
Using Petri Nets for Data Dependency Analysis

Fred Cruz Filho, Paulo Maciel and Edna Barros
Centro de Informatica - Universidade Federal de Pernambuco

Recife, PE, Brazil, 50740-540

Abstract

Due to design constraints, many digital systems are
implemented as mixed hardware and software com-
ponents. An informal choice of where implementing a
part of the system - either in software or in hardware
- can produce incorrect or unsatisfactory results. Co-
design methodologies have been developed to aid the
development of such systems. The partitioning phase
is one of the tasks carried out by a co-design method-
ology. It divides the original system into components
taking in account software or hardware implementa-
tion. This work presents a model to carry out data
dependency analysis, which is one of the aspects con-
sidered for the partitioning algorithm of the PISH co-
design methodology.

1 Introduction

Due to design constraints, many digital systems are
implemented in an heterogeneous architecture com-
posed by hardware and software components [l].
Software components are cheaper, more flexible and
portable than hardware components. On the other
hand, hardware implementation may yield a better
performance. However, application specific circuits
are expensive and should be used only when strictly
necessary. The growing complexity of such systems
makes the choice a difficult task, and an informal so-
lution can lead to incorrect results.
Although such mixed systems have been designed
since hardware and software first came into being,
there is a lack of CAD tools supporting the devel-
opment of such heterogeneous systems [2]. The parti-
tioning phase is one of the most important tasks car-
ried out by a co-design methodology. Its main task
consists in identifying system’s components and choos-
ing between a software or a hardware implementation
of each component. In the PISH co-design methodol-
ogy, data dependency is an important aspect taken in
account for the partitioning algorithm.

0-7803-6583-6/00/$10.00 0 2000 IEEE 2998

This work presents a model developed to carry out the
data dependency analysis in the PISH methodology.
This work is organized as follows. Section 2 depicts
an overview of the PISH methodology. Section 3 in-
troduces Petri nets concepts. Sections 4 and 5 show
the proposed model as well as the proposed method-
ology for carrying out the data dependency analysis,
respectively. Section 6 preslents an example. Finally,
section 7 concludes and gives some further works.

2 The PISH co-design system

The PISH co-design methodology is being developed
at CIn/Universidade Federa,l de Pernambuco. It uses
Occam [3] as its specification language. Its main focus
is to guarantee that the fuiictionality of the original
system is preserved on the partitioned system [4] by
the use of a well-defined set of formal transformation
rules applied to the specification. The workflow of the
PISH methodology has the following phases (Fig. 1):

(7) 7 ANALYSIS

SPLITTINO

Figure 1: PISH met:hodology workflow

Splitting. The original specification is transformed
by exhaustive application of algebraic rules, until
all processes reach a normal form [5] . The result
of this transformation is a parallel composition of
ordinary processes, with the inclusion of special

processes called controllers. Controllers perform
communication between a pair of processes, send-
ing the variables which are read and written and
receiving the variables which are written.

Quantitative analysis. In this phase, a set of met-
rics such as communication cost [SI, mutual ex-
clusion degree [7], area [8] , and execution time
[9] are estimated. Most of these metrics are com-
puted from the final Petri net model [lo, 111 which
was obtained from the Occam specificatioc.

Classification. Interacting with the quantitative
analysis toolset, this phase analyzes the pro-
cesses. According to criteria such as data depen-
dency, parallelism, mutual exclusion and multi-
plicity [12], a set of implementation alternatives
is captured. Data dependency analysis helps to
discover situations where a parallel or pipeline im-
plementation should be considered, for improving
the performance of the final system. This result
can also be used on the clustering phase to keep
data-dependent processes together, avoiding syn-
chronization costs. One implementation alterna-
tive is chosen for each process, either automati-
cally or manually.

Clustering. The processes are grouped in clusters,
generating a new configuration of the system. An
hierarchical clustering approach is performed ac-
cording to a metric which takes in account criteria
such as similarity among elements and resource
sharing. At the end of the clustering phase, a
set of partitions is generated and one of them is
allocated to a software component, whereas the
others remain as hardware components.

Joining. The joining phase performs the inverse
transformations of the splitting phase. This phase
removes the unnecessary controllers of the sys-
tem. It also tries to perform transformations
considering the implementation alternatives cho-
sen by the classification and clustering phases
(pipelining, serialization).

