
Computing Communication Cost by Petri Nets for
Hardware/Software Codesign

Paulo Maciel *
Edna Barros t

Universidade de Pernambuco

Wolfgang Rosenstiel

Univer si t aet Tuebingen

April 4, 1997

Abstract

This work presents a method to compute communi-
cation cost b y applying Petri nets. This cost is being
used to guide the hardware/software partitioning in a
methodology for ha rdw a re/so f t ware codesign context ,
which is being developed.

Petri nets are a family of formalisms sharing basic
principles. Although for each purpose or detail level
one appropriated formalism have to be chosen from the
family, the transformation from one formalism to an-
other could be sound. The use of Petri makes the par-
titioning method independent on a specific description
mechanism. Additionally, Petri net as an intermedi-
ate format allows to analyse behavioral properties of
the specification and formally to compute performance
indices which are used in the partitioning process.

1 Introduction
Hardware/Software codesign is the design of sys-

tems comprising two kinds of components: specific ap-
plication components and general programmable ones.
The system functionality is implemented by using a in-
terconnected components set , where these components
may be microprocessors, memory, ASIC chips, etc.
Combined implementation in hardware/software has
been more common today, The software is executed
in microprocessors, cheap programmable components.
In the case where an implementation on a micropro-
cessor does not meet the time constraints, a hardware
implementation must be done, i.e. inadequate com-
ponents to be implemented in software must be im-

'Paulo Maciel have been suported by CAPES. During his

?This research has been carried out with suport from KIT
stay a t Universitaet Tuebingen

Co-operation activity 128

1074-6005/97 $10.00 Q 1997 IEEE

plemented in hardware. Although such systems have
been designed since hardware and software exist, there
is a lack of CAD tools supporting the development of
such heterogeneous systems. The progress obtained
by the CAD tools at the level of algorithm synthesis,
the advance in some key enabling technologies, the in-
creasing diversity and complexity of applications em-
ploying embedded systems and the need for decreasing
the costs of designing and testing such systems, make
techniques for supporting hardware/software codesign
an important research topic.

The main tasks when implementing such systems
are the choice of the components set (definition of a
target architecture) and the partitioning of the de-
scription.

An essential aid for hardware/software codesign is
the availability of approaches to hardware/software
partitioning.

Some partitioning approaches have been proposed
by Soininen [111 , De Micheli [121, Ernst [101 and Barros
[9]. One of the main challenges of approaches for hard-
ware/software partitioning is the increasing number
of implementation alternatives to be analysed. Some
approaches consider only a subset of alternatives by
restricting the analysis to some particular language
constructors like loops [lo] or delay independent com-
mands [121.

The approach proposed by Barros [6, 91 partitions
a description written in unity into hardware compo-
nents and software components by using a clustering
algorithm, which considers the distinct implementa-
tion alternatives. This work has been adapted for oc-
cam [8]and when generating the set of implementa-
tion alternatives for a particular process, various fea-
tures are considered such as: parallelism level, data

44

dependency and multiplicity. By considering a par-
ticular implementation alternative as the current one
the clustering is done, observing criteria like similar-
ity among processes. The analysis of distinct imple-
mentation alternatives during the partitioning allows
the choice of the best implementation with respect to
time constraints and area allocation. However, this
approach does not treat loops in a general form and
communication cost as well.

This paper aims to propose the use of a formal tech-
nique to compute communication cost in order to deal
with this deficiency. The proposed method uses Petri
net as an intermediate format for the partitioning pro-
cess. Additionally, this work presents an approach to
translate programs written in Occam [56] to Petri net

The use of the Petri nets [16, 17, 18, 19, 27, 11 still
allows qualitative analysis of the properties as well as:
deadlock freedom, boundedness, safeness, liveness and
so on [33, 35, 16, 27, 37, 39, 40, 42, 43, 44, 46, 47, 48,
491.

The next section gives an overview of the hard-
ware/software partitioning approach. The section 3
presents an introduction into Petri nets [I, 57, 50,
51, 521. The section 4 describes the occam/Petri net
translation method. The seciton 5 presents the pro-
posed method to compute communication cost. The
section 6 presents an example and finally some conclu-
sions are presented as well as perspectives for future
works.

2 The Hard ware/ S oft ware Partition-

[57, 53, 55, 201.

ing Approach
In this section we describe the partitioning ap-

proach used in this work, which takes into account
systems described in Occam [8]. In order to preserve
the semantics of the original description, the parti-
tioning process is done as the application of a set of
transformation rules in an Occam program. An in-
formal description of some rules applied during the
partitioning phase is given in this section. These rules
include the splitting of an Occam description into a
set of communicating simple processes. Once some
process is chosen to be implemented in software, the
clustering process takes place. During the clustering
phase, rules for joining processes in clusters according
to their similarity, the minimisation of communication
costs and the minimisation of the area-delay cost func-
tion are applied.

The clustering process is guided by a time analysis
[14] performed in the Petri net model of the processes,
which was obtained by the translation method.

The t.arget architecture is specified by the user by

using previously defined components stored in a li-
brary. The architecture generator provides an graph-
ical interface in which the user connects the compo-
nents used in the architecture. Each component of the
library is formally specified by using high level Petri
net. The formal model allows to analyse qualitative
aspects and quantitative high level constraints of the
proposed architecture.

