
Interface Generation for Concurrent Processes During Hardware/Software Co-
synthesis

Cristiano C. de Araújo and Edna Barros
Centro de Informática - UFPE

P.O. Box 7851 – Cidade Universitária
Recife - Brazil

cca2,ensb@di.ufpe.br

Abstract

This paper describes a model for interface, which is being
used in the PISH co-design system. This model is based on
layers and tries to keep the interface generation as
independent as possible of the underlying target
architecture. The proposed interface structuring in three
layers provides abstraction of the communication
implementation at process level and makes easier the
interface generation process.

1. Introduction

With the growing complexity of the digital systems and
the need for reducing the time to market, techniques for
supporting hardware/software co-design have been
developed in order to permit the joint specification, design
and synthesis of mixed hardware/software systems [5][12].
Such systems consist of common-off-the-shelf (COTS) and
ASIC components and have a variety of implementation
technologies and interfaces, and a wide range of real-time
data rates. The need for early prototypes to validate the
specification and to provide the customer with feedback
during the design process is another key factor motivating
hardware/software co-design.

Some tools and methodologies supporting
hardware/software co-design have been published in the last
years [5] [6] [7][8][9][10] [12]. In most of them, however,
once the initial description was partitioned, the interface
between the hardware and the software components is
synthesized by hand or in a semi-automated way.

This work takes into account the PISH co-design system,
which allows the partitioning of occam descriptions by
considering hardware/ software trade-off but also distinct
hardware implementations [11]. Additionally, the
correctness of the partitioning process can be assured
through the use of formal verification techniques, in a
constructive way [12][13] and a virtual prototype can be
obtained in an early phase of the design process. The
partitioning output is a set of communicating processes,
some of them to be implemented in hardware, others in
software and others for communication purposes. The next
step is the generation of a real prototype, a very time

consuming and error prone activity, and in the PISH co-
design system it has been done by hand.

The complexity of the interface generation depends on
the flexibility of the target architecture. Most systems with
automatic partitioning taken into account a pre-defined
target architecture, which makes the interface generation
easier. But also in this case, automatic interface generation
is not easy due to the semantic gap between the descriptions
of the virtual and the real prototypes. Due to this fact,
techniques for automatic interface generation is a feature of
a small number of co-design systems [1][2][17].

For a correct interface generation two points should be
considered; the possibility of communication generation
among processes during the partitioning in a correct way
and the availability of a method for automatic interface
generation, which should be able to generate the software
and hardware implementing the interface.

When the communication among modules is made
explicit and assured to be correct, the mapping of the virtual
prototype into the real one can be done in a more natural
manner. Some approaches allows automatic communication
generation [13].

The automatic interface generation is not a trivial task.
Due to the dependence on the underlying target architecture,
most approaches allow the interface generation for a fixed
target architecture [1][10] or are specific for a domain
application [3]. The main goal of this work is the
development of an interface model for synchronous
communication, which makes easier the interface
generation process. The proposed model is based on layers,
in order to allow communication actions at process level
independent on the used processor. This paper is organized
as follows: in the next section are the related works, section
2 gives an overview of the PISH co-design system including
interface generation. A more detailed description of the
proposed model is given in section 4. Section 5 illustrates
an example. Some conclusions are presented in section 6.

2. Related Works

The interface in the POLIS approach [14] implements a
domain specific communication mechanism between a set
of co-design finite state machines (CFSM’s). This
mechanism uses asynchronous communication and is based

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

on event detection. The main problem with this approach is
that it uses different approaches and protocol for the three
different interfaces: hardware/hardware, hardware/software
and software/software.

In [3] interfaces for synchronous dataflow (SDF) are
automatically generated. This methodology uses a
hierarchical approach to interface generation. A layered
representation of the interface is given where in the first
layer the communication is represented by abstract
unidirectional links connecting source and sink nodes.
These links are virtual channels. A second layer,
implementation layer, is composed of computing elements
(processors, microcontrollers, FPGA’s), buses and
memories. The automatic interface generation is performed
by mapping the objects of the abstract layer to the
implementation layer using the HASIS tool. This mapping
is done by code generation not using component libraries.

