
An Approach for Interface Generation in the
 PISH Co-design System

Cristiano C. Araújo and Edna Barros
Departamento de Informática, UFPE

Caixa Postal 7851 – Cidade Universitária
50732-970 Recife – PE Brazil

cca2, ensb@di.ufpe.br

Abstract
This paper describes a methodology for interface

generation in the PISH co-design system, which allows the
hardware/software co-design of concurrent processes
described in occam. The hardware/software partitioning
generates a description including processes to be
implemented in software, processes to run in hardware
and processes for communication purposes. This new
description is generated by applying algebraic
transformation rules according the results of a cost
analysis based on clustering techniques. This strategy
preserves the semantics of the initial description. All of
these are generated from the initial description in a
constructive and correct way.

1. Introduction
With the growing complexity of the digital systems and

the need for reducing the time to market, techniques for
supporting hardware /soft-ware co-design have been
developed in order to permit the joint specification, design
and synthesis of mixed hardware/software systems
[5][12]. Such systems consists of common-off-the-shelf
(COTS) and ASIC components and have a variety of
implementation technologies and interfaces, and a wide
range of real-time data rates. The need for early prototypes
to validate the specification and to provide the customer
with feedback during the design process is another key
factor motivating hardware/software co-design.

Some tools and methodologies supporting
hardware/software co-design have been published in the
last years [5] [6] [7][8][9][10] [12]. In most of them,
however, once the initial description was partitioned, the
interface between the hardware and the software
components is synthesized by hand or in a semi-automated
way.

This work takes into account the PISH co-design
system, which allows the partitioning of occam
descriptions by considering hardware/ software trade-off
but also distinct hardware implementations [11].

Additionally, the correctness of the partitioning process
can be assured through the use of formal verification
techniques, in a constructive way [12][13] and a virtual
prototype can be obtained in an early phase of the design
process. The partitioning output is a set of communicating
processes, some of them to be implemented in hardware,
others in software and others for communication purposes.
The next step is the generation of a real prototype, a very
time consuming and error prone activity, and in the PISH
co-design system it has been done by hand.

The complexity of the interface generation depends on
the flexibility of the target architecture. The most systems
with automatic partitioning taken into account a pre-
defined target architecture, which makes the interface
generation easier. But also in this case, automatic interface
generation is not easy due to the semantic gap between the
descriptions of the virtual and the real prototypes. Due to
this fact, techniques for automatic interface generation is a
feature of a small number of co-design systems [2][3][16].

An important support for interface generation is the
communication generation during the partitioning process.
When the communication among modules is made explicit
and assured to be correct, the mapping of the virtual
prototype into the real one can be done in a most natural
manner.

The main goal of this work is the design of techniques
for interface generation in the PISH co-design system.
Particularly, this work focuses techniques for generating
the interface between hardware and software. This paper
is organized as follows: the next section gives an overview
of the PISH co-design system including interface
generation. A more detailed description of the proposed
approach is given in section 3. Section 4 illustrates an
example. Some conclusions are presented in section 5.

2. Interface Generation in the PISH Co-
design System
The approach for automatic interface generation is

being developed in the context of the PISH co-design

system. This system uses occam as specification
mechanism [14] as depicted in Figure 1.

ParticionamentoPartitioning

Estimadores
de Qualidade

Estimators

VerificaçãoVerification
Síntese do
hardware

Drivers
synthesis

Síntese de
interfaces

Hw/sw interf.
synthesis

Síntese do
software

Hw/hw interf
synthesis

HWI/Ounit

P1
 C

SW
I/O

Drivers
P2

H
W

Handshake
protocol

Memory
Cntr.mem.

T5 T1

T17 T9

S
W T8 T3 H

W
1

T7 T4 H
W

N C
O
M

Occam
Description

H

Figure 1- The PISH Design Flow

The main reason to use occam is that, being based on
CSP [15] occam has a simple and a elegant semantics,
given in terms of algebraic laws, which allows the
partitioning be performed by applying a series of algebraic
transformations into the initial occam description in order
to preserve the semantics. The set of transformation rules
is applied according to the results of a cost analysis based
on clustering techniques [11]. The output of the
partitioning is a set of concurrent processes, which
communicates through processes generated only for this
purpose. This feature is a important support for the
interface generation, since the communication among
processes has been made explicit and is correct. The
interface generation depends on the target architecture
taken into account and the most co-design systems
considers a very simple architecture composed of one
software component. In order to have a pre-defined
protocol some systems considers the hardware running as
a co-processor, i.e. hardware and software do not execute
concurrently [1][10].

In this work, software and hardware can run
concurrently and for that device drivers must be generated
at the software side, as well as specific hardware to make
transparent for the hardware side which processor is being
used. The interface between hardware modules must also
be synthesized.

3. A Methodology for Interface Generation
The proposed methodology for interface generation

takes into account a pre-defined target architecture
composed of one software component, but with distributed
control flow. The Figure 2 illustrates the proposed
approach.