The use of a family of formalisms (high level Petri
nets, P/T net, timed Petri nets etc ...) sharing basic
principles in a consistent way permits if not a formal
qualitativelquantitative analysis and a transformation
from one formalism to another, a rigorous transforma-
tion and analysis of several aspects observed in the de-
sign, which makes easy the interrelation betsween them

2.1 The Partitioning Phases
The hardware/software partitioning is based on the

approach proposed by Barros. This approach was
developed initially by considering unity specifications
but it can be applied to other description languages
and an adaptation for Occam is being developed. In
order to take into account the target architecture pre-
sented earlier, some modifications have been made in
the cost functions guiding the clustering process. One
of them is the consideration of communication cost
due to the message passing.

The main tasks associated with the partitioning ap-
proach are depicted in figure 1.

The set of implementation alternatives is generated
during the Classification phase by considering distinct
degrees of parallelism when implementing the original
program. The set of implementation alternatives is
represented by a set of class values concerning some
features of the program, such as degree of parallelism,
pipeline implementation and communication cost.

The choice of some implementation alternative as
the current one can be made manually or automati-
cally. When choosing automatically, the alternatives
leading to a balanced degree of parallelism among the
various statements and minimising the area-delay cost
function (F = aln(Area) + ,Bln(Aren)) will be taken
as the current one.

Before the classification to be performed, the origi-
nal description is split into a set of concurrent simple
processes. A simple process can be an assignment,
a sequence of one assignment and input and/or out-
put operations, as well as the constructors if, alt, par
whose body is a simple process. The split process is
performed by applying a set of transformation rules [8]
which preserves the semantic of the original descrip-
tion in order to implement the partitioning.

~ 3 1 .

45

SPLITTING ANAILYSIE

IOININO

IMPL@MENTATlON

Figure 1: Task Diagram

In the initial allocation phase, the processes are
analysed and the best suited processes to be imple-
mented in the software components are chosen con-
sidering the communication cost. After that, the allo-
cation the clustering takes place.

The clustering process takes into account only one
alternative, for instance, a fully parallel implementa-
tion for each simple process presented previously.

The partitioning process is done by using a multi-
stage hierarchical Clustering algorithm. The clustering
algorithm builds a clustering tree by using a matrix
distance. This matrix provides the similarity distance
between each two objects. After the construction of
the clustering tree, it is cut by a cutline. The cut-
line makes clusters according to a cutfunction which
observes the possibility of resource sharing and the
area-delay cost function.

In the first stage, clusters are built according to

the similarity of the process functionality, implemen-
tation alternative and communication cost. To build
the cluster tree, a metric upon Occam constructors
and their corresponding implementation alternatives
was defined.

In the second stage, a new distance matrix for the
clusters (resulting from stage 1) is calculated and from
it a new cluster tree is built. The goal of the clustering
in the second stage is to keep together processes that
should share resources.

After the translation of an Occam program into
Petri nets, a timing analysis is performed by calcu-
lating the minimum execution time of the global pro-
cess as well as of the set of sub-processes [55] and the
communication cost, which are used in the cluster-
ing process. The advantage of using Petri net as an
intermediate format is the possibility of applying for-
mal techniques for qualitative and quantitative anal-
ysis as well as the use of a family of formalism [13]
which shares the same basic principles in the archi-
tecture specification allowing a sound transformation
steps between the different aspects of the design.

As our approach is based on Petri net as interme-
diate format, in the next section a brief introduction
into Petri nets is given.

3 A Brief Introduction into Petri Nets
Petri net is a formal specification technique that al-

lows a graphical, mathematical representation and has
powerful methods which allow to perform qualitative
and quantitative analysis [27, 17, 18, 161. In this sec-
tion a brief introduction into Place/Transitions nets,
Deterministic Timed Petri nets and High Level Petri
net is given.
3.1 Place/Transition Nets

Place/Transition Nets are bipartite graphs repre-
sented by two types of vertices called places (cir-
cles) and transitions (rectangles) , interconnected by
directed arcs.

Place/Transition nets can be defined in terms of
matrix as follow:

Definition 3.1 Place Transition Net is defined as
5-tuple M = (P , T , I , 0 , M O) , where P is a finite set of
places which represents the state variables, T is a set
of transitions which represents the set of actions, I :
P x T + IN is the input matrix which represents the
pre-conditions, 0 : P x T -+ IN is the output matrix
which represents the post-conditions and MO : P + IN
is the initial marking which represents the initial state.

'In this case, only the Occam subset for representing simple
processes is considered

46

The execution of actions is represented by the tran-
sition firing.

Definition 3.2 Firing Rule - One transition ti; is
enabled to fire if, only ih all its input places (p E P)
has M (p) 2 I (p , t j) . The transition firing changes the
marking of the net (h l o [t j > M‘). The new murk-
ing is obtained as follow: hl’(p) = h f o (p) - I(p,tj) +
O b , t j) , V P E p

Using the matrix representation, the structure of
the net is represented by a set of place, a set of transi-
tions, an input matrix (pre-conditions) and an output
matrix (pos-conditions). When one transition t fires,
the difference between the markings is represented by
O (p , t) - I(p,t),Vp E P. The matrix C = 0 - 1 is
called incidence matrix. This matrix represents the
structure of the net, if the net does not have self-loop.

