
A Petri Net Based Approach For
Hardware/ Soft ware Partitioning

Fred Cruz Filho, Paulo Maciel, Edna Barros

Abstract- CO-design methodologies have arisen for sup-
porting the development of digital systems composed of
mixed hardware/software. Partitioning is performed by co-
design tools for splitting the funcionality of the original sys-
tem among components. In this paper, a partitioning ap-
proach based on a Petri net intermediate format is proposed.
The new model will substitute the one currently adopted in
PISH co-design system. The main advantages of such model
are having more precise metrics and becoming independent
of the specification language.

Keywords-Hardware/software co-design, Petri nets, met-
rics, data-dependency analysis

I. INTRODUCTION

Most modern electronic systems are composed by both
dedicated elements (hardware) and programmable ele-
ments (software). The choice between a hardware or a
software implementation may be obvious because of some
aspects related to the nature of the element (e.g. sen-
sors/actuators, AD/DA converters] etc). But when these
intrinsic aspects are not important, that choice is mainly
guided by the trade-off among achieving the time con-
straints (hardware is faster) and reducing the implemen-
tation cost (software is cheaper).

An approach known as hardwarelsoftware co-design pro-
poses the cooperative design of such mixed systems as a
whole, departing from a unique behavioral specification
(Figure 1). It has shown to be advantageous when com-
pared to the traditional approach. When designing such
mixed hardware/software systems, the analysis of design
alternatives and the decision of where to implement each
part of system, either in hardware or in software] are very
important tasks. The process of deciding where to imple-
ment each part is known as partitioning.

The estimation of quality metrics permits design space
exploration and may guide the decision of the implemen-
tation media of a system’s parts [l]. Such metrics are
calculated at system level, or rather, without real imple-
mentation. Estimations also speed up a system’s design
and permit the analysis of design constraints] providing a
quick feedback for design decisions.

Nowadays, many co-design tools use high-level languages
as its input format [2]. Some co-design tools also use an
internal format for modeling the system’s functionality [3],
[4]. Different formalisms are considered for internal repre-
sentation of these systems, as such as finite state machines,
control/data flow graphs and, recently, Petri nets.

In this paper, a partitioning approach based on Petri

Certro de Inform6tica - Universidade Federal de Pernambuco
E-Mail: {fmcf ,prmm,ensb}Qcin.ufpe.br

e Model

r - - l Evaluation

Fig. 1. Workflow of a co-design methodology

net internal format is presented. Additionally, a short de-
scription of the proposed Petri net model for the internal
representing of the system’s functionality is exhibited. Fur-
thermore, a set of methods for feature capturing, exploring
design space and choosing implementation alternatives are
shown. The combined application of such methods per-
forms the hardware/software partitioning in the PISH co-
design system.

This paper is organized as follows: Section I1 summarizes
some works related to the hardwarelsoftware partitioning
problem. Section I11 brings an overview of the PISH co-
design methodology. After that, the Petri net model is pre-
sented on Section IV. In the following, Section V shows the
partitioning approach which is being proposed. Section VI
depicts the application of such methodology by considering
a real-world example. Finally, Section VI1 summarize some
results and presents some ways for improving the proposed
approach.

11. RELATED WORK

CO-design tools are still incipient and, in the most part,
they are under-development versions usable only by its de-
velopers for academic purposes. Despite this disadvantage]
some published works descript how these tools carry out
the partitioning process.

The VULC-4Y 11 system [2] translates a specification
written in Hardware C into an internal format. Execution
time is estimated (when possible) and the original descrip-
tion is divided into three groups. Two of them are com-

0-7695-1333-6101 $10.00 0 2001 E E E 72

posed of those objects where execution time is undefined
due to data dependencies. The objects with internal depen-
dencies are moved to the software component and those
with external dependencies are moved to the hardware
component. The remaining objects (with defined duration)
are initially moved to a hardware component (hardware-
oriented approach). Finally, a graph min-cut algorithm
chooses a group of objects which can be moved to the soft-
ware component , minimizing the hardware area without
increasing the communication cost between the hardware
and the software partitions.