The interface between hardware modules and the
processor is implemented by the communication unit. This
unit makes transparent for the hardware side which
processor is being used. The processor is viewed by the
hardware processes as another hardware process. For its
implementation a parameterized VHDL description is
generated, which can be synthesized.

SW
 C

SW
Drivers

HW

protocol

Memory

I/O. mem.

Processor Mem. FPGA

HW

Partitioning

Occam

Occam
SW

Occam
to C

Occam
HW

Occam
Comm

Occam
to VHDL*

Device Drivers
Generation

Architecture
 Communication

Library

Interface
Generation

VHDL*

C

Communication
Unit

Generation

VHDL VHDL

Figure 2- The interface generation approach

The interface between hardware components is
generated by the Interface Generation module. First, the
occam description of the hardware processes is translated
into a VHDL* description, which includes send and
receive functions for synchronous communication. After
that, the Interface Generation module generates standard
VHDL code, by using communication circuits, which
implement send and receive operations. A detailed
description can be found in [4].

3.1. Hardware/Software Interface Synthesis
First the occam description of the software processes is

translated into C, where the communication statements are
implemented by the high-level functions “send()” and
“receive()”. These high-level functions depend only on the
type of the data being transmitted or received by the
software process, they call low-level functions as many
times as it is necessary to transfer to/from the hardware
processes.

The low-level functions perform the i/o operations
between the communication unit and the processor. The
set of high and low-level functions is referred in this work
as device drivers and are architecture dependent. The
software processes can run in a variety of processors each
one with different speeds, instruction sets and I/O ports.
Even with the same processor one can have several
system architectures that use the same processor in
different ways, like using a serial port of the processor
instead of parallel one. Due to the diversity of
architectures and processors, it is difficult to define a
standard interface between the processor and the hardware
components. In our approach the communication unit can
be generated automatically and depends on the used
processor. The current version considers the 8051
microcontroller family.

3.1.1. Device Driver Generation
As it can be seen in Figure 3, the device driver generator

uses a library containing information about the target
architecture such as its type, its resources etc.
Additionally, for each device, the library must include
information such as port description, access routines that
encapsulates timing diagrams, and the number of
transmitted bits on each low level i/o operation. By using
this information, the device drivers generator can generate
low level routines for “input()” and “output()” for each
architecture taken into account. The “input()” and
“output()” functions can transfer only the basic number of
bits to/from the communication unit, and are called in the
high-level functions as many times as it is necessary to
complete the hole transfer. Figure 3 shows the algorithm
for the high-level “send()” function.

YRLG�BVHQG&KDQQHO,2����B'DWD7\SH&KDQQHO�GDWD7\SH��^
XQVLJQHGFKDU VL]H�
���B'DWD7UDQVIHUUHG,2 GBRXW�
VL]H� VL]HRI�B'DWD7\SH&KDQQHO���
GBRXW� ��B'DWD7UDQVIHUUHG� GDWD7\SH�

���BVHQG&KDQQHO,2���FKDQQHO,2� VL]H� GBRXW��
���`

Figure 3 - High level send function.

3.1.2. Communication Unit Generation
Figure 4 shows the communication unit as an interface

between the processor and the hardware components.

p0

pn

&RPPXQLFDWLRQ

8QLWµP

Depends on
architecture

Depends on the
number of
channels

Figure 4 - Model of Communication Unit

The number and type of ports of this unit depends on the
used processor and also on the number of communication
channels at the hardware side. If there is communication
actions occurring in parallel that uses the same channel,
the communication unit must include an arbitration circuit.

4. Example
In this section the interface generation of a simple

example is presented , which includes three processes
running in parallel, is presented. Figure 5 (a) shows the
occam description of such processes. First process p0
tests the variable “A”, when this variable changes its
value the process sends it through the channel c1 to
process p1. This process does some computation and

sends the new value to the process p2 through the channel
c2. Process p2 also does some computation and sends the
new value back to process p0 by using the channel c3. The
processes p0, p1 and p1 uses distinct variables since in
occam there is not the concept of global variable. Process
p0 is implemented in software, whereas processes p1 and
p2 will be implemented in hardware. Figure 5 (b) shows
the C representation of process p0, The part (c) of the
same figure shows the VHDL* description of process p1
including “send” and “receive” statements and in Figure
5(d) we have the additional states for implementing
“receive” operation in a standard VHDL description.

5. Conclusions
In this paper we have presented an approach for

interface generation in the PISH co-design system, which
partitions concurrent processes in occam to be
implemented in software and in hardware. The
communication among such processes is generated in such
a way, that the semantics of the initial description is
preserved. After that, the virtual prototyping of the
partitioned system is mapped into a real one, with the
software processes running into some microcontroller and
the hardware processes implemented as specific hardware
(either as ASIC or FPGA´s). Beside hardware and
software synthesis, this mapping includes the synthesis of
the interface between processor and hardware, as well as
interface between processes in hardware. In this work we
have presented an approach for interface generation
between hardware e software.