Definition 3.3 Incidence Matrix - Let u net N =
(P , T , I , 0) . The incidence matrix represents the re-
lation C : P x T -+ Z,Vp E P defined by: C(p , t) =
O b , t) - I (P , t) , V P E p .

One net that has self-loop, may be represented by
the incidence matrix if the self-loop is refined using
dummy pair [27].

The state equation describes the behaviour of the
system, as well as allows to analyse properties of the
models.

M ’ (p) = hfo(p) + C.a,

where 3 = ~ (t ~) ~ , s(t l)”, ..., ~ (t ,) ~ is called Parikh
vector.

3.1.1 Analysis

This sections describes shortly the Petri net analy-
sis methods. These methods are used to analyse be-
havioural and structural properties. The first method
is a graph-based and it builds on the reachability
graph (reachability tree). The reachability graph is
initial marking dependent and so it is used to analyse
behavioural properties. The second method is based
on the state equation. This method allows to analyse
structural properties and necessary or sufficient condi-
tions for behavioural properties in general Petri nets.
The third method is based on reductions laws. In this
method, a set of reductions rules are applied to the net
looking for the size reduction of the model. The set
of rules must preserve characteristics such as liveness
and boundedness of the systems.

In order to build the reachability tree is necessary
to enumerate all the possible rea,chable markings from

the initial marking. It is quite possible that the tree
could grow indefinitely. In this case the system is un-
bounded. Even for bounded systems, the main prob-
lem in the using of reachability tree is the high compu-
tational complexity even if some interesting techniques
are used such as: reduced graphs, graph symmetries,
symbolic graph etc [25, 261.

One approach used to keep the size of the tree fi-
nite to unbounded systems is called coverability tree
[17]. In this method one special symbol “U?’ is used
to represent the number of tokens which can be stored
largely in the places. The use of that symbol implies
in lose of information, but this method still allows to
analyse properties such as: coverability, boundedness,
safeness and conservation.

The analysis method based on matrix algebra has
some advantages over the reachability graph method
[24, 27, 191. The advantage is the existence of sim-
ple linear algebraic equations that aid in determining
properties of the nets.

The main problem of this method is that it gives
only necessary or sufficient condition to the analysis
of properties when it is applied to general Petri nets.
This method is particularly interesting if it is applied
to some subclasses of Petri nets such as: marked graph
and state machine, where it aids to analyse necessary
and sufficient conditions.

The analysis methods of large dimensions nets is
not a trivial problem, therefore methods which aids
the transformation of the models preserving the prop-
erties of the original models has been proposed [27, 281

The reduction laws based methods provides a set
of transformation rules which reduces the size of the
models preserving the properties. However, it is pos-
sible that for a given system and some set of rules, the
reduction can not be completed.

In the pragmatic point of view, it is fair to suggest
that a better, more efficient and more comprehensive
analysis can be done by a cooperative use of these
techniques. Nevertheless, necessary and sufficient con-
ditions can be obtained by applying the matrix algebra
for some subclasses of Petri nets.

3.2 High Level Nets
The term High Level Net is usually applied for the

whole class of nets. In most of the approaches, the
main characteristics are of a high level net are the fact
that it can be unfolded into a low level net and that
the tokens represent data items as opposed to boolean
conditions as in the elementary nets systems [5, 501.
Structured tokens permits the concise representation
of complex systems, such as data base and flexible
manufacturing systems.

47

Large system models are only comprehensible if the
hierarchy concepts are applied. In Petri net context,
these concepts represent the transition and place re-
finements. Under the theoretical view point, hierarchy
is only a graphical convenience and it does not pro-
vide any computational power in relation with non-
hierarchical models [50].

The hierarchy concept permits the inspection of the
systems considering levels of details and re-use of the
sub-models. One high level object (place or transi-
tion) is represented as a sub-net (page) which allows a
structured description taking into account abstraction
levels.

4 The Occam - Petri Net Translation
Method

The occarrt-Petri-net translation method [55] re-
ceives an occam description and translates it into
Petri-nets. The Occam programming language is de-
rived from CSP [54], and allows the specification of
parallel algorithms as a set of concurrent proccsses.
An Occam program is constructed by using primitive
processes and process combiners.

The ~ c c a m subset is described in BNF format:

P::=SI<TP 11 STOP (1 2 : = e

[(ch?z ((ch!e
I1 IF(ClP1, ..., CnPn) IIALT(g1p1, ..., snPn)
IISEQ(p1 1 ..., pn)llPAR(pl, " ' 1 ~ n)

Occam programs are constructed by combining
primitive processes. The simplest Occam processes are
the assignment, the input action, the output action,
the skip process and the stop process.

This section presents the translation method from a
subset of Occam process into Petri net by using an ex-
ample. The Petri net models obtained represent both
control and data flow. Due to the space restrictions
only two primitive process as well a s one combiner will
be described in this section
4.1 Assignment

The assignment primitive process assigns an ex-
pression evaluation to a variable (vu, := e z p) . For
instance, lets consider : 2 := y + 1. The figure 2
presents a Petri net model.

