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Abstract

The reconfigurable computing has presented a prom-
ising progress. The development of platforms that match
the reconfigurable hardware with programmable elements,
such as DSPs or microprocessors promise great applicabil-
ity in diverse areas in the future. In this article we describe
a co-design methodology for single-context and virtual
hardware applications based on Petri net for PISH design
environment. A platform description is presented as well as
the reconfiguration methodology. A temporal partitioning
is described exploring different solutions for different ap-
plications with time and communication constraint.

applications. Both worlds, hardware and software, how-
ever, have to work together aiming to reduce time -to-
market, costs and improving performance.

In a hardware/software codesign methodology, the
advantages ofboth approaches are taking into account. This
methodology offers flexible alternatives based on criteria
and constrains for hardware and software components (cost
function), such as silicon area and speed. Software comp 0-
nents are represented by microcontrollers or microproces-
sors and hardware ones by ASICs or FPGAs [7],[8].

In this article, we present a codesign methodology for
switching context application based on a CDFO.Petri net
model [13],[16]. This approach is integrated with PISH
environment (Integrated Design of Sw/Hw) [2] and Cha~-
leon prototyping platform [12]. The prototyping platform
allows run time switching context in a XC400XX
FPGA Xilinx series. The platform contains a micro-
controller that manages each access to the FPGA and
its configurations. In Section 2, the methodology and
the prototyping environment are d escribed. Section 3
presents the Petri net model. Section 4 presents CDFG
-Petri net model used for control and data flow repre-
sentations. Section 5 discusses hardware area estima-
tion. Section 6 introduces temporal partitioning tools.
Section 7 presents a complete example and some re-
suits. Finally, Section 8 presents conclusions and fu-
ture works.

1 Introducoon

2 PISH codesign system overview

With the increasing in the complexity and size of the
digital systems, more powerful CAD tools are needed to
speed up the validation processes and the prototyping plat-
forms in digital system designs. Many rapid prototyping

platforms have been launched aiming at giving digital sys-
tem cr.signers the option to implement their projects in a
fast and reliable way, aiming at cost reduction, better per-
formance and minor time -to-market. Prototyping platforms
are in general based on single or multiple reconfigurable
hardware [7],[8]. Generally, hardware implementations
allow concurrency explotation and increasing data process-
ing speed. These hardware components will also continue
to grow and so the problem of fitting them into a single

reconfigurable component Slch as a FPGA or an ASIC
would not be always possible.

Software implementations present some advantages
such as flexibility and low inplementation cost of complex
functions. However, it presents limitations as difficulties to
exploiter parallelism and meet constraints for high-speed

The PISH codesign methodology (see Figure I)

aims to provide a complete top-dow environment for
hw/sw codesign, from the system specification to its
prototyping. Its current specification mechanism uses
Occam [10] as specification language.

After the specification, the system is part itioned

[3].
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A graphical user interface has been developed in order
to provide a friendly design environment. A database stor-

ages all hw and sw application cores, and a supervisory
system, installed in the PC host, manages the download of
all applications, through a serial link with the platform.

2.2 Run time reconfiguration

In general, a complex hardware specification is repre-
sented by a single file that can be too large to be fitted into
a single FPGA. Thus, the circuit requires splitting the origi-
nal file into small ones in order to fit the logic into the

FPGAs. Multi-FPGAs platforms [7], [12] are possible solu-
tions since it is possible to split the system into smaller
processes adjustable to the platform. However, this Ip-

proach demands hardware area proportional to the system
complexity. In our model, the context partitions could be
switched at a time in a single FPGA, according to a sched-
uling algorithm. The methodology suggests a virtual hald-
ware mechanism like a virtual memory [9]. The switching
context is based on Petri net analysis. Figure 4 shows the

design flow for hardware and software components consii-
ering a single FPGA platform.
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Figure 1 -PISH methodology

The partitioning, through a formal mechanism,
guarantees the semantics preservation of the in itial
specification. The analysis phase is carried out con-
sidering a Petri net representation [6],[15],[16] of the
description as a model to perform quantitative analy-
sis and metrics computation (time and area). An
automatic interfaces generator [1] implements the
hw/sw communication after partitioning. As results,
the software and hardware components can be imple -
mented in the Chameleon prototyping platform [12].