The proposed approach is based on a library of
communication units including software units as well as
hardware units. The software communication units or
device drivers are functions for implementing the message
passing operations send and receive. We have two kinds
of such functions: high-level functions, which are
independent of the target architecture, and low level
functions, which implement communication for some
architecture taken into account. A library for the 8051
microcontroller family has been implemented. The library
of hardware components includes parameterized circuits
for implementing synchronous communication, sender and
receiver.

PAR
 SW
 SEQ – Process p0
 IF
 Temp_A /= a
 c1 ! A

 c3 ? X
 ...

 TRUE
 ...
 HW
 SEQ – Process p1
 c1 ? Y
 Y := Y AND K1
 c2 ! Y
 SEQ – Process p2
 C2 ? W
 W := W OR K2
 C3 ! W

//process p0
if (Temp_A != A) {

Temp_A = A;
send (c1, A);
X = receive (c3);
}

Process in VHDL*
process_p1 : process (reset, clk)
...
when s0 =>

c1 ? Y;
state <= s1;

when s1 =>
Y := Y AND K1;
State <= s2;

when s2
c2 ! Y;
...(a)

(b)

(c)

when C2_com_0 =>
 if (not C2 activated) then
 C2_data_prc <= Y;
 C2_send <= ´1´;
 C2_activated <= true;
 else
 C2_send <= ´0´;
 if (C2_com_started) then
 if (C2_ready = ´1´) then
 C2_activated := false;
 C2_com_started := false;
 state <= s2_0;
 end if;
 else
 if (C2_ready = ´0´) then
 C2_com_started := true;
 end if;
 end if;
 end if;

when s2_0 => ...

(d)

Figure 5 - (a) Occam description (b) Process p0 in C (c) Process P1 in VHDL* (d) states for send operation

References
[1] Knudsen, P.V.; and Madsen, J., Communication Estimation

for Hardware/Software Codesign, Proceedings of the
International Workshop in Hardware/Sotware Co-Design -
CODES 1998.

[2] B. Lin, S. Vercauteren, H. De Man, Embedded Architecture
Co-Synthesis and System Integration, International
Workshop on Hardware/Software Codesign, March 1996.

[3] B. Lin, S. Vercauteren, H. De Man, ‘‘ Embedded
Architecture Co-Synthesis and System Integration’’,
International Workshop on Hardware/Software Codesign,
March 1996.

[4] C. Araújo and E. Barros , Automatic Interface Generation
among VHDL Processes in Hardware/Software Co-
Design, FDL´99, August 1999.

[5] D. Gajski and F. Vahid, Specification and Design of
Embedded Hardware-Software Systems–IEEE Design and
Test of Computers, pp.53-67, Spring 1995

[6] T. BenIsmail, M. Abid, K. O´Brien and A. Jerraya,,An
Approach for Hardware/Software Codesign, Proceedings
of the RSP 94, França, 1994

[7] A. Kalavade , E. Lee, A Hardware-Software Codesign
Methodology for DSP Applications – IEEE Design and Test
of Computers, pp. 16-28, September 1993

[8] D. E. Thomas, J. K. Adams, H. Schmit, A Model and
Methodology for Hardware/Software Codesign– IEEE
Design and Test of Computers, pp. 6-15, September 1993

[9] R.K. Gupta. , C.N. Coelho , G. De Micheli, Synthesis and
Simulation of Digital Systems Containing Interacting
Hardware and Software Components– Proceedings of the
29th DAC, 1992

[10] R. Ernst , J. Henkel, T. Benner, Hardware-Software Co-
Synthesis for Microcontrollers– IEEE Design and Test of
Computers, pp. 64-75, December 1993

[11] E.Barros and W. Rosenstiel A Clustering Approach to
Support Hardware/Software Partitioning". In: K.
Buchenrieder, and J. Rozenblit (eds.), Computer Aided
Software/Hardware Engineering. Chapter 11- IEEE Press,
1994.

[12] E. Barros and A. Sampaio,. Towards Probably Correct
Hardware/ Software Partitioning Using Occam. In
Proceedings of the Third International Workshop on
Hardware/Software Codesign, (1994) 210-217, IEEE Press.

[13] L. Silva, A. Sampaio and E. Barros, A Normal Form
Reduction Strategy for Hardware/Software Partitioning. In
the Proceedings of the Conference Formal Methods
Europe'97

[14] D. Pountain and D. May, A Tutorial Introduction to
OCCAM Programming. Inmos BSP Professional Books,
(1987).

[15] C. A. R. Hoare, Communicating Sequential Processes
Prentice-Hall, 1985

[16] P. Chou, R.B. Ortega and G. Borriello, The Chinook
Hardware/Software Co-synthesis System. Proceedings of
the 8th International Symposium on System Synthesis.
1995.