In [2] an intermediate abstract architecture is also used.
This architecture is composed of processing elements and
point-to-point unidirectional channels. The processing
elements can be hardware components or processors. In the
latter case a hardware wrapper that encapsulates the
software component as a hardware one is added to the
processor core. This hardware wrapper implements the
communication interface to its eternal environment. Unlike
the previous one the automatic interface generation is done
by choosing the right hardware wrapper components stored
in libraries.

Our approach uses a domain specific mechanism like
POLIS, but using a layered interface model like the latter
two methodologies. But unlike them our implementation
architecture is layered. Another characteristic of this work is
that our layered model is symmetric, using the same
protocol for the three interface types. In this way the
automatic interface problem is restricted to the lower
implementation layer as will be described in the following
sections.

3. Communication among Processes in the
PISH Co-design System

The approach for automatic interface generation is being
developed in the context of the PISH co-design system. The
PISH design methodology is depicted in Figure 1.

A system is specified using the occam language, the
main reason to use occam is that, being based on CSP [16]
occam has a simple and a elegant semantics, given in terms
of algebraic laws, which allows a series of algebraic
transformations to be performed on the original
specification while preserving the semantics of the
specification.

This initial specification is partitioned in hardware and
software components. The set of transformation rules is
applied according to the results of a cost analysis based on
clustering techniques [11]. The output of the partitioning is

a set of concurrent processes, which communicates through
processes generated only for this purpose. This feature is an
important support for the interface generation, since the
communication among processes has been made explicit
and is correct. The interface generation depends on the
target architecture taken into account, so specific device
drivers must be generated at software side, as well as
specific hardware to make transparent for the hardware side
which processor is being used. The interface between
hardware modules must also be synthesized.

ParticionamentoPartitioning

Estimadores
de Qualidade

Estimators

VerificaçãoVerification
Síntese do
hardware

Drivers
synthesis

Síntese de
interfaces

Hw/sw interf.
synthesis

Síntese do
software

Hw/hw interf
synthesis

HWI/Ounit

P1
 C

SW
I/O

Drivers
P2

H
W

Handshake
protocol

Memory
Cntr. mem.

T5 T1

T17 T9

S
W T8 T3 H

W
1

T7 T4 H
W

N C
O
MOccam

Description

H
W

Figure 1- The PISH Design Flow

4. A layered Interface Model

In this section is explained the layered interface model
used in the PISH co-design system. Table 1 shows
communication abstraction levels as described in [19]. As
one can see in this table the communication can be
described in four abstraction levels from service level to
register transfer level. At each level the communication
behavior changes and more details are introduced.

At service level the communication behaves like a
routing system where associations between processes are
created. At this level the specification does not define
timing or data type information. It is only worried on who
communicates with who, how this is performed and what
type of information is exchanged is treated by the other
abstraction levels.

The message level is the second level in the hierarchy. In
this case communication is performed through abstract
communication channels connecting different processes. At
this level no assumption is made about how the
communication is going to be implemented, but contrary to
the previous level, data type information is given. Here
there is no protocol and processes in hardware or software
communicate in the same way. The behavior of the
communication is defined by high level constructs like
occam communication mechanisms.

At driver level, primitive read and write functions are
used to encapsulate the information in handshake protocols.
Each one of the read and write operations hide the low level
details of signal exchange during communication. At this

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

level communication time is predictable and is a function of
the number of read/write operations performed during the
execution of the communication protocol.

In the register transfer level communication is performed
by specific signal exchanges. At this level bit signals are set
or reset in a specific sequence of operations at every clock
cycle. This level represents the physical implementation and
the notion of time is given by the clock signal and set/reset
delays. Processes are implemented as finite state machines
that activate or deactivate the bit signals.

Abstraction Level Communication Behavior
Service Routing
Message Protocol Conversion
Driver Driver Level Protocol
Register Transfer Transmission

Table 1 - Communication abstraction levels

4.1 PISH Implementation

When generating the interface of mixed systems
composed of hardware and software components, the model
taken into account should be able to represent the
communication between hardware modules, the interaction
among software processes, as well as the communication
between hardware and software processes. When
considering hardware/software communication, the
generated interface is dependent on the used processor, on
the communication protocol as well as on the
communication media being used.