The COSYMA system [4] translates a specification writ-
ten in C' into an internal format based on CDFG1. In the
following, a simulation/profiling module extracts perfor-
mance information of the system. All objects are initially
allocated on the software partition (software-oriented ap-
proach). ilfter that, an iterative optimization algorithm
(simulated annealing) is applied. The objective here is mov-
ing objects to the hardware partition in order to achieve
the time constraints of the system. Finally, the result-
ing components are translated into languages which can be
compiled/synthesized. Such output is analyzed for extract-
ing the real computing time and performing a validation of
the system.

The LYCOS system [3] takes a specification (in C or
VHDL) and translates into an internal format based on
CDFG' . After that, estimators compute all necessary in-
formation about the objects, summarizes them in a metric
and generates a linear integer programming problem. Fi-
nally, such problem is resolved and the solution that mini-
mizes a cost function is adopted as the final partitioning. In
LYCOS, only time constraints are analyzed for validating
the generated system.

In the PISH system, the partition method emphasizes
the correctness of the generated system. The partitioning
approach considered in PISH uses program rewriting rules,
which divides the original specification in communicant ob-
jects. Such rules follow a formal strategy which is proved
to be correct-per-construction [5], [6]. An overview of the
partitioning in the PISH system will be presented in the
next section.

The main disadvantage of the PISH when compared to
the other co-design tools is the lack of an internal format,
appropriated to metric computing and estimation. On the
other hand, the partitioning approach of the PISH system
provides a formalism that guarantees the correctness of the
generated system, without the necessity of verifying the
generated implementation.

Petri nets were considered for the intermediate format
of PISH system mainly because they are appropriated for
modeling parallelism, which is not well represented by other
models, as such as finite state machines (e.g. due to state
explosion problems). Furthermore, a set of methods for
computing metrics necessary to the partitioning process
was developed over a Petri net model [7], wich represents
the control-flow of a system. The PISH system considers

Control/Data Flow Graph

Occam as its specification language and, in the same work,
it was provided a method for translating between Occam
and Petri nets.

During this work, a Petri net model for representing the
system's data-flow was developed, as well as two method
for computing data dependencies between objects. Besides,
a set of methods for capturing attributes of objects and
choosing implementation alternatives were developed, too.
After the next sections, the reader should be familiar to
the current state of the PISH co-design system.

111. THE PISH CO-DESIGN SYSTEM: AN OVERVIEW

The PISH system is being developed in our research
group and it implements all those steps depicted in Fig-
ure 1. A subset of the Occam language [8] is used as speci-
fication language. Occam is a language that allows the spec-
ification of concurrent systems, whose components commu-
nicate each other through synchronous channels. Based on
the algebraic properties of the Occam language, it is possi-
ble to apply rewriting rules for performing transformations
on the specification. A set of rewriting rules for Occam were
proposed by [6] and it was proved that those rules preserve
the semantics of the original specification.

The partitioning phase of PISH system is composed of
four steps: splitting, classification, clustering and joining.
The workflow of such tasks is depicted in Figure 2. The par-
titioning approach in the PISH co-design system is based on
an orthogonality principle, where the functional aspects of
the partitioning can be dissociated from the non-functional
ones [6].

specilcation Ori inal

0

lix,
io 0;
.................. pol
..................
.HHD

i, a>.!
............

Partitioned
system j-, ;.m
..........

ol '@
4 :@;
c

............

Fig. 2. Partitioning phase in PISH system

Splitting: In the splitting phase, algebraic rules are exhaus-
tively applied to the original specification until it reaches a
normal form, which is composed of a set of simple processes
that communicate each other [6].
Classification: In the classification phase, a set of imple-
mentation alternatives is generated for each process. One
of them is chosen according to the designer experience or
by an automatic method [9], [lo].
Clustering: In the clustering phase, processes are combined
in order to achieve a composition that minimizes a cost
function, which takes into account area, delay and commu-
nication [9], [lo].
Joining: In the joining phase, another set of algebraic rules
are exhaustively applied to the final specification in order to
reflect the organization proposed by the clustering phase.

73

Furthermore, it tries to remove the communication intro-
duced by the splitting phase where it is unnecessary [6].