For convenience, each part (control and data) are
represented as a separated model, however places,
which interconnect both models, are represented as
guards attached to the transitions, that is, these
guards are places interconnected to the transitions by
input and output arcs. The figure 2 shows both mod-
els.

i; J

"iL': ""'
"' ? 0 JTo

Control Data

Figure 2: Assignment

4.2 Primitive Communication Process:

Occam processes can send and receive message syn-
chronously through channels by using input (?) and
output (!) operations. When a process receives a value
through a channel, this value is assigned to a variable.

The figure 3.b gives a net representing the input
and the output primitive processes of the example in
the figure 3.a. The synchronous communicatiori is cor-
rectly represented by the net. The reader should ob-
serve that the communication action is represented by
the transition t o and it is only fired when both the
sender and the receiver processes are ready, which are
represented by tokens in the places po and pl. When
an value is sent by an output primitive process through
chl, it is received and assigned to the variable E, being
represented in the net by the data part of the model.
Observe that the transition t l can only be fired when
the places p2 and p3 have tokens. After that , both
processes become enabled to execute the next actions.
4.3 Parallelism

The combiner Par is one of most powerful of the
Occam language. It permits the concurrent process ex-
ecution. The combined processes are executed simul-
taneously and only finish when every one has finished.

The Figure 4.a shows a program containing three
processes E, I< and S. The figure 4.b shows a net that
represents the control of this program.

One token in the place po enables the transition t o .
Firing this transition, the tokens are removed from the
input place (P O and one token is stored in the output
places (p1, pa and p 3) . This marking enables the con-
current firings of the transitions E,Ti and S . After
the firing of these transitions, one token is stored in

Input and Output

48

Figure 3: Communication

RI Q
PAR

E
K
S

Figure 4: Parallel

the places p4 ,p5 and pG1 respectively. This marking
allows to fires the transition t l , which represents the
end of the parallel execution.

5 Computing Communication Cost
This section presents the method proposed to com-

pute communication cost between process by using
Petri nets. The communication cost related to a pro-
cess depend on two metrics: the number of transfered
bit by each communication action and the execution
nunber that action.

Considering that we are dealing with behavioral de-
scriptions that are translated into Petri nets, we al-
ready have defined, in each communication action, the
number of transfered bits in each communication ac-
tions execution.

Definition 5.1 Number of Transfered Bits by

Communication Action - Nbb : nbc -+ 1711, where
#Nbb = T and T is the set of transitions. Each com-
ponent (nbc), associated to a transition that represents
a communication action, defines the number of trans-
fered bits by the respective communication action, 0th-
erwise is zero.

However, we have to define a method to compute
the communication action execution number related
to each process, the communication cost for each pro-
cess, the description communication cost, the commu-
nication cost between two sets of process and finally
to compute the normalized communication cost.

The communication cost for each process (CC,i) is
the product of the number of transfered bits by com-
munication action (Arb,) and the communication exe-
cution number (NC,,).

Definition 5.2 Communication Cost for each
Process - Let Nb, the number of transfered bits by
communication action and NCp,T a vector that repre-
sents communication execution number. The commu-
nication cost for each process pi is defined b y CC,, =
Nb, x NCp,7' .

The used approach to compute the Communica-
tion Execution Number (NCpc) for the processes pi is
preeseted in the following. However first, we present
some definitions and theorems in Petri net theory
which are important for the proposed approach [27].

A Petri net N is said repetitive if there is a mark-
ing and a firing sequence from this marking such that
every transition occurs infinitely often. More formally:

Definition 5.3 - Repetitive net: Let Ar = (R; M O)
a marked Petri net and firing sequence s. N is said
to be repetitive if there exist a sequence s such that
Mo[s > Mi every transition ti E T fires infinitely often
In s.

Theorem 5.1 A Petri net N is repetitive ih and only
if, there exist a vector X of positive intergers such that
c .x>o, X f O .

A Petri net is said to be consistent if there is a
marking and a firing sequence from this marking back
to the same marking such that every transition occurs
at least once. More formally:

Definition 5.4 - Consistent net: Let AT = (R; M O)
a marked Petri net and firing sequence s. N is said
to be Consistent if there exist a sequence s such that
MO[S > hfo every transation ti E T fires at least once
in s .

49

Theorem 5.2 A Petri net AJ I S consistent i f , and
only i f , there exist a vector X of positive intergers such
t h a t C . X = O , X f O .

The proofs of such theorems can be found in [27].
The Communication Execution Number (NC,,) is

a vector, where each component (nc,i),, associated to
a transition that represents a communication action
in the process pi , is the execution number related to
the respective communication action, otherwise, that
is, the component vector associated to the transition
which does not represent the communication action in
the process pi, is zero. More formally:

Definition 5.5 Communication
Execution Number - AJC,, : ne,, -+ I N , where
#NC,, = T and T is the set of transations. Each
component ne,, = max(ncp,xk) , VXk, where Xk zs a
vector of positave antergers such that either C . X = 0
or C . X 2 0.

