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Abstract 

Due to design constraints, many digital systems are 
implemented as mixed hardware and software com- 
ponents. An informal choice of where implementing a 
part of the system - either in software or in hardware 
- can produce incorrect or unsatisfactory results. Co- 
design methodologies have been developed to aid the 
development of such systems. The partitioning phase 
is one of the tasks carried out by a co-design method- 
ology. It divides the original system into components 
taking in account software or hardware implementa- 
tion. This work presents a model to carry out data 
dependency analysis, which is one of the aspects con- 
sidered for the partitioning algorithm of the PISH co- 
design methodology. 

1 Introduction 

Due to design constraints, many digital systems are 
implemented in an heterogeneous architecture com- 
posed by hardware and software components [l]. 
Software components are cheaper, more flexible and 
portable than hardware components. On the other 
hand, hardware implementation may yield a better 
performance. However, application specific circuits 
are expensive and should be used only when strictly 
necessary. The growing complexity of such systems 
makes the choice a difficult task, and an informal so- 
lution can lead to incorrect results. 
Although such mixed systems have been designed 
since hardware and software first came into being, 
there is a lack of CAD tools supporting the devel- 
opment of such heterogeneous systems [2]. The parti- 
tioning phase is one of the most important tasks car- 
ried out by a co-design methodology. Its main task 
consists in identifying system’s components and choos- 
ing between a software or a hardware implementation 
of each component. In the PISH co-design methodol- 
ogy, data dependency is an important aspect taken in 
account for the partitioning algorithm. 
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This work presents a model developed to carry out the 
data dependency analysis in the PISH methodology. 
This work is organized as follows. Section 2 depicts 
an overview of the PISH methodology. Section 3 in- 
troduces Petri nets concepts. Sections 4 and 5 show 
the proposed model as well as the proposed method- 
ology for carrying out the data dependency analysis, 
respectively. Section 6 preslents an example. Finally, 
section 7 concludes and gives some further works. 

2 The PISH co-design system 

The PISH co-design methodology is being developed 
at CIn/Universidade Federa,l de Pernambuco. It uses 
Occam [3] as its specification language. Its main focus 
is to guarantee that the fuiictionality of the original 
system is preserved on the partitioned system [4] by 
the use of a well-defined set of formal transformation 
rules applied to the specification. The workflow of the 
PISH methodology has the following phases (Fig. 1): 
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Figure 1: PISH met:hodology workflow 

Splitting. The original specification is transformed 
by exhaustive application of algebraic rules, until 
all processes reach a normal form [5 ] .  The result 
of this transformation is a parallel composition of 
ordinary processes, with the inclusion of special 



processes called controllers. Controllers perform 
communication between a pair of processes, send- 
ing the variables which are read and written and 
receiving the variables which are written. 

Quantitative analysis. In this phase, a set of met- 
rics such as communication cost [SI, mutual ex- 
clusion degree [7], area [8 ] ,  and execution time 
[9] are estimated. Most of these metrics are com- 
puted from the final Petri net model [lo, 111 which 
was obtained from the Occam specificatioc. 

Classification. Interacting with the quantitative 
analysis toolset, this phase analyzes the pro- 
cesses. According to criteria such as data depen- 
dency, parallelism, mutual exclusion and multi- 
plicity [12], a set of implementation alternatives 
is captured. Data dependency analysis helps to 
discover situations where a parallel or pipeline im- 
plementation should be considered, for improving 
the performance of the final system. This result 
can also be used on the clustering phase to keep 
data-dependent processes together, avoiding syn- 
chronization costs. One implementation alterna- 
tive is chosen for each process, either automati- 
cally or manually. 

Clustering. The processes are grouped in clusters, 
generating a new configuration of the system. An 
hierarchical clustering approach is performed ac- 
cording to a metric which takes in account criteria 
such as similarity among elements and resource 
sharing. At the end of the clustering phase, a 
set of partitions is generated and one of them is 
allocated to a software component, whereas the 
others remain as hardware components. 

Joining. The joining phase performs the inverse 
transformations of the splitting phase. This phase 
removes the unnecessary controllers of the sys- 
tem. It also tries to perform transformations 
considering the implementation alternatives cho- 
sen by the classification and clustering phases 
(pipelining, serialization). 

Occam is a programming language derived from CSP 
[13], first intended to implement concurrent algo- 
rithms. The Occam subset considered in this work has 
the form: 

SKIP has no effect and always terminates successfully. 
STOP has no effect, but it never terminates (deadlock). 
The x := e, ch?x and ch!e are the assigment, input 
and output operation, respectively. IF and ALT select 
one of the following processes, based on their guard. 
If two or more guards are active on the same time, 
IF selects the left-most process and ALT randomicaly 
chooses one. WHILE executes the following process un- 
til its guard becames false. SEq executes the following 
processes in a sequence, starting from the left-most. 
PAR executes the following processes concurrently. 