The splitting and joining tasks use algebraic rules for
transforming the original specification. Hence, the veri-
fication of the partitioning correctness is straightforward
from the transforming model of such phases. The formal
verification of the partitioning phase can be considered in-
novative when compared to the other related works, which
does not consider such aspect. Another innovative aspect
of PISH approach to the partitioning is the orthogonality
between functional and non-functional aspects of the sys-
tem.

The classification and clustering phases are responsible
for rearranging those simple processes. Such rearrange-
ment is guided by estimates computed over the specifica-
tion and also data dependency information. The estimates
were extracted directly from the Occam specification, in
earlier versions of the PISH system.

However, many problems may arise from this approach.
One of them is the dependency of the specification lan-
guage. Occam is not an industrial standard, despite its de-
sirable and powerful algebraic properties. Hence, estimates
computed over such syntactic model are not sufficiently ac-
curate for guiding the partitioning.

Methods for computing area, delay, communication cost,
mutual exclusion degree, similarity, etc, were proposed by
[7]. Such metrics are computed over a Petri net model and
an occam/Petri net translation method was also proposed
in the same work. In order t o complete the set of analyzed
properties, another model was developed with an associ-
ated method for computing data dependencies [l l] . Both
models and metrics were considered for proposing an in-
termediate formalism for the classification and clustering
phases in the PISH co-design system [lo].

IV. -4 PETRI NET MODEL FOR CONCURRENT SYSTEMS

Petri nets are a family of mathematical formalisms that
model concurrent systems by implicit token-flow in a net,
providing a sort of methods for qualitative and quanti-
tative analysis [12]. Place/transition nets are composed
by two kind of nodes: places, passive components which
can hold zero or more tokens, and transitions, active com-
ponents that consume and produce tokens. Such nodes
are connected by directed arcs, which determine the to-
kzn flow as well as enumerates how many tokens are con-
sumed/produced by the following/preceding transition.

A . Data-flow model

Dependency constraints guarantee the fact that the pro-
gram variables are defined and used in the correct order,
for producing correct results. Transformations applied on
programs must consider the dependency analysis for pro-
ducing a new code that performs the same behavior and
has the same properties of the previous code.

The data-flow model represents the many sequences of
operations that produce, modify or consume data. The
translation is performed in order to achieve the greatest
possible parallel degree between instructions in the same

process, once the real instructions ordering is represented
in the control-flow model (Section IV-B). Such model al-
lows the representation of the data flow that is indepen-
dent from the original specification language. Due to space
restrictions, only a brief description of the model will be
shown. A complete explanation of the model can be found
in [IO].

Places: Each place represents a value, either a literal, a
variable or the result of some expression.
Variables references are modeled by using duplication and
renaming strategy. Every time a variable is read, the place
representing its value is duplicated: one of these places is
directed to the operation which is reading the variable and
the other remains for future references. When writing to
a variable, the place representing its value is attached to a
transition which is responsible for destroying the previous
value and a new place is added for representing the new
instance of the variable.
Transitions: Transitions are used to represent two dis-
tinct groups of constructors. The first of them is com-
posed by operators (arithmetic, logic, relational, binary
and boolean). The second group is composed by structural
constructors of the specification language.
Tokens: Tokens model the availability of some value in the
place.
However, the presence of a token in a place does not model
particular values, but only the fact that some value as-
signed to that place is available.

The data flow model represents each process as a net
which has a starting and an ending place. The start place
is the pre-condition of the first transition of the process and
the end place is the post-condition of its last transition.
Hence, determining if a process can be fully executed is
the same as determining if the marking that holds a token
in the end place is reachable from some initial marking. ,4
formal proof of the data-dependency analysis can be found
on [IO].

B. Control-flow model

The control-flow model uses a timed Petri net [13] for
representing the behavior of the specification. The role
performed by each net component is described in the fol-
lowing:

Transitions: Each transition represents one operation of
the specification. Information related to the kind of op-
eration, type, variables, constants, etc.
Places: Places are used to represent instructions as well as
the instruction ordering, giving the pre and post conditions
for each operation.

The model is used for performing qualitative and quan-
titative analysis. Such analysis is based on both structural
and behavioral properties of Petri nets. Metrics computed
by using the control-flow net model include execution time,
area estimation (control and data path), mutual exclusion
degree, communication cost, etc [7].