Definition 5.6 NC,,xk : ncpixk -+ I N , where
#NC,,x, = T and T is the set of transitions.

Each vector xk is the minimum suport which can
be obtained by solving either C . X = 0 (in this case
Xk are minimum t-invariants) or C . X >_ 0. The ex-
ecution number related to a communication action a ,
(represented by a transition t ,) is the respective value
obtained in the component xi for the correspondent
Xk. The other components, which do not represent
communication actions in the process p , , are repre-
sented by zero value.

According to the results obtained in the qualitative
analysis, it is possible to choose methods to compute
the communication execution number (NC,,) regard-
ing to the complexity of the used method.

Whether the net (system) is consitent, first we
have to compute the minimum t-invariants then the
NC,,, Vpz E D are obtained. However, if the net is
not consistent, but it is repetitive, first the minimal
support to X k , which are obtained by using X in the
system C . X 2 0 , where X # 0 , has to be obtained
then the hlC,,, 'dp, E D are computed. In the case
of the net do not be repetitive and if it is possible to
transform it into a repetive or consistent net by in-
serting one transition t f such that I (t f) = {pf} and
O(t1) = { P O } , we apply the same method to compute
X and then to obtain the N C p t , Vp, E D . These
places (P O and p j) are well defined, because one token
in the place po (initial place) enables the execution of
the process and when one token arrives in the place
p f (final place), it means that the execution already

had finished. Otherwise, if it is not possible to trans-
form the net into a repetive or consistent one, although
this system seems do not have interesting properties
and even so the designer do not intend to modify i t ,
we can compute the X and then NC,, by using ei-
ther the reachability graph or by solving the system
C . X = Mjinal - iW0, where iWjinal and MO are the
final and the initial markings, respectively. However,
the reader has to remenber that, the state equation
could provides spurious solutions for some Petri nets
sub-classes [23].

Theorem 5.3 Let N a consistent net and X k a min-
imum t-invariant in the net. Considering every mini-
mum t-invariant in the net (VXk N) the maximum
value obtained for each component vector is the mini-
mum transition firing number for each transition.

Proof:
Supose a Petri net is consistent. Then there exist an
X # 0 such that MO = hfo + C . X . The vectors X
can be obtained by using the minimum t-invariants
(x k) and vice-versa. If the vector X is obtained by
taking the maximum value of each component
between every minimum t-invariants Xk , so each X
component is the minimum transition firing number
for each transition.

Theorem 5.4 Let AT a repetitive net and xk a mini-
mum support in the net which can be obtained by using
X which solves the equation C . X 1 0 . Considering
every minzmum support Xk in the net, the maximum
value obtained for each component vector is the mini-
mum transition firzng number for each transitzon.

Proof:
Supose a Petri net is repetitive. Then there exist an
X # 0 such that hf 2 MO + C X . The vector X can
be obtained by using the minimum supports (X ,)
and vice-versa. If the vector X is obtained by taking
the maximum value of each component between
every minimum supports X k , so each X component
is the minimum transition firing number for each
transit ion.

The communication cost between two sets of pro-
cesses pi and pj is the product of the communica-
tion action execution number between the processes
for each comunication and the number of transfered
bits by each communication action. More formally:

Definition 5.7 Communication Cost between
Processes - Let N b , the number of transfered bits by

50

communication action and A'Cbp,p, a vector that rep-
resents communicatzon execution number between the
process pa and p J . The communication cost between
processes is defined b y C C b p , p j = Nh, x ArCb,,,, . 7'

The communication execution number between two
set of process pi and p j is represented by a vector,
where each vector component, associated to a transi-
tion which represents a communication action between
both processes, defines the execution number related
to the respective action.

Definition 5.8 Communication Exe-
cution Number Between two set of Process -
A'cbp,,, : iZcbp,p, + IN, where # A r C b p , p , = T and
n c b p , p , min(ncp,, ne,,).

The behavioral description communication cost is
represented by summation of communication cost be-
tween each pair of processes in the description. More
formaly :

Definition 5.9 Description Communi cation

We have to define two kinds of normalization: lo-
cal normalization and global normalization [4]. The
global normalized communication cost between two
processes is defined by the communication cost be-
tween both processes diveded by the communication
cost for the whole description.

Definition 5.10 Global Normalized Communi-
cation Cost - Let CCb,,,, the communication cost
between the processes p I and p J , and CCu the com-
munication cost in whole behavzoral descraptzon. The
qlobal normalzzed communication cost is defined by

The local normalized communication cost between
two process is defined by the communication cost be-
tween both processes diveded by the summation of the
communication cost for each process.

Definition 5.11 Local Normalized Communica-
tion Cost - Let CCb,,,, the communzcation cost be-
tween the processes p a and p J , and CC,, and CC,,
the communication cost for the process p , and p J , re-
spectively. The local normalized communicatzon cost
1s defined b y LCCb,,,, ccbp.Q,/(cCp, -k ccp,).

The algorithm to compute the global normalized
communication cost is given following:

1. To compute the communication execution num-
ber for each process (NC,,)

2. To compute the communication cost for each pro-
cess p a (CC,, = Arb, x NCpX2')

3. To compute the communication execution num-
ber between two set of Process for all pair of pro-
cesses in the description (N C b p Z p ,) .

