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Abstract

This work presents two approaches for computing the
number of functional units in hardware/software code-
sign context. The proposed hardware/software code-
sign framework uses Petri net as common formalism
for performing quantitative and qualitative analysis.
The use of Petri net as an intermediate format allows
to analyze properties of the specification and formally
compute performance indices which are used in the
partitioning process. This paper is devoted to describe
the algorithms for functional unit estimation.

This work also proposes a method of extending the
Petri net model in order to take into account causal
constraints provided by the designers. However, an
overview of the general hardware/software codesign
method is also presented.

1 Introduction

Hardware/Software codesign is the design of systems
comprising two kinds of components: specific appli-
cation components and general programmable ones.
Although such systems have been designed ever since
hardware and software first came into being, there is a
lack of CAD tools to support the development of such
heterogeneous systems. The progress obtained by the
CAD tools at the level of algorithm synthesis, the ad-
vance in some key enabling technologies, the increas-
ing diversity and complexity of applications employing
embedded systems, and the need for decreasing the
costs of designing and testing such systems all make
techniques for supporting hardware/software codesign
an important research topic.

The choice of the components set (definition of a tar-
get architecture) and the partitioning of the descrip-
tion are critical tasks in a codesign system. This work
considers Petri as an intermediate model that allows
both qualitative analysis and metrics computation [5].
In the quantitative analysis phase (metrics computa-
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tion), methods are applied for computing precedence
relation degree, load balance [5], communication cost
[4], computing cycle time [5], area estimates [8] as well
as functional unit estimation. Those metrics guide the
partitioning process.

This paper presents two algorithms based on Petri
nets for estimating the number of hardware functional
units needed to carry out a behavioral specification.
The first one is based on reachability graph approach
and the second one considers the use of invariants.
Due to the large number of possible invariants, an
approximation algorithm for implementing the struc-
tural method has been proposed. Its results are com-
pared with those results obtained by the exact solution
of the structural methodology as well as with those by
the reachability based method.

Moreover, this work describes a methodology for in-
cluding causal constraints on the Petri net model.
The next section presents an overview of the hard-
ware/software partitioning approach. Section 3 intro-
duces timed Petri net. Section 4 describes how to
introduce causal constraints in the behavioral spec-
ification. Section 5 depicts the adopted hardware
model and the methods proposed for estimating re-
source sharing. A case study is described in Section 6.
Finally some conclusions and perspectives for future
works are presented.

2 The Hardware/Software Par-
titioning Approach

The system uses occam as specification language. The
main reason for using occam is its simple and elegant
semantics, given in terms of algebraic laws. This fea-
ture allows the hardware/software partitioning to be
carried out by applying a serie of algebraic transfor-
mations to the initial description preserving its origi-
nal semantics. The set of transformation rules is ap-
plied according to the result of a clustering phase. The
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clustering phase groups processes taking into account
the metric estimates (quantitative analysis) {5]. This
analysis is performed considering a Petri net model of
the occam specification [6] and consider criteria like
communication cost [4], load balance, precedence re-
lation degree [5] and area estimates [7]. After hard-
ware/software partitioning, the processes to be imple-
mented in hardware are synthesized and the software
processes are compiled.

3 Timed Petri Nets

Petri nets are a formal specification technique that al-

low for a graphical, mathematical representation and

have powerful methods which allow designers to per-
form qualitative and quantitative analysis [2].

Petri nets are used to model a logical point of view
of the systems, however no formal attention is given
to temporal relations and constraints [12]. The first
temporal approach was proposed by Ramchandani [3)].
Tumed Petri Nets are Petri net extensions in which the
time information is expressed by duration (determinis-
tic timed net with three phase policy firing semantics)
and Is associated to the transitions.