74

V. HW/SW PARTITIONING OF A PETRI NET MODEL

Among the steps contained on the partitioning phase of
the PISH system, the classification and clustering are per-
formed considering the Petri net model. Such approach
allows achieving the desired orthogonality between parti-
tioning and verification, as proposed by [6]. Formal trans-
formations are applied to the specification, generating a
group of parallel processes. For their turn, processes are
rearranged considering non-functional aspects. Finally, an-
other set of transformations are applied for removing those
constructions which were inserted on the specification by
the splitting strategy, but not used at all.

A . Classification

The classification phase is divided into two steps: class
capturing and class choice. The first is responsible for
identifying all possible implementation alternatives for each
process, considering its attributes.
Communication: Based on the data-dependency informa-
tion, the attribute determines if the process is independent
or should be implemented as a server, a client/server or a
client of the remaining.
Sequential replication: Based on the control-flow net struc-
ture, the attribute determines if nested sequential loops can
be implemented as a pipeline (for increasing performance)
or should be kept in sequence (for decreasing area cost).
Parallel replication: The attribute is also based on the
structure of the control-flow net. It is responsible for de-
termining if sets of nested parallel processes can be imple-
mented sequentially or partially sequential (for decreasing
area cost), or it should be kept in parallel (for increasing
performance).
Multiple assignment: The attribute is based on some of
the information relative to the transition and determines
whether multiple expressions should be evaluated in se-
quence (sharing funcional units) or should be evaluated in
parallel.

In a second step, once the possible implementation alter-
natives have been assigned for each attribute, the classifi-
cation algorithm will choose the one which will be actually
implemented. Such choice can be either manual or auto-
matic. If the automatic choice is selected, the system will
suggest an implementation alternative which has a high
and balanced parallelism degree with a low area cost. For
reaching the objective, the algorithm computes an objec-
tive function which is dependent on the area and the de-
lay. Area and delay estimations are computed over the
control-flow model. Hence, the algorithm tries to equal-
ize the parallelism degree of all processes, without having
the objective function being greater than a pre determined
treshold.

B. Clustering

Once an implementation alternative has been chosen for
each process, the clustering phase takes place. The objec-
tive of clustering phase is to find a configuration of pro-
cesses that have a low area and communication cost and a

high performance. PISH system uses an hierarchical multi-
stage clustering [14] approach, as proposed on [9].

On such method, objects are grouped according to a
closeness metric. First, the distances between each pair of
objects are computed. In the following, the pair of objects
which are closer one another are removed and combined
generating a new object. The new object is reinserted in
the objects set and the process is repeated until only one
object remains.

Parallel to the object combining, a tree structure (named
clustering tree) is constructed. Initially, all objects are sin-
gle nodes on level 0 (zero) of the tree. Each time an object
pair is combined in a level 1 , their nodes are linked to a
new node, which is marked as level 1 + 1. At the end of
the process, the clustering tree is produced (as shown in
Figure 3, from left to right hand side).

.... a
A i
01 02 03 04 01 02 03 04 01 02 03 04

Fig. 3. Construction of the clustering tree

When the clustering tree construction is finished, the
objective function is computed for each branch from the
lower to the top level. The tree is cut in a level where the
objective function is minimum, generating a new group of
objects (Figure 4).

COST .*. ..w......... 10.1112

14.01 75
9.0377 0 :@. __. @ Cui line

(minimum cost)

01 02 03 04

Fig. 4. Cutting of the clustering tree

The metrics estimated over the control-flow net and the
data-dependency analysis results are considered for com-
puting the distances for the clustering algorithm. Due
to the complexity of the closeness metrics, the clustering
phase is performed in two stages. Each one of the phases
considers different closeness metrics and objective functions
for cutting the tree.

In the first stage, similarity between processes is used as
closeness metric. Two implementation alternatives are gen-
erated for each pair of objects in the tree: sequential and
parallel. In the case of parallel composition, the control-
flow model is modified to reflect the change by adding the
net elements that correspond to a parallel composition of
processes. In the other case, the control-flow model is mod-
ified also by the addition of a place between the ending
place of a process and the starting place of the other. Be-

75

fore generating alternatives, one of the processes is chosen
for software implementation, which is always combined se-
quent ially.