The high number of alternatives for implementing
communication makes more difficult the interface
generation in an automatic way. The main goal of this work
is to develop an interface model, which allows decoupling
as most as possible the interface parts of the architecture
features. This has been achieved by organizing the interface
into layers, as depicted in Figure 2

3UR[\� 3UR[\�3UR[\� 3UR[\�Q�

+LJK�OHYHO�3URWRFRO

6FKHGXOH�OD\HU

,2�OD\HU

0HVVDJH�OD\HU

'ULYHU�OD\HU

26�OD\HU

57�OD\HU

Figure 2 – The layers of Interface Model

Each layer includes software and hardware modules and
makes transparent how the communication is done in the
layer below. In the first layer, channels and drivers can be
used for communication between hardware and software
processes, as well as among hardware processes and among
software processes. By using the modules on this layer,

processes can communicate by using send/receive
operations without know how the communication is
implemented. This layer has a well-defined interface with
the layers above and below and is independent on the used
processor and on the used communication schema. The
scheduling of all communication requests is also done at
this layer. The data transfer itself is done at io layer, which
is dependent on the used processor.

4.2 Proxy Layer

This layer represents the message level and is
responsible for making the communication between
processes using the interface transparent of each of the
processes. As can be seen in Figure 2 (message layer) it is
composed of proxies representing the communication
channels. These proxies have the same interface as the
channel, depending on how it is implemented (software or
hardware). When one have two processes, one in hardware
and the other in software, communicating through one
channel, the hardware process sees the channel proxy in the
interface as a hardware channel while the software process
sees the proxy representing the same channel as a software
channel. This way communication is made transparent for
both hardware and software processes. Figure 3 shows the
communication between processes P0 and P2 using the
proxies Px0 from the interface. For the process P0 the proxy
Px0 represents a channel like ch0 that it also uses for
communication with P1. At this level all the
implementation details of the communication are hidden
from the processes and there is no difference between a
process that uses a proxy or a channel.

3[�Q�

3[�

3[�

3[�

+
LJ
K
�O
H
Y
H
O�
3
U
R
WR
F
R
O

6
F
K
H
G
X
OH
�O
D
\
H
U

,
2
�O
D
\
H
U

3[�

3UR[\�

3UR[\�

3UR[\�Q�

+
LJ
K
�O
H
Y
H
O�
3
U
R
WR
F
R
O

6
F
K
H
G
X
OH
�O
D
\
H
U

,
2
�O
D
\
H
U

3�

3�

F
K
�

3�

3�Q�

F
K
�

+: 6:

Figure 3 – Communication at message level

4.3 High Level Protocol Layer

This layer implements Driver Level in Table 1. Here are
implemented the high level protocols used for transferring
data from one processor to another one. These protocols are
implemented by calling send/receive functions in hardware
or software, depending on the processor that contains the
interface. This layer brakes the high level data to be
transferred in several concrete data types. By concrete data
type one must understand as words that can be send

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

received over the processor’s bus. Figure 4 illustrates the
structure of a send driver implemented in software.

struct ChannelHS0 {
T_flag send;
T_flag ready;
DataChannel0 dado;

};

struct ChannelHS0 {
T_flag send;
T_flag ready;
DataChannel0 dado;

};

void sendChannelHS0 (DataType d, next_state, *state_var) {
 if (not channel activated) {
 put new data;
 activate channel;
 }
 else {
 if (transfer ready)
 go to next state
 }
}

void sendChannelHS0 (DataType d, next_state, *state_var) {
 if (not channel activated) {
 put new data;
 activate channel;
 }
 else {
 if (transfer ready)
 go to next state
 }
}

D�

E�

Figure 4 – A driver for send operation

4.4 Scheduling Layer

This layer is responsible for scheduling the access of the
several concurrent proxies to the shared resource that is the
hardware/software interface. As one see in Figure 3 there
are several proxies in the message layer. Each one of these
proxies can try to use the interface and this situation can
occur in the same time. When this conflict happens the
scheduling layer arbitrates and gives control access of the
interface to just one of the proxies trying to use the
interface. The scheduling layer guarantees a fair use of the
interface by all the proxies that need to communicate. This
way all the communication occurring in the system will be
performed.