2.1 Chameleon prototyping platform ow

o...III..lIon

The Chameleon platfonn is showed in Figure 2. The
platfonn is composed of software component, a microcon-
troller80S1 type, a hardware coD1>onent, a Xilinx FPGA,
and two banks of memory to keep program and data.
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Figura 4- Design flow

3 Timed Petri Net

Petri nets are fonnal specification techniques that al-
Iowa graphical and mathematical representation and have
powerful methods for qualitative and quantitative analysis
[14]. Petri nets are used to systems modeling [17], [18].
Petri net temporal approach was proposed by Ramchandani

[19].

Figure 2- Chameleon platform

An overview of be prototyping environment is <1'--

picted in Figure 3.
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Timed Petri nets are Petri net extensions in which the
time information is expressed by dumtion ( determinis tic
timed net with three phase policy firing semantics) and is
associated to the transitions.

Definitionl- Timed Petri Nets: Let Nt = (P,T,I,0,

Mo,N;D,C) be a timed Petri net, , D:T ~A, A={ a / a > 0, a
e R} is a function which associates with each transition It

the dunltion of the firing di. C: T~B, B={ b / be {0,11, b e

IR } is a choice function which assigns a free-choice

Figure 3- Prototyping environment
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probability to each transition of the net, whereIt~TcC(t) =

1. Tc ~ T is a set of structural conflicting transitions.

4 Intermediate model

5.1 Hardware model

The controller is synthesized directly from p~ [15],
where each place is associated to a flip-flop type D and
each transition associated to an AND gate as it is depicted
in Figure 7.

After the hw/sw partitioning, the Occam code is trans-
lated into a Petri net intermediate representation (see Fig-
ures 5 and 6). In this section, the control flow and data

models are defined [13],[15]. The formal defmitions are
described below.

Definition2 -Control Flow Model: Pl'f is safe and

timed Petri net Nt=(PC,~,f,d,MoC,D,C) as defined in
Definitionl, Section 3, and represents the controlflow.

Definition3 -Data Flow Model: ad= (V= Tu In

u Out, E,FD) is the data dependence graph. T is Petri net

transitions set; In and Out are data input and data output

points respectively; EcVxV is the edge set that represents

data dependence between vertex of al in V set; FD(e) is

the variables sub-set associated to the data flow repre-
sentedfor e E E.

Figure 5 shows a simple example, in order to explain
the principles of our approach. The example written in

Occam is translated into control q>d) and dataflow if)
models. These models are described in Figure 6 as control

data flow graph.
The construction rules of net P~ are re scribed in

[15]. Although the model has been originally conceived for
Occam description, other languages such as SystemC [20]
can also be consilered.

INT a,b,c,d,e

CHAN OF INT ch

PAR

(a)

-.t

AHt=(n+g-l)AAM]Z1 g=numberof[grdt]'s
(b)

5

SEQ
a:=a+ 1
b:=a+2

SEQ
IFc<O

c: =c+ 1
IFc>=O

c: =c+2
chic

SEQ
ch?d
d:=d+e

Figura 5- A Occam code example

Hardware area estimation

Figure 7- Hardware model for controller: place (a)
and transittion (b).

In Figure 7, AHpl and ARt are tre areas for implemen-
tation of a p place and t transition respectively.

These metrics are given by the expressions:

AHpl = AFFD + AAND2+(m+n-l)AoR2 (1)

AHt = (n+g-l)AANDm 9 = number of [grdt] (2)

Before the hardware synthesis, it is necessary to esti-
mate its total area. For a given high-Ievel behavioural de-
scription, the hardware design is divided into two classes of
functional blocks: data-path and controller.

This estimate is accomplished considering the CDFG
=(Pd,d) and hardware models. The method for estimat-
ing hardware area is described in [15], [16].

AFFD is the area of the Flip-Flop D, AAND2 and
AoR2 are the areas of the AND and OR gates of 2 in-
put. The data -path circuit consists of registers, mutt i-
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plexers and functional units defined in the Data-path
Components Library: DCL = {R1(lbit register), MUX2

(multiplexer2: 1 bits) } u FUL. FUL= {FUi, i =1,2 ,..
,n} is a Functional Unit library. Figure 8 illustrates
the data-path models. The DCL conyonent areas are
designated by: AHR1, AHMUX2, AHFUI.

and N(FUopl is the number of functional units of the type
FUop, then the estimate area for functional units is given by:

AHfu=I'V'oPEOpN(FUI¥J} AHFUop (7)

Data-path area is the summation of(5), (6) and (7):

AHDp =AHreg+AHmux+AHru (8)

5. 3 Functional unit estimation

Figure 8- Data-path hardware model

The area estimation is carried out based on
equivalent gates number for the XC400XX FPGAs
[13], consi:lering control and data-path areas:

The calculation of the number of functional units

N(FUol, in the expression (7), is accomplished in two parts
[15],[16]. First, the set PMfPIf) of p-rninimus invariants
supports [14] for P~ is calculated and the universal set of

transition-paths UTPS(PMfPIf)) is generated. Let T", be
the plf transitions set that represent operations op. The
upper limit of N(FU op) is given by the smallest number of

sets T~ (TS1 E UTPS(PMl(pNc;)), whose union covers T",.
It is because the paths of transition TS may represent transi-
tions that has exclusion relation in the P~

The second stage of the N(FU",) calcuhtion consists
of a refinement of the bound obtained in the first stage. P If
is extended for plfe by introduction of a set of places PFU.
ppu represents functional units and arcs among these places
and transitions represent the operation allocation. The
amount of tokens in these places is represent by N(FU oP> .

The execution time of the net p~e is computed, by using
the INA tool [18], for combinations of initial marking of
ppu starting from the upper minimal bound, until the mini-
mum amount of functional units that do not increase the
execution time. This method has provided good results for
the area of functional units.

AH= AHcTRL + AHDP (3)

5.2 Area estimation techniques

The control area estimation are obtained directly from
expressions (I) and (2):

AHc11lL = IV'PEpC AHpl(P)+ IV'teTC AHtt) (4)

For data path area (;4HDP), it is important to find out
the number of registers, multiplexers and functional units.

The registers area (;4Hreg) is calculated as a function
of the number of variables used in the process (VP). If V p
is the set of variables in the process and /v/ is the length in
bits of VE fP, Then the registers area used is:

6 Temporal partition and virtual hardware

AHreg = IV'VEVP /v/AHRl (5)

In the same way, multiplexers area ~Hmux) is esti-
mated as a function of the number of inc idences for each
operation in hardware process. If OP is a set of incident
operations, N(op) is the number of times that op E OP
appears in the process and /op/ is the length in bits of the op

inputs. Then, the area estimated of mu Itiplexers is given by:

AHmux = I~pEOpN(op)/op/AHMUX2 (6)

The expressions (5) and (6) do not take into account
register and functional units reutilization. Hence, the esti-
mates OOtained may not be very accurate. For functional
units area estimates, (4H[u), the results are closer to real
metrics. If \7 op E OP, 3 FUovE FUL that implements op,

Figure 9 illustmtes de tempoml partition for virtual
hardware methodology. The hw process may be repre-
sented by a CDFG-Petri net model p'lW = (pl'f,d). In case

the estinated area is larger than the available FPGA area,
the hw process is partitioned into multiple contexts that are
performed in a time multiplexing approach. In [11] is pre-
sented tempoml partitioning from a data flow graphs hard-
ware description. In [4], [5] is presented a hardware gate

level partitioning. In thE work. The Pl'f.and d is parti-
tioned at the opemtion level. Each context has a controller
that is derived from a partition Pl'f pb Pl'f, and a data-path

obtained from a partition at p b at .

The foresee methods described in Section 5 are used
to guide the partitioning of the (pNc,d) in subproc-

esses placed, as co ntexts, into FPGA.

Proceedings of the 15 th Symposium on Integrated Circuits and Systems Design (SBCCI’02) 
0-7695-1807-9/02 $17.00 © 2002 IEEE 



(pN" pl,d pJ)

(pd ,(/)

~ Estimate .0

-t

~~
(P';VC P2,d P2J

(a)

e7

Figure 10 -Group transitions methods

Transitions ti and t2 form context Cj. The Cand-
Trans set {t3,t4,t5} represents the candidates to be
grouped in q without violate Area and Precedence
constraints. The grouping method adopted uses local
criteria (myopic heuristics) for trans ition choice:

Concurrency Criterion: Group the transition that ex-

ploits less concurrency or Group the transition that lX-
ploits more concurrency.

Communication Criterion: Group the transition that
minimizes the communication between contexts.