4. To compute the communication cost between
each pair of processes (CCb,,,, = N h , x

nicbptp,2')

5. To compute the description communication cost
(CcD CV(P,,P,)EU C C b w 3)

6. To compute the global normalized communica-
tion cost for each pair of processes (hTCCb,,,, =
cCb,,,,

CCD 1.
The algorithm to compute the local normalized

communication cost is given following:

1. To compute the communication execution num-
ber for each process (Arc,,)

cess pa (CC,, = nib, x hrCp,T)
2. To compute the communication cost for each pro-

3. To compute the communication execution num-
ber between two set of Process for all pair of pro-
cesses in the description (NCb,,,,).

4. To compute the communication cost between
each pair of processes (c C b p , p J = Nb, x
Arcbp ,,, 1

5. To compute the local normalized communica-
tion cost for each pair of processes (LCCbp,p3 =
c C b p , p , / (c C p , -k CCp,)).

6 An Example
This section shows the use of the proposed method

applied to an example. The method is applied to a be-
havioral description written in Occam which was trans-
lated into Petri nets by using translation method pro-
posed in the section 4. The example implements the
convolution function given by

n

yi = Cxi--j x w j x ai, 15 i _< 2n - I
j=l

Where wj is w j + l = b x x1 x w j and ai = ci + di.

51

if zit1 < 0

The Occam program implementing this function is
described by a set of concurrent processes:

~ 1 . ~ 4 7 c

p2.p4 ? d

~ 3 . ~ 4 ? e

PAR

w : =k*e [i]

PAR j = 0 FOR 4

CHAN OF INT P1.P4, P2.P4, P4.P3 :

CHAN OF [SI INT P3.P4 :

PAR

INT c : Process P1

SEQ i=O FOR 2

IF (x [i] >=0 c : =x [i] , x [il <O c : =x [i l / 2)

pl.p4 ! c

INT d: Process P2

SEQ i = O FOR 2

IF(x[i]>=O d :=x[i+ l] , x[i l<O d:=xCi+ll/2)

~ 2 . ~ 4 ! d

INT w: Process P3

SEQ i = O FOR 2

p4.p3 ? w

PAR j = O FOR 4

e[j] :=xCS*(i/(j+((j+l)/(i+l) 1))+(j- i) l*w

~ 3 . ~ 4 ! e

INT c,d:

[SI INT e :

SE9 i = O FOR 2

p4.p3 ! w

PAR

Process P4

The obtained communication costs are:
I Process I CC,. I

r t

I 1

1 PlP2 1 0

I P3P4 I 192
I Description I 384
L

[Processes I ArCCb,,,, I
J

I PlP2 1 0

I P 2 P 3 I

5' Conclusion
This work has presented a method to compute the

communication cost as well as the use of Petri nets
as an intermediate format in the context of hard-
ware/software codesign. An approach of Occam-Petri
nets translation, the main tasks of our partitioning ap-
proach were presented as well. The translation scheme

52

and the use of the proposed algorithm to compute
communication cost were illustrated by a case study.

Due to the large size of the real applications, it is
essential to use an intermediate format, which is pow-
erful in the process modelling, property analysis and
performance analysis, as well as to deal with hierar-
chies. Additionally, Petri nets can also be used to
compute cycle time of the descriptions and the target
architecture. This feature is very interesting, since
the same family of formalism is used for modelling the
target architecture and the partitioned system.

As future works, we intend to use Petri net to com-
pute a. mutual exclusion and load balance metric in
order for use it to performe the initial allocation and
the partition process as well.

References
[11 A .A. Desrochers, R.Y. Al- Jaar Applica-

tions of Petri Nets in Manufacturing
Systems IEEE Press. 1995.

[2] R. Gupta A Framework for Inter.-
ative Analysis of Timing Constraint:;
in Embedded Systems .Proceedings of
the Fourth Codes/CASHE, pp 44-51.
IEEE Computer Society. March, 1996.

[3] W.Hardt, W.Rosenstiel Speed-Up Esti-
mation Joy HW/S W-Sysle,rns Proceed-
ings of the Fourth Codes/CASHE, pp
36-43. IEEE Cornputer Society. March,
1996.

[4] F. Vahid, D. D. Gajski Closeness Met-
rics for Systems Level Functional Par-
titioning Proceedings of the EURO-
DAC’95, pp 328-333. IEEE Computer
Society. September, 1995.

[5] 13. J. Genrich. Predicate/Transition
Nets. Lecture Notes in Computer
Science, part I, vol-254, p. 207-247,
Springer-Verlag, Edited by G. Rozen-
berg 1987.

[6] E. Barros Hardware/Software Par-
titioning using UNITY .Universitat,
Tubingen 1993.

[7] E. Barros and W. Rosenstiel A
Clustering Approach to Support Hard-
ware/Software Partitioning Computer
Aided Software/Rardware Engineer-
ing, edited by Jerzy Rozenblit and
Klaus Buchenrieder, IEEE Press.

[8] E. Barros and A. Sampaio Towards
Provably Correct Hardware/Software
Partitioning Using Occam Proceed-
ings of the third International Worlc-
shop on Hardware/Software Codesign
CodesjCASHE94, IEEE Computer So-
ciety. September, 1994.