4.5 IO Layer

The IO layer performs the low level transfer of data from
one processor to another one. As have been seen on 4.2 the
high level protocols are implemented using the call of
send/receive functions. How these functions are
implemented is done in the io layer. A detailed view of the
io layer is depicted in Figure 5.

ZULWHBEORFN

UHDGBEORFN

$

5
&
+�

KDV�ZRUG

ZRUG

KDV�ZRUG

ZRUG

GDWDB LQ

ZBLQ

IXOO

GDWDBRXW

UBLQ

HPSW\

UHDG

UHDG

Figure 5– The IO Layer

It is composed of three blocks: architecture block, write
block and read block. The write block is responsible for
transferring data from the interface to the outside world, it
checks whether there is a word to be send by the interface
and if this is the case transfers it via the architecture block.
The read block verifies whether there is a new word from
outside the processor and receives it. These two blocks have
the same structure independent on the underlying

architecture. The architecture block interacts with the
processor to see if data must be sent or received and
performs the data transfer through the underlying
interconnection media. For each new interconnection media
a new architecture block must be designed and stored in a
library for reuse in new projects.

5. A Method for Automatic Interface
Generation

An overview of the methodology for automatic interface
generation can be seen in Figure 6. Initially the occam
description is partitioned in hardware, software and
communication components. The result of this phase is
another occam description that is guaranteed to have the
same semantics as the original one. In a second step these
components are translated to an internal format represented
by Petri Nets. The Petri Net representation is then translated
to C and VHDL for software and hardware implementation
respectively. C code is generated for the software processes
and communication and VHDL code for the hardware
processes and communication components in hardware.
Communication components in hardware and software
represent the message, driver and OS layer of the interface
model.

2FFDP

6:

2FFDP

&200

2FFDP

+:

2FFDP

�

3URFHVVR�V�

VZ

3URFHVVRV

KZ�$6,&�

LQWHUIDFH

3HWUL1HW

&RQYHUVRU31® &

&

3HWUL1HW

&RQYHUVRU
31®9+'/

9+'/

3HWUL1HW

*HUDGRU

GH

,QWHUIDFH

& 9+'/

2FFDP

6:

2FFDP

&200

2FFDP

+:

2FFDP

�SDUWLWLRQLQJ

3URFHVVHV

VZ

�352&(6625�

3URFHVVHV

KZ

�$6,&�

LQWHUIDFH

WUDQVODWLQJ

3HWUL1HW

31® &

&

3HWUL1HW

31®9+'/

9+'/

3HWUL1HW

,QWHUIDFH

*HQHUDWRU

& 9+'/

Figure 6 – A Methodology for automatic interface
generation

The IO layer is implemented based on descriptions
stored in a library. So the designer has to build its own
library of low level interface elements. Despite the designer
has to build this manually, it just do that once and can reuse
the low level interface component in several projects.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

5.1 Automatic Interface Generation for an ATM
Controller

In this section an ATM switch controller described in
detail in [21] is used as an example for the interface
generation methodology. The ATM switch controller must
decide whether a cell must be sent or not based on four
policy algorithms. The block diagram of the ATM switch is
shown in Figure 7. Squared boxes represent processes and
the round boxes represent communication channels. It is
composed of the following processes: one routing table
(TRGS), one cell reader, data reader block, four policy
algorithms, one cell evaluator, cell sender and table update.
The system is partitioned in hardware and software
processes. Hardware processes are represented by the gray
squared boxes while the software ones by the white squared
boxes.