3 Petri nets overview 

Petri nets are a family of mathematical formalisms 
that model concurrent systems by implicit token-flow 
in a net, providing a sort of methods for qualitative 
and quantitative analysis. 

Definition 1 Petri net. Let P be a finite set of places, 
T be a finite set of transitions and 1,0 ; P x T 3 
N be the input (pre-conditions) and output (post- 
conditions) matrices, respectively. N = (P,  T ,  I ,  0)  
is a matrix-based definition for a place/transition net. 
Furthermore, I and 0 will be referred as multi-sets, 
where p E I t ( t )  e I ( p ,  t )  > 0, p E Ot ( t )  e O(p, t )  > 0 
(and similarly for P ( t )  and Op(t)) .  

Definition 2 Marked Petri net. Let N = (P, T ,  I ,  0)  
be a Petri net. Let M : P -+ IN be a marking vec- 
tor associated to net N ,  where M ( p )  is the number 
of tokens on a place p .  A net N' = ( N ;  M )  is said 
a marked Petri net if M is a marking vector of N .  
A special marking vector MO is defined as the initial 
marking of a marked Petri net. 

Definition 3 Firing rule. Let N = (P,  T ,  I ,  0, M )  be 
a marked Petri net. A transition t is said enabled if 
M(p)  2 I (p ,  t ) ,  V p  E P. Firing transition t produces 
a new marking vector M ' ,  such as M'(p)  = M@) - 
103, t )  + O(p,  t ) ,  denoted by  M[ t )M' .  A special empty 
transition X is such that M(X) M .  

Definition 4 Reachable marking. Let N = 
( P , T , I , O , M )  be a marked Petri net and M" be a 
marking vector. MI' is said reachable from M if there 
exists a transition t (possibly empty) and a marking 
M' ,  such that M'[t)M'' and M' is reachable from MI. 

Definition 5 Marking coverability. Let N = 
(P, T ,  I ,  0)  be a Petri net, M and M' be marking vec- 
tors. M is said coverable b y  MI,  denoted by  M 5 M' 
(or M' 2 M ) ,  if M'(p)  2 M(p) ,Vp E P .  

) 
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Analysis methods for Petri nets properties can be 
grouped in three classes: reachability graph based 
methods, state equation based methods and reduc- 
tion techniques. The reachability graph is dependent 
on the initial marking and generates all the possible 
states (markings) of the net. In counterpart, it de- 
mands a high computing power and, for certain classes 
of nets, it is potentially infinite. 
State equation methods are based on the solution 
of simple linear algebraic equations. Although, such 
techniques may give only necessary, but not suffi- 
cient, conditions to infer conclusions about properties 
of generic nets. 
Reduction rules can also be applied to the net for re- 
ducing its structure - decreasing the number of in- 
termediary states - without modifying the net se- 
mantics. In order to obtain better results, it is fair to 
suggest the cooperative application of such techniques. 
Reachability graph methods become inefficient mainly 
because of the freedom in the firing order of concurrent 
transitions. Such freedom can generate an explosion 
of the number of states. One of the techniques for re- 
ducing the state space is the stubborn-set method [14]. 
Such technique aims to construct a smallest possible 
subset from the state graph. 

4 The data flow Petri net 
The data flow Petri net is obtained by a direct analysis 
of the Occam syntax. It produces a net that is safe, free 
of loops and free of place conflicts, by construction. In 
such model, places represents values (variables, con- 
stants and intermediate values) whereas transitions 
represents actions and operations. The presence of 
a token in a place models the availability of a value. 
Each Occam construction is modeled as follows. 

Definition 6 Current and next nets. Let P N  be the 
set of Petri nets and OP be the set of Occam processes. 
Let T F  : P N  x OP + P N  be the translation function 
from Occam to Petri nets. Let N = ( P , T ,  I ,  0)  and 
N’ = (PI, T‘, 1’, 0’) be Petri nets. If N ,  NI are such 
that N’ = TF(N,op) ,Vop E OP,  then N and N‘ are 
defined as the current net and next net, respectively. 

Combiners. Combiners are Occam processes that 
group other processes. SEQ/PAR, IF/ALT and 
WHILE are the combiners supported by this model. 
SEQ and PAR combiners are translated in the same 
way. From the data flow point of view, only actions 
which are of the kind read after write are modeled as 

a sequence. The other kind of actions are modeled 
in parallel (read after read, write after read and write 
after write). Therefore, the control-flow has the task of 
ordering these actions. Due to space restrictions, only 
the SEQ/PAR constructor will be described formally. 