Definition 3.0.1 Timed Petri Nets - Let Nt =
(N,D,C) be a timed Petri net, where N =
(P,T,I1,0,My) isa Petrinet, D: T — IRt |J 0O isa
function which associates to each transition t; the du-
ration of the firingd;. ¢':T —-¢ (0<IR<L1), teT
is a choice function which assigns a free-choice proba-
bility to each transition of the net, where ZtET.; c(t) =
1. T. C T is a set of structural conflicting transitions.

4 Causal Constraints

Besides the behavioral specification, sets of causal con-
straints may be useful when analysing the design space
of a system [1]. These external assumptions allows one
to analyse distinct implementation possibilities with-
out re-writing the main specification in order to find
an alternative which satisfies the non-functional re-
quirements

In this work, external causal constraints are intro-
duced into the Timed Petri net model. The causal
constraints considered are precedence relation and mu-
tual exclusion.
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4.1 Causal Precedence Constraint

This constraint defines a causal precedence execution
order of operations within concurrent processes. If two
operations represented by two transitions op; and op;
should be carried out taking into account a precedence
order, a place px should be introduced in the Petri net
model such that py € O(op;), I(op;).

Definition 4.1.2 Causal Precedence Constraint
- Let Nt = (N, D,C) be a timed Petri net, op;, op; €
T transitions representing two operations and py, € P.
If pi € O(opi), I(op;), the operations op; and op; have
a causal precedence relation (op; = op; ).

4.2 Mutual Exclusion Constraint

This constraint is related to exclusive operation exe-
cution of concurrent processes. If two concurrent op-
erations, represented by two transitions op; and op;,
should be mutually exclusively executed, in the timed
Petri net model, a safe marked place py, as input and
output of these operation, may be introduced in order
to exclude possible concurrent execution.

Definition 4.2.3 Mutually  Exclusive Con-
straint - Let Nt = (N,D,C) be a timed Petri net,
opi, op; € T transitions representing two concurrent
operations and py € P a safe place. If py € O(opi),
I(opi), O(opy), I(op;); Mo(px) =1, px € P and py is
defined as a mutual exclusion relation (op; ® op;).

5 Estimation of Functional Unit
Numbers

The hardware implementation of a process can be
composed of: data-paths and controllers {5]. The
data-path circuit consists of registers, functional units
and multiplexers. The functional-unit area of a pro-
cess is related to the area of ALUs, adders, multipliers
etc needed to carry out arithmetic/logical operations.

Definition 5.0.4 Functional Unit Area - Let
FUN(NS, OPTY PE) be functional unit number of
the type OP_TY PE related to a set of processes N S.
Let OPS(NS) be the set of distinct operations types
in the process NS. Let op; be an operation within an
arithmetic/logic expression e.

AHop(NS) = Yyoprypseopsinsy FUNNS,
OPTYPE) x AHop_rype gives functional unit
area of a set of processes, where AHop_typE is the



area associated to the operator that implements an op-
eration of the type OP.TY PE, considering a given
data type (number of bits).

Therefore, one aspect that should be considered is the
estimation of the necessary number of functional units
to execute a given behavioral description. This as-
pect has to be taken into account possible functional
unit sharing. Two approaches have been proposed for
functional unit estimation: a method based on reach-
ability graph (dependent on the architecture) and a
structural approach.

5.1 Reachability Based Method

First, let us consider a model extension in order to cap-
ture the number of functional units of the proposed ar-
chitecture. The extended model is represented by the
net N = (P,T,1,0,M,,D,C), which describes the
program, a set of places P’ in which each of its places
(p') is a functional unit type adopted in the proposed
architecture; the marking of each of these places repre-
sents the number of functional units of the type p'; the
input and the output arcs that interconnect the places
of the set P’ to the transitions which represents the
arithmetic/logic operations (ALU,, C T).