Occam is a programming language derived from CSP
[13], first intended to implement concurrent algo-
rithms. The Occam subset considered in this work has
the form:

SKIP has no effect and always terminates successfully.
STOP has no effect, but it never terminates (deadlock).
The x := e, ch?x and ch!e are the assigment, input
and output operation, respectively. IF and ALT select
one of the following processes, based on their guard.
If two or more guards are active on the same time,
IF selects the left-most process and ALT randomicaly
chooses one. WHILE executes the following process un-
til its guard becames false. SEq executes the following
processes in a sequence, starting from the left-most.
PAR executes the following processes concurrently.

3 Petri nets overview

Petri nets are a family of mathematical formalisms
that model concurrent systems by implicit token-flow
in a net, providing a sort of methods for qualitative
and quantitative analysis.

Definition 1 Petri net. Let P be a finite set of places,
T be a finite set of transitions and 1,0 ; P x T 3
N be the input (pre-conditions) and output (post-
conditions) matrices, respectively. N = (P, T , I , 0)
is a matrix-based definition for a place/transition net.
Furthermore, I and 0 will be referred as multi-sets,
where p E I t (t) e I (p , t) > 0, p E Ot (t) e O(p, t) > 0
(and similarly for P (t) and Op(t)) .

Definition 2 Marked Petri net. Let N = (P, T , I , 0)
be a Petri net. Let M : P -+ IN be a marking vec-
tor associated to net N , where M (p) is the number
of tokens on a place p . A net N' = (N ; M) is said
a marked Petri net if M is a marking vector of N .
A special marking vector MO is defined as the initial
marking of a marked Petri net.

Definition 3 Firing rule. Let N = (P, T , I , 0, M) be
a marked Petri net. A transition t is said enabled if
M(p) 2 I (p , t) , V p E P. Firing transition t produces
a new marking vector M ' , such as M'(p) = M@) -
103, t) + O(p, t) , denoted by M[t)M' . A special empty
transition X is such that M(X) M .

Definition 4 Reachable marking. Let N =
(P , T , I , O , M) be a marked Petri net and M" be a
marking vector. MI' is said reachable from M if there
exists a transition t (possibly empty) and a marking
M' , such that M'[t)M'' and M' is reachable from MI.

Definition 5 Marking coverability. Let N =
(P, T , I , 0) be a Petri net, M and M' be marking vec-
tors. M is said coverable b y MI, denoted by M 5 M'
(or M' 2 M) , if M'(p) 2 M(p) ,Vp E P .

)

2999

Analysis methods for Petri nets properties can be
grouped in three classes: reachability graph based
methods, state equation based methods and reduc-
tion techniques. The reachability graph is dependent
on the initial marking and generates all the possible
states (markings) of the net. In counterpart, it de-
mands a high computing power and, for certain classes
of nets, it is potentially infinite.
State equation methods are based on the solution
of simple linear algebraic equations. Although, such
techniques may give only necessary, but not suffi-
cient, conditions to infer conclusions about properties
of generic nets.
Reduction rules can also be applied to the net for re-
ducing its structure - decreasing the number of in-
termediary states - without modifying the net se-
mantics. In order to obtain better results, it is fair to
suggest the cooperative application of such techniques.
Reachability graph methods become inefficient mainly
because of the freedom in the firing order of concurrent
transitions. Such freedom can generate an explosion
of the number of states. One of the techniques for re-
ducing the state space is the stubborn-set method [14].
Such technique aims to construct a smallest possible
subset from the state graph.

4 The data flow Petri net
The data flow Petri net is obtained by a direct analysis
of the Occam syntax. It produces a net that is safe, free
of loops and free of place conflicts, by construction. In
such model, places represents values (variables, con-
stants and intermediate values) whereas transitions
represents actions and operations. The presence of
a token in a place models the availability of a value.
Each Occam construction is modeled as follows.

Definition 6 Current and next nets. Let P N be the
set of Petri nets and OP be the set of Occam processes.
Let T F : P N x OP + P N be the translation function
from Occam to Petri nets. Let N = (P , T , I , 0) and
N’ = (PI, T‘, 1’, 0’) be Petri nets. If N , NI are such
that N’ = TF(N,op) ,Vop E OP, then N and N‘ are
defined as the current net and next net, respectively.