Next, the area and execution time are estimated for com-
puting the objective function. The algorihtm chooses the
alternative which has the lower cost. The objective func-
tion takes into account the area cost, execution time and re-
source sharing. Parallel composition of objects is assigned
to an infinite cost. Hence, the clustering tree is cut below
the first level where the parallel composition is chosen.

In the second stage, the clustering tree is constructed
considering a communication cost metric. The objective
function for cutting the tree is the communication cost.
Finally, the clustering process generates N objects, where
1 is implemented by software and N - 1 by hardware.

VI. CASE STUDY

This section presents the results obtained for the parti-
tioning of an ATM switch. ATM is a set of protocols for
providing several kinds of services (telephony, data trans-
fer, audio/video on-demand, etc) over a common media (a
digital network). ATM uses connection oriented peer-to-
peer services. Hence, partners should negotiate the com-
munication parameters before establishing it.

These parameters also need to be accepted by every in-
termediate component (ATM switches). The objective of
the ATM switch is to direct information from source to
destination. However, some policy should be applied to
the information stream to guarantee that negotiated pa-
rameters are being followed.

One of the modules of a switch is responsible for the
load balancing of the connection. The load balancing algo-
rithm verifies if the connection obeys the negotiated param-
eters. If affirmative, the data is forwarded with or without
changes in parameters. Otherwise, the data is discarded
for preserving the other connections.

The Occam code for the ATM switch is 150 lines long, and
supposes the existence of a host which maintains a routing
table containing the parameters of the active connections.
The leaky bucket algorithm is considered for load balancing.
After the splitting phase, the description is divided into 9
processes:

P1 receives a packet in a connection and reads the table
row corresponding to that connection.

P2 computes the load balancing and verifies if the packet
is inside acceptable limits.

P3 is responsible for taking the decision about the desti-
nation of the packet (discard, forward or modify parameters
and forward).

P4 forwards the packet to the next switch.
P5 updates the host table.
P6 to P9 are controller processes, created by the splitting

phase and are not considered for partitioning.
In the following, the output of splitting phase is trans-

lated to the Petri net models. The control-flow net is com-
posed of 113 places and 106 transitions and the data-flow
net, 1940 places and 1150 transitions.

TABLE I
CHOSEN ALTERNATIVES FOR EACH PROCESS

A4fter that, the data-dependency analysis is carried out.
It has shown that: P1 does not depend on any process;
P2 depends on P1; P 3 depends on P1 and P2; and P4, P5
depend on P1, P2 and P3.

Next, the classification phase takes place and the ob-
ject features are extracted both from the data-dependency
analysis results and the control-flow model. The algorithm
has chosen the alternatives depicted in Table I for each
attribute.

Before getting into the clustering phase, all the necessary
metrics are computed. In the first stage of clustering, the
similarity metric considers the sharing of the same func-
tional units by similar objects. After the first stage of clus-
tering, process P 3 is chosen for software implementation,
considering its low internal communication cost. The clus-
tering tree is constructed and it is cut in the second level
(the first level where resource sharing is not possible), af-
ter grouping P4 and P5 in sequence (;). The new group of
objects is formed by four processes P1, P2, P3 and P4;P5.
In the second stage, the clustering tree is constructed and
cut again on the second level (11) as shown on Figure 5.

13

12

11

___________.____________________________--------------------

______.__ _ _ _ _ _ _ _ _ .

_ - - _ _ - _ _ _ _ _ _ _ _ _ - _ _ .

_ _ A _ _ _ _ _ _ _ _ _ _ _ _ ._____. -___________._____.._______________

P2 P1 P4;5 P3 P6 P7 P8 P9

Fig. 5 . Second stage clustering tree

The generated system is composed by a software com-
ponent P3 and two hardware components: P2 and
Plll(P4;P5), which is the parallel composition of P1 and
the sequential composition of P4 and P5. A new Occam
specification is generated and sent to the joining phase,
with annotations that will reflect the desired implementa-
tion. The joining algorithm will apply rules for serializing
processes P4 and P5, removing the communication between
them.

A hardware-only version of the ATM switch occupies
9962 logic blocks [15]. The implementation obtained in
the partitioing uses 5330 logic blocks. Hence, the mixed
implementation achieve the time constraints and have an
area cost which is 53% of the hardware approach.