In the extended model the number of conflicts in the
net increases due to the allocation of operations to
functional units. These conflicts require the use of a
pre-selection policy. Such a policy is implemented by
assigning equal probabilities to the output arcs from
places (representing functional units types) to the en-
abled transitions t; € ALU,, (O(p,t;), p € P') in
each reachable marking M,. Thus, more formally:

Definition 5.1.5 -Extended Model : Let a net
N = (P,T,1,0,Mq,D,C) a program model, a set of
places P’ the functional unit types adopted in the ar-
chitecture such that P(Y\P' = @ and Mo(p), p€ P’
the number of functional units of the type p. Let
a net Ne = (P, T, 1,0, M§, De, f) the extended
model such that P, = PJP', T. = T, L(p,t;) = 1
and Oc(p,t;) = 1, Vt; € ALU,,, Vp € P, oth-
erwise Io(p,t;) = I(p,t;) and Oc(p,t;) = O(p,t;).
M§ . INPUP’ — IN and D, = D. Let M, a reachable
marking from Mo, C: T —5c¢ (0K IR<L1), teTis
a choice function which assigns a free-choice probabil-
ity to each transition of the net, where ), 1 c(t) = 1.
T. C T s a set of structural conflicting transitions.

In such a model, the concurrence is constrained by
the number of available number of functional units

(Mo{p), p € P') provided by the designer. The main
goal of the proposed approach is to estimate the min-
imal number of functional units that can achieve best
performance taking into account an upper bound num-
ber. Therefore, the designer, provides the number of
available units (adders, ALUs etc), then the execution
time (CT) is computed by reachability based meth-
ods. The following step comprises the reduction in the
number of functional units (M (p) = M (p)—1, p € P’)
in order to compute a new execution time (C'T'). If
CT" > CT, the necessary number of unit has been
reached. This number of functional units is used in
the proposed method for initial allocation.

The proposed algorithm is:

¢ Input:
anet Ne = (Pe,Te,Ie,Oc, M§, D¢, C).
the number of available functional units of a given type
(Mo(p), Vpe€P').
¢ Output:

the optimum number of units Mopi(p), p € P’ tak-
ing into account the resources constraints provided by the de-
signer.

the minimal execution time (CT) regarding to Moy, (p).

¢ Algorithm:

Compute the execution time CT(N,)
CT = CT(N.)

For each place p € P/, do:

M(p) = M(p) - 1

Compute a new execution time CT(N¢)

if CT(N.) < CT

CT = CT(N.)

Mopt(p) = M(p), Vp€ P’

elseorif M(p)=0, Vpe P’

end.
The number of necessary units can also be reached
by taking into account either the speed up, the effi-
ciency or the efficacy provided by the use of multiple
processors [5].
Although the interesting results have been obtained,
one should observe that the operation are allocated to
certain types of functional units. If the system level is
being considered, it may be too early to perform this
activity.

5.2 Structural Based Method

The method presented in this section provides an up-
per bound number of functional units needed for car-
rying out each operation type. This method takes
into account precedence/mutual exclusion relation be-
tween operators of the same type within a process.

In order to estimate this bound, the behavioral de-
scription is analyzed in terms of a causal precedence
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relation of operators in such a specification, that is,
either operators which are combined to be executed
in sequential fashion, the ones that have a causal rela-
tion because of communication, or the ones that are in
mutual exclusion due to shared variables or semaphore
implementation. Shared variable and semaphore im-
plementation is out of the scope since occam has been
adopted as a specification language and the communi-
cation is represented by synchronous actions. Never-
theless, it is important to stress that the method pro-
posed is able consider mutually exclusive statements
represented by these implementations.

Considering a Petri net model obtained from an oc-
cam description according a translation method pre-
sented in [5]. However, a closure! is applied to this
net in order to turn it strongly connected. The causal
precedence relation can be analyzed by means of p-
minimum invariants (IFP;) [5]. The first step of the
method proposed in order to compute the number of
functional units needed to carry out the description
is the calculation of invariant supports. After that,
the transition-paths® have to be computed. The es-
timated number of functional unit (of a given type)
needed to execute a description is the minimal number
of transition-paths that covers a transition set (repre-
senting operations) of a given type.