'DWD

5HDGHU

&HOO

5HDGHU
FK&HOO

75*6

FK�7DEOH

3ROLF\�

3ROLF\�

3ROLF\�

3ROLF\�

&HOO

(YDOXDWRU

&HOO

6HQGHU
FK2XW

7DEOH

8SGDWH
FK:7DEOH

FK�7DEOH

FK5RXWH

Figure 7 – ATM switch block diagram

The communication between the processes cell reader
and data reader is detailed in Figure 8. Instead of the
channel chCell the communication is performed through the
the proxies Px0 implemented in hardware and software. For
the processes the proxies behave like the channel chCell and
no change in the processes code is needed. The high-level
protocol layer implements a simple protocol composed of
the proxy id and a number of words that depends on the data
size. When the proxies communicate they know the number
of words involved in the transfer. The schedule layer is
implemented as a round robin algorithm that always starts
with the proxy following the last one that used the interface.

3[�

>
S
U
R
[
\
B
LG
@
>
G
D
W
D
�
@
��
�>
G
D
W
D
�
Q
�
@

5
R
X
Q
G
�
5
R
E
LQ

&HOO

5HDGHU

+: 6:

,17

00,2

5
R
X
Q
G
�
5
R
E
LQ

>
S
U
R
[
\
B
LG
@
>
G
D
W
D
�
@
��
�>
G
D
W
D
�
Q
�
@

3[�
'DWD

5HDGHU5(*�

5(*Q

Figure 8 – Hw/Sw Process Communication

This guarantees that no proxy will wait indefinitely to
access the interface. It should be noted thatse layer are the

same in both sides of the interface. The last layer, io layer,
is different, it has not the same implementation in hardware
and software. In the target architecture the hardware
processor is mapped as memory by the software processor.
The scheme uses memory mapped io (MMIO). For
transferring data from the hardware processor to the
software one an interruption mechanism is used and
reflected on the hardware io layer (INT), also in hardware
are implemented a bank of registers that are read/written by
the software processor. On the software side is implemented
a MMIO mechanism for accessing the register on the
hardware side.

6. Results

The tool extracts the concurrent threads from the Petri
Net representation of the partitioned system. In this case 14
concurrent threads are generated and the results are
summarized in the Table 2. The table gives the number of
places and transitions for each thread and also its nature that
can be hardware or software thread. The hardware threads
are the 4 policy processes and can be noted thaty all have
the same number of places and transitions. This comes from
the fact that only the parameters are different, the policy
processes are equal.

Thread type Number
Software threads 10
Hardware threads 4

Table 2: Thread results

In Table 3 the results for the IO threads selected by the
system designer are shown. In this example all the IO
threads are implemented in hardware. For each IO thread
one VHDL file is generated.

Number of IO Threads Type
6 Hardware

Table 3: IO Threads

As mentioned before the interface is implemented in
layers. The last layer is responsible for implementing the 3
types of communication schemes between threads in
hardware and software. One file is generated for each policy
thread, resulting in four files. In table 4 are shown the
results for the interface in hardware.

Block name Type Number of lines
Communication Hardware 1089
Activation Hardware 944
Finalisation Hardware 932

Table 4: interface in hardware

The software implementation is simpler than the
hardware one. In this case header and C files are generated

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

for the parts of the system to be implemented in software. In
Table 5 are summarized the software results. The first file
represents the whole system in software. It contains the
main function. The second file, processos.c, implements the
threads in software. The next file, comunicacao.c,
implements the communication in software. As there are no
IO threads to be implemented in software, no files are
generated. The last three lines of the table contain the three
layers of the interface. As in the case of the hardware
interface, the io_unit.c file is generated based on a
description of the target architecture while the others are
generated automatically.

C file Lines H file Lines
Atm_protocolo.c 58 - -
processos.c 573 processos.h 11
comunicacao.c 1997 comunicacao.h 791
e_s.c - - -
io_unit.c 40 io_unit.h 2
Comm_unit.c 230 comm_unit.h 17
prcs_unit.c 808 Prcs_unit.h 182

Table 5: software results

7. Conclusions

In this paper we have presented an interface model for
synchronous communication, which is based on layers. The
model includes three layers. The first layer, called the
channel/drivers layer, consists of hardware and software
channels and drivers to be used at process level. The
second layer, the PRCS_unit controls the data transfer and
scheduling of the communication through the
interconnection media. The I/O_unit layer performs the data
transfer between processor and the hardware part. In all
these layers there are modules implemented in hardware and
in software, which works in a complementary way. The
layer organization of the interface and the similarity of
modules belonging to the same layer make easier the
automation of the interface generation process.