Definition 7 Parent and descendent processes. A 
parent process is a combiner that groups other pro- 
cesses. A descendent procem is a process grouped b y  
a combiner. 

Definition 8 SEQ/PAR translation. Let N ,  N’ 
be a current and a next: net, respectively. If 
SEQ/PAR is labeled as process i, its translation 
is then P’ = P U {pi.sttzrt,pi.end}, T‘ = T U 
{ti.start, ti.end}, It’(ti.start) = {pi.start}, and 
Ot’(ti.end) = {pi.end}. r J f  process i is descendent 
from process j ,  then Ot’(tj.start) = Ot(tj.start) U 
{pi.start} and It’(tj.end) = It(tj.end) U {pi.end}. 

The translations of IF  and ALT combiners are similar 
(Fig. 2). From the data flow point of view, the results 
of every branch must be available at any moment. If 
some branch fails, due to a data dependency, the whole 
conditional process must fail. An arc is added from the 
place representing the guard expression to the start 
transition of the IF/ALT process. 
WHILE combiner is translated in the same way of 
IF/ALT, except by a small difference (Fig. 2). The ex- 
pression corresponding to the guard is evaluated twice 
(before and after translation of the guarded process). 
In this approach, the loop body is modeled once, with 
no feedback. The second translation of the guard ex- 
pression supports the situations where some variable 
which is used in that expression is modified inside the 
loop. 

0 Di.end 

0 pi.end 

Figure 2: Conditional combiners 

Literals. Literals are constant values implicitly de- 
clared by processes. All literals are represented by 
places attached to the start transition of the process 
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where they appear and to the transition representing 
the action which uses them (Fig. 3). 

1l.start 

tlsink F I  
x : = y + 1  P1.y.i 

p l  .x.i+l 
11 .end 

Figure 3: Variables, expressions and assignment 

Variables. Variables are represented by their in- 
stances, where each instance is represented by one or 
more places. Each time a new value is assigned to a 
variable, a new instance of this variable is added to the 
model. Further accesses to this variable are performed 
to the new instance. 
In the model, there must be a instance always ready 
to be read at any moment. Hence, any time a variable 
is read, a clone transition is attached to the place rep- 
resenting the current instance of this variable. Two 
extra places are attached to the clone transition: one 
is used in the operation being modeled and the other 
remains for further accesses (Fig. 3). 
The writing of a variable is modeled by discarding its 
current instance, which is performed by a sink transi- 
tion. A new place is created in the model and the ac- 
tion which assigns a value to that variable is attached 
to the new place. 
Declarations. Two kinds of declarations are carried 
out by this model: channels, which provides commu- 
nication between processes; and variables, which pro- 
vides a local temporary place to store values. 
Channels are modeled by a place that is attached only 
to the operations which perform some action on them. 
There will be exactly one place for each declared chan- 
nel in the specification. 
Variables are modeled as it has be seen earlier, but two 
special situations arise. When a variable is declared, 
it has the first instance initialized with an arbitrary 
initial value. This is modeled by attaching the place 
representing the first instance to the start transition 
of the process which declares the variable. When a 
process finishes, all values which were produced are 
cleaned. This is modeled by attaching the place rep- 
resenting the last instance of each variable declared 
inside the process to the end transition of the process. 

Expressions. An expression is modeled by attaching 
its operands to a transition representing the opera- 
tor. The expression result is modeled by adding a new 
place to the model, which is attached to the operator 
transition (3). 
Actions The assignment operation is modeled by 
adding an assign transition to the model. The tran- 
sition is attached to the place representing the value 
being assigned to and to the place representing the 
new instance of variable being assigned. 
The input operation is the receiving a set of values 
from a channel. This is modeled by a transition repre- 
senting the input action, which is attached to all places 
representing the values being received. It is also at- 
tached to the places representing the new instances of 
variables being assigned. 
The output action is the sending of a set of values 
through a channel. This is modeled by a transition 
representing the output action, which is attached to 
all places representing the values being sent. It is also 
attached to the place representing the channel. 
An automatic translation mechanism has been com- 
pletely implemented. The tool reads an Occam specifi- 
cation and produces an INA net file. It also generates 
all initial and target markings which will be used for 
the data dependency analysis. 