Taking into account that a set of processes repre-
sented by NS and a transition set of a given type
TS(NS,OP_TY PE), if the transitions of such a set
are covered by one transition-path, generated by one
p-minimum invariant, their execution can be carried
out by only one functional unit. In order to carry
out each statement of a given type considering a spe-
cific set of processes (T'S(NS,OP.TY PE)), an upper
bound number of functional units is be provided by the
minimal number of p-minimum invariants [11] needed
to generate the smallest transition-paths set (STPS)
that contains each transition of TS(NS,OP_TY PE).

Theorem 5.2.1 -Let N = (P, T,1,0, Mo, D) be a
strongly connected net covered by p-mintmum invari-
ants. Let TPS; be a transition-path set of a sub-net
SN; obtained from a p-minimum invariant I1P; of a
net N. Let TS(NS,op) C T be the transition set
of a given operation type related to a processes set N.S.
An upper bound functional unit number of the type op,
related to NS is FUN(NS,op)) = #STPS, where
#STPS denotes the minimal number of transition-

la transition connecting the final place to the start place. A

start place is is the initial condition of a program. When a final
place is marked, it means the program completion.

2a transition-path is the set of output transitions of the support
of a p-minimum invariant.

path set TPS; that contains each transition of TS(N S,
op).

The proof of such theorem can be found in [7].

The exact solution of that problem (set-covering prob-
lem) may be computationally very complex, hence an
approximation algorithm has been proposed to com-
pute FUN(NS, op;) = #STPS. The method pro-
posed is based on clustering technique and results in
O(n3) complexity, where n is the number of transition-
paths.

o Input:
set UTPS,
set TS(NS, opi).

¢ Output:
FUN(NS, op;) = #STPS.

¢ Algorithm:

Z =UTPS, STPS =9, M = @ - dynamic
sets -,

STPS = ComputeCoverability(UTPS, TS(NS,opi))

If STPS #0

FUN(NS, op;) = #STPS

STOP.

WHILE Z # 0

X,Y = FindTPSs(2)

Delete(Z; M)

Insert(STPS; X,Y)

Delete(Z;X,Y)

M= UvTP,eSTPS Tk

Insert(Z; M)
V=MnTS(NS opi)
If #V == #TS(NS, op:)
FUN(NS, op1) = #STPS
STOP.
c,a=0
FindTPSs(Z) ; (#Z = N)
For 1=0 to N-1, do:
For j=i+1 to N, do:
a = ComputeCloseness
Metric(TPS; TPS;)
Ifa>c
c=a, K =TPS5;,
For i=0 to N-1, do:
For j=i+1 to N, do:
a = ComputeCloseness
Metric(TPS; TPS;)
Ifa==cA K #TPS; A
L#TPS;
E=K,F=1L,
G =TPS;,
H =TPS;
K,L = FindLeast SimilarTPSs(
Ifa==cA K ZTPS; A
L ==TPS5;
E=K,F=1L,
G=TPS;  H=1
K,L = FindLeast

L =TPS;

E,F,G,H)
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SimilarTPSs(
E,F,G H)
Ifa==cA K==TPS5; A
L#ATPS;
E=K, F=L, G=K,
H = TPS;
K,L = FindLeast
SimilarTPSs(
E,F,G,H)
Return(X,L)
FindLeastSimilarTPSs(E,F, G, H)
If#(ENF); #(Gn H)
Return (E, F)
Else
Return (G, H)
ComputeClosenessMetric(TPS;, TPS;)
V =TPS,u TPS;n TS(NS,op)
Return(#V')
ComputeCoverability(UTPS,TS)
c=0
While i S N =1V C # 9, do:
V =TPS5; a TS(NS, op:1)
If #V == #TS(NS, opr)
C =TPS;
i=i+1
Return(C')
3

The method proposed , however, only provides an up-
per bound. This approach does not deal with tem-
poral precedence relation between statements, that is,
statements that are neither under a causal precedence
relationship or in exclusive choice, but have a tempo-
ral precedence relation.