Combiners. Combiners are Occam processes that
group other processes. SEQ/PAR, IF/ALT and
WHILE are the combiners supported by this model.
SEQ and PAR combiners are translated in the same
way. From the data flow point of view, only actions
which are of the kind read after write are modeled as

a sequence. The other kind of actions are modeled
in parallel (read after read, write after read and write
after write). Therefore, the control-flow has the task of
ordering these actions. Due to space restrictions, only
the SEQ/PAR constructor will be described formally.

Definition 7 Parent and descendent processes. A
parent process is a combiner that groups other pro-
cesses. A descendent procem is a process grouped b y
a combiner.

Definition 8 SEQ/PAR translation. Let N , N’
be a current and a next: net, respectively. If
SEQ/PAR is labeled as process i, its translation
is then P’ = P U {pi.sttzrt,pi.end}, T‘ = T U
{ti.start, ti.end}, It’(ti.start) = {pi.start}, and
Ot’(ti.end) = {pi.end}. r J f process i is descendent
from process j , then Ot’(tj.start) = Ot(tj.start) U
{pi.start} and It’(tj.end) = It(tj.end) U {pi.end}.

The translations of IF and ALT combiners are similar
(Fig. 2). From the data flow point of view, the results
of every branch must be available at any moment. If
some branch fails, due to a data dependency, the whole
conditional process must fail. An arc is added from the
place representing the guard expression to the start
transition of the IF/ALT process.
WHILE combiner is translated in the same way of
IF/ALT, except by a small difference (Fig. 2). The ex-
pression corresponding to the guard is evaluated twice
(before and after translation of the guarded process).
In this approach, the loop body is modeled once, with
no feedback. The second translation of the guard ex-
pression supports the situations where some variable
which is used in that expression is modified inside the
loop.

0 Di.end

0 pi.end

Figure 2: Conditional combiners

Literals. Literals are constant values implicitly de-
clared by processes. All literals are represented by
places attached to the start transition of the process

3000

where they appear and to the transition representing
the action which uses them (Fig. 3).

1l.start

tlsink F I
x : = y + 1 P1.y.i

p l .x.i+l
11 .end

Figure 3: Variables, expressions and assignment

Variables. Variables are represented by their in-
stances, where each instance is represented by one or
more places. Each time a new value is assigned to a
variable, a new instance of this variable is added to the
model. Further accesses to this variable are performed
to the new instance.
In the model, there must be a instance always ready
to be read at any moment. Hence, any time a variable
is read, a clone transition is attached to the place rep-
resenting the current instance of this variable. Two
extra places are attached to the clone transition: one
is used in the operation being modeled and the other
remains for further accesses (Fig. 3).
The writing of a variable is modeled by discarding its
current instance, which is performed by a sink transi-
tion. A new place is created in the model and the ac-
tion which assigns a value to that variable is attached
to the new place.
Declarations. Two kinds of declarations are carried
out by this model: channels, which provides commu-
nication between processes; and variables, which pro-
vides a local temporary place to store values.
Channels are modeled by a place that is attached only
to the operations which perform some action on them.
There will be exactly one place for each declared chan-
nel in the specification.
Variables are modeled as it has be seen earlier, but two
special situations arise. When a variable is declared,
it has the first instance initialized with an arbitrary
initial value. This is modeled by attaching the place
representing the first instance to the start transition
of the process which declares the variable. When a
process finishes, all values which were produced are
cleaned. This is modeled by attaching the place rep-
resenting the last instance of each variable declared
inside the process to the end transition of the process.

Expressions. An expression is modeled by attaching
its operands to a transition representing the opera-
tor. The expression result is modeled by adding a new
place to the model, which is attached to the operator
transition (3).
Actions The assignment operation is modeled by
adding an assign transition to the model. The tran-
sition is attached to the place representing the value
being assigned to and to the place representing the
new instance of variable being assigned.
The input operation is the receiving a set of values
from a channel. This is modeled by a transition repre-
senting the input action, which is attached to all places
representing the values being received. It is also at-
tached to the places representing the new instances of
variables being assigned.
The output action is the sending of a set of values
through a channel. This is modeled by a transition
representing the output action, which is attached to
all places representing the values being sent. It is also
attached to the place representing the channel.
An automatic translation mechanism has been com-
pletely implemented. The tool reads an Occam specifi-
cation and produces an INA net file. It also generates
all initial and target markings which will be used for
the data dependency analysis.