8. References

[1] Knudsen, P.V.; and Madsen, J., Communication Estimation
for Hardware/Software Codesign, Proceedings of the
International Workshop in Hardware/Sotware Co-Design -
CODES 1998.

[2] B. Lin, S. Vercauteren, H. De Man, Embedded Architecture
Co-Synthesis and System Integration, International Workshop
on Hardware/Software Codesign, March 1996.

[3] M. Eisenring and J. Teich, Domain-Specific Interface
Generation from Dataflow Specifications, Proceedings of the
6th International Workshop on Hardware/Software Codesign,
March 1998.

[4] C. Araújo and E. Barros , Automatic Interface Generation
among VHDL Processes in Hardware/Software Co-Design,
FDL´99, August 1999.

[5] D. Gajski and F. Vahid, Specification and Design of
Embedded Hardware-Software Systems–IEEE Design and
Test of Computers, pp.53-67, Spring 1995

[6] T. BenIsmail, M. Abid, K. O´Brien and A. Jerraya,,An
Approach for Hardware/Software Codesign, Proceedings of
the RSP 94, França, 1994

[7] A. Kalavade , E. Lee, A Hardware-Software Codesign
Methodology for DSP Applications – IEEE Design and Test
of Computers, pp. 16-28, September 1993

[8] D. E. Thomas, J. K. Adams, H. Schmit, A Model and
Methodology for Hardware/Software Codesign– IEEE Design
and Test of Computers, pp. 6-15, September 1993

[9] R.K. Gupta. , C.N. Coelho , G. De Micheli, Synthesis and
Simulation of Digital Systems Containing Interacting
Hardware and Software Components– Proceedings of the 29th
DAC, 1992

[10] R. Ernst , J. Henkel, T. Benner, Hardware-Software Co-
Synthesis for Microcontrollers– IEEE Design and Test of
Computers, pp. 64-75, December 1993

[11] E.Barros and W. Rosenstiel A Clustering Approach to
Support Hardware/Software Partitioning". In: K.
Buchenrieder, and J. Rozenblit (eds.), Computer Aided
Software/Hardware Engineering. Chapter 11- IEEE Press,
1994.

[12] E. Barros and A. Sampaio,. Towards Probably Correct
Hardware/ Software Partitioning Using Occam. In
Proceedings of the Third International Workshop on
Hardware/Software Codesign, (1994) 210-217, IEEE Press.

[13] L. Silva, A. Sampaio and E. Barros, A Normal Form
Reduction Strategy for Hardware/Software Partitioning. In
the Proceedings of the Conference Formal Methods
Europe'97

[14] F. Balarin, A. Jurecska, and H. Hsieh et al. Hardware-
Software Co-Design of Embedded Systems : The Polis
Approach. Kluwer Academic Press, Boston, 1997.

[15] D. Pountain and D. May, A Tutorial Introduction to OCCAM
Programming. Inmos BSP Professional Books, (1987).

[16] C. A. R. Hoare, Communicating Sequential Processes
Prentice-Hall, 1985

[17] P. Chou, R.B. Ortega and G. Borriello, The Chinook
Hardware/Software Co-synthesis System. Proceedings of the
8th International Symposium on System Synthesis. 1999.

[18] A. Baghdadi, D. Lyonnard, N-E. Zergainoh and A. Jerraya
An Efficient Architecture Model for Systematic Design of
Application-Specific Multiprocessor SoC. In Proceedings
Design, Automation and Test in Europe, Los Alamitos, CA,
2001.

[19] K. Svarstad, G. Nicolescu and A. Jerraya A Model for
Describing Communication between Aggregate Objects in the
Specification and Design of Embedded Systems

[20] G. Nicolescu, S. Yoo and A. Jerraya Mixed-Level
Cosimulation for Fine Gradual Refinement of
Communication in SoC Design

[21] J. Yioda ParTS – Uma Ferramenta de Suporte ao
Particionamento Hardware/Software. Recife: Universidade
Federal de Pernambuco, 1999. Dissertação Mestrado.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02)
0-7695-1807-9/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