5.3 Experiments

In this section, the approximation algorithm presented
in Section 5.2 (structural based method) is applied to
a set of small examples. These results are compared
to the solutions provided by exact-solution algorithm
(structural based method). The reachability graph
based algorithm proposed in Section 5.1 is also ap-
plied to these examples. In the following the occam
description of the examples is described.

¢ Example A Example B

INT a,b,c,d: CHAN OF INT ch:
PAR PAR
SEQ INT a,b:
arsa+l SEQ
PAR IF ¢ <0
b:=b+1 cizctl
ci=c42 c > 0
IFd<O0 c:=c+2
di=d+l ch ! ¢
d >0 INT d: -
d:=d+2 SEQ

2 Functions Insert(A;e) and Delete(A;e) inserts and removes
an element e to/from a dynamic set A4, respectively [10]

ch 7 d
d:=d+2

Example C Example D

CHAN OF INT chl,ch2: CHAN OF INT ch:

PAR PAR
INT a,b: INT a,b,c:
SEQ SEQ
a:=atl a:satl
chlt ? b SKIP
a:=a+b b:=a+b
INT c: SKIP
SEQ ch 7 ¢
IF ¢ < 0 b:sb+c
cisctl INT d
c > 0 SEQ
cizc+2 IFd<©
chi ! ¢ d:=d+t
ch2 ! ¢ d >= 0
INT d: d:=d+2
SEQ ch ' d
ch?2 7 d INT e,f,g:
d:=d+3 SEQ
e:=e+2
fi=fte
PAR
e:=e+2
SEQ
f:=f+1
g:=g+2

For theses examples, Table 1 presents the functional
unit numbers estimated by considering the approx-
imation algorithm presented (column FUNgp _s¢) 1n
Section 5.2 as well as the exact solutions when con-
sidering such an approach (column FUNc_s). The
obtained results are the same.

Table 1: Number of Functional Units

Example FUNe FUNgp _ o+ FUN,
A 3 3 2
B 2 2 2
C 2 2 2
D 4 4 2

It should be highlighted that for many other small
examples, which I was able to obtain the exact solu-
tions, the approximation algorithm proposed provided
equivalent results.

Table 1 also presents the obtained results for the func-
tion units estimation (column FUN,) based on the
reachability approach (see Section 5.1). One may ob-
serve that the functional unit numbers are smaller
than those estimated by the structural approach, but
should also remember that such an approach needs
allocation process.
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Table 2: Area

Metrics Estimated Implemented
Reg+Mux 464 650

FU 4291 4291

Control 1026 1230

Total 5781 6171

6 Results

This section presents some results for a vending ma-
chine specification. The occam specification is com-
posed of seven (7) processes. Excution time, load bal-
ance, mutual exclusion degree, communication cost,
area metrics were compute. Considering these met-
rics, the hardware/software partitioner generated two
clusters. The first one is a software cluster and the
second one a hardware cluster.

The hardware cluster was mapped onto 2 FPGAs from
XC4000 Xilinx family. Table 2 shows the metrics es-
timated and its real implementation. In this table,
the close results reached by the methodology are com-
pared with the real implementation, in terms of count
gates. For this example, the average accuracy is 94%
(for all these area metrics).

The values of the implementation are given by the
rapid prototyping Xilinx Foundation tool in terms of
gates counts.

7 Conclusion

This work compares two method for functional unit
estimation. The reachability approach provides in-
teresting results in terms of accuracy. However, an
allocation in a early phase of design is needed. The
structural method does not allocate operation to func-
tional units, it considers causal precedence relation
and mutual exclusion, but it does not take into ac-
count temporal precedence relation. This method pro-
vides an minimum upper bound number of functional
units. For this approach, an approximation algorithm
has been presented and its results compared with the
exact structural solution and with those obtained by
the reachability based method. The results obtained
for the case study presented were similar when using
both the reachability based and the structural based
methods.

As future works, we intend to use Petri net to consider
schedulling and power consumption estimation in the

PISH codesign methodology.
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