compute the global normalized 
communication cost is given following: 

1. To compute the communication execution num- 
ber for each process (NC,,) 

2. To compute the communication cost for each pro- 
cess p a  (CC,, = Arb, x NCpX2')  

3. To compute the communication execution num- 
ber between two set of Process for all pair of pro- 
cesses in the description ( N C b p Z p , ) .  

4. To compute the communication cost between 
each pair of processes (CCb,,,, = N h ,  x 

nicbptp,2') 

5. To compute the description communication cost 
(CcD CV(P,,P,)EU C C b w 3 )  

6. To compute the global normalized communica- 
tion cost for each pair of processes (hTCCb,,,, = 
cCb,,,, 

CCD 1. 
The algorithm to compute the local normalized 

communication cost is given following: 

1. To compute the communication execution num- 
ber for each process (Arc,,) 

cess pa (CC,, = nib, x hrCp,T) 
2. To compute the communication cost for each pro- 

3. To compute the communication execution num- 
ber between two set of Process for all pair of pro- 
cesses in the description (NCb,,,,). 

4. To compute the communication cost between 
each pair of processes ( c C b p , p J  = Nb,  x 
Arcbp  ,,, 1 

5. To compute the local normalized communica- 
tion cost for each pair of processes (LCCbp,p3 = 
c C b p , p , / ( c C p ,  -k CCp,)). 

6 An Example 
This section shows the use of the proposed method 

applied to an example. The method is applied to a be- 
havioral description written in Occam which was trans- 
lated into Petri nets by using translation method pro- 
posed in the section 4. The example implements the 
convolution function given by 

n 

yi = Cxi--j x w j  x ai, 15 i _< 2n - I 
j=l  

Where wj is w j + l  = b x x1 x w j  and ai = ci + di. 
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if zit1 < 0 

The Occam program implementing this function is 
described by a set of concurrent processes: 

~ 1 . ~ 4  7 c 

p2.p4 ? d 

~ 3 . ~ 4  ? e 

PAR 

w : =k*e [i] 

PAR j = 0 FOR 4 

CHAN OF INT P1.P4, P2.P4, P4.P3 : 

CHAN OF [SI INT P3.P4 : 

PAR 

INT c :  Process P1 

SEQ i=O FOR 2 

IF (x [i] >=0 c : =x [i] , x [il <O c : =x [ i l / 2 )  

pl.p4 ! c 

INT d: Process P2 

SEQ i = O  FOR 2 

IF(x[i]>=O d :=x[ i+ l ] ,  x[ i l<O d:=xCi+ll/2) 

~ 2 . ~ 4  ! d 

INT w: Process P3 

SEQ i = O  FOR 2 

p4.p3 ? w 

PAR j = O  FOR 4 

e[ j ]  :=xCS*(i/(j+((j+l)/(i+l) 1) )+(j- i ) l*w 

~ 3 . ~ 4  ! e 

INT c,d: 

[SI INT e : 

SE9 i = O  FOR 2 

p4.p3 ! w 

PAR 

Process  P4 

The obtained communication costs are: 
I Process I CC,. I 

r t  

I 1  

1 PlP2  1 0  

I P3P4 I 192 
I Description I 384 
L 

[ Processes I ArCCb,,,, I 
J 

I PlP2  1 0  

I P 2 P 3  I 

5' Conclusion 
This work has presented a method to compute the 

communication cost as well as the use of Petri nets 
as an intermediate format in the context of hard- 
ware/software codesign. An approach of Occam-Petri 
nets translation, the main tasks of our partitioning ap- 
proach were presented as well. The translation scheme 
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and the use of the proposed algorithm to compute 
communication cost were illustrated by a case study. 

Due to the large size of the real applications, it is 
essential to use an intermediate format, which is pow- 
erful in the process modelling, property analysis and 
performance analysis, as well as to deal with hierar- 
chies. Additionally, Petri nets can also be used to 
compute cycle time of the descriptions and the target 
architecture. This feature is very interesting, since 
the same family of formalism is used for modelling the 
target architecture and the partitioned system. 

As future works, we intend to use Petri net to com- 
pute a. mutual exclusion and load balance metric in 
order for use it to performe the initial allocation and 
the partition process as well. 
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