5 Data dependency analysis

The normal form defined by the PISH methodology is
a parallel composition of simple processes, as it has be
seen in section 2. The data dependency analysis will
be carried out considering the simple process granu-
larity. Hence, each process will be tested against all
the others for discovering data dependencies between
pairs of processes.

Definition 9 Enabled and disabled processes. Let
N = (P ,T , I , 0 , MO) be a marked Petri net. A pro-
cess i is said enabled if Mo(pi.start) = 1 and disabled
if Mo(pi.start) = 0.

Definition 10 Executable and non-executable pro-
cesses. Let N = (P, T , I, 0, MO) be a marked Petri
net. Let M be a marking, such that M(pi.end) = 1.
A process i is said executable if there exists a marking
M' , reachable from MO such that M' 2 M . Other-
wise, the process is said non-executable.

The following algorithm performs the data depen-
dency analysis:

300 1

1. For each process Pi do:

(a) Disable process Pi and enable all the other

(b) For each process Pj # Pi.

data-dependent on Pi

data-independent on Pi

processes

i. If Pj is non-executable, then mark Pj as

ii. If Pj is executable, then mark Pj as

In a first approach, the state equation method was
applied. The correctness of the state equation results
is well known for live marked graphs, which is a su-
perclass of the model net. This approach has shown
ineffective, mainly for two reasons: the net is not live
during the data dependency test (due to the disabled
processes) and the computational cost for state equa-
tion raises proportionally to the number of nodes.
A second approach was chosen and it has demon-
strated to be effective to perform the data dependency
analysis. It is based on the reachability graph con-
struction, using stubborn-set reductions, available in
the INA tool [15].

6 Example - a vending machine

The method was applied to a vending machine con-
troller, whose behavior is the following. The vending
machine accepts coins from client until a soft drink
is requested. If the money inserted is insufficient for
the purchase of the drink or the chosen drink is not
available, the money is refunded. Otherwise, the ma-
chine checks if there is sufficient coins to dispense the
change. If it can give the change, it delivers both the
drink and the change. If not, the client chooses be-
tween receiving the drink, discarding the change, or
money refund. After the splitting phase, it is com-
posed by 7 processes (Fig. 4).

Figure 4: Vending machine processes

The complete data flow Petri net of the vending ma-
chine is composed by 460 places (including 35 global
channel places) and 258 transitions. Table 1 depicts,
for each process, the number of places and transitions
which models the process. It also shows the num-
ber of states in the reachability graph, considering the

stubborn-set reducing technique applied to the initial
marking of the process.
Considering the results obtained for the initial mark-
ing of process PI, the reachability analysis without any
reduction generates much more than 100,000 states.
On the other hand, applying only state space reduc-
tions leads to 93 states. Furthermore, applying coop-
eratively both structural and state space reductions
on the net yields only 52 states.

Table 1: The vending machine data flow Petri net

The data dependency analysis produced the results
shown on table 2. One important aspect of the result is
the fact that despite of process PI is being attached to
controller P3 (and indirectly to P7), it does not depend
on any process. It is true, t h e to the fact that process
P1 only initializes variable:; with constant values, dis-
carding any previous value:; of all variables it receives.
In the PISH normal form every data dependency is
a communication dependency, but not all communi-
cation dependency is a data dependency. The model
can capture such difference.
Other characteristic of the model is also evident: it
captures the transitivity of'the data dependency. If a
process Pi depends on a process Pj and Pj depends
on P k , the analysis result contains the dependency
between Pi and Pk.