VII. CONCLUSIONS & FUTURE WORKS

In this paper, a new approach for the partitioning phase
of the PISH system was presented. Such approach con-

76

siders an intermediate model based on Petri nets. The
Petri net model is used for extracting information about
implementation alternatives for each attribute taken into
account by the partitioning algorithm. Furthermore, esti-
mates computed over such model are used for computing
closeness metrics of the clustering algorithm.

In earlier versions, all analysis were performed directly
over the syntax tree of the specification language, which led
to inaccurate estimates besides dependence on the specifi-
cation language. The development of such intermediate
format has produced a version of PISH system whose clas-
sification and clustering phases are fully developed over
the Petri net model. Therefore, the capturing of all non-
functional aspects of the system being partitioned is per-
formed independently of the specification language.

Finally, the method was applied to a real application,
an ATM switch. The partitioning has generated 3 compo-
nents, 2 of them implemented in hardware and the remain-
ing in software.

Area estimation does not consider the register allocation,
which leads to a superestimated number of registers and
underestimated number of multiplexers. Hence, a natural
extension to the work is to use the data-flow model for
computing estimates about register allocation, which will
increase the precision of the area estimates.

[14] E. Lagnese and D Thomas, “Architectural partitioning for SYS-
tem level synthesis of integrated circuits,” in IEEE Transactions
on Computer-Aided Design. Jul. 1991.
J . Lima, um c~~~~~~~~~ Microprogramdvel para Comutadores
A T M , Ph.D. thesis, Universidade Federal d a Paraiba, Campina
Grande, PB, Jun.1999.

REFERENCES
D. D. Gajski, F. Vahid, S. Narayan, and J . Gong, Specification
and Design of Embedded Hardware-Software Systems, Prentice
Hall, 1994.
R. Gupta and G. DeMicheli, “Hardware/software co-systhesis
for digital systems,” IEEE Design €9 Test of Computers, pp.

J . Madsen, J . Grode, P. V. Knudsen, M. E. Peterson, and
A. Haxthausen, “LYCOS: the lyngby co-synthesis system,” De-
sign Automation for Embeded Systems, vol. 2, no. 2, pp. 195-
236, 1997.
A. Osterling, T. Benner, R. Ernst, D. Herrmann, T. Scholz, and
W. Ye, “The COSYMA system,” in Hardware/Software Co-
Design: Principles and Practice, pp. 263-281. Kluwer Academic
Publishers, Amsterdan, 1997.
E. Barros and A. Sampaio, “Towards provable correct hard-
ware/software partitioning using OCCAM,” in Proc. of 3Pd
Intl. Workshop o n Hardware/Software CO-Design, Los Alami-

L. Silva, A n Algebraic Approach to Hardware/Software Par-
titioning, Ph.D. thesis, Universidade Federal de Pernambuco,
Brazil, Jul . 2000.
P. Maciel, Petri Net Based Estimators for Hardware/Software
Co-Design, Ph.D. thesis, Universidade Federal de Pernambuco,
Brazil, Dec. 1999.
Dick Pountain and David May, A Tutorial Introduction to Occam
Programming, BSP Professional Books, Oxford, UK, 1987.
E. Barros, Hardware/Software Partitioning Using UNITY,
Ph.D. thesis, Tubingen Universitat, Tubingen, Germany, Jul.
1993.
F. Cruz, Filho, “Particionamento em hardware/software usando
redes de petri,” M.S. thesis, Universidade Federal de Pernam-
buco, ‘Brazil, Dec.2000.
F. Cruz, Filho, P. Maciel, and E. Barros, “Using Petri nets
for data-dependency analysis,” in Proc. of Intl. Conference on
Systems, Man and Cybernetics, USA, Oct. 8-11 2000, pp. 2998-
3003.
T. Murata, “Petri Nets: Properties, analysis and applications,”
in Proc. of IEEE, 1989.
W. M. Zubereck, “Timed Petri Nets definitions, properties and
applications,” in Microelectronic and Reliability, vol. 31, pp.

29-41, 1993.

tos, 1994, pp. 210-217, IEEE.

627-644. 1991.

77