[9] E. Barros and X. Xiong and W. Rosen-
stiel Hardware/Software Partitioning
with UNITY Handouts of International
Workshop on Hardware-Software Co-
design. 1993.

[lo] R. Ernst and J. Henkel Hardware-
SoJtware Codesagn oJ Embedded Coil-
1roller.s Based on Hardwure Extractwn
Handouts of the International Work-
shop on IIardware-Software CO-Design.
October, 1992.

[Il l J . P. Soininen and M. Sipola and
K. Tiensyja SW/HW Partitioning of
Real- Time Embedded Systems Micro-
programming and Microprocessing, vol
27, pp 239-244. 1989.

[la] R. Gupta and G. De Micheli System-
level Synthesis Using Re-programmable
Components Microprogramming and
Microprocessing, vol 27, pp 239-244.
1989.

[13] C.Carreras, J.C.L6pez, M.L. ZGpez,
C.Delgado-Kloos, N. Martinez, L.
SBnchez A Co-Design Methodology
Based on Formal Specification and
Hzgh Level Estimation Proceedings of
EDAC, pp 2-7. 1996.

[I41 F.Rose, T.Carpenter, S.Kuniar, J .
Shackleton, T. Steeves A Model for the
Coanalysis of Hardware and Software
Architecture Proceedings of the Fourth
Codes/CASHE, pp 94-103. IEEE Com-
puter Society. March, 1996.

[15] R.Gupta, G.De Micheli Constrained
Soft ware Genera ti. on for Hardware-
Software Systems Proceedings of
the Fourth Codes/CASHE, pp 56-63.
IEEE Computer Society. September,
1995.

5 3

[16] G.W. Brams. Riseaux de Petri:
The‘orie et Pratique, tome 1 and 2.
Masson Editions, 1983.

[17] J . L. Peterson. Petri Nets an Introduc-
tion. Pretence-Hall, Inc, 1981.

[18] W. Reisig. Petri Nets: A n Introduc-
tion. Springer-Verlag, 1982.

[19] T. Murata. State Equation, Contral-
lability, and Maximal of Petri Nets.
IEEE Trans. on Automatic Control,
1977.

[20] O.Botti, F.Cindio From Basic to
Timed)Vet Models of Occam: an Appli-
cation to Program Placement. PNPM,
pp 216-221, 1991.

1211 P. R. M. Maciel, T. M. P. Medeiros,
I,. C. Albuquerque, J . F. B. Castro.
Uso de Redes de Petri Temporizadas
para 0 Diagndsti.co de Fulhas em Sis-
tema Digitais. VI Simp6sio de Com-
putadores Tolerantes a Falhas, p. 181-
200, Canela, RS, Brazil, 1995.(por-
tuguese)

[22] A.Marsan, G.Balbo, G.Conte,
A.Bobbio, G.Chiola, A.Cumani The
Effect of Execution Poliies on the
Semantic and Analysis of Stochastic
Petri Nets. IEEE TSE, Vol 15, n7, pp
832-846, 1989.

[23] M.Silva, E.Terue1 Petri Nets for the
Design and Operation of Manufactur-
ing Systems. CIMAT’96, 1996.

[24] WI.Silva, E.Terue1 Analysis of Au-
tonomous Petri Nets with a Bulk Ser-
vices and Arrivals. llth International
Conference on Analysis and Optimiza-
tion of Systems. Discret Event Sys-
tems, Vol 199 of Lecture Notes in Con-
trol and Information Science, pp 131-
143, 1994.

[25] A.Valmari. Stubborn Sets for Reduced
State Space Generation. Advanced
in Petri Nets, vol 483, Lecture Notes
in Computer Science, Springer Verlag,
Edited by G . Rozenberg, pp 491-515,
1991.

[26] A.Valmari. Compositional State Space
Generation. Advanced in Petri Nets,
vol 674, Lecture Notes in Computer
Science, Springer Verlag, Edited by G .
Rozenberg, pp 427-457, 1993.

[27] T. Murata. Petri Nets: Properties,
Analysis and Aplications. Proceding of
The IEEE, 1989.

[28] G.Berthelot. Checking Properties of
Nets Using Transformations. Ad-
vanced in Petri Nets, vol 222, Lecture
Notes in Computer Science, Springer
Verlag, Edited by G . Rozenberg, pp
19-40, 1986.

[29] Ramchandani Analysis of
Asynchronous Concurrent Systems by
Timed Petri hrets. Techinical Report
nlZo, laboratory for Computer Science,
MIT, Cambridge, MA. 1974.

1301 G. Balbo, G. Chiola, S.C. Bruell, P.
Cheng. A n Example of Modeling
and Evaluation of Concurrent Program
Using Colored Stochastic Petri 1Vets:
Lamports’s Fast ilfutual Exclusion Al-
gorithm. IEEE Transaction on Parallel
and Distributed Systems , 1992.

[31] K. Bilinsk, IvI. Adamski, J.M. Saul,
E.L. Dagless. Parallel Controller Syn-
thesis from a Petri Net Specification.
Proceedings EURODAC-94 , 1994.