Table 2: Data dependency analysis results

Depends on F F F -
I P, i P,. P.;I

7 Conclusions and future works

This work has formalized it model for analyzing data
dependencies between concurrent processes in the nor-

3002

mal form of PISH methodology. The model produces
results which are necessary to classification phase of
PISH methodology and were formerly obtained in an
non-formal way.
Furthermore, the model points only to real data de-
pendencies between processes, not to communication
(synchronization) dependencies. The splitting phase
of PISH methodology introduces sequential controllers
to a sequence of processes, even if they are data-
independent. Based on the results of the data de-
pendency analysis, it becomes possible to change the
sequential controller to a parallel controller, improving
the parallelism degree of the final system.
Extensions to this model should be developed in order
to extract other kind of information, like variable life-
time (for quantifying the data dependency and register
allocation). Integration to the control-flow model also
under development should be considered for extract-
ing more information (deadlock freeness, serialization
strategies , et c) .

Acknowledgments

Prof. Peter Starke and Stephan Roch from Humboldt-
Universitat, developers of INA Tool, for their support.

References

[l] R. Gupta and G. DeMicheli, “Hardware/software
co-systhesis for digital systems,” IEEE Design &
Test of Computers, pp. 29-41, 1993.

[2] G. DeMicheli, LLHardware/software co-design:
Application domains and design technologies,” in
Hardware/Software Co-design, G. DeMicheli and
M. Sami, Eds., pp. 1-28. Dordrecht Kluwer Aca-
demic Publishers, 1996.

[3] Dick Pountain and David May, A Tutorial Intro-
duction to Occam Programming, BSP Professional
Books, Oxford, UK, 1987.

[4] Edna Barros and Augusto Sampaio, “Towards
provable correct hardware/software partitioning
using OCCAM,” in Proceedings of 3rd Inter-
national Workshop on Hardware/Software Co-
Design, Los Alamitos, 1994, pp. 210-217, IEEE.

[5] Leila Silva, Augusto Sampaio, and Edna Bar-
ros, “A normal form reduction strategy for hard-
ware/soft ware partitioning,” in Proceedings of 4 th
International Symposium on Formal Methods -
Europe, FME’97, Sringer Verlag, 1997.

[6] Paulo Maciel, Edna Barros, and Wolfgang Rosen-
stiel, “Computing communication cost by Petri
Nets for hardware/software co-design,” in 8th
IEEE International Workshop on Rapid System
Prototyping, Chapel Hill, North Carolina, USA,
June 24-26 1997.

[7] Paulo Maciel, Edna Barros, and Wolfgang Rosen-
stiel, “A Petri net approach for quantifying mu-
tual exclusion degree,” in Proceedings of IN-
COM’98, Nancy-Metz, fiance, June 23-27 1998.

[S] Paulo Maciel, Edna Barros, and Wolfgang Rosen-
stiel, “Estimating functional unity number in
PISH co-design system by using Petri nets,”
in Proceedings of IEEE I.$‘ Symposium on In-
tegrated Circuits and Systems Design, Natal,
Brazil, October 1999.

[9] Paulo Maciel, Edna Barros, and Wolfgang Rosen-
stiel, “A Petri Net approach to compute load
balance in hardware/software co-design,” in
High Performance Computing’98, Boston, Mas-
sachusets, USA, April 5-9 1998.

[lo] Paulo Maciel, Edna Barros, and Wolfgang Rosen-
stiel, “A Petri Net based approach for perform-
ing the initial allocation in hardware/software co-
design,” in 1998 IEEE International Conference
on Systems, Man and Cybernetics, San Diego,
California, USA, October 11-14 1998.

[ll] Paulo Maciel, Edna Barros, and Wolfgang Rosen-
stiel, “A Petri net model for hardware/software
co-design,” Design Automation for Embeded Sys-
tems, vol. 4, pp. 243-310, 1999.

[12] Edna Barros, Hardware/Software Partitioning
_ _ Using UNITY, Ph.D. thesis, Tiibingen Univer-

sitat - Fakultat fur Informatik, Germany, 1993.

[13] C. A. R. Hoare, Communicating Sequential Pro-
cesses, Prentice-Hall International, 1985.

[14] Antti Valmari, “The state explosion problem,”
in Lecture Notes on Petri Nets I: Basic Models,
number 1491 in Lecture Notes in Computer Sci-
ence, pp. 429-528. Springer-Verlag, 1998.

[15] Stephan Roch and Peter Starke, INA - Inte-
grated Net Analyzer, Version 2.2, Humboldt-
Universitat zu Berlin - Institut fur Informatik,
Germany, 1999.

3003