In Figure 10, the criterion more concurrency im-

plies the choice of transitions ~ and 4. During the

partitioning, transitions are searched in width, consid-
ering parallelism exploration and execution time
minimization. The criterion less concurrency implies

the choice of transition t5: b:=a+2. Hence, transitions
are searched in depth take into account parallelism
minimization. The criterion minimizes the communica-
tion implies the choice of the trans ition that results in

less data edges, in graph d, crossing the context.
Transition t5 is chosen, implying parallelism reduction

and execution time increasing.

~ ,. I Rcs-1

I Rc&-2

I RcB.J' ,.,..

(b ) RD/WR 0 &0. }Bu .~B- Svslem

Figure 9 -Methodology to virtual hardware: a)

temporal partitioning, b) Context implementation in

FPGA

6.1 Multi-contexts implementation

Contexts are implemented, in the FPGA, a structure as
showed in the Figure 9(b ). The context switching is per-

formed by microcontroller. FPGA reconfiguration spends
several milliseconds in XC400:XX chips. For industrial low
speed applications, this overhead can be supported. Reg-l
to Reg-n, used as partial result 1/0 ports, are access i-
ble through the system bus. In the end of each context,
the registers with partial results are saved in the RAM

memory and, after the FPGA reconfiguration, sent to
the registers of the next context.

6.2 Temporal partitioning algorithm

7 Case study

The methodology presented was applied to Occam
representation that describes a differential equation:

x(t + i) = x(t) + y(t).i
y(t + i) = y(t) -j(x).y(t).t.i-3.x(t).i
t' = t + i, new t value

The CDFG-Petri net resulted in 40 places and 39 tran-
sitions. Table 1 shows the temporal partitioning results
according to two criteria:

The partitioning algorithm groups trans itions into
contexts:
Defl'..tion4 -pHW partitioning: Let a pair r = (PNC,

ad ) be a CDFG hardware process iI¥Jlemented in an

FPGA area AH FPGA, we defined a r partitioning as being

a contexts set Partr = {C I' C2,..., Cd and C;.Tn ~.T =

l/J \7' C/,Cj E Partr, j;j:j C/"T is the transitions set con-

tained in each context; C/.AHW is the FPGA area used in

each context and context execution order is C I~C2~. ..C k.

Part~ COIstraints is:

Area: C/"AHW S AHFPGA \7'C/ E Partfw.

Precedence: tE C/"T=> (\7't'EI(p) 1'\ pEI(t):3 CJ/ t'E

CJT 1'\ jSi).

When a context cannot group more transitions
without violating the Area constraints, a new context
is created. The order which transitions are grouped
must respect the Precedence constraint. Figure 10
shows the group transitions method.
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9 ReferencesThe context execution time (1) is estimated on the basis of
the critical transition path extracted using techniques for
search in graph.

For the first contexts (Table I), we can observe
that the concurrency criterion takes less execution
time than the communication criterion. It is due to the
parallelism exploitation (partitioning I) and reduc-
tion of communication (partitioning 2). Next con-
texts group sequential transitions. This causes low
sensitivity to the choice criteria. Considering as refer-
ence a partitioning that places all processes in a single
context, Partitioning I takes 40,64 % and Partitionig
2 takes 22,92% more area than the circuit in single
c ontext, respectively.

The CDFG-Petri net pHW = (PNG, all) and the par-

titioning result PartjlW had been translated manually
into a RTL-Ievel hardware description for each con-
text. The Xilinx Foundation 3.1i synthesis results are
showed in the Table 2.

Good results have been obtained for area esti-
mates with precis ions around 86% in relation to Xil-
inx Syntheses Tool. In this architecture, the time for
FPGA reconfiguration takes 16 ms. Depending on the

number of contexts and application constrains the
FPGA reconfiguration time may be suitable.

8 Conclusion and future works

A switching context methodology based on Petri nets
was presented. Large algorithms may be split into suitable
hw and sw processes and run in switching context platform.

Estimates from Petri net guarantees that hw processes areas
are suitable for the area available in the prototyping part-
form. A virtual hardware mechanism allows correct hw
execution and its FPGA reconfigurations. An example has
been presented in order to validate the method for low-end
speed applications. Hardware reconfiguration speed may be

improved with partial reconfiguration devices.
The partitioning algorithm groups transitions using

local criteria. To prevent sub-optimal solutions, we intend
to introduce strategies for exploiting solution space taking
into account real time and communication constraints.
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