[32] G . Dohmen. Petri iVets as Interme-
diate Representation Between VHDL
and Symbolic Transition Systems. Pro-
ceedings EURODAC-94 , 1994.

[33] 3 . Esparza. Reducti.on and Synthesis
of Live and Bounded Free Choice Petri
Xets. Information and Computation ,
1994.

[34] M. Hack. Analysis of Prodtict?on
Schemata b y Petri hTets. Master’s The-
sis, Departament of Eletrical Engineer-
ing, Massachusetts Institute of Tech-
nology Massachusetts, Febuary, 1972.

[35] F. Commoner. Deadlock in Petri Nets .
Applied Data Research Inc. Mas-
sachuset ts, 1972.

54

J. Esparza, M. Nielsen. Decidability Is-
sues for Petri Nets. Gesellschaft fur
Informatik, 1994.

C. Rackoff. The Covering and Bouncl-
edness Problem for Vector ilddition
Systems. Theorical Computer Science,
vol. 6, p. 223-231. 1978.

R. Karp, R. Miller. Parallel Program
Schemata. Journal of Computer and
System Science, vol. 3 , N. 4, p. 167-
195. 1969.

R. Lipton. The Reachability Problem
Requzres Exponential Space. Researkh
Report 62, Depart.ament of Computer
Science, Yale University, 1976.

G. S. Sacerdote, R. L. Tenney. The De-
cidibility of the Reachability Problem
for Vector Addition System. 9th An-
nual Sympossium on Theory of Com-
puting, p. 61-76.

E. W. Mayr. Persistence of Vector Re-
placement System is Decidable. Acta
Informatica 15, p. 309-318. 1981. Boul-
der, 1977.

S. R. Kosaraju. Deczdibility of Reacha-
bility in Vector Additzon Systems. 14th
Annual ACM Symposium on Theory of
Computing, p. 267-281. San Francisco,
USA, 1982.

J . L. Lambert. Vector Addition Sys-
tems and Semi-linearity. SIAM Jour-
nal of Computing, 1994.

D. Frutos, C. Johne. Uecidability of
Home States in Place Transition Sys-
tems. 14th Internal Report, Dpto. In-
formatica y Automatica, Univ. Com-
plutense de Madrid, 1986.

E. Cardoza, R. J . Lipton, A . R. Meyer.
Exponential Space Complete Problems
for Petri hrets and Commutative Senii-
groups. 8th Symposium on Theory of
Computing, p. 50-54. 1976

PI. E-I. T. Hack. Decidabiltty Questions
for Petri Nets. PhD Thesis, MIT, 1976.

[47] A . Cheng, J. Esparza, J. Palsberg.
Complexity Results for 1-safe Nets.
13th Conference on Foundations of
Software Technology and Theorical
Computer Science, Bombay, 1993.

[48] J. Grabowsky. The Decidability of Per-
sistence for Vector Additzon Systems.
Information Processing Letters 11, vol-
1, p. 20-23, 1980. 76.block Boulder,
1977.

[49] H. Muller. On the Reachability Prob-
l e m for Persistent Vector Replacement
Systems. Computing Supplements, vol-
3 , p. 89-104, 1981.

[50] IC. Jensen. Coloured Petri Nets: A
High Level Language for System De-
sign and Analysas. Lecture Notes in
Computer Science, vol-483, p. 342-416,
1990.

[51] K. Jensen, P. Huber, R. M. Shapiro.
I3ierarchies in Coloured Petri hrets.
Lecture Notes in Computer Science,
vol-483, p. 313-341, Springer-Verlag,
Edited by G . Rozenberg 1990.

[52] 6 . Dittrich. Modeling of Com-
plex Systems Using Hierarchical Petri
Nets. Codesign - Computer-Aided
SoftwarelI-Zardware Engineering, p.
128-144, IEEE Press, Edited by J.
Rozenblit, K . Buchenrieder 1995. ck
Springer-Verlag, Edited by G. Rozen-
berg 1990.

[53] P. R. M. Maciel, E. N. S. Barros. Cap-
tura de Requisitos Temporais Usando
Redes de Petri para o Pnrticionamento
de Hardware/Softu1are. IX Simp6sio
Brasileiro de Concepsgo de Circuitos
Integrados, p. 383-396, Recife, PE,
Brazil, 1996.

[54] C. A . R. Hoare. Communicating Se-
quential Processes. Prentice Hall In-
ternational, 1985.

[55] P. R. M. Maciel, E. N. S. Bar-
ros. Capturing Time Coiistraints by
Using Petri il'ets in the Context of
Hardware/Software Codesign. a ser
publicado no 7th IEEE International

55

Workshop on Rapid System Prototyp-
ing, Porto Caras, Thessaloniki, Grkcia,
1996.

[56] G. Jones. Programming in OCCAM.
C.A.R. Hoare Series Editor, Prentice-
Hall International Series in Computer
Science. 1987.

[5 71 P. R . M . VI aciel , R.D.Lins,
P.R.F.Cunha. Uma IntroduGao 6s Re-
des de Petri e AplicaGoes. Book pub-
lished in the l l th Escola de Com-
puta@o. Campinas, Brazil. July, 1996.
(Portuguese)

56