5 Data dependency analysis 

The normal form defined by the PISH methodology is 
a parallel composition of simple processes, as it has be 
seen in section 2. The data dependency analysis will 
be carried out considering the simple process granu- 
larity. Hence, each process will be tested against all 
the others for discovering data dependencies between 
pairs of processes. 

Definition 9 Enabled and disabled processes. Let 
N = (P ,T ,  I ,  0 ,  MO) be a marked Petri net. A pro- 
cess i is said enabled if Mo(pi.start) = 1 and disabled 
if Mo(pi.start) = 0. 

Definition 10 Executable and non-executable pro- 
cesses. Let N = (P, T ,  I, 0, MO)  be a marked Petri 
net. Let M be a marking, such that M(pi.end) = 1. 
A process i is said executable if there exists a marking 
M' ,  reachable from MO such that M' 2 M .  Other- 
wise, the process is said non-executable. 

The following algorithm performs the data depen- 
dency analysis: 
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1. For each process Pi do: 

(a) Disable process Pi and enable all the other 

(b) For each process Pj # Pi. 

data-dependent on Pi 

data-independent on Pi 

processes 

i. If Pj is non-executable, then mark Pj as 

ii. If Pj is executable, then mark Pj as 

In a first approach, the state equation method was 
applied. The correctness of the state equation results 
is well known for live marked graphs, which is a su- 
perclass of the model net. This approach has shown 
ineffective, mainly for two reasons: the net is not live 
during the data dependency test (due to the disabled 
processes) and the computational cost for state equa- 
tion raises proportionally to the number of nodes. 
A second approach was chosen and it has demon- 
strated to be effective to perform the data dependency 
analysis. It is based on the reachability graph con- 
struction, using stubborn-set reductions, available in 
the INA tool [15]. 

6 Example - a vending machine 

The method was applied to a vending machine con- 
troller, whose behavior is the following. The vending 
machine accepts coins from client until a soft drink 
is requested. If the money inserted is insufficient for 
the purchase of the drink or the chosen drink is not 
available, the money is refunded. Otherwise, the ma- 
chine checks if there is sufficient coins to dispense the 
change. If it can give the change, it delivers both the 
drink and the change. If not, the client chooses be- 
tween receiving the drink, discarding the change, or 
money refund. After the splitting phase, it is com- 
posed by 7 processes (Fig. 4). 

Figure 4: Vending machine processes 

The complete data flow Petri net of the vending ma- 
chine is composed by 460 places (including 35 global 
channel places) and 258 transitions. Table 1 depicts, 
for each process, the number of places and transitions 
which models the process. It also shows the num- 
ber of states in the reachability graph, considering the 

stubborn-set reducing technique applied to the initial 
marking of the process. 
Considering the results obtained for the initial mark- 
ing of process PI, the reachability analysis without any 
reduction generates much more than 100,000 states. 
On the other hand, applying only state space reduc- 
tions leads to 93 states. Furthermore, applying coop- 
eratively both structural and state space reductions 
on the net yields only 52 states. 

Table 1: The vending machine data flow Petri net 

The data dependency analysis produced the results 
shown on table 2. One important aspect of the result is 
the fact that despite of process PI is being attached to  
controller P3 (and indirectly to P7), it does not depend 
on any process. It is true, t h e  to the fact that process 
P1 only initializes variable:; with constant values, dis- 
carding any previous value:; of all variables it receives. 
In the PISH normal form every data dependency is 
a communication dependency, but not all communi- 
cation dependency is a data dependency. The model 
can capture such difference. 
Other characteristic of the model is also evident: it 
captures the transitivity of'the data dependency. If a 
process Pi depends on a process Pj and Pj depends 
on P k ,  the analysis result contains the dependency 
between Pi and Pk. 

Table 2: Data dependency analysis results 

Depends on F F F -  
I P, i P,.  P.;I 

7 Conclusions and future works 

This work has formalized it model for analyzing data 
dependencies between concurrent processes in the nor- 
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mal form of PISH methodology. The model produces 
results which are necessary to classification phase of 
PISH methodology and were formerly obtained in an 
non-formal way. 
Furthermore, the model points only to real data de- 
pendencies between processes, not to communication 
(synchronization) dependencies. The splitting phase 
of PISH methodology introduces sequential controllers 
to a sequence of processes, even if they are data- 
independent. Based on the results of the data de- 
pendency analysis, it becomes possible to change the 
sequential controller to a parallel controller, improving 
the parallelism degree of the final system. 
Extensions to this model should be developed in order 
to extract other kind of information, like variable life- 
time (for quantifying the data dependency and register 
allocation). Integration to the control-flow model also 
under development should be considered for extract- 
ing more information (deadlock freeness, serialization 
strategies , et c) . 